Sample records for cortical rhythms determine

  1. The maturation of cortical sleep rhythms and networks over early development

    PubMed Central

    Chu, CJ; Leahy, J; Pathmanathan, J; Kramer, MA; Cash, SS

    2014-01-01

    Objective Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. Results We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Conclusion Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. Significance This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. PMID:24418219

  2. The maturation of cortical sleep rhythms and networks over early development.

    PubMed

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    NASA Astrophysics Data System (ADS)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  4. Auditory cortical activity during cochlear implant-mediated perception of spoken language, melody, and rhythm.

    PubMed

    Limb, Charles J; Molloy, Anne T; Jiradejvong, Patpong; Braun, Allen R

    2010-03-01

    Despite the significant advances in language perception for cochlear implant (CI) recipients, music perception continues to be a major challenge for implant-mediated listening. Our understanding of the neural mechanisms that underlie successful implant listening remains limited. To our knowledge, this study represents the first neuroimaging investigation of music perception in CI users, with the hypothesis that CI subjects would demonstrate greater auditory cortical activation than normal hearing controls. H(2) (15)O positron emission tomography (PET) was used here to assess auditory cortical activation patterns in ten postlingually deafened CI patients and ten normal hearing control subjects. Subjects were presented with language, melody, and rhythm tasks during scanning. Our results show significant auditory cortical activation in implant subjects in comparison to control subjects for language, melody, and rhythm. The greatest activity in CI users compared to controls was seen for language tasks, which is thought to reflect both implant and neural specializations for language processing. For musical stimuli, PET scanning revealed significantly greater activation during rhythm perception in CI subjects (compared to control subjects), and the least activation during melody perception, which was the most difficult task for CI users. These results may suggest a possible relationship between auditory performance and degree of auditory cortical activation in implant recipients that deserves further study.

  5. Locally induced neuronal synchrony precisely propagates to specific cortical areas without rhythm distortion.

    PubMed

    Toda, Haruo; Kawasaki, Keisuke; Sato, Sho; Horie, Masao; Nakahara, Kiyoshi; Bepari, Asim K; Sawahata, Hirohito; Suzuki, Takafumi; Okado, Haruo; Takebayashi, Hirohide; Hasegawa, Isao

    2018-05-16

    Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.

  6. Association between heart rhythm and cortical sound processing.

    PubMed

    Marcomini, Renata S; Frizzo, Ana Claúdia F; de Góes, Viviane B; Regaçone, Simone F; Garner, David M; Raimundo, Rodrigo D; Oliveira, Fernando R; Valenti, Vitor E

    2018-04-26

    Sound signal processing signifies an important factor for human conscious communication and it may be assessed through cortical auditory evoked potentials (CAEP). Heart rate variability (HRV) provides information about heart rate autonomic regulation. We investigated the association between resting HRV and CAEP. We evaluated resting HRV in the time and frequency domain and the CAEP components. The subjects remained at rest for 10 minutes for HRV recording, then they performed the CAEP examinations through frequency and duration protocols in both ears. Linear regression indicated that the amplitude of the N2 wave of the CAEP in the left ear (not right ear) was significantly influenced by standard deviation of normal-to-normal RR-intervals (17.7%) and percentage of adjacent RR-intervals with a difference of duration greater than 50 milliseconds (25.3%) time domain HRV indices in the frequency protocol. In the duration protocol and in the left ear the latency of the P2 wave was significantly influenced by low (LF) (20.8%) and high frequency (HF) bands in normalized units (21%) and LF/HF ratio (22.4%) indices of HRV spectral analysis. The latency of the N2 wave was significantly influenced by LF (25.8%), HF (25.9%) and LF/HF (28.8%). In conclusion, we promote the supposition that resting heart rhythm is associated with thalamo-cortical, cortical-cortical and auditory cortex pathways involved with auditory processing in the right hemisphere.

  7. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm.

    PubMed

    Nozaradan, Sylvie; Schönwiesner, Marc; Keller, Peter E; Lenc, Tomas; Lehmann, Alexandre

    2018-02-01

    The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain. We addressed this question by taking advantage of a new method to simultaneously record human EEG activity originating from cortical and lower-level sources, in the form of slow (< 20 Hz) and fast (> 150 Hz) responses to auditory rhythms. Cortical responses showed increased amplitudes at meter-related frequencies compared to meter-unrelated frequencies, regardless of the prominence of the meter-related frequencies in the modulation spectrum of the rhythmic inputs. In contrast, frequency-following responses showed increased amplitudes at meter-related frequencies only in rhythms with prominent meter-related frequencies in the input but not for a more complex rhythm requiring more endogenous generation of the meter. This interaction with rhythm complexity suggests that the selective enhancement of meter-related frequencies does not fully rely on subcortical auditory properties, but is critically shaped at the cortical level, possibly through functional connections between the auditory cortex and other, movement-related, brain structures. This process of temporal selection would thus enable endogenous and motor entrainment to emerge with substantial flexibility and invariance with respect to the rhythmic input in humans in contrast with non-human animals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging.

    PubMed

    Del Percio, Claudio; Drinkenburg, Wilhelmus; Lopez, Susanna; Infarinato, Francesco; Bastlund, Jesper Frank; Laursen, Bettina; Pedersen, Jan T; Christensen, Ditte Zerlang; Forloni, Gianluigi; Frasca, Angelisa; Noè, Francesco M; Bentivoglio, Marina; Fabene, Paolo Francesco; Bertini, Giuseppe; Colavito, Valeria; Kelley, Jonathan; Dix, Sophie; Richardson, Jill C; Babiloni, Claudio

    2017-01-01

    Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.e., active condition). Can this procedure be back-translated to C57 (wild type) mice for aging studies? On-going EEG rhythms were recorded from a frontoparietal bipolar channel in 85 (19 females) C57 mice. Male mice were subdivided into 3 groups: 25 young (4.5-6 months), 18 middle-aged (12-15 months), and 23 old (20-24 months) mice to test the effect of aging. EEG power density was compared between short periods (about 5 minutes) of awake quiet behavior (passive) and dynamic exploration of the cage (active). Compared with the passive condition, the active condition induced decreased EEG power at 1-2 Hz and increased EEG power at 6-10 Hz in the group of 85 mice. Concerning the aging effects, the passive condition showed higher EEG power at 1-2 Hz in the old group than that in the others. Furthermore, the active condition exhibited a maximum EEG power at 6-8 Hz in the former group and 8-10 Hz in the latter. In the present conditions, delta and theta EEG rhythms reflected changes in cortical arousal and vigilance in freely behaving C57 mice across aging. These changes resemble the so-called slowing of resting state EEG rhythms observed in humans across physiological and pathological aging. The present EEG procedures may be used to enhance preclinical phases of drug discovery in mice for understanding the neurophysiological effects of new compounds against brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    PubMed

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (p<0.01). Data simulations showed that elevated CFC could not be attributed to the presence of sharp transients or other signal properties. The phase of low frequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Cortical Tracking of Global and Local Variations of Speech Rhythm during Connected Natural Speech Perception.

    PubMed

    Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta

    2018-06-19

    During natural speech perception, listeners must track the global speaking rate, that is, the overall rate of incoming linguistic information, as well as transient, local speaking rate variations occurring within the global speaking rate. Here, we address the hypothesis that this tracking mechanism is achieved through coupling of cortical signals to the amplitude envelope of the perceived acoustic speech signals. Cortical signals were recorded with magnetoencephalography (MEG) while participants perceived spontaneously produced speech stimuli at three global speaking rates (slow, normal/habitual, and fast). Inherently to spontaneously produced speech, these stimuli also featured local variations in speaking rate. The coupling between cortical and acoustic speech signals was evaluated using audio-MEG coherence. Modulations in audio-MEG coherence spatially differentiated between tracking of global speaking rate, highlighting the temporal cortex bilaterally and the right parietal cortex, and sensitivity to local speaking rate variations, emphasizing the left parietal cortex. Cortical tuning to the temporal structure of natural connected speech thus seems to require the joint contribution of both auditory and parietal regions. These findings suggest that cortical tuning to speech rhythm operates on two functionally distinct levels: one encoding the global rhythmic structure of speech and the other associated with online, rapidly evolving temporal predictions. Thus, it may be proposed that speech perception is shaped by evolutionary tuning, a preference for certain speaking rates, and predictive tuning, associated with cortical tracking of the constantly changing rate of linguistic information in a speech stream.

  11. Temporal Interactions between Cortical Rhythms

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two co-active local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency – suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales. PMID:19225587

  12. Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials

    NASA Astrophysics Data System (ADS)

    Ibáñez, J.; Serrano, J. I.; del Castillo, M. D.; Monge-Pereira, E.; Molina-Rueda, F.; Alguacil-Diego, I.; Pons, J. L.

    2014-10-01

    Objective. Characterizing the intention to move by means of electroencephalographic activity can be used in rehabilitation protocols with patients’ cortical activity taking an active role during the intervention. In such applications, the reliability of the intention estimation is critical both in terms of specificity ‘number of misclassifications’ and temporal accuracy. Here, a detector of the onset of voluntary upper-limb reaching movements based on the cortical rhythms and the slow cortical potentials is proposed. The improvement in detections due to the combination of these two cortical patterns is also studied. Approach. Upper-limb movements and cortical activity were recorded in healthy subjects and stroke patients performing self-paced reaching movements. A logistic regression combined the output of two classifiers: (i) a naïve Bayes classifier trained to detect the event-related desynchronization preceding the movement onset and (ii) a matched filter detecting the bereitschaftspotential. The proposed detector was compared with the detectors by using each one of these cortical patterns separately. In addition, differences between the patients and healthy subjects were analysed. Main results. On average, 74.5 ± 13.8% and 82.2 ± 10.4% of the movements were detected with 1.32 ± 0.87 and 1.50 ± 1.09 false detections generated per minute in the healthy subjects and the patients, respectively. A significantly better performance was achieved by the combined detector (as compared to the detectors of the two cortical patterns separately) in terms of true detections (p = 0.099) and false positives (p = 0.0083). Significance. A rationale is provided for combining information from cortical rhythms and slow cortical potentials to detect the onsets of voluntary upper-limb movements. It is demonstrated that the two cortical processes supply complementary information that can be summed up to boost the performance of the detector. Successful results have been also

  13. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.

    PubMed

    Jochumsen, Mads; Rovsing, Cecilie; Rovsing, Helene; Niazi, Imran Khan; Dremstrup, Kim; Kamavuako, Ernest Nlandu

    2017-01-01

    Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48 ± 0.05 (grasp types), 0.41 ± 0.07 (kinetic profiles, motor execution), and 0.39 ± 0.08 (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  14. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.

    PubMed

    Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup

    2017-07-19

    While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    NASA Astrophysics Data System (ADS)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  16. Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network.

    PubMed

    Kuck, Heleln; Grossbach, Michael; Bangert, Marc; Altenmüller, Eckart

    2003-11-01

    To determine cortical structures involved in "global" meter and "local" rhythm processing, slow brain potentials (DC potentials) were recorded from the scalp of 18 musically trained subjects while listening to pairs of monophonic sequences with both metric structure and rhythmic variations. The second sequence could be either identical to or different from the first one. Differences were either of a metric or a rhythmic nature. The subjects' task was to judge whether the sequences were identical or not. During processing of the auditory tasks, brain activation patterns along with the subjects' performance were assessed using 32-channel DC electroencephalography. Data were statistically analyzed using MANOVA. Processing of both meter and rhythm produced sustained cortical activation over bilateral frontal and temporal brain regions. A shift towards right hemispheric activation was pronounced during presentation of the second stimulus. Processing of rhythmic differences yielded a more centroparietal activation compared to metric processing. These results do not support Lerdhal and Jackendoff's two-component model, predicting a dissociation of left hemispheric rhythm and right hemispheric meter processing. We suggest that the uniform right temporofrontal predominance reflects auditory working memory and a pattern recognition module, which participates in both rhythm and meter processing. More pronounced parietal activation during rhythm processing may be related to switching of task-solving strategies towards mental imagination of the score.

  17. LOCAL CORTICAL ACTIVITY OF DISTANT BRAIN AREAS CAN PHASE-LOCK TO THE OLFACTORY BULB'S RESPIRATORY RHYTHM IN THE FREELY BEHAVING RAT.

    PubMed

    Rojas-Líbano, Daniel; Wimmer Del Solar, Jonathan; Aguilar-Rivera, Marcelo; Montefusco-Siegmund, Rodrigo; Maldonado, Pedro Esteban

    2018-05-16

    An important unresolved question about neural processing is the mechanism by which distant brain areas coordinate their activities and relate their local processing to global neural events. A potential candidate for the local-global integration are slow rhythms such as respiration. In this article, we asked if there are modulations of local cortical processing which are phase-locked to (peripheral) sensory-motor exploratory rhythms. We studied rats on an elevated platform where they would spontaneously display exploratory and rest behaviors. Concurrent with behavior, we monitored whisking through EMG and the respiratory rhythm from the olfactory bulb (OB) local field potential (LFP). We also recorded LFPs from dorsal hippocampus, primary motor cortex, primary somatosensory cortex and primary visual cortex. We defined exploration as simultaneous whisking and sniffing above 5 Hz and found that this activity peaked at about 8 Hz. We considered rest as the absence of whisking and sniffing, and in this case, respiration occurred at about 3 Hz. We found a consistent shift across all areas toward these rhythm peaks accompanying behavioral changes. We also found, across areas, that LFP gamma (70-100 Hz) amplitude could phase-lock to the animal's OB respiratory rhythm, a finding indicative of respiration-locked changes in local processing. In a subset of animals, we also recorded the hippocampal theta activity and found that occurred at frequencies overlapped with respiration but was not spectrally coherent with it, suggesting a different oscillator. Our results are consistent with the notion of respiration as a binder or integrator of activity between brain regions.

  18. Intracerebral evidence of rhythm transform in the human auditory cortex.

    PubMed

    Nozaradan, Sylvie; Mouraux, André; Jonas, Jacques; Colnat-Coulbois, Sophie; Rossion, Bruno; Maillard, Louis

    2017-07-01

    Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl's gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (<30 Hz) and high-frequency (>30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.

  19. Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model

    PubMed Central

    Lee, Jung H.; Whittington, Miles A.; Kopell, Nancy J.

    2013-01-01

    Cortical rhythms have been thought to play crucial roles in our cognitive abilities. Rhythmic activity in the beta frequency band, around 20 Hz, has been reported in recent studies that focused on neural correlates of attention, indicating that top-down beta rhythms, generated in higher cognitive areas and delivered to earlier sensory areas, can support attentional gain modulation. To elucidate functional roles of beta rhythms and underlying mechanisms, we built a computational model of sensory cortical areas. Our simulation results show that top-down beta rhythms can activate ascending synaptic projections from L5 to L4 and L2/3, responsible for biased competition in superficial layers. In the simulation, slow-inhibitory interneurons are shown to resonate to the 20 Hz input and modulate the activity in superficial layers in an attention-related manner. The predicted critical roles of these cells in attentional gain provide a potential mechanism by which cholinergic drive can support selective attention. PMID:23950699

  20. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study

    PubMed Central

    Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2015-01-01

    When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024

  1. Neurophysiological and Computational Principles of Cortical Rhythms in Cognition

    PubMed Central

    Wang, Xiao-Jing

    2010-01-01

    Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brainwide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells, to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a recipropocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clock-like. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators, and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism. PMID:20664082

  2. [Changes in Spatial Organization of Cortical Rhythm Vibrations in Children uner the Influence of Music].

    PubMed

    Shepovalnikov, A N; Egorov, M V

    2015-01-01

    Changes is systemic brain activity under influence of classical music (minor and major music) were studied at two groups of healthy children aged 5-6 years (n = 53). In 25 of studied children the Luscher test showed increased level of anxiety which significantly decreased after music therapy sessions. Bioelectrical cortical activity registered from 20 unipolar leads was subjected to correlation, coherence and factor analysis. Also the dynamics of the power spectrum for each of the EEG was studied. According to EEG all children after listening to both minor and major tones showed reorganization of brain rhythm structure accompanied by a decrease in the level of coherence and correlation of EEG; also was found significant and almost universal decrease in the EEG power spectrum. Registered EEG changes under the influence of classical music seems to reflect a decrease in excess of "internal tension" and weakening degree of "stiffness" to ensure the activity of cerebral structures responsible for mechanisms of "basic integration" which maintain constant readiness of brain to rapid and complete inclusion in action.

  3. Is cortical bone hip? What determines cortical bone properties?

    PubMed

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  4. Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations

    PubMed Central

    Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.

    2016-01-01

    Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767

  5. Daily rhythms of radiosensitivity of animals and several determining causes

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Malyutina, T. S.; Seraya, V. M.; Rodina, G. P.; Vatsek, A.; Rakova, A.

    1974-01-01

    Daily rhythms of radiosensitivity in rats and mice were determined by survival rates after acute total radiation at the same dosage at different times of the day. Radiosensitivity differed in animals of different species and varieties. Inbred mice exhibited one or two increases in radiosensitivity during the dark, active period of the day. These effects were attributed to periodic changes in the state of stem hematopoietic cells.

  6. Concepts in human biological rhythms

    PubMed Central

    Reinberg, Alain; Ashkenazi, Israel

    2003-01-01

    Biological rhythms and their temporal organization are adaptive phenomena to periodic changes in environmental factors linked to the earth's rotation on its axis and around the sun. Experimental data from the plant and animal kingdoms have led to many models and concepts related to biological clocks that help describe and understand the mechanisms of these changes. Many of the prevailing concepts apply to all organisms, but most of the experimental data are insufficient to explain the dynamics of human biological clocks. This review presents phenomena thai are mainly characteristic ofand unique to - human chronobiology, and which cannot be fully explained by concepts and models drawn from laboratory experiments. We deal with the functional advantages of the human temporal organization and the problem of desynchronization, with special reference to the period (τ) of the circadian rhythm and its interindividual and intraindividual variability. We describe the differences between right- and left-hand rhythms suggesting the existence of different biological clocks in the right and left cortices, Desynchronization of rhythms is rather frequent (one example is night shift workers). In some individuals, desynchronization causes no clinical symptoms and we propose the concept of “allochronism” to designate a variant of the human temporal organization with no pathological implications. We restrict the term “dyschronism” to changes or alterations in temporal organization associated with a set of symptoms similar to those observed in subjects intolerant to shift work, eg, persisting fatigue and mood and sleep alterations. Many diseases involve chronic deprivation of sleep at night and constitute conditions mimicking thai of night shift workers who are intolerant to desynchronization. We also present a genetic model (the dian-circadian model) to explain interindividual differences in the period of biological rhythms in certain conditions. PMID:22033796

  7. Rhythm in language acquisition.

    PubMed

    Langus, Alan; Mehler, Jacques; Nespor, Marina

    2017-10-01

    Spoken language is governed by rhythm. Linguistic rhythm is hierarchical and the rhythmic hierarchy partially mimics the prosodic as well as the morpho-syntactic hierarchy of spoken language. It can thus provide learners with cues about the structure of the language they are acquiring. We identify three universal levels of linguistic rhythm - the segmental level, the level of the metrical feet and the phonological phrase level - and discuss why primary lexical stress is not rhythmic. We survey experimental evidence on rhythm perception in young infants and native speakers of various languages to determine the properties of linguistic rhythm that are present at birth, those that mature during the first year of life and those that are shaped by the linguistic environment of language learners. We conclude with a discussion of the major gaps in current knowledge on linguistic rhythm and highlight areas of interest for future research that are most likely to yield significant insights into the nature, the perception, and the usefulness of linguistic rhythm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Neocortical Delta Rhythm Facilitates Reciprocal Interlaminar Interactions via Nested Theta Rhythms

    PubMed Central

    Carracedo, Lucy M.; Kjeldsen, Henrik; Cunnington, Leonie; Jenkins, Alastair; Schofield, Ian; Cunningham, Mark O.; Davies, Ceri H.; Traub, Roger D.

    2013-01-01

    Delta oscillations (1–4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a “Helmholtz machine”-like process to control synaptic rescaling during deep sleep. PMID:23804097

  9. Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex.

    PubMed

    Haegens, Saskia; Barczak, Annamaria; Musacchia, Gabriella; Lipton, Michael L; Mehta, Ashesh D; Lakatos, Peter; Schroeder, Charles E

    2015-10-21

    The functional significance of the α rhythm is widely debated. It has been proposed that α reflects sensory inhibition and/or a temporal sampling or "parsing" mechanism. There is also continuing disagreement over the more fundamental questions of which cortical layers generate α rhythms and whether the generation of α is equivalent across sensory systems. To address these latter questions, we analyzed laminar profiles of local field potentials (LFPs) and concomitant multiunit activity (MUA) from macaque V1, S1, and A1 during both spontaneous activity and sensory stimulation. Current source density (CSD) analysis of laminar LFP profiles revealed α current generators in the supragranular, granular, and infragranular layers. MUA phase-locked to local current source/sink configurations confirmed that α rhythms index local neuronal excitability fluctuations. CSD-defined α generators were strongest in the supragranular layers, whereas LFP α power was greatest in the infragranular layers, consistent with some of the previous reports. The discrepancy between LFP and CSD findings appears to be attributable to contamination of the infragranular LFP signal by activity that is volume-conducted from the stronger supragranular α generators. The presence of α generators across cortical depth in V1, S1, and A1 suggests the involvement of α in feedforward as well as feedback processes and is consistent with the view that α rhythms, perhaps in addition to a role in sensory inhibition, may parse sensory input streams in a way that facilitates communication across cortical areas. The α rhythm is thought to reflect sensory inhibition and/or a temporal parsing mechanism. Here, we address two outstanding issues: (1) whether α is a general mechanism across sensory systems and (2) which cortical layers generate α oscillations. Using intracranial recordings from macaque V1, S1, and A1, we show α band activity with a similar spectral and laminar profile in each of these

  10. Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex

    PubMed Central

    Barczak, Annamaria; Musacchia, Gabriella; Lipton, Michael L.; Mehta, Ashesh D.; Lakatos, Peter; Schroeder, Charles E.

    2015-01-01

    The functional significance of the α rhythm is widely debated. It has been proposed that α reflects sensory inhibition and/or a temporal sampling or “parsing” mechanism. There is also continuing disagreement over the more fundamental questions of which cortical layers generate α rhythms and whether the generation of α is equivalent across sensory systems. To address these latter questions, we analyzed laminar profiles of local field potentials (LFPs) and concomitant multiunit activity (MUA) from macaque V1, S1, and A1 during both spontaneous activity and sensory stimulation. Current source density (CSD) analysis of laminar LFP profiles revealed α current generators in the supragranular, granular, and infragranular layers. MUA phase-locked to local current source/sink configurations confirmed that α rhythms index local neuronal excitability fluctuations. CSD-defined α generators were strongest in the supragranular layers, whereas LFP α power was greatest in the infragranular layers, consistent with some of the previous reports. The discrepancy between LFP and CSD findings appears to be attributable to contamination of the infragranular LFP signal by activity that is volume-conducted from the stronger supragranular α generators. The presence of α generators across cortical depth in V1, S1, and A1 suggests the involvement of α in feedforward as well as feedback processes and is consistent with the view that α rhythms, perhaps in addition to a role in sensory inhibition, may parse sensory input streams in a way that facilitates communication across cortical areas. SIGNIFICANCE STATEMENT The α rhythm is thought to reflect sensory inhibition and/or a temporal parsing mechanism. Here, we address two outstanding issues: (1) whether α is a general mechanism across sensory systems and (2) which cortical layers generate α oscillations. Using intracranial recordings from macaque V1, S1, and A1, we show α band activity with a similar spectral and laminar

  11. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    PubMed

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p < 0.001). This difference faded after pregnancy, owing to the fall observed in pre-eclampsia (11.8 +/- 3.2 pg/ml, 9.8 +/- 2.1, and 11.1 +/- 2.0, respectively; NS). The rhythm of melatonin concentration was lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  12. Exploring the Nature of Cortical Recurrent Interactions

    NASA Astrophysics Data System (ADS)

    Morita, Kenji; Kalra, Rita; Aihara, Kazuyuki; Robinson, Hugh P. C.

    2011-09-01

    Fast rhythmic activity of neural population has been frequently observed in cortical circuits, and suggested to be associated with various cognitive functions including working memory and selective attention. However, precisely how recurrent synaptic interactions, that are prominent in these circuits, shape and/or modulate such population rhythm has not been fully elucidated. We have addressed this issue by combining electrophysiological and computational approaches.

  13. What is the function of hippocampal theta rhythm?--Linking behavioral data to phasic properties of field potential and unit recording data.

    PubMed

    Hasselmo, Michael E

    2005-01-01

    The extensive physiological data on hippocampal theta rhythm provide an opportunity to evaluate hypotheses about the role of theta rhythm for hippocampal network function. Computational models based on these hypotheses help to link behavioral data with physiological measurements of different variables during theta rhythm. This paper reviews work on network models in which theta rhythm contributes to the following functions: (1) separating the dynamics of encoding and retrieval, (2) enhancing the context-dependent retrieval of sequences, (3) buffering of novel information in entorhinal cortex (EC) for episodic encoding, and (4) timing interactions between prefrontal cortex and hippocampus for memory-guided action selection. Modeling shows how these functional mechanisms are related to physiological data from the hippocampal formation, including (1) the phase relationships of synaptic currents during theta rhythm measured by current source density analysis of electroencephalographic data from region CA1 and dentate gyrus, (2) the timing of action potentials, including the theta phase precession of single place cells during running on a linear track, the context-dependent changes in theta phase precession across trials on each day, and the context-dependent firing properties of hippocampal neurons in spatial alternation (e.g., "splitter cells"), (3) the cholinergic regulation of sustained activity in entorhinal cortical neurons, and (4) the phasic timing of prefrontal cortical neurons relative to hippocampal theta rhythm. Copyright 2005 Wiley-Liss, Inc.

  14. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.

    PubMed

    Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans

    2012-01-01

    The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.

  15. Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons.

    PubMed

    Reinberg, Alain; Bicakova-Rocher, Alena; Mechkouri, Mohamed; Ashkenazi, Israel

    2002-11-01

    In healthy mature subjects simple reaction time (SRT) to a single light signal (an easy task) is associated with a prominent rhythm with tau = 24 h of dominant (DH) as well as nondominant (NDH) hand performance, while three-choice reaction time (CRT), a complex task, is associated with tau = 24 h of the DH but tau < 24 h of the NDH. The aims of the study were to assess the influence of age and gender on the difference in tau of the NDH and DH, as it relates to the corresponding cortical hemisphere of the brain, in comparison to the rhythm in handgrip strength. Healthy subjects, 9 (5 M and 4 F) adolescents 10-16 yr of age and 15 (8 M and 7 F) adults 18-67 yr of age, active between 08:00 +/- 1 h and 23:00 +/- 1:30 h and free of alcohol, tobacco, and drug consumption volunteered. Data were gathered longitudinally at home and work 4-7 times daily for 11-20 d. At each test time the following variables were assessed: grip strength of both hands (Dynamometer: Colin-Gentile, Paris, France); single reaction time to a yellow signal (SRT); and CRT to randomized yellow, red, or green signal series with varying instruction from test to test (Psycholog-24: Biophyderm, France). Rhythms in the performance in SRT, CRT, and handgrip strength of both DH and NDH were explored. The sleep-wake rhythm was assessed by sleep-logs, and in a subset of 14 subjects it was also assessed by wrist actigraphy (Mini-Motionlogger: AMI, Ardsley NY). Exploration of the prominent period tau of time series was achieved by a special power spectra analysis for unequally spaced data. Cosinor analysis was used to quantify the rhythm amplitude A and rhythm-adjusted mean M of the power spectral analysis determined trial tau. A 24h sleep-wake rhythm was detected in almost all cases. In adults, a prominent tau of 24 h characterized the performance of the easy task by both the DH and NDH. In adults a prominent tau of 24 h was also detected in the complex CRT task performed by the DH, but for the NDH the tau was

  16. Modulation of hippocampal rhythms by subthreshold electric fields and network topology

    PubMed Central

    Berzhanskaya, Julia; Chernyy, Nick; Gluckman, Bruce J.; Schiff, Steven J.; Ascoli, Giorgio A.

    2012-01-01

    Theta (4–12 Hz) and gamma (30–80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry. PMID:23053863

  17. Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm.

    PubMed

    Nozaradan, Sylvie; Schwartze, Michael; Obermeier, Christian; Kotz, Sonja A

    2017-10-01

    How specific brain networks track rhythmic sensory input over time remains a challenge in neuroimaging work. Here we show that subcortical areas, namely the basal ganglia and the cerebellum, specifically contribute to the neural tracking of rhythm. We tested patients with focal lesions in either of these areas and healthy controls by means of electroencephalography (EEG) while they listened to rhythmic sequences known to induce selective neural tracking at a frequency corresponding to the most-often perceived pulse-like beat. Both patients and controls displayed neural responses to the rhythmic sequences. However, these response patterns were different across groups, with patients showing reduced tracking at beat frequency, especially for the more challenging rhythms. In the cerebellar patients, this effect was specific to the rhythm played at a fast tempo, which places high demands on the temporally precise encoding of events. In contrast, basal ganglia patients showed more heterogeneous responses at beat frequency specifically for the most complex rhythm, which requires more internal generation of the beat. These findings provide electrophysiological evidence that these subcortical structures selectively shape the neural representation of rhythm. Moreover, they suggest that the processing of rhythmic auditory input relies on an extended cortico-subcortico-cortical functional network providing specific timing and entrainment sensitivities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.

    PubMed

    Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma

    2013-03-01

    The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening.

    PubMed

    Adamos, Dimitrios A; Laskaris, Nikolaos A; Micheloyannis, Sifis

    2018-06-01

    Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying 'switching nodes' (i.e. recording sites) that consistently change module during music listening. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real

  20. Abnormal cortical sources of resting state electroencephalographic rhythms in single treatment-naïve HIV individuals: A statistical z-score index.

    PubMed

    Babiloni, Claudio; Pennica, Alfredo; Del Percio, Claudio; Noce, Giuseppe; Cordone, Susanna; Muratori, Chiara; Ferracuti, Stefano; Donato, Nicole; Di Campli, Francesco; Gianserra, Laura; Teti, Elisabetta; Aceti, Antonio; Soricelli, Andrea; Viscione, Magdalena; Limatola, Cristina; Andreoni, Massimo; Onorati, Paolo

    2016-03-01

    This study tested a simple statistical procedure to recognize single treatment-naïve HIV individuals having abnormal cortical sources of resting state delta (<4 Hz) and alpha (8-13 Hz) electroencephalographic (EEG) rhythms with reference to a control group of sex-, age-, and education-matched healthy individuals. Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values were expected to show worse cognitive status. Resting state eyes-closed EEG data were recorded in 82 treatment-naïve HIV (39.8 ys.±1.2 standard error mean, SE) and 59 age-matched cognitively healthy subjects (39 ys.±2.2 SE). Low-resolution brain electromagnetic tomography (LORETA) estimated delta and alpha sources in frontal, central, temporal, parietal, and occipital cortical regions. Ratio of the activity of parietal delta and high-frequency alpha sources (EEG marker) showed the maximum difference between the healthy and the treatment-naïve HIV group. Z-score of the EEG marker was statistically abnormal in 47.6% of treatment-naïve HIV individuals with reference to the healthy group (p<0.05). Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values exhibited lower mini mental state evaluation (MMSE) score, higher CD4 count, and lower viral load (p<0.05). This statistical procedure permitted for the first time to identify single treatment-naïve HIV individuals having abnormal EEG activity. This procedure might enrich the detection and monitoring of effects of HIV on brain function in single treatment-naïve HIV individuals. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz), coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz) showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales. PMID:18946516

  2. Sparsely-synchronized brain rhythm in a small-world neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2013-07-01

    Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and

  3. Serial binary interval ratios improve rhythm reproduction.

    PubMed

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  4. Serial binary interval ratios improve rhythm reproduction

    PubMed Central

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258

  5. Toward a complex system understanding of bipolar disorder: A chaotic model of abnormal circadian activity rhythms in euthymic bipolar disorder.

    PubMed

    Hadaeghi, Fatemeh; Hashemi Golpayegani, Mohammad Reza; Jafari, Sajad; Murray, Greg

    2016-08-01

    In the absence of a comprehensive neural model to explain the underlying mechanisms of disturbed circadian function in bipolar disorder, mathematical modeling is a helpful tool. Here, circadian activity as a response to exogenous daily cycles is proposed to be the product of interactions between neuronal networks in cortical (cognitive processing) and subcortical (pacemaker) areas of the brain. To investigate the dynamical aspects of the link between disturbed circadian activity rhythms and abnormalities of neurotransmitter functioning in frontal areas of the brain, we developed a novel mathematical model of a chaotic system which represents fluctuations in circadian activity in bipolar disorder as changes in the model's parameters. A novel map-based chaotic system was developed to capture disturbances in circadian activity across the two extreme mood states of bipolar disorder. The model uses chaos theory to characterize interplay between neurotransmitter functions and rhythm generation; it aims to illuminate key activity phenomenology in bipolar disorder, including prolonged sleep intervals, decreased total activity and attenuated amplitude of the diurnal activity rhythm. To test our new cortical-circadian mathematical model of bipolar disorder, we utilized previously collected locomotor activity data recorded from normal subjects and bipolar patients by wrist-worn actigraphs. All control parameters in the proposed model have an important role in replicating the different aspects of circadian activity rhythm generation in the brain. The model can successfully replicate deviations in sleep/wake time intervals corresponding to manic and depressive episodes of bipolar disorder, in which one of the excitatory or inhibitory pathways is abnormally dominant. Although neuroimaging research has strongly implicated a reciprocal interaction between cortical and subcortical regions as pathogenic in bipolar disorder, this is the first model to mathematically represent this

  6. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening

    NASA Astrophysics Data System (ADS)

    Adamos, Dimitrios A.; Laskaris, Nikolaos A.; Micheloyannis, Sifis

    2018-06-01

    Objective. Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Approach. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying ‘switching nodes’ (i.e. recording sites) that consistently change module during music listening. Main results. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Significance. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography

  7. Environmental synchronizers of squirrel monkey circadian rhythms

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1977-01-01

    Various temporal signals in the environment were tested to determine if they could synchronize the circadian timing system of the squirrel monkey (Saimiri sciureus). The influence of cycles of light and dark, eating and fasting, water availability and deprivation, warm and cool temperature, sound and quiet, and social interaction and isolation on the drinking and activity rhythms of unrestrained monkeys was examined. In the absence of other time cues, 24-hr cycles of each of these potential synchronizers were applied for up to 3 wk, and the periods of the monkey's circadian rhythms were examined. Only light-dark cycles and cycles of food availability were shown to be entraining agents, since they were effective in determining the period and phase of the rhythmic variables. In the presence of each of the other environmental cycles, the monkey's circadian rhythms exhibited free-running periods which were significantly different from 24 hr with all possible phase relationships between the rhythms and the environmental cycles being examined.

  8. Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.

    PubMed

    Khan, Sheraz; Hashmi, Javeria A; Mamashli, Fahimeh; Michmizos, Konstantinos; Kitzbichler, Manfred G; Bharadwaj, Hari; Bekhti, Yousra; Ganesan, Santosh; Garel, Keri-Lee A; Whitfield-Gabrieli, Susan; Gollub, Randy L; Kong, Jian; Vaina, Lucia M; Rana, Kunjan D; Stufflebeam, Steven M; Hämäläinen, Matti S; Kenet, Tal

    2018-07-01

    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development. Copyright © 2018. Published by Elsevier Inc.

  9. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus

    PubMed Central

    Enoki, Ryosuke; Oda, Yoshiaki; Mieda, Michihiro; Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2017-01-01

    The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms. PMID:28270612

  10. Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms

    PubMed Central

    Babiloni, Claudio; Del Percio, Claudio; Iacoboni, Marco; Infarinato, Francesco; Lizio, Roberta; Marzano, Nicola; Crespi, Gianluca; Dassù, Federica; Pirritano, Mirella; Gallamini, Michele; Eusebi, Fabrizio

    2008-01-01

    It is not known whether frontal cerebral rhythms of the two hemispheres are implicated in fine motor control and balance. To address this issue, electroencephalographic (EEG) and stabilometric recordings were simultaneously performed in 12 right-handed expert golfers. The subjects were asked to stand upright on a stabilometric force platform placed at a golf green simulator while playing about 100 golf putts. Balance during the putts was indexed by body sway area. Cortical activity was indexed by the power reduction in spatially enhanced alpha (8–12 Hz) and beta (13–30 Hz) rhythms during movement, referred to as the pre-movement period. It was found that the body sway area displayed similar values in the successful and unsuccessful putts. In contrast, the high-frequency alpha power (about 10–12 Hz) was smaller in amplitude in the successful than in the unsuccessful putts over the frontal midline and the arm and hand region of the right primary sensorimotor area; the stronger the reduction of the alpha power, the smaller the error of the unsuccessful putts (i.e. distance from the hole). These results indicate that high-frequency alpha rhythms over associative, premotor and non-dominant primary sensorimotor areas subserve motor control and are predictive of the golfer's performance. PMID:17947315

  11. Timing of host feeding drives rhythms in parasite replication

    PubMed Central

    Cumnock, Katherine; Schneider, David; Subudhi, Amit; Savill, Nicholas J.

    2018-01-01

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  12. Cortical Neural Computation by Discrete Results Hypothesis

    PubMed Central

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast

  13. Cortical Neural Computation by Discrete Results Hypothesis.

    PubMed

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS

  14. Region-Specific Changes in Gamma and Beta2 Rhythms in NMDA Receptor Dysfunction Models of Schizophrenia

    PubMed Central

    Roopun, Anita K.; Cunningham, Mark O.; Racca, Claudia; Alter, Kai; Traub, Roger D.; Whittington, Miles A.

    2008-01-01

    Cognitive disruption in schizophrenia is associated with altered patterns of spatiotemporal interaction associated with multiple electroencephalogram (EEG) frequency bands in cortex. In particular, changes in the generation of gamma (30–80 Hz) and beta2 (20–29 Hz) rhythms correlate with observed deficits in communication between different cortical areas. Aspects of these changes can be reproduced in animal models, most notably those involving acute or chronic reduction in glutamatergic synaptic communication mediated by N-methyl D-aspartate (NMDA) receptors. In vitro electrophysiological and immunocytochemical approaches afforded by such animal models continue to reveal a great deal about the mechanisms underlying EEG rhythm generation and are beginning to uncover which basic molecular, cellular, and network phenomena may underlie their disruption in schizophrenia. Here we briefly review the evidence for changes in γ-aminobutyric acidergic (GABAergic) and glutamatergic function and address the problem of region specificity of changes with quantitative comparisons of effects of ketamine on gamma and beta2 rhythms in vitro. We conclude, from available evidence, that many observed changes in markers for GABAergic function in schizophrenia may be secondary to deficits in NMDA receptor–mediated excitatory synaptic activity. Furthermore, the broad range of changes in cortical dynamics seen in schizophrenia—with contrasting effects seen in different brain regions and for different frequency bands—may be more directly attributable to underlying deficits in glutamatergic neuronal communication rather than GABAergic inhibition alone. PMID:18544550

  15. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  16. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  17. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  18. Strength of Gamma Rhythm Depends on Normalization

    PubMed Central

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  19. Development of cortisol circadian rhythm in infancy.

    PubMed

    de Weerth, Carolina; Zijl, Robbert H; Buitelaar, Jan K

    2003-08-01

    Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not agree on the age of appearance of the circadian rhythm (varying between 2 weeks till the age of 9 months) nor on whether it is related to the appearance of the sleep-wake circadian rhythm. The object of the present study was to find evidence of the age of appearance of the diurnal rhythm of cortisol and to compare the results obtained by several different analysis methods on a new data set. Cortisol was determined in salival samples of 14 normally developing infants who were followed monthly between the ages of 2 and 5 months. The data were analyzed with several previously published analysis methods as well as with Multilevel Analysis (Hierarchical Linear Modeling). The previously published analysis methods each produced different results when applied to the current data set. Moreover, our results indicate striking differences between young infants in both age of appearance and stability of the diurnal cortisol rhythm. Also, a link was found between the appearance of the sleep-wake circadian rhythm and the cortisol circadian rhythm. An important intraindividual variability in cortisol levels was found even after correcting for the different variables that affect cortisol (i.e. time of sampling, feeding, etc.). Although the choice of analysis method influences the age of appearance obtained, our use of HLM shows that the infants' own variability in onset and stability of the cortisol circadian rhythm greatly contributes to the different results.

  20. Genetic Determinants of Trabecular and Cortical Volumetric Bone Mineral Densities and Bone Microstructure

    PubMed Central

    Kähönen, Mika; Raitakari, Olli; Laaksonen, Marika; Sievänen, Harri; Viikari, Jorma; Lyytikäinen, Leo-Pekka; Mellström, Dan; Karlsson, Magnus; Ljunggren, Östen; Grundberg, Elin; Kemp, John P.; Sayers, Adrian; Nethander, Maria; Evans, David M.; Vandenput, Liesbeth; Tobias, Jon H.; Ohlsson, Claes

    2013-01-01

    Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10−14; LOC285735, rs271170, p = 2.7×10−12; OPG, rs7839059, p = 1.2×10−10; and ESR1/C6orf97, rs6909279, p = 1.1×10−9). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10−9). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60–0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic

  1. Activity in the ferret: oestradiol effects and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  2. Cortical entrainment to music and its modulation by expertise

    PubMed Central

    Doelling, Keith B.; Poeppel, David

    2015-01-01

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  3. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  4. Stochastic Amplification of Fluctuations in Cortical Up-States

    PubMed Central

    Hidalgo, Jorge; Seoane, Luís F.; Cortés, Jesús M.; Muñoz, Miguel A.

    2012-01-01

    Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active states, generating slow Hz oscillations which are widely known as transitions between Up and Down States. Despite a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations can emerge within the Up states. In particular, a non-trivial peak around Hz appears in their associated power-spectra, what produces an enhancement of the activity power for higher frequencies (in the Hz band). Moreover, this rhythm within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum) do not appear in the Down states. Here we shed light on these findings by using different computational models for the dynamics of cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and simulations, is that the collective phenomenon of “stochastic amplification of fluctuations” – previously described in other contexts such as Ecology and Epidemiology – explains in an elegant and parsimonious manner, beyond model-dependent details, this extra-rhythm emerging only in the Up states but not in the Downs. PMID:22879879

  5. Endogenous thermoregulatory rhythms of squirrel monkeys in thermoneutrality and cold

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine if the free-running circadian rhythm in body temperature (Tb) results from coordinated changes in HP and HL rhythms in thermoneutrality (27 degrees C) as well as mild cold (17 degrees C). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of Tb and activity. Feeding was also measured. Rhythms of HP, HL, and conductance were tightly coupled with the circadian Tb rhythm at both ambient temperatures (TA). At 17 degrees C, increased HP compensated for higher HL at all phases of the Tb rhythm, resulting in only minor changes to Tb. Parallel compensatory changes of HP and HL were seen at all rhythm phases at both TA. Similar time courses of Tb, HP, and HL in their respective rhythms and the relative stability of Tb during both active and rest periods suggest action of the circadian timing system on Tb set point.

  6. The Effect of Pitch and Rhythm Difficulty on Vocal Sight-Reading Performance

    ERIC Educational Resources Information Center

    Henry, Michele L.

    2011-01-01

    Singing music at sight is a complex skill, requiring the singer to perform pitch and rhythm simultaneously. Previous research has identified difficulty levels for pitch and rhythm skills individually but not in combination. In this study, the author sought to determine the relationship between pitch and rhythm tasks occurring concurrently. High…

  7. Daily Rhythm in Plasma N-Acetyltryptamine

    PubMed Central

    Backlund, Peter S.; Urbanski, Henryk F.; Doll, Mark A.; Hein, David W.; Bozinoski, Marjan; Mason, Christopher E.; Coon, Steven L.; Klein, David C.

    2017-01-01

    Normal physiology undergoes 24-hour changes in function, that include daily rhythms in circulating/hormones, most notably melatonin and cortical steroids. This study focuses on N-acetyltryptamine, a little-studied melatonin receptor mixed agonist/antagonist and the likely evolutionary precursor of melatonin. The central issue addressed was whether N-acetyltryptamine is physiologically present in the circulation. N-Acetyltrypamine was detected by LC-MS/MS in daytime plasma of three different mammals in subnanomolar levels (mean ± SEM: rat, 0.29 ± 0.05 nM, N=5; rhesus macaque, 0.54 ± 0.24 nM, N=4; human, 0.03 ± 0.01 nM, N=32). Twenty four hour blood collections from rhesus macaques revealed a nocturnal increase in plasma N-acetyltryptamine (P < 0.001), which varied from 2- to 15- fold over daytime levels among the four animals studied. Related RNA sequencing studies indicated that the transcript encoding the tryptamine acetylating enzyme arylalkylamine N-acetyltransferase (AANAT) is expressed at similar levels in the rhesus pineal gland and retina, thereby indicating that either tissue could contribute to circulating N-acetyltryptamine. The evidence that N-acetyltryptamine is a physiological component of mammalian blood and exhibits a daily rhythm, together with known effects as a melatonin receptor ligand shifts the status of N-acetyltryptamine from pharmacological tool to that of a candidate for a physiological role. This provides a new opportunity to extend our understanding of 24-hour biology. PMID:28466676

  8. Practical Designs of Brain-Computer Interfaces Based on the Modulation of EEG Rhythms

    NASA Astrophysics Data System (ADS)

    Wang, Yijun; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    A brain-computer interface (BCI) is a communication channel which does not depend on the brain's normal output pathways of peripheral nerves and muscles [1-3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter "Brain Signals for Brain-Computer Interfaces". These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.

  9. Sleep affects cortical source modularity in temporal lobe epilepsy: A high-density EEG study.

    PubMed

    Del Felice, Alessandra; Storti, Silvia Francesca; Manganotti, Paolo

    2015-09-01

    Interictal epileptiform discharges (IEDs) constitute a perturbation of ongoing cerebral rhythms, usually more frequent during sleep. The aim of the study was to determine whether sleep influences the spread of IEDs over the scalp and whether their distribution depends on vigilance-related modifications in cortical interactions. Wake and sleep 256-channel electroencephalography (EEG) data were recorded in 12 subjects with right temporal lobe epilepsy (TLE) differentiated by whether they had mesial or neocortical TLE. Spikes were selected during wake and sleep. The averaged waking signal was subtracted from the sleep signal and projected on a bidimensional scalp map; sleep and wake spike distributions were compared by using a t-test. The superimposed signal of sleep and wake traces was obtained; the rising phase of the spike, the peak, and the deflections following the spike were identified, and their cortical generator was calculated using low-resolution brain electromagnetic tomography (LORETA) for each group. A mean of 21 IEDs in wake and 39 in sleep per subject were selected. As compared to wake, a larger IED scalp projection was detected during sleep in both mesial and neocortical TLE (p<0.05). A series of EEG deflections followed the spike, the cortical sources of which displayed alternating activations of different cortical areas in wake, substituted by isolated, stationary activations in sleep in mesial TLE and a silencing in neocortical TLE. During sleep, the IED scalp region increases, while cortical interaction decreases. The interaction of cortical modules in sleep and wake in TLE may influence the appearance of IEDs on scalp EEG; in addition, IEDs could be proxies for cerebral oscillation perturbation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    PubMed Central

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  11. 24-h activity rhythm and sleep in depressed outpatients.

    PubMed

    Hori, Hiroaki; Koga, Norie; Hidese, Shinsuke; Nagashima, Anna; Kim, Yoshiharu; Higuchi, Teruhiko; Kunugi, Hiroshi

    2016-06-01

    Disturbances in sleep and circadian rest-activity rhythms are key features of depression. Actigraphy, a non-invasive method for monitoring motor activity, can be used to objectively assess circadian rest-activity rhythms and sleep patterns. While recent studies have measured sleep and daytime activity of depressed patients using wrist-worn actigraphy, the actigraphic 24-h rest-activity rhythm in depression has not been well documented. We aimed to examine actigraphically measured sleep and circadian rest-activity rhythms in depressed outpatients. Twenty patients with DSM-IV major depressive episode and 20 age- and sex-matched healthy controls participated in this study. Participants completed 7 consecutive days of all-day actigraphic activity monitoring while engaging in usual activities. For sleep parameters, total sleep time, wake after sleep onset, and sleep fragmentation index were determined. Circadian rhythms were estimated by fitting individual actigraphy data to a cosine curve of a 24-h activity rhythm using the cosinor method, which generated three circadian activity rhythm parameters, i.e., MESOR (rhythm-adjusted mean), amplitude, and acrophase. Subjective sleep was also assessed using a sleep diary and the Pittsburgh Sleep Quality Index. Patients showed significantly lower MESOR and more dampened amplitude along with significant sleep disturbances. Logistic regression analysis revealed that lower MESOR and more fragmented sleep emerged as the significant predictors of depression. Correlations between subjectively and actigraphically measured parameters demonstrated the validity of actigraphic measurements. These results indicate marked disturbances in sleep and circadian rest-activity rhythms of depression. By simultaneously measuring sleep and rest-activity rhythm parameters, actigraphy might serve as an objective diagnostic aid for depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker.

    PubMed

    Ogiyama, Yoshiaki; Miura, Toshiyuki; Watanabe, Shuichi; Fuwa, Daisuke; Tomonari, Tatsuya; Ota, Keisuke; Kato, Yoko; Ichikawa, Tadashi; Shirasawa, Yuichi; Ito, Akinori; Yoshida, Atsuhiro; Fukuda, Michio; Kimura, Genjiro

    2014-12-01

    We have reported that the circadian rhythm of urinary potassium excretion (U(K)V) is determined by the rhythm of urinary sodium excretion (U(Na)V) in patients with chronic kidney disease (CKD). We also reported that treatment with an angiotensin receptor blocker (ARB) increased the U(Na)V during the daytime, and restored the non-dipper blood pressure (BP) rhythm into a dipper pattern. However, the circadian rhythm of U(K)V during ARB treatment has not been reported. Circadian rhythms of U(Na)V and U(K)V were examined in 44 patients with CKD undergoing treatment with ARB. Whole-day U(Na)V was not altered by ARB whereas whole-day U(K)V decreased. Even during the ARB treatment, the significant relationship persisted between the night/day ratios of U(Na)V and U(K)V (r=0.56, p<0.0001). Whole-day U(K)V/U(Na)V ratio (p=0.0007) and trans-tubular potassium concentration gradient (p=0.002) were attenuated but their night/day ratios remained unchanged. The change in the night/day U(K)V ratio correlated directly with the change in night/day U(Na)V ratio (F=20.4) rather than with the changes in aldosterone, BP or creatinine clearance. The circadian rhythm of U(K)V was determined by the rhythm of UNaV even during ARB treatment. Changes in the circadian U(K)V rhythm were not determined by aldosterone but by U(Na)V. © The Author(s) 2013.

  13. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    PubMed

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  14. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    PubMed

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception

    PubMed Central

    Doesburg, Sam M.; Green, Jessica J.; McDonald, John J.; Ward, Lawrence M.

    2009-01-01

    Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour. PMID:19582165

  16. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery

    NASA Astrophysics Data System (ADS)

    Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.

    2014-06-01

    Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  17. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.

    PubMed

    Toppi, J; Risetti, M; Quitadamo, L R; Petti, M; Bianchi, L; Salinari, S; Babiloni, F; Cincotti, F; Mattia, D; Astolfi, L

    2014-06-01

    It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  18. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  19. Atrial fibrillation and stroke: the evolving role of rhythm control.

    PubMed

    Patel, Taral K; Passman, Rod S

    2013-06-01

    Atrial fibrillation (AF) remains a major risk factor for stroke. Unfortunately, clinical trials have failed to demonstrate that a strategy of rhythm control--therapy to maintain normal sinus rhythm (NSR)--reduces stroke risk. The apparent lack of benefit of rhythm control likely reflects the difficulty in maintaining NSR using currently available therapies. However, there are signals from several trials that the presence of NSR is indeed beneficial and associated with better outcomes related to stroke and mortality. Most electrophysiologists feel that as rhythm control strategies continue to improve, the crucial link between rhythm control and stroke reduction will finally be demonstrated. Therefore, AF specialists tend to be aggressive in their attempts to maintain NSR, especially in patients who have symptomatic AF. A step-wise approach from antiarrhythmic drugs to catheter ablation to cardiac surgery is generally used. In select patients, catheter ablation or cardiac surgery may supersede antiarrhythmic drugs. The choice depends on the type of AF, concurrent heart disease, drug toxicity profiles, procedural risks, and patient preferences. Regardless of strategy, given the limited effectiveness of currently available rhythm control therapies, oral anticoagulation is still recommended for stroke prophylaxis in AF patients with other stroke risk factors. Major challenges in atrial fibrillation management include selecting patients most likely to benefit from rhythm control, choosing specific antiarrhythmic drugs or procedures to achieve rhythm control, long-term monitoring to gauge the efficacy of rhythm control, and determining which (if any) patients may safely discontinue anticoagulation if long-term NSR is achieved.

  20. To the Beat of Your Own Drum: Cortical Regularization of Non-Integer Ratio Rhythms toward Metrical Patterns

    ERIC Educational Resources Information Center

    Motz, Benjamin A.; Erickson, Molly A.; Hetrick, William P.

    2013-01-01

    Humans perceive a wide range of temporal patterns, including those rhythms that occur in music, speech, and movement; however, there are constraints on the rhythmic patterns that we can represent. Past research has shown that sequences in which sounds occur regularly at non-metrical locations in a repeating beat period (non-integer ratio…

  1. Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh

    2013-01-01

    The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628

  2. Acoustic pressure reduction at rhythm deviants causes magnetoencephalographic response.

    PubMed

    Takeshita, Yuya; Yokosawa, Koichi

    2015-01-01

    Rhythm is an element of music and is important for determining the impression of the music. To investigate the mechanism by which musical rhythmic changes are perceived, magnetoencephalographic responses to rhythm deviants were recorded from 11 healthy volunteers. Auditory stimuli consisting of physically controlled tones were adapted from a song. The auditory stimuli had a steady rhythm, but "early" and "late" deviants were inserted. Only the "early" deviant, which was a tone with a short duration, caused N100m-like prominent transient responses at around the offset of the deviant tone. The latency of the prominent response depended on the descending sound pressure of the deviant tone and was 65 ms after 50% descent. The results suggest that unexpected shortening of tone in a continuous rhythm evokes a transient response and that the response is caused by descending sound pressure of the shortened tone itself, not by the following tones.

  3. Development of Mu Rhythm in Infants and Preschool Children

    PubMed Central

    Berchicci, M.; Zhang, T.; Romero, L.; Peters, A.; Annett, R.; Teuscher, U.; Bertollo, M.; Okada, Y.; Stephen, J.; Comani, S.

    2011-01-01

    Mu rhythm is an idling rhythm that originates in the sensorimotor cortex during rest. The frequency of mu rhythm, which is well established in adults, is 8–12 Hz, whereas the limited results available from children suggest a frequency as low as 5.4 Hz at 6 months of age, which gradually increases to the adult value. Understanding the normal development of mu rhythm has important theoretical and clinical implications since we still know very little about this signal in infants and how it develops with age. We measured mu rhythm over the left hemisphere using a pediatric magnetoencephalography (MEG) system in 25 infants (11–47 weeks), 18 preschool children (2–5 years) and 6 adults (20–39 years) for two 5-min sessions during two intermixed conditions: a rest condition in which the hands were at rest, and a prehension condition in which the subject squeezed a pipette with his/her right hand. In all participants, mu rhythm was present over the frontoparietal area during the rest condition, but was clearly suppressed during the prehension condition. Mu rhythm peak frequency, determined from the amplitude spectra, increased rapidly as a function of age from 2.75 Hz at 11 weeks to 8.25 Hz at 47 weeks (r2 = 0.83). It increased very slowly during the preschool period (3.1 ± 0.9 years; 8.5 ± 0.54 Hz). The frequency in these children was, however, lower than in adults (10.3 ± 1.2 Hz). Our results show a rapid maturation in spontaneous mu rhythm during the first year of life. PMID:21778699

  4. Perceiving Speech Rhythm in Music: Listeners Classify Instrumental Songs According to Language of Origin

    ERIC Educational Resources Information Center

    Hannon, Eric E.

    2009-01-01

    Recent evidence suggests that the musical rhythm of a particular culture may parallel the speech rhythm of that culture's language (Patel, A. D., & Daniele, J. R. (2003). "An empirical comparison of rhythm in language and music." "Cognition, 87," B35-B45). The present experiments aimed to determine whether listeners actually perceive such rhythmic…

  5. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest.

  6. Phase Advance of the Light-Dark Cycle Perturbs Diurnal Rhythms of Brain-derived Neurotrophic Factor and Neurotrophin-3 Protein Levels, Which Reduces Synaptophysin-positive Presynaptic Terminals in the Cortex of Juvenile Rats

    PubMed Central

    Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko

    2011-01-01

    In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca2+-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents. PMID:21527636

  7. Phase advance of the light-dark cycle perturbs diurnal rhythms of brain-derived neurotrophic factor and neurotrophin-3 protein levels, which reduces synaptophysin-positive presynaptic terminals in the cortex of juvenile rats.

    PubMed

    Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko

    2011-06-17

    In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.

  8. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease.

    PubMed Central

    Buzsáki, György; Watson, Brendon O.

    2012-01-01

    The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413

  9. Neurospora circadian rhythms in space - A reexamination of the endogenous-exogenous question

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Ellman, D.; Wassmer, G.; Fuller, C. A.; Moore-Ede, M.

    1984-01-01

    To test the functioning of circadian rhythms removed from periodicities of the earth's 24-hour rotation, the conidiation rhythm of the fungus Neurospora crassa was monitored in constant darkness during spaceflight. The free-running period of the rhythm was the same in space as on the earth, but there was a marked reduction in the clarity of the rhythm, and apparent arrhythmicity in some tubes. At the current stage of analysis of the results there is insufficient evidence to determine whether the effect seen in space was related to removal from 24-hour periodicities and whether the circadian timekeeping mechanism, or merely its expression, was affected.

  10. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  11. Dissipative structures and biological rhythms

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  12. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    PubMed

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Characterization of neurospora circadian rhythms in space

    NASA Technical Reports Server (NTRS)

    Ferraro, James S.

    1987-01-01

    To determine whether the circadian rhythm of conidiation in neurospora crassa is endogenously derived or is driven by some geophysical time cue, an experiment was conducted on space shuttle flight STS-9, where inoculated race tubes were exposed to the microgravity environment of space. The results demonstated that the rhythm can persist in space. However, there were several minor alterations noted; an increase in the period of the oscillation and the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of the flight, the tubes were exposed to light while their growth fronts were marked. It appears that some aspects of this marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. It was hypothesized that the damping found prior to the marking procedure on STS-9 may have been a result of the hypergravity pulse of launch and not due to the microgravity of the orbital lab; furthermore, that the marking procedure, by exposing the samples to light, had reinstated rhythmicity. To test this, an investigation was conducted into the effects of acute and chronic exposure to hypergravity.

  14. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats.

    PubMed

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, Andries

    2018-02-15

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.

  15. Sensory determinants of valve rhythm dynamics provide in situ biodetection of copper in aquatic environments.

    PubMed

    Jou, Li-John; Chen, Bo-Ching; Chen, Wei-Yu; Liao, Chung-Min

    2016-03-01

    This study successfully applied an improved valvometry technique to measure waterborne copper (Cu), based on valve activity dynamics of the freshwater clam Corbicula fluminea. The improved valvometry technique allows the use of free-range bivalves and avoids causing stresses from experimental artifacts. The proposed daily valve rhythm models and a toxicodynamics-based Hill model were linked to predict valve dynamic responses under different Cu exposures with a circadian valve rhythm endpoint. Cu-specific detection threshold was 5.6 (95 % CI 2.1-9.3) and 19.5 (14.6-24.3) μg L(-1) for C. fluminea, based on response times of 300 and 30 min, respectively. Upon exposure to Cu concentrations in excess of 50 μg L(-1), the alteration of valve rhythm behavior was correlated with Cu concentration within 30 min, indicating notable sensing ability. This study outlines the feasibility of an in situ early warning dynamic biomonitoring system for detection of waterborne Cu based on circadian valve activities of C. fluminea.

  16. Rhythms that Speed You Up

    ERIC Educational Resources Information Center

    Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel

    2011-01-01

    This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a…

  17. Effect of rhythm on the recovery from intense exercise.

    PubMed

    Eliakim, Michal; Bodner, Ehud; Meckel, Yoav; Nemet, Dan; Eliakim, Alon

    2013-04-01

    Motivational music (music that stimulates physical activity) was previously shown to enhance the recovery from intense exercise. The aim of the present study was to isolate the effect of rhythm (presumed to be the most effective factor of motivational music) on the recovery from intense exercise. Ten young adult active men (age: 26.1 ± 1.7 years) performed 6-minute run at peak oxygen consumption speed, at 3 separate visits (random order). At 1 visit, no music was played during the recovery after exercise. In the other visits, participants listened to motivational music that was previously shown to enhance recovery (a Western CD collection of greatest hits of all times converted to dance style, 140 b·min, strong bit, played by portable MP3 device using headphones at a volume of 70 dB) or only to the rhythm beats derived from the same songs. Mean heart rate (HR), rating of perceived exertion (RPE), number of steps (measured by step counter) and blood lactate concentrations were determined at 3, 6, 9, 12, and 15 minutes of the recovery. There was no difference in HR changes during the recovery at all conditions. Compared with the recovery without music, listening to motivational music during recovery was associated with significant greater number of steps, lower absolute lactate levels, and greater mean decrease of RPE. Listening only to rhythm beats, derived from the same music, during the recovery was associated with significant greater number of steps and lower absolute lactate levels compared to recovery without music. Music was significantly more effective than rhythm only in the absolute mean number of steps. The beneficial effect of both music and rhythm was greater toward the end of the recovery period. Results suggest that listening to music during nonstructured recovery can be used by professional athletes to enhance recovery from intense exercise. Rhythm plays a very important role in the effect of music on recovery and can be used to enhance

  18. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms.

    PubMed

    Clemente-Perez, Alexandra; Makinson, Stefanie Ritter; Higashikubo, Bryan; Brovarney, Scott; Cho, Frances S; Urry, Alexander; Holden, Stephanie S; Wimer, Matthew; Dávid, Csaba; Fenno, Lief E; Acsády, László; Deisseroth, Karl; Paz, Jeanne T

    2017-06-06

    Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT) gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV) and somatostatin (SOM) expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  20. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  1. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E

    2016-02-05

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.

  2. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  3. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    The endogenous circadian rhythms are one of the cardinal processes that control sleep. They are self-sustaining biological rhythms with a periodicity of approximately 24 hours that may be entrained by external zeitgebers (German for time givers), such as light, exercise, and meal times. This article discusses the physiology of the circadian rhythms, their relationship to neurologic disease, and the presentation and treatment of circadian rhythm sleep-wake disorders. Classic examples of circadian rhythms include cortisol and melatonin secretion, body temperature, and urine volume. More recently, the impact of circadian rhythm on several neurologic disorders has been investigated, such as the timing of occurrence of epileptic seizures as well as neurobehavioral functioning in dementia. Further updates include a more in-depth understanding of the symptoms, consequences, and treatment of circadian sleep-wake disorders, which may occur because of extrinsic misalignment with clock time or because of intrinsic dysfunction of the brain. An example of extrinsic misalignment occurs with jet lag during transmeridian travel or with intrinsic circadian rhythm sleep-wake disorders such as advanced or delayed sleep-wake phase disorders. In advanced sleep-wake phase disorder, which is most common in elderly individuals, sleep onset and morning arousal are undesirably early, leading to impaired evening function with excessive sleepiness and sleep-maintenance insomnia with early morning awakening. By contrast, delayed sleep-wake phase disorder is characterized by an inability to initiate sleep before the early morning hours, with subsequent delayed rise time, leading to clinical symptoms of severe sleep-onset insomnia coupled with excessive daytime sleepiness in the morning hours, as patients are unable to "sleep in" to attain sufficient sleep quantity. Irregular sleep-wake rhythm disorder is misentrainment with patches of brief sleep and wakefulness spread throughout the day

  4. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms.

    PubMed

    Vecchio, Fabrizio; Babiloni, Claudio; Ferreri, Florinda; Curcio, Giuseppe; Fini, Rita; Del Percio, Claudio; Rossini, Paolo Maria

    2007-03-01

    We tested the working hypothesis that electromagnetic fields from mobile phones (EMFs) affect interhemispheric synchronization of cerebral rhythms, an important physiological feature of information transfer into the brain. Ten subjects underwent two electroencephalographic (EEG) recordings, separated by 1 week, following a crossover double-blind paradigm in which they were exposed to a mobile phone signal (global system for mobile communications; GSM). The mobile phone was held on the left side of the subject head by a modified helmet, and orientated in the normal position for use over the ear. The microphone was orientated towards the corner of the mouth, and the antenna was near the head in the parietotemporal area. In addition, we positioned another similar phone (but without battery) on the right side of the helmet, to balance the weight and to prevent the subject localizing the side of GSM stimulation (and consequently lateralizing attention). In one session the exposure was real (GSM) while in the other it was Sham; both sessions lasted 45 min. Functional interhemispheric connectivity was modelled using the analysis of EEG spectral coherence between frontal, central and parietal electrode pairs. Individual EEG rhythms of interest were delta (about 2-4 Hz), theta (about 4-6 Hz), alpha 1 (about 6-8 Hz), alpha 2 (about 8-10 Hz) and alpha 3 (about 10-12 Hz). Results showed that, compared to Sham stimulation, GSM stimulation modulated the interhemispheric frontal and temporal coherence at alpha 2 and alpha 3 bands. The present results suggest that prolonged mobile phone emission affects not only the cortical activity but also the spread of neural synchronization conveyed by interhemispherical functional coupling of EEG rhythms.

  5. Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis

    NASA Astrophysics Data System (ADS)

    Gabay, Natasha C.; Robinson, P. A.

    2017-09-01

    Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.

  6. Decoding spoken words using local field potentials recorded from the cortical surface

    NASA Astrophysics Data System (ADS)

    Kellis, Spencer; Miller, Kai; Thomson, Kyle; Brown, Richard; House, Paul; Greger, Bradley

    2010-10-01

    Pathological conditions such as amyotrophic lateral sclerosis or damage to the brainstem can leave patients severely paralyzed but fully aware, in a condition known as 'locked-in syndrome'. Communication in this state is often reduced to selecting individual letters or words by arduous residual movements. More intuitive and rapid communication may be restored by directly interfacing with language areas of the cerebral cortex. We used a grid of closely spaced, nonpenetrating micro-electrodes to record local field potentials (LFPs) from the surface of face motor cortex and Wernicke's area. From these LFPs we were successful in classifying a small set of words on a trial-by-trial basis at levels well above chance. We found that the pattern of electrodes with the highest accuracy changed for each word, which supports the idea that closely spaced micro-electrodes are capable of capturing neural signals from independent neural processing assemblies. These results further support using cortical surface potentials (electrocorticography) in brain-computer interfaces. These results also show that LFPs recorded from the cortical surface (micro-electrocorticography) of language areas can be used to classify speech-related cortical rhythms and potentially restore communication to locked-in patients.

  7. Circadian Rhythm Sleep Disorders

    PubMed Central

    Zhu, Lirong; Zee, Phyllis C.

    2012-01-01

    There have been remarkable advances in our understanding of the molecular, cellular and physiological mechanisms underlying the regulation of circadian rhythms, as well as the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance and safety. CRSDs are caused by alterations of the central circadian time-keeping system, or a misalignment of the endogenous circadian rhythm and the external environment. In this section, we provide a review of circadian biology and discuss the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice. PMID:23099133

  8. Diurnal rhythms of the neuroendocrine system in professional riveters with different constitutional types.

    PubMed

    Gritsko, N; Shulga, V; Ivanova, L

    1995-01-01

    In our earlier investigations it have been shown that experimental vibration exposure causes different endocrine reactions in hypothalamo-pituitary-adrenocortical (HPA) and hypothalamo-pituitary-gonadal (HPG) systems in men of different constitutional types. The present study was carried out to determine diurnal rhythms of HPA and HPG systems in professional male riveters during a working day under industrial conditions. The state of HPA and HPG systems was evaluated according to the concentration of hormones cortisol (Cort.) and testosterone (T) in saliva. Mixed saliva was collected without stimulation at 7.00, 11.00, 15.00, 19.00 and 23.00 h. The concentration of hormones was determined by radio-immunoassay. Only healthy workers with a long working time under vibration exposure were chosen for participation in the investigation. The workers were divided into three groups of abdominal (A), muscular (M) and pectoral (P) somatotypes according to the antropometric signs (Bunaris classification, 1941). The results of investigating the HPA system have shown that usual diurnal rhythm of Cort, was observed in 60% of all cases. This rhythm is characterised by the maximum concentration of Cort, at 7.00 h with subsequent lowering during the day. In 10% of all cases we observed very low concentration of Cort, at 7.00 h and in 30% there was a significant increase of the level of Cort, at 15.00 and 19.00 h. Another change of diurnal rhythm was revealed in the HPG system. The diurnal rhythm of T completely corresponds to the rhythm of Cort. The accordance of T concentration to the diurnal rhythm we observed only in 27% of all cases. In 47% of all cases the increase of T took place at 15.00 and 19.00 h and in 20% the "monotonous" curve of T concentration without any changes of rhythm and with a low concentration at 7.00 h was observed. We also revealed different distribution of A, M and P somatotypes in connection with various diurnal rhythms of hormone curves. The result allows

  9. WNK-OSR1/SPAK-NCC signal cascade has circadian rhythm dependent on aldosterone.

    PubMed

    Susa, Koichiro; Sohara, Eisei; Isobe, Kiyoshi; Chiga, Motoko; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-11-02

    Blood pressure and renal salt excretion show circadian rhythms. Recently, it has been clarified that clock genes regulate circadian rhythms of renal transporter expression in the kidney. Since we discovered the WNK-OSR1/SPAK-NaCl cotransporter (NCC) signal cascade, which is important for regulating salt balance and blood pressure, we have sought to determine whether NCC protein expression or phosphorylation shows diurnal rhythms in the mouse kidneys. Male C57BL/6J mice were sacrificed every 4h (at 20:00, 0:00, 4:00, 8:00, 12:00, and 16:00), and the expression and phosphorylation of WNK4, OSR1, SPAK, and NCC were determined by immunoblot. (Lights were turned on at 8:00, which was the start of the rest period, and turned off at 20:00, which was the start of the active period, since mice are nocturnal.) Although expression levels of each protein did not show diurnal rhythm, the phosphorylation levels of OSR1, SPAK, and NCC were increased around the start of the active period and decreased around the start of the rest period. Oral administration of eplerenone (10mg/day) attenuated the phosphorylation levels of these proteins and also diminished the diurnal rhythm of NCC phosphorylation. Thus, the activity of the WNK4-OSR1/SPAK-NCC cascade was shown to have a diurnal rhythm in the kidney that may be governed by aldosterone. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    PubMed

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  11. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

    PubMed Central

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H

    2017-01-01

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463

  12. Forecasting models for sugi (Cryptomeria japonica D. Don) pollen count showing an alternate dispersal rhythm.

    PubMed

    Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru

    2008-12-01

    Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.

  13. [Interpersonal and social rhythm therapy (IPSRT)].

    PubMed

    Bottai, T; Biloa-Tang, M; Christophe, S; Dupuy, C; Jacquesy, L; Kochman, F; Meynard, J-A; Papeta, D; Rahioui, H; Adida, M; Fakra, E; Kaladjian, A; Pringuey, D; Azorin, J-M

    2010-12-01

    Bipolar disorder is common, recurrent, often severe and debiliting disorder. All types of bipolar disorder have a common determinant: depressive episode. It is justify to propose a psychotherapy which shown efficacy in depression. Howewer, perturbations in circadian rhythms have been implicated in the genesis of each episode of the illness. Biological circadian dysregulation can be encouraged by alteration of time-givers (Zeitgebers) or occurrence of time-disturbers (Zeitstörers). Addition of social rhythm therapy to interpersonal psychotherapy leads to create a new psychotherapy adaptated to bipolar disorders: InterPersonal and Social Rhythm Therapy (IPSRT). IPSRT, in combinaison with medication, has demonstrated efficacy as a treatment for bipolar disorders. IPSRT combines psychoeducation, behavioral strategy to regularize daily routines and interpersonal psychotherapy which help patients cope better with the multiple psychosocial and relationship problems associated with this chronic disorder. The main issues of this psychotherapy are: to take the history of the patient's illness and review of medication, to help patient for "grief for the lost healthy self" translated in the french version in "acceptance of a long-term medical condition", to give the sick role, to examinate the current relationships and changes proximal to the emergence of mood symptoms in the four problem areas (unresolved grief, interpersonal disputes, role transitions, role déficits), to examinate and increase daily routines and social rhythms. French version of IPSRT called TIPARS (with few differences), a time-limited psychotherapy, in 24 sessions during approximatively 6 months, is conducted in three phases. In the initial phase, the therapist takes a thorough history of previous episodes and their interpersonal context and a review of previous medication, provides psychoeducation, evaluates social rhythms, introduces the Social Rhythm Metric, identifies the patient's main interpersonal

  14. From Biological Rhythms to Social Rhythms: Physiological Precursors of Mother-Infant Synchrony

    ERIC Educational Resources Information Center

    Feldman, Ruth

    2006-01-01

    Links between neonatal biological rhythms and the emergence of interaction rhythms were examined in 3 groups (N=71): high-risk preterms (HR; birth weight less than 1,000 g), low-risk preterms (LR; birth weight=1,700-1,850 g), and full-term (FT) infants. Once a week for premature infants and on the 2nd day for FT infants, sleep-wake cyclicity was…

  15. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea

    PubMed Central

    Baba, Kenkichi; Davidson, Alec J.; Tosini, Gianluca

    2015-01-01

    Purpose Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Methods Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. Results A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Conclusions Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock. PMID:26207312

  16. Phase Difference between Model Cortical Areas Determines Level of Information Transfer

    PubMed Central

    ter Wal, Marije; Tiesinga, Paul H.

    2017-01-01

    Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits. PMID:28232796

  17. An Overview of Monthly Rhythms and Clocks

    PubMed Central

    Raible, Florian; Takekata, Hiroki; Tessmar-Raible, Kristin

    2017-01-01

    Organisms have evolved to cope with geophysical cycles of different period lengths. In this review, we focus on the adaptations of animals to the lunar cycle, specifically, on the occurrence of biological rhythms with monthly (circalunar) or semi-monthly (circasemilunar) period lengths. Systematic experimental investigation, starting in the early twentieth century, has allowed scientists to distinguish between mythological belief and scientific facts concerning the influence of the lunar cycle on animals. These studies revealed that marine animals of various taxa exhibit circalunar or circasemilunar reproductive rhythms. Some of these rely on endogenous oscillators (circalunar or circasemilunar clocks), whereas others are directly driven by external cues, such as the changes in nocturnal illuminance. We review current insight in the molecular and cellular mechanisms involved in circalunar rhythms, focusing on recent work in corals, annelid worms, midges, and fishes. In several of these model systems, the transcript levels of some core circadian clock genes are affected by both light and endogenous circalunar oscillations. How these and other molecular changes relate to the changes in physiology or behavior over the lunar cycle remains to be determined. We further review the possible relevance of circalunar rhythms for terrestrial species, with a particular focus on mammalian reproduction. Studies on circalunar rhythms of conception or birth rates extend to humans, where the lunar cycle was suggested to also affect sleep and mental health. While these reports remain controversial, factors like the increase in “light pollution” by artificial light might contribute to discrepancies between studies. We finally discuss the existence of circalunar oscillations in mammalian physiology. We speculate that these oscillations could be the remnant of ancient circalunar oscillators that were secondarily uncoupled from a natural entrainment mechanism, but still maintained

  18. An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography

    PubMed Central

    Hu, Hai; Guo, Shengxin; Liu, Ran

    2017-01-01

    Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%). PMID:28674650

  19. [Circadian rhythm : Influence on Epworth Sleepiness Scale score].

    PubMed

    Herzog, M; Bedorf, A; Rohrmeier, C; Kühnel, T; Herzog, B; Bremert, T; Plontke, S; Plößl, S

    2017-02-01

    The Epworth Sleepiness Scale (ESS) is frequently used to determine daytime sleepiness in patients with sleep-disordered breathing. It is still unclear whether different levels of alertness induced by the circadian rhythm influence ESS score. The aim of this study is to investigate the influence of circadian rhythm-dependent alertness on ESS performance. In a monocentric prospective noninterventional observation study, 97 patients with suspected sleep-disordered breathing were investigated with respect to daytime sleepiness in temporal relationship to polysomnographic examination and treatment. The Karolinska Sleepiness Scale (KSS) and the Stanford Sleepiness Scale (SSS) served as references for the detection of present sleepiness at three different measurement times (morning, noon, evening), prior to and following a diagnostic polysomnography night as well as after a continuous positive airway pressure (CPAP) titration night (9 measurements in total). The KSS, SSS, and ESS were performed at these times in a randomized order. The KSS and SSS scores revealed a circadian rhythm-dependent curve with increased sleepiness at noon and in the evening. Following a diagnostic polysomnography night, the scores were increased compared to the measurements prior to the night. After the CPAP titration night, sleepiness in the morning was reduced. KSS and SSS reflect the changes in alertness induced by the circadian rhythm. The ESS score war neither altered by the intra-daily nor by the inter-daily changes in the level of alertness. According to the present data, the ESS serves as a reliable instrument to detect the level of daytime sleepiness independently of the circadian rhythm-dependent level of alertness.

  20. Circadian Rhythm Sleep Disorders: Part II, Advanced Sleep Phase Disorder, Delayed Sleep Phase Disorder, Free-Running Disorder, and Irregular Sleep-Wake Rhythm

    PubMed Central

    Sack, Robert L; Auckley, Dennis; Auger, R. Robert; Carskadon, Mary A.; Wright, Kenneth P.; Vitiello, Michael V.; Zhdanova, Irina V.

    2007-01-01

    Objective: This the second of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. We herein report on the accumulated evidence regarding the evaluation and treatment of Advamced Sleep Phase Disorder (ASPD), Delayed Sleep Phase Disorder (DSPD), Free-Running Disorder (FRD) and Irregular Sleep-Wake Rhythm ISWR). Methods: A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. Results: A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of CRSDs. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting (“resetting the clock”), and 3) symptomatic treatment using hypnotic and stimulant medications. Conclusion: Circadian rhythm science has also pointed the way to rational interventions for CRSDs and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria. Citation: Sack R; Auckley D; Auger RR; Carskadon MA; Wright KP; Vitiello MV; Zhdanova IV. Circadian rhythm sleep disorders: Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. SLEEP 2007;30(11):1484-1501. PMID:18041481

  1. The Validity and Reliability of Rhythm Measurements in Automatically Scoring the English Rhythm Proficiency of Chinese EFL Learners

    ERIC Educational Resources Information Center

    Chen, Jin; Lin, Jianghao; Li, Xinguang

    2015-01-01

    This article aims to find out the validity of rhythm measurements to capture the rhythmic features of Chinese English. Besides, the reliability of the valid rhythm measurements applied in automatically scoring the English rhythm proficiency of Chinese EFL learners is also explored. Thus, two experiments were carried out. First, thirty students of…

  2. Speech rhythm: a metaphor?

    PubMed Central

    Nolan, Francis; Jeon, Hae-Sung

    2014-01-01

    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence of alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and it is this analogical process which allows speech to be matched to external rhythms. PMID:25385774

  3. Cardiac rhythm management devices

    PubMed

    Stevenson, Irene; Voskoboinik, Alex

    2018-05-01

    The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.

  4. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Phenotypic and Genetic Analysis of Clock, a New Circadian Rhythm Mutant in Drosophila Melanogaster

    PubMed Central

    Dushay, M. S.; Konopka, R. J.; Orr, D.; Greenacre, M. L.; Kyriacou, C. P.; Rosbash, M.; Hall, J. C.

    1990-01-01

    Clock is a semidominant X-linked mutation that results in shortening the period of Drosophila melanogaster's free-running locomotor activity rhythm from ca. 24.0 to ca. 22.5 hr. This mutation similarly shortened the phase response curve, determined by resetting activity rhythms with light pulses. Eclosion peaks for Clk cultures were separated by only 22.5 hr instead of the normal 24 hr. Clk was mapped close to, but separable from, another rhythm mutation--period(01)--by recombination. The estimated distance between these two mutations was short enough to suggest that Clk could be a per allele. If this is the case, the new mutant is unique in that it, unlike other per variants, is associated with essentially normal 1-min courtship song rhythms when Clk is expressed in males. Also, the new rhythm variant could not, in contrast to a short-period per mutation, have its effects on free-running activity rhythms uncovered by deletions. This result, and the lack of coverage of Clk's effects by duplications, suggest that it is not a simple hypomorphic or amorphic mutation. PMID:2116357

  6. Sleep, daily activity rhythms and postpartum mood: A longitudinal study across the perinatal period.

    PubMed

    Krawczak, Elizabeth M; Minuzzi, Luciano; Simpson, William; Hidalgo, Maria Paz; Frey, Benicio N

    2016-01-01

    Women with a diagnosis of bipolar and major depressive disorders are at higher risk to develop postpartum depression. The primary objective of this longitudinal study was to determine whether daily activity rhythms and sleep parameters differ between women with and without a history of a mood disorder across the perinatal period. A secondary objective was to determine whether changes in these parameters were associated with postpartum mood. In total, 33 women were included in this study, 15 of which had a history of a mood disorder (high-risk group) and 18 who did not (low-risk group). Sleep and daily rhythms were assessed subjectively and objectively during the third trimester (≥26 weeks gestation) and again at 6-12 weeks postpartum. Mood was also assessed at both time points. Women in the high-risk group showed greater subjective daily rhythms and sleep disturbances across the perinatal period. Objective sleep efficiency was worse in the high-risk group in the postpartum period. Changes in both subjective daily rhythms and objective sleep efficiency were predictive of changes in depressive symptoms across the perinatal period. These findings encourage the development of preventative therapeutics to ensure circadian rhythm and sleep stability throughout the perinatal period.

  7. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    PubMed Central

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  8. Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Maglione, Anton Giulio; Colosimo, Alfredo; Babiloni, Fabio

    2014-05-01

    To date, no objective measure of the pleasantness of music perception by children with cochlear implants has been reported. The EEG alpha asymmetries of pre-frontal cortex activation are known to relate to emotional/affective engagement in a perceived stimulus. More specifically, according to the "withdrawal/approach" model, an unbalanced de-synchronization of the alpha activity in the left prefrontal cortex has been associated with a positive affective state/approach toward a stimulus, and an unbalanced de-synchronization of the same activity in the right prefrontal cortex with a negative affective state/withdrawal from a stimulus. In the present study, High-Resolution EEG with Source Reconstruction was used to compare the music-induced alpha asymmetries of the prefrontal cortex in a group of prelingually deaf implanted children and in a control group of normal-hearing children. Six normal-hearing and six age-matched deaf children using a unilateral cochlear implants underwent High-Resolution EEG recordings as they were listening to a musical cartoon. Musical stimuli were delivered in three versions: Normal, Distort (reverse audio flow) and Mute. The EEG alpha rhythm asymmetry was analyzed: Power Spectral Density was calculated for each Region of Interest, together with a right-left imbalance index. A map of cortical activation was then reconstructed on a realistic cortical model. Asymmetries of EEG alpha rhythm in the prefrontal cortices were observed in both groups. In the normal-hearing children, the asymmetries were consistent with the withdrawal/approach model, whereas in cochlear implant users they were not. Moreover, in implanted children a different pattern of alpha asymmetries in extrafrontal cortical areas was noticed as compared to normal-hearing subjects. The peculiar pattern of alpha asymmetries in implanted children's prefrontal cortex in response to musical stimuli suggests an inability by these subjects to discriminate normal from dissonant music

  9. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  10. Cortical relapses in multiple sclerosis.

    PubMed

    Puthenparampil, Marco; Poggiali, Davide; Causin, Francesco; Rolma, Giuseppe; Rinaldi, Francesca; Perini, Paola; Gallo, Paolo

    2016-08-01

    Multiple sclerosis (MS) is a white and grey matter disease of the central nervous system (CNS). It is recognized that cortical damage (i.e. focal lesions and atrophy) plays a role in determining the accumulation of physical and cognitive disability that is observed in patients with progressive MS. To date, an association of cortical lesions with clinical relapses has not been described. We report clinical and magnetic resonance imaging (MRI) findings of five relapsing-remitting MS (RRMS) patients who had clinical relapses characterized by the acute appearance of cortical symptoms, due to the development of large, snake-like, cortical inflammatory lesions. Symptoms were: acute Wernicke's aphasia mimicking stroke; agraphia with acalculia, not associated to a motor deficit nor linguistic disturbance; hyposthenia of the left arm, followed by muscle twitching of the hand, spreading to arm and face; acute onset of left lower limb paroxysmal hypertonia; and temporal lobe status epilepticus, with psychotic symptoms. Cortical relapses may occur in MS. MRI examination in MS should include sequences, such as double inversion recovery (DIR) or phase sensitive inversion recovery (PSIR), that are aimed at visualizing cortical lesions, especially in the presence of symptoms of cortical dysfunction. Our observation further stresses and extends the clinical relevance of cortical pathology in MS. © The Author(s), 2015.

  11. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.

    PubMed

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M

    2013-11-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge. © 2013.

  12. Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS.

    PubMed

    Thielscher, Axel; Kammer, Thomas

    2002-11-01

    A fundamental problem of transcranial magnetic stimulation (TMS) is determining the site and size of the stimulated cortical area. In the motor system, the most common procedure for this is motor mapping. The obtained two-dimensional distribution of coil positions with associated muscle responses is used to calculate a center of gravity on the skull. However, even in motor mapping the exact stimulation site on the cortex is not known and only rough estimates of its size are possible. We report a new method which combines physiological measurements with a physical model used to predict the electric field induced by the TMS coil. In four subjects motor responses in a small hand muscle were mapped with 9-13 stimulation sites at the head perpendicular to the central sulcus in order to keep the induced current direction constant in a given cortical region of interest. Input-output functions from these head locations were used to determine stimulator intensities that elicit half-maximal muscle responses. Based on these stimulator intensities the field distribution on the individual cortical surface was calculated as rendered from anatomical MR data. The region on the cortical surface in which the different stimulation sites produced the same electric field strength (minimal variance, 4.2 +/- 0.8%.) was determined as the most likely stimulation site on the cortex. In all subjects, it was located at the lateral part of the hand knob in the motor cortex. Comparisons of model calculations with the solutions obtained in this manner reveal that the stimulated cortex area innervating the target muscle is substantially smaller than the size of the electric field induced by the coil. Our results help to resolve fundamental questions raised by motor mapping studies as well as motor threshold measurements.

  13. Melatonin and circadian rhythms in autism: Case report.

    PubMed

    Zuculo, Gabriela Melloni; Gonçalves, Bruno S B; Brittes, Clay; Menna-Barreto, Luiz; Pinato, Luciana

    2017-01-01

    Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.

  14. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    PubMed

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  15. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping

    PubMed Central

    Cameron, Daniel J.; Bentley, Jocelyn; Grahn, Jessica A.

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion

  16. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    PubMed

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  17. Speech rhythm: a metaphor?

    PubMed

    Nolan, Francis; Jeon, Hae-Sung

    2014-12-19

    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep 'prominence gradient', i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a 'stress-timed' language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow 'syntagmatic contrast' between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence of alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and it is this analogical process which allows speech to be matched to external rhythms. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Melatonin, The Pineal Gland and Circadian Rhythms

    DTIC Science & Technology

    1992-04-30

    physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed

  19. Differential short-term memorisation for vocal and instrumental rhythms.

    PubMed

    Klyn, Niall A M; Will, Udo; Cheong, Yong-Jeon; Allen, Erin T

    2016-07-01

    This study explores differential processing of vocal and instrumental rhythms in short-term memory with three decision (same/different judgments) and one reproduction experiment. In the first experiment, memory performance declined for delayed versus immediate recall, with accuracy for the two rhythms being affected differently: Musicians performed better than non-musicians on clapstick but not on vocal rhythms, and musicians were better on vocal rhythms in the same than in the different condition. Results for the second experiment showed that concurrent sub-vocal articulation and finger-tapping differentially affected the two rhythms and same/different decisions, but produced no evidence for articulatory loop involvement in delayed decision tasks. In a third experiment, which tested rhythm reproduction, concurrent sub-vocal articulation decreased memory performance, with a stronger deleterious effect on the reproduction of vocal than of clapstick rhythms. This suggests that the articulatory loop may only be involved in delayed reproduction not in decision tasks. The fourth experiment tested whether differences between filled and empty rhythms (continuous vs. discontinuous sounds) can explain the different memorisation of vocal and clapstick rhythms. Though significant differences were found for empty and filled instrumental rhythms, the differences between vocal and clapstick can only be explained by considering additional voice specific features.

  20. Cognitive Plasticity and Cortical Modules

    PubMed Central

    Mercado, Eduardo

    2009-01-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements. PMID:19750239

  1. Cognitive Plasticity and Cortical Modules.

    PubMed

    Mercado, Eduardo

    2009-06-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements.

  2. [Research advances in circadian rhythm of epileptic seizures].

    PubMed

    Yang, Wen-Qi; Li, Hong

    2017-01-01

    The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.

  3. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  4. Novel pharmacological targets for the rhythm control management of atrial fibrillation.

    PubMed

    Burashnikov, Alexander; Antzelevitch, Charles

    2011-12-01

    Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that "upstream therapy", aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER).

    PubMed

    Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian

    2011-09-01

    Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Acquisition of speech rhythm in first language.

    PubMed

    Polyanskaya, Leona; Ordin, Mikhail

    2015-09-01

    Analysis of English rhythm in speech produced by children and adults revealed that speech rhythm becomes increasingly more stress-timed as language acquisition progresses. Children reach the adult-like target by 11 to 12 years. The employed speech elicitation paradigm ensured that the sentences produced by adults and children at different ages were comparable in terms of lexical content, segmental composition, and phonotactic complexity. Detected differences between child and adult rhythm and between rhythm in child speech at various ages cannot be attributed to acquisition of phonotactic language features or vocabulary, and indicate the development of language-specific phonetic timing in the course of acquisition.

  7. Evaluation of regression-based 3-D shoulder rhythms.

    PubMed

    Xu, Xu; Dickerson, Clark R; Lin, Jia-Hua; McGorry, Raymond W

    2016-08-01

    The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2.

    PubMed

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.

  9. Alpha Rhythms in Audition: Cognitive and Clinical Perspectives

    PubMed Central

    Weisz, Nathan; Hartmann, Thomas; Müller, Nadia; Lorenz, Isabel; Obleser, Jonas

    2011-01-01

    Like the visual and the sensorimotor systems, the auditory system exhibits pronounced alpha-like resting oscillatory activity. Due to the relatively small spatial extent of auditory cortical areas, this rhythmic activity is less obvious and frequently masked by non-auditory alpha-generators when recording non-invasively using magnetoencephalography (MEG) or electroencephalography (EEG). Following stimulation with sounds, marked desynchronizations can be observed between 6 and 12 Hz, which can be localized to the auditory cortex. However knowledge about the functional relevance of the auditory alpha rhythm has remained scarce so far. Results from the visual and sensorimotor system have fuelled the hypothesis of alpha activity reflecting a state of functional inhibition. The current article pursues several intentions: (1) Firstly we review and present own evidence (MEG, EEG, sEEG) for the existence of an auditory alpha-like rhythm independent of visual or motor generators, something that is occasionally met with skepticism. (2) In a second part we will discuss tinnitus and how this audiological symptom may relate to reduced background alpha. The clinical part will give an introduction into a method which aims to modulate neurophysiological activity hypothesized to underlie this distressing disorder. Using neurofeedback, one is able to directly target relevant oscillatory activity. Preliminary data point to a high potential of this approach for treating tinnitus. (3) Finally, in a cognitive neuroscientific part we will show that auditory alpha is modulated by anticipation/expectations with and without auditory stimulation. We will also introduce ideas and initial evidence that alpha oscillations are involved in the most complex capability of the auditory system, namely speech perception. The evidence presented in this article corroborates findings from other modalities, indicating that alpha-like activity functionally has an universal inhibitory role across sensory

  10. Neural Oscillations Carry Speech Rhythm through to Comprehension

    PubMed Central

    Peelle, Jonathan E.; Davis, Matthew H.

    2012-01-01

    A key feature of speech is the quasi-regular rhythmic information contained in its slow amplitude modulations. In this article we review the information conveyed by speech rhythm, and the role of ongoing brain oscillations in listeners’ processing of this content. Our starting point is the fact that speech is inherently temporal, and that rhythmic information conveyed by the amplitude envelope contains important markers for place and manner of articulation, segmental information, and speech rate. Behavioral studies demonstrate that amplitude envelope information is relied upon by listeners and plays a key role in speech intelligibility. Extending behavioral findings, data from neuroimaging – particularly electroencephalography (EEG) and magnetoencephalography (MEG) – point to phase locking by ongoing cortical oscillations to low-frequency information (~4–8 Hz) in the speech envelope. This phase modulation effectively encodes a prediction of when important events (such as stressed syllables) are likely to occur, and acts to increase sensitivity to these relevant acoustic cues. We suggest a framework through which such neural entrainment to speech rhythm can explain effects of speech rate on word and segment perception (i.e., that the perception of phonemes and words in connected speech is influenced by preceding speech rate). Neuroanatomically, acoustic amplitude modulations are processed largely bilaterally in auditory cortex, with intelligible speech resulting in differential recruitment of left-hemisphere regions. Notable among these is lateral anterior temporal cortex, which we propose functions in a domain-general fashion to support ongoing memory and integration of meaningful input. Together, the reviewed evidence suggests that low-frequency oscillations in the acoustic speech signal form the foundation of a rhythmic hierarchy supporting spoken language, mirrored by phase-locked oscillations in the human brain. PMID:22973251

  11. Light and maternal influence in the entrainment of activity circadian rhythm in infants 4-12 weeks of age.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2016-07-01

    The influence of light and maternal activity on early infant activity rhythm were studied in 43 healthy, maternal-infant pairs. Aims included description of infant and maternal circadian rhythm of environmental light, assessing relations among of activity and light circadian rhythm parameters, and exploring the influence of light on infant activity independent of maternal activity. Three-day light and activity records were obtained using actigraphy monitors at infant ages 4, 8, and 12 weeks. Circadian rhythm timing, amplitude, 24-hour fit, rhythm center, and regularity were determined using cosinor and nonparametric circadian rhythm analyses (NPCRA). All maternal and infant circadian parameters for light were highly correlated. When maternal activity was controlled, the partial correlations between infant activity and light rhythm timing, amplitude, 24-hour fit, and rhythm center demonstrated significant relation (r = .338 to .662) at infant age 12 weeks, suggesting entrainment. In contrast, when maternal light was controlled there was significant relation between maternal and infant activity rhythm (r = 0.470, 0.500, and 0.638 at 4, 8 and 12 weeks, respectively) suggesting the influence of maternal-infant interaction independent of photo entrainment of cycle timing over the first 12 weeks of life. Both light and maternal activity may offer avenues for shaping infant activity rhythm during early infancy.

  12. Vitamin B12 treatment for sleep-wake rhythm disorders.

    PubMed

    Okawa, M; Mishima, K; Nanami, T; Shimizu, T; Iijima, S; Hishikawa, Y; Takahashi, K

    1990-02-01

    Vitamin B12 (VB12) was administered to two patients suffering for many years from different sleep-wake rhythm disorders. One patient was a 15-year-old blind girl suffering from a free-running sleep-wake rhythm (hypernychthemeral syndrome) with a period of about 25 h. In spite of repeated trials to entrain her sleep-wake cycle to the environmental 24-h rhythm, her free-running rhythm persisted for about 13 years. When she was 14 years old, administration of VB12 per os was started at the daily dose of 1.5 mg t.i.d. Shortly thereafter, her sleep-wake rhythm was entrained to the environmental 24-h rhythm, and her 24-h sleep-wake rhythm was maintained while she was on the medication. Within 2 months of the withholding of VB12, her free-running sleep-wake rhythm reappeared. The VB12 level in the serum was within the normal range both before and after treatment. The other patient was a 55-year-old man suffering from delayed sleep phase syndrome since 18 years of age. After administration of VB12 at the daily doses of 1.5 mg, his sleep-wake rhythm disorder was improved. The good therapeutic effect lasted for more than 6 months while he was on the medication.

  13. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons

    PubMed Central

    Hao, Zhao-Zhe; Berkowitz, Ari

    2017-01-01

    Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation”) in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons. PMID:28848402

  14. Daily Rhythms in Mobile Telephone Communication

    PubMed Central

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I. M.; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals’ social networks. Further, women’s calls were longer than men’s calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day. PMID:26390215

  15. Daily Rhythms in Mobile Telephone Communication.

    PubMed

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G B; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I M; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals' social networks. Further, women's calls were longer than men's calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day.

  16. Use of rhythm in acquisition of a computer-generated tracking task.

    PubMed

    Fulop, A C; Kirby, R H; Coates, G D

    1992-08-01

    This research assessed whether rhythm aids acquisition of motor skills by providing cues for the timing of those skills. Rhythms were presented to participants visually or visually with auditory cues. It was hypothesized that the auditory cues would facilitate recognition and learning of the rhythms. The three timing principles of rhythms were also explored. It was hypothesized that rhythms that satisfied all three timing principles would be more beneficial in learning a skill than rhythms that did not satisfy the principles. Three groups learned three different rhythms by practicing a tracking task. After training, participants attempted to reproduce the tracks from memory. Results suggest that rhythms do help in learning motor skills but different sets of timing principles explain perception of rhythm in different modalities.

  17. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.

    PubMed

    Palomero-Gallagher, Nicola; Zilles, Karl

    2017-08-12

    Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.

  18. Heterogeneity induces rhythms of weakly coupled circadian neurons

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H. T.

    2016-02-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle.

  19. Recent advances in rhythm control for atrial fibrillation

    PubMed Central

    Bond, Richard; Olshansky, Brian; Kirchhof, Paulus

    2017-01-01

    Atrial fibrillation (AF) remains a difficult management problem. The restoration and maintenance of sinus rhythm—rhythm control therapy—can markedly improve symptoms and haemodynamics for patients who have paroxysmal or persistent AF, but some patients fare well with rate control alone. Sinus rhythm can be achieved with anti-arrhythmic drugs or electrical cardioversion, but the maintenance of sinus rhythm without recurrence is more challenging. Catheter ablation of the AF triggers is more effective than anti-arrhythmic drugs at maintaining sinus rhythm. Whilst pulmonary vein isolation is an effective strategy, other ablation targets are being evaluated to improve sinus rhythm maintenance, especially in patients with chronic forms of AF. Previously extensive ablation strategies have been used for patients with persistent AF, but a recent trial has shown that pulmonary vein isolation without additional ablation lesions is associated with outcomes similar to those of more extensive ablation. This has led to an increase in catheter-based technology to achieve durable pulmonary vein isolation. Furthermore, a combination of anti-arrhythmic drugs and catheter ablation seems useful to improve the effectiveness of rhythm control therapy. Two large ongoing trials evaluate whether a modern rhythm control therapy can improve prognosis in patients with AF. PMID:29043080

  20. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    ERIC Educational Resources Information Center

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  1. Biological rhythms: the taste-time continuum.

    PubMed

    Krupp, Joshua J; Levine, Joel D

    2010-02-23

    The gustatory system allows the fly to assess food quality, eliciting either acceptance or avoidance behaviors. A new study demonstrates that circadian clocks in gustatory receptor neurons regulate rhythms in taste sensitivity, drive rhythms in appetitive behavior and influence feeding. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. [Semi-automatic defibrillators does not always interpret heart rhythms correctly. Five patients were defibrillated despite non-shockable rhythms].

    PubMed

    Wangenheim, Burkard; Israelsson, Johan; Lindstaedt, Michael; Carlsson, Jörg

    2015-08-04

    Automated external defibrillators (AED) have become an important part of the »the chain of survival« in case of sudden cardiac arrest (SCA), where early defibrillation is lifesaving. The American Heart Association demands that AEDs have a specificity of >99 % to recognize normal sinus rhythm and >95 % for the other non-shockable rhythms. Reports on their performance in the field are scarce. We present five cases in which AED recommended shock for apparently non-shockable rhythms. This indicates the necessity to systematically reevaluate AED performance.

  3. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    PubMed

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P < .001). Markers of the circadian phase were not significantly different between the 2 groups. Compared with PD patients without excessive daytime sleepiness, patients with excessive daytime sleepiness (Epworth Sleepiness Scale score ≥10) had a significantly lower amplitude of the melatonin rhythm and 24-hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease

  4. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  5. Relationship between neural rhythm generation disorders and physical disabilities in Parkinson's disease patients' walking.

    PubMed

    Ota, Leo; Uchitomi, Hirotaka; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro

    2014-01-01

    Walking is generated by the interaction between neural rhythmic and physical activities. In fact, Parkinson's disease (PD), which is an example of disease, causes not only neural rhythm generation disorders but also physical disabilities. However, the relationship between neural rhythm generation disorders and physical disabilities has not been determined. The aim of this study was to identify the mechanism of gait rhythm generation. In former research, neural rhythm generation disorders in PD patients' walking were characterized by stride intervals, which are more variable and fluctuate randomly. The variability and fluctuation property were quantified using the coefficient of variation (CV) and scaling exponent α. Conversely, because walking is a dynamic process, postural reflex disorder (PRD) is considered the best way to estimate physical disabilities in walking. Therefore, we classified the severity of PRD using CV and α. Specifically, PD patients and healthy elderly were classified into three groups: no-PRD, mild-PRD, and obvious-PRD. We compared the contributions of CV and α to the accuracy of this classification. In this study, 45 PD patients and 17 healthy elderly people walked 200 m. The severity of PRD was determined using the modified Hoehn-Yahr scale (mH-Y). People with mH-Y scores of 2.5 and 3 had mild-PRD and obvious-PRD, respectively. As a result, CV differentiated no-PRD from PRD, indicating the correlation between CV and PRD. Considering that PRD is independent of neural rhythm generation, this result suggests the existence of feedback process from physical activities to neural rhythmic activities. Moreover, α differentiated obvious-PRD from mild-PRD. Considering α reflects the intensity of interaction between factors, this result suggests the change of the interaction. Therefore, the interaction between neural rhythmic and physical activities is thought to plays an important role for gait rhythm generation. These characteristics have

  6. Duration analysis using matching pursuit algorithm reveals longer bouts of gamma rhythm.

    PubMed

    Chandran Ks, Subhash; Seelamantula, Chandra Sekhar; Ray, Supratim

    2018-03-01

    The gamma rhythm (30-80 Hz), often associated with high-level cortical functions, is believed to provide a temporal reference frame for spiking activity, for which it should have a stable center frequency and linear phase for an extended duration. However, recent studies that have estimated the power and phase of gamma as a function of time suggest that gamma occurs in short bursts and lacks the temporal structure required to act as a reference frame. Here, we show that the bursty appearance of gamma arises from the variability in the spectral estimator used in these studies. To overcome this problem, we use another duration estimator based on a matching pursuit algorithm that robustly estimates the duration of gamma in simulated data. Applying this algorithm to gamma oscillations recorded from implanted microelectrodes in the primary visual cortex of awake monkeys, we show that the median gamma duration is greater than 300 ms, which is three times longer than previously reported values. NEW & NOTEWORTHY Gamma oscillations (30-80 Hz) have been hypothesized to provide a temporal reference frame for coordination of spiking activity, but recent studies have shown that gamma occurs in very short bursts. We show that existing techniques have severely underestimated the rhythm duration, use a technique based on the Matching Pursuit algorithm, which provides a robust estimate of the duration, and show that the median duration of gamma is greater than 300 ms, much longer than previous estimates.

  7. Duration analysis using matching pursuit algorithm reveals longer bouts of gamma rhythm

    PubMed Central

    Chandran KS, Subhash; Seelamantula, Chandra Sekhar

    2018-01-01

    The gamma rhythm (30–80 Hz), often associated with high-level cortical functions, is believed to provide a temporal reference frame for spiking activity, for which it should have a stable center frequency and linear phase for an extended duration. However, recent studies that have estimated the power and phase of gamma as a function of time suggest that gamma occurs in short bursts and lacks the temporal structure required to act as a reference frame. Here, we show that the bursty appearance of gamma arises from the variability in the spectral estimator used in these studies. To overcome this problem, we use another duration estimator based on a matching pursuit algorithm that robustly estimates the duration of gamma in simulated data. Applying this algorithm to gamma oscillations recorded from implanted microelectrodes in the primary visual cortex of awake monkeys, we show that the median gamma duration is greater than 300 ms, which is three times longer than previously reported values. NEW & NOTEWORTHY Gamma oscillations (30–80 Hz) have been hypothesized to provide a temporal reference frame for coordination of spiking activity, but recent studies have shown that gamma occurs in very short bursts. We show that existing techniques have severely underestimated the rhythm duration, use a technique based on the Matching Pursuit algorithm, which provides a robust estimate of the duration, and show that the median duration of gamma is greater than 300 ms, much longer than previous estimates. PMID:29118193

  8. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    PubMed

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  9. Development of Salivary Cortisol Circadian Rhythm and Reference Intervals in Full-Term Infants.

    PubMed

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2015-01-01

    Cortisol concentrations in plasma display a circadian rhythm in adults and children older than one year. Earlier studies report divergent results regarding when cortisol circadian rhythm is established. The present study aims to investigate at what age infants develop a circadian rhythm, as well as the possible influences of behavioral regularity and daily life trauma on when the rhythm is established. Furthermore, we determine age-related reference intervals for cortisol concentrations in saliva during the first year of life. 130 healthy full-term infants were included in a prospective, longitudinal study with saliva sampling on two consecutive days, in the morning (07:30-09:30), noon (10:00-12:00) and evening (19:30-21:30), each month from birth until the infant was twelve months old. Information about development of behavioral regularity and potential exposure to trauma was obtained from the parents through the Baby Behavior Questionnaire and the Life Incidence of Traumatic Events checklist. A significant group-level circadian rhythm of salivary cortisol secretion was established at one month, and remained throughout the first year of life, although there was considerable individual variability. No correlation was found between development of cortisol circadian rhythm and the results from either the Baby Behavior Questionnaire or the Life Incidence of Traumatic Events checklist. The study presents salivary cortisol reference intervals for infants during the first twelve months of life. Cortisol circadian rhythm in infants is already established by one month of age, earlier than previous studies have shown. The current study also provides first year age-related reference intervals for salivary cortisol levels in healthy, full-term infants.

  10. Development of Salivary Cortisol Circadian Rhythm and Reference Intervals in Full-Term Infants

    PubMed Central

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O.; Mörelius, Evalotte

    2015-01-01

    Background Cortisol concentrations in plasma display a circadian rhythm in adults and children older than one year. Earlier studies report divergent results regarding when cortisol circadian rhythm is established. The present study aims to investigate at what age infants develop a circadian rhythm, as well as the possible influences of behavioral regularity and daily life trauma on when the rhythm is established. Furthermore, we determine age-related reference intervals for cortisol concentrations in saliva during the first year of life. Methods 130 healthy full-term infants were included in a prospective, longitudinal study with saliva sampling on two consecutive days, in the morning (07:30-09:30), noon (10:00-12:00) and evening (19:30-21:30), each month from birth until the infant was twelve months old. Information about development of behavioral regularity and potential exposure to trauma was obtained from the parents through the Baby Behavior Questionnaire and the Life Incidence of Traumatic Events checklist. Results A significant group-level circadian rhythm of salivary cortisol secretion was established at one month, and remained throughout the first year of life, although there was considerable individual variability. No correlation was found between development of cortisol circadian rhythm and the results from either the Baby Behavior Questionnaire or the Life Incidence of Traumatic Events checklist. The study presents salivary cortisol reference intervals for infants during the first twelve months of life. Conclusions Cortisol circadian rhythm in infants is already established by one month of age, earlier than previous studies have shown. The current study also provides first year age-related reference intervals for salivary cortisol levels in healthy, full-term infants. PMID:26086734

  11. Chronotype differences in cortical thickness: grey matter reflects when you go to bed.

    PubMed

    Rosenberg, Jessica; Jacobs, Heidi I L; Maximov, Ivan I; Reske, Martina; Shah, N J

    2018-06-15

    Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.

  12. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    PubMed

    Ma, Lingling; Ma, Jun; Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  13. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    PubMed Central

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  14. Is there an endogenous tidal foraging rhythm in marine iguanas?

    PubMed

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  15. Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.

    PubMed

    Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J

    2015-01-01

    Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.

  16. Detecting and Correcting Speech Rhythm Errors

    ERIC Educational Resources Information Center

    Yurtbasi, Metin

    2015-01-01

    Every language has its own rhythm. Unlike many other languages in the world, English depends on the correct pronunciation of stressed and unstressed or weakened syllables recurring in the same phrase or sentence. Mastering the rhythm of English makes speaking more effective. Experiments have shown that we tend to hear speech as more rhythmical…

  17. The Natural History of Kidney Graft Cortical Microcirculation Determined by Real-Time Contrast-Enhanced Sonography (RT-CES).

    PubMed

    Jiménez, Carlos; López, María Ovidia; Ros, Amaia; Aguilar, Ana; Menendez, David; Rivas, Begoña; Santana, María José; Vaca, Marco Antonio; Escuin, Fernando; Madero, Rosario; Selgas, Rafael

    2016-01-01

    Kidney transplantation is the therapy of choice for end-stage kidney disease. Graft's life span is shorter than expected due in part to the delayed diagnosis of various complications, specifically those related to silent progression. It is recognized that serum creatinine levels and proteinuria are poor markers of mild kidney lesions, which results in delayed clinical information. There are many investigation looking for early markers of graft damage. Decreasing kidney graft cortical microcirculation has been related to poor prognosis in kidney transplantation. Cortical capillary blood flow (CCBF) can be measured by real-time contrast-enhanced sonography (RT-CES). Our aim was to describe the natural history of CCBF over time under diverse conditions of kidney transplantation, to explore the influence of donor conditions and recipient events, and to determine the capacity of CCBF for predicting renal function in medium term. RT-CES was performed in 79 consecutive kidney transplant recipients during the first year under regular clinical practice. Cortical capillary blood flow was measured. Clinical variables were analyzed. The influence of CCBF has been determined by univariate and multivariate analysis using mixed regression models based on sequential measurements for each patient over time. We used a first-order autoregression model as the structure of the covariation between measures. The post-hoc comparisons were considered using the Bonferroni correction. The CCBF values varied significantly over the study periods and were significantly lower at 48 h and day 7. Brain-death donor age and CCBF levels showed an inverse relationship (r: -0.62, p<0.001). Living donors showed higher mean CCBF levels than brain-death donors at each point in the study. These significant differences persisted at month 12 (54.5 ± 28.2 vs 33.7 ± 30 dB/sec, living vs brain-death donor, respectively, p = 0.004) despite similar serum creatinine levels (1.5 ± 0.3 and 1.5 ± 0.5 mg/dL). A

  18. Unexpected diversity in socially synchronized rhythms of shorebirds.

    PubMed

    Bulla, Martin; Valcu, Mihai; Dokter, Adriaan M; Dondua, Alexei G; Kosztolányi, András; Rutten, Anne L; Helm, Barbara; Sandercock, Brett K; Casler, Bruce; Ens, Bruno J; Spiegel, Caleb S; Hassell, Chris J; Küpper, Clemens; Minton, Clive; Burgas, Daniel; Lank, David B; Payer, David C; Loktionov, Egor Y; Nol, Erica; Kwon, Eunbi; Smith, Fletcher; Gates, H River; Vitnerová, Hana; Prüter, Hanna; Johnson, James A; St Clair, James J H; Lamarre, Jean-François; Rausch, Jennie; Reneerkens, Jeroen; Conklin, Jesse R; Burger, Joanna; Liebezeit, Joe; Bêty, Joël; Coleman, Jonathan T; Figuerola, Jordi; Hooijmeijer, Jos C E W; Alves, José A; Smith, Joseph A M; Weidinger, Karel; Koivula, Kari; Gosbell, Ken; Exo, Klaus-Michael; Niles, Larry; Koloski, Laura; McKinnon, Laura; Praus, Libor; Klaassen, Marcel; Giroux, Marie-Andrée; Sládeček, Martin; Boldenow, Megan L; Goldstein, Michael I; Šálek, Miroslav; Senner, Nathan; Rönkä, Nelli; Lecomte, Nicolas; Gilg, Olivier; Vincze, Orsolya; Johnson, Oscar W; Smith, Paul A; Woodard, Paul F; Tomkovich, Pavel S; Battley, Phil F; Bentzen, Rebecca; Lanctot, Richard B; Porter, Ron; Saalfeld, Sarah T; Freeman, Scott; Brown, Stephen C; Yezerinac, Stephen; Székely, Tamás; Montalvo, Tomás; Piersma, Theunis; Loverti, Vanessa; Pakanen, Veli-Matti; Tijsen, Wim; Kempenaers, Bart

    2016-12-01

    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social

  19. Fluctuation of biological rhythm in finger tapping

    NASA Astrophysics Data System (ADS)

    Yoshinaga, H.; Miyazima, S.; Mitake, S.

    2000-06-01

    By analyzing biological rhythms obtained from finger tapping, we have investigated the differences of two biological rhythms between healthy and handicapped persons caused by Parkinson, brain infraction, car accident and so on. In this study, we have observed the motion of handedness of all subjects and obtained a slope a which characterizes a power-law relation between frequency and amplitude of finger-tapping rhythm. From our results, we have estimated that the slope a=0.06 is a rough criterion in order to distinguish healthy and handicapped persons.

  20. Circadian rhythm in idiopathic normal pressure hydrocephalus.

    PubMed

    Eleftheriou, Andreas; Ulander, Martin; Lundin, Fredrik

    2018-01-01

    The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) takes place in structures close to the cerebral ventricular system. Suprachiasmatic nucleus (SCN), situated close to the third ventricle, is involved in circadian rhythm. Diurnal disturbances are well-known in demented patients. The cognitive decline in iNPH is potentially reversible after a shunt operation. Diurnal rhythm has never been studied in iNPH. We hypothesize that there is a disturbance of circadian rhythm in iNPH-patients and the aim was to study any changes of the diurnal rhythm (mesor and circadian period) as well as any changes of the diurnal amplitude and acrophase of the activity in iNPH-patients before and after a shunt operation. Twenty consecutive iNPH-patients fulfilling the criteria of the American iNPH-guidelines, 9 males and 11 females, mean age 73 (49-81) years were included. The patients underwent a pre-operative clinical work-up including 10m walk time (w10mt) steps (w10ms), TUG-time (TUGt) and steps (TUGs) and for cognitive function an MMSE score was measured. In order to receive circadian rhythm data actigraphic recordings were performed using the SenseWear 2 (BodyMedia Inc Pittsburgh, PA, USA) actigraph. Cosinor analyses of accelerometry data were performed in "R" using non-linear regression with Levenburg- Marquardt estimation. Pre- and post-operative data regarding mesor, amplitude and circadian period were compared using Wilcoxon-Mann-Whitney test for paired data. Twenty patients were evaluated before and three month post-operatively. Motor function (w10mt, w10ms, TUGt, TUGs) was significantly improved while MMSE was not significantly changed. Actigraphic measurements (mesor, amplitude and circadian period) showed no significant changes after shunt operation. This is the first systematic study of circadian rhythm in iNPH-patients. We found no significant changes in circadian rhythm after shunt surgery. The conceptual idea of diurnal rhythm changes in hydrocephalus is

  1. Rhythms and outcomes of adult in-hospital cardiac arrest.

    PubMed

    Meaney, Peter A; Nadkarni, Vinay M; Kern, Karl B; Indik, Julia H; Halperin, Henry R; Berg, Robert A

    2010-01-01

    To determine the relationship of electrocardiographic rhythm during cardiac arrest with survival outcomes. Prospective, observational study. Total of 411 hospitals in the National Registry of Cardiopulmonary Resuscitation. Total of 51,919 adult patients with pulseless cardiac arrests from April 1999 to July 2005. Registry data collected included first documented rhythm, patient demographics, pre-event data, event data, and survival and neurologic outcome data. Of 51,919 indexed cardiac arrests, first documented pulseless rhythm was ventricular tachycardia (VT) in 3810 (7%), ventricular fibrillation (VF) in 8718 (17%), pulseless electrical activity (PEA) in 19,262 (37%) and asystole 20,129 (39%). Subsequent VT/VF (that is, VT or VF occurring during resuscitation for PEA or asystole) occurred in 5154 (27%), with first documented rhythm of PEA and 4988 (25%) with asystole. Survival to hospital discharge rate was not different between those with first documented VF and VT (37% each, adjusted odds ratio [OR]) 1.08; 95% confidence interval [CI] 0.95-1.23). Survival to hospital discharge was slightly more likely after PEA than asystole (12% vs. 11%, adjusted OR 1.1; 95% CI 1.00-1.18), Survival to discharge was substantially more likely after first documented VT/VF than PEA/asystole (adjusted OR 1.68; 95% CI 1.55-1.82). Survival to discharge was also more likely after PEA/asystole without subsequent VT/VF compared with PEA/asystole with subsequent VT/VF (14% vs. 7% for PEA without vs. with subsequent VT/VF; 12% vs. 8% for asystole without vs. with subsequent VT/VF; adjusted OR 1.60; 95% CI, 1.44-1.80). Survival to hospital discharge was substantially more likely when the first documented rhythm was shockable rather than nonshockable, and slightly more likely after PEA than asystole. Survival to hospital discharge was less likely following PEA/asystole with subsequent VT/VF compared to PEA/asystole without subsequent VT/VF.

  2. Assessing Human Mirror Activity With EEG Mu Rhythm: A Meta-Analysis

    PubMed Central

    Fox, Nathan A.; Bakermans-Kranenburg, Marian J.; Yoo, Kathryn H.; Bowman, Lindsay C.; Cannon, Erin N.; Vanderwert, Ross E.; Ferrari, Pier F.; van IJzendoorn, Marinus H.

    2016-01-01

    A fundamental issue in cognitive neuroscience is how the brain encodes others’ actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen’s d = 0.46, N = 701) as well as observation of action (Cohen’s d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered. PMID:26689088

  3. Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study

    PubMed Central

    Wang, Da-Hui; Wong-Lin, KongFatt

    2013-01-01

    The prefrontal cortex (PFC) is implicated to play an important role in cognitive control. Abnormal PFC activities and rhythms have been observed in some neurological and neuropsychiatric disorders, and evidences suggest influences from the neuromodulators dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain unknown. In this work, we build a mathematical model that incorporates available experimental findings to systematically study the comodulation of DA and 5-HT on the network behavior, focusing on beta and gamma band oscillations. Single neuronal model shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT and DA can modulate the amplitude and frequency of the oscillations, which can emerge or cease, depending on receptor types. Certain receptor combinations are conducive for the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory regimes. In a multi-population heterogeneous model that takes into account possible combination of receptors, we demonstrate that robust network oscillations require high DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to suppress (enhance) network oscillations, increase the frequency from beta toward gamma band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2 or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency. These results are comparable to some pharmacological effects. Our work illustrates the complex mechanisms of DA and 5-HT when operating simultaneously through multiple receptors

  4. Comparison of synchronization of primate circadian rhythms by light and food

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1978-01-01

    It is a well-documented fact that cycles of light and dark (LD) are the major entraining agent or 'zeitgeber' for circadian rhythms and that cycles of eating and fasting (EF) are capable of synchronizing a few circadian rhythms in the squirrel monkey. In this paper, by contrasting how these rhythms are timed by LD and EF cycles, the differential coupling to the oscillating system within adult male squirrel monkeys is examined. The variables measured are the rhythms of drinking, colonic temperature, and urinary potassium and water excretion. Attention is given to a comparison of the reproducibility of the averaged waveforms of the rhythms, the stability of the timing of a phase reference point, and the rate of resynchronization of these rhythms following an abrupt 8-hr phase delay in the zeitgeber. It is shown that the colonic temperature rhythm is more tightly controlled by LD than EF cycles, and that the drinking and urinary rhythms are more tightly coupled to EF than LD cycles.

  5. Development of salivary cortisol circadian rhythm in preterm infants.

    PubMed

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2017-01-01

    To investigate at what age preterm infants develop a salivary cortisol circadian rhythm and identify whether it is dependent on gestational age and/or postnatal age. To evaluate whether salivary cortisol circadian rhythm development is related to behavioral regularity. To elucidate salivary cortisol levels in preterm infants during the first year of life. This prospective, longitudinal study included 51 preterm infants. 130 healthy full-term infants served as controls. Monthly salivary cortisol levels were obtained in the morning (07:30-09:30), at noon (10:00-12:00), and in the evening (19:30-21:30), beginning at gestational age week 28-32 and continuing until twelve months corrected age. Behavioral regularity was studied using the Baby Behavior Questionnaire. A salivary cortisol circadian rhythm was established by one month corrected age and persisted throughout the first year. The preterm infants showed a cortisol pattern increasingly more alike the full-term infants as the first year progressed. The preterm infants increase in behavioral regularity with age but no correlation was found between the development of salivary cortisol circadian rhythm and the development of behavior regularity. The time to establish salivary cortisol circadian rhythm differed between preterm and full-term infants according to postnatal age (p = 0.001) and was dependent on gestational age. Monthly salivary cortisol levels for preterm infants from birth until twelve months are presented. Additional findings were that topical corticosteroid medication was associated with higher concentrations of salivary cortisol (p = 0.02) and establishment of salivary cortisol circadian rhythm occurred later in infants treated with topical corticosteroid medication (p = 0.02). Salivary cortisol circadian rhythm is established by one month corrected age in preterm infants. Establishment of salivary cortisol circadian rhythm is related to gestational age rather than to postnatal age. Salivary cortisol

  6. The Features and Training of English Stress and Rhythm

    ERIC Educational Resources Information Center

    Cai, Cui-yun

    2008-01-01

    In second language learning, to possess a perfect pronunciation, the importance of stress and rhythm should not be ignored. This articles explores the nature of sentence and word stress as well as rhythm, thus putting forward some feasible ways of training and acquiring a good English stress and rhythm in EFLT (English as Foreign Language…

  7. Another place, another timer: Marine species and the rhythms of life

    PubMed Central

    Tessmar-Raible, Kristin; Raible, Florian; Arboleda, Enrique

    2011-01-01

    The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves. PMID:21254149

  8. Cortical theta wanes for language.

    PubMed

    Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2014-01-15

    The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.

  9. Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian forest

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Goulden, Michael L.; Miller, Scott D.; da Rocha, Humberto R.

    2006-08-01

    We used a controlled-environment leaf gas-exchange system and the micrometeorological technique eddy covariance to determine whether circadian rhythms constrain the rates of leaf and canopy gas exchange in an Amazonian forest over a day. When exposed to continuous and constant light for 20 to 48 hours leaves of eleven of seventeen species reduced their photosynthetic rates and closed their stomata during the normally dark period and resumed active gas exchange during the normally light period. Similarly, the rate of whole-forest CO2 uptake at a predetermined irradiance declined during the late afternoon and early morning and increased during the middle of the day. We attribute these cycles to circadian rhythms that are analogous to ones that have been reported for herbaceous plants in the laboratory. The importance of endogenous gas exchange rhythms presents a previously unrecognized challenge for efforts to both interpret and model land-atmosphere energy and mass exchange.

  10. Circadian Rhythm in Bipolar Disorder: A review of the literature.

    PubMed

    Takaesu, Yoshikazu

    2018-06-05

    Sleep disturbances and circadian rhythm dysfunction have been widely demonstrated in patients with bipolar disorder (BD). Irregularity of the sleep-wake rhythm, eveningness chronotype, abnormality of melatonin secretion, vulnerability of clock genes, and the irregularity of social time cues have also been well-documented in BD. Circadian rhythm dysfunction is prominent in BD compared with that in major depressive disorders, implying that circadian rhythm dysfunction is a trait marker of BD. In the clinical course of BD, the circadian rhythm dysfunctions may act as predictors for the first onset of BD and the relapse of mood episodes. Treatments focusing on sleep disturbances and circadian rhythm dysfunction in combination with pharmacological, psychosocial, and chronobiological treatments are believed to be useful for relapse prevention. Further studies are therefore warranted to clarify the relationship between circadian rhythm dysfunction and the pathophysiology of BD to develop treatment strategies for achieving recovery in BD patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Lertratanakul, A.; Cudkowicz, M. E.; Peterson, A. L.; Kaliton, D.; Goldberger, A. L.

    2000-01-01

    Amyotrophic lateral sclerosis (ALS) is a disorder marked by loss of motoneurons. We hypothesized that subjects with ALS would have an altered gait rhythm, with an increase in both the magnitude of the stride-to-stride fluctuations and perturbations in the fluctuation dynamics. To test for this locomotor instability, we quantitatively compared the gait rhythm of subjects with ALS with that of normal controls and with that of subjects with Parkinson's disease (PD) and Huntington's disease (HD), pathologies of the basal ganglia. Subjects walked for 5 min at their usual pace wearing an ankle-worn recorder that enabled determination of the duration of each stride and of stride-to-stride fluctuations. We found that the gait of patients with ALS is less steady and more temporally disorganized compared with that of healthy controls. In addition, advanced ALS, HD, and PD were associated with certain common, as well as apparently distinct, features of altered stride dynamics. Thus stride-to-stride control of gait rhythm is apparently compromised with ALS. Moreover, a matrix of markers based on gait dynamics may be useful in characterizing certain pathologies of motor control and, possibly, in quantitatively monitoring disease progression and evaluating therapeutic interventions.

  12. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects

    PubMed Central

    Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin

    2012-01-01

    Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436

  13. Actin kinetics shapes cortical network structure and mechanics

    PubMed Central

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-01-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338

  14. Actin kinetics shapes cortical network structure and mechanics.

    PubMed

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-04-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.

  15. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    PubMed

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  16. Ongoing slow oscillatory phase modulates speech intelligibility in cooperation with motor cortical activity.

    PubMed

    Onojima, Takayuki; Kitajo, Keiichi; Mizuhara, Hiroaki

    2017-01-01

    Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.

  17. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function

    PubMed Central

    Castejon, Carlos; Barros-Zulaica, Natali; Nuñez, Angel

    2016-01-01

    Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas. PMID:26820514

  18. Circadian Rhythms in Cyanobacteria

    PubMed Central

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  19. The Utility of Therapeutic Hypothermia for Post-Cardiac Arrest Syndrome Patients With an Initial Nonshockable Rhythm.

    PubMed

    Perman, Sarah M; Grossestreuer, Anne V; Wiebe, Douglas J; Carr, Brendan G; Abella, Benjamin S; Gaieski, David F

    2015-12-01

    Therapeutic hypothermia (TH) attenuates reperfusion injury in comatose survivors of cardiac arrest. The utility of TH in patients with nonshockable initial rhythms has not been widely accepted. We sought to determine whether TH improved neurological outcome and survival in postarrest patients with nonshockable rhythms. We identified 519 patients after in- and out-of-hospital cardiac arrest with nonshockable initial rhythms from the Penn Alliance for Therapeutic Hypothermia (PATH) registry between 2000 and 2013. Propensity score matching was used. Patient and arrest characteristics used to estimate the propensity to receive TH were age, sex, location of arrest, witnessed arrest, and duration of arrest. To determine the association between TH and outcomes, we created 2 multivariable logistic models controlling for confounders. Of 201 propensity score-matched pairs, mean age was 63 ± 17 years, 51% were male, and 60% had an initial rhythm of pulseless electric activity. Survival to hospital discharge was greater in patients who received TH (17.6% versus 28.9%; P < 0.01), as was a discharge Cerebral Performance Category of 1 to 2 (13.7% versus 21.4%; P = 0.04). In adjusted analyses, patients who received TH were more likely to survive (odds ratio, 2.8; 95% confidence interval, 1.6-4.7) and to have better neurological outcome (odds ratio, 3.5; 95% confidence interval, 1.8-6.6) than those that did not receive TH. Using propensity score matching, we found that patients with nonshockable initial rhythms treated with TH had better survival and neurological outcome at hospital discharge than those who did not receive TH. Our findings further support the use of TH in patients with initial nonshockable arrest rhythms. © 2015 American Heart Association, Inc.

  20. Musical rhythm and reading development: does beat processing matter?

    PubMed

    Ozernov-Palchik, Ola; Patel, Aniruddh D

    2018-05-20

    There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development. © 2018 New York Academy of Sciences.

  1. Development of the cortisol circadian rhythm in the light of stress early in life.

    PubMed

    Simons, Sterre S H; Beijers, Roseriet; Cillessen, Antonius H N; de Weerth, Carolina

    2015-12-01

    The secretion of the stress hormone cortisol follows a diurnal circadian rhythm. There are indications that this rhythm is affected by stress early in life. This paper addresses the development of the cortisol circadian rhythm between 1 and 6 years of age, and the role of maternal stress and anxiety early in the child's life on this (developing) rhythm. Participants were 193 healthy mother-child dyads from a community sample. Self-reported maternal stress and anxiety and physiological stress (saliva cortisol), were assessed prenatally (gestational week 37). Postnatally, self-reported maternal stress and anxiety were measured at 3, 6, 12, 30, and 72 months. Saliva cortisol samples from the children were collected on two days (four times each day) at 12, 30, and 72 months of age. The total amount of cortisol during the day and the cortisol decline over the day were determined to indicate children's cortisol circadian rhythm. Multilevel analyses showed that the total amount of cortisol decreased between 1 and 6 years. Furthermore, more maternal pregnancy-specific stress was related to higher total amounts of cortisol in the child. Higher levels of early postnatal maternal anxiety were associated with flatter cortisol declines in children. Higher levels of early postnatal maternal daily hassles were associated with steeper child cortisol declines over the day. These results indicated developmental change in children's cortisol secretion from 1 to 6 years and associations between maternal stress and anxiety early in children's lives and children's cortisol circadian rhythm in early childhood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of hypergravity on the circadian rhythms of white rats.

    NASA Technical Reports Server (NTRS)

    Lafferty, J. F.

    1972-01-01

    The effects of artificial gravity on the circadian rhythm of white rats was observed by comparing feeding activity at 1.0 and 1.75 g. The feeding cycle data were obtained by observing the number of feeding switch responses, as well as the amount of food obtained, as a function of time. One of the three subjects clearly established a free-running cycle with a period of 24.742 hr. During a 40-day exposure to the 1.75 g environment, the subjects maintained the same feeding cycle period which was established at 1.0 g. While the results of this study indicate that the activity rhythms of rats are insensitive to gravity levels between 1.0 and 1.75 g, the effects of gravity levels below 1.0 g are yet to be determined.

  3. Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B

    PubMed Central

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Fast spiking (FS) GABAergic neurons are thought to be involved in the generation of high-frequency cortical rhythms during the waking state. We previously showed that cortical layer 6b (L6b) was a specific target for the wake-promoting transmitter, hypocretin/orexin (hcrt/orx). Here, we have investigated whether L6b FS cells were sensitive to hcrt/orx and other transmitters associated with cortical activation. Recordings were thus made from L6b FS cells in either wild-type mice or in transgenic mice in which GFP-positive GABAergic cells are parvalbumin positive. Whereas in a control condition hcrt/orx induced a strong increase in the frequency, but not amplitude, of spontaneous synaptic currents, in the presence of TTX, it had no effect at all on miniature synaptic currents. Hcrt/orx effect was thus presynaptic although not by an action on glutamatergic terminals but rather on neighboring cells. In contrast, noradrenaline and acetylcholine depolarized and excited these cells through a direct postsynaptic action. Neurotensin, which is colocalized in hcrt/orx neurons, also depolarized and excited these cells but the effect was indirect. Morphologically, these cells exhibited basket-like features. These results suggest that hcrt/orx, noradrenaline, acetylcholine, and neurotensin could contribute to high-frequency cortical activity through an action on L6b GABAergic FS cells. PMID:27235100

  4. The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation

    PubMed Central

    Lemieux, Maxime; Chen, Jen-Yung; Lonjers, Peter; Bazhenov, Maxim

    2014-01-01

    Slow oscillation is the main brain rhythm observed during deep sleep in mammals. Although several studies have demonstrated its neocortical origin, the extent of the thalamic contribution is still a matter of discussion. Using electrophysiological recordings in vivo on cats and computational modeling, we found that the local thalamic inactivation or the complete isolation of the neocortical slabs maintained within the brain dramatically reduced the expression of slow and fast oscillations in affected cortical areas. The slow oscillation began to recover 12 h after thalamic inactivation. The slow oscillation, but not faster activities, nearly recovered after 30 h and persisted for weeks in the isolated slabs. We also observed an increase of the membrane potential fluctuations recorded in vivo several hours after thalamic inactivation. Mimicking this enhancement in a network computational model with an increased postsynaptic activity of long-range intracortical afferents or scaling K+ leak current, but not several other Na+ and K+ intrinsic currents was sufficient for recovering the slow oscillation. We conclude that, in the intact brain, the thalamus contributes to the generation of cortical active states of the slow oscillation and mediates its large-scale synchronization. Our study also suggests that the deafferentation-induced alterations of the sleep slow oscillation can be counteracted by compensatory intracortical mechanisms and that the sleep slow oscillation is a fundamental and intrinsic state of the neocortex. PMID:24741059

  5. [Rhythm disorders and cardiac crypto-malformations].

    PubMed

    Davy, J M; Raczka, F; Cung, T T; Combes, N; Bortone, A; Gaty, D

    2005-12-01

    Faced with a cardiac arrhythmia occuring in an apparently healthy heart, it is necessary to perform an anatomical investigation to detect any unsuspected anomalies. Congenital cardiopathy must certainly be excluded, as this is often responsible for rhythm disorders and/or cardiac conduction defects. Similarly, any acquired conditions, cardiomyopathy, or cardiac tumour must be sought. However, the possibility should always be considered of a minimal congenital malformation, which could be repsonsible for: any type of cardiac arrhythmia: rhythm disorder or conduction defect at the atrial, junctional or ventricular level, with a benign or serious prognosis. Unexpected therapeutic difficulties during radiofrequency ablation procedures or at implantation of pacemakers or defibrillators. Together with rhythm studies, the investigation of choice is high quality imaging, either the classic left or right angiography or the more modern cardiac CT or intracardiac mapping.

  6. Alpha-band rhythm suppression during memory recall reflecting memory performance.

    PubMed

    Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya

    2016-08-01

    Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.

  7. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder.

    PubMed

    Botbol, Michel; Cabon, Philippe; Kermarrec, Solenn; Tordjman, Sylvie

    2013-09-01

    Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of English Language Rhythm and Kalhori Kurdish Language Rhythm

    ERIC Educational Resources Information Center

    Taghva, Nafiseh; Zadeh, Vahideh Abolhasani

    2016-01-01

    Interval-based method is a method of studying the rhythmic quantitative features of languages. This method use Pairwise Variability Index (PVI) to consider the variability of vocalic duration and inter-vocalic duration of sentences which leads to classification of languages rhythm into stress-timed languages and syllable-timed ones. This study…

  9. Activity rhythms and distribution of natal dens for red foxes

    USGS Publications Warehouse

    Wenyang, Zhou; Wanhong, Wei; Biggins, Dean E.

    1995-01-01

    The red fox, Vulpes vulpes, was investigated with snow tracking, radiotracking and directive observation at the Haibei Research Station of Alpine Meadow Ecosystem, Academia Sinica, from March to September 1994. The objectives of this study were to determine the distribution and use of natal dens, activity rhythms, and home range sizes for the foxes.

  10. The Effect of Peer-Based Instruction on Rhythm Reading Achievement

    ERIC Educational Resources Information Center

    Johnson, Erik A.

    2011-01-01

    The purpose of this study was to determine the effect of peer-based instruction on rhythm reading achievement of instrumental and choral music students attending a large urbanfringe high school in a major metropolitan area. Participants (N = 131) included band (n = 71) and choir (n = 60) students whose backgrounds reflected extensive economic (78%…

  11. Circadian Rhythms and Sleep in Drosophila melanogaster

    PubMed Central

    Dubowy, Christine; Sehgal, Amita

    2017-01-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  12. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    PubMed

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  13. Analysis of Handwriting based on Rhythm Perception

    NASA Astrophysics Data System (ADS)

    Saito, Kazuya; Uchida, Masafumi; Nozawa, Akio

    Humanity fluctuation was reported in some fields. In handwriting process, fluctuation appears on handwriting-velocity. In this report, we focused attention on human rhythm perception and analyzed fluctuation in handwriting process. As a result, 1/f noise related to rhythm perception and features may caused by Kahneman's capacity model were measured on handwriting process.

  14. Does Melody Assist in the Reproduction of Novel Rhythm Patterns?

    ERIC Educational Resources Information Center

    Kinney, Daryl W.; Forsythe, Jere L.

    2013-01-01

    We examined music education majors' ability to reproduce rhythmic stimuli presented in melody and rhythm only conditions. Participants reproduced rhythms of two-measure music examples by immediately echo-performing through a method of their choosing (e.g., clapping, tapping, vocalizing). Forty examples were presented in melody and rhythm only…

  15. Preliminary characterization of persisting circadian rhythms during space flight

    NASA Technical Reports Server (NTRS)

    Sultzman, F. M.

    1984-01-01

    In order to evaluate the function of the circadian timing system in space, the circadian rhythm of conidiation of the fungus Neurospora crassa was monitored in constant darkness on the STS 9 flight of the Space Shuttle Columbia. During the first 7 days of spaceflight many tubes showed a marked reduction in the apparent amplitude of the conidiation rhythm, and some cultures appeared arrhythmic. There was more variability in the growth rate and circadian rhythms of individual cultures in space than is usually seen on earth. The results of this experiment indicate that while the circadian rhythm of Neurospora conidiation can persist outside of the earth's environment, either the timekeeping process or its expression is altered in space.

  16. Age, circadian rhythms, and sleep loss in flight crews

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Nguyen, DE; Rosekind, Mark R.; Connell, Linda J.

    1993-01-01

    Age-related changes in trip-induced sleep loss, personality, and the preduty temperature rhythm were analyzed in crews from various flight operations. Eveningness decreased with age. The minimum of the baseline temperature rhythm occurred earlier with age. The amplitude of the baseline temperature rhythm declined with age. Average daily percentage sleep loss during trips increased with age. Among crewmembers flying longhaul flight operations, subjects aged 50-60 averaged 3.5 times more sleep loss per day than subjects aged 20-30. These studies support previous findings that evening types and subjects with later peaking temperature rhythms adapt better to shift work and time zone changes. Age and circadian type may be important considerations for duty schedules and fatigue countermeasures.

  17. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  19. Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks

    PubMed Central

    Vaudano, Anna Elisabetta; Ruggieri, Andrea; Avanzini, Pietro; Gessaroli, Giuliana; Cantalupo, Gaetano; Coppola, Antonietta; Sisodiya, Sanjay M.

    2017-01-01

    demonstrated lower decreases relative to all other groups in the occipital, sensory-motor, anterior cingulate and supplementary motor cortices. Coherently, the same brain regions demonstrated abnormal connectivity with the visual thalamus only in epilepsy patients with photosensitivity. As predicted, our findings indicate that the cortical-subcortical network generating the alpha oscillation at rest is different in people with epilepsy and visual sensitivity. This difference consists of a decreased alpha-related inhibition of the visual cortex and sensory-motor networks at rest. These findings represent the substrate of the clinical manifestations (i.e. myoclonus) of the photoparoxysmal response. Moreover, our results provide the first evidence of the existence of a functional link between the circuits that trigger the visual sensitivity phenomenon and those that generate the posterior alpha rhythm. PMID:28334965

  20. The phonetic rhythm/syntax headedness connection: Evidence from Tagalog

    NASA Astrophysics Data System (ADS)

    Bird, Sonya; Fais, Laurel; Werker, Janet

    2005-04-01

    Ramus, Nespor, and Mehler [Cognition (1999)] show that the rhythm of a language (broadly: stress- versus syllable- versus mora-timing) results from the proportion of vocalic material in an utterance (%V) and the standard deviation of consonantal intervals (delta-C). Based on 14 languages, Shukla, Nespor, and Mehler [submitted] further argue that rhythm is correlated with syntactic headedness: low %V is correlated with head-first languages (e.g., English); high %V is correlated with head-final languages (e.g., Japanese). Together, these proposals have important implications for language acquisition: infants can discriminate across rhythm classes [Nazzi, Bertoncini, and Mehler, J. Exp. Psych: Human Perception and Performance (1998)]. If rhythm, as defined by %V and delta-C, can predict headedness, then infants can potentially use rhythm information to bootstrap into their languages syntactic structure. This paper reports on a study analyzing rhythm in a language not yet considered: Tagalog. Results support the Shukla et al. proposal in an interesting way: based on its %V and delta-C, Tagalog falls between head-first and head-last languages, slighty closer to the head-first group. This placement correlates well with the fact that, although Tagalog is said to be primarily head-first syntactically, head-last phrases are permitted and common in the language.

  1. Rhythm perception, production, and synchronization during the perinatal period

    PubMed Central

    Provasi, Joëlle; Anderson, David I.; Barbu-Roth, Marianne

    2014-01-01

    Sensori-motor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm. It plays a central role in motor, cognitive, and social behavior. SMS is commonly studied in adults and in children from four years of age onward. Prior to this age, the ability has rarely been investigated due to a lack of available methods. The present paper reviews what is known about SMS in young children, infants, newborns, and fetuses. The review highlights fetal and infant perception of rhythm and cross modal perception of rhythm, fetal, and infant production of rhythm and cross modal production of rhythm, and the contexts in which production of rhythm can be observed in infants. A primary question is whether infants, even newborns, can modify their spontaneous rhythmical motor behavior in response to external rhythmical stimulation. Spontaneous sucking, crying, and leg movements have been studied in the presence or absence of rhythmical auditory stimulation. Findings suggest that the interaction between movement and sound is present at birth and that SMS can be observed in special conditions and within a narrow range of tempi, particularly near the infant’s own spontaneous motor tempo. The discussion centers on the fundamental role of SMS in interaction and communication at the beginning of life. PMID:25278929

  2. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    PubMed

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The effect of dynamic stretching on hamstrings flexibility with respect to the spino-pelvic rhythm.

    PubMed

    Hasebe, Kiyotaka; Okubo, Yu; Kaneoka, Koji; Takada, Kohei; Suzuki, Daisuke; Sairyo, Koichi

    2016-01-01

    To ascertain the dynamic stretch effects of flexibility of the hamstrings on lumbar spine and pelvic kinematics. Tight hamstrings are positively correlated with low back pain. However, it is unclear how flexibility of the hamstrings affects spino-pelvic rhythm. Twelve healthy men participated in the study. The straight leg raising (SLR) angle, finger floor distance (FFD), and spino-pelvic rhythm was measured before and after the 6-week stretching protocol. The forward bending task was divided into 4 phases. The paired t-test was used to determine significant differences before and after the FFD, SLR angle, lumbar motion, and pelvic motion, and spino-pelvic rhythm in each phase (p<0.05). After 6 weeks of stretching, significant improvements were seen in the FFD with maximum forward bending and in the SLR angle. Total pelvic rotation was also significantly increased in contrast to total lumbar flexion. A decreased spino-pelvic ratio was seen in the final phase. Dynamic stretching could change the spino-pelvic rhythm to a pelvis-dominant motion, indicating that flexible hamstrings are important for preventing low back pain.

  4. Actigraphy for Measurement of Sleep and Sleep-Wake Rhythms in Relation to Surgery

    PubMed Central

    Madsen, Michael T.; Rosenberg, Jacob; Gögenur, Ismail

    2013-01-01

    Study Objectives: Patients undergoing surgery have severe sleep and sleep-wake rhythm disturbances resulting in increased morbidity. Actigraphy is a tool that can be used to quantify these disturbances. The aim of this manuscript was to present the literature where actigraphy has been used to measure sleep and sleep-wake rhythms in relation to surgery. Methods: A systematic review was performed in 3 databases (Medline, Embase, and Psycinfo), including all literature until July 2012. Results: Thirty-two studies were included in the review. Actigraphy could demonstrate that total sleep time and sleep efficiency was reduced after surgery and number of awakenings was increased in patients undergoing major surgery. Disturbances were less severe in patients undergoing minor surgery. Actigraphy could be used to differentiate between delirious and non-delirious patients after major surgery. Actigraphy measurements could determine a differential effect of surgery based on the patient's age. The effect of pharmacological interventions (chronobiotics and hypnotics) in surgical patients could also be demonstrated by actigraphy. Conclusion: Actigraphy can be used to measure sleep and sleep-wake rhythms in patients undergoing surgery. Citation: Madsen MT; Rosenberg J; Gögenur I. Actigraphy for measurement of sleep and sleep-wake rhythms in relation to surgery. J Clin Sleep Med 2013;9(4):387-394. PMID:23585756

  5. Circadian rhythm disruption as a link between Attention-Deficit/Hyperactivity Disorder and obesity?

    PubMed

    Vogel, Suzan W N; Bijlenga, Denise; Tanke, Marjolein; Bron, Tannetje I; van der Heijden, Kristiaan B; Swaab, Hanna; Beekman, Aartjan T F; Kooij, J J Sandra

    2015-11-01

    Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) have a high prevalence of obesity. This is the first study to investigate whether circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. ADHD symptoms and two manifestations of circadian rhythm disruption: sleep problems and an unstable eating pattern (skipping breakfast and binge eating later in the day) were assessed in participants with obesity (n= 114), controls (n= 154), and adult ADHD patients (n= 202). Participants with obesity had a higher prevalence of ADHD symptoms and short sleep on free days as compared to controls, but a lower prevalence of ADHD symptoms, short sleep on free days, and an unstable eating pattern as compared to ADHD patients.We found that participants with obesity had a similar prevalence rate of an unstable eating pattern when compared to controls. Moreover, mediation analyses showed that both sleep duration and an unstable eating pattern mediated the association between ADHD symptoms and body mass index (BMI). Our study supports the hypothesis that circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. Further research is needed to determine if treatment of ADHD and circadian rhythm disruption is effective in the prevention and treatment of obesity in patients with obesity and/or ADHD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Circadian rhythms in human performance and mood under constant conditions

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Berga, S. L.; Jarrett, D. B.; Begley, A. E.; Kupfer, D. J.

    1997-01-01

    This study explored the relationship between circadian performance rhythms and rhythms in rectal temperature, plasma cortisol, plasma melatonin, subjective alertness and well-being. Seventeen healthy young adults were studied under 36 h of 'unmasking' conditions (constant wakeful bedrest, temporal isolation, homogenized 'meals') during which rectal temperatures were measured every minute, and plasma cortisol and plasma melatonin measured every 20 min. Hourly subjective ratings of global vigour (alertness) and affect (well-being) were obtained followed by one of two performance batteries. On odd-numbered hours performance (speed and accuracy) of serial search, verbal reasoning and manual dexterity tasks was assessed. On even-numbered hours, performance (% hits, response speed) was measured at a 25-30 min visual vigilance task. Performance of all tasks (except search accuracy) showed a significant time of day variation usually with a nocturnal trough close to the trough in rectal temperature. Performance rhythms appeared not to reliably differ with working memory load. Within subjects, predominantly positive correlations emerged between good performance and higher temperatures and better subjective alertness; predominantly negative correlations between good performance and higher plasma levels of cortisol and melatonin. Temperature and cortisol rhythms correlated with slightly more performance measures (5/7) than did melatonin rhythms (4/7). Global vigour correlated about as well with performance (5/7) as did temperature, and considerably better than global affect (1/7). In conclusion: (1) between-task heterogeneity in circadian performance rhythms appeared to be absent when the sleep/wake cycle was suspended; (2) temperature (positively), cortisol and melatonin (negatively) appeared equally good as circadian correlates of performance, and (3) subjective alertness correlated with performance rhythms as well as (but not better than) body temperature, suggesting that

  7. Corkscrews and singularities in fruitflies - Resetting behavior of the circadian eclosion rhythm.

    NASA Technical Reports Server (NTRS)

    Winfree, A. T.

    1971-01-01

    Description of experiments undertaken to define the phase-resetting behavior of the circadian rhythm of pupal eclosion in populations of fruitflies. An attempt is made to determine how and why the resetting response depends on the duration of a standard perturbation as well as on the time at which it is given. Plotting a three-dimensional graph of the measured emergence centroids vs the stimulus variables, the data are found to spiral up around a vertical rotation axis. Using a computer, a smooth surface, called the resetting surface, which approximately fits the helicoidal cloud of data points, is obtained and is shown to be best described as a vertical corkscrew linking together tilted planes. This corkscrew feature of the resetting surface is taken to indicate that there is an isolated perturbation following which there is either no circadian rhythm of emergence in the steady state, or one of unpredictable phase. A hypothesis concerning the clock dynamics underlying the eclosion rhythm is briefly sketched which encompasses the main features of known resetting data using single discrete pulses of any perturbing agent.

  8. Circadian temperature rhythms of older people

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.

    1995-01-01

    This collection of studies had the aim of exploring whether older (77+ years) men and women have circadian body temperature rhythms different from those of younger adults. A total of 20 older men and 28 older women were compared with either 22 young men or 14 middle-aged men in four protocols; all but the first protocol using a subset of the sample. The four protocols were: 1) 24 h, and 2) 72 h data collections on a normal laboratory routine (sleeping at night); 3) between 36 h and 153 h of field data collection at home; and 4) 36 h of a constant conditions routine (wakeful bedrest under temporal isolation) in the laboratory. There was some evidence for an age-related phase advance in temperature rhythm, especially for the older men on a normal routine, though this was not present in the constant conditions protocol, where 5 of the older subjects showed major delays in the timing of the body temperature trough (10:00 or later). There was no statistically significant evidence from any of the protocols that older subjects generally had lower temperature rhythm amplitudes than younger adults. Only when older men were compared with younger men in 24-h rhythm amplitude by simple t-test did any comparison involving amplitude achieve statistical significance (p < 0.05).

  9. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  10. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson's disease.

    PubMed

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Vanwersch, Raymond A P; Estevao, Dave L; Tass, Peter A

    2017-08-01

    Neurofeedback may enhance compensatory brain mechanisms. EEG-based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinson's disease. In a placebo-controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores during classical L-DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinson's disease which might help reduce L-DOPA-induced side effects.

  11. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  12. Rain reverses diel activity rhythms in an estuarine teleost

    PubMed Central

    Payne, Nicholas L.; van der Meulen, Dylan E.; Gannon, Ruan; Semmens, Jayson M.; Suthers, Iain M.; Gray, Charles A.; Taylor, Matthew D.

    2013-01-01

    Activity rhythms are ubiquitous in nature, and generally synchronized with the day–night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency. PMID:23173211

  13. Social Rhythm and Mental Health: A Cross-Cultural Comparison.

    PubMed

    Margraf, Jürgen; Lavallee, Kristen; Zhang, XiaoChi; Schneider, Silvia

    2016-01-01

    Social rhythm refers to the regularity with which one engages in social activities throughout the week, and has established links with bipolar disorder, as well as some links with depression and anxiety. The aim of the present study is to examine social rhythm and its relationship to various aspects of health, including physical health, negative mental health, and positive mental health. Questionnaire data were obtained from a large-scale multi-national sample of 8095 representative participants from the U.S., Russia, and Germany. Results indicated that social rhythm irregularity is related to increased reporting of health problems, depression, anxiety, and stress. In contrast, greater regularity is related to better overall health state, life satisfaction, and positive mental health. The effects are generally small in size, but hold even when controlling for gender, marital status, education, income, country, and social support. Further, social rhythm means differ across Russia, the U.S., and Germany. Relationships with mental health are present in all three countries, but differ in magnitude. Social rhythm irregularity is related to mental health in Russia, the U.S., and Germany.

  14. Rhythms in the endocrine system of fish: a review.

    PubMed

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  15. Neural Responses to Complex Auditory Rhythms: The Role of Attending

    PubMed Central

    Chapin, Heather L.; Zanto, Theodore; Jantzen, Kelly J.; Kelso, Scott J. A.; Steinberg, Fred; Large, Edward W.

    2010-01-01

    The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse-related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory cortex, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus. PMID:21833279

  16. Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm.

    PubMed

    Grondin, Julien; Costet, Alexandre; Bunting, Ethan; Gambhir, Alok; Garan, Hasan; Wan, Elaine; Konofagou, Elisa E

    2016-11-01

    Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium after electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. The objectives of this study were to investigate the relationship between the electromechanical and the electrical activation of the left ventricular (LV) endocardial surface during epicardial and endocardial pacing and during sinus rhythm as well as to map the distribution of electromechanical delays. In this study, 6 canines were investigated. Two external electrodes were sutured onto the epicardial surface of the LV. A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing and during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter, respectively. The mean correlation coefficient between electromechanical and electrical activation was 0.81 for epicardial anterior pacing, 0.79 for epicardial lateral pacing, 0.69 for endocardial pacing, and 0.56 for sinus rhythm. The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    PubMed

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  18. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  19. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.

    PubMed

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-03-15

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also

  20. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease

    PubMed Central

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-01-01

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also

  1. Evidence for a distributed respiratory rhythm generating network in the goldfish (Carsssius auratus).

    PubMed

    Duchcherer, Maryana; Kottick, Andrew; Wilson, R J A

    2010-01-01

    Central pattern generators located in the brainstem regulate ventilatory behaviors in vertebrates. The development of the isolated brainstem preparation has allowed these neural networks to be characterized in a number of aquatic species. The aim of this study was to explore the architecture of the respiratory rhythm-generating site in the goldfish (Carassius auratus) and to determine the utility of a newly developed isolated brainstem preparation, the Sheep Dip. Here we provide evidence for a distributed organization of respiratory rhythm generating neurons along the rostrocaudal axis of the goldfish brainstem and outline the advantages of the Sheep Dip as a tool used to survey neural networks.

  2. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork.

    PubMed

    Belle, Mino D C; Diekman, Casey O

    2018-02-03

    Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Is rhythm-control superior to rate-control in patients with atrial fibrillation and diastolic heart failure?

    PubMed

    Kong, Melissa H; Shaw, Linda K; O'Connor, Christopher; Califf, Robert M; Blazing, Michael A; Al-Khatib, Sana M

    2010-07-01

    Although no clinical trial data exist on the optimal management of atrial fibrillation (AF) in patients with diastolic heart failure, it has been hypothesized that rhythm-control is more advantageous than rate-control due to the dependence of these patients' left ventricular filling on atrial contraction. We aimed to determine whether patients with AF and heart failure with preserved ejection fraction (EF) survive longer with rhythm versus rate-control strategy. The Duke Cardiovascular Disease Database was queried to identify patients with EF > 50%, heart failure symptoms and AF between January 1,1995 and June 30, 2005. We compared baseline characteristics and survival of patients managed with rate- versus rhythm-control strategies. Using a 60-day landmark view, Kaplan-Meier curves were generated and results were adjusted for baseline differences using Cox proportional hazards modeling. Three hundred eighty-two patients met the inclusion criteria (285 treated with rate-control and 97 treated with rhythm-control). The 1-, 3-, and 5-year survival rates were 93.2%, 69.3%, and 56.8%, respectively in rate-controlled patients and 94.8%, 78.0%, and 59.9%, respectively in rhythm-controlled patients (P > 0.10). After adjustments for baseline differences, no significant difference in mortality was detected (hazard ratio for rhythm-control vs rate-control = 0.696, 95% CI 0.453-1.07, P = 0.098). Based on our observational data, rhythm-control seems to offer no survival advantage over rate-control in patients with heart failure and preserved EF. Randomized clinical trials are needed to verify these findings and examine the effect of each strategy on stroke risk, heart failure decompensation, and quality of life.

  4. Prenatal thalamic waves regulate cortical area size prior to sensory processing.

    PubMed

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina

    2017-02-03

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.

  5. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    PubMed Central

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  6. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    ERIC Educational Resources Information Center

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  7. Analysis of Rhythms in Experimental Signals

    NASA Astrophysics Data System (ADS)

    Desherevskii, A. V.; Zhuravlev, V. I.; Nikolsky, A. N.; Sidorin, A. Ya.

    2017-12-01

    We compare algorithms designed to extract quasiperiodic components of a signal and estimate the amplitude, phase, stability, and other characteristics of a rhythm in a sliding window in the presence of data gaps. Each algorithm relies on its own rhythm model; therefore, it is necessary to use different algorithms depending on the research objectives. The described set of algorithms and methods is implemented in the WinABD software package, which includes a time-series database management system, a powerful research complex, and an interactive data-visualization environment.

  8. Analysis of Nonstationary Time Series for Biological Rhythms Research.

    PubMed

    Leise, Tanya L

    2017-06-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.

  9. [Speech rhythm disorders due to synchronization induced in coupled inhibitory neurons].

    PubMed

    Skliarov, O P

    2007-01-01

    Leaked-integrate-and-fire coupled oscillators (LIFs) were used as a model of electrophysiological activity. The activity of these oscillators determines the speech rhythm, which is governed by the square-law map with inhibition as a controlling parameter. Regular rhythms of convulsive repetitions at early stuttering are changed, however, by a mixture of repetitions and neurotic pauses. This mixture is a "stumbling block" for clinicians. Due to delays, only inhibitory LIFs are capable to create the synchronic activity in-phase or in-anti-phase at medial or at low coupling. This activity has the form of slow oscillations damping to the background level. Splashes of the activity above or below the level lead to neurotic disorders or to convulsive repetitions. Really, increased due to GABA the coupling leads to a reduction of stuttering.

  10. Circadian rhythms and the effects of long-distance flights.

    DOT National Transportation Integrated Search

    1968-01-01

    Air travelers crossing four or more time zones experience significant desynchronization of certain daily biologic rhythms. Until rephasing of the rhythms occurs relative to the solar cycle at the destination, some subjective discomfort and disruption...

  11. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    PubMed

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  13. Speech-Like Rhythm in a Voiced and Voiceless Orangutan Call

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Bartlett, Adrian M.; Shumaker, Robert W.; Wich, Serge A.; Menken, Steph B. J.

    2015-01-01

    The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined “clicks” and “faux-speech.” Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents

  14. 24-HOUR ACTIVITY RHYTHM AND SLEEP DISTURBANCES IN DEPRESSION AND ANXIETY: A POPULATION-BASED STUDY OF MIDDLE-AGED AND OLDER PERSONS.

    PubMed

    Luik, Annemarie I; Zuurbier, Lisette A; Direk, Neşe; Hofman, Albert; Van Someren, Eus J W; Tiemeier, Henning

    2015-09-01

    Disturbed circadian rhythms have been associated with depression and anxiety, but it is unclear if disturbances in the 24-hr activity rhythm and sleep are independently and specifically related to these disorders. In 1,714 middle-aged and elderly participants of the Rotterdam Study, we collected actigraphy recordings of at least 96 hr (138 ± 14 hr, mean ± standard deviation). Activity rhythms were quantified calculating the fragmentation of the rhythm, stability of the rhythm over days, and timing of the rhythm. Total sleep time, sleep onset latency, and wake after sleep onset were also estimated with actigraphy. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression scale, persons with clinically relevant depressive symptoms were interviewed to diagnose DSM-IV-depressive disorder. Anxiety disorders were determined with the Munich version of the Composite International Diagnostic Interview. More fragmented rhythms were associated with clinically relevant depressive symptoms (odds ratio (OR): 1.27, 95% confidence interval (CI): 1.04;1.54) and anxiety disorders (OR: 1.39, 95% CI: 1.14;1.70) after covariate adjustment. Less stable rhythms, longer sleep onset latency, and more wake after sleep onset were related to clinically relevant depressive symptoms or anxiety disorders only if not adjusted for covariates and other activity rhythm and sleep indicators. Our study in middle-aged and elderly persons suggests that fragmentation of the 24-hr activity rhythm is associated with depression and anxiety. Moreover, this association also largely accounts for the effect of disturbed sleep on these psychiatric disorders. © 2015 Wiley Periodicals, Inc.

  15. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  16. Maternal and infant activity: Analytic approaches for the study of circadian rhythm

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan

    2015-01-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72 h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R2, NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta2) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  17. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    PubMed

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    PubMed

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  19. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Chen, Tian-Ming; Zhong, Yingbin

    This study was aimed to explore the mechanisms underlying cadmium-induced circadian rhythms disruption. Two groups of zebrafish larvae treated with or without 5 ppm CdCl{sub 2} were incubated in a photoperiod of 14-h light/10-h dark conditions. The mRNA levels of clock1a, bmal1b, per2 and per1b in two groups were determined. Microarray data were generated in two group of samples. Differential expression of genes were identified and the changes in expression level for some genes were validated by RT-PCR. Finally, Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) were performed. In comparison with normal group, the mRNAmore » levels of clock1a, bmal1b, and per2 were significantly changed and varied over the circadian cycle in CdCl2-treated group. DEGs were obtained from the light (84 h, ZT12) and dark (88 h, ZT16) phase. In addition, G-protein coupled receptor protein signaling pathway and immune response were both enriched by DEGs in both groups. While, proteolysis and amino acid metabolism were found associated with DEGs in light phase, and Neuroactive ligand-receptor interaction and oxidation-reduction process were significantly enriched by DEGs in dark phase. Besides, the expression pattern of genes including hsp70l and or115-11 obtained by RT-PCR were consistent with those obtained by microarray analysis. As a consequence, cadmium could make significant effects on circadian rhythms through immune response and G protein-coupled receptor signaling pathway. Besides, between the dark and the light phase, the mechanism by which cadmium inducing disruption of circadian rhythms were different to some extent. - Highlights: • Cadmium could affect the expression levels of circadian rhythm-related genes. • Genes expression in microarray data were consistent with those in RT-PCR analysis. • Immune response and G protein-coupled receptor signaling pathway were identified. • Cadmium induces circadian rhythm

  1. Measuring Child Rhythm

    ERIC Educational Resources Information Center

    Payne, Elinor; Post, Brechtje; Astruc, Lluisa; Prieto, Pilar; Vanrell, Maria del Mar

    2012-01-01

    Interval-based rhythm metrics were applied to the speech of English, Catalan and Spanish 2, 4 and 6 year-olds, and compared with the (adult-directed) speech of their mothers. Results reveal that child speech does not fall into a well-defined rhythmic class: for all three languages, it is more "vocalic" (higher %V) than adult speech and…

  2. Speech rhythm in Kannada speaking adults who stutter.

    PubMed

    Maruthy, Santosh; Venugopal, Sahana; Parakh, Priyanka

    2017-10-01

    A longstanding hypothesis about the underlying mechanisms of stuttering suggests that speech disfluencies may be associated with problems in timing and temporal patterning of speech events. Fifteen adults who do and do not stutter read five sentences, and from these, the vocalic and consonantal durations were measured. Using these, pairwise variability index (raw PVI for consonantal intervals and normalised PVI for vocalic intervals) and interval based rhythm metrics (PercV, DeltaC, DeltaV, VarcoC and VarcoV) were calculated for all the participants. Findings suggested higher mean values in adults who stutter when compared to adults who do not stutter for all the rhythm metrics except for VarcoV. Further, statistically significant difference between the two groups was found for all the rhythm metrics except for VarcoV. Combining the present results with consistent prior findings based on rhythm deficits in children and adults who stutter, there appears to be strong empirical support for the hypothesis that individuals who stutter may have deficits in generation of rhythmic speech patterns.

  3. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    PubMed

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  4. Rate vs. rhythm control and adverse outcomes among European patients with atrial fibrillation.

    PubMed

    Purmah, Yanish; Proietti, Marco; Laroche, Cecilé; Mazurek, Michal; Tahmatzidis, Dimitrios; Boriani, Giuseppe; Novo, Salvatore; Lip, Gregory Y H

    2018-02-01

    The impact of rate and rhythm control strategies on outcomes in patients with atrial fibrillation (AF) remains controversial. Our aims were: to report use of rate and rhythm control strategies in European patients from the EURObservational Research Program AF General Pilot Registry. Secondly, to evaluate outcomes according to assigned strategies. Use of pure rate and rhythm control agents was described according to European regions. 1-year follow-up data were reported. Among rate control strategies, beta-blockers were the most commonly used drug. Proportions of patients assigned to rhythm control varied greatly between countries, and amiodarone was the most used rhythm control drug. Of the original 3119 patients, 1036 (33.2%) were assigned to rate control only and 355 (11.4%) to rhythm control only. Patients assigned to a rate control strategy were older (P < 0.0001) and more likely female (P = 0.0266). Patients assigned to a rate control strategy had higher rates for any thrombo-embolic event (P = 0.0245), cardiovascular death (P = 0.0437), and all-cause death (P < 0.0001). Kaplan-Meier analysis showed that rate control strategy was associated with a higher risk for all-cause death (P < 0.001). On Cox regression analysis, rate control strategy was independently associated with all-cause death (P = 0.0256). A propensity matched analysis only found a trend for the association between rate control and all-cause death (P = 0.0664). In a European AF patients' cohort, a pure rate control strategy was associated with a higher risk for adverse events at 1-year follow-up, and partially adjusted analysis suggested that rate control independently increased the risk for all-cause death. A fully adjusted propensity score matched analysis found that this association was no longer statistically significant, suggesting an important role of comorbidities in determining the higher risk for all-cause death. Published on behalf of the European Society

  5. Maternal exercise, season and sex modify the daily fetal heart rate rhythm.

    PubMed

    Sletten, J; Cornelissen, G; Assmus, J; Kiserud, T; Albrechtsen, S; Kessler, J

    2018-05-13

    The knowledge on biological rhythms is rapidly expanding. We aimed to define the longitudinal development of the daily (24-hour) fetal heart rate rhythm in an unrestricted, out-of-hospital setting and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Daily rhythms in fetal heart rate and fetal heart rate variation were detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant daily rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (P < .001) and nonlinearly in males (quadratic function, P = .001). At 32 and 36 weeks, interindividual rhythm diversity was found in male fetuses during higher maternal physical activity and during the summer season. The dynamic development of the daily fetal heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  7. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech.

    PubMed

    Borrie, Stephanie A; Lansford, Kaitlin L; Barrett, Tyson S

    2017-03-01

    The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception (initial intelligibility) and learning (intelligibility improvement) of naturally dysrhythmic speech, dysarthria. Fifty young adults with typical hearing participated in 3 key tests, including a rhythm perception test, a receptive vocabulary test, and a speech perception and learning test, with standard pretest, familiarization, and posttest phases. Initial intelligibility scores were calculated as the proportion of correct pretest words, while intelligibility improvement scores were calculated by subtracting this proportion from the proportion of correct posttest words. Rhythm perception scores predicted intelligibility improvement scores but not initial intelligibility. On the other hand, receptive vocabulary scores predicted initial intelligibility scores but not intelligibility improvement. Expertise in rhythm perception appears to provide an advantage for processing dysrhythmic speech, but a familiarization experience is required for the advantage to be realized. Findings are discussed in relation to the role of rhythm in speech processing and shed light on processing models that consider the consequence of rhythm abnormalities in dysarthria.

  8. Seasonal and daily plasma corticosterone rhythms in American toads, Bufo americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pancak, M.K.; Taylor, D.H.

    1983-06-01

    Concentrations of corticosterone were measured in the plasma of American toads, Bufo americanus, on a seasonal basis using a radioimmunoassay technique. Two populations of toads, maintained under different light conditions, were monitored to observe the effects of photoperiod on the seasonal rhythm of plasma corticosterone. Under a natural photoperiod toads demonstrated a rhythm consisting of a spring peak and a fall peak in corticosterone concentration. Toads maintained under a 12L:12D photoperiod all year round demonstrated a similar rhythm with peaks in the spring and fall. This suggests that an endogenous (circannual) rhythm of corticosterone may be playing an important rolemore » in the seasonal change of overt behavior and physiology of Bufo americanus. A daily rhythm of corticosterone was also detected in toads when blood samples were taken every 4 hr. When compared to a previously published circadian rhythm study of locomotor activity, the surge in corticosterone concentration for the day occurred at 1730 just prior to the peak in locomotor activity.« less

  9. Addressing the controversy of rate-versus-rhythm control in atrial fibrillation.

    PubMed

    Contractor, Tahmeed; Levin, Vadim; Desai, Ravi; Marchlinski, Francis E

    2013-09-01

    Atrial fibrillation is the most common sustained cardiac arrhythmia and significantly increases patient risk of stroke, cardiomyopathy, and mortality. Rate versus rhythm control as the "best" treatment strategy remains an issue of considerable, ongoing debate. A multitude of clinical trials have compared the 2 strategies and have not shown any benefit of one approach over the other. However, the trials were conducted in specific subgroups of patients and demonstrated low success rates with antiarrhythmic drug (AAD) therapy and a high incidence of adverse AAD effects. Sub-analyses of the trials have confirmed that successful rhythm control with sinus rhythm restoration is associated with a significant reduction in patient mortality. More recently, radiofrequency ablation (RFA) has emerged as a relatively effective procedure for maintaining sinus rhythm compared with use of AADs. Prospective randomized studies have shown good treatment results after the use of RFA, with acceptable risk. Given the limitation of pharmacologic rate versus rhythm control studies, and the promise of RFA, rhythm control should again be reconsidered as the "best" approach for managing many subgroups of patients with atrial fibrillation.

  10. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.

    PubMed

    Levitin, Daniel J; Chordia, Parag; Menon, Vinod

    2012-03-06

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  11. Cortical hot spots and labyrinths: why cortical neuromodulation for episodic migraine with aura should be personalized

    PubMed Central

    Dahlem, Markus A.; Schmidt, Bernd; Bojak, Ingo; Boie, Sebastian; Kneer, Frederike; Hadjikhani, Nouchine; Kurths, Jürgen

    2015-01-01

    Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation. PMID:25798103

  12. Effect of tidal cycle and food intake on the baseline plasma corticosterone rhythm in intertidally foraging marine iguanas.

    PubMed

    Woodley, Sarah K; Painter, Danika L; Moore, Michael C; Wikelski, Martin; Romero, L Michael

    2003-06-15

    In most species, plasma levels of baseline glucocorticoids such as corticosterone (B) have a circadian rhythm. This rhythm can be entrained by both photoperiod and food intake and is related to aspects of energy intake and metabolism. Marine iguanas (Amblyrhynchus cristatus) offer a unique opportunity to better understand the relative importance of the light:dark cycle versus food intake in influencing the rhythm in baseline B in a natural system. Compared to other species, food intake is not as strictly determined by the phase of the light:dark cycle. Animals feed in the intertidal zone so feeding activity is heavily influenced by the tidal cycle. We measured baseline plasma B levels in free-living iguanas over several 24-h periods that varied in the timing of low tide/foraging activity. We found that baseline B levels were higher during the day relative to night. However, when low tide occurred during the day, baseline B levels dropped coincident with the timing of low tide. Whether the baseline B rhythm (including the drop during foraging) is an endogenous rhythm with a circatidal component, or is simply a result of feeding and associated physiological changes needs to be tested. Together, these data suggest that the baseline B rhythm in marine iguanas is influenced by the tidal cycle/food intake as well as the light:dark cycle.

  13. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  14. Visual Enhancement of Illusory Phenomenal Accents in Non-Isochronous Auditory Rhythms

    PubMed Central

    2016-01-01

    Musical rhythms encompass temporal patterns that often yield regular metrical accents (e.g., a beat). There have been mixed results regarding perception as a function of metrical saliency, namely, whether sensitivity to a deviant was greater in metrically stronger or weaker positions. Besides, effects of metrical position have not been examined in non-isochronous rhythms, or with respect to multisensory influences. This study was concerned with two main issues: (1) In non-isochronous auditory rhythms with clear metrical accents, how would sensitivity to a deviant be modulated by metrical positions? (2) Would the effects be enhanced by multisensory information? Participants listened to strongly metrical rhythms with or without watching a point-light figure dance to the rhythm in the same meter, and detected a slight loudness increment. Both conditions were presented with or without an auditory interference that served to impair auditory metrical perception. Sensitivity to a deviant was found greater in weak beat than in strong beat positions, consistent with the Predictive Coding hypothesis and the idea of metrically induced illusory phenomenal accents. The visual rhythm of dance hindered auditory detection, but more so when the latter was itself less impaired. This pattern suggested that the visual and auditory rhythms were perceptually integrated to reinforce metrical accentuation, yielding more illusory phenomenal accents and thus lower sensitivity to deviants, in a manner consistent with the principle of inverse effectiveness. Results were discussed in the predictive framework for multisensory rhythms involving observed movements and possible mediation of the motor system. PMID:27880850

  15. The circatidal rhythm persists without the optic lobe in the mangrove cricket Apteronemobius asahinai.

    PubMed

    Takekata, Hiroki; Numata, Hideharu; Shiga, Sakiko

    2014-02-01

    Whether the circatidal rhythm is generated by a machinery common to the circadian clock is one of the important and interesting questions in chronobiology. The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm generating active and inactive phases and a circadian rhythm modifying the circatidal rhythm by inhibiting activity during the subjective day simultaneously. In the previous study, RNA interference of the circadian clock gene period disrupted the circadian rhythm but not the circatidal rhythm, suggesting a difference in molecular mechanisms between the circatidal and circadian rhythms. In the present study, to compare the neural mechanisms of these 2 rhythms, we observed locomotor activity in the mangrove cricket after surgical removal of the optic lobe, which has been shown to be the locus of the circadian clock in other crickets. We also noted the pigment-dispersing factor immunoreactive neurons (PDF-IRNs) in the optic lobe, because PDF is a key output molecule in the circadian clock system in some insects. The results showed that the circadian modulation was disrupted after the removal of the optic lobes but that the circatidal rhythm was maintained with no remarkable changes in its free-running period. Even in crickets in which some PDF-immunoreactive somata remained after removal of the optic lobe, the circadian rhythm was completely disrupted. The remnants of PDF-IRNs were not correlated to the occurrence and free-running period of the circatidal rhythm. These results indicate that the principal circatidal clock is located in a region(s) different from the optic lobe, whereas the circadian clock is located in the optic lobe, as in other crickets, and PDF-IRNs are not important for circatidal rhythm. Therefore, it is suggested that the circatidal rhythm of A. asahinai is driven by a neural basis different from that driving the circadian rhythm.

  16. Sleep, Circadian Rhythms, and Performance During Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Czeisler, Charles A.; Dijk, Derk-Jan; Wyatt, James K.; Ronda, Joseph M.; Hughes, Rod J.

    2003-01-01

    Sleep and circadian rhythms may be disturbed during spaceflight, and these disturbances can affect crewmembers' performance during waking hours. The mechanisms underlying sleep and circadian rhythm disturbances in space are not well understood, and effective countermeasures are not yet available. We investigated sleep, circadian rhythms, cognitive performance, and light-dark cycles in five astronauts prior to, during, and after the 16-day STS-90 mission and the IO-day STS-95 mission. The efficacy of low-dose, alternative-night, oral melatonin administration as a countermeasure for sleep disturbances was evaluated. During these missions, scheduled rest activity cycles were 20-35 minutes shorter than 24 hours. Light levels on the middeck and in the Spacelab were very low; whereas on the flight deck (which has several windows), they were highly variable. Circadian rhythm abnormalities were observed. During the second half of the missions, the rhythm of urinary cortisol appeared to be delayed relative to the sleep-wake schedule. Performance during wakefulness was impaired. Astronauts slept only about 6.5 hours per day, and subjective sleep quality was lower in space. No beneficial effects of melatonin (0.3 mg administered prior to sleep episodes on alternate nights) were observed. A surprising finding was a marked increase in rapid eye movement (REM) sleep upon return to Earth. We conclude that these Space Shuttle missions were associated with circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and alterations in REM sleep homeostasis. Shorter than 24-hour rest-activity schedules and exposure to light-dark cycles inadequate for optimal circadian synchronization may have contributed to these disturbances.

  17. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    PubMed

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  18. Autism as a Disorder of Biological and Behavioral Rhythms: Toward New Therapeutic Perspectives

    PubMed Central

    Tordjman, Sylvie; Davlantis, Katherine S.; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M.; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model. PMID:25756039

  19. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila.

    PubMed

    Seki, Yuuichi; Tanimura, Teiichi

    2014-09-01

    A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.

  20. A stochastic model of input effectiveness during irregular gamma rhythms.

    PubMed

    Dumont, Grégory; Northoff, Georg; Longtin, André

    2016-02-01

    Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such "communication through coherence" (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663-667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of

  1. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis.

    PubMed

    Schuster, Christina; Kasper, Elisabeth; Machts, Judith; Bittner, Daniel; Kaufmann, Jörn; Benecke, Reiner; Teipel, Stefan; Vielhaber, Stefan; Prudlo, Johannes

    2014-10-01

    To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p < 0.001). The LMN ALS variants demonstrated the highest rates of cortical thinning in the precentral gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.

  2. I got rhythm: Gershwin and birth control in the 1930s.

    PubMed

    Viterbo, Paula

    2004-03-01

    Gershwin's song 'I Got Rhythm' serves here as a backdrop representing the social context of the inter-war years. On center stage is a particular aspect of the history of birth control--the application of a new theory of ovulation to contraception. Starting in 1928, a series of experiments revealed a biochemical rhythm in the female reproductive cycle, which contradicted the widespread idea that ovulation and pregnancy could occur at any time. This discovery was applied to a new contraceptive method, the rhythm method, which enjoyed significant popularity during the 1930s, especially among Catholics. For a short period, women could join Ethel Merman in the refrain 'I got rhythm, I got my man, who could ask for anything more?' But the rhythm method has not lived to its promise, and the play goes on em leader

  3. Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks

    PubMed Central

    Nickla, Debora L.; Totonelly, Kristen

    2016-01-01

    Changes in ocular growth that lead to myopia or hyperopia are associated with alterations in the circadian rhythms in eye growth, choroidal thickness and intraocular pressure in animal models of emmetropization. Recent studies have shown that light at night has deleterious effects on human health, acting via “circadian disruptions” of various diurnal rhythms, including changes in phase or amplitude. The purpose of this study was to determine the effects of brief, 2-hour episodes of light in the middle of the night on the rhythms in axial length and choroidal thickness, and whether these alter eye growth and refractive error in the chick model of myopia. Starting at 2 weeks of age, birds received 2 hours of light between 12:00 am and 2:00 am for 7 days (n=12; total hours of light: 14 hrs). Age-matched controls had a continuous dark night (n=14; 14L/10D). Ocular dimensions were measured using high-frequency A-scan ultrasonography on the first day of the experiment, and again on day 7, at 6-hour intervals, starting at noon (12pm, 6pm, 12am, 6am, 12pm). Measurements during the night were done under a photographic safe-light. These data were used to determine rhythm parameters of phase and amplitude. 2 groups of birds, both experimental (light at night) and control, were measured with ultrasound at various intervals over the course of 4 weeks to determine growth rates. Refractive errors were measured in 6 experimental and 6 control birds at the end of 2 weeks. Eyes of birds in a normal L/D cycle showed sinusoidal 24-hour period diurnal rhythms in axial length and choroid thickness. Light in the middle of the night caused changes in both the rhythms in axial length and choroidal thickness, such that neither could be fit to a sine function having a period of 24 hours. Light caused an acute, transient stimulation in ocular growth rate in the subsequent 6-hour period (12 am to 6 am), that may be responsible for the increased growth rate seen 4 weeks later, and the more

  4. Biologic Rhythms Derived from Siberian Mammoths' Hairs

    PubMed Central

    Spilde, Mike; Lanzirotti, Antonio; Qualls, Clifford; Phillips, Genevieve; Ali, Abdul-Mehdi; Agenbroad, Larry; Appenzeller, Otto

    2011-01-01

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna. PMID:21747920

  5. Biologic rhythms derived from Siberian mammoths' hairs.

    PubMed

    Spilde, Mike; Lanzirotti, Antonio; Qualls, Clifford; Phillips, Genevieve; Ali, Abdul-Mehdi; Agenbroad, Larry; Appenzeller, Otto

    2011-01-01

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  6. Circadian rhythms of visual accommodation responses and physiological correlations.

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1972-01-01

    Use of a recently developed servocontrolled infrared optometer to continuously record the state of monocular focus while subjects viewed a visual target for which the stimulus to focus was systematically varied. Calculated parameters form recorded data - e.g., speeds of accommodation to approaching and receding targets, magnitude of accommodation to step changes in target distance, and amplitude and phase lag of response to sinusoidally varying stimuli were submitted to periodicity analyses. Ear canal temperature (ECT) and heart rate (HR) rhythms were also recorded for physiological correlation with accommodation rhythms. HR demonstrated a 24-hr rhythm, but ECT data did not.

  7. Correlations between Circadian Rhythms and Growth in Challenging Environments.

    PubMed

    Dakhiya, Yuri; Hussien, Duaa; Fridman, Eyal; Kiflawi, Moshe; Green, Rachel

    2017-03-01

    In plants, the circadian system controls a plethora of processes, many with agronomic importance, such as photosynthesis, photoprotection, stomatal opening, and photoperiodic development, as well as molecular processes, such as gene expression. It has been suggested that modifying circadian rhythms may be a means to manipulate crops to develop improved plants for agriculture. However, there is very little information on how the clock influences the performance of crop plants. We used a noninvasive, high-throughput technique, based on prompt chlorophyll fluorescence, to measure circadian rhythms and demonstrated that the technique works in a range of plants. Using fluorescence, we analyzed circadian rhythms in populations of wild barley ( Hordeum vulgare ssp. spontaneum ) from widely different ecogeographical locations in the Southern Levant part of the Fertile Crescent, an area with a high proportion of the total genetic variation of wild barley. Our results show that there is variability for circadian traits in the wild barley lines. We observed that circadian period lengths were correlated with temperature and aspect at the sites of origin of the plants, while the amplitudes of the rhythms were correlated with soil composition. Thus, different environmental parameters may exert selection on circadian rhythms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Internal Medicine Physicians’ Perceptions Regarding Rate versus Rhythm Control for Atrial Fibrillation

    PubMed Central

    McCabe, James M.; Johnson, Colleen J; Marcus, Gregory M

    2011-01-01

    Atrial fibrillation (AF) is often managed by general internal medicine physicians. Available data suggest that guidelines regarding AF management are often not followed, but the reasons for this remain unknown. We sought to assess the knowledge and beliefs of internists regarding strategies to treat AF. We conducted a national electronic survey of internal medicine physicians regarding their perceptions of optimal AF management, with an emphasis on the rationale for choosing a rhythm or rate control strategy. One hundred and forty-eight physicians from 36 different states responded (representing at least 19% of unique e-mails opened). Half of the respondents reported managing their AF patients independently without referral to a cardiologist. Seventy-three percent of participants believe a rhythm control strategy conveys a decreased stroke risk, 64% believe there is a mortality benefit to rhythm control, and 55% think that it would help avoid long term anticoagulation. Comparing those who prefer a rhythm control strategy to everyone else, those who favor rhythm control statistically significantly more often believe that rhythm control reduces the risk for stroke (96% versus 67%, p=0.009) and that rhythm control allows for the discontinuation of anticoagulation therapy (76% versus 49%, p=0.045). In conclusion, contrary to available data in clinical trials and recent guidelines regarding the rationale for choosing a rhythm control strategy in treating AF, the majority of study participants believe that rhythm control decreases stroke risk, decreases mortality, and allows for discontinuation of anticoagulation therapy. These prevalent misconceptions may substantially contribute to guideline non-adherence. PMID:19195516

  9. Cortisol-mediated synchronization of circadian rhythm in urinary potassium excretion

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Schmelzer, W. S.; Kass, D. A.; Herd, J. A.

    1977-01-01

    Conscious chair-acclimatized squirrel monkeys (Saimiri sciureus) studied with lights on (600 lx) from 0800 to 2000 hr daily (LD 12:12) display a prominent circadian rhythm in renal potassium excretion. The characteristics of this rhythm were reproduced in adrenalectomized monkeys by infusing 5 mg cortisol and 0.001 mg aldosterone, or 5 mg cortisol alone, between 0800 and 0900 kr daily. When the timing of cortisol administration (with or without aldosterone) was phase-delayed by 8 hr, the urinary potassium rhythm resynchronized by 80% of the cortisol phase shift, but only after a transient response lasting 3-4 days. With the same daily dose of adrenal steroids given as a continuous infusion throughout each 24 hr, urinary potassium excretion showed free-running oscillations no longer synchronized to the light-dark cycle. These results indicate that the circadian rhythm of plasma cortisol concentration acts as an internal mediator in the circadian timing system, synchronizing a potentially autonomous oscillation in renal potassium excretion to environmental time cues and to other circadian rhythms within the animal.

  10. Cortical tremor: a variant of cortical reflex myoclonus.

    PubMed

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  11. Case study of psychophysiological diary: infradian rhythms.

    PubMed

    Slover, G P; Morris, R W; Stroebel, C F; Patel, M K

    1987-01-01

    A 4-year case study was made of a 42-year-old white woman as seen through the psychophysiological diary. There was an awakening diary and a bedtime diary composed of 125 variables. The data are divided into two series: series I containing a manic episode, and series II as a control. Spectral analysis shows infradian rhythms in hypoglycemia and fear (11 days) and time to fall asleep (5 days). Depressed feelings showed a circatrigintan (28-day) rhythm, which was not correlated with menses. Mania had an annual rhythm (spring) but no circatrigintan or less rhythm. The following correlations have a P value less than or equal to 0.01: mania was directly correlated with number of sleeping pills, time to really wake up, need for rest, moodiness, and helplessness, and indirectly with expectations, pressure at work, sense of time, and emotional state. Interestingly, awakening pulse is directly correlated with awakening temperature, number of sleeping pills, bedtime pulse, tiredness at bedtime, hypoglycemia, and fear. Bedtime pulse is directly correlated with awakening pulse and awakening temperature. Both pulse and temperature at bedtime are directly correlated with negative variables such as tiredness, moodiness, helplessness, and depression, and inversely correlated with positive variables such as happiness, loving, performance at work, and thinking efficiency. This study demonstrates a significant correlation between physiological variables.

  12. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.

    PubMed

    Berke, J D

    2009-09-01

    Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for < 1 s following reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.

  13. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm.

    PubMed

    Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis

    2014-08-01

    Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, p<0.001) levels. Adjustment for circadian BP rhythm status ascribed this finding exclusively to non-dippers (p<0.01). Two months after delivery, in 11 of the 21 non-dippers both circadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.

  14. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  15. Ultradian activity rhythms in large groups of newly hatched chicks (Gallus gallus domesticus).

    PubMed

    Nielsen, B L; Erhard, H W; Friggens, N C; McLeod, J E

    2008-07-01

    A clutch of young chicks housed with a mother hen exhibit ultradian (within day) rhythms of activity corresponding to the brooding cycle of the hen. In the present study clear evidence was found of ultradian activity rhythms in newly hatched domestic chicks housed in groups larger than natural clutch size without a mother hen or any other obvious external time-keeper. No consistent synchrony was found between groups housed in different pens within the same room. The ultradian rhythms disappeared with time and little evidence of group rhythmicity remained by the third night. This disappearance over time suggests that the presence of a mother hen may be pivotal for the long-term maintenance of these rhythms. The ultradian rhythm of the chicks may also play an important role in the initiation of brooding cycles during the behavioural transition of the mother hen from incubation to brooding. Computer simulations of individual activity rhythms were found to reproduce the observations made on a group basis. This was achievable even when individual chick rhythms were modelled as independent of each other, thus no assumptions of social facilitation are necessary to obtain ultradian activity rhythms on a group level.

  16. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans

    PubMed Central

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement. PMID:26132703

  17. Sense of rhythm does not differentiate professional hurdlers from non-athletes.

    PubMed

    Skowronek, Tomasz; Słomka, Kajetan; Juras, Grzegorz; Szade, Bartlomiej

    2013-08-01

    The importance of rhythm and specific endurance capabilities were examined in the technical skill and performance of hurdle runners. Additionally, interaction effects among rhythm, anaerobic fitness, and body constitution were analyzed. Seven 18-year-old members of the Polish Junior National Team in 110 m hurdles and 8 age-matched controls who were non-athletes participated. Movement coordination tests (rhythm and differentiation tests) and an anaerobic fitness test were performed. There were no statistically significant differences between the athletes and the control group on the coordination or rhythm test variables. No support was found for the hypothesis that a hurdler's timing ability influences performance.

  18. Circadian rhythm and menopause.

    PubMed

    Pines, A

    2016-12-01

    Circadian rhythm is an internal biological clock which initiates and monitors various physiological processes with a fixed time-related schedule. The master circadian pacemaker is located in the suprachiasmatic nucleus in the hypothalamus. The circadian clock undergoes significant changes throughout the life span, at both the physiological and molecular levels. This cyclical physiological process, which is very complex and multifactorial, may be associated with metabolic alterations, atherosclerosis, impaired cognition, mood disturbances and even development of cancer. Sex differences do exist, and the well-known sleep disturbances associated with menopause are a good example. Circadian rhythm was detected in the daily pattern of hot flushes, with a peak in the afternoons. Endogenous secretion of melatonin decreases with aging across genders, and, among women, menopause is associated with a significant reduction of melatonin levels, affecting sleep. Although it might seem that hot flushes and melatonin secretion are likely related, there are not enough data to support such a hypothesis.

  19. Daily rhythms of locomotor and demand-feeding activities in Schizothorax pelzami (Kessler, 1870).

    PubMed

    Ebrahimi, Ehsan; Kamrani, Ehsan; Heydarnejad, Mohammad Saeed; Safari, Omid

    2017-01-01

    A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.

  20. Cortical thickness in bipolar disorder: a systematic review.

    PubMed

    Hanford, Lindsay C; Nazarov, Anthony; Hall, Geoffrey B; Sassi, Roberto B

    2016-02-01

    Bipolar disorder (BD) is a debilitating illness, the psychopathology of which is associated with aberrant structural and functional differences in the brain. Despite the many advances in psychiatric research, our understanding of the complex neurobiological underpinnings of BD remains incomplete. The aim of this review was to critically examine all available published magnetic resonance imaging (MRI) research reporting cortical thickness in BD with respect to a healthy population and/or other psychiatric samples. The systematic search encompassed all relevant studies published until November 2014. Relevant papers were identified through an online search of select databases (MEDLINE and EMBASE) using key terms bipolar disorder or mania, and cortical thickness. Two independent raters determined the eligibility of papers and performed separate data extraction to ensure quality and accuracy of reporting. A total of 17 papers met the criteria and were included in this review. Compared to a healthy population, the majority of studies reported decreased cortical thickness in the left anterior cingulate/paracingulate and the left superior temporal gyrus, as well as several prefrontal regions bilaterally in patients with BD. Studies also show consistency of cortical thinning in individuals with BD and schizophrenia in frontal and temporal regions, suggesting some common neuropathology. This systematic review further supports a link between specific structural brain abnormalities and BD. Future studies should investigate cortical thickness with respect to at-risk populations to determine whether these neuropathologies develop before or after the onset of BD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech

    ERIC Educational Resources Information Center

    Borrie, Stephanie A.; Lansford, Kaitlin L.; Barrett, Tyson S.

    2017-01-01

    Purpose: The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception…

  2. Vestibulo-cortical Hemispheric Dominance: the link between Anxiety and the Vestibular System?

    PubMed

    Bednarczuk, Nadja F; Casanovas Ortega, Marta; Fluri, Anne-Sophie; Arshad, Qadeer

    2018-05-16

    Vestibular processing and anxiety networks are functionally intertwined, as demonstrated by reports of reciprocal influences upon each other. Yet whether there is an underlying link between these two systems remains unknown Previous findings have highlighted the involvement of hemispheric lateralisation in processing of both anxiety and vestibular signals. Accordingly, we explored the interaction between vestibular cortical processing and anxiety by assessing the relationship between anxiety levels and the degree of hemispheric lateralisation of vestibulo-cortical processing in 64 right-handed, healthy individuals. Vestibulo-cortical hemispheric lateralisation was determined by gaging the degree of caloric-induced nystagmus suppression following modulation of cortical excitability using trans-cranial direct current stimulation targeted over the posterior parietal cortex, an area implicated in the processing of vestibular signals. The degree of nystagmus suppression yields an objective biomarker, allowing the quantification of the degree of right vestibulo-cortical hemisphere dominance. Anxiety levels were quantified using the Trait component of the Spielberger State-Trait Anxiety Questionnaire. Our findings demonstrate that the degree of an individual's vestibulo-cortical hemispheric dominance correlates with their anxiety levels. That is, those individuals with greater right hemispheric vestibulo-cortical dominance exhibited lower levels of anxiety. By extension, our results support the notion that hemispheric lateralisation determines an individual's emotional processing, thereby linking cortical circuits involved in processing anxiety and vestibular signals respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. [The influence of interfered circadian rhythm on pregnancy and neonatal rats].

    PubMed

    Chen, Wen-Jun; Sheng, Wen-Jie; Guo, Yin-Hua; Tan, Yong

    2015-10-25

    The aim of this study was to observe the influence of interfered circadian rhythm on pregnancy of rats and growth of neonatal rats, and to explore the relationship between the interfered circadian rhythm and the changes of melatonin and progesterone. Continuous light was used to inhibit melatonin secretion and therefore the interfered circadian rhythm animal model was obtained. The influence of interfered circadian rhythm on delivery of pregnant rats was observed. Serum was collected from rats during different stages of pregnancy to measure the concentrations of melatonin and progesterone. In order to observe the embryo resorption rate, half of pregnant rats were randomly selected to undergo a laparotomy, and the remainder was used to observe delivery and assess the growth of neonatal rats after delivery. The results showed that the interfered circadian rhythm induced adverse effects on pregnancy outcomes, including an increase of embryo resorption rate and a decrease in the number of live births; inhibited the secretion of melatonin along with decreased serum progesterone level; prolonged the stage of labor, but not the duration of pregnancy; and disturbed the fetal intrauterine growth and the growth of neonatal rats. The results suggest that interfered circadian rhythm condition made by continuous light could make adverse effects on both pregnant rats and neonatal rats. The results of our study may provide a way to modulate pregnant women's circadian rhythm and a possibility of application of melatonin on pregnant women.

  4. Gamma Rhythm Simulations in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Montgomery, Samuel; Perez, Carlos; Ullah, Ghanim

    The different neural rhythms that occur during the sleep-wake cycle regulate the brain's multiple functions. Memory acquisition occurs during fast gamma rhythms during consciousness, while slow oscillations mediate memory consolidation and erasure during sleep. At the neural network level, these rhythms are generated by the finely timed activity within excitatory and inhibitory neurons. In Alzheimer's Disease (AD) the function of inhibitory neurons is compromised due to an increase in amyloid beta (A β) leading to elevated sodium leakage from extracellular space in the hippocampus. Using a Hodgkin-Huxley formalism, heightened sodium leakage current into inhibitory neurons is observed to compromise functionality. Using a simple two neuron system it was observed that as the conductance of the sodium leakage current is increased in inhibitory neurons there is a significant decrease in spiking frequency regarding the membrane potential. This triggers a significant increase in excitatory spiking leading to aberrant network behavior similar to that seen in AD patients. The next step is to extend this model to a larger neuronal system with varying synaptic densities and conductance strengths as well as deterministic and stochastic drives.

  5. The effect of paired pitch, rhythm, and speech on working memory as measured by sequential digit recall.

    PubMed

    Silverman, Michael J

    2007-01-01

    Educational and therapeutic objectives are often paired with music to facilitate the recall of information. The purpose of this study was to isolate and determine the effect of paired pitch, rhythm, and speech on undergraduate's memory as measured by sequential digit recall performance. Participants (N = 120) listened to 4 completely counterbalanced treatment conditions each consisting of 9 randomized monosyllabic digits paired with speech, pitch, rhythm, and the combination of pitch and rhythm. No statistically significant learning or order effects were found across the 4 trials. A 3-way repeated-measures ANOVA indicated a statistically significant difference in digit recall performance across treatment conditions, positions, groups, and treatment by position. No other comparisons resulted in statistically significant differences. Participants were able to recall digits from the rhythm condition most accurately while recalling digits from the speech and pitch only conditions the least accurately. Consistent with previous research, the music major participants scored significantly higher than non-music major participants and the main effect associated with serial position indicated that recall performance was best during primacy and recency positions. Analyses indicated an interaction between serial position and treatment condition, also a result consistent with previous research. The results of this study suggest that pairing information with rhythm can facilitate recall but pairing information with pitch or the combination of pitch and rhythm may not enhance recall more than speech when participants listen to an unfamiliar musical selection only once. Implications for practice in therapy and education are made as well as suggestions for future research.

  6. Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers.

    PubMed

    Hakacova, Nina; Trägårdh-Johansson, Elin; Wagner, Galen S; Maynard, Charles; Pahlm, Olle

    2012-01-01

    Systems providing computer-based analysis of the resting electrocardiogram (ECG) seek to improve the quality of health care by providing accurate and timely automatic diagnosis of, for example, cardiac rhythm to clinicians. The accuracy of these diagnoses, however, remains questionable. We tested the hypothesis that (a) 2 independent automated ECG systems have better accuracy in rhythm diagnosis than nonexpert clinicians and (b) both systems provide correct diagnostic suggestions in a large percentage of cases where the diagnosis of nonexpert clinicians is incorrect. Five hundred ECGs were manually analyzed by 2 senior experts, 3 nonexpert clinicians, and automatically by 2 automated systems. The accuracy of the nonexpert rhythm statements was compared with the accuracy of each system statement. The proportion of rhythm statements when the clinician's diagnoses were incorrect and the systems instead provided correct diagnosis was assessed. A total of 420 sinus rhythms and 156 rhythm disturbances were recognized by expert reading. Significance of the difference in accuracy between nonexperts and systems was P = .45 for system A and P = .11 for system B. The percentage of correct automated diagnoses in cases when the clinician was incorrect was 28% ± 10% for system A and 25% ± 11% for system B (P = .09). The rhythm diagnoses of automated systems did not reach better average accuracy than those of nonexpert readings. The computer diagnosis of rhythm can be incorrect in cases where the clinicians fail in reaching the correct ECG diagnosis. Copyright © 2012. Published by Elsevier Inc.

  7. Selective Interareal Synchronization through Gamma Frequency Differences and Slower-Rhythm Gamma Phase Reset.

    PubMed

    Burwick, Thomas; Bouras, Alexandros

    2017-03-01

    The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked ("coherent") manner (Fries, 2005 , 2015 ). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler's perspective, we confirm the workings of a mechanism that was proposed by Bosman et al. ( 2012 ) in the context of providing experimental evidence for the CTC hypothesis: a slightly higher gamma frequency of the attended sending site compared to the distracting site may cause selective interareal synchronization with the receiving site if combined with a slow-rhythm gamma phase reset. We also demonstrate the relevance of a slightly lower intrinsic frequency of the receiving site for this scenario. Moreover, we discuss conditions for a transition from bottom-up to top-down driven phase locking.

  8. Thalamocortical mechanisms for integrating musical tone and rhythm

    PubMed Central

    Musacchia, Gabriella; Large, Edward

    2014-01-01

    Studies over several decades have identified many of the neuronal substrates of music perception by pursuing pitch and rhythm perception separately. Here, we address the question of how these mechanisms interact, starting with the observation that the peripheral pathways of the so-called “Core” and “Matrix” thalamocortical system provide the anatomical bases for tone and rhythm channels. We then examine the hypothesis that these specialized inputs integrate tonal content within rhythm context in auditory cortex using classical types of “driving” and “modulatory” mechanisms. This hypothesis provides a framework for deriving testable predictions about the early stages of music processing. Furthermore, because thalamocortical circuits are shared by speech and music processing, such a model provides concrete implications for how music experience contributes to the development of robust speech encoding mechanisms. PMID:24103509

  9. Crosslinguistic application of English-centric rhythm descriptors in motor speech disorders.

    PubMed

    Liss, Julie M; Utianski, Rene; Lansford, Kaitlin

    2013-01-01

    Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. The goals of this paper are to (i) provide a review of the cognitive-linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. Copyright © 2013 S. Karger AG, Basel.

  10. Aging human circadian rhythms: conventional wisdom may not always be right

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    2005-01-01

    This review discusses the ways in which the circadian rhythms of older people are different from those of younger adults. After a brief discussion of clinical issues, the review describes the conventional wisdom regarding age-related changes in circadian rhythms. These can be summarized as four assertions regarding what happens to people as they get older: 1) the amplitude of their circadian rhythms reduces, 2) the phase of their circadian rhythms becomes earlier, 3) their natural free-running period (tau) shortens, and 4) their ability to tolerate abrupt phase shifts (e.g., from jet travel or night work) worsens. The review then discusses the empirical evidence for and against these assertions and discusses some alternative explanations. The conclusions are that although older people undoubtedly have earlier circadian phases than younger adults, and have more trouble coping with shift work and jet lag, evidence for the assertions about rhythm amplitude and tau are, at best, mixed.

  11. Crosslinguistic Application of English-Centric Rhythm Descriptors in Motor Speech Disorders

    PubMed Central

    Liss, Julie M.; Utianski, Rene; Lansford, Kaitlin

    2014-01-01

    Background Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. Objective The goals of this paper are to (i) provide a review of the cognitive- linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. Summary This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. PMID:24157596

  12. Scheduled Daily Mating Induces Circadian Anticipatory Activity Rhythms in the Male Rat

    PubMed Central

    Landry, Glenn J.; Opiol, Hanna; Marchant, Elliott G.; Pavlovski, Ilya; Mear, Rhiannon J.; Hamson, Dwayne K.; Mistlberger, Ralph E.

    2012-01-01

    Daily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats. In Experiment 1, rats anticipated access to estrous females in the mid-light period, but also exhibited post-coital eating and running. In Experiment 2, post-coital eating and running were prevented and only a minority of rats exhibited anticipation. Rats allowed to see and smell estrous females showed no anticipation. In both experiments, all rats exhibited sustained behavioral arousal and multiple mounts and intromissions during every session, but ejaculated only every 2–3 days. In Experiment 3, the rats were given more time with individual females, late at night for 28 days, and then in the midday for 28 days. Ejaculation rates increased and anticipation was robust to night sessions and significant although weaker to day sessions. The anticipation rhythm persisted during 3 days of constant dark without mating. During anticipation of nocturnal mating, the rats exhibited a significant preference for a tube to the mating cage over a tube to a locked cage with mating cage litter. This apparent place preference was absent during anticipation of midday mating, which may reflect a daily rhythm of sexual reward. The results establish mating as a reward stimulus capable of inducing circadian rhythms of anticipatory behavior in the male rat, and reveal a critical role for ejaculation, a modulatory role for time of day, and a potential confound role

  13. Sustained Accelerated Idioventricular Rhythm in a Centrifuge-Simulated Suborbital Spaceflight.

    PubMed

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-08-01

    Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.

  14. Neural mechanisms of rhythm perception: current findings and future perspectives.

    PubMed

    Grahn, Jessica A

    2012-10-01

    Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.

  15. [The genetic determination and function of RR-proteins--the regulators of photoperiodic reaction and circadian rhythms in plants].

    PubMed

    Tots'kyĭ, V M; D'iachenko, L F; Muterko, O F; Balashova, I A; Toptikov, V A

    2012-01-01

    The present review devoted to the analysis of recent literature on genetic determination and the domain organization of the newly discovered two-component signaling systems in pro- and eukaryotes. These structures are involved in the regulation of numerous morphological and physiological processes in plants. RR-proteins, it the key elements of signaling systems, they launch a cascade of phosphotransferase reactions and directly or indirectly regulate the transcription and activity other proteins, including enzymes, in response to hormones or environmental factors. Modern views on the molecular and genetic mechanisms of photoperiodic response, circadian rhythms and anti-stress responses in plants are set out in these positions. The relationship between gene expression and photoreceptor sensitivity of plants to photoperiod traced. We present our own data obtained on the isogenic lines of wheat, where been showed dependence expression of structural genes of enzymes on the allelic composition of individual PRR-loci and the duration action of low temperature.

  16. Find a Heart Rhythm Specialist

    MedlinePlus

    ... Taiwan Thailand Turkey United Arab Emirates United Kingdom Venezuela Vietnam Within 5 miles 10 miles 15 miles ... info@HRSonline.org © Heart Rhythm Society 2017 Privacy Policy | Linking Policy | Patient Education Disclaimer You are about ...

  17. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].

    PubMed

    Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V

    2016-01-01

    of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.

  18. Glial Cells in the Genesis and Regulation of Circadian Rhythms

    PubMed Central

    Chi-Castañeda, Donají; Ortega, Arturo

    2018-01-01

    Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880

  19. [Sinus rhythm: mechanisms and function].

    PubMed

    Lerebours, Guy

    2007-01-01

    The normal cardiac rhythm originates in a specialized region of the heart, the sinus node that is part of the nodal tissue. The rhythmic, impulse initiation of sinus node pacemaker cells results from a spontaneous diastolic depolarization that is initiated immediately after repolarization of the preceding actions potential. This slow diastolic depolarisation is typical of automatic cells and essential to their function. Several currents are involved in this diastolic depolarisation: a hyperpolarization activated inward current, termed "pacemaker" I(f) current, two Ca2+ currents (a L type and a T type), a delayed K+ current and a Na/Ca exchange current. The frequency of the automatic discharge is the main determinant of heart rate. However the sinus node activity is regulated by adrenergic and cholinergic neurotransmitters. Acetylcholine provokes the hyperpolarization of pacemaker cells and decreases the speed of the spontaneous diastolic depolarisation, thus slowing the sinus rate. Catecholamines lead to sinus tachycardia by increasing the diastolic depolarisation speed. In normal conditions, the observed resting heart rate is lower than the intrinsic frequency of the sinus node due to a "predominance" of the vagal tone. Neural regulation of the heart rate aims at meeting the metabolic needs of the tissues through a varying blood flow. Differences between diurnal and nocturnal mean heart rates are accounted for by neural influences. During the night, the increased vagal tone results in decreased heart rate. The exercise-induced tachycardia results from the sympathetic stimulation. It allows more blood to reach skeletal muscles, and as a consequence an increased supply of oxygen and nutrients. Compared to the variety of clinical arrhythmias, sinus rhythm is the basis for optimal exercise capacity and quality of life.

  20. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  1. Neural Entrainment to Auditory Imagery of Rhythms.

    PubMed

    Okawa, Haruki; Suefusa, Kaori; Tanaka, Toshihisa

    2017-01-01

    A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG) response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female) imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA) and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.

  2. Cortical gray and subcortical white matter associations in Parkinson's disease.

    PubMed

    Sterling, Nicholas W; Du, Guangwei; Lewis, Mechelle M; Swavely, Steven; Kong, Lan; Styner, Martin; Huang, Xuemei

    2017-01-01

    Cortical atrophy has been documented in both Parkinson's disease (PD) and healthy aging, but its relationship to changes in subcortical white matter is unknown. This was investigated by obtaining T1- and diffusion-weighted images from 76 PD and 70 controls at baseline and 18 and 36 months, from which cortical volumes and underlying subcortical white matter axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had significant group differences, and for these, underlying subcortical white matter was explored. At baseline, higher cortical volumes were significantly correlated with lower underlying subcortical white matter AD, RD, and higher FA (ps ≤ 0.017) in PD. Longitudinally, higher rates of cortical atrophy in PD were associated with increased rates of change in AD RD, and FA values (ps ≤ 0.0013) in 2 subregions explored. The significant gray-white matter associations were not found in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may not be independent events in PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    PubMed

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. A Qualitative Investigation of Early Childhood Teachers' Experiences of Rhythm as Pedagogy

    ERIC Educational Resources Information Center

    Matthews, Douglas R; Ubbes, Valerie A; Freysinger, Valeria J

    2016-01-01

    Rhythm has been found to enhance not only biological functioning (e.g. balance, timing and coordination), but also to facilitate learning across sociocultural contexts. That is, rhythm may be a method of supporting child development and well-being. Hence, to the extent that children are not exposed to or engaged with rhythm, their development or…

  5. Chronobiological studies of chicken IgY: monitoring of infradian, circadian and ultradian rhythms of IgY in blood and yolk of chickens.

    PubMed

    He, Jin-Xin; Thirumalai, Diraviyam; Schade, Rüdiger; Zhang, Xiao-Ying

    2014-08-15

    IgY is the functional equivalent of mammalian IgG found in birds, reptiles and amphibians. Many of its biological aspects have been explored with different approaches. In order to evaluate the rhythmicity of serum and yolk IgY, four chickens were examined and reared under the same conditions. To monitor biological oscillations of IgY in yolk and serum, the eggs and blood samples were collected over a 60 day period and the rhythm of yolk and serum IgY was determined by direct-ELISA. Results indicated that, there is a significant circaseptan rhythm in yolk IgY and circaquattran rhythm in serum IgY. The serum IgY concentration reached a peak in the morning, decreased to a minimum during the daytime and increased again at night revealing a significant circadian rhythm was superimposed by an ultradian rhythm. These data are suited to address the controversies concerning the IgY concentration in egg yolk and blood of laying hens. In addition, this study raised new questions, if the different rhythms in yolk and serum are concerned. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Recognizing an Irregular Heart Rhythm

    MedlinePlus

    ... a workout, consider checking your rhythm as well. Atrial fibrillation, also referred to as AF, is a common ... upper chambers, or atria, of the heart. “While atrial fibrillation is not common among young people, it can ...

  7. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-12-01

    Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. The aim of this to examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Forty-three healthy mother-infant pairs. Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10h of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (p<.001). Infants demonstrated a developmental trajectory of circadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (p<.001). By 12 weeks, infant phase advancement was evidenced by mean acrophase and M10 midpoint occurring 60 and 43 min (respectively) earlier than at 4 weeks. While maternal acrophase remained consistent over time, infants became increasingly phase advanced relative to mother and mean infant acrophase at 12 weeks occurred 60 min before mother. Mother-infant synchrony was evidenced in increasing correspondence of acrophase at 12 weeks (r=0.704), L5 (r=0.453) and M10 (r=0.479) midpoints. Development of mother-infant synchrony reflects shared elements of circadian rhythm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Mother-Infant Circadian Rhythm: Development of Individual Patterns and Dyadic Synchrony

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-01-01

    Background Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. Aims To examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. Study Design In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Subjects Forty-three healthy mother-infant pairs. Outcome Measures Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10 hours of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Results Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (p < .001). Infants demonstrated a developmental trajectory of circadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (p < .001). By 12 weeks, infant phase advancement was evidenced by mean acrophase and M10 midpoint occurring 60 and 43 minutes (respectively) earlier than at 4 weeks. While maternal acrophase remained consistent over time, infants became increasingly phase advanced relative to mother and mean infant acrophase at 12 weeks occurred 60 minutes before mother. Mother-infant synchrony was evidenced in increasing correspondence of acrophase at 12 weeks (r = 0.704), L5 (r = 0.453) and M10 (r = 0.479) midpoints. Conclusions Development of mother-infant synchrony reflects shared elements of circadian rhythm. PMID:25463836

  9. Rhythm as an affordance for the entrainment of movement.

    PubMed

    Cummins, Fred

    2009-01-01

    A general account of rhythm in human behaviour is provided, according to which rhythm inheres in the affordance that a signal provides for the entrainment of movement on the part of a perceiver. This generic account is supported by an explication of the central concepts of affordance and entrainment. When viewed in this light, rhythm appears as the correct explanandum to account for coordinated behaviour in a wide variety of situations, including such core senses as dance and the production of music. Speech may appear to be only marginally rhythmical under such an account, but several experimental studies reveal that speech, too, has the potential to entrain movement. (c) 2009 S. Karger AG, Basel.

  10. Biologic Rhythms Derived from Siberian Mammoths Hairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Spilde; A Lanzirotti; C Qualls

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending onmore » location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.« less

  11. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  12. Endocannabinoid signalling: has it got rhythm?

    PubMed Central

    Vaughn, Linda K; Denning, Gerene; Stuhr, Kara L; de Wit, Harriet; Hill, Matthew N; Hillard, Cecilia J

    2010-01-01

    Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted. This article is part of a themed issue on

  13. A novel animal model linking adiposity to altered circadian rhythms

    USDA-ARS?s Scientific Manuscript database

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  14. Biological Rhythms in the Skin

    PubMed Central

    Matsui, Mary S.; Pelle, Edward; Dong, Kelly; Pernodet, Nadine

    2016-01-01

    Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin. PMID:27231897

  15. Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset

    PubMed Central

    Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.

    2017-01-01

    The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131

  16. Introduction: circadian rhythm and its disruption: impact on reproductive function.

    PubMed

    Casper, Robert F; Gladanac, Bojana

    2014-08-01

    Almost all forms of life have predictable daily or circadian rhythms in molecular, endocrine, and behavioral functions. In mammals, a central pacemaker located in the suprachiasmatic nuclei coordinates the timing of these rhythms. Daily light exposure that affects the retina of the eye directly influences this area, which is required to align endogenous processes to the appropriate time of day. The present "Views and Reviews" articles discuss the influence of circadian rhythms, especially nightly secretion of melatonin, on reproductive function and parturition. In addition, an examination is made of problems that arise from recurrent circadian rhythm disruption associated with changes in light exposure patterns common to modern day society. Finally, a possible solution to prevent disruptions in circadian phase markers by filtering out short wavelengths from nocturnal light is reviewed. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. The circadian rhythm of core temperature: effects of physical activity and aging.

    PubMed

    Weinert, Dietmar; Waterhouse, Jim

    2007-02-28

    The circadian rhythm of core temperature depends upon several interacting rhythms, of both endogenous and exogenous origin, but an understanding of the process requires these two components to be separated. Constant routines remove the exogenous (masking) component at source, but they are severely limited in their application. By contrast, several purification methods have successfully reduced the masking component of overt circadian rhythms measured in field circumstances. One important, but incidental, outcome from these methods is that they enable a quantitative estimate of masking effects to be obtained. It has been shown that these effects of activity upon the temperature rhythm show circadian rhythmicity, and more detailed investigations of this have aided our understanding of thermoregulation and the genesis of the circadian rhythm of core temperature itself. The observed circadian rhythm of body temperature varies with age; in comparison with adults, it is poorly developed in the neonate and deteriorates in the aged subject. Comparing masked and purified data enables the reasons for these differences--whether due to the body clock, the effector pathways or organs, or irregularities due to the individual's lifestyle--to begin to be understood. Such investigations stress the immaturity of the circadian rhythm in the human neonate and its deterioration in elderly compared with younger subjects, but they also indicate the robustness of the body clock itself into advanced age, at least in mice.

  18. [Circadian rhythm disruption and human development].

    PubMed

    Kohyama, Jun

    2013-12-01

    Ontogenetic developments of rest-activity, sleep-wakefulness, temperature and several hormone rhythms in humans were reviewed. The reported effects of environment on these alterations were also summarized. Then, disorders or conditions which often encounter during early stage of life and reveal circadian rhythm disruptions were described. These disorders or conditions included severe brain damage, visual disturbance, developmental disorders(autistic spectrum disorder and attention deficit/hyperactivity disorder), Rett syndrome, Angelman syndrome, Smith-Magenis syndrome, epilepsy, Yonaki, and inadequate sleep hygiene. Finally, it was emphasized that we should pay special attention on the development of youngsters who showed sleep disturbance during early stage of life with special reference to the later occurrence of developmental disorders.

  19. Rhythms can overcome temporal orienting deficit after right frontal damage.

    PubMed

    Triviño, Mónica; Arnedo, Marisa; Lupiáñez, Juan; Chirivella, Javier; Correa, Angel

    2011-12-01

    The main aim of this study was to test whether the use of rhythmic information to induce temporal expectations can overcome the deficit in controlled temporal preparation shown by patients with frontal damage (i.e. temporal orienting and foreperiod effects). Two tasks were administered to a group of 15 patients with a frontal brain lesion and a group of 15 matched control subjects: a Symbolic Cued Task where the predictive information regarding the time of target appearance was provided by a symbolic cue (short line-early vs. long line-late interval) and a Rhythm Cued Task where the predictive temporal information was provided by a rhythm (fast rhythm-early vs. slow rhythm-late interval). The results of the Symbolic Cued Task replicated both the temporal orienting deficit in right frontal patients and the absence of foreperiod effects in both right and left frontal patients, reported in our previous study (Triviño, Correa, Arnedo, & Lupiañez, 2010). However, in the Rhythm Cued Task, the right frontal group showed normal temporal orienting and foreperiod effects, while the left frontal group showed a significant deficit of both effects. These findings show that automatic temporal preparation, as induced by a rhythm, can help frontal patients to make effective use of implicit temporal information to respond at the optimum time. Our neuropsychological findings also provide a novel suggestion for a neural model, in which automatic temporal preparation is left-lateralized and controlled temporal preparation is right-lateralized in the frontal lobes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy

    PubMed Central

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-01-01

    Study Objectives: Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Methods: Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Results: Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Conclusions: Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. Citation: Filardi M, Pizza F, Bruni O, Natale V, Plazzi G. Circadian rest-activity rhythm in pediatric type 1 narcolepsy. SLEEP 2016;39(6):1241–1247. PMID:27091539

  1. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    PubMed

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  2. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation.

    PubMed

    Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J

    2018-05-23

    Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.

  3. Detecting Rhythms in Time Series with RAIN

    PubMed Central

    Thaben, Paul F.; Westermark, Pål O.

    2014-01-01

    A fundamental problem in research on biological rhythms is that of detecting and assessing the significance of rhythms in large sets of data. Classic methods based on Fourier theory are often hampered by the complex and unpredictable characteristics of experimental and biological noise. Robust nonparametric methods are available but are limited to specific wave forms. We present RAIN, a robust nonparametric method for the detection of rhythms of prespecified periods in biological data that can detect arbitrary wave forms. When applied to measurements of the circadian transcriptome and proteome of mouse liver, the sets of transcripts and proteins with rhythmic abundances were significantly expanded due to the increased detection power, when we controlled for false discovery. Validation against independent data confirmed the quality of these results. The large expansion of the circadian mouse liver transcriptomes and proteomes reflected the prevalence of nonsymmetric wave forms and led to new conclusions about function. RAIN was implemented as a freely available software package for R/Bioconductor and is presently also available as a web interface. PMID:25326247

  4. The effect of lens aging and cataract surgery on circadian rhythm.

    PubMed

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  5. Respiratory modulation of human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    2001-01-01

    We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.

  6. Circadian rhythm of body temperature in an ectotherm (Iguana iguana).

    PubMed

    Tosini, G; Menaker, M

    1995-09-01

    Ectothermic animals regulate their body temperatures primarily by behavioral adjustment in relation to the thermal characteristics of the environment. Several studies have shown that some vertebrate ectotherms may show a daily pattern of body temperature selection when given a choice of environmental temperature. The pattern of body temperature selection free-runs when the animals are kept in constant darkness, demonstrating the existence of circadian regulation. To test whether there might also be a low amplitude circadian rhythm of body temperature itself, we examined the pattern of body temperature and locomotor activity of the lizard Iguana iguana held in a constant environmental temperature. Both variables were recorded for 3 days in a light:dark cycle and then for 10 days in constant dim light (0.1 lux). Under these conditions the body temperature of the lizard oscillates with a circadian period as does the locomotor behavior. These results demonstrate for the first time that ectothermic animals may display physiologically generated circadian rhythms of body temperature similar to those recorded in endotherms. In some animals the circadian rhythms of body temperature and locomotor activity showed different free-running periods, demonstrating that the body temperature rhythm was not caused by locomotor activity and suggesting internal desyncronization of the two rhythms.

  7. Lateralized ultradian rhythms: evidence from tactile discrimination of either hand.

    PubMed

    Meier-Koll, A

    1998-12-01

    Endogenous ultradian rhythms with periods of one or a few hours affect not only on physiological and behavioural functions but also perception and cognition. In particular, lateralized ultradian rhythms which seem to operate separately in the right and left hemispheres of the brain can be monitored by testing the tactile discrimination of the contralateral hand. The present paper is based on two subsequent studies: First, ultradian rhythms in tactile discrimination of either hand were examined in German subjects under laboratory conditions. Considerably different ultradian periods of right and left-handed tactile error rate were found in men but not in women. In a second study, a group of Kenyan Masai shepherds were tested while the subjects were leading herds on daily feeding routes through a savanna habitat. They showed ultradian periods of about 2 hours in tactile discrimination of either hand. Since the right hemisphere is specialized for visuospatial, the left for verbal processing lateralized ultradian rhythms may serve for a long-scale timing of neural processes underlying spatial and semantic mapping of the environment. Sex difference in German subjects and lateral differences found in left-handed (right-hemispheric) ultradian rhythms of German and Masai subjects are discussed from this point of view.

  8. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    PubMed

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  9. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    PubMed Central

    2010-01-01

    Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist) and parecoxib (a selective cyclooxygenase-2 inhibitor) on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals) were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG) desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity), while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect. PMID:20089200

  10. Cross-modal perception of rhythm in music and dance by cochlear implant users.

    PubMed

    Vongpaisal, Tara; Monaghan, Melanie

    2014-05-01

    Two studies examined adult cochlear implant (CI) users' ability to match auditory rhythms occurring in music to visual rhythms occurring in dance (Cha Cha, Slow Swing, Tango and Jive). In Experiment 1, adults CI users (n = 10) and hearing controls matched a music excerpt to choreographed dance sequences presented as silent videos. In Experiment 2, participants matched a silent video of a dance sequence to music excerpts. CI users were successful in detecting timing congruencies across music and dance at well above-chance levels suggesting that they were able to process distinctive auditory and visual rhythm patterns that characterized each style. However, they were better able to detect cross-modal timing congruencies when the reference was an auditory rhythm than when the reference was a visual rhythm. Learning strategies that encourage cross-modal learning of musical rhythms may have applications in developing novel rehabilitative strategies to enhance music perception and appreciation outcomes of child implant users.

  11. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    PubMed Central

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta; Kiehn, Ole

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion. PMID:28128321

  12. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists.

    PubMed

    Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina

    2018-01-01

    Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.

  13. Effects of education on aging-related cortical thinning among cognitively normal individuals.

    PubMed

    Kim, Jun Pyo; Seo, Sang Won; Shin, Hee Young; Ye, Byoung Seok; Yang, Jin-Ju; Kim, Changsoo; Kang, Mira; Jeon, Seun; Kim, Hee Jin; Cho, Hanna; Kim, Jung-Hyun; Lee, Jong-Min; Kim, Sung Tae; Na, Duk L; Guallar, Eliseo

    2015-09-01

    We aimed to investigate the relationship between education and cortical thickness in cognitively normal individuals to determine whether education attenuated the association of advanced aging and cortical thinning. A total of 1,959 participants, in whom education levels were available, were included in the final analysis. Cortical thickness was measured on high-resolution MRIs using a surface-based method. Multiple linear regression analysis was performed for education level and cortical thickness, after controlling for possible confounders. High levels of education were correlated with increased mean cortical thickness throughout the entire cortex (p = 0.003). This association persisted after controlling for vascular risk factors. Statistical maps of cortical thickness showed that the high levels of education were correlated with increased cortical thickness in the bilateral premotor areas, anterior cingulate cortices, perisylvian areas, right superior parietal lobule, left lingual gyrus, and occipital pole. There were also interactive effects of age and education on the mean cortical thickness (p = 0.019). Our findings suggest the protective effect of education on cortical thinning in cognitively normal older individuals, regardless of vascular risk factors. This effect was found only in the older participants, suggesting that the protective effects of education on cortical thickness might be achieved by increased resistance to structural loss from aging rather than by simply providing a fixed advantage in the brain. © 2015 American Academy of Neurology.

  14. Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones.

    PubMed

    Mong, Jessica A; Baker, Fiona C; Mahoney, Megan M; Paul, Ketema N; Schwartz, Michael D; Semba, Kazue; Silver, Rae

    2011-11-09

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master "circadian clock" within the suprachiasmatic nucleus, modulate photic effects on activity in males point to novel mechanisms of circadian control. Work in aromatase-deficient mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a Mini-Symposium at the 2011 annual meeting of the Society for Neuroscience.

  15. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    PubMed

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  16. Circadian rhythms, time-restricted feeding, and healthy aging.

    PubMed

    Manoogian, Emily N C; Panda, Satchidananda

    2017-10-01

    Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Horowitz, J. M.; Hsieh, A. C. L.

    1974-01-01

    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature.

  18. Rhythm and timing in autism: learning to dance

    PubMed Central

    Amos, Pat

    2013-01-01

    In recent years, a significant body of research has focused on challenges to neural connectivity as a key to understanding autism. In contrast to attempts to identify a single static, primarily brain-based deficit, children and adults diagnosed with autism are increasingly perceived as out of sync with their internal and external environments in dynamic ways that must also involve operations of the peripheral nervous systems. The noisiness that seems to occur in both directions of neural flow may help explain challenges to movement and sensing, and ultimately to entrainment with circadian rhythms and social interactions across the autism spectrum, profound differences in the rhythm and timing of movement have been tracked to infancy. Difficulties with self-synchrony inhibit praxis, and can disrupt the “dance of relationship” through which caregiver and child build meaning. Different sensory aspects of a situation may fail to match up; ultimately, intentions and actions themselves may be uncoupled. This uncoupling may help explain the expressions of alienation from the actions of one's body which recur in the autobiographical autism literature. Multi-modal/cross-modal coordination of different types of sensory information into coherent events may be difficult to achieve because amodal properties (e.g., rhythm and tempo) that help unite perceptions are unreliable. One question posed to the connectivity research concerns the role of rhythm and timing in this operation, and whether these can be mobilized to reduce overload and enhance performance. A case is made for developmental research addressing how people with autism actively explore and make sense of their environments. The parent/author recommends investigating approaches such as scaffolding interactions via rhythm, following the person's lead, slowing the pace, discriminating between intentional communication and “stray” motor patterns, and organizing information through one sensory mode at a time. PMID

  19. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  20. Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro

    PubMed Central

    Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.

    2010-01-01

    Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636

  1. Impact of treatment crossovers on clinical outcomes in the rate and rhythm control strategies for atrial fibrillation: Insights from the AFFIRM (Atrial Fibrillation Follow-up Investigation of Rhythm Management) trial.

    PubMed

    Maan, Abhishek; Zhang, Zheng; Qin, Ziling; Wang, Yanbing; Dudley, Samuel; Dabhadakar, Kaustubh; Refaat, Marwan; Mansour, Moussa; Ruskin, Jeremy N; Heist, E Kevin

    2017-07-01

    We investigated the rates and reasons for crossover to alternative treatment strategies and its impact on mortality in patients who were enrolled in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) trial. Over a mean follow-up period of 3.5 years, 842 patients underwent crossover to the alternative treatment arms in AFFIRM. The rate of crossover from rhythm to rate control (594/2,033, 29.2%) was more frequent than the rate of crossover from rate to rhythm control (248/2,027, 12.2%, P < 0.0001). The leading reasons for crossover from rhythm to rate control were failure to achieve or maintain sinus rhythm (272/594, 45.8%) and intolerable adverse effects (122/594, 20.5%). In comparison, the major reasons for crossover from rate to rhythm control were failure to control atrial fibrillation symptoms (159/248, 64.1%) and intolerable adverse effects (9/248, 3.6%). This difference in crossover pattern was statistically significant (P < 0.0001). There was a significantly decreased risk of all-cause mortality (adjusted HR: 0.61, 95% CI: 0.48-0.78, P < 0.0001) and cardiac mortality (adjusted hazard ratio [HR]: 0.61, 95% confidence interval [CI]: 0.43-0.88, P = 0.008) in the subgroup of patients who crossed over from rhythm to rate control as compared to those who continued in rhythm control. There was a nonsignificant trend toward decreased all-cause (adjusted HR: 0.76, 95% CI: 0.53-1.10, P = 0.14) and cardiac mortality (adjusted HR: 0.70, 95% CI: 0.42-1.18, P = 0.18) in patients who crossed over from rate to rhythm control as compared to those who continued rate control. © 2017 Wiley Periodicals, Inc.

  2. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    PubMed

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  3. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.

    PubMed

    Tombini, Mario; Rigosa, Jacopo; Zappasodi, Filippo; Porcaro, Camillo; Citi, Luca; Carpaneto, Jacopo; Rossini, Paolo Maria; Micera, Silvestro

    2012-01-01

    Interfacing an amputee's upper-extremity stump nerves to control a robotic hand requires training of the individual and algorithms to process interactions between cortical and peripheral signals. To evaluate for the first time whether EEG-driven analysis of peripheral neural signals as an amputee practices could improve the classification of motor commands. Four thin-film longitudinal intrafascicular electrodes (tf-LIFEs-4) were implanted in the median and ulnar nerves of the stump in the distal upper arm for 4 weeks. Artificial intelligence classifiers were implemented to analyze LIFE signals recorded while the participant tried to perform 3 different hand and finger movements as pictures representing these tasks were randomly presented on a screen. In the final week, the participant was trained to perform the same movements with a robotic hand prosthesis through modulation of tf-LIFE-4 signals. To improve the classification performance, an event-related desynchronization/synchronization (ERD/ERS) procedure was applied to EEG data to identify the exact timing of each motor command. Real-time control of neural (motor) output was achieved by the participant. By focusing electroneurographic (ENG) signal analysis in an EEG-driven time window, movement classification performance improved. After training, the participant regained normal modulation of background rhythms for movement preparation (α/β band desynchronization) in the sensorimotor area contralateral to the missing limb. Moreover, coherence analysis found a restored α band synchronization of Rolandic area with frontal and parietal ipsilateral regions, similar to that observed in the opposite hemisphere for movement of the intact hand. Of note, phantom limb pain (PLP) resolved for several months. Combining information from both cortical (EEG) and stump nerve (ENG) signals improved the classification performance compared with tf-LIFE signals processing alone; training led to cortical reorganization and

  4. Cortical thickness in neuropsychologically near-normal schizophrenia.

    PubMed

    Cobia, Derin J; Csernansky, John G; Wang, Lei

    2011-12-01

    Schizophrenia is a severe psychiatric illness with widespread impairments of cognitive functioning; however, a certain percentage of subjects are known to perform in the normal range on neuropsychological measures. While the cognitive profiles of these individuals have been examined, there has been relatively little attention to the neuroanatomical characteristics of this important subgroup. The aims of this study were to statistically identify schizophrenia subjects with relatively normal cognition, examine their neuroanatomical characteristics relative to their more impaired counterparts using cortical thickness mapping, and to investigate relationships between these characteristics and demographic variables to better understand the nature of cognitive heterogeneity in schizophrenia. Clinical, neuropsychological, and MRI data were collected from schizophrenia (n = 79) and healthy subjects (n = 65). A series of clustering algorithms on neuropsychological scores was examined, and a 2-cluster solution that separated subjects into neuropsychologically near-normal (NPNN) and neuropsychologically impaired (NPI) groups was determined most appropriate. Surface-based cortical thickness mapping was utilized to examine differences in thinning among schizophrenia subtypes compared with the healthy participants. A widespread cortical thinning pattern characteristic of schizophrenia emerged in the NPI group, while NPNN subjects demonstrated very limited thinning relative to healthy comparison subjects. Analysis of illness duration indicated minimal effects on subtype classification and cortical thickness results. Findings suggest a strong link between cognitive impairment and cortical thinning in schizophrenia, where subjects with near-normal cognitive abilities also demonstrate near-normal cortical thickness patterns. While generally supportive of distinct etiological processes for cognitive subtypes, results provide direction for further examination of additional

  5. Circadian rhythm asynchrony in man during hypokinesis.

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  6. Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.

    PubMed

    Cameron, Daniel J; Grahn, Jessica A

    2014-01-01

    The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  7. Interaction with Mass Media: The Importance of Rhythm and Tempo.

    ERIC Educational Resources Information Center

    Snow, Robert P.

    1987-01-01

    Stresses that understanding the impact of interaction with mass media requires conceptualizing media as an institutionalized social form. A critical feature of this process is the grammatical character of media interaction in the form of rhythm and tempo, because these rhythms and tempos become established in everyday routine. (SKC)

  8. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blotmore » analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a

  9. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  10. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  11. Children's Aural and Kinesthetic Understanding of Rhythm: Developing an Instructional Model

    ERIC Educational Resources Information Center

    Foley, Adam D.

    2013-01-01

    The purpose of this study was to develop a deeper understanding of aural and kinesthetic rhythm skill development in elementary school-age children. In this study, I examined my curriculum model for rhythm understanding, which included creating and implementing assessments of movement skills in meter and rhythm. The research questions were: 1.…

  12. Rhythm perturbations in acoustically paced treadmill walking after stroke.

    PubMed

    Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J

    2009-09-01

    In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.

  13. Rhythm sensitivity in macaque monkeys

    PubMed Central

    Selezneva, Elena; Deike, Susann; Knyazeva, Stanislava; Scheich, Henning; Brechmann, André; Brosch, Michael

    2013-01-01

    This study provides evidence that monkeys are rhythm sensitive. We composed isochronous tone sequences consisting of repeating triplets of two short tones and one long tone which humans perceive as repeating triplets of two weak and one strong beat. This regular sequence was compared to an irregular sequence with the same number of randomly arranged short and long tones with no such beat structure. To search for indication of rhythm sensitivity we employed an oddball paradigm in which occasional duration deviants were introduced in the sequences. In a pilot study on humans we showed that subjects more easily detected these deviants when they occurred in a regular sequence. In the monkeys we searched for spontaneous behaviors the animals executed concomitant with the deviants. We found that monkeys more frequently exhibited changes of gaze and facial expressions to the deviants when they occurred in the regular sequence compared to the irregular sequence. In addition we recorded neuronal firing and local field potentials from 175 sites of the primary auditory cortex during sequence presentation. We found that both types of neuronal signals differentiated regular from irregular sequences. Both signals were stronger in regular sequences and occurred after the onset of the long tones, i.e., at the position of the strong beat. Local field potential responses were also significantly larger for the durational deviants in regular sequences, yet in a later time window. We speculate that these temporal pattern-selective mechanisms with a focus on strong beats and their deviants underlie the perception of rhythm in the chosen sequences. PMID:24046732

  14. Comparison of hormone and electrolyte circadian rhythms in male and female humans

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Goodwin, A. E.; Reilly, T.

    1977-01-01

    Circadian rhythm characteristics in healthy male and female humans were studied at 4-hour intervals for urine volume, cortisol, 5-hydroxyindoleacetic acid (5-HIAA), Na, K, Na/K ratios in the urine, as well as plasma cortisol. While plasma and urinary cortisol rhythms were very similar in both sexes, the described rhythms in urine volume, electrolyte, and 5-HIAA excretion differ for the two sexes. The results suggest that sex differences exist in the circadian patterns of important hormone and metabolic functions and that the internal synchrony of circadian rhythms differs for the two sexes. The results seem to indicate that the rhythmical secretion of cortisol does not account for the pattern of Na and K excretion.

  15. Alteration of circadian rhythm during epileptogenesis: implications for the suprachiasmatic nucleus circuits.

    PubMed

    Xiang, Yan; Li, Zhi-Xiao; Zhang, Ding-Yu; He, Zhi-Gang; Hu, Ji; Xiang, Hong-Bing

    2017-01-01

    It is important to realize that characterization of the circadian rhythm patterns of seizure occurrence can implicate in diagnosis and treatment of selected types of epilepsy. Evidence suggests a role for the suprachiasmatic nucleus (SCN) circuits in overall circadian rhythm and seizure susceptibility both in animals and humans. Thus, we conclude that SCN circuits may exert modifying effects on circadian rhythmicity and neuronal excitability during epileptogenesis. SCN circuits will be studied in our brain centre and collaborating centres to explore further the interaction between the circadian rhythm and epileptic seizures. More and thorough research is warranted to provide insight into epileptic seizures with circadian disruption comorbidities such as disorders of cardiovascular parameters and core body temperature circadian rhythms.

  16. Dopaminergic Regulation of Circadian Food Anticipatory Activity Rhythms in the Rat

    PubMed Central

    Smit, Andrea N.; Patton, Danica F.; Michalik, Mateusz; Opiol, Hanna; Mistlberger, Ralph E.

    2013-01-01

    Circadian activity rhythms are jointly controlled by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) and by food-entrainable circadian oscillators (FEOs) located elsewhere. The SCN mediates synchrony to daily light-dark cycles, whereas FEOs generate activity rhythms synchronized with regular daily mealtimes. The location of FEOs generating food anticipation rhythms, and the pathways that entrain these FEOs, remain to be clarified. To gain insight into entrainment pathways, we developed a protocol for measuring phase shifts of anticipatory activity rhythms in response to pharmacological probes. We used this protocol to examine a role for dopamine signaling in the timing of circadian food anticipation. To generate a stable food anticipation rhythm, rats were fed 3h/day beginning 6-h after lights-on or in constant light for at least 3 weeks. Rats then received the D2 agonist quinpirole (1 mg/kg IP) alone or after pretreatment with the dopamine synthesis inhibitor α-methylparatyrosine (AMPT). By comparison with vehicle injections, quinpirole administered 1-h before lights-off (19h before mealtime) induced a phase delay of activity onset prior to the next meal. Delay shifts were larger in rats pretreated with AMPT, and smaller following quinpirole administered 4-h after lights-on. A significant shift was not observed in response to the D1 agonist SKF81297. These results provide evidence that signaling at D2 receptors is involved in phase control of FEOs responsible for circadian food anticipatory rhythms in rats. PMID:24312417

  17. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    PubMed

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  18. Sleep and circadian rhythm disruption in neuropsychiatric illness.

    PubMed

    Jagannath, Aarti; Peirson, Stuart N; Foster, Russell G

    2013-10-01

    Sleep and circadian rhythm disruption (SCRD) is a common feature in many neuropsychiatric diseases including schizophrenia, bipolar disorder and depression. Although the precise mechanisms remain unclear, recent evidence suggests that this comorbidity is not simply a product of medication or an absence of social routine, but instead reflects commonly affected underlying pathways and mechanisms. For example, several genes intimately involved in the generation and regulation of circadian rhythms and sleep have been linked to psychiatric illness. Further, several genes linked to mental illness have recently been shown to also play a role in normal sleep and circadian behaviour. Here we describe some of the emerging common mechanisms that link circadian rhythms, sleep and SCRD in severe mental illnesses. A deeper understanding of these links will provide not only a greater understanding of disease mechanisms, but also holds the promise of novel avenues for therapeutic intervention. Copyright © 2013. Published by Elsevier Ltd.

  19. The effect of lens aging and cataract surgery on circadian rhythm

    PubMed Central

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm. PMID:27500118

  20. [NEUROSEMANTIC AND PSYCHOPHYSIOLOGICAL CORRELATES OF RHYTHM-SUGGESTIVE CORRECTION OF STRESS CONDITIONS].

    PubMed

    Ushakov, I B; Ivanov, A V; Kvasovets, S V; Bubeev, Yu A

    2015-01-01

    Correlates of successful rhythm-suggestive compensation of stress in sportsmen with neurotic symptoms developed in consequence of painful experience of failure were studied. Effectiveness of the rhythm-suggestive and rational psychological methods was compared by measuring the evoked potentials response to emotionally significant extramental verbal stimuli and images, and using psychophysiological test MASTER to track dynamics of a number of body functional parameters. The rational compensation has been shown to reduce the psychic tension and to set right the voluntary control process. Rhythm-suggestive programs are good for compensation of post-stress emotions and affectations, and the involuntary control process. It was found that correction potentialities of the rhythm-suggestive programs together with the psychodiagnostic advantages of test MASTER are promising instruments for dynamic monitoring of the mental state with the aim to prevent workplace stresses and to provide rehabilitation treatment of aftermaths.

  1. Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones

    PubMed Central

    Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae

    2011-01-01

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663

  2. Rhythm's Gonna Get You: Regular Meter Facilitates Semantic Sentence Processing

    ERIC Educational Resources Information Center

    Rothermich, Kathrin; Schmidt-Kassow, Maren; Kotz, Sonja A.

    2012-01-01

    Rhythm is a phenomenon that fundamentally affects the perception of events unfolding in time. In language, we define "rhythm" as the temporal structure that underlies the perception and production of utterances, whereas "meter" is defined as the regular occurrence of beats (i.e. stressed syllables). In stress-timed languages such as German, this…

  3. Speech Rhythm: Its Relation to Performance Universals and Articulatory Timing

    ERIC Educational Resources Information Center

    Allen, George D.

    1975-01-01

    The relationship between the rhythms of spoken language and the rhythms of other human behavior is examined in terms of: (1) types of rhythmic structures observed, (2) rate of succession of rhythmic units, (3) a perceptual tendency equalization of physically unequal intervals, and (4) the variability of rhythmic motor action. (Author/RM)

  4. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    PubMed

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P < 0.05). During the swing and stance phases, the kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P < 0.05). The therapeutic effect may be further enhanced in the kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking

  5. The parathyroid hormone circadian rhythm is truly endogenous--a general clinical research center study

    NASA Technical Reports Server (NTRS)

    el-Hajj Fuleihan, G.; Klerman, E. B.; Brown, E. N.; Choe, Y.; Brown, E. M.; Czeisler, C. A.

    1997-01-01

    While circulating levels of PTH follow a diurnal pattern, it has been unclear whether these changes are truly endogenous or are dictated by external factors that themselves follow a diurnal pattern, such as sleep-wake cycles, light-dark cycles, meals, or posture. We evaluated the diurnal rhythm of PTH in 11 normal healthy male volunteers in our Intensive Physiologic Monitoring Unit. The first 36 h spent under baseline conditions were followed by 28-40 h of constant routine conditions (CR; enforced wakefulness in the strict semirecumbent position, with the consumption of hourly snacks). During baseline conditions, PTH levels followed a bimodal diurnal rhythm with an average amplitude of 4.2 pg/mL. A primary peak (t1max) occurred at 0314 h, and the secondary peak (t2max) occurred at 1726 h, whereas the primary and secondary nadirs (t1min and t2min) took place, on the average, at 1041 and 2103 h, respectively. This rhythm was preserved under CR conditions, albeit with different characteristics, thus confirming its endogenous nature. The serum ionized calcium (Cai) demonstrated a rhythm in 3 of the 5 subjects studied that varied widely between individuals and did not have any apparent relation to PTH. Urinary calcium/creatinine (UCa/Cr), phosphate/Cr (UPO4/Cr), and sodium/Cr (UNa/Cr) ratios all followed a diurnal rhythm during the baseline day. These rhythms persisted during the CR, although with different characteristics for the first two parameters, whereas that of UNa/Cr was unchanged. In general, the temporal pattern for the UCa/Cr curve was a mirror image of the PTH curve, whereas the UPO4/Cr pattern moved in parallel with the PTH curve. In conclusion, PTH levels exhibit a diurnal rhythm that persists during a CR, thereby confirming that a large component of this rhythm is an endogenous circadian rhythm. The clinical relevance of this rhythm is reflected in the associated rhythms of biological markers of PTH effect at the kidney, namely UCa/Cr and UPO4/Cr.

  6. Subjective alertness rhythms in elderly people

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.

    1996-01-01

    The aim of this study was to evaluate age-related changes in the circadian rhythm of subjective alertness and to explore the circadian mechanisms underlying such changes. Using a visual analogue scale (VAS) instrument, 25 older men and women (71 y and older; 15 female, 10 male) rated their subjective alertness about 7 times per day during 5 baseline days of temporal isolation during which habitual bedtimes and waketimes were enforced. Comparisons were made with 13 middle-aged men (37-52 y) experiencing the same protocol. Advancing age (particularly in the men) resulted in less rhythmic alertness patterns, as indicated by lower amplitudes and less reliability of fitted 24-h sinusoids. This appeared in spite of the absence of any reliable age-related diminution in circadian temperature rhythm amplitude, thus suggesting the effect was not due to SCN weakness per se, but to weakened transduction of SCN output. In a further experiment, involving 36 h of constant wakeful bedrest, differences in the amplitude of the alertness rhythm were observed between 9 older men (79 y+), 7 older women (79 y+), and 17 young controls (9 males, 8 females, 19-28 y) suggesting that with advancing age (particularly in men) there is less rhythmic input into subjective alertness from the endogenous circadian pacemaker. These results may explain some of the nocturnal insomnia and daytime hypersomnia that afflict many elderly people.

  7. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior.

    PubMed

    Kwon, Jea; Park, Min Gu; Lee, Seung Eun; Lee, C Justin

    2018-02-01

    Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable "touch activity" from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.

  8. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    PubMed

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  9. The participation of cortical amygdala in innate, odor-driven behavior

    PubMed Central

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  10. Brain cortical characteristics of lifetime cognitive ageing.

    PubMed

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r < 0.180, FDR-corrected q < 0.05). There were no significant associations between cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  11. Role of diabetes in heart rhythm disorders

    PubMed Central

    Koektuerk, Buelent; Aksoy, Murat; Horlitz, Marc; Bozdag-Turan, Ilkay; Turan, Ramazan Goekmen

    2016-01-01

    The incidence of diabetes mellitus (DM) is increasing rapidly. DM is the leading cause of cardiovascular diseases, which can lead to varied cardiovascular complications by aggravated atherosclerosis in large arteries and coronary atherosclerosis, thereby grows the risk for macro and microangiopathy such as myocardial infarction, stroke, limb loss and retinopathy. Moreover diabetes is one of the strongest and independent risk factor for cardiovascular morbidity and mortality, which is associated frequently with rhythm disorders such as atrial fibrillation (AF) and ventricular arrhythmias (VA). The present article provides a concise overview of the association between DM and rhythm disorders such as AF and VA with underlying pathophysiological mechanisms. PMID:26862372

  12. A circadian rhythm of conidiation in Neurospora crassa (L-12)

    NASA Technical Reports Server (NTRS)

    Miyoshi, Yashuhiro

    1993-01-01

    Two fungi growth chambers containing six growth tubes each are used in this experiment. One chamber is for the space experiment; the other is for the simultaneous ground control experiment. The hyphae of Neurospora crassa band A mutant are inoculated at one end of each tube. Both the chambers are kept at 3 C plus or minus 1.5 C to stop hyphae growth until the Spacelab is activated. After the activation, each chamber is transferred simultaneously to the Spacelab and a phytotron in KSC and kept in continuous light at the same temperature. After about 24 hours of light exposure, each chamber is inserted into a growth chamber bag to keep it in constant darkness. The circadian rhythm of conidiation is initiated by this light to dark transition. After the dark incubation for 5 days at room temperature, both the growth chambers are kept at 3 C plus or minus 1.5 C to stop growth of the hyphae. After the space shuttle lands, both conidiation patterns are compared and analyzed. It has been known that numerous physiological phenomena show circadian rhythms. They are characterized by the fact that the oscillation can persist under constant conditions of light and temperature. Therefore, it has been accepted by most investigators that the generation mechanism of the circadian rhythm is endogeneous. However, one cannot reject the possibility that these rhythms are caused by some geophysical exogeneous factor having a 24-hour period, such as atmospheric pressure, gravity, or electromagnetic radiation. We use Neurospora crassa band A mutual which shows an obvious circadian rhythm in its spore-forming (conidiation) on the ground, and we intend to attempt the conidation of this mutant in the Spacelab where 24-hour periodicity is severely attenuated and to elucidate the effect of the geophysical exogeneous factor in the generation mechanism of the circadian rhythm.

  13. Light and Gravity Effects on Circadian Rhythms of Rhesus Macaques

    NASA Technical Reports Server (NTRS)

    Fuller, Charles

    1997-01-01

    Temporal integration of a biological organism's physiological, behavioral and biochemical systems depends upon its circadian timing system. The endogenous period of this timing system is typically synchronized to the 24- hour day by environmental cues. The daily alternation of light and dark has long been known as one of the most potent environmental synchronizers influencing the circadian timing system. Alterations in the lighting environment (length or intensity of light exposure) can also affect the homeostatic state of the organism. A series of experiments was performed using rhesus monkeys with the objective of defining the fundamental properties of the circadian rhythm of body temperature. Three major experiments were performed in addition to several preliminary studies. These experiments explored 1.) the response of the rhesus body temperature rhythm to varying day length and light intensity; 2.) the response of the body temperature rhythm to light exposure as a function of time of day; and 3.) the characteristics of the metabolic heat production rhythm which is responsible for the daily cycle in body temperature. Results of these three completed experiments will be reported here. In addition, preliminary experiments were also performed in social entrainment of rhesus circadian rhythms and the properties of rhesus body temperature rhythms in constant conditions, where no external time cues were provided. Four adult male rhesus monkeys served as subjects in all experiments. All experiments were performed at the California Regional Primate Research Center. Each animal was implanted with a biotelemetry unit that measured deep body temperature. All surgeries were performed by a board certified veterinary surgeon under sterile conditions. The biotelemetry implants also provided an index of activity level in each animal. For metabolic heat production measurements, oxygen consumption and carbon dioxide production were measured and the caloric equivalent of these

  14. Social rhythms of the heart

    PubMed Central

    Pantzar, Mika; Ruckenstein, Minna; Mustonen, Veera

    2017-01-01

    ABSTRACT A long-term research focus on the temporality of everyday life has become revitalised with new tracking technologies that allow methodological experimentation and innovation. This article approaches rhythms of daily lives with heart-rate variability measurements that use algorithms to discover physiological stress and recovery. In the spirit of the ‘social life of methods’ approach, we aggregated individual data (n = 35) in order to uncover temporal rhythms of daily lives. The visualisation of the aggregated data suggests both daily and weekly patterns. Daily stress was at its highest in the mornings and around eight o’clock in the evening. Weekend stress patterns were dissimilar, indicating a stress peak in the early afternoon especially for men. In addition to discussing our explorations using quantitative data, the more general aim of the article is to explore the potential of new digital and mobile physiological tracking technologies for contextualising the individual in the everyday. PMID:28163655

  15. Circadian rhythm dissociation in an environment with conflicting temporal information

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Hiles, L. G.; Moore-Ede, M. C.

    1978-01-01

    The relative contributions of light-dark (LD) cycles and eating-fasting (EF) cycles in providing temporal information to the circadian time-keeping system were examined in chair-acclimatized squirrel monkeys (Saimiri sciureus). The circadian rhythms of drinking, colonic temperature, urine volume, and urinary potassium excretion were measured with the LD and EF cycles providing either conflicting phases or periods. In conflicting phase experiments, animals were exposed to 24-hr LD cycles consisting of 12 hr of 600 lx followed by 12 hr of less than 1 lx and concurrent 24-hr EF cycles in which the animals ate for 3 hr and then fasted for 21 hr. One group had food available at the beginning and a second group at the end of the light period. In conflicting period experiments, monkeys were exposed to 23-hr LD cycles and 24-hr EF cycles. Analysis of the rhythms showed that both phase and period information were conveyed to the drinking and urinary rhythms by the EF cycle, and to the temperature rhythm by the LD cycle.

  16. Perspectives on the rhythm-grammar link and its implications for typical and atypical language development.

    PubMed

    Gordon, Reyna L; Jacobs, Magdalene S; Schuele, C Melanie; McAuley, J Devin

    2015-03-01

    This paper reviews the mounting evidence for shared cognitive mechanisms and neural resources for rhythm and grammar. Evidence for a role of rhythm skills in language development and language comprehension is reviewed here in three lines of research: (1) behavioral and brain data from adults and children, showing that prosody and other aspects of timing of sentences influence online morpho-syntactic processing; (2) comorbidity of impaired rhythm with grammatical deficits in children with language impairment; and (3) our recent work showing a strong positive association between rhythm perception skills and expressive grammatical skills in young school-age children with typical development. Our preliminary follow-up study presented here revealed that musical rhythm perception predicted variance in 6-year-old children's production of complex syntax, as well as online reorganization of grammatical information (transformation); these data provide an additional perspective on the hierarchical relations potentially shared by rhythm and grammar. A theoretical framework for shared cognitive resources for the role of rhythm in perceiving and learning grammatical structure is elaborated on in light of potential implications for using rhythm-emphasized musical training to improve language skills in children. © 2015 New York Academy of Sciences.

  17. Sleep, Memory & Brain Rhythms

    PubMed Central

    Watson, Brendon O.; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called “sharp-wave ripple” seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep–REM and non-REM, the latter of which has an abundance of ripple electrical activity–might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function. PMID:26097242

  18. Sleep, Memory & Brain Rhythms.

    PubMed

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  19. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  20. Cortical response variability as a developmental index of selective auditory attention

    PubMed Central

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory attention. We compared cortical auditory-evoked variability with attention across three age groups: preschoolers, school-aged children and young adults. Results reveal an increased impact of selective auditory attention on cortical response variability with development. Although all three age groups have equivalent response variability to attended speech, only school-aged children and adults have a distinction between attend and ignore conditions. Preschoolers, on the other hand, demonstrate no impact of attention on cortical responses, which we argue reflects the gradual emergence of attention within this age range. Outcomes are interpreted in the context of the behavioral relevance of cortical response variability and its potential to serve as a developmental index of cognitive skill. PMID:24267508

  1. Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court

    PubMed Central

    Cebolla, Ana M.; Petieau, Mathieu; Cevallos, Carlos; Leroy, Axelle; Dan, Bernard; Cheron, Guy

    2015-01-01

    In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto

  2. Resonance of about-weekly human heart rate rhythm with solar activity change.

    PubMed

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  3. Histomorphometry and cortical robusticity of the adult human femur.

    PubMed

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  4. Significance of circadian rhythms in severely brain-injured patients

    PubMed Central

    Lechinger, Julia; Santhi, Nayantara; del Giudice, Renata; Gnjezda, Maria-Teresa; Pichler, Gerald; Scarpatetti, Monika; Donis, Johann; Michitsch, Gabriele; Schabus, Manuel

    2017-01-01

    Objective: To investigate the relationship between the presence of a circadian body temperature rhythm and behaviorally assessed consciousness levels in patients with disorders of consciousness (DOC; i.e., vegetative state/unresponsive wakefulness syndrome or minimally conscious state). Methods: In a cross-sectional study, we investigated the presence of circadian temperature rhythms across 6 to 7 days using external skin temperature sensors in 18 patients with DOC. Beyond this, we examined the relationship between behaviorally assessed consciousness levels and circadian rhythmicity. Results: Analyses with Lomb-Scargle periodograms revealed significant circadian rhythmicity in all patients (range 23.5–26.3 hours). We found that especially scores on the arousal subscale of the Coma Recovery Scale–Revised were closely linked to the integrity of circadian variations in body temperature. Finally, we piloted whether bright light stimulation could boost circadian rhythmicity and found positive evidence in 2 out of 8 patients. Conclusion: The study provides evidence for an association between circadian body temperature rhythms and arousal as a necessary precondition for consciousness. Our findings also make a case for circadian rhythms as a target for treatment as well as the application of diagnostic and therapeutic means at times when cognitive performance is expected to peak. PMID:28424270

  5. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    PubMed

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  6. PET-Based Confirmation of Orientation Sensitivity of TMS-Induced Cortical Activation in Humans

    PubMed Central

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2017-01-01

    Background Currently, it is difficult to predict precise regions of cortical activation in response to transcranial magnetic stimulation (TMS). Most analytical approaches focus on applied magnetic field strength in the target region as the primary factor, placing activation on the gyral crowns. However, imaging studies support M1 targets being typically located in the sulcal banks. Objective/hypothesis To more thoroughly investigate this inconsistency, we sought to determine whether neocortical surface orientation was a critical determinant of regional activation. Methods MR images were used to construct cortical and scalp surfaces for 18 subjects. The angle (θ) between the cortical surface normal and its nearest scalp normal for ~50,000 cortical points per subject was used to quantify cortical location (i.e., gyral vs. sulcal). TMS-induced activations of primary motor cortex (M1) were compared to brain activations recorded during a finger-tapping task using concurrent positron emission tomographic (PET) imaging. Results Brain activations were primarily sulcal for both the TMS and task activations (P < 0.001 for both) compared to the overall cortical surface orientation. Also, the location of maximal blood flow in response to either TMS or finger-tapping correlated well using the cortical surface orientation angle or distance to scalp (P < 0.001 for both) as criteria for comparison between different neocortical activation modalities. Conclusion This study provides further evidence that a major factor in cortical activation using TMS is the orientation of the cortical surface with respect to the induced electric field. The results show that, despite the gyral crown of the cortex being subjected to a larger magnetic field magnitude, the sulcal bank of M1 had larger cerebral blood flow (CBF) responses during TMS. PMID:23827648

  7. Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation

    NASA Technical Reports Server (NTRS)

    Millet, C.; Custaud, M. A.; Allevard, A. M.; Zaouali-Ajina, M.; Monk, T. H.; Arnaud, S. B.; Claustrat, B.; Gharib, C.; Gauquelin-Koch, G.

    2001-01-01

    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.

  8. Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation.

    PubMed

    Millet, C; Custaud, M A; Allevard, A M; Zaouali-Ajina, M; Monk, T H; Arnaud, S B; Claustrat, B; Gharib, C; Gauquelin-Koch, G

    2001-07-01

    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.

  9. Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2012-02-01

    Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.

  10. Characteristics and classification of hippocampal θ rhythm induced by passive translational displacement.

    PubMed

    Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo

    2012-04-25

    Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Renal Cortical Pyruvate Depletion during AKI

    PubMed Central

    Johnson, Ali C.M.; Becker, Kirsten

    2014-01-01

    Pyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15–60 minutes; 0–18 hours of vascular reflow) or glycerol-induced ARF. The fate of postischemic lactate, which can be converted back to pyruvate by lactate dehydrogenase, was also addressed. Ischemia and glycerol each induced persistent pyruvate depletion. During ischemia, decreasing pyruvate levels correlated with increasing lactate levels. During early reperfusion, pyruvate levels remained depressed, but lactate levels fell below control levels, likely as a result of rapid renal lactate efflux. During late reperfusion and glycerol-induced AKI, pyruvate depletion corresponded with increased gluconeogenesis (pyruvate consumption). This finding was underscored by observations that pyruvate injection increased renal cortical glucose content in AKI but not normal kidneys. AKI decreased PDH levels, potentially limiting pyruvate to acetyl CoA conversion. Notably, pyruvate therapy mitigated the severity of AKI. This renoprotection corresponded with increases in cytoprotective heme oxygenase 1 and IL-10 mRNAs, selective reductions in proinflammatory mRNAs (e.g., MCP-1 and TNF-α), and improved tissue ATP levels. Paradoxically, pyruvate increased cortical H2O2 levels. We conclude that AKI induces a profound and persistent depletion of renal cortical pyruvate, which may induce additional injury. PMID:24385590

  12. Weak circadian rhythm increases neutropenia risk among breast cancer patients undergoing adjuvant chemotherapy.

    PubMed

    Li, Wentao; Kwok, Carol Chi-Hei; Chan, Dominic Chun-Wan; Wang, Feng; Tse, Lap Ah

    2018-04-01

    Severe neutropenia is a common dose-limiting side effect of adjuvant breast cancer chemotherapy. We aimed to test the hypothesis that weak circadian rhythm is associated with an increased risk of neutropenia using a cohort study. We consecutively recruited 193 breast cancer patients who received adjuvant chemotherapy (5-fluorouracil, epirubicin, and cyclophosphamide followed by docetaxel; doxorubicin and cyclophosphamide; docetaxel and cyclophosphamide). Participants wore a wrist actigraph continuously for 168 h at the beginning of chemotherapy. Values of percent rhythm and double amplitude below medians represented weak circadian rhythm. Mesor measured the mean activity level and acrophase symboled the peak time of the rhythm. We used Cox proportional hazard regression model to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) of grade 4 neutropenia and febrile neutropenia in relation to actigraphy-derived parameters. Low levels of percent rhythm (HR:2.59, 95% CI 1.50-4.72), double amplitude (HR:2.70, 95% CI 1.51-4.85), and mesor (HR: 2.48, 95% CI 1.44-4.29) were positively associated with the risk of grade 4 neutropenia during chemotherapy. Low levels of percent rhythm (HR: 2.41, 95% CI 1.02-5.69) and double amplitude (HR:2.49, 95% CI 1.05-5.90) were also associated with increased risks of febrile neutropenia. The HRs for acrophase were not statistically significant. This study provides the first epidemiological evidence that increased risks of grade 4 neutropenia and febrile neutropenia are associated with weak circadian rhythm among adjuvant breast cancer patients. The results suggest that circadian rhythm might be one potential target for the prevention of chemotherapy-induced neutropenia among cancer patients.

  13. Analysis of ultradian heat production and aortic core temperature rhythms in the rat.

    PubMed

    Gómez-Sierra, J M; Canela, E I; Esteve, M; Rafecas, I; Closa, D; Remesar, X; Alemany, M

    1993-01-01

    The rhythms of aortic core temperature and overall heat production in Wistar rats was analyzed by using long series of recordings of temperature obtained from implanted thermocouple probes and heat release values from a chamber calorimeter. There was a very high degree of repetitiveness in the presentation of actual heat rhythms, with high cross-correlation values ascertained wit paired periodograms. No differences were observed between heat production between male and female adult rats. The cross-correlation for temperature gave similar figures. The cross-correlation study between heat production and aortic core temperature in the same animals was significant and showed a displacement of about 30 minutes between heat release and aortic core temperature. The analysis of heat production showed a strong predominance of rhythms with periods of 24 hours (frequencies < 11.6 microHz) or more; other rhythms detected (of roughly the same relative importance) had periods of 8 or 2.2 hours (35 or 126 microHz, respectively). The analysis of aortic core temperature showed a smaller quantitative contribution of the 8 or 2.2 hours (35 or 126 microHz) rhythms, with other harmonic rhythms interspersed (5.1 and 4.0 hours, i.e. 54 and 69 microHz). The proportion of 'noise' or cycles lower than 30 minutes (< 550 microHz) was higher in internal temperature than in the actual release of heat. The results are in agreement with the existence of a basic period of about 130 minutes (126 microHz) of warming/cooling of the blood, with a number of other harmonic rhythms superimposed upon the basic circadian rhythm.

  14. Validation of Electromechanical Wave Imaging in a canine model during pacing and sinus rhythm

    PubMed Central

    Grondin, Julien; Costet, Alexandre; Bunting, Ethan; Gambhir, Alok; Garan, Hasan; Wan, Elaine; Konofagou, Elisa E.

    2016-01-01

    Background Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium following electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. Objectives The objectives of this study are to investigate the relationship between electromechanical and electrical activation of the left-ventricular (LV) endocardial surface during epicardial and endocardial pacing as well as during sinus rhythm and also to investigate the distribution of electromechanical delays. Methods In this study, six canines were investigated. Two external electrodes were sutured onto the epicardial surface of the left ventricle (LV). A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing as well as during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter respectively. Results The mean correlation coefficient between electromechanical and electrical activation was R=0.81 for epicardial anterior pacing, R=0.79 for epicardial lateral pacing, R=0.69 for endocardial pacing and R=0.56 for sinus rhythm. Conclusions The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy. PMID:27498277

  15. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression*

    PubMed Central

    Smith, Spenser S.; Dole, Neha S.; Franceschetti, Tiziana; Hrdlicka, Henry C.; Delany, Anne M.

    2016-01-01

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3′-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. PMID:27551048

  16. Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal Enuresis.

    PubMed

    Dossche, L; Raes, A; Hoebeke, P; De Bruyne, P; Vande Walle, J

    2016-01-01

    Although nocturnal polyuria in patients with monosymptomatic enuresis can largely be explained by the decreased nocturnal vasopressin secretion hypothesis, other circadian rhythms in the kidney also seem to have a role. We recently documented an absent day/night rhythm in a subgroup of desmopressin refractory cases. We explore the importance of abnormal circadian rhythm of glomerular filtration and tubular (sodium, potassium) parameters in patients with monosymptomatic enuresis. In this retrospective study of a tertiary enuresis population we collected data subsequent to a standardized screening (International Children's Continence Society questionnaire), 14-day diary for nocturnal enuresis and diuresis, and 24-hour concentration profile. The study population consisted of 139 children with nocturnal enuresis who were 5 years or older. Children with nonmonosymptomatic nocturnal enuresis were used as controls. There was a maintained circadian rhythm of glomerular filtration, sodium, osmotic excretion and diuresis rate in children with monosymptomatic and nonmonosymptomatic nocturnal enuresis, and there was no difference between the 2 groups. Secondary analysis revealed that in patients with nocturnal polyuria (with monosymptomatic or nonmonosymptomatic nocturnal enuresis) circadian rhythm of glomerular filtration, sodium and osmotic excretion, and diuresis rate was diminished in contrast to those without nocturnal polyuria (p <0.001). Circadian rhythm of the kidney does not differ between patients with nonmonosymptomatic and monosymptomatic enuresis. However, the subgroup with enuresis and nocturnal polyuria has a diminished circadian rhythm of nocturnal diuresis, sodium excretion and glomerular filtration in contrast to children without nocturnal polyuria. This observation cannot be explained by the vasopressin theory alone. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    NASA Astrophysics Data System (ADS)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  18. From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    NASA Astrophysics Data System (ADS)

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-03-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  19. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    PubMed

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P < .001) in children and adolescents with hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  20. Laminar Profile of Spontaneous and Evoked Theta: Rhythmic Modulation of Cortical Processing During Word Integration

    PubMed Central

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S.; Wang, Chunmao; Schomer, Donald L.; Madsen, Joseph R.; Ulbert, Istvan

    2015-01-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context. PMID:25801916

  1. Circadian intraocular pressure rhythms in athletic horses under different lighting regime.

    PubMed

    Bertolucci, Cristiano; Giudice, Elisabetta; Fazio, Francesco; Piccione, Giuseppe

    2009-02-01

    The present study was undertaken to investigate the existence of intraocular pressure (IOP) rhythms in athletic thoroughbred horses maintained under a 24 h cycle of light and darkness (LD) or under constant light (LL) or constant dark (DD) conditions. We identified an IOP circadian rhythm that is entrained to the 24 h LD cycle. IOP was low during the dark phase and high during the light phase, with a peak at the end of the light phase (ZT10). The circadian rhythm of IOP persisted in DD (with a peak at CT9.5), demonstrating an endogenous component in IOP rhythm. As previously shown in other mammalian species, horse IOP circadian rhythmicity was abolished in LL. Because tonometry is performed in horses for the diagnosis of ophthalmologic diseases, such as glaucoma or anterior uveitis, the daily variation in IOP must be taken into account in clinical practice to properly time tests and to interpret clinical findings.

  2. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    USDA-ARS?s Scientific Manuscript database

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  3. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    PubMed

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    PubMed

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  5. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  6. Ultrasound evaluation of valsartan therapy for renal cortical perfusion.

    PubMed

    Kishimoto, Noriko; Mori, Yasukiyo; Nishiue, Takashi; Nose, Atsuko; Kijima, Yasuaki; Tokoro, Toshiko; Yamahara, Hideki; Okigaki, Mitsuhiko; Kosaki, Atsushi; Iwasaka, Toshiji

    2004-05-01

    An increase in renal blood flow with a concomitant decrease in filtration fraction at the onset of angiotensin II receptor blocker treatment has been shown to predict a long-term renoprotective effect. However, no studies are available regarding angiotensin receptor blocker-induced changes in renal cortical perfusion observed in the clinical setting. We have recently developed a convenient method of evaluating human renal cortical blood flow with contrast-enhanced harmonic ultrasonography. The goal of this study was to use this method to examine the effect of valsartan, an angiotensin II receptor blocker, on renal cortical perfusion. We performed intermittent second harmonic imaging with venous infusion of a microbubble contrast agent in 7 healthy volunteers. Contrast-enhanced harmonic ultrasonography performed after oral administration of valsartan (80mg) showed a significant increase in microbubble velocity, which correlated well with the increase in total renal blood flow determined by p-aminohippurate clearance (r=0.950, p < 0.001). Although fractional vascular volume was not significantly increased, alterations in renal cortical blood flow calculated by the product of microbubble velocity and fractional volume were also correlated with the change in total renal blood flow (r=0.756, p < 0.05). These results indicate that valsartan increases the renal cortical blood flow in normal kidneys, mainly by increasing blood flow velocity. Contrast-enhanced harmonic ultrasonography is a promising technique for evaluating the precise effect on renal cortical perfusion and optimal dose of valsartan in diseased kidneys.

  7. Bone Density and Cortical Structure after Pediatric Renal Transplantation

    PubMed Central

    Terpstra, Anniek M.; Kalkwarf, Heidi J.; Shults, Justine; Zemel, Babette S.; Wetzsteon, Rachel J.; Foster, Bethany J.; Strife, C. Frederic; Foerster, Debbie L.

    2012-01-01

    The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure. PMID:22282589

  8. Body movement selectively shapes the neural representation of musical rhythms.

    PubMed

    Chemin, Baptiste; Mouraux, André; Nozaradan, Sylvie

    2014-12-01

    It is increasingly recognized that motor routines dynamically shape the processing of sensory inflow (e.g., when hand movements are used to feel a texture or identify an object). In the present research, we captured the shaping of auditory perception by movement in humans by taking advantage of a specific context: music. Participants listened to a repeated rhythmical sequence before and after moving their bodies to this rhythm in a specific meter. We found that the brain responses to the rhythm (as recorded with electroencephalography) after body movement were significantly enhanced at frequencies related to the meter to which the participants had moved. These results provide evidence that body movement can selectively shape the subsequent internal representation of auditory rhythms. © The Author(s) 2014.

  9. Guidelines for Genome-Scale Analysis of Biological Rhythms.

    PubMed

    Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B

    2017-10-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

  10. Guidelines for Genome-Scale Analysis of Biological Rhythms

    PubMed Central

    Hughes, Michael E.; Abruzzi, Katherine C.; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M. Fernanda; Chen, Zheng; Chiu, Joanna C.; Cox, Juergen; Crowell, Alexander M.; DeBruyne, Jason P.; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J.; Duffield, Giles E.; Dunlap, Jay C.; Eckel-Mahan, Kristin; Esser, Karyn A.; FitzGerald, Garret A.; Forger, Daniel B.; Francey, Lauren J.; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S.; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H.; Herzel, Hanspeter; Herzog, Erik D.; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J.; Hurley, Jennifer M.; de la Iglesia, Horacio O.; Johnson, Carl; Kay, Steve A.; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A.; Li, Jiajia; Li, Xiaodong; Liu, Andrew C.; Loros, Jennifer J.; Martino, Tami A.; Menet, Jerome S.; Merrow, Martha; Millar, Andrew J.; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N.; Olmedo, Maria; Nusinow, Dmitri A.; Ptáček, Louis J.; Rand, David; Reddy, Akhilesh B.; Robles, Maria S.; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D.; Rund, Samuel S.C.; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J.; Storch, Kai-Florian; Takahashi, Joseph S.; Ueda, Hiroki R.; Wang, Han; Weitz, Charles; Westermark, Pål O.; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B.

    2017-01-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them. PMID:29098954

  11. Sleep and circadian rhythm disturbance in bipolar disorder.

    PubMed

    Bradley, A J; Webb-Mitchell, R; Hazu, A; Slater, N; Middleton, B; Gallagher, P; McAllister-Williams, H; Anderson, K N

    2017-07-01

    Subjective reports of insomnia and hypersomnia are common in bipolar disorder (BD). It is unclear to what extent these relate to underlying circadian rhythm disturbance (CRD). In this study we aimed to objectively assess sleep and circadian rhythm in a cohort of patients with BD compared to matched controls. Forty-six patients with BD and 42 controls had comprehensive sleep/circadian rhythm assessment with respiratory sleep studies, prolonged accelerometry over 3 weeks, sleep questionnaires and diaries, melatonin levels, alongside mood, psychosocial functioning and quality of life (QoL) questionnaires. Twenty-three (50%) patients with BD had abnormal sleep, of whom 12 (52%) had CRD and 29% had obstructive sleep apnoea. Patients with abnormal sleep had lower 24-h melatonin secretion compared to controls and patients with normal sleep. Abnormal sleep/CRD in BD was associated with impaired functioning and worse QoL. BD is associated with high rates of abnormal sleep and CRD. The association between these disorders, mood and functioning, and the direction of causality, warrants further investigation.

  12. Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence.

    PubMed

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing.

  13. Speech Rhythm Facilitates Syntactic Ambiguity Resolution: ERP Evidence

    PubMed Central

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A.

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing. PMID:23409109

  14. Clinical skills: cardiac rhythm recognition and monitoring.

    PubMed

    Sharman, Joanna

    With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.

  15. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessmentmore » by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be

  16. When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2016-07-06

    Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on

  17. In the darkness of the polar night, scallops keep on a steady rhythm

    NASA Astrophysics Data System (ADS)

    Tran, Damien; Sow, Mohamedou; Camus, Lionel; Ciret, Pierre; Berge, Jorgen; Massabuau, Jean-Charles

    2016-08-01

    Although the prevailing paradigm has held that the polar night is a period of biological quiescence, recent studies have detected noticeable activity levels in marine organisms. In this study, we investigated the circadian rhythm of the scallop Chlamys islandica by continuously recording the animal’s behaviour over 3 years in the Arctic (Svalbard). Our results showed that a circadian rhythm persists throughout the polar night and lasts for at least 4 months. Based on observations across three polar nights, we showed that the robustness and synchronicity of the rhythm depends on the angle of the sun below the horizon. The weakest rhythm occurred at the onset of the polar night during the nautical twilight. Surprisingly, the circadian behaviour began to recover during the darkest part of the polar night. Because active rhythms optimize the fitness of an organism, our study brings out that the scallops C. islandica remain active even during the polar night.

  18. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    PubMed

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  19. Core temperature rhythms in normal and tumor-bearing mice.

    PubMed

    Griffith, D J; Busot, J C; Lee, W E; Djeu, D J

    1993-01-01

    The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.

  20. Sleep, circadian rhythms, and athletic performance.

    PubMed

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms.

    PubMed Central

    Mills, J N; Minors, D S; Waterhouse, J M

    1978-01-01

    1. Thirty-six subjects in an isolation unit were subjected to time shifts of 12 hr, or of 8 hr in either direction. 2. The rhythms of body temperature and excretion of eight urinary constituents were studied before and after the shift, both on a usual nychthemeral routine and during 24 hr when they remained under constant conditions, awake, engaged in light, mainly sedentary activity, and consuming identical food and fluid every hour. 3. The rhythms on nychthemeral routine were defined by fitting cosine curves. On constant routine the rhythm after the shift was cross-correlated with the original rhythm, either with variable delay (or advance) or with an additive mixture between this variably shifted rhythm and the unshifted or a fully shifted rhythm. The process yielding the highest correlation coefficient was accepted as the best descriptor of the nature of adaptation. 4. A combination of two rhythms was observed more often for urinary sodium, chloride and phosphate than for other variables. 5. Adaptation appeared to have proceeded further after westward than eastward shifts, and this difference was particularly noticeable for urinary potassium, sodium and chloride. 6. Partial adaptation usually involved a phase delay, even after an eastward shift when a cumulative delay of 16 hr would be needed to achieve full adaptation and re-entrainment. 7. Observations under nychthemeral conditions often gave a false idea of the degree of adaptation. In particular, after an eastward shift the phase of the rhythms appeared to shift in the appropriate direction when studied under nychthemeral conditions whereas the endogenous oscillator either showed no consistent behaviour or, in the control of urate excretion, a shift in the wrong direction. 8. The implications for people undergoing time shifts, in the course of shift work or transmeridional flights, are indicated. PMID:745108

  2. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    PubMed Central

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  3. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

    PubMed

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-08-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

  5. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    PubMed Central

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193

  6. The participation of cortical amygdala in innate, odour-driven behaviour.

    PubMed

    Root, Cory M; Denny, Christine A; Hen, René; Axel, Richard

    2014-11-13

    Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.

  7. Plasticity of circadian activity and body temperature rhythms in golden spiny mice.

    PubMed

    Cohen, Rotem; Smale, Laura; Kronfeld-Schor, Noga

    2009-04-01

    Most animals can be categorized as nocturnal, diurnal, or crepuscular. However, rhythms can be quite plastic in some species and vary from one individual to another within a species. In the golden spiny mouse (Acomys russatus), a variety of rhythm patterns have been seen, and these patterns can change considerably as animals are transferred from the field into the laboratory. We previously suggested that these animals may have a circadian time-keeping system that is fundamentally nocturnal and that diurnal patterns seen in their natural habitat reflect mechanisms operating outside of the basic circadian time-keeping system (i.e., masking). In the current study, we further characterized plasticity evident in the daily rhythms of golden spiny mice by measuring effects of lighting conditions and access to a running wheel on rhythms in general activity (GA) and body temperature (Tb). Before the wheel was introduced, most animals were active mainly during the night, though there was considerable inter-individual variability and patterns were quite plastic. The introduction of the wheel caused an increase in the level of nighttime activity and Tb in most individuals. The periods of the rhythms in constant darkness (DD) were very similar, and even slightly longer in this study (24.1+/-0.2 h) than in an earlier one in which animals had not been provided with running wheels. We found no correlation between the distance animals ran in their wheels and the period of their rhythms in DD. Re-entrainment after phase delays of the LD cycle occurred more rapidly in the presence than absence of the running wheel. The characteristics of the rhythms of golden spiny mice seen in this study may be the product of natural selection favoring plasticity of the circadian system, perhaps reflecting what can happen during an evolutionary transition as animals move from a nocturnal to a diurnal niche.

  8. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy.

    PubMed

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-06-01

    Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. © 2016 Associated Professional Sleep Societies, LLC.

  9. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    PubMed

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  10. SPECT in patients with cortical visual loss.

    PubMed

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  11. Meditations on the unitary rhythm of dying-grieving.

    PubMed

    Malinski, Violet M

    2012-07-01

    When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.

  12. Seasonal variations in daily rhythms of activity in athletic horses.

    PubMed

    Bertolucci, C; Giannetto, C; Fazio, F; Piccione, G

    2008-07-01

    Circadian rhythms reflect extensive programming of biological activity that meets and exploits the challenges and opportunities offered by the periodic nature of the environment. In the present investigation, we recorded the total activity of athletic horses kept at four different times of the year (vernal equinox, summer solstice, autumn equinox and winter solstice), to evaluate the presence of seasonal variations of daily activity rhythms. Athletic Thoroughbred horses were kept in individual boxes with paddock. Digitally integrated measure of total activity of each mare was continuously recorded by actigraphy-based data loggers. Horse total activities were not evenly distributed over the day, but they were mainly diurnal during the year. Daily activity rhythms showed clear seasonal variations, with the highest daily amount of activity during the vernal equinox and the lowest during the winter solstice. Interestingly, the amount of activity during either photophase or scotophase changed significantly throughout the year. Circadian analysis of horse activities showed that the acrophase, the estimated time at which the peak of the rhythm occurs, did not change during the year, it always occurred in the middle of the photoperiod. Analysing the time structure of long-term and continuously measured activity and feeding could be a useful method to critically evaluate athletic horse management systems in which spontaneous locomotor activity and feeding are severely limited. Circadian rhythms are present in several elements of sensory motor and psychomotor functions and these would be taken into consideration to plan the training schedules and competitions in athletic horses.

  13. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    PubMed Central

    Luders, Eileen; Kurth, Florian; Mayer, Emeran A.; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2012-01-01

    Several cortical regions are reported to vary in meditation practitioners. However, prior analyses have focused primarily on examining gray matter or cortical thickness. Thus, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding) is an important cerebral characteristic related to the geometry of the brain’s surface. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n = 100) of meditators and controls, carefully matched for sex and age. Cortical gyrification was established by calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum). Positive correlations between gyrification and the number of meditation years were similarly pronounced in the right anterior dorsal insula. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary to determine the relative contribution of nature and nurture to

  14. Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar

    2015-02-01

    Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.

  15. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    PubMed

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  16. Slowing of the hippocampal θ-rhythm correlates with anesthetic-induced amnesia

    PubMed Central

    Perouansky, Misha; Rau, Vinuta; Ford, Tim; Oh, S. Irene; Perkins, Mark; Eger, Edmond I.; Pearce, Robert A.

    2010-01-01

    Background Temporary, antegrade amnesia is one of the core desirable endpoints of general anesthesia. Multiple lines of evidence support a role for the hippocampal θ-rhythm, a synchronized rhythmic oscillation of field potentials at 4–12 Hz, in memory formation. Previous studies have revealed a disruption of the θ-rhythm at surgical levels of anesthesia. We hypothesized that modulation of θ-rhythm would also occur at subhypnotic but amnestic concentrations. Therefore we examined the effect of three inhaled agents on properties of the θ-rhythm that are considered to be critical for the formation of hippocampus-dependent memories. Methods We studied the effects of halothane and nitrous oxide, two agents known to modulate different molecular targets (GABAergic vs. non-GABAergic, respectively), and isoflurane (both GABAergic and non-GABAergic targets), on fear-conditioned learning and θ-oscillations in freely behaving rats. Results All three anesthetics slowed θ-peak frequency in proportion to their inhibition of fear conditioning (by 1 Hz, 0.7 Hz and 0.5 Hz for 0.32% isoflurane, 60% N2O and 0.24% halothane). The anesthetics inconsistently affected other characteristics of θ-oscillations. Conclusions At sub-hypnotic amnestic concentrations, θ-oscillation frequency was the parameter most consistently affected by these three anesthetics. These results are consistent with the hypothesis that modulation of the θ-rhythm contributes to anesthetic-induced amnesia. PMID:21042201

  17. A persistent circhoral ultradian rhythm is identified in human core temperature.

    PubMed

    Lindsley, G; Dowse, H B; Burgoon, P W; Kolka, M A; Stephenson, L A

    1999-01-01

    There have been inconclusive reports of intermittent rhythmic fluctuations in human core temperature, with the fluctuations having a period of about an hour. However, there has been no definitive demonstration of the phenomenon. This is likely due to the intermittency and seeming instability of the events. They have been assumed to be secondary rather than autonomous phenomena, putatively arising from the oscillation between rapid eye movement (REM) and non-REM (NREM) sleep. In this study, we report identification of a clear, persistent circhoral ultradian rhythm in core temperature with a period for this study sample of 64 +/- 8 minutes. It appeared simultaneously with an intact circadian core temperature rhythm, persisted despite complex perturbations in core temperature brought about by the sequelae of 40 h of sleep deprivation, and could not be attributed to sleep stage alternation or other endogenous or exogenous factors. Analysis of power spectra using the maximum entropy spectral analysis (MESA) method, which can uncover hidden rhythmicities, demonstrated that the apparent intermittency of the rhythm is due to periodic interference of this rhythm by other rhythmic events. The persistence of this oscillation suggests that, in this system as in the endocrine system, circhoral regulation is an integral component of thermoregulatory control. Identifying the source and functional role of this novel rhythm warrants further work.

  18. Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes.

    PubMed

    Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim

    2015-11-01

    Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Environmental Progestins Progesterone and Drospirenone Alter the Circadian Rhythm Network in Zebrafish (Danio rerio).

    PubMed

    Zhao, Yanbin; Castiglioni, Sara; Fent, Karl

    2015-08-18

    Progestins alter hormone homeostasis and may result in reproductive effects in humans and animals. Thus far, studies in fish have focused on the hypothalamic-pituitary-gonadal (HPG)-axis and reproduction, but other effects have little been investigated. Here we report that progesterone (P4) and drospirenone (DRS) interfere with regulation of the circadian rhythm in fish. Breeding pairs of adult zebrafish were exposed to P4 and DRS at concentrations between 7 and 13 650 ng/L for 21 days. Transcriptional analysis revealed significant and dose-dependent alterations of the circadian rhythm network in the brain with little effects in the gonads. Significant alterations of many target transcripts occurred even at environmental relevant concentrations of 7 ng/L P4 and at 99 ng/L DRS. They were fully consistent with the well-described circadian rhythm negative/positive feedback loops. Transcriptional alterations of the circadian rhythm network were correlated with those in the HPG-Liver-axis. Fecundity was decreased at 742 (P4) and 2763 (DRS) ng/L. Dose-dependent alterations in the circadian rhythm network were also observed in F1 eleuthero-embryos. Our results suggest a potential target of environmental progestins, the circadian rhythm network, in addition to the adverse reproductive effects. Forthcoming studies should show whether the transcriptional alterations in circadian rhythm translate into physiological effects.

  20. Cortical Oscillatory Mechanisms Supporting the Control of Human Social-Emotional Actions.

    PubMed

    Bramson, Bob; Jensen, Ole; Toni, Ivan; Roelofs, Karin

    2018-06-20

    The human anterior prefrontal cortex (aPFC) is involved in regulating social-emotional behavior, presumably by modulating effective connectivity with downstream parietal, limbic, and motor cortices. Regulating that connectivity might rely on theta-band oscillations (4-8 Hz), a brain rhythm known to create overlapping periods of excitability between distant regions by temporally releasing neurons from inhibition. Here, we used MEG to understand how aPFC theta-band oscillations implement control over prepotent social-emotional behaviors; that is, the control over automatically elicited approach and avoidance actions. Forty human male participants performed a social approach-avoidance task in which they approached or avoided visually displayed emotional faces (happy or angry) by pulling or pushing a joystick. Approaching angry and avoiding happy faces (incongruent condition) requires rapid application of cognitive control to override prepotent habitual action tendencies to approach appetitive and to avoid aversive situations. In the time window before response delivery, trial-by-trial variations in aPFC theta-band power (6 Hz) predicted reaction time increases during emotional control and were inversely related to beta-band power (14-22 Hz) over parietofrontal cortex. In sensorimotor areas contralateral to the moving hand, premovement gamma-band rhythms (60-90 Hz) were stronger during incongruent than congruent trials, with power increases phase locked to peaks of the aPFC theta-band oscillations. These findings define a mechanistic relation between cortical areas involved in implementing rapid control over human social-emotional behavior. The aPFC may bias neural processing toward rule-driven actions and away from automatic emotional tendencies by coordinating tonic disinhibition and phasic enhancement of parietofrontal circuits involved in action selection. SIGNIFICANCE STATEMENT Being able to control social-emotional behavior is crucial for successful participation

  1. Circadian rhythms, athletic performance, and jet lag

    PubMed Central

    Manfredini, R.; Manfredini, F.; Fersini, C.; Conconi, F.

    1998-01-01

    Rapid air travel across several time zones exposes the traveller to a shift in his/her internal biological clock. The result is a transient desynchronisation of the circadian rhythm, called jet lag, lasting until the rhythm is rephased to the new environmental conditions. The most commonly experienced symptoms are sleep disorders, difficulties with concentrating, irritability, depression, fatigue, disorientation, loss of appetite, and gastrointestinal disturbance. Apart from the decrements in mental and physical performance directly consequent on such symptoms, competitive athletes are also exposed to the additional negative consequences of a shift from the optimal circadian window of performance. A brief summary of the possible negative effects of jet lag on athletic performance and potentially alleviating strategies is given. 




 PMID:9631214

  2. Circadian rhythm disruption was observed in hand, foot, and mouth disease patients.

    PubMed

    Zhu, Yu; Jiang, Zhou; Xiao, Guoguang; Cheng, Suting; Wen, Yang; Wan, Chaomin

    2015-03-01

    Hand, foot, and mouth disease (HFMD) with central nerve system complications may rapidly progress to fulminated cardiorespiratory failure, with higher mortality and worse prognosis. It has been reported that circadian rhythms of heart rate (HR) and respiratory rate are useful in predicting prognosis of severe cardiovascular and neurological diseases. The present study aims to investigate the characteristics of the circadian rhythms of HR, respiratory rate, and temperature in HFMD patients with neurological complications. Hospitalized HFMD patients including 33 common cases (common group), 61 severe cases (severe group), and 9 critical cases (critical group) were contrasted retrospectively. Their HR, respiratory rate, and temperatures were measured every 4 hours during the first 48-hour in the hospital. Data were analyzed with the least-squares fit of a 24-hour cosine function by the single cosinor and population-mean cosinor method. Results of population-mean cosinor analysis demonstrated that the circadian rhythm of HR, respiratory rate, and temperature was present in the common and severe group, but absent in the critical group. The midline-estimating statistic of rhythm (MESOR) (P = 0.016) and acrophase (P < 0.01) of temperature and respiratory rate were significantly different among 3 groups. But no statistical difference of amplitude in temperature and respiratory rate was observed among the 3 groups (P = 0.14). MESOR value of HR (P < 0.001) was significantly different in 3 groups. However, amplitude and acrophase revealed no statistical difference in circadian characteristics of HR among 3 groups. Compared with the common group, the MESOR of temperature and respiratory rate was significantly higher, and acrophase of temperature and respiratory rate was 2 hours ahead in the severe group, critical HFMD patients lost their population-circadian rhythm of temperature, HR, and respiratory rate. The high values of temperature and respiratory rate for

  3. Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults.

    PubMed

    Lee, Hsin-Min; Li, Ping-Chia; Fan, Shih-Chen

    2015-07-11

    Mirror visual feedback (MVF) generated in mirror therapy (MT) with a physical mirror promotes the recovery of hemiparetic limbs in patients with stroke, but is limited in that it cannot provide an asymmetric mode for bimanual coordination training. Here, we developed a novel MT system that can manipulate the MVF to resolve this issue. The aims of this pilot study were to examine the feasibility of delayed MVF on MT and to establish its effects on cortical activation in order to understand how it can be used for clinical applications in the future. Three conditions (no MVF, MVF, and 2-s delayed MVF) presented via our digital MT system were evaluated for their time-course effects on cortical activity by event-related desynchronization (ERD) of mu rhythm electroencephalography (EEG) during button presses in 18 healthy adults. Phasic ERD areas, defined as the areas of the relative ERD curve that were below the reference level and within -2-0 s (P0), 0-2 s (P1), and 2-4 s (P2) of the button press, were used. The overall (P0 to P2) and phasic ERD areas were higher when MVF was provided compared to when MVF was not provided for all EEG channels (C3, Cz, and C4). Phasic ERD areas in the P2 phase only increased during the delayed-MVF condition. Significant enhancement of cortical activation in the mirror neuron system and an increase in attention to the unseen limb may play major roles in the response to MVF during MT. In comparison to the no MVF condition, the higher phasic ERD areas that were observed during the P1 phase in the delayed-MVF condition indicate that the image of the still hand may have enhanced the cortical activation that occurred in response to the button press. This study is the first to achieve delayed MVF for upper-limb MT. Our approach confirms previous findings regarding the effects of MVF on cortical activation and contributes additional evidence supporting the use of this method in the future for upper-limb motor training in patients with stroke.

  4. The Magic of Rhythm Instruments: Developing Musical Awareness in Young Children

    ERIC Educational Resources Information Center

    Connors, Abigail

    2006-01-01

    Young children are natural-born musicians and rhythm instruments provide a wonderful bridge between a toddler's innate need to make noise and a child's true musical awareness and expressiveness. Rhythm instrument activities are so easy. With most of them, the child is simply copying one motion at a time. There is nothing to remember. Another…

  5. Common and distinct neural substrates for the perception of speech rhythm and intonation.

    PubMed

    Zhang, Linjun; Shu, Hua; Zhou, Fengying; Wang, Xiaoyi; Li, Ping

    2010-07-01

    The present study examines the neural substrates for the perception of speech rhythm and intonation. Subjects listened passively to synthesized speech stimuli that contained no semantic and phonological information, in three conditions: (1) continuous speech stimuli with fixed syllable duration and fundamental frequency in the standard condition, (2) stimuli with varying vocalic durations of syllables in the speech rhythm condition, and (3) stimuli with varying fundamental frequency in the intonation condition. Compared to the standard condition, speech rhythm activated the right middle superior temporal gyrus (mSTG), whereas intonation activated the bilateral superior temporal gyrus and sulcus (STG/STS) and the right posterior STS. Conjunction analysis further revealed that rhythm and intonation activated a common area in the right mSTG but compared to speech rhythm, intonation elicited additional activations in the right anterior STS. Findings from the current study reveal that the right mSTG plays an important role in prosodic processing. Implications of our findings are discussed with respect to neurocognitive theories of auditory processing. (c) 2009 Wiley-Liss, Inc.

  6. Photosensitivity in the circadian hatching rhythm of the carotenoid-depleted silkworm, Bombyx mori.

    PubMed

    Sakamoto, K; Shimizu, I

    1994-01-01

    Silkworms (Bombyx mori) were reared on a carotenoid-deprived artificial diet, and the carotenoid-depleted eggs of the next generation were incubated so that we could observe the effect of the depletion on the circadian rhythm of hatching. The phototactic response curves of newly hatched larvae showed that the visual photosensitivity in ocelli of larvae from the carotenoid-depleted eggs was at least 4 log units lower than that of a carotenoid-rich control group. However, the phase-shift experiment revealed that carotenoid depletion did not reduce the photosensitivity in the hatching rhythm. When the hatching rhythm was generated by exposure to a single light pulse in constant darkness, the first peak in the rhythm of the carotenoid-depleted silkworms occurred significantly earlier than that of the carotenoid-rich group, but the following second peaks of both groups were found at the same time. These results suggest that for the silkworm, carotenoid is not involved in photoreception for the hatching rhythm, but is involved in the timing of hatching.

  7. Spectrotemporal Dynamics of Auditory Cortical Synaptic Receptive Field Plasticity

    PubMed Central

    Froemke, Robert C.; Martins, Ana Raquel O.

    2011-01-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. PMID:21426927

  8. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms

    PubMed Central

    Wiater, Michael F.; Oostrom, Marjolein T.; Smith, Bethany R.; Wang, Qing; Dinh, Thu T.; Roberts, Brandon L.; Jansen, Heiko T.; Ritter, Sue

    2012-01-01

    Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the “dynamic phase” of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a “static phase” of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment. PMID:22492818

  9. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  10. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  11. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form.

    PubMed

    Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio

    2017-01-01

    This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  12. Rhythm in number: exploring the affective, social and mathematical dimensions of using TouchCounts

    NASA Astrophysics Data System (ADS)

    Sinclair, Nathalie; Chorney, Sean; Rodney, Sheree

    2016-03-01

    In this paper, we investigate the mathematical, social and affective nature of children's engagement with TouchCounts, a multitouch application for counting and doing arithmetic. In order to study these dimensions of engagement in a way that recognizes their fundamental intertwinement, we use rhythm as a primary unit of analysis. Drawing on over 8 hours of research sessions with children aged 6, 7 and 8 years old, we show how various rhythms emerged from their interactions and how these rhythms changed over time—moving from the particular to the more general. We also show how important rhythm is to children's carrying of activity, which relates to aspects of interest and motivation.

  13. Rhythm in Ethiopian English: Implications for the Teaching of English Prosody

    ERIC Educational Resources Information Center

    Gashaw, Anegagregn

    2017-01-01

    In order to verify that English speeches produced by Ethiopian speakers fall under syllable-timed or stress-timed rhythm, the study tried to examine the nature of stress and rhythm in the pronunciation of Ethiopian speakers of English by focusing on one language group speaking Amharic as a native language. Using acoustic analysis of the speeches…

  14. Rhythm and Books: Feel the Beat! 1996 Florida Library Youth Program.

    ERIC Educational Resources Information Center

    Rupert, Libby, Comp.; And Others

    The Florida Library Youth Program is an extension of the Florida Summer Library Program and has emerged in response to a need to provide programs for school-age children at times other than the traditional summer vacation. The theme, "Rhythm and Books--Feel the Beat!," focuses on music and rhythms that abound around children in the…

  15. Tests of the disrupted behavioral rhythms hypothesis for accelerated summer weight gain

    USDA-ARS?s Scientific Manuscript database

    The school-summer paradigm offers an opportunity to explore school-summer differences in children's behavioral rhythms and their association with seasonal changes in BMI. In the absence of the environmental demands and cues associated with the school year, children's behavioral rhythms (e.g., sleep...

  16. Paramedic electrocardiogram and rhythm identification: a convenient training device.

    PubMed

    Hale, Peggy; Lowe, Robert; Seamon, Jason P; Jenkins, James J

    2011-10-01

    A common reason for utilizing local paramedics and the emergency medical services is for the recognition and immediate treatment of chest pain, a complaint that has multiple possible etiologies. While many of those complaining of disease processes responsible for chest pain are benign, some will be life-threatening and will require immediate identification and treatment. The ability of paramedics to not only perform field electrocardiograms (ECGs), but to accurately diagnose various unstable cardiac rhythms has shown significant reduction in time to specific treatments. Increasing the overall accuracy of ECG interpretation by paramedics has the potential to facilitate early and appropriate treatment and decrease patient morbidity and mortality. A convenient training device (flip book) on ambulances and in common areas in the fire station could improve field interpretation of certain cardiac rhythms. This training device consists of illustrated sample ECG tracings and their associated diagnostic criteria. The goal was to enhance the recognition and interpretation of ECGs, and thereby, reduce delays in the initiation of treatment and potential complications associated with misinterpretation.This study was a prospective, observational study using a matched pre-test/post-test design. The study period was from November 2008 to December 2008. A total of 136 paramedics were approached to participate in this study. A pre-test consisting of 15 12-lead ECGs was given to all paramedics who agreed to participate in the study. Once the pre-tests were completed, the flip books were placed in common areas. Approximately one month after the flip books were made available to the paramedics, a post-test was administered.Statistical comparisons were made between the pre- and post-test scores for both the global test and each type of rhythm. Using these data, there were no statistically significant improvements in the global ECG interpretation or on individual rhythm interpretations

  17. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.

    PubMed

    Elson, Matthew S; Berkowitz, Ari

    2016-03-02

    The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show

  18. Cortical Flow-Driven Shapes of Nonadherent Cells.

    PubMed

    Callan-Jones, A C; Ruprecht, V; Wieser, S; Heisenberg, C P; Voituriez, R

    2016-01-15

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  19. Current conceptual challenges in the study of rhythm processing deficits.

    PubMed

    Tranchant, Pauline; Vuvan, Dominique T

    2015-01-01

    Interest in the study of rhythm processing deficits (RPD) is currently growing in the cognitive neuroscience community, as this type of investigation constitutes a powerful tool for the understanding of normal rhythm processing. Because this field is in its infancy, it still lacks a common conceptual vocabulary to facilitate effective communication between different researchers and research groups. In this commentary, we provide a brief review of recent reports of RPD through the lens of one important empirical issue: the method by which beat perception is measured, and the consequences of method selection for the researcher's ability to specify which mechanisms are impaired in RPD. This critical reading advocates for the importance of matching measurement tools to the putative neurocognitive mechanisms under study, and reveals the need for effective and specific assessments of the different aspects of rhythm perception and synchronization.

  20. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems

    NASA Astrophysics Data System (ADS)

    Cuvelier, Daphne; Legendre, Pierre; Laës-Huon, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2017-06-01

    During 2011, two deep-sea observatories focusing on hydrothermal vent ecology were up and running in the Atlantic (Eiffel Tower, Lucky Strike vent field) and the Northeast Pacific Ocean (NEP) (Grotto, Main Endeavour Field). Both ecological modules recorded imagery and environmental variables jointly for a time span of 23 days (7-30 October 2011) and environmental variables for up to 9 months (October 2011-June 2012). Community dynamics were assessed based on imagery analysis and rhythms in temporal variation for both fauna and environment were revealed. Tidal rhythms were found to be at play in the two settings and were most visible in temperature and tubeworm appearances (at NEP). A ˜ 6 h lag in tidal rhythm occurrence was observed between Pacific and Atlantic hydrothermal vents, which corresponds to the geographical distance and time delay between the two sites.

  1. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    PubMed

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    PubMed

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-08-01

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Circadian rhythm of intraocular pressure in the rat.

    PubMed

    Moore, C G; Johnson, E C; Morrison, J C

    1996-02-01

    To define the characteristics of the diurnal variation of intraocular pressure (IOP) in eyes of awake rats, ten male brown Norway rats were entrained to a 12-hour light:12-hour dark (12L:12D) lighting schedule and were conditioned to IOP measurement with the TonoPen XL tonometer while awake, using only 0.5% proparacaine HCl anesthesia. The IOP measurements were performed in 4 experiments: Preliminary-IOP was measured at 6-hour intervals in both eyes of each animal, to determine correlation between right and left eyes; Light:Dark-lighting remained the same as in the preliminary experiment, but the measurement schedule was altered so that measurements were obtained at 4-hour intervals in alternating eyes, over two 24-hour light cycles; Dark:Dark-animals were placed in constant dark (0L:24D) and, after 72 h, measurements were obtained at 4-hour intervals in alternating eyes. Animals were then re-entrained to the previous 12L:12D schedule for 7 days, after which they were returned to constant dark and the experiment was repeated; and Dark:Light-animals were entrained to a reversed light:dark cycle (12D:12L) for 28 days, after which measurements were obtained in the same fashion as in the Light:Dark experiment. Close agreement was found between right- and left-eye IOPs. Animals on a 12L:12D schedule exhibited lowest IOP while the lights were on (19.3 +/- 1.9 mm Hg), and highest (31.3 +/- 1.3 mm Hg) while the lights were off. Pressure changes anticipated the change from light to dark and dark to light. This pattern persisted in constant dark, and was reversed when the cycle was changed to 12D:12L. Brown Norway rats possess a regular rhythm of IOP that is entrained by the cycle of light and dark, and persistence of this rhythm in constant dark establishes it as a circadian rhythm. Furthermore, our results indicate that reliable and physiologically meaningful IOP measurements can be obtained in awake rats using the TonoPen XL tonometer.

  4. Increase in Synchronization of Autonomic Rhythms between Individuals When Listening to Music

    PubMed Central

    Bernardi, Nicolò F.; Codrons, Erwan; di Leo, Rita; Vandoni, Matteo; Cavallaro, Filippo; Vita, Giuseppe; Bernardi, Luciano

    2017-01-01

    In light of theories postulating a role for music in forming emotional and social bonds, here we investigated whether endogenous rhythms synchronize between multiple individuals when listening to music. Cardiovascular and respiratory recordings were taken from multiple individuals (musically trained or music-naïve) simultaneously, at rest and during a live concert comprising music excerpts with varying degrees of complexity of the acoustic envelope. Inter-individual synchronization of cardiorespiratory rhythms showed a subtle but reliable increase during passively listening to music compared to baseline. The low-level auditory features of the music were largely responsible for creating or disrupting such synchronism, explaining ~80% of its variance, over and beyond subjective musical preferences and previous musical training. Listening to simple rhythms and melodies, which largely dominate the choice of music during rituals and mass events, brings individuals together in terms of their physiological rhythms, which could explain why music is widely used to favor social bonds. PMID:29089898

  5. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    PubMed

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  6. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  7. Postpartum cortical blindness.

    PubMed

    Faiz, Shakeel Ahmed

    2008-09-01

    A 30-years-old third gravida with previous normal pregnancies and an unremarkable prenatal course had an emergency lower segment caesarean section at a periphery hospital for failure of labour to progress. She developed bilateral cortical blindness immediately after recovery from anesthesia due to cerebral angiopathy shown by CT and MR scan as cortical infarct cerebral angiopathy, which is a rare complication of a normal pregnancy.

  8. LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11.

    PubMed

    Muralidharan, Bhavana; Khatri, Zeba; Maheshwari, Upasana; Gupta, Ritika; Roy, Basabdatta; Pradhan, Saurabh J; Karmodiya, Krishanpal; Padmanabhan, Hari; Shetty, Ashwin S; Balaji, Chinthapalli; Kolthur-Seetharam, Ullas; Macklis, Jeffrey D; Galande, Sanjeev; Tole, Shubha

    2017-01-04

    In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity. The functional complexity of the cerebral cortex arises from an array of distinct neuronal subtypes with unique connectivity patterns that are produced from common progenitors. This study reveals that transcription factor LHX2 regulates the numbers of specific cortical output neuron subtypes by controlling the genes that are required to produce them. Loss or increase in LHX2 during neurogenesis is sufficient to increase or decrease, respectively, a particular subcerebrally projecting population. Mechanistically, LHX2 interacts with chromatin modifying protein complexes to edit the chromatin landscape of its targets Fezf2 and Sox11, which regulates their expression and consequently the identities of the neurons produced. Thus, LHX2 is a key component of the control network for producing neurons that will participate in cortical circuitry. Copyright © 2017 Muralidharan et al.

  9. Circadian rhythms and obesity in mammals.

    PubMed

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.

  10. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    PubMed Central

    Martínez-Rodrigo, Arturo; Fernández-Sotos, Alicia; Latorre, José Miguel; Moncho-Bogani, José; Fernández-Caballero, Antonio

    2017-01-01

    This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG) by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form. PMID:28496406

  11. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease.

    PubMed

    van Wamelen, Daniel J; Roos, Raymund Ac; Aziz, Nasir A

    2015-12-01

    Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.

  12. Pueraria mirifica alleviates cortical bone loss in naturally menopausal monkeys.

    PubMed

    Kittivanichkul, Donlaporn; Charoenphandhu, Narattaphol; Khemawoot, Phisit; Malaivijitnond, Suchinda

    2016-11-01

    Since the in vitro and in vivo anti-osteoporotic effects of Pueraria mirifica (PM) in rodents have been verified, its activity in menopausal monkeys was evaluated as required before it can be applicable for human use. In this study, postmenopausal osteoporotic monkeys were divided into two groups (five per group), and fed daily with standard diet alone (PMP0 group) or diet mixed with 1000 mg/kg body weight (BW) of PM powder (PMP1000 group) for 16 months. Every 2 months, the bone mineral density (BMD), bone mineral content (BMC) and bone geometry parameters (cortical area and thickness and periosteal and endosteal circumference) at the distal radius and proximal tibia were determined using peripheral quantitative computed tomography together with plasma and urinary bone markers. Compared with the baseline (month 0) values, the cortical, but not trabecular, BMDs and BMCs and the cortical area and thickness at the metaphysis and diaphysis of the radius and tibia of the PMP0 group continuously decreased during the 16-month study period. In contrast, PMP1000 treatment ameliorated the bone loss mainly at the cortical diaphysis by decreasing bone turnover, as indicated by the lowered plasma bone-specific alkaline phosphatase and osteocalcin levels. Generally, changes in the cortical bone geometry were in the opposite direction to the cortical bone mass after PMP1000 treatment. This study indicated that postmenopausal monkeys continuously lose their cortical bone compartment, and they have a higher possibility for long bone fractures. Oral PMP treatment could improve both the bone quantity (BMC and BMD) and quality (bone geometry). © 2016 Society for Endocrinology.

  13. Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.

    NASA Technical Reports Server (NTRS)

    Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.

    1971-01-01

    Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.

  14. Axillary and thoracic skin temperatures poorly comparable to core body temperature circadian rhythm: results from 2 adult populations.

    PubMed

    Thomas, Karen A; Burr, Robert; Wang, Shu-Yuann; Lentz, Martha J; Shaver, Joan

    2004-01-01

    Data from 2 separate studies were used to examine the relationships of axillary or thoracic skin temperature to rectal temperature and to determine the phase relationships of the circadian rhythms of these temperatures. In study 1, axillary skin and rectal temperatures were recorded in 19 healthy women, 21 to 36 years of age. In study 2, thoracic skin and rectal temperatures were recorded in 74 healthy women, 39 to 59 years of age. In both studies, temperatures were recorded continuously for 24 h while subjects carried out normal activities. Axillary and thoracic probes were insulated purposely to prevent ambient effects. Cosinor analysis was employed to estimate circadian rhythm mesor, amplitude, and acrophase. In addition, correlations between temperatures at various measurement sites were calculated and agreement determined. The circadian timing of axillary and skin temperature did not closely approximate that of rectal temperature: the mean acrophase (clock time) for study 1 was 18:57 h for axillary temperature and 16:12 h for rectal; for study 2, it was 03:05 h for thoracic and 15:05 h for rectal. Across individual subjects, the correlations of axillary or thoracic temperatures with rectal temperatures were variable. Results do not support the use of either axillary or skin temperature as a substitute for rectal temperature in circadian rhythm research related to adult women.

  15. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    PubMed

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  16. Circadian Rhythms Regulate Amelogenesis

    PubMed Central

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A.; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-01-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24h) intervals both at RNA and protein levels. This study also reveals that two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stage of amelogenesis might be under circadian control. Changes in clock genes expression patterns might result in significant alterations of enamel apposition and mineralization. PMID:23486183

  17. Got Rhythm...For Better and for Worse. Cross-Modal Effects of Auditory Rhythm on Visual Word Recognition

    ERIC Educational Resources Information Center

    Brochard, Renaud; Tassin, Maxime; Zagar, Daniel

    2013-01-01

    The present research aimed to investigate whether, as previously observed with pictures, background auditory rhythm would also influence visual word recognition. In a lexical decision task, participants were presented with bisyllabic visual words, segmented into two successive groups of letters, while an irrelevant strongly metric auditory…

  18. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  19. Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization

    PubMed Central

    Fonken, Laura K.; Kitt, Meagan M.; Gaudet, Andrew D.; Barrientos, Ruth M.; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Aged animals exhibit diminished circadian rhythms, and both aging and circadian disruption sensitize neuroinflammatory responses. Microglia –the innate immune cell of the CNS – possess endogenous timekeeping mechanisms that regulate immune responses. Here, we explored whether aging is associated with disrupted diurnal rhythms in microglia and neuroinflammatory processes. First, hippocampal microglia isolated from young rats (4 mos. F344XBN) rhythmically expressed circadian clock genes, whereas microglia isolated from the hippocampus of aged rats (25 mos.) had aberrant Per1 and Per2 rhythms. Unstimulated microglia from young rats exhibited robust rhythms of TNFα and IL-1β mRNA expression, whereas those from aged rats had flattened and tonically-elevated cytokine expression. Similarly, microglial activation markers were diurnally regulated in the hippocampus of young but not aged rats and diurnal differences in responsiveness to both ex vivo and in vivo inflammatory challenges were abolished in aged rats. Corticosterone is an entraining signal for extra-SCN circadian rhythms. Here, corticosterone stimulation elicited similar Per1 induction in aged and young microglia. Overall, these results indicate that aging dysregulates circadian regulation of neuroinflammatory functions. PMID:27568094

  20. Chorusing, synchrony, and the evolutionary functions of rhythm

    PubMed Central

    Ravignani, Andrea; Bowling, Daniel L.; Fitch, W. Tecumseh

    2014-01-01

    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an “Evolving Signal Timing” hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our “proto-musical” primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human