Science.gov

Sample records for cortical sparse distributed

  1. Sparse and powerful cortical spikes.

    PubMed

    Wolfe, Jason; Houweling, Arthur R; Brecht, Michael

    2010-06-01

    Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness and precise spike timing is debated, but our understanding of the developmental and synaptic mechanisms that shape neuronal discharge patterns has improved. Evidence for highly specialized, selective and abstract cortical response properties is accumulating. Singe-cell stimulation experiments demonstrate a high sensitivity of cortical networks to the action potentials of some, but not all, single neurons. It is unclear how this sensitivity of cortical networks to small perturbations comes about and whether it is a generic property of cortex. The unforeseen sensitivity to cortical spikes puts serious constraints on the nature of neural coding schemes.

  2. Sparse distributed memory overview

    NASA Technical Reports Server (NTRS)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  3. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system.

  4. Sparse distributed memory

    SciTech Connect

    Kanerva, P.

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system. 63 refs.

  5. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system.

  6. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.

  7. Reconstructing cortical current density by exploring sparseness in the transform domain.

    PubMed

    Ding, Lei

    2009-05-07

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  8. Variation-based sparse cortical current density imaging in estimating cortical sources with MEG data.

    PubMed

    Ding, Lei; Zhu, Min; Zhang, Wenbo; Dickens, Deanna L

    2010-01-01

    We investigated the performance of a new sparse neuroimaging method, i.e., Variation-Based Sparse Cortical Current Density (VB-SCCD) using magnetoencephalography (MEG) data to reconstruct extended cortical sources and their spatial distributions on the cortical surface. We conducted Monte Carlo simulation studies to compare the performance of the VB-SCCD method with different number of cortical sources and different number of MEG sensors. Our simulation data suggests that the VB-SCCD method is able to reconstruct extended cortical sources with the overall accuracy, while it has significantly reduced performance when cortical sources are radially oriented to MEG sensors. It has higher accuracy when the number of sensors is large and the source configuration is simple. We further assess the performance of VB-SCCD in real MEG data from an epilepsy patient and reconstructed cortical sources behind interictal spikes from the patient which are consistent with the clinical evaluation outcomes. This data indicate its promising applications in clinical problems related to neurological disorders.

  9. Sparse asynchronous cortical generators can produce measurable scalp EEG signals.

    PubMed

    von Ellenrieder, Nicolás; Dan, Jonathan; Frauscher, Birgit; Gotman, Jean

    2016-09-01

    We investigate to what degree the synchronous activation of a smooth patch of cortex is necessary for observing EEG scalp activity. We perform extensive simulations to compare the activity generated on the scalp by different models of cortical activation, based on intracranial EEG findings reported in the literature. The spatial activation is modeled as a cortical patch of constant activation or as random sets of small generators (0.1 to 3cm(2) each) concentrated in a cortical region. Temporal activation models for the generation of oscillatory activity are either equal phase or random phase across the cortical patches. The results show that smooth or random spatial activation profiles produce scalp electric potential distributions with the same shape. Also, in the generation of oscillatory activity, multiple cortical generators with random phase produce scalp activity attenuated on average only 2 to 4 times compared to generators with equal phase. Sparse asynchronous cortical generators can produce measurable scalp EEG. This is a possible explanation for seemingly paradoxical observations of simultaneous disorganized intracranial activity and scalp EEG signals. Thus, the standard interpretation of scalp EEG might constitute an oversimplification of the underlying brain activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies.

  11. Sparse imaging of cortical electrical current densities via wavelet transforms.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei; Valette, Sébastien; Zhang, Wenbo; Dickens, Deanna

    2012-11-07

    While the cerebral cortex in the human brain is of functional importance, functions defined on this structure are difficult to analyze spatially due to its highly convoluted irregular geometry. This study developed a novel L1-norm regularization method using a newly proposed multi-resolution face-based wavelet method to estimate cortical electrical activities in electroencephalography (EEG) and magnetoencephalography (MEG) inverse problems. The proposed wavelets were developed based on multi-resolution models built from irregular cortical surface meshes, which were realized in this study too. The multi-resolution wavelet analysis was used to seek sparse representation of cortical current densities in transformed domains, which was expected due to the compressibility of wavelets, and evaluated using Monte Carlo simulations. The EEG/MEG inverse problems were solved with the use of the novel L1-norm regularization method exploring the sparseness in the wavelet domain. The inverse solutions obtained from the new method using MEG data were evaluated by Monte Carlo simulations too. The present results indicated that cortical current densities could be efficiently compressed using the proposed face-based wavelet method, which exhibited better performance than the vertex-based wavelet method. In both simulations and auditory experimental data analysis, the proposed L1-norm regularization method showed better source detection accuracy and less estimation errors than other two classic methods, i.e. weighted minimum norm (wMNE) and cortical low-resolution electromagnetic tomography (cLORETA). This study suggests that the L1-norm regularization method with the use of face-based wavelets is a promising tool for studying functional activations of the human brain.

  12. Sparse imaging of cortical electrical current densities via wavelet transforms

    NASA Astrophysics Data System (ADS)

    Liao, Ke; Zhu, Min; Ding, Lei; Valette, Sébastien; Zhang, Wenbo; Dickens, Deanna

    2012-11-01

    While the cerebral cortex in the human brain is of functional importance, functions defined on this structure are difficult to analyze spatially due to its highly convoluted irregular geometry. This study developed a novel L1-norm regularization method using a newly proposed multi-resolution face-based wavelet method to estimate cortical electrical activities in electroencephalography (EEG) and magnetoencephalography (MEG) inverse problems. The proposed wavelets were developed based on multi-resolution models built from irregular cortical surface meshes, which were realized in this study too. The multi-resolution wavelet analysis was used to seek sparse representation of cortical current densities in transformed domains, which was expected due to the compressibility of wavelets, and evaluated using Monte Carlo simulations. The EEG/MEG inverse problems were solved with the use of the novel L1-norm regularization method exploring the sparseness in the wavelet domain. The inverse solutions obtained from the new method using MEG data were evaluated by Monte Carlo simulations too. The present results indicated that cortical current densities could be efficiently compressed using the proposed face-based wavelet method, which exhibited better performance than the vertex-based wavelet method. In both simulations and auditory experimental data analysis, the proposed L1-norm regularization method showed better source detection accuracy and less estimation errors than other two classic methods, i.e. weighted minimum norm (wMNE) and cortical low-resolution electromagnetic tomography (cLORETA). This study suggests that the L1-norm regularization method with the use of face-based wavelets is a promising tool for studying functional activations of the human brain.

  13. Sparse cortical source localization using spatio-temporal atoms.

    PubMed

    Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie

    2015-01-01

    This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources.

  14. Surround suppression and sparse coding in visual and barrel cortices

    PubMed Central

    Sachdev, Robert N. S.; Krause, Matthew R.; Mazer, James A.

    2012-01-01

    During natural vision the entire retina is stimulated. Likewise, during natural tactile behaviors, spatially extensive regions of the somatosensory surface are co-activated. The large spatial extent of naturalistic stimulation means that surround suppression, a phenomenon whose neural mechanisms remain a matter of debate, must arise during natural behavior. To identify common neural motifs that might instantiate surround suppression across modalities, we review models of surround suppression and compare the evidence supporting the competing ideas that surround suppression has either cortical or sub-cortical origins in visual and barrel cortex. In the visual system there is general agreement lateral inhibitory mechanisms contribute to surround suppression, but little direct experimental evidence that intracortical inhibition plays a major role. Two intracellular recording studies of V1, one using naturalistic stimuli (Haider et al., 2010), the other sinusoidal gratings (Ozeki et al., 2009), sought to identify the causes of reduced activity in V1 with increasing stimulus size, a hallmark of surround suppression. The former attributed this effect to increased inhibition, the latter to largely balanced withdrawal of excitation and inhibition. In rodent primary somatosensory barrel cortex, multi-whisker responses are generally weaker than single whisker responses, suggesting multi-whisker stimulation engages similar surround suppressive mechanisms. The origins of suppression in S1 remain elusive: studies have implicated brainstem lateral/internuclear interactions and both thalamic and cortical inhibition. Although the anatomical organization and instantiation of surround suppression in the visual and somatosensory systems differ, we consider the idea that one common function of surround suppression, in both modalities, is to remove the statistical redundancies associated with natural stimuli by increasing the sparseness or selectivity of sensory responses. PMID:22783169

  15. Sparse cortical current density imaging in motor potentials induced by finger movement

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Ni, Ying; Sweeney, John; He, Bin

    2011-06-01

    Predominant components in electro- or magneto-encephalography (EEG/MEG) are scalp projections of synchronized neuronal electrical activity distributed over cortical structures. Reconstruction of cortical sources underlying EEG/MEG can thus be achieved with the use of the cortical current density (CCD) model. We have developed a sparse electromagnetic source imaging method based on the CCD model, named as the variation-based cortical current density (VB-SCCD) algorithm, and have shown that it has much enhanced performance in reconstructing extended cortical sources in simulations (Ding 2009 Phys. Med. Biol. 54 2683-97). The present study aims to evaluate the performance of VB-SCCD, for the first time, using experimental data obtained from six participants. The results indicate that the VB-SCCD algorithm is able to successfully reveal spatially distributed cortical sources behind motor potentials induced by visually cued repetitive finger movements, and their dynamic patterns, with millisecond resolution. These findings of motor sources and cortical systems are supported by the physiological knowledge of motor control and evidence from various neuroimaging studies with similar experiments. Furthermore, our present results indicate the improvement of cortical source resolvability of VB-SCCD, as compared with two other classical algorithms. The proposed solver embedded in VB-SCCD is able to handle large-scale computational problems, which makes the use of high-density CCD models possible and, thus, reduces model misspecifications. The present results suggest that VB-SCCD provides high resolution source reconstruction capability and is a promising tool for studying complicated dynamic systems of brain activity for basic neuroscience and clinical neuropsychiatric research.

  16. Distributed memory compiler design for sparse problems

    NASA Technical Reports Server (NTRS)

    Wu, Janet; Saltz, Joel; Berryman, Harry; Hiranandani, Seema

    1991-01-01

    A compiler and runtime support mechanism is described and demonstrated. The methods presented are capable of solving a wide range of sparse and unstructured problems in scientific computing. The compiler takes as input a FORTRAN 77 program enhanced with specifications for distributing data, and the compiler outputs a message passing program that runs on a distributed memory computer. The runtime support for this compiler is a library of primitives designed to efficiently support irregular patterns of distributed array accesses and irregular distributed array partitions. A variety of Intel iPSC/860 performance results obtained through the use of this compiler are presented.

  17. Statistical prediction with Kanerva's sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1989-01-01

    A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.

  18. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies.

  19. Notes on implementation of sparsely distributed memory

    NASA Technical Reports Server (NTRS)

    Keeler, J. D.; Denning, P. J.

    1986-01-01

    The Sparsely Distributed Memory (SDM) developed by Kanerva is an unconventional memory design with very interesting and desirable properties. The memory works in a manner that is closely related to modern theories of human memory. The SDM model is discussed in terms of its implementation in hardware. Two appendices discuss the unconventional approaches of the SDM: Appendix A treats a resistive circuit for fast, parallel address decoding; and Appendix B treats a systolic array for high throughput read and write operations.

  20. Generative models for discovering sparse distributed representations.

    PubMed

    Hinton, G E; Ghahramani, Z

    1997-08-29

    We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations.

  1. A view of Kanerva's sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.

  2. Integer sparse distributed memory: analysis and results.

    PubMed

    Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun

    2013-10-01

    Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented.

  3. Sparse distributed memory and related models

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1992-01-01

    Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.

  4. Electromagnetic source imaging for sparse cortical activation patterns.

    PubMed

    von Ellenrieder, Nicolás; Hurtado, Martín; Muravchik, Carlos H

    2010-01-01

    We propose modifications to the Automatic Relevance Determination (ARD) algorithm for solving the EEG/MEG inverse problem when the activation map of the cortex is known to be sparse. We propose to include a term to account for the background noise activity, i.e. electric activity of sources not in the cortex. Also, we prune the results of the ARD algorithm using a Model Selection criterion to get sparser results. Simulations with a realistic head model show a very important reduction of the number of sources incorrectly detected as active.

  5. Sparse distributed memory: Principles and operation

    NASA Technical Reports Server (NTRS)

    Flynn, M. J.; Kanerva, P.; Bhadkamkar, N.

    1989-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long (1000 bit) binary words. Such words can be written into and read from the memory, and they can also be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original write address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech recognition and scene analysis, in signal detection and verification, and in adaptive control of automated equipment, in general, in dealing with real world information in real time. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. Major design issues were resolved which were faced in building the memories. The design is described of a prototype memory with 256 bit addresses and from 8 to 128 K locations for 256 bit words. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  6. Sparse distributed memory prototype: Principles of operation

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip

    1988-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  7. Sparsey™: event recognition via deep hierarchical sparse distributed codes.

    PubMed

    Rinkus, Gerard J

    2014-01-01

    The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, "mac"), at each level. In localism, each represented feature/concept/event (hereinafter "item") is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge ("Big Data") problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal patterns.

  8. Sparsey™: event recognition via deep hierarchical sparse distributed codes

    PubMed Central

    Rinkus, Gerard J.

    2014-01-01

    The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, “mac”), at each level. In localism, each represented feature/concept/event (hereinafter “item”) is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (“Big Data”) problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal

  9. BIRD: A general interface for sparse distributed memory simulators

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.

  10. Two demonstrators and a simulator for a sparse, distributed memory

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.

    1987-01-01

    Described are two programs demonstrating different aspects of Kanerva's Sparse, Distributed Memory (SDM). These programs run on Sun 3 workstations, one using color, and have straightforward graphically oriented user interfaces and graphical output. Presented are descriptions of the programs, how to use them, and what they show. Additionally, this paper describes the software simulator behind each program.

  11. Sparse Distributed Representation and Hierarchy: Keys to Scalable Machine Intelligence

    DTIC Science & Technology

    2016-04-01

    AFRL-RY-WP-TR-2016-0030 SPARSE DISTRIBUTED REPRESENTATION & HIERARCHY: KEYS TO SCALABLE MACHINE INTELLIGENCE Gerard (Rod) Rinkus, Greg...REPRESENTATION & HIERARCHY: KEYS TO SCALABLE MACHINE INTELLIGENCE 5a. CONTRACT NUMBER FA8650-13-C-7342 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...classification accuracy on the Weizmann data set, accomplished with 3.5 minutes training time, with no machine parallelism and almost no software

  12. Kanerva's sparse distributed memory with multiple hamming thresholds

    NASA Technical Reports Server (NTRS)

    Pohja, Seppo; Kaski, Kimmo

    1992-01-01

    If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.

  13. Multiple peaks of species abundance distributions induced by sparse interactions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u , we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions.

  14. An alternative design for a sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1989-01-01

    A new design for a Sparse Distributed Memory, called the selected-coordinate design, is described. As in the original design, there are a large number of memory locations, each of which may be activated by many different addresses (binary vectors) in a very large address space. Each memory location is defined by specifying ten selected coordinates (bit positions in the address vectors) and a set of corresponding assigned values, consisting of one bit for each selected coordinate. A memory location is activated by an address if, for all ten of the locations's selected coordinates, the corresponding bits in the address vector match the respective assigned value bits, regardless of the other bits in the address vector. Some comparative memory capacity and signal-to-noise ratio estimates for the both the new and original designs are given. A few possible hardware embodiments of the new design are described.

  15. Improved load distribution in parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Rothberg, Edward; Schreiber, Robert

    1994-01-01

    Compared to the customary column-oriented approaches, block-oriented, distributed-memory sparse Cholesky factorization benefits from an asymptotic reduction in interprocessor communication volume and an asymptotic increase in the amount of concurrency that is exposed in the problem. Unfortunately, block-oriented approaches (specifically, the block fan-out method) have suffered from poor balance of the computational load. As a result, achieved performance can be quite low. This paper investigates the reasons for this load imbalance and proposes simple block mapping heuristics that dramatically improve it. The result is a roughly 20% increase in realized parallel factorization performance, as demonstrated by performance results from an Intel Paragon system. We have achieved performance of nearly 3.2 billion floating point operations per second with this technique on a 196-node Paragon system.

  16. Distributed dictionary learning for sparse representation in sensor networks.

    PubMed

    Liang, Junli; Zhang, Miaohua; Zeng, Xianyu; Yu, Guoyang

    2014-06-01

    This paper develops a distributed dictionary learning algorithm for sparse representation of the data distributed across nodes of sensor networks, where the sensitive or private data are stored or there is no fusion center or there exists a big data application. The main contributions of this paper are: 1) we decouple the combined dictionary atom update and nonzero coefficient revision procedure into two-stage operations to facilitate distributed computations, first updating the dictionary atom in terms of the eigenvalue decomposition of the sum of the residual (correlation) matrices across the nodes then implementing a local projection operation to obtain the related representation coefficients for each node; 2) we cast the aforementioned atom update problem as a set of decentralized optimization subproblems with consensus constraints. Then, we simplify the multiplier update for the symmetry undirected graphs in sensor networks and minimize the separable subproblems to attain the consistent estimates iteratively; and 3) dictionary atoms are typically constrained to be of unit norm in order to avoid the scaling ambiguity. We efficiently solve the resultant hidden convex subproblems by determining the optimal Lagrange multiplier. Some experiments are given to show that the proposed algorithm is an alternative distributed dictionary learning approach, and is suitable for the sensor network environment.

  17. Probing the sparse tails of redshift distributions with Voronoi tessellations

    NASA Astrophysics Data System (ADS)

    Granett, B. R.

    2017-01-01

    We introduce an empirical galaxy photometric redshift algorithm based upon the Voronoi tessellation density estimator in the space of redshift and photometric parameters. Our aim is to use sparse survey datasets to estimate the full shape of the redshift distribution that is defined by the degeneracies in galaxy photometric properties and redshift. We describe the algorithm implementation and provide a proof of concept using the first public data release from the VIMOS Public Extragalactic Redshift Survey (VIPERS PDR-1). We validate the method by comparing against the standard empirical redshift distribution code Trees for Photo-Z (TPZ) on both mock and real data. We find that the Voronoi tessellation algorithm accurately recovers the full shape of the redshift distribution quantified by its second moment and inferred redshift confidence intervals. The analysis allows us to properly account for galaxies in the tails of the distributions that would otherwise be classified as catastrophic outliers. The source code is publicly available at http://bitbucket.org/bengranett/tailz.

  18. Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks

    PubMed Central

    Mejias, Jorge F.; Longtin, André

    2014-01-01

    Recent experimental and theoretical studies have highlighted the importance of cell-to-cell differences in the dynamics and functions of neural networks, such as in different types of neural coding or synchronization. It is still not known, however, how neural heterogeneity can affect cortical computations, or impact the dynamics of typical cortical circuits constituted of sparse excitatory and inhibitory networks. In this work, we analytically and numerically study the dynamics of a typical cortical circuit with a certain level of neural heterogeneity. Our circuit includes realistic features found in real cortical populations, such as network sparseness, excitatory, and inhibitory subpopulations of neurons, and different cell-to-cell heterogeneities for each type of population in the system. We find highly differentiated roles for heterogeneity, depending on the subpopulation in which it is found. In particular, while heterogeneity among excitatory neurons non-linearly increases the mean firing rate and linearizes the f-I curves, heterogeneity among inhibitory neurons may decrease the network activity level and induces divisive gain effects in the f-I curves of the excitatory cells, providing an effective gain control mechanism to influence information flow. In addition, we compute the conditions for stability of the network activity, finding that the synchronization onset is robust to inhibitory heterogeneity, but it shifts to lower input levels for higher excitatory heterogeneity. Finally, we provide an extension of recently reported heterogeneity-induced mechanisms for signal detection under rate coding, and we explore the validity of our findings when multiple sources of heterogeneity are present. These results allow for a detailed characterization of the role of neural heterogeneity in asynchronous cortical networks. PMID:25309409

  19. Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation

    PubMed Central

    Haider, Bilal; Krause, Matthew R.; Duque, Alvaro; Yu, Yuguo; Touryan, Jonathan; Mazer, James A.; McCormick, David A.

    2011-01-01

    SUMMARY During natural vision, the entire visual field is stimulated by images rich in spatiotemporal structure. Although many visual system studies restrict stimuli to the classical receptive field (CRF), it is known that costimulation of the CRF and the surrounding nonclassical receptive field (nCRF) increases neuronal response sparseness. The cellular and network mechanisms underlying increased response sparseness remain largely unexplored. Here we show that combined CRF + nCRF stimulation increases the sparseness, reliability, and precision of spiking and membrane potential responses in classical regular spiking (RSC) pyramidal neurons of cat primary visual cortex. Conversely, fast-spiking interneurons exhibit increased activity and decreased selectivity during CRF + nCRF stimulation. The increased sparseness and reliability of RSC neuron spiking is associated with increased inhibitory barrages and narrower visually evoked synaptic potentials. Our experimental observations were replicated with a simple computational model, suggesting that network interactions among neuronal subtypes ultimately sharpen recurrent excitation, producing specific and reliable visual responses. PMID:20152117

  20. Two-dimensional shape recognition using sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti; Olshausen, Bruno

    1990-01-01

    Researchers propose a method for recognizing two-dimensional shapes (hand-drawn characters, for example) with an associative memory. The method consists of two stages: first, the image is preprocessed to extract tangents to the contour of the shape; second, the set of tangents is converted to a long bit string for recognition with sparse distributed memory (SDM). SDM provides a simple, massively parallel architecture for an associative memory. Long bit vectors (256 to 1000 bits, for example) serve as both data and addresses to the memory, and patterns are grouped or classified according to similarity in Hamming distance. At the moment, tangents are extracted in a simple manner by progressively blurring the image and then using a Canny-type edge detector (Canny, 1986) to find edges at each stage of blurring. This results in a grid of tangents. While the technique used for obtaining the tangents is at present rather ad hoc, researchers plan to adopt an existing framework for extracting edge orientation information over a variety of resolutions, such as suggested by Watson (1987, 1983), Marr and Hildreth (1980), or Canny (1986).

  1. Kanerva's sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.

  2. Obtaining sparse distributions in 2D inverse problems

    NASA Astrophysics Data System (ADS)

    Reci, A.; Sederman, A. J.; Gladden, L. F.

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxation-relaxation, T1-T2, and diffusion-relaxation, D-T2, correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise ratio < 20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.

  3. Sparse solution of fiber orientation distribution function by diffusion decomposition.

    PubMed

    Yeh, Fang-Cheng; Tseng, Wen-Yih Isaac

    2013-01-01

    Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L 2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffusion decomposition, which obtains a sparse solution of fiber ODF by decomposing the diffusion ODF obtained from q-ball imaging (QBI), diffusion spectrum imaging (DSI), or generalized q-sampling imaging (GQI). A simulation study, a phantom study, and an in-vivo study were conducted to examine the performance of diffusion decomposition. The simulation study showed that diffusion decomposition was more accurate than both constrained spherical deconvolution and ball-and-sticks model. The phantom study showed that the angular error of diffusion decomposition was significantly lower than those of constrained spherical deconvolution at 30° crossing and ball-and-sticks model at 60° crossing. The in-vivo study showed that diffusion decomposition can be applied to QBI, DSI, or GQI, and the resolved fiber orientations were consistent regardless of the diffusion sampling schemes and diffusion reconstruction methods. The performance of diffusion decomposition was further demonstrated by resolving crossing fibers on a 30-direction QBI dataset and a 40-direction DSI dataset. In conclusion, diffusion decomposition can improve angular resolution and resolve crossing fibers in datasets with low SNR and substantially reduced number of diffusion encoding directions. These advantages may be valuable for human connectome studies and clinical research.

  4. Sparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition

    PubMed Central

    Yeh, Fang-Cheng; Tseng, Wen-Yih Isaac

    2013-01-01

    Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffusion decomposition, which obtains a sparse solution of fiber ODF by decomposing the diffusion ODF obtained from q-ball imaging (QBI), diffusion spectrum imaging (DSI), or generalized q-sampling imaging (GQI). A simulation study, a phantom study, and an in-vivo study were conducted to examine the performance of diffusion decomposition. The simulation study showed that diffusion decomposition was more accurate than both constrained spherical deconvolution and ball-and-sticks model. The phantom study showed that the angular error of diffusion decomposition was significantly lower than those of constrained spherical deconvolution at 30° crossing and ball-and-sticks model at 60° crossing. The in-vivo study showed that diffusion decomposition can be applied to QBI, DSI, or GQI, and the resolved fiber orientations were consistent regardless of the diffusion sampling schemes and diffusion reconstruction methods. The performance of diffusion decomposition was further demonstrated by resolving crossing fibers on a 30-direction QBI dataset and a 40-direction DSI dataset. In conclusion, diffusion decomposition can improve angular resolution and resolve crossing fibers in datasets with low SNR and substantially reduced number of diffusion encoding directions. These advantages may be valuable for human connectome studies and clinical research. PMID:24146772

  5. SuperLU{_}DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems

    SciTech Connect

    Li, Xiaoye S.; Demmel, James W.

    2002-03-27

    In this paper, we present the main algorithmic features in the software package SuperLU{_}DIST, a distributed-memory sparse direct solver for large sets of linear equations. We give in detail our parallelization strategies, with focus on scalability issues, and demonstrate the parallel performance and scalability on current machines. The solver is based on sparse Gaussian elimination, with an innovative static pivoting strategy proposed earlier by the authors. The main advantage of static pivoting over classical partial pivoting is that it permits a priori determination of data structures and communication pattern for sparse Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we designed highly parallel and scalable algorithms for both LU decomposition and triangular solve and we show that they are suitable for large-scale distributed memory machines.

  6. The application of a sparse, distributed memory to the detection, identification and manipulation of physical objects

    NASA Technical Reports Server (NTRS)

    Kanerva, P.

    1986-01-01

    To determine the relation of the sparse, distributed memory to other architectures, a broad review of the literature was made. The memory is called a pattern memory because they work with large patterns of features (high-dimensional vectors). A pattern is stored in a pattern memory by distributing it over a large number of storage elements and by superimposing it over other stored patterns. A pattern is retrieved by mathematical or statistical reconstruction from the distributed elements. Three pattern memories are discussed.

  7. An empirical investigation of sparse distributed memory using discrete speech recognition

    NASA Technical Reports Server (NTRS)

    Danforth, Douglas G.

    1990-01-01

    Presented here is a step by step analysis of how the basic Sparse Distributed Memory (SDM) model can be modified to enhance its generalization capabilities for classification tasks. Data is taken from speech generated by a single talker. Experiments are used to investigate the theory of associative memories and the question of generalization from specific instances.

  8. A class of designs for a sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1989-01-01

    A general class of designs for a space distributed memory (SDM) is described. The author shows that Kanerva's original design and the selected-coordinate design are related, and that there is a series of possible intermediate designs between those two designs. In each such design, the set of addresses that activate a memory location is a sphere in the address space. We can also have hybrid designs, in which the memory locations may be a mixture of those found in the other designs. In some applications, the bits of the read and write addresses that will actually be used might be mostly zeros; that is, the addresses might lie on or near z hyperplane in the address space. The author describes a hyperplane design which is adapted to this situation and compares it to an adaptation of Kanerva's design. To study the performance of these designs, he computes the expected number of memory locations activated by both of two addresses.

  9. Learning to read aloud: A neural network approach using sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Joglekar, Umesh Dwarkanath

    1989-01-01

    An attempt to solve a problem of text-to-phoneme mapping is described which does not appear amenable to solution by use of standard algorithmic procedures. Experiments based on a model of distributed processing are also described. This model (sparse distributed memory (SDM)) can be used in an iterative supervised learning mode to solve the problem. Additional improvements aimed at obtaining better performance are suggested.

  10. Analytical analysis of fracture conductivity for sparse distribution of proppant packs

    NASA Astrophysics Data System (ADS)

    Guo, Jianchun; Wang, Jiandong; Liu, Yuxuan; Chen, Zhangxin; Zhu, Haiyan

    2017-06-01

    Conductivity optimization is important for hydraulic fracturing due to its key roles in determining fractured well productivity. Proppant embedment is an important mechanism that could cause a remarkable reduction in fracture width and, thus, damage the fracture conductivity. In this work a new analytical model, based on contact mechanics and the Carman-Kozeny model, is developed to calculate the embedment and conductivity for the sparse distribution of proppant packs. Features and controlling factors of embedment, residual width and conductivity are analyzed. The results indicate an optimum distance between proppant packs that has the potential to maintain the maximum conductivity after proppant embedment under a sparse distribution condition. A change in the optimum distance is primarily controlled by closure pressure, the rock elastic modulus and the proppant elastic modulus. The proppant concentrations and the poroelastic effect do not influence this optimum distance.

  11. Two alternate proofs of Wang's lune formula for sparse distributed memory and an integral approximation

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1988-01-01

    In Kanerva's Sparse Distributed Memory, writing to and reading from the memory are done in relation to spheres in an n-dimensional binary vector space. Thus it is important to know how many points are in the intersection of two spheres in this space. Two proofs are given of Wang's formula for spheres of unequal radii, and an integral approximation for the intersection in this case.

  12. Analysis, tuning and comparison of two general sparse solvers for distributed memory computers

    SciTech Connect

    Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.; Li, X.S.

    2000-06-30

    We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differences in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.

  13. The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno; Watson, Andrew

    1990-01-01

    An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.

  14. Sleep regulation of the distribution of cortical firing rates.

    PubMed

    Levenstein, Daniel; Watson, Brendon O; Rinzel, John; Buzsáki, György

    2017-03-10

    Sleep is thought to mediate both mnemonic and homeostatic functions. However, the mechanism by which this brain state can simultaneously implement the 'selective' plasticity needed to consolidate novel memory traces and the 'general' plasticity necessary to maintain a well-functioning neuronal system is unclear. Recent findings show that both of these functions differentially affect neurons based on their intrinsic firing rate, a ubiquitous neuronal heterogeneity. Furthermore, they are both implemented by the NREM slow oscillation, which also distinguishes neurons based on firing rate during sequential activity at the DOWN→UP transition. These findings suggest a mechanism by which spiking activity during the slow oscillation acts to maintain network statistics that promote a skewed distribution of neuronal firing rates, and perturbation of that activity by hippocampal replay acts to integrate new memory traces into the existing cortical network.

  15. Performance analysis of distributed symmetric sparse matrix vector multiplication algorithm for multi-core architectures

    DOE PAGES

    Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...

    2015-07-14

    In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less

  16. Performance analysis of distributed symmetric sparse matrix vector multiplication algorithm for multi-core architectures

    SciTech Connect

    Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; Maris, Pieter; Vary, James P.

    2015-07-14

    In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important features of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.

  17. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex

    PubMed Central

    Weiner, Kevin S.; Grill-Spector, Kalanit

    2011-01-01

    Functional magnetic resonance imaging (fMRI) has identified face- and body part-selective regions, as well as distributed activation patterns for object categories across human ventral temporal cortex (VTC), eliciting a debate regarding functional organization in VTC and neural coding of object categories. Using high-resolution fMRI, we illustrate that face- and limb-selective activations alternate in a series of largely nonoverlapping clusters in lateral VTC along the inferior occipital gyrus (IOG), fusiform gyrus (FG), and occipitotemporal sulcus (OTS). Both general linear model (GLM) and multivoxel pattern (MVP) analyses show that face- and limb-selective activations minimally overlap and that this organization is consistent across experiments and days. We provide a reliable method to separate two face-selective clusters on the middle and posterior FG (mFus and pFus), and another on the IOG using their spatial relation to limb-selective activations and retinotopic areas hV4, VO-1/2, and hMT+. Furthermore, these activations show a gradient of increasing face selectivity and decreasing limb selectivity from the IOG to the mFus. Finally, MVP analyses indicate that there is differential information for faces in lateral VTC (containing weakly- and highly-selective voxels) relative to non-selective voxels in medial VTC. These findings suggest a sparsely-distributed organization where sparseness refers to the presence of several face- and limb-selective clusters in VTC, and distributed refers to the presence of different amounts of information in highly-, weakly-, and non-selective voxels. Consequently, theories of object recognition should consider the functional and spatial constraints of neural coding across a series of nonoverlapping category-selective clusters that are themselves distributed. PMID:20457261

  18. Distribution of cortical neurons projecting to dorsal column nuclear complex and spinal cord in the hedgehog tenrec, Echinops telfairi.

    PubMed

    Künzle, H; Rehkämper, G

    1992-01-01

    Using retrograde axonal flow and wheatgerm agglutinin conjugated to horseradish peroxidase, we studied the distribution of cortical neurons giving rise to spinal and dorsal column nuclear projections, and correlated the regions involved in the projections with the cytoarchitectonic areas recently identified in the lesser hedgehog tenrec, Echinops telfairi (Insectivora). Labeled cortical neurons were most numerous following injections of tracer into higher cervical segments, whereas almost none were found following thoracic injections. The cortical labeling appeared more prominent ipsilaterally than contralaterally after spinal injections, although it was more prominent on the contralateral side after injection into the dorsal column nuclear complex. The majority of labeled neurons found in lamina V occupied the neocortex adjacent to the interhemispheric fissure along the rostrocaudal extent of the small corpus callosum. This location corresponded to an intermediate rostrocaudal portion of the hemisphere, and particularly to area 2 of Rehkämper. In some cases, adjacent portions of areas 1 and 3 were also involved, as well as neocortical regions of the lateral hemisphere. The present data did not suggest a somatotopic organization of the projections; likewise, evidence for the presence of more than one somatosensorimotor representation was sparse.

  19. Comparison between sparsely distributed memory and Hopfield-type neural network models

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1986-01-01

    The Sparsely Distributed Memory (SDM) model (Kanerva, 1984) is compared to Hopfield-type neural-network models. A mathematical framework for comparing the two is developed, and the capacity of each model is investigated. The capacity of the SDM can be increased independently of the dimension of the stored vectors, whereas the Hopfield capacity is limited to a fraction of this dimension. However, the total number of stored bits per matrix element is the same in the two models, as well as for extended models with higher order interactions. The models are also compared in their ability to store sequences of patterns. The SDM is extended to include time delays so that contextual information can be used to cover sequences. Finally, it is shown how a generalization of the SDM allows storage of correlated input pattern vectors.

  20. Using data tagging to improve the performance of Kanerva's sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The standard formulation of Kanerva's sparse distributed memory (SDM) involves the selection of a large number of data storage locations, followed by averaging the data contained in those locations to reconstruct the stored data. A variant of this model is discussed, in which the predominant pattern is the focus of reconstruction. First, one architecture is proposed which returns the predominant pattern rather than the average pattern. However, this model will require too much storage for most uses. Next, a hybrid model is proposed, called tagged SDM, which approximates the results of the predominant pattern machine, but is nearly as efficient as Kanerva's original formulation. Finally, some experimental results are shown which confirm that significant improvements in the recall capability of SDM can be achieved using the tagged architecture.

  1. Sparse distributed memory: understanding the speed and robustness of expert memory

    PubMed Central

    Brogliato, Marcelo S.; Chada, Daniel M.; Linhares, Alexandre

    2014-01-01

    How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the “tip-of-tongue” memory event—which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory. PMID:24808842

  2. Cortical bone distribution in the femoral neck of hominoids: implications for the locomotion of Australopithecus afarensis.

    PubMed

    Ohman, J C; Krochta, T J; Lovejoy, C O; Mensforth, R P; Latimer, B

    1997-09-01

    Contiguous high resolution computed tomography images were obtained at a 1.5 mm slice thickness perpendicular to the neck axis from the base of the femoral head to the trochanteric line in a sample of 10 specimens each of Homo sapiens, Pan troglodytes, and Gorilla gorilla, plus five specimens of Pan paniscus. Superior, inferior, anterior, and posterior cortical thicknesses were automatically measured directly from these digital images. Throughout the femoral neck H. sapiens displays thin superior cortical bone and inferior cortical bone that thickens distally. In marked contrast, cortical bone in the femoral neck of African apes is more uniformly thick in all directions, with even greater thickening of the superior cortical bone distally. Because the femoral neck acts as a cantilevered beam, its anchorage at the neck-shaft junction is subjected to the highest bending stresses and is the most biomechanically relevant region to inspect for response to strain. As evinced by A.L. 128-1, A.L. 211-1 and MAK-VP-1/1, Australopithecus afarensis is indistinguishable from H. sapiens, but markedly different from African apes in cortical bone distribution at the femoral neck-shaft junction. Cortical distribution in the African ape indicates much greater variation in loading conditions consistent with their more varied locomotor repertoire. Cortical distribution in hominids is a response to the more stereotypic loading pattern imposed by habitual bipedality, and thin superior cortex in A. afarensis confirms the absence of a significant arboreal component in its locomotor repertoire.

  3. MO-FG-204-08: Optimization-Based Image Reconstruction From Unevenly Distributed Sparse Projection Views

    SciTech Connect

    Xie, Huiqiao; Yang, Yi; Tang, Xiangyang; Niu, Tianye; Ren, Yi

    2015-06-15

    Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, which are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality

  4. Short-Term Variations in Response Distribution to Cortical Stimulation

    ERIC Educational Resources Information Center

    Lesser, Ronald P.; Lee, Hyang Woon; Webber, W. R. S.; Prince, Barry; Crone, Nathan E.; Miglioretti, Diana L.

    2008-01-01

    Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change…

  5. Recognition of simple visual images using a sparse distributed memory: Some implementations and experiments

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1990-01-01

    Previously, a method was described of representing a class of simple visual images so that they could be used with a Sparse Distributed Memory (SDM). Herein, two possible implementations are described of a SDM, for which these images, suitably encoded, will serve both as addresses to the memory and as data to be stored in the memory. A key feature of both implementations is that a pattern that is represented as an unordered set with a variable number of members can be used as an address to the memory. In the 1st model, an image is encoded as a 9072 bit string to be used as a read or write address; the bit string may also be used as data to be stored in the memory. Another representation, in which an image is encoded as a 256 bit string, may be used with either model as data to be stored in the memory, but not as an address. In the 2nd model, an image is not represented as a vector of fixed length to be used as an address. Instead, a rule is given for determining which memory locations are to be activated in response to an encoded image. This activation rule treats the pieces of an image as an unordered set. With this model, the memory can be simulated, based on a method of computing the approximate result of a read operation.

  6. Effective Suppression of Pathological Synchronization in Cortical Networks by Highly Heterogeneous Distribution of Inhibitory Connections

    PubMed Central

    Kada, Hisashi; Teramae, Jun-Nosuke; Tokuda, Isao T.

    2016-01-01

    Even without external random input, cortical networks in vivo sustain asynchronous irregular firing with low firing rate. In addition to detailed balance between excitatory and inhibitory activities, recent theoretical studies have revealed that another feature commonly observed in cortical networks, i.e., long-tailed distribution of excitatory synapses implying coexistence of many weak and a few extremely strong excitatory synapses, plays an essential role in realizing the self-sustained activity in recurrent networks of biologically plausible spiking neurons. The previous studies, however, have not considered highly non-random features of the synaptic connectivity, namely, bidirectional connections between cortical neurons are more common than expected by chance and strengths of synapses are positively correlated between pre- and postsynaptic neurons. The positive correlation of synaptic connections may destabilize asynchronous activity of networks with the long-tailed synaptic distribution and induce pathological synchronized firing among neurons. It remains unclear how the cortical network avoids such pathological synchronization. Here, we demonstrate that introduction of the correlated connections indeed gives rise to synchronized firings in a cortical network model with the long-tailed distribution. By using a simplified feed-forward network model of spiking neurons, we clarify the underlying mechanism of the synchronization. We then show that the synchronization can be efficiently suppressed by highly heterogeneous distribution, typically a lognormal distribution, of inhibitory-to-excitatory connection strengths in a recurrent network model of cortical neurons. PMID:27803659

  7. Predictive uncertainty analysis of plume distribution for geological carbon sequestration using sparse-grid Bayesian method

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhang, G.

    2013-12-01

    Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.

  8. Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; McPhee, James; Vargas, Ximena

    2012-09-01

    Data scarcity has traditionally precluded the application of advanced hydrologic techniques in developing countries. In this paper, we evaluate the performance of a flood forecasting scheme in a sparsely monitored catchment based on distributed hydrologic modeling, discharge assimilation, and numerical weather predictions with explicit validation uncertainty analysis. For the hydrologic component of our framework, we apply TopNet to the Cautin River basin, located in southern Chile, using a fully distributed a priori parameterization based on both literature-suggested values and data gathered during field campaigns. Results obtained from this step indicate that the incremental effort spent in measuring directly a set of model parameters was insufficient to represent adequately the most relevant hydrologic processes related to spatiotemporal runoff patterns. Subsequent uncertainty validation performed over a six month ensemble simulation shows that streamflow uncertainty is better represented during flood events, due to both the increase of state perturbation introduced by rainfall and the flood-oriented calibration strategy adopted here. Results from different assimilation configurations suggest that the upper part of the basin is the major source of uncertainty in hydrologic process representation and hint at the usefulness of interpreting assimilation results in terms of model input and parameterization inadequacy. Furthermore, in this case study the violation of Markovian state properties by the Ensemble Kalman filter did affect the numerical results, showing that an explicit treatment of the time delay between the generation of surface runoff and the arrival at the basin outlet is required in the assimilation scheme. Peak flow forecasting results demonstrate that there is a major problem with the Weather Research and Forecasting model outputs, which systematically overestimate precipitation over the catchment. A final analysis performed for a large flooding

  9. Retrieval of high-fidelity memory arises from distributed cortical networks.

    PubMed

    Wais, Peter E; Jahanikia, Sahar; Steiner, Daniel; Stark, Craig E L; Gazzaley, Adam

    2017-04-01

    Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task.

  10. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones.

    PubMed

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes-with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later.

  11. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone.

    PubMed

    van Ruijven, L J; Mulder, L; van Eijden, T M G J

    2007-01-01

    The mechanical properties of bone depend largely on its degree and distribution of mineralization. The present study analyzes the effect of an inhomogeneous distribution of mineralization on the stress and strain distributions in the human mandibular condyle during static clenching. A condyle was scanned with a micro-CT scanner to create a finite element model. For every voxel the degree of mineralization (DMB) was determined from the micro-CT scan. The Young's moduli of the elements were calculated from the DMB using constant, linear, and cubic relations, respectively. Stresses, strains, and displacements in cortical and trabecular bone, as well as the condylar deformation (extension along the antero-posterion axis) and compliance were compared. Over 90% of the bone mineral was located in the cortical bone. The DMB showed large variations in both cortical bone (mean: 884, SD: 111 mg/cm(3)) and trabecular bone (mean: 738, SD: 101 mg/cm(3)). Variations of the stresses and the strains were small in cortical bone, but large in trabecular bone. In the cortical bone an inhomogeneous mineral distribution increased the stresses and the strains. In the trabecular bone, however, it decreased the stresses and increased the strains. Furthermore, the condylar compliance remained relatively constant, but the condylar deformation doubled. It was concluded that neglect of the inhomogeneity of the mineral distribution results in a large underestimation of the stresses and strains of possibly more than 50%. The stiffness of trabecular bone strongly influences the condylar deformation. Vice versa, the condylar deformation largely determines the magnitude of the strains in the trabecular bone.

  12. Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy

    PubMed Central

    Reinsberger, Claus; Tanaka, Naoaki; Cole, Andrew J.; Woo Lee, Jong; Dworetzky, Barbara A.; Bromfield, Edward B.; Hamiwka, Lorie; Bourgeois, Blaise F.; Golby, Alexandra J.; Madsen, Joseph R.; Stufflebeam, Steven M.

    2011-01-01

    To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) had vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) had ECDs that were diversely oriented and widely distributed. Group analysis of MRI data showed widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipito-temporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery. PMID:20472073

  13. Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy.

    PubMed

    Reinsberger, Claus; Tanaka, Naoaki; Cole, Andrew J; Lee, Jong Woo; Dworetzky, Barbara A; Bromfield, Edward B; Hamiwka, Lorie; Bourgeois, Blaise F; Golby, Alexandra J; Madsen, Joseph R; Stufflebeam, Steven M

    2010-10-01

    To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) have vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) have ECDs that are diversely oriented and widely distributed. Group analysis of MRI data shows widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipitotemporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery.

  14. The influence of bromazepam on cortical power distribution.

    PubMed

    Sampaio, Isabel; Puga, Fernanda; Veiga, Heloisa; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2008-06-01

    The EEG has been widely employed in the assessment of electrophysiological changes induced by distinct medications. Its sensibility in detecting alterations produced by a specific substance may be enhanced by methods of quantitative analyses (qEEG). The present study aimed at investigating the modulatory effects of bromazepam on brain dynamics. The effects of bromazepam (3 mg) on EEG power distribution were tested in 10 healthy individuals, in a double-blind experiment. The electrophysiological measure was analyzed across experimental conditions, moments, and electrodes, in the delta, theta, alpha and beta frequency bands separately. A significant decrease of relative power was observed in delta and theta (main effect of condition). No interactions were observed. Although the expected anxiolytic EEG profile was not observed (increased beta and decreased alpha activity), this specific result may be related to other factors such as dosage used and the subjects' general physiological state, and not necessarily to the drug itself.

  15. Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Ďurech, J.; Brož, M.; Marciniak, A.; Warner, B. D.; Pilcher, F.; Stephens, R.; Behrend, R.; Carry, B.; Čapek, D.; Antonini, P.; Audejean, M.; Augustesen, K.; Barbotin, E.; Baudouin, P.; Bayol, A.; Bernasconi, L.; Borczyk, W.; Bosch, J.-G.; Brochard, E.; Brunetto, L.; Casulli, S.; Cazenave, A.; Charbonnel, S.; Christophe, B.; Colas, F.; Coloma, J.; Conjat, M.; Cooney, W.; Correira, H.; Cotrez, V.; Coupier, A.; Crippa, R.; Cristofanelli, M.; Dalmas, Ch.; Danavaro, C.; Demeautis, C.; Droege, T.; Durkee, R.; Esseiva, N.; Esteban, M.; Fagas, M.; Farroni, G.; Fauvaud, M.; Fauvaud, S.; Del Freo, F.; Garcia, L.; Geier, S.; Godon, C.; Grangeon, K.; Hamanowa, H.; Hamanowa, H.; Heck, N.; Hellmich, S.; Higgins, D.; Hirsch, R.; Husarik, M.; Itkonen, T.; Jade, O.; Kamiński, K.; Kankiewicz, P.; Klotz, A.; Koff, R. A.; Kryszczyńska, A.; Kwiatkowski, T.; Laffont, A.; Leroy, A.; Lecacheux, J.; Leonie, Y.; Leyrat, C.; Manzini, F.; Martin, A.; Masi, G.; Matter, D.; Michałowski, J.; Michałowski, M. J.; Michałowski, T.; Michelet, J.; Michelsen, R.; Morelle, E.; Mottola, S.; Naves, R.; Nomen, J.; Oey, J.; Ogłoza, W.; Oksanen, A.; Oszkiewicz, D.; Pääkkönen, P.; Paiella, M.; Pallares, H.; Paulo, J.; Pavic, M.; Payet, B.; Polińska, M.; Polishook, D.; Poncy, R.; Revaz, Y.; Rinner, C.; Rocca, M.; Roche, A.; Romeuf, D.; Roy, R.; Saguin, H.; Salom, P. A.; Sanchez, S.; Santacana, G.; Santana-Ros, T.; Sareyan, J.-P.; Sobkowiak, K.; Sposetti, S.; Starkey, D.; Stoss, R.; Strajnic, J.; Teng, J.-P.; Trégon, B.; Vagnozzi, A.; Velichko, F. P.; Waelchli, N.; Wagrez, K.; Wücher, H.

    2013-03-01

    Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. Aims: We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. Methods: We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. Results: We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6. Table 3 is available in electronic form at http://www.aanda.org

  16. Parallelizing iterative solvers for sparse systems of equations and eigenproblems on distributed-memory machines

    SciTech Connect

    Basermann, A.

    1994-12-31

    For the solution of discretized ordinary or partial differential equations it is necessary to solve systems of equations or eigenproblems with coefficient matrices of different sparsity pattern, depending on the discretization method; using the finite element method (FE) results in largely unstructured systems of equations. Sparse eigenproblems play particularly important roles in the analysis of elastic solids and structures. In the corresponding FE models, the natural frequencies and mode shapes of free vibration are determined as are buckling loads and modes. Another class of problems is related to stability analysis, e.g. of electrical networks. Moreover, approximations of extreme eigenvalues are useful for solving sets of linear equations, e.g. for determining condition numbers of symmetric positive definite matrices or for conjugate gradients methods with polynomial preconditioning. Iterative methods for solving linear systems and eigenproblems mainly consist of matrix-vector products and vector-vector operations; the main work in each iteration is usually the computation of matrix-vector products. Therein, accessing the vector is determined by the sparsity pattern and the storage scheme of the matrix.

  17. Sparse Distributed Representation of Odors in a Large-scale Olfactory Bulb Circuit

    PubMed Central

    Yu, Yuguo; McTavish, Thomas S.; Hines, Michael L.; Shepherd, Gordon M.; Valenti, Cesare; Migliore, Michele

    2013-01-01

    In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments, through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of these synchronized spiking patterns also modulated by the sniff cycle. PMID:23555237

  18. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  19. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  20. Improved mapping of information distribution across the cortical surface with the Support Vector Machine

    PubMed Central

    Xiao, Youping; Rao, Ravi; Cecchi, Guillermo; Kaplan, Ehud

    2008-01-01

    The early visual cortices represent information of several stimulus attributes, such as orientation and color. To understand the coding mechanisms of these attributes in the brain, and the functional organization of the early visual cortices, it is necessary to determine whether different attributes are represented by different compartments within each cortex. Previous studies addressing this question have focused on the information encoded by the response amplitude of individual neurons or cortical columns, and have reached conflicting conclusions. Given the correlated variability in response amplitude across neighboring columns, it is likely that the spatial pattern of responses across these columns encodes the attribute information more reliably than the response amplitude does. Here we present a new method of mapping the spatial distribution of information that is encoded by both the response amplitude and spatial pattern. This new method is based on a statistical learning approach, the Support Vector Machine (SVM). Application of this new method to our optical imaging data suggests that information about stimulus orientation and color are distributed differently in the striate cortex, and this observation is consistent with the hypothesis of segregated representations of orientation and color in this area. We also demonstrate that SVM can be used to extract ‘single-condition’ activation maps from noisy images of intrinsic optical signals. PMID:18249089

  1. Spatially Sparse, Temporally Smooth MEG Via Vector ℓ0 .

    PubMed

    Cassidy, Ben; Solo, Victor

    2015-06-01

    In this paper, we describe a new method for solving the magnetoencephalography inverse problem: temporal vector ℓ0-penalized least squares (TV-L0LS). The method calculates maximally sparse current dipole magnitudes and directions via spatial ℓ0 regularization on a cortically-distributed source grid, while constraining the solution to be smooth with respect to time. We demonstrate the utility of this method on real and simulated data by comparison to existing methods.

  2. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  3. Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays.

    PubMed

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-11-20

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach.

  4. Structure of two-dimensional and three-dimensional turbulent boundary layers with sparsely distributed roughness elements

    NASA Astrophysics Data System (ADS)

    George, Jacob

    The present study deals with the effects of sparsely distributed three-dimensional elements on two-dimensional (2-D) and three-dimensional (3-D) turbulent boundary layers (TBL) such as those that occur on submarines, ship hulls, etc. This study was achieved in three parts: Part 1 dealt with the cylinders when placed individually in the turbulent boundary layers, thereby considering the effect of a single perturbation on the TBL; Part 2 considered the effects when the same individual elements were placed in a sparse and regular distribution, thus studying the response of the flow to a sequence of perturbations; and in Part 3, the distributions were subjected to 3-D turbulent boundary layers, thus examining the effects of streamwise and spanwise pressure gradients on the same perturbed flows as considered in Part 2. The 3-D turbulent boundary layers were generated by an idealized wing-body junction flow. Detailed 3-velocity-component Laser-Doppler Velocimetry (LDV) and other measurements were carried out to understand and describe the rough-wall flow structure. The measurements include mean velocities, turbulence quantities (Reynolds stresses and triple products), skin friction, surface pressure and oil flow visualizations in 2-D and 3-D rough-wall flows for Reynolds numbers, based on momentum thickness, greater than 7000. Very uniform circular cylindrical roughness elements of 0.38mm, 0.76mm and 1.52mm height (k) were used in square and diagonal patterns, yielding six different roughness geometries of rough-wall surface. For the 2-D rough-wall flows, the roughness Reynolds numbers, k +, based on the element height (k) and the friction velocity (Utau), range from 26 to 131. Results for the 2-D rough-wall flows reveal that the velocity-defect law is similar for both smooth and rough surfaces, and the semi-logarithmic velocity-distribution curve is shifted by an amount DeltaU/U, depending on the height of the roughness element, showing that Delta U/Utau is a function

  5. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    PubMed

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age

  6. Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination

    PubMed Central

    Hernández, Adrián; Nácher, Verónica; Luna, Rogelio; Alvarez, Manuel; Zainos, Antonio; Cordero, Silvia; Camarillo, Liliana; Vázquez, Yuriria; Lemus, Luis; Romo, Ranulfo

    2008-01-01

    We report a procedure for recording the simultaneous activity of single neurons distributed across five cortical areas in behaving monkeys. The procedure consists of a commercially available microdrive adapted to a commercially available neural data collection system. The critical advantage of this procedure is that, in each cortical area, a configuration of seven microelectrodes spaced 250–500 μm can be inserted transdurally and each can be moved independently in the z axis. For each microelectrode, the data collection system can record the activity of up to five neurons together with the local field potential (LFP). With this procedure, we normally monitor the simultaneous activity of 70–100 neurons while trained monkeys discriminate the difference in frequency between two vibrotactile stimuli. Approximately 20–60 of these neurons have response properties previously reported in this task. The neuronal recordings show good signal-to-noise ratio, are remarkably stable along a 1-day session, and allow testing several protocols. Microelectrodes are removed from the brain after a 1-day recording session, but are reinserted again the next day by using the same or different x-y microelectrode array configurations. The fact that microelectrodes can be moved in the z axis during the recording session and that the x-y configuration can be changed from day to day maximizes the probability of studying simultaneous interactions, both local and across distant cortical areas, between neurons associated with the different components of this task. PMID:18946031

  7. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    PubMed Central

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  8. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    PubMed

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-09-07

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  9. Effect of Two-Body Motion on Radar Beam Quality for Various Distributed Sparse Array Configurations

    DTIC Science & Technology

    1988-12-01

    help of many. I would like to thank my thesis advisor, Dr. W. E. Wiesel , for his patience and encouragement throughout the duration of this project. I...corltirue =sm re,1 tururn 7 4 Riblioaraphy 1. Brookner, Eli "Phased-Array Radars," S American. 2J: 94-102 (February 1985). 2. Canan, James W "USAF in the...Warren L. and Thiele, Gary A. Antenna -1 Theory a-nd Design. New York: John Wiley and Sons, 1981. 10. Wiesel , William E Jr. Class handout distributed

  10. Efficient packing of patterns in sparse distributed memory by selective weighting of input bits

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1991-01-01

    When a set of patterns is stored in a distributed memory, any given storage location participates in the storage of many patterns. From the perspective of any one stored pattern, the other patterns act as noise, and such noise limits the memory's storage capacity. The more similar the retrieval cues for two patterns are, the more the patterns interfere with each other in memory, and the harder it is to separate them on retrieval. A method is described of weighting the retrieval cues to reduce such interference and thus to improve the separability of patterns that have similar cues.

  11. Design of distributed sparse arrays for Lamb wave SHM based upon estimated scattering matrices

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Michaels, Jennifer E.; Michaels, Thomas E.

    2014-02-01

    A common practice in guided wave structural health monitoring is collecting measurements from a transducer array using the pitch-catch method. Among different array configurations, the spatially distributed array provides a cost-effective solution for rapid interrogation of large, plate-like structures. Several guided wave imaging techniques have been proposed and successfully demonstrated for damage detection and localization. However, the performance of these imaging methods can be compromised by a mismatch between a particular transducer array geometry and the scattering characteristics of a defect of interest. This study proposes a method, which is based upon estimating scattering matrices, to quantify the ability of a specific array geometry to interrogate a scatterer. Several array geometries are evaluated using this method, and a Monte Carlo simulation is then performed to vary the transducer locations to find the array geometry that is best matched to a specific directional scatterer. The efficacy of the proposed method is evaluated experimentally by introducing notches of different orientations and locations on an aluminum plate specimen that is instrumented with a spatially distributed array.

  12. Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices.

    PubMed

    Sowell, Elizabeth R; Thompson, Paul M; Rex, David; Kornsand, David; Tessner, Kevin D; Jernigan, Terry L; Toga, Arthur W

    2002-01-01

    Previous in vivo morphometric studies of human brain maturation between childhood and young adulthood have revealed a spatial and temporal pattern of progressive brain changes that is consistent with the post mortem cytoarchitectonic and cognitive developmental literatures. In this study, we mapped age differences in structural asymmetries at the cortical surface in groups of normally developing children (7-11 years), adolescents (12-16 years) and young adults (23-30 years) using novel surface-based mesh modeling image analytic methods. We also assessed relationships between cortical surface sulcal asymmetry and the local density of the underlying cortical gray matter. Results from this study reveal that perisylvian sulcal asymmetries are much more prominent in the adults than in the children studied. The superior posterior extent of the Sylvian fissure in the right hemisphere is approximately 7 mm more superior in the average adult than in the average child studied, whereas little difference is observed during this age range in the location of this anatomical structure in the left hemisphere. Age-related differences in Sylvian fissure asymmetry were significant (P = 0.0129, permutation test), showing increased asymmetry with increasing age. We also show age-related increases in local gray matter proportion bilaterally in the temporo-parietal cortices that are anatomically and temporally related to the sulcal asymmetries. Results from this cross-sectional study imply that asymmetries in the Sylvian fissure are dynamically changing into young adulthood and show that variability in brain tissue density is related to asymmetry in this region. These morphological differences may be related to changing cognitive abilities and are relevant in interpreting results from studies of abnormal brain development where perisylvian brain regions are implicated.

  13. Some methods of encoding simple visual images for use with a sparse distributed memory, with applications to character recognition

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1989-01-01

    To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.

  14. A unifying theory of synaptic long-term plasticity based on a sparse distribution of synaptic strength

    PubMed Central

    Krieg, Daniel; Triesch, Jochen

    2014-01-01

    Long-term synaptic plasticity is fundamental to learning and network function. It has been studied under various induction protocols and depends on firing rates, membrane voltage, and precise timing of action potentials. These protocols show different facets of a common underlying mechanism but they are mostly modeled as distinct phenomena. Here, we show that all of these different dependencies can be explained from a single computational principle. The objective is a sparse distribution of excitatory synaptic strength, which may help to reduce metabolic costs associated with synaptic transmission. Based on this objective we derive a stochastic gradient ascent learning rule which is of differential-Hebbian type. It is formulated in biophysical quantities and can be related to current mechanistic theories of synaptic plasticity. The learning rule accounts for experimental findings from all major induction protocols and explains a classic phenomenon of metaplasticity. Furthermore, our model predicts the existence of metaplasticity for spike-timing-dependent plasticity Thus, we provide a theory of long-term synaptic plasticity that unifies different induction protocols and provides a connection between functional and mechanistic levels of description. PMID:24624080

  15. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm(3) and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.

  16. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    PubMed Central

    Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers. PMID:25206325

  17. Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.

  18. Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.

  19. Inferring learning rules from distribution of firing rates in cortical neurons

    PubMed Central

    Lim, Sukbin; McKee, Jillian L.; Woloszyn, Luke; Amit, Yali; Freedman, David J.; Sheinberg, David L.; Brunel, Nicolas

    2015-01-01

    Information about external stimuli is thought to be stored in cortical circuits through experience-dependent modifications of synaptic connectivity. These modifications of network connectivity should lead to changes in neuronal activity, as a particular stimulus is repeatedly encountered. Here, we ask what plasticity rules are consistent with the differences in the statistics of the visual response to novel and familiar stimuli in inferior temporal cortex, an area underlying visual object recognition. We introduce a method that allows inferring the dependence of the ‘learning rule’ on post-synaptic firing rate, and show that the inferred learning rule exhibits depression for low post-synaptic rates and potentiation for high rates. The threshold separating depression from potentiation is strongly correlated with both mean and standard deviation of the firing rate distribution. Finally, we show that network models implementing a rule extracted from data show stable learning dynamics, and lead to sparser representations of stimuli. PMID:26523643

  20. Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy.

    PubMed

    Child, Nicholas D; Benarroch, Eduardo E

    2014-03-18

    Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.

  1. Inhomogeneous distribution of Alzheimer pathology along the isocortical relief. Are cortical convolutions an Achilles heel of evolution?

    PubMed

    Arendt, Thomas; Morawski, Markus; Gärtner, Ulrich; Fröhlich, Nadine; Schulze, Falko; Wohmann, Nils; Jäger, Carsten; Eisenlöffel, Christian; Gertz, Hermann-Josef; Mueller, Wolf; Brauer, Kurt

    2017-09-01

    Alzheimer's disease (AD) is neuropathologically characterized by neuritic plaques and neurofibrillary tangles. Progression of both plaques and tangles throughout the brain follows a hierarchical distribution which is defined by intrinsic cytoarchitectonic features and extrinsic connectivity patterns. What has less well been studied is how cortical convolutions influence the distribution of AD pathology. Here, the distribution of both plaques and tangles within subsulcal gyral components (fundi) to components forming their top regions at the subarachnoidal brain surface (crowns) by stereological methods in seven different cortical areas was systematically compared. Further, principle differences in cytoarchitectonic organization of cortical crowns and fundi that might provide the background for regionally selective vulnerability were attempted to identify. It was shown that both plaques and tangles were more prominent in sulcal fundi than gyri crowns. The differential distribution of pathology along convolutions corresponds to subgyral differences in the vascular network, GFAP-positive astrocytes and intracortical and subcortical connectivity. While the precise mechanisms accounting for these differences remain open, the presence of systematic inhomogeneities in the distribution of AD pathology along cortical convolutions indicates that the phylogenetic shaping of the cortex is associated with features that render the human brain vulnerable to AD pathology. © 2016 International Society of Neuropathology.

  2. Effects of cryopreservation on the meiotic spindle, cortical granule distribution and development of rabbit oocytes.

    PubMed

    Jiménez-Trigos, E; Naturil-Alfonso, C; Vicente, J S; Marco-Jiménez, F

    2012-06-01

    Although much progress has been made in oocyte cryopreservation since 1971, live offspring have only been obtained in a few species and in rabbits. The aim of our study was to evaluate the effect of vitrification and slow freezing on the meiotic spindle, cortical granule (CG) distribution and their developmental competence. Oocytes were vitrified in 16.84% ethylene glycol, 12.86% formamide, 22.3% dimethyl sulphoxide, 7% PVP and 1% of synthetic ice blockers using Cryotop as device or slow freezing in 1.5 m PROH and 0.2 m sucrose in 0.25 ml sterile French mini straws. Meiotic spindle and CG distribution were assessed using a confocal laser-scanning microscope. To determine oocyte competence, in vitro development of oocytes from each cryopreservation procedure was assessed using parthenogenesis activation. Our data showed that oocytes were significantly affected by both cryopreservation procedures. In particular, meiotic spindle organization was dramatically altered after cryopreservation. Oocytes with peripheral CG distribution have a better chance of survival in cryopreservation after slow-freezing procedures compared to vitrification. In addition, slow freezing of oocytes led to higher cleavage and blastocyst rates compared to vitrification. Our data showed that, in rabbits, structural alterations are more evident in vitrified oocytes than in slow-frozen oocytes, probably as a consequence of sensitivity to high levels of cryoprotectants. Slow-freezing method is currently the recommended option for rabbit oocyte cryopreservation. © 2011 Blackwell Verlag GmbH.

  3. Relationship of Bone Mineralization Density Distribution (BMDD) in Cortical and Cancellous Bone Within the Iliac Crest of Healthy Premenopausal Women

    PubMed Central

    Dempster, D. W.; Zhou, Hua; Roschger, P.; Fratzl-Zelman, N.; Fratzl, P.; Silverberg, S. J.; Shane, E.; Cohen, A.; Stein, E.; Nickolas, T. L.; Recker, R. R.; Lappe, J.; Bilezikian, J. P.; Klaushofer, K.

    2015-01-01

    Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25–48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.CaWidth), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.CaMean). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.CaHigh) and positively with the percentage of lowly mineralized bone areas (Ct.CaLow). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD. PMID:25134800

  4. Grassmannian sparse representations

    NASA Astrophysics Data System (ADS)

    Azary, Sherif; Savakis, Andreas

    2015-05-01

    We present Grassmannian sparse representations (GSR), a sparse representation Grassmann learning framework for efficient classification. Sparse representation classification offers a powerful approach for recognition in a variety of contexts. However, a major drawback of sparse representation methods is their computational performance and memory utilization for high-dimensional data. A Grassmann manifold is a space that promotes smooth surfaces where points represent subspaces and the relationship between points is defined by the mapping of an orthogonal matrix. Grassmann manifolds are well suited for computer vision problems because they promote high between-class discrimination and within-class clustering, while offering computational advantages by mapping each subspace onto a single point. The GSR framework combines Grassmannian kernels and sparse representations, including regularized least squares and least angle regression, to improve high accuracy recognition while overcoming the drawbacks of performance and dependencies on high dimensional data distributions. The effectiveness of GSR is demonstrated on computationally intensive multiview action sequences, three-dimensional action sequences, and face recognition datasets.

  5. Distribution of cortical granules and meiotic maturation of canine oocytes in bi-phasic systems.

    PubMed

    Apparicio, Maricy; Mostachio, Giuliano Q; Motheo, Tathiana F; Alves, Aracelle E; Padilha, Luciana; Pires-Butler, Eliandra A; Savi, Paula A P; Uscategui, Ricardo A R; Luvoni, Gaia C; Vicente, Wilter R R

    2015-09-01

    The aim of this study was to evaluate the influence of different bi-phasic systems with gonadotrophins and steroids on in vitro maturation rates of oocytes obtained from bitches at different reproductive stages (follicular, luteal, anoestrous). In System A (control) oocytes were matured for 72h in base medium (BM) with 10IUmL(-1) human chorionic gonadotrophin (hCG), 1μgmL(-1) progesterone (P4) and 1μgmL(-1) oestradiol (E2); in bi-phasic System B oocytes were matured for 48h in BM with hCG and for 24h in BM with P4; in bi-phasic System C oocytes were matured for 48h in BM with hCG, P4 and E2, and for 24h in BM with P4; in System D, oocytes were cultured in BM without hormonal supplementation. Data were analysed by ANOVA. There was a positive effect of the bi-phasic systems on germinal vesicle breakdown, metaphase I and metaphase II rates, irrespective of reproductive status (P<0.05). Bi-phasic systems were also beneficial for cortical granule distribution (an indication of cytoplasmic maturation) and its relationship to nuclear status: 74.5% of the oocytes cultured in System B and 85.4% of those cultured in System C presented both nuclear and cytoplasmic maturation (P<0.001). The stage of the oestrous cycle did not influence maturation rates.

  6. Distribution of the lingual foramina in mandibular cortical bone in Koreans

    PubMed Central

    Kim, Dae Hyun; Kim, Moon Yong

    2013-01-01

    Objectives The interforminal region, between the mandibular foramen, is known as a relatively safe area that is free of anatomic structures, such as inferior alveolar nerve, submandibular fossa, and lingual side of the mandible is occasionally neglected for its low clinical importance. Even in the case of a severely constricted alveolus, perforation of the lingual cortical bone had been intended. However, anterior extension of the inferior alveolar canal, important anatomic structure, such as concavity of lingual bone, lingual foramina, and lingual canal, has recently been reported through various studies, and untypical bleeding by perforation of the lingual plate on implantation has also been reported. Therefore, in this study, we performed radiographic and statistical analysis on distribution and appearance frequencies of the lingual foramina that causes perforation of the mandibular lingual cortical bone to prevent complications, such as untypical bleeding, during surgical procedure. Materials and Methods We measured the horizontal length from a midline of the mandible to the lingual foramina, as well as the horizontal length from the alveolar crest to the lingual foramina and from the lingual foramina to the mandibular border by multi-detector computed tomography of 187 patients, who visited Dankook University Dental Hospital for various reasons from January 1, 2008 to August 31, 2012. Results From a total of 187 human mandibles, 110 (58.8%) mandibles had lingual foramina; 39 (20.9%) had bilateral lingual foramen; 34 (18.2%) had the only left lingual foramen; and 37 (19.8%) had the only right lingual foramen. Conclusion When there is consistent bleeding during a surgical procedure, clinicians must consider damages on the branches of the sublingual artery, which penetrate the lingual foramina. Also, when there is a lingual foramina larger than 1 mm in diameter on a pre-implantation computed tomography, clinicians must beware of vessel damage. In order to prevent

  7. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    SciTech Connect

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  8. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  9. Fire Radiative Energy and Biomass Burned Estimation Under Sparse Satellite Sampling Conditions: Using Power Law Probability Distribution Properties of MODIS Fire Radiative Power Retrievals

    NASA Astrophysics Data System (ADS)

    Sathyachandran, S.; Roy, D. P.; Boschetti, L.

    2010-12-01

    Spatially and temporally explicit mapping of the amount of biomass burned by fire is needed to estimate atmospheric emissions of green house gases and aerosols. The instantaneous Fire Radiative Power (FRP) [units: W] is retrieved at active fire detections from mid-infrared wavelength remotely sensed data and can be used to estimate the rate of biomass consumed. Temporal integration of FRP measurements over the duration of the fire provides the Fire Radiative Energy (FRE) [units: J] that has been shown to be linearly related to the total biomass burned [units: g]. However, FRE, and thus biomass burned retrieval, is sensitive to the satellite spatial and temporal sampling of FRP which can be sparse under cloudy conditions and with polar orbiting sensors such as MODIS. In this paper the FRE is derived in a new way as the product of the fire duration and the first moment of the FRP power law probability distribution. MODIS FRP data retrieved over savanna fires in Australia and deforestation fires in Brazil are shown to have power law distributions with different scaling parameters that are related to the fire energy in these two contrasting systems. The FRE derived burned biomass estimates computed using this new method are compared to estimates using the conventional temporal FRP integration method and with literature values. The results of the comparison suggest that the new method may provide more reliable burned biomass estimates under sparse satellite sampling conditions if the fire duration and the power law distribution parameters are characterized a priori.

  10. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    SciTech Connect

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  11. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts.

    PubMed

    Shen, Qin; Zhong, Weimin; Jan, Yuh Nung; Temple, Sally

    2002-10-01

    Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer

  12. Effects of hormonal supplementation on nuclear maturation and cortical granules distribution of canine oocytes during various reproductive stages.

    PubMed

    Apparicio, M; Alves, A E; Pires-Butler, E A; Ribeiro, A P C; Covizzi, G J; Vicente, W R R

    2011-10-01

    The aim of this study was to evaluate the effects of hCG, progesterone and oestradiol supplementation on nuclear and cytoplasmic maturation of canine oocytes cultured for 24, 48, 72 and 96 h. Oocytes obtained from 18 healthy bitches were divided into three groups according to their reproductive status (follicular, luteal and anoestrus stages) and cultured in TCM 199 + 25 UI/ml of hCG + 1 μg/ml of progesterone + 1 μg/ml of 17-β oestradiol or without hormonal supplementation (control) for different periods. Then, they were stained with FITC-LCA-Hoescht for chromatin configuration and cortical granules distribution and evaluated under an epifluorescence microscope. Culture time and the influence of different stages of the oestrous cycle were also evaluated. The present study demonstrated that there was no significant difference among the reproductive stages. With regards to culture medium, only oocytes from the supplemented medium were able to complete meiosis; however, significant difference was only noticed in the percentage of MI stage oocytes (p < 0.05) in the follicular and luteal group at 72 h of culture. Most oocytes in germinal vesicle, germinal vesicle breakdown and metaphase I stage had cortical granules distributed throughout the cytoplasm (immature pattern), irrespective of the culture period (p < 0.05). Cortical granules distributed immediately beneath the plasma membrane (mature) was only observed in metaphase II stage oocytes, but not all of them presented matured cytoplasm. Our results reveal that cortical granules distribution in canine oocytes matured in vitro did not progressed in correspondence with nuclear stage changes and are in accordance with those from other species.

  13. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.

    PubMed

    Janovic, Aleksa; Saveljic, Igor; Vukicevic, Arso; Nikolic, Dalibor; Rakocevic, Zoran; Jovicic, Gordana; Filipovic, Nenad; Djuric, Marija

    2015-01-01

    Understanding of the occlusal load distribution through the mid-facial skeleton in natural dentition is essential because alterations in magnitude and/or direction of occlusal forces may cause remarkable changes in cortical and trabecular bone structure. Previous analyses by strain gauge technique, photoelastic and, more recently, finite element (FE) methods provided no direct evidence for occlusal load distribution through the cortical and trabecular bone compartments individually. Therefore, we developed an improved three-dimensional FE model of the human skull in order to clarify the distribution of occlusal forces through the cortical and trabecular bone during habitual masticatory activities. Particular focus was placed on the load transfer through the anterior and posterior maxilla. The results were presented in von Mises stress (VMS) and the maximum principal stress, and compared to the reported FE and strain gauge data. Our qualitative stress analysis indicates that occlusal forces distribute through the mid-facial skeleton along five vertical and two horizontal buttresses. We demonstrated that cortical bone has a priority in the transfer of occlusal load in the anterior maxilla, whereas both cortical and trabecular bone in the posterior maxilla are equally involved in performing this task. Observed site dependence of the occlusal load distribution may help clinicians in creating strategies for implantology and orthodontic treatments. Additionally, the magnitude of VMS in our model was significantly lower in comparison to previous FE models composed only of cortical bone. This finding suggests that both cortical and trabecular bone should be modeled whenever stress will be quantitatively analyzed.

  14. Measurement of strain distribution in cortical bone around miniscrew implants used for orthodontic anchorage using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Agarwal, Rupali; Bhutani, Ravi; Shakher, Chandra

    2016-05-01

    An application of digital speckle pattern interferometry (DSPI) for the measurement of deformations and strain-field distributions developed in cortical bone around orthodontic miniscrew implants inserted into the human maxilla is presented. The purpose of this study is to measure and compare the strain distribution in cortical bone/miniscrew interface of human maxilla around miniscrew implants of different diameters, different implant lengths, and implants of different commercially available companies. The technique is also used to measure tilt/rotation of canine caused due to the application of retraction springs. The proposed technique has high sensitivity and enables the observation of deformation/strain distribution. In DSPI, two specklegrams are recorded corresponding to pre- and postloading of the retraction spring. The DSPI fringe pattern is observed by subtracting these two specklegrams. Optical phase was extracted using Riesz transform and the monogenic signal from a single DSPI fringe pattern. The obtained phase is used to calculate the parameters of interest such as displacement/deformation and strain/stress. The experiment was conducted on a dry human skull fulfilling the criteria of intact dental arches and all teeth present. Eight different miniscrew implants were loaded with an insertion angulation of 45 deg in the inter-radicular region of the maxillary second premolar and molar region. The loading of miniscrew implants was done with force level (150 gf) by nickel-titanium closed-coil springs (9 mm). The obtained results from DSPI reveal that implant diameter and implant length affect the displacement and strain distribution in cortical bone layer surrounding the miniscrew implant.

  15. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain

    PubMed Central

    Taylor, Sabrina R.; Smith, Colin M.; Keeley, Kristen L.; McGuone, Declan; Dodge, Carter P.; Duhaime, Ann-Christine; Costine, Beth A.

    2016-01-01

    Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU+ neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that

  16. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain.

    PubMed

    Taylor, Sabrina R; Smith, Colin M; Keeley, Kristen L; McGuone, Declan; Dodge, Carter P; Duhaime, Ann-Christine; Costine, Beth A

    2016-01-01

    Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU(+) neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that

  17. Long-tailed distribution of synaptic strength reveals origin and functional roles of ongoing fluctuation in cortical circuit

    NASA Astrophysics Data System (ADS)

    Teramae, Jun-nosuke

    2016-06-01

    Neurons in the cortical circuit continuous to generate irregular spike firing with extremely low firing rate (about 1-2 Hz) even when animals neither receive any external stimuli nor they do not show any significant motor movement. The ongoing activity is often called neuronal noise because measured spike trains are often highly irregular and also spike timings are highly asynchronous among neurons. Many experiments imply that neural networks themselves must generate the noisy activity as an intrinsic property of cortical circuit. However, how a network of neurons sustains the irregular spike firings with low firing rate remains unclear. Recently, by focusing on long-tailed distribution of amplitude of synaptic connections or EPSP (Excitatory Post-Synaptic Potential), we successfully revealed that due to coexistence of a few extremely strong synaptic connections and majority of weak synapses, nonlinear dynamics of population of spiking neurons can have a nontrivial stable state that corresponding to the intrinsic ongoing fluctuation of the cortical circuit. We also found that due to the fluctuation fidelity of spike transmission between neurons are optimized. Here, we report our recent findings of the ongoing fluctuation from viewpoints of mathematical and computational side.

  18. Distribution of cerebello-olivary degeneration in idiopathic late cortical cerebellar atrophy: clinicopathological study of four autopsy cases.

    PubMed

    Ota, Satoru; Tsuchiya, Kuniaki; Anno, Midori; Niizato, Kazuhiro; Akiyama, Haruhiko

    2008-02-01

    Late cortical cerebellar atrophy (LCCA) is a neurodegenerative disease which presents with slowly progressive cerebellar ataxia as a prominent symptom and is characterized neuropathologically by a limited main lesion to the cerebellar cortex and inferior olivary nucleus. To elucidate the features of lesions in the cerebellar cortex and inferior olivary nucleus, four autopsy cases suffering from idiopathic LCCA without other cortical cerebellar atrophies, such as alcoholic cerebellar degeneration, phenytoin intoxication, or hereditary cerebellar atrophy including spinocerebellar ataxia type 6, were examined. All affected patients had identical distinct features of cerebellar cortical lesions. In all four cases, the most obvious pathological finding throughout the cerebellum was loss of Purkinje cells, but the rarefaction of granular cell layers was observed only where loss of Purkinje cells was very severe, and thinning of the molecular layer was seen only where the rarefaction of granular cell layers was moderate to severe. Two patients presented with vermis dominant cerebellar cortical lesions, but the other two patients showed hemispheric dominant pathological changes. Neuronal loss of the inferior olivary nucleus was observed in the three autopsy cases. Two of the three cases had a prominent lesion in the dorsal part of the inferior olive and the cerebellar cortical lesion disclosed the vermis dominance, but the other patient, showing prominent neuronal loss in the ventral olivary nucleus, had a cerebellar hemisphere dominant lesion. The patient without neuronal loss in the inferior olivary nucleus had suffered from a shorter period of disease than the others and the rarefaction of granular cell layers and narrowing of the molecular layer of the cerebellar cortex were mild. Therefore, it is obvious that there are two types of cerebellar cortex lesions in idiopathic LCCA; one is vermis dominant and the other is cerebellar hemispheric dominant. The lesion of the

  19. Distribution of prepubertal and adult goat oocyte cortical granules during meiotic maturation and fertilisation: ultrastructural and cytochemical study.

    PubMed

    Velilla, E; Izquierdo, D; Rodríguez-González, E; López-Béjar, M; Vidal, F; Paramio, M T

    2004-08-01

    The aim of this study was evaluate cortical granule (CG) distribution during in vitro maturation (IVM) and fertilisation of prepubertal goat oocytes compared to CG distribution of ovulated and in vitro fertilised oocytes from adult goats. Oocytes from prepubertal goats were recovered from a slaughterhouse and were matured in M199 with hormones and serum for 27 hr. Ovulated oocytes were collected from gonadotrophin treated Murciana goats. Frozen-thawed spermatozoa were selected by centrifugation in percoll gradient and were capacitated in DMH with 20% steer serum for 1 hr. Ovulated and IVM-oocytes were inseminated in DMH medium with steer serum and calcium lactate for 20 hr. Oocytes and presumptive zygotes were stained with FITC-LCA (Lens culinaris agglutinin labelled with fluorescein isothiocyanate) and observed under a confocal laser scanning microscope. Ultrastructure morphology of oocytes and presumptive zygotes were analysed by transmission electron microscopy (TEM). Prepubertal goat oocytes at germinal vesicle stage show a homogeneous CG distribution in the cytoplasm. IVM-oocytes at Metaphase II (MII) and ovulated oocytes presented CGs located in the cortex with the formation of a monolayer beneath to the plasma membrane. At 20 hr postinsemination (hpi), zygotes from IVM-oocytes showed a complete CG exocytosis whereas zygotes from ovulated oocytes presented aggregates of CGs located at the cortical region. Images by TEM detected that CGs were more electrodense and compacts in oocytes from prepubertal than from adult goats.

  20. The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain.

    PubMed

    Lou, Di-Dong; Guan, Zhi-Zhong; Liu, Yan-Jie; Liu, Yan-Fei; Zhang, Kai-Lin; Pan, Ji-Gang; Pei, Jin-Jing

    2013-03-01

    The present study was designed to evaluate the effects of chronic fluorosis on the dynamics (including fusion and fission proteins), fragmentation, and distribution of mitochondria in the cortical neurons of the rat brain in an attempt to elucidate molecular mechanisms underlying the brain damage associated with excess accumulation of fluoride. Sixty Sprague-Dawley rats were divided randomly into three groups of 20 each, that is, the untreated control group (drinking water naturally containing <0.5 mg fluoride/l, NaF), the low-fluoride group (whose drinking water was supplemented with 10 mg fluoride/l) and the high-fluoride group (50 mg fluoride/l). After 6 months of exposure, the expression of mitofusin-1 (Mfn1), fission-1 (Fis1), and dynamin-related protein-1 (Drp1) at both the protein and mRNA levels were detected by Western blotting, immunohistochemistry, and real-time PCR, respectively. Moreover, mitochondrial morphology and distribution in neurons were observed by transmission electron or fluorescence microscopy. In the cortices of the brains of rats with chronic fluorosis, the level of Mfn1 protein was clearly reduced, whereas the levels of Fis1 and Drp1 were elevated. The alternations of expression of the mRNAs encoding all three of these proteins were almost the same as the corresponding changes at the protein levels. The mitochondria were fragmented and the redistributed away from the axons of the cortical neurons. These findings indicate that chronic fluorosis induces abnormal mitochondrial dynamics, which might in turn result in a high level of oxidative stress.

  1. Distribution of Response Time, Cortical, and Cardiac Correlates during Emotional Interference in Persons with Subclinical Psychotic Symptoms.

    PubMed

    Holper, Lisa K B; Aleksandrowicz, Alekandra; Müller, Mario; Ajdacic-Gross, Vladeta; Haker, Helene; Fallgatter, Andreas J; Hagenmuller, Florence; Kawohl, Wolfram; Rössler, Wulf

    2016-01-01

    A psychosis phenotype can be observed below the threshold of clinical detection. The study aimed to investigate whether subclinical psychotic symptoms are associated with deficits in controlling emotional interference, and whether cortical brain and cardiac correlates of these deficits can be detected using functional near-infrared spectroscopy (fNIRS). A data set derived from a community sample was obtained from the Zurich Program for Sustainable Development of Mental Health Services. 174 subjects (mean age 29.67 ± 6.41, 91 females) were assigned to four groups ranging from low to high levels of subclinical psychotic symptoms (derived from the Symptom Checklist-90-R). Emotional interference was assessed using the emotional Stroop task comprising neutral, positive, and negative conditions. Statistical distributional methods based on delta plots [behavioral response time (RT) data] and quantile analysis (fNIRS data) were applied to evaluate the emotional interference effects. Results showed that both interference effects and disorder-specific (i.e., group-specific) effects could be detected, based on behavioral RTs, cortical hemodynamic signals (brain correlates), and heart rate variability (cardiac correlates). Subjects with high compared to low subclinical psychotic symptoms revealed significantly reduced amplitudes in dorsolateral prefrontal cortices (interference effect, p < 0.001) and middle temporal gyrus (disorder-specific group effect, p < 0.001), supported by behavioral and heart rate results. The present findings indicate that distributional analyses methods can support the detection of emotional interference effects in the emotional Stroop. The results suggested that subjects with high subclinical psychosis exhibit enhanced emotional interference effects. Based on these observations, subclinical psychosis may therefore prove to represent a valid extension of the clinical psychosis phenotype.

  2. Distribution of Response Time, Cortical, and Cardiac Correlates during Emotional Interference in Persons with Subclinical Psychotic Symptoms

    PubMed Central

    Holper, Lisa K. B.; Aleksandrowicz, Alekandra; Müller, Mario; Ajdacic-Gross, Vladeta; Haker, Helene; Fallgatter, Andreas J.; Hagenmuller, Florence; Kawohl, Wolfram; Rössler, Wulf

    2016-01-01

    A psychosis phenotype can be observed below the threshold of clinical detection. The study aimed to investigate whether subclinical psychotic symptoms are associated with deficits in controlling emotional interference, and whether cortical brain and cardiac correlates of these deficits can be detected using functional near-infrared spectroscopy (fNIRS). A data set derived from a community sample was obtained from the Zurich Program for Sustainable Development of Mental Health Services. 174 subjects (mean age 29.67 ± 6.41, 91 females) were assigned to four groups ranging from low to high levels of subclinical psychotic symptoms (derived from the Symptom Checklist-90-R). Emotional interference was assessed using the emotional Stroop task comprising neutral, positive, and negative conditions. Statistical distributional methods based on delta plots [behavioral response time (RT) data] and quantile analysis (fNIRS data) were applied to evaluate the emotional interference effects. Results showed that both interference effects and disorder-specific (i.e., group-specific) effects could be detected, based on behavioral RTs, cortical hemodynamic signals (brain correlates), and heart rate variability (cardiac correlates). Subjects with high compared to low subclinical psychotic symptoms revealed significantly reduced amplitudes in dorsolateral prefrontal cortices (interference effect, p < 0.001) and middle temporal gyrus (disorder-specific group effect, p < 0.001), supported by behavioral and heart rate results. The present findings indicate that distributional analyses methods can support the detection of emotional interference effects in the emotional Stroop. The results suggested that subjects with high subclinical psychosis exhibit enhanced emotional interference effects. Based on these observations, subclinical psychosis may therefore prove to represent a valid extension of the clinical psychosis phenotype. PMID:27660608

  3. Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons

    PubMed Central

    Tsubo, Yasuhiro; Isomura, Yoshikazu; Fukai, Tomoki

    2012-01-01

    The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains. PMID:22511856

  4. Cortical commands in active touch.

    PubMed

    Brecht, Michael

    2006-01-01

    The neocortex is an enormous network of extensively interconnected neurons. It has become clear that the computations performed by individual cortical neurons will critically depend on the quantitative composition of cortical activity. Here we discuss quantitative aspects of cortical activity and modes of cortical processing in the context of rodent active touch. Through in vivo whole-cell recordings one observes widespread subthreshold and very sparse evoked action potential (AP) activity in the somatosensory cortex both for passive whisker deflection in anaesthetized animals and during active whisker movements in awake animals. Neurons of the somatosensory cortex become either suppressed during whisking or activated by an efference copy of whisker movement signal that depolarize cells at certain phases of the whisking cycle. To probe the read out of cortical motor commands we applied intracellular stimulation in rat whisker motor cortex. We find that APs in individual cortical neurons can evoke long sequences of small whisker movements. The capacity of an individual neuron to evoke movements is most astonishing given the large number of neurons in whisker motor cortex. Thus, few cortical APs may suffice to control motor behaviour and such APs can be translated into action with the utmost precision. We conclude that there is very widespread subthreshold cortical activity and very sparse, highly specific cortical AP activity.

  5. Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb.

    PubMed

    Matsutani, S

    2010-08-11

    The olfactory bulb receives a large number of centrifugal fibers whose functions remain unclear. To gain insight into the function of the bulbar centrifugal system, the morphology of individual centrifugal axons from olfactory cortical areas was examined in detail. An anterograde tracer, Phaseolus vulgaris leucoagglutinin, was injected into rat olfactory cortical areas, including the pars lateralis of the anterior olfactory nucleus (lAON) and the anterior part of the piriform cortex (aPC). Reconstruction from serial sections revealed that the extrabulbar segments of centrifugal axons from the lAON and those from the aPC had distinct trajectories: the former tended to innervate the pars externa of the AON before entering the olfactory bulb, while the latter had extrabulbar collaterals that extended to a variety of targets. In contrast to the extrabulbar segments, no clear differences were found between the intrabulbar segments of axons from the lAON and from the aPC. The intrabulbar segments of centrifugal axons were mainly found in the granule cell layer but a few axons extended into the external plexiform and glomerular layer. Approximately 40% of centrifugal axons innervated both the medial and lateral aspects of the olfactory bulb. The number of boutons found on single intrabulbar segments was typically less than 1000. Boutons tended to aggregate and form complex terminal tufts with short axonal branches. Terminal tufts, no more than 10 in single axons from ipsilateral cortical areas, were localized to the granule cell layer with varying intervals; some tufts formed patchy clusters and others were scattered over areas that extended for a few millimeters. The patchy, widespread distribution of terminals suggests that the centrifugal axons are able to couple the activity of specific subsets of bulbar neurons even when the subsets are spatially separated.

  6. Regional and laminar distribution of cortical neurons projecting to either superior or inferior colliculus in the hedgehog tenrec.

    PubMed

    Künzle, H

    1995-01-01

    Retrograde tracer substances were injected into either the inferior or the superior colliculus in the Madagascan hedgehog tenrec, Echinops telfairi (Insectivora), to reveal the laminar and regional distribution of corticotectal cells and to correlate the labeled areas with architectural data. The tenrecs, taken from our breeding colony, have one of the least differentiated cerebral cortices among mammals, and experimental investigations of such brains are important for the understanding of the evolution and intrinsic organization of the more highly differentiated cerebral cortex in other placental mammals. Following injections into the inferior colliculus, cortical neurons were labeled bilaterally, with an ipsilateral predominance. Most labeled cells were found in the caudolateral hemisphere, area 4 as defined by Rehkämper (1981); some were in the somatosensorimotor cortex, as defined in a previous study. The labeled neurons in area 4 were located in layers V and VI, forming two bands of cells separated from each other by a poorly labeled interspace. A further subdivision of this presumed auditory region could not be achieved. This entire area was also weakly labeled following tracer injections into the superior colliculus. The labeled cells, however, were restricted to layer V of the ipsilateral side. The most consistent sites of labeled cells following injections into the superior colliculus were found in layer V of the ipsilateral caudomedial hemisphere, Rehkämper's caudal area 3, and the transitional zone adjacent to the retrosplenial cortex. This area is small in comparison to the entire region that was found in this study to project to the superior colliculus. The superior colliculus also receives projections from the ipsilateral sensorimotor and cingulate cortices. The latter projections are particularly striking in comparison to other mammals because they originate from along the entire rostrocaudal extent of the cingulate/retrosplenial region.

  7. Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice.

    PubMed

    Torres-Fernández, Orlando; Yepes, Gloria E; Gómez, Javier E; Pimienta, Hernán J

    2005-10-01

    Rabies has been an enigmatic disease of the nervous system because microscopic findings in the brain tissue are not paralleled by the severity of the clinical illness. The calcium binding protein calbindin (CB) is a neuronal marker of great interest in neuroanatomy and neuropathology. CB-ir neurons in the striatum and cerebral cortex are gabaergic cells. In the present work CB-immunoreactivity was evaluated in brains of normal and rabies-infected mice. Rabies infection caused loss of CB-immunostaining in the cortical supragranular layers as well as in the striatum. Loss of CB in the brains of mice infected with rabies virus can produce impairment in Ca++ homeostasis and in the gabaergic neurotransmission.

  8. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    PubMed

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks.

  9. Brightness variation distributions among main belt asteroids from sparse light-curve sampling with Pan-STARRS 1

    NASA Astrophysics Data System (ADS)

    McNeill, A.; Fitzsimmons, A.; Jedicke, R.; Wainscoat, R.; Denneau, L.; Vereš, P.; Magnier, E.; Chambers, K. C.; Kaiser, N.; Waters, C.

    2016-07-01

    The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack effect. We have analysed the changes in magnitude between consecutive detections of ˜60 000 asteroids measured by the Panoramic Survey Telescope and Rapid Response System (PanSTARRS) 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency towards smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 ± 0.13 : 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.

  10. Sparse Regression as a Sparse Eigenvalue Problem

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai

    2008-01-01

    We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization

  11. Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations

    NASA Astrophysics Data System (ADS)

    Kumar, S. S.; Roy, D. P.; Boschetti, L.; Kremens, R.

    2011-10-01

    Instantaneous estimates of the power released by fire (fire radiative power, FRP) are available with satellite active fire detection products. The temporal integral of FRP provides an estimate of the fire radiative energy (FRE) that is related linearly to the amount of biomass burned needed by the atmospheric emissions modeling community. The FRE, however, is sensitive to satellite temporal and spatial FRP undersampling due to infrequent satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small fires. Satellite FRPs derived over individual burned areas and fires have been observed to exhibit power law distributions. This property is exploited to develop a new way to derive FRE, as the product of the fire duration and the expected FRP value derived from the FRP power law probability distribution function. The method is demonstrated and validated by the use of FRP data measured with a dual-band radiometer over prescribed fires in the United States and by the use of FRP data retrieved from moderate resolution imaging spectroradiometer (MODIS) active-fire detections over Brazilian deforestation and Australian savanna fires. The biomass burned derived using the conventional FRP temporal integration and power law FRE estimation methods is compared with biomass burned measurements (prescribed fires) and available fuel load information reported in the literature (Australian and Brazilian fires). The results indicate that the FRE power law derivation method may provide more reliable burned biomass estimates under sparse satellite FRP sampling conditions and correct for satellite active-fire detection omission errors if the FRP power law distribution parameters and the fire duration are known.

  12. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    PubMed Central

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-01-01

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271

  13. Sparse Feature Selection Identifies H2A.Z as a Novel, Pattern-Specific Biomarker for Asymmetrically Self-Renewing Distributed Stem Cells

    PubMed Central

    Huh, Yang Hoon; Noh, Minsoo; Burden, Frank R.; Chen, Jennifer C.; Winkler, David A.; Sherley, James L.

    2015-01-01

    There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs) in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow). Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify DSC such useful and specific biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ. PMID:25636161

  14. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array.

    PubMed

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-05-31

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.

  15. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    ERIC Educational Resources Information Center

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  16. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    PubMed

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  17. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes.

    PubMed

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-12-18

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.

  18. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes

    PubMed Central

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-01-01

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes. PMID:26677804

  19. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat

    PubMed Central

    Nieto-Diego, Javier; Malmierca, Manuel S.

    2016-01-01

    Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883

  20. Anatomical coupling among distributed cortical regions in youth varies as a function of individual differences in vocabulary abilities.

    PubMed

    Lee, Nancy Raitano; Raznahan, Armin; Wallace, Gregory L; Alexander-Bloch, Aaron; Clasen, Liv S; Lerch, Jason P; Giedd, Jay N

    2014-05-01

    Patient lesion and functional magnetic resonance imaging (fMRI) studies have provided convincing evidence that a distributed brain network subserves word knowledge. However, little is known about the structural correlates of this network within the context of typical development and whether anatomical coupling in linguistically relevant regions of cortex varies as a function of vocabulary skill. Here we investigate the association between vocabulary and anatomical coupling in 235 typically developing youth (ages 6-19 years) using structural MRI. The study's primary aim was to evaluate whether higher vocabulary performance was associated with greater vertex-level cortical thickness covariation in distributed regions of cortex known to be associated with word knowledge. Results indicate that better vocabulary skills are associated with greater anatomical coupling in several linguistically relevant regions of cortex, including the left inferior parietal (temporal-parietal junction), inferior temporal, middle frontal, and superior frontal gyri and the right inferior frontal and precentral gyri. Furthermore, in high vocabulary scorers, stronger coupling is found among these regions. Thus, complementing patient and fMRI studies, this is the first investigation to highlight the relevance of anatomical covariance within the cortex to vocabulary skills in typically developing youth, further elucidating the distributed nature of neural systems subserving word knowledge.

  1. Spatiotemporal distribution of cortical processing of first and second languages in bilinguals. I. Effects of proficiency and linguistic setting.

    PubMed

    Pratt, Hillel; Abbasi, Dalal Abu-Amneh; Bleich, Naomi; Mittelman, Nomi; Starr, Arnold

    2013-11-01

    The study determined how spatiotemporal distribution of cortical activity to words in first and second language is affected by language, proficiency, and linguistic setting. Ten early bilinguals and 14 late adult bilinguals listened to pairs of words presented in Arabic (L1), Hebrew (L2), or in mixed pairs and indicated whether both words had the same meaning or not. Source current densities of event-related potentials were estimated. Activity to first words in the pair lateralized to right hemisphere, higher to L1 than L2 during early processing (<300 ms) among both groups but only among late bilinguals during late processing (>300 ms). During early and late processing, activities were larger in mixed than monolinguistic settings among early bilinguals but lower in mixed than in monolinguistic settings among late bilinguals. Late processing in auditory regions was of larger magnitude in left than right hemispheres among both groups. Activity to second words in the pair was larger in mixed than in monolinguistic settings during both early and late processing among both groups. Early processing of second words in auditory regions lateralized to the right among early bilinguals and to the left among late bilinguals, whereas late processing did not differ between groups. Wernicke's area activity during late processing of L2 was larger on the right, while on the left no significant differences between languages were found. The results show that cortical language processing in bilinguals differs between early and late processing and these differences are modulated by linguistic proficiency and setting. Copyright © 2012 Wiley Periodicals, Inc.

  2. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants

    PubMed Central

    Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.

    2016-01-01

    Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination

  3. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.

    PubMed

    Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S

    2003-10-01

    Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity.

  4. Spatiotemporal distribution of cortical processing of first and second languages in bilinguals. II. Effects of phonologic and semantic priming.

    PubMed

    Pratt, Hillel; Abbasi, Dalal Abu-Amneh; Bleich, Naomi; Mittelman, Nomi; Starr, Arnold

    2013-11-01

    This study determined the effects of phonology and semantics on the distribution of cortical activity to the second of a pair of words in first and second language (mixed pairs). The effects of relative proficiency in the two languages and linguistic setting (monolinguistic or mixed) are reported in a companion paper. Ten early bilinguals and 14 late bilinguals listened to mixed pairs of words in Arabic (L1) and Hebrew (L2) and indicated whether both words in the pair had the same or different meanings. The spatio-temporal distribution of current densities of event-related potentials were estimated for each language and according to semantic and phonologic relationship (same or different) compared with the first word in the pair. During early processing (<300 ms), brain activity in temporal and temporoparietal auditory areas was enhanced by phonologic incongruence between words in the pair and in Wernicke's area by both phonologic and semantic priming. In contrast, brain activities during late processing (>300 ms) were enhanced by semantic incongruence between the two words, particularly in temporal areas and in left hemisphere Broca's and Wernicke's areas. The latter differences were greater when words were in L2. Surprisingly, no significant effects of relative proficiency on processing the second word in the pair were found. These results indicate that the distribution of brain activity to the second of two words presented bilingually is affected differently during early and late processing by both semantic and phonologic priming by- and incongruence with the immediately preceding word. Copyright © 2012 Wiley Periodicals, Inc.

  5. Vectorized Sparse Elimination.

    DTIC Science & Technology

    1984-03-01

    Grids," Proc. 6th Symposium on Reservoir Simulation , New Orleans, Feb. 1-2, 1982, pp. 489-506. [51 Arya, S., and D. A. Calahan, "Optimal Scheduling of...of Computer Architecture on Direct Sparse Matrix Routines in Petroleum Reservoir Simulation ," Sparse Matrix Symposium, Fairfield Glade, TE, October

  6. The Spatial Distribution of the Exocyst and Actin Cortical Patches Is Sufficient To Organize Hyphal Tip Growth

    PubMed Central

    Caballero-Lima, David; Kaneva, Iliyana N.; Watton, Simon P.

    2013-01-01

    In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes. PMID:23666623

  7. In favor of general probability distributions: lateral prefrontal and insular cortices respond to stimulus inherent, but irrelevant differences.

    PubMed

    Mestres-Missé, Anna; Trampel, Robert; Turner, Robert; Kotz, Sonja A

    2016-04-01

    A key aspect of optimal behavior is the ability to predict what will come next. To achieve this, we must have a fairly good idea of the probability of occurrence of possible outcomes. This is based both on prior knowledge about a particular or similar situation and on immediately relevant new information. One question that arises is: when considering converging prior probability and external evidence, is the most probable outcome selected or does the brain represent degrees of uncertainty, even highly improbable ones? Using functional magnetic resonance imaging, the current study explored these possibilities by contrasting words that differ in their probability of occurrence, namely, unbalanced ambiguous words and unambiguous words. Unbalanced ambiguous words have a strong frequency-based bias towards one meaning, while unambiguous words have only one meaning. The current results reveal larger activation in lateral prefrontal and insular cortices in response to dominant ambiguous compared to unambiguous words even when prior and contextual information biases one interpretation only. These results suggest a probability distribution, whereby all outcomes and their associated probabilities of occurrence--even if very low--are represented and maintained.

  8. Abnormal maturation and differentiation of neocortical neurons in epileptogenic cortical malformation: unique distribution of layer-specific marker cells of focal cortical dysplasia and hemimegalencephaly.

    PubMed

    Arai, Asako; Saito, Takashi; Hanai, Sae; Sukigara, Sayuri; Nabatame, Shin; Otsuki, Taisuke; Nakagawa, Eiji; Takahashi, Akio; Kaneko, Yuu; Kaido, Takanobu; Saito, Yuko; Sugai, Kenji; Sasaki, Masayuki; Goto, Yu-Ichi; Itoh, Masayuki

    2012-08-27

    Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are major causes of intractable epilepsy in children. The probable pathogenesis of FCD and HMG is the abnormal migration and differentiation of neurons. The aim of the present study was to clarify the abnormal cytoarchitecture, based on neuronal immaturation. Tissue samples were obtained from 16 FCD and seven HME patients, aged between 2 months and 12 years, who had been diagnosed as typical FCD and HME, following surgical treatment for intractable epilepsy. Paraffin-embedded sections were stained with the antibodies of three layer-markers that are usually present only during the fetal period, namely SATB2 (expressed in the upper layer of the normal fetal neocortex), FOXP1 (expressed in the 5th layer), and TBR1 (expressed in the 6th layer). In FCD, SATB2-positive (+) cells located in the middle and deep regions of FCD Ia and Ib, but only in the superficial region of FCD IIa and IIb. FOXP1+ cells diffusely located in the neocortex, especially the upper layer of FCD IIa and IIb. TBR1+ cells mainly located in the middle and deep regions, and also white matter. In FCD IIb, TBR1+ cells were in the superficial region. In HME, SATB2+ and FOXP1+ cells were found diffusely. TBR1+ cells were in the middle and deep regions. On the basis of continued expression of fetal cortical layer-specific markers in FCD and HME brains, the abnormal neocortical formation in both is likely to be the result of disrupted neuronal migration and dysmaturation. The expression pattern is different between FCD and HME. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    PubMed

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  10. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm.

    PubMed

    Bares, Martin; Rektor, Ivan; Kanovský, Petr; Streitová, Hana

    2003-12-01

    This study concerned sensory processing (post-stimulus late evoked potential components) in different parts of the human brain as related to a motor task (hand movement) in a cognitive paradigm (Contingent Negative Variation). The focus of the study was on the time and space distribution of middle and late post-stimulus evoked potential (EP) components, and on the processing of sensory information in the subcortical-cortical networks. Stereoelectroencephalography (SEEG) recordings of the contingent negative variation (CNV) in an audio-visual paradigm with a motor task were taken from 30 patients (27 patients with drug-resistant epilepsy; 3 patients with chronic thalamic pain). The intracerebral recordings were taken from 337 cortical sites (primary sensorimotor area (SM1); supplementary motor area (SMA); the cingulate gyrus; the orbitofrontal, premotor and dorsolateral prefrontal cortices; the temporal cortex, including the amygdalohippocampal complex; the parietooccipital lobes; and the insula) and from subcortical structures (the basal ganglia and the posterior thalamus). The concurrent scalp recordings were obtained from 3 patients in the thalamic group. In 4 patients in the epilepsy group, scalp recordings were taken separately from the SEEG procedure. The middle and long latency evoked potentials following an auditory warning (S1) and a visual imperative (S2) stimuli were analyzed. The occurrences of EPs were studied in two time windows (200-300 ms; and over 300 ms) following S1 and S2. Following S1, a high frequency of EP with latencies over 200 ms was observed in the primary sensorimotor area, the supplementary motor area, the premotor cortex, the orbitofrontal cortex, the cingulate gyrus, some parts of the temporal lobe, the basal ganglia, the insula, and the posterior thalamus. Following S2, a high frequency of EP in both of the time windows over 200 ms was observed in the SM1, the SMA, the premotor and dorsolateral prefrontal cortex, the orbitofrontal

  11. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  12. Evolving sparse stellar populations

    NASA Astrophysics Data System (ADS)

    Bruzual, Gustavo; Gladis Magris, C.; Hernández-Pérez, Fabiola

    2017-03-01

    We examine the role that stochastic fluctuations in the IMF and in the number of interacting binaries have on the spectro-photometric properties of sparse stellar populations as a function of age and metallicity.

  13. Multichannel sparse spike inversion

    NASA Astrophysics Data System (ADS)

    Pereg, Deborah; Cohen, Israel; Vassiliou, Anthony A.

    2017-10-01

    In this paper, we address the problem of sparse multichannel seismic deconvolution. We introduce multichannel sparse spike inversion as an iterative procedure, which deconvolves the seismic data and recovers the Earth two-dimensional reflectivity image, while taking into consideration the relations between spatially neighboring traces. We demonstrate the improved performance of the proposed algorithm and its robustness to noise, compared to competitive single-channel algorithm through simulations and real seismic data examples.

  14. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  15. Sparse coding in striate and extrastriate visual cortex

    PubMed Central

    Mazer, James A.; Gallant, Jack L.

    2011-01-01

    Theoretical studies of mammalian cortex argue that efficient neural codes should be sparse. However, theoretical and experimental studies have used different definitions of the term “sparse” leading to three assumptions about the nature of sparse codes. First, codes that have high lifetime sparseness require few action potentials. Second, lifetime-sparse codes are also population-sparse. Third, neural codes are optimized to maximize lifetime sparseness. Here, we examine these assumptions in detail and test their validity in primate visual cortex. We show that lifetime and population sparseness are not necessarily correlated and that a code may have high lifetime sparseness regardless of how many action potentials it uses. We measure lifetime sparseness during presentation of natural images in three areas of macaque visual cortex, V1, V2, and V4. We find that lifetime sparseness does not increase across the visual hierarchy. This suggests that the neural code is not simply optimized to maximize lifetime sparseness. We also find that firing rates during a challenging visual task are higher than theoretical values based on metabolic limits and that responses in V1, V2, and V4 are well-described by exponential distributions. These findings are consistent with the hypothesis that neurons are optimized to maximize information transmission subject to metabolic constraints on mean firing rate. PMID:21471391

  16. The effect of response type (motor output versus mental counting) on the intracerebral distribution of the slow cortical potentials in an externally cued (CNV) paradigm.

    PubMed

    Bares, Martin; Nestrasil, Igor; Rektor, Ivan

    2007-01-09

    Previous surface CNV studies including a hand motor output have suggested that the late phase of the CNV reflects the preparation of the sensorimotor cortices involved in the motor output given the same similarity in scalp potential distribution with readiness potential. However, the poor spatial resolution of the scalp recorded CNV data prevented a definitive conclusion. This intracerebral study allowed us to test this hypothesis using a CNV paradigm in which a non-motor task is used as a reference. This study concerned the intracerebrally located generators of the Contingent Negative Variation in two different paradigm settings: (i) motor output required, (ii) silent counting required (non-motor control condition). Stereoelectroencephalography (SEEG) recordings of the contingent negative variation (CNV) in a somato-somatosensory stimulation paradigm with a motor or counting task were taken from nine patients with drug-resistant epilepsy. The intracerebral recordings were taken from 25 cortical areas in both hemispheres (supplementary motor area-SMA; the cingulate gyrus; the orbitofrontal, premotor and dorsolateral prefrontal cortices; lateral temporal cortex, amygdalohippocampal complex; and the parietooccipital cortex). The slow waves were generated in the SMA, the premotor, dorsolateral, and orbitofrontal cortices, the cingulate gyrus, and parts of the lateral temporal, mesial temporal structures and parietal cortex. We found a significant difference between the two tasks in the CNV potential generation. The task with the motor output produced significantly higher numbers of CNV potential generators when compared to the task with silent counting. The CNV potential generators varied between motor and non-motor tasks. The intracerebral distribution of the potentials linked with expectation is task dependent. Our main conclusion is that the executive network is more active during the motor task than during counting task.

  17. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT

    PubMed Central

    Xiao, Jianbo

    2015-01-01

    Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for

  18. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT.

    PubMed

    Xiao, Jianbo; Huang, Xin

    2015-12-09

    Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle--less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our

  19. Efficient convolutional sparse coding

    DOEpatents

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  20. Multiple Sparse Representations Classification

    PubMed Central

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and

  1. Adaptation to metabolic acidosis and its recovery are associated with changes in anion exchanger distribution and expression in the cortical collecting duct

    PubMed Central

    Purkerson, Jeffrey M.; Tsuruoka, Shuichi; Suter, D. Zachary; Nakamori, Aya; Schwartz, George J.

    2015-01-01

    It is well known that acid/base disturbances modulate proton/bicarbonate transport in the cortical collecting duct. To study the adaptation further we measured the effect of three days of acidosis followed by the rapid recovery from this acidosis on the number and type of intercalated cells in the rabbit cortical collecting duct. Immunofluorescence was used to determine the expression of apical pendrin in β-intercalated cells and the basolateral anion exchanger (AE1) in α-intercalated cells. Acidosis resulted in decreased bicarbonate and increased proton secretion, which correlated with reduced pendrin expression and the number of pendrin-positive cells, as well as decreased pendrin mRNA and protein abundance in this nephron segment. There was a concomitant increase of basolateral AE1 and α-cell number. Intercalated cell proliferation did not seem to play a role in the adaptation to acidosis. Alkali loading for 6–20 h after acidosis doubled the bicarbonate secretory flux and reduced proton secretion. Pendrin and AE1 expression patterns returned to control levels, demonstrating that adaptive changes by intercalated cells are rapidly reversible. Thus, regulation of intercalated cell anion exchanger expression and distribution plays a key role in adaptation of the cortical collecting duct to perturbations of acid/base. PMID:20592712

  2. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    PubMed Central

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID

  3. Protein family classification using sparse Markov transducers.

    PubMed

    Eskin, E; Grundy, W N; Singer, Y

    2000-01-01

    In this paper we present a method for classifying proteins into families using sparse Markov transducers (SMTs). Sparse Markov transducers, similar to probabilistic suffix trees, estimate a probability distribution conditioned on an input sequence. SMTs generalize probabilistic suffix trees by allowing for wild-cards in the conditioning sequences. Because substitutions of amino acids are common in protein families, incorporating wildcards into the model significantly improves classification performance. We present two models for building protein family classifiers using SMTs. We also present efficient data structures to improve the memory usage of the models. We evaluate SMTs by building protein family classifiers using the Pfam database and compare our results to previously published results.

  4. Sparse inpainting and isotropy

    SciTech Connect

    Feeney, Stephen M.; McEwen, Jason D.; Peiris, Hiranya V.; Marinucci, Domenico; Cammarota, Valentina; Wandelt, Benjamin D. E-mail: marinucc@axp.mat.uniroma2.it E-mail: h.peiris@ucl.ac.uk E-mail: cammarot@axp.mat.uniroma2.it

    2014-01-01

    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.

  5. Sparse inpainting and isotropy

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Marinucci, Domenico; McEwen, Jason D.; Peiris, Hiranya V.; Wandelt, Benjamin D.; Cammarota, Valentina

    2014-01-01

    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.

  6. Bayesian sparse channel estimation

    NASA Astrophysics Data System (ADS)

    Chen, Chulong; Zoltowski, Michael D.

    2012-05-01

    In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.

  7. Sparse matrix test collections

    SciTech Connect

    Duff, I.

    1996-12-31

    This workshop will discuss plans for coordinating and developing sets of test matrices for the comparison and testing of sparse linear algebra software. We will talk of plans for the next release (Release 2) of the Harwell-Boeing Collection and recent work on improving the accessibility of this Collection and others through the World Wide Web. There will only be three talks of about 15 to 20 minutes followed by a discussion from the floor.

  8. Group Sparse Additive Models

    PubMed Central

    Yin, Junming; Chen, Xi; Xing, Eric P.

    2016-01-01

    We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the ℓ1/ℓ2 norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.

  9. Ephrin-B1 controls the columnar distribution of cortical pyramidal neurons by restricting their tangential migration.

    PubMed

    Dimidschstein, Jordane; Passante, Lara; Dufour, Audrey; van den Ameele, Jelle; Tiberi, Luca; Hrechdakian, Tatyana; Adams, Ralf; Klein, Rüdiger; Lie, Dieter Chichung; Jossin, Yves; Vanderhaeghen, Pierre

    2013-09-18

    Neurons of the cerebral cortex are organized in layers and columns. Unlike laminar patterning, the mechanisms underlying columnar organization remain largely unexplored. Here, we show that ephrin-B1 plays a key role in this process through the control of nonradial steps of migration of pyramidal neurons. In vivo gain of function of ephrin-B1 resulted in a reduction of tangential motility of pyramidal neurons, leading to abnormal neuronal clustering. Conversely, following genetic disruption of ephrin-B1, cortical neurons displayed a wider lateral dispersion, resulting in enlarged ontogenic columns. Dynamic analyses revealed that ephrin-B1 controls the lateral spread of pyramidal neurons by limiting neurite extension and tangential migration during the multipolar phase. Furthermore, we identified P-Rex1, a guanine-exchange factor for Rac3, as a downstream ephrin-B1 effector required to control migration during the multipolar phase. Our results demonstrate that ephrin-B1 inhibits nonradial migration of pyramidal neurons, thereby controlling the pattern of cortical columns.

  10. Altered intracellular distribution of PrPC and impairment of proteasome activity in tau overexpressing cortical neurons.

    PubMed

    Canu, Nadia; Filesi, Ilaria; Pristerà, Andrea; Ciotti, Maria Teresa; Biocca, Silvia

    2011-01-01

    The microtubule associated protein tau plays a crucial role in Alzheimer's disease and in many neurodegenerative disorders collectively known as tauopathies. Recently, tau pathology has been also documented in prion diseases although the possible molecular events linking these two proteins are still unknown. We have investigated the fate of normal cellular prion protein (PrP(C)) in primary cortical neurons overexpressing tau protein. We found that overexpression of tau reduces PrP(C) expression at the cell surface and causes its accumulation and aggregation in the cell body but does not affect its maturation and glycosylation. Trapped PrP(C) forms detergent-insoluble aggregates, mainly composed of un-glycosylated and mono-glycosylated forms of prion protein. Interestingly, co-transfection of tau gene in cortical neurons with a proteasome activity reporter, consisting of a short peptide degron fused to the carboxyl-terminus of green fluorescent protein (GFP-CL1), results in down-regulation of the proteasome system, suggesting a possible mechanism that contributes to intracellular PrP(C) accumulation. These findings open a new perspective for the possible crosstalk between tau and prion proteins in the pathogenesis of tau induced-neurodegeneration.

  11. Sparse Exponential Family Principal Component Analysis.

    PubMed

    Lu, Meng; Huang, Jianhua Z; Qian, Xiaoning

    2016-12-01

    We propose a Sparse exponential family Principal Component Analysis (SePCA) method suitable for any type of data following exponential family distributions, to achieve simultaneous dimension reduction and variable selection for better interpretation of the results. Because of the generality of exponential family distributions, the method can be applied to a wide range of applications, in particular when analyzing high dimensional next-generation sequencing data and genetic mutation data in genomics. The use of sparsity-inducing penalty helps produce sparse principal component loading vectors such that the principal components can focus on informative variables. By using an equivalent dual form of the formulated optimization problem for SePCA, we derive optimal solutions with efficient iterative closed-form updating rules. The results from both simulation experiments and real-world applications have demonstrated the superiority of our SePCA in reconstruction accuracy and computational efficiency over traditional exponential family PCA (ePCA), the existing Sparse PCA (SPCA) and Sparse Logistic PCA (SLPCA) algorithms.

  12. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

    PubMed Central

    2016-01-01

    Purpose This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results The maximum extent of micromotion was approximately 100 μm in the low-density cancellous bone models, whereas it was under 30 μm in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading. PMID:27382504

  13. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  14. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  15. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone.

    PubMed

    Saïed, A; Raum, K; Leguerney, I; Laugier, P

    2008-07-01

    We used quantitative scanning acoustic microscopy (SAM) to assess tissue acoustic impedance and microstructure of cortical bone of human radii with the aim to provide data on regional distribution of acoustic impedance along the circumferential and across the radial directions in the entire cross-section of the radius diaphysis as well as to determine the range of impedance values in transverse (perpendicular to bone axis) and longitudinal (parallel to bone axis) cross-sections. Several microstructural features related to cortical porosity were analyzed in order to determine whether these features differ in different parts of the cortex and to assess the relationship between the microstructure and tissue acoustic impedance. Fifteen fresh bone specimens (human radius) were investigated using a SAM (center frequency of 50 MHz and -6 dB lateral resolution of approximately 23 microm). The sample acoustic impedance was obtained by means of a calibration curve correlating the reflected signal amplitude of reference materials with their corresponding well-known acoustic impedance. Tissue acoustic impedance and microstructural features were derived from the morphometric analysis of the segmented impedance images. A higher porosity was found in the inner cortical layer (mean+/-SD=8.9+/-2.3%) compared to the peripheral layer (2.7+/-1.5%) (paired t-test, p<10(-5)). ANOVA showed that most of the variance can be explained by the regional effect across the radial direction with a minor contribution due to between-sample variability. Similar to porosity, the number and diameter of pores were greater in the inner layer. In contrast to porosity, ANOVA showed that impedance variability can mostly be explained by between-specimen variability. Two-way ANOVA revealed that after compensation for the between-sample variability the variation in acoustic impedance across the radial direction was much larger than that along the circumferential direction. In addition to the significant

  16. Sparse Texture Active Contour

    PubMed Central

    Gao, Yi; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2014-01-01

    In image segmentation, we are often interested in using certain quantities to characterize the object, and perform the classification based on them: mean intensity, gradient magnitude, responses to certain predefined filters, etc. Unfortunately, in many cases such quantities are not adequate to model complex textured objects. Along a different line of research, the sparse characteristic of natural signals has been recognized and studied in recent years. Therefore, how such sparsity can be utilized, in a non-parametric way, to model the object texture and assist the textural image segmentation process is studied in this work, and a segmentation scheme based on the sparse representation of the texture information is proposed. More explicitly, the texture is encoded by the dictionaries constructed from the user initialization. Then, an active contour is evolved to optimize the fidelity of the representation provided by the dictionary of the target. In doing so, not only a non-parametric texture modeling technique is provided, but also the sparsity of the representation guarantees the computation efficiency. The experiments are carried out on the publicly available image data sets which contain a large variety of texture images, to analyze the user interaction, performance statistics, and to highlight the algorithm’s capability of robustly extracting textured regions from an image. PMID:23799695

  17. Flexible sparse regularization

    NASA Astrophysics Data System (ADS)

    Lorenz, Dirk A.; Resmerita, Elena

    2017-01-01

    The seminal paper of Daubechies, Defrise, DeMol made clear that {{\\ell }}p spaces with p\\in [1,2) and p-powers of the corresponding norms are appropriate settings for dealing with reconstruction of sparse solutions of ill-posed problems by regularization. It seems that the case p = 1 provides the best results in most of the situations compared to the cases p\\in (1,2). An extensive literature gives great credit also to using {{\\ell }}p spaces with p\\in (0,1) together with the corresponding quasi-norms, although one has to tackle challenging numerical problems raised by the non-convexity of the quasi-norms. In any of these settings, either superlinear, linear or sublinear, the question of how to choose the exponent p has been not only a numerical issue, but also a philosophical one. In this work we introduce a more flexible way of sparse regularization by varying exponents. We introduce the corresponding functional analytic framework, that leaves the setting of normed spaces but works with so-called F-norms. One curious result is that there are F-norms which generate the ℓ 1 space, but they are strictly convex, while the ℓ 1-norm is just convex.

  18. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.

    PubMed

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.

  19. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering

    PubMed Central

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children. PMID:27199650

  20. Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways

    PubMed Central

    Farkhooi, Farzad; Froese, Anja; Muller, Eilif; Menzel, Randolf; Nawrot, Martin P.

    2013-01-01

    Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture. PMID:24098101

  1. Bias correction of daily precipitation projected by the CORDEX-Africa ensemble for a sparsely gauged region in West Africa with regionalized distribution parameters

    NASA Astrophysics Data System (ADS)

    Lorenz, Manuel; Bliefernicht, Jan; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Reliable estimates of future climatic conditions are indispensable for the sustainable planning of agricultural activities in West Africa. Precipitation time series of regional climate models (RCMs) typically exhibit a bias in the distribution of both rainfall intensities and wet day frequencies. Furthermore, the annual and monthly sums of precipitation may remarkably vary from the observations in this region. As West Africa experiences a distinct rainy season, sowing dates are oftentimes planned based on the beginning of this rainfall period. A biased representation of the annual cycle of precipitation in the uncorrected RCMs can therefore lead to crop failure. The precipitation ensemble, obtained from the Coordinated Downscaling Experiment CORDEX-Africa, was bias-corrected for the study region in West Africa (extending approximately 343,358 km2) which covers large parts of Burkina Faso, Ghana and Benin. In oder to debias the RCM precipitation simulations, a Quantile-Mapping method was applied to the historical period 1950-2005. For the RCM future projections (2006-2100), the Double-Quantile-Mapping procedure was chosen. This method makes use of the shift in the distribution function of the future precipitation values which allows to incorporate the climate change signal of the RCM projections into the bias correction. As large areas of the study region are ungauged, the assignment of the information from the nearest station to the ungauged location would lead to sharp changes in the estimated statistics from one location to another. Thus, the distribution parameters needed for the Quantile-Mapping were estimated by Kriging the distribution parameters of the available measurement stations. This way it is possible to obtain reasonable estimates of the expected distribution of precipitation at ungauged locations. The presentation will illustrate some aspects and trade-offs in the distribution parameter interpolation as well as an analysis of the uncertainties of the

  2. Regional Evaluation of Groundwater Age Distributions Using Lumped Parameter Models with Large, Sparse Datasets: Example from the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Jurgens, B. C.; Bohlke, J. K.; Voss, S.; Fram, M. S.; Esser, B.

    2015-12-01

    Tracer-based, lumped parameter models (LPMs) are an appealing way to estimate the distribution of age for groundwater because the cost of sampling wells is often less than building numerical groundwater flow models sufficiently complex to provide groundwater age distributions. In practice, however, tracer datasets are often incomplete because of anthropogenic or terrigenic contamination of tracers, or analytical limitations. While age interpretations using such datsets can have large uncertainties, it may still be possible to identify key parts of the age distribution if LPMs are carefully chosen to match hydrogeologic conceptualization and the degree of age mixing is reasonably estimated. We developed a systematic approach for evaluating groundwater age distributions using LPMs with a large but incomplete set of tracer data (3H, 3Hetrit, 14C, and CFCs) from 535 wells, mostly used for public supply, in the Central Valley, California, USA that were sampled by the USGS for the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment or the USGS National Water Quality Assessment Programs. In addition to mean ages, LPMs gave estimates of unsaturated zone travel times, recharge rates for pre- and post-development groundwater, the degree of age mixing in wells, proportion of young water (<60 yrs), and the depth of the boundary between post-development and predevelopment groundwater throughout the Central Valley. Age interpretations were evaluated by comparing past nitrate trends with LPM predicted trends, and whether the presence or absence of anthropogenic organic compounds was consistent with model results. This study illustrates a practical approach for assessing groundwater age information at a large scale to reveal important characteristics about the age structure of a major aquifer, and of the water supplies being derived from it.

  3. Blind spectral unmixing based on sparse nonnegative matrix factorization.

    PubMed

    Yang, Zuyuan; Zhou, Guoxu; Xie, Shengli; Ding, Shuxue; Yang, Jun-Mei; Zhang, Jun

    2011-04-01

    Nonnegative matrix factorization (NMF) is a widely used method for blind spectral unmixing (SU), which aims at obtaining the endmembers and corresponding fractional abundances, knowing only the collected mixing spectral data. It is noted that the abundance may be sparse (i.e., the endmembers may be with sparse distributions) and sparse NMF tends to lead to a unique result, so it is intuitive and meaningful to constrain NMF with sparseness for solving SU. However, due to the abundance sum-to-one constraint in SU, the traditional sparseness measured by L0/L1-norm is not an effective constraint any more. A novel measure (termed as S-measure) of sparseness using higher order norms of the signal vector is proposed in this paper. It features the physical significance. By using the S-measure constraint (SMC), a gradient-based sparse NMF algorithm (termed as NMF-SMC) is proposed for solving the SU problem, where the learning rate is adaptively selected, and the endmembers and abundances are simultaneously estimated. In the proposed NMF-SMC, there is no pure index assumption and no need to know the exact sparseness degree of the abundance in prior. Yet, it does not require the preprocessing of dimension reduction in which some useful information may be lost. Experiments based on synthetic mixtures and real-world images collected by AVIRIS and HYDICE sensors are performed to evaluate the validity of the proposed method.

  4. Cortical rewiring and information storage

    NASA Astrophysics Data System (ADS)

    Chklovskii, D. B.; Mel, B. W.; Svoboda, K.

    2004-10-01

    Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical `wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

  5. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    PubMed

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  6. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals

    PubMed Central

    Sprecher, Christoph M.; Schmidutz, Florian; Helfen, Tobias; Richards, R. Geoff; Blauth, Michael; Milz, Stefan

    2015-01-01

    Abstract Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus. PMID:26705200

  7. Percolation on Sparse Networks

    NASA Astrophysics Data System (ADS)

    Karrer, Brian; Newman, M. E. J.; Zdeborová, Lenka

    2014-11-01

    We study percolation on networks, which is used as a model of the resilience of networked systems such as the Internet to attack or failure and as a simple model of the spread of disease over human contact networks. We reformulate percolation as a message passing process and demonstrate how the resulting equations can be used to calculate, among other things, the size of the percolating cluster and the average cluster size. The calculations are exact for sparse networks when the number of short loops in the network is small, but even on networks with many short loops we find them to be highly accurate when compared with direct numerical simulations. By considering the fixed points of the message passing process, we also show that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue of the so-called nonbacktracking matrix.

  8. Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhang, Shu; Zhao, Shijie; Chen, Hanbo; Zhang, Tuo; Hu, Xintao; Han, Junwei; Ye, Jieping; Guo, Lei; Liu, Tianming

    2015-04-01

    For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.

  9. Neonatal atlas construction using sparse representation.

    PubMed

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2014-09-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.

  10. Language Recognition via Sparse Coding

    DTIC Science & Technology

    2016-09-08

    a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector

  11. Multiresolution Diffeomorphic Mapping for Cortical Surfaces.

    PubMed

    Tan, Mingzhen; Qiu, Anqi

    2015-01-01

    Due to the convoluted folding pattern of the cerebral cortex, accurate alignment of cortical surfaces remains challenging. In this paper, we present a multiresolution diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Our algorithm takes advantage of multiresolution analysis (MRA) for surfaces and constructs cortical surfaces at multiresolution. This family of multiresolution surfaces are used as natural sparse priors of the cortical anatomy and provide the anchor points where the parametrization of deformation vector fields is supported. This naturally constructs tangent bundles of diffeomorphisms at different resolution levels and hence generates multiresolution diffeomorphic transformation. We show that our construction of multiresolution LDDMM surface mapping can potentially reduce computational cost and improves the mapping accuracy of cortical surfaces.

  12. Cortical Control of Zona Incerta

    PubMed Central

    Barthó, Péter; Slézia, Andrea; Varga, Viktor; Bokor, Hajnalka; Pinault, Didier; Buzsáki, György; Acsády, László

    2009-01-01

    The zona incerta (ZI) is at the crossroad of almost all major ascending and descending fiber tracts and targets numerous brain centers from the thalamus to the spinal cord. Effective ascending drive of ZI cells has been described, but the role of descending cortical signals in patterning ZI activity is unknown. Cortical control over ZI function was examined during slow cortical waves (1-3 Hz), paroxysmal high-voltage spindles (HVSs), and 5-9 Hz oscillations in anesthetized rats. In all conditions, rhythmic cortical activity significantly altered the firing pattern of ZI neurons recorded extracellularly and labeled with the juxtacellular method. During slow oscillations, the majority of ZI neurons became synchronized to the depth-negative phase (“up state”) of the cortical waves to a degree comparable to thalamocortical neurons. During HVSs, ZI cells displayed highly rhythmic activity in tight synchrony with the cortical oscillations. ZI neurons responded to short epochs of cortical 5-9 Hz oscillations, with a change in the interspike interval distribution and with an increase in spectral density in the 5-9 Hz band as measured by wavelet analysis. Morphological reconstruction revealed that most ZI cells have mediolaterally extensive dendritic trees and very long dendritic segments. Cortical terminals established asymmetrical synapses on ZI cells with very long active zones. These data suggest efficient integration of widespread cortical signals by single ZI neurons and strong cortical drive. We propose that the efferent GABAergic signal of ZI neurons patterned by the cortical activity can play a critical role in synchronizing thalamocortical and brainstem rhythms. PMID:17301175

  13. Sparse coding with memristor networks.

    PubMed

    Sheridan, Patrick M; Cai, Fuxi; Du, Chao; Ma, Wen; Zhang, Zhengya; Lu, Wei D

    2017-08-01

    Sparse representation of information provides a powerful means to perform feature extraction on high-dimensional data and is of broad interest for applications in signal processing, computer vision, object recognition and neurobiology. Sparse coding is also believed to be a key mechanism by which biological neural systems can efficiently process a large amount of complex sensory data while consuming very little power. Here, we report the experimental implementation of sparse coding algorithms in a bio-inspired approach using a 32 × 32 crossbar array of analog memristors. This network enables efficient implementation of pattern matching and lateral neuron inhibition and allows input data to be sparsely encoded using neuron activities and stored dictionary elements. Different dictionary sets can be trained and stored in the same system, depending on the nature of the input signals. Using the sparse coding algorithm, we also perform natural image processing based on a learned dictionary.

  14. Early asymmetries in maternal transcript distribution associated with a cortical microtubule network and a polar body in the beetle Tribolium castaneum.

    PubMed

    Peel, Andrew D; Averof, Michalis

    2010-11-01

    The localization of maternal mRNAs during oogenesis plays a central role in axial specification in some insects. Here we describe a polar body-associated asymmetry in maternal transcript distribution in pre-blastoderm eggs of the beetle Tribolium castaneum. Since the position of the polar body marks the future dorsal side of the embryo, we have investigated whether this asymmetry in mRNA distribution plays a role in dorsal-ventral axis specification. Whilst our results suggest polar body-associated transcripts do not play a significant role in specifying the DV axis, at least during early embryogenesis, we do find that the polar body is closely associated with a cortical microtubule network (CMN), which may play a role in the localization of transcripts during oogenesis. Transcripts of the gene T.c.pangolin co-localize with the CMN at the time of their anterior localization during oogenesis and their anterior localization is disrupted by the microtubule-depolymerizing agent colcemid.

  15. Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control.

    PubMed

    Hallam, Glyn P; Whitney, Carin; Hymers, Mark; Gouws, Andre D; Jefferies, Elizabeth

    2016-12-01

    Semantic memory comprises our knowledge of the meanings of words and objects but only some of this knowledge is relevant at any given time. Thus, semantic control processes are needed to focus retrieval on relevant information. Research on the neural basis of semantic control has strongly implicated left inferior frontal gyrus (LIFG) but recent work suggests that a wider network supports semantic control, including left posterior middle temporal gyrus (pMTG), right inferior frontal gyrus (RIFG) and pre-supplementary motor area (pre-SMA). In the current study, we used repetitive transcranial magnetic stimulation (1Hz offline TMS) over LIFG, immediately followed by fMRI, to examine modulation of the semantic network. We compared the effect of stimulation on judgements about strongly-associated words (dog-bone) and weaker associations (dog-beach), since previous studies have found that dominant links can be recovered largely automatically with little engagement of LIFG, while more distant connections require greater control. Even though behavioural performance was maintained in response to TMS, LIFG stimulation increased the effect of semantic control demands in pMTG and pre-SMA, relative to stimulation of a control site (occipital pole). These changes were accompanied by reduced recruitment of both the stimulated region (LIFG) and its right hemisphere homologue (RIFG), particularly for strong associations with low control requirements. Thus repetitive TMS to LIFG modulated the contribution of distributed regions to semantic judgements in two distinct ways.

  16. Threaded Operations on Sparse Matrices

    SciTech Connect

    Sneed, Brett

    2015-09-01

    We investigate the use of sparse matrices and OpenMP multi-threading on linear algebra operations involving them. Several sparse matrix data structures are presented. Implementation of the multi- threading primarily occurs in the level one and two BLAS functions used within the four algorithms investigated{the Power Method, Conjugate Gradient, Biconjugate Gradient, and Jacobi's Method. The bene ts of launching threads once per high level algorithm are explored.

  17. Distribution of Alox15 in the Rat Brain and Its Role in Prefrontal Cortical Resolvin D1 Formation and Spatial Working Memory.

    PubMed

    Shalini, Suku-Maran; Ho, Christabel Fung-Yih; Ng, Yee-Kong; Tong, Jie-Xin; Ong, Eng-Shi; Herr, Deron R; Dawe, Gavin S; Ong, Wei-Yi

    2017-02-08

    Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory

  18. Sparse Methods for Biomedical Data.

    PubMed

    Ye, Jieping; Liu, Jun

    2012-06-01

    Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the [Formula: see text] norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data.

  19. Sparse Methods for Biomedical Data

    PubMed Central

    Ye, Jieping; Liu, Jun

    2013-01-01

    Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the ℓ1 norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data. PMID:24076585

  20. Representation-Independent Iteration of Sparse Data Arrays

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.

  1. Spatiotemporal System Identification With Continuous Spatial Maps and Sparse Estimation.

    PubMed

    Aram, Parham; Kadirkamanathan, Visakan; Anderson, Sean R

    2015-11-01

    We present a framework for the identification of spatiotemporal linear dynamical systems. We use a state-space model representation that has the following attributes: 1) the number of spatial observation locations are decoupled from the model order; 2) the model allows for spatial heterogeneity; 3) the model representation is continuous over space; and 4) the model parameters can be identified in a simple and sparse estimation procedure. The model identification procedure we propose has four steps: 1) decomposition of the continuous spatial field using a finite set of basis functions where spatial frequency analysis is used to determine basis function width and spacing, such that the main spatial frequency contents of the underlying field can be captured; 2) initialization of states in closed form; 3) initialization of state-transition and input matrix model parameters using sparse regression-the least absolute shrinkage and selection operator method; and 4) joint state and parameter estimation using an iterative Kalman-filter/sparse-regression algorithm. To investigate the performance of the proposed algorithm we use data generated by the Kuramoto model of spatiotemporal cortical dynamics. The identification algorithm performs successfully, predicting the spatiotemporal field with high accuracy, whilst the sparse regression leads to a compact model.

  2. Sparse representation of group-wise FMRI signals.

    PubMed

    Lv, Jinglei; Li, Xiang; Zhu, Dajiang; Jiang, Xi; Zhang, Xin; Hu, Xintao; Zhang, Tuo; Guo, Lei; Liu, Tianming

    2013-01-01

    The human brain function involves complex processes with population codes of neuronal activities. Neuroscience research has demonstrated that when representing neuronal activities, sparsity is an important characterizing property. Inspired by this finding, significant amount of efforts from the scientific communities have been recently devoted to sparse representations of signals and patterns, and promising achievements have been made. However, sparse representation of fMRI signals, particularly at the population level of a group of different brains, has been rarely explored yet. In this paper, we present a novel group-wise sparse representation of task-based fMRI signals from multiple subjects via dictionary learning methods. Specifically, we extract and pool task-based fMRI signals for a set of cortical landmarks, each of which possesses intrinsic anatomical correspondence, from a group of subjects. Then an effective online dictionary learning algorithm is employed to learn an over-complete dictionary from the pooled population of fMRI signals based on optimally determined dictionary size. Our experiments have identified meaningful Atoms of Interests (AOI) in the learned dictionary, which correspond to consistent and meaningful functional responses of the brain to external stimulus. Our work demonstrated that sparse representation of group-wise fMRI signals is naturally suitable and effective in recovering population codes of neuronal signals conveyed in fMRI data.

  3. Cortical Visual Impairment

    MedlinePlus

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  4. All scale-free networks are sparse.

    PubMed

    Del Genio, Charo I; Gross, Thilo; Bassler, Kevin E

    2011-10-21

    We study the realizability of scale-free networks with a given degree sequence, showing that the fraction of realizable sequences undergoes two first-order transitions at the values 0 and 2 of the power-law exponent. We substantiate this finding by analytical reasoning and by a numerical method, proposed here, based on extreme value arguments, which can be applied to any given degree distribution. Our results reveal a fundamental reason why large scale-free networks without constraints on minimum and maximum degree must be sparse.

  5. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  6. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors.

  7. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB

    PubMed Central

    Boer, Karin; Troost, Dirk; Spliet, Wim G. M.; van Rijen, Peter C.; Gorter, Jan A.

    2008-01-01

    Members of the vascular endothelial growth factor (VEGF) family are key signaling proteins in the induction and regulation of angiogenesis, both during development and in pathological conditions. However, signaling mediated through VEGF family proteins and their receptors has recently been shown to have direct effects on neurons and glial cells. In the present study, we immunocytochemically investigated the expression and cellular distribution of VEGFA, VEGFB, and their associated receptors (VEGFR-1 and VEGFR-2) in focal cortical dysplasia (FCD) type IIB from patients with medically intractable epilepsy. Histologically normal temporal cortex and perilesional regions displayed neuronal immunoreactivity (IR) for VEGFA, VEGFB, and VEGF receptors (VEGFR-1 and VEGFR-2), mainly in pyramidal neurons. Weak IR was observed in blood vessels and there was no notable glial IR within the grey and white matter. In all FCD specimens, VEGFA, VEGFB, and both VEGF receptors were highly expressed in dysplastic neurons. IR in astroglial and balloon cells was observed for VEGFA and its receptors. VEGFR-1 displayed strong endothelial staining in FCD. Double-labeling also showed expression of VEGFA, VEGFB and VEGFR-1 in cells of the microglia/macrophage lineage. The neuronal expression of both VEGFA and VEGFB, together with their specific receptors in FCD, suggests autocrine/paracrine effects on dysplastic neurons. These autocrine/paracrine effects could play a role in the development of FCD, preventing the death of abnormal neuronal cells. In addition, the expression of VEGFA and its receptors in glial cells within the dysplastic cortex indicates that VEGF-mediated signaling could contribute to astroglial activation and associated inflammatory reactions. PMID:18317782

  8. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  9. Communication requirements of sparse Cholesky factorization with nested dissection ordering

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1989-01-01

    Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.

  10. Communication requirements of sparse Cholesky factorization with nested dissection ordering

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1989-01-01

    Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.

  11. Sparsely-synchronized brain rhythm in a small-world neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2013-07-01

    Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and

  12. Protein family classification using sparse markov transducers.

    PubMed

    Eskin, Eleazar; Noble, William Stafford; Singer, Yoram

    2003-01-01

    We present a method for classifying proteins into families based on short subsequences of amino acids using a new probabilistic model called sparse Markov transducers (SMT). We classify a protein by estimating probability distributions over subsequences of amino acids from the protein. Sparse Markov transducers, similar to probabilistic suffix trees, estimate a probability distribution conditioned on an input sequence. SMTs generalize probabilistic suffix trees by allowing for wild-cards in the conditioning sequences. Since substitutions of amino acids are common in protein families, incorporating wild-cards into the model significantly improves classification performance. We present two models for building protein family classifiers using SMTs. As protein databases become larger, data driven learning algorithms for probabilistic models such as SMTs will require vast amounts of memory. We therefore describe and use efficient data structures to improve the memory usage of SMTs. We evaluate SMTs by building protein family classifiers using the Pfam and SCOP databases and compare our results to previously published results and state-of-the-art protein homology detection methods. SMTs outperform previous probabilistic suffix tree methods and under certain conditions perform comparably to state-of-the-art protein homology methods.

  13. Disorders of cortical formation: MR imaging features.

    PubMed

    Abdel Razek, A A K; Kandell, A Y; Elsorogy, L G; Elmongy, A; Basett, A A

    2009-01-01

    The purpose of this article was to review the embryologic stages of the cerebral cortex, illustrate the classification of disorders of cortical formation, and finally describe the main MR imaging features of these disorders. Disorders of cortical formation are classified according to the embryologic stage of the cerebral cortex at which the abnormality occurred. MR imaging shows diminished cortical thickness and sulcation in microcephaly, enlarged dysplastic cortex in hemimegalencephaly, and ipsilateral focal cortical thickening with radial hyperintense bands in focal cortical dysplasia. MR imaging detects smooth brain in classic lissencephaly, the nodular cortex with cobblestone cortex with congenital muscular dystrophy, and the ectopic position of the gray matter with heterotopias. MR imaging can detect polymicrogyria and related syndromes as well as the types of schizencephaly. We concluded that MR imaging is essential to demonstrate the morphology, distribution, and extent of different disorders of cortical formation as well as the associated anomalies and related syndromes.

  14. Sparse PCA with Oracle Property.

    PubMed

    Gu, Quanquan; Wang, Zhaoran; Liu, Han

    In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank-k, and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.

  15. Sparse PCA with Oracle Property

    PubMed Central

    Gu, Quanquan; Wang, Zhaoran; Liu, Han

    2014-01-01

    In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank-k, and attains a s/n statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets. PMID:25684971

  16. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats

    NASA Astrophysics Data System (ADS)

    Lu, Yiliang; Yan, Yan; Chai, Xinyu; Ren, Qiushi; Chen, Yao; Li, Liming

    2013-06-01

    Objective. A visual prosthesis based on penetrating electrode stimulation within the optic nerve (ON) is a potential way to restore partial functional vision for blind patients. We investigated the retinotopic organization of ON stimulation and its spatial resolution. Approach. A five-electrode array was inserted perpendicularly into the ON or a single electrode was advanced to different depths within the ON (˜1-2 mm behind the eyeball, 13 cats). A sparse noise method was used to map ON electrode position and the visual cortex. Cortical responses were recorded by a 5 × 6 array. The visuotopic correspondence between the retinotopic position of the ON electrode was compared with the visual evoked cortical map and the electrical evoked potentials elicited in response to ON stimulation. Main results. Electrical stimulation with penetrating ON electrodes elicited cortical responses in visuotopographically corresponding areas of the cortex. Stimulation of the temporal side of the ON elicited cortical responses corresponding to the central visual field. The visual field position shifted from the lower to central visual field as the electrode penetrated through the depth of the ON. A spatial resolution of ˜ 2° to 3° within a limited cortical visuotopic representation could be obtained by this approach. Significance. Visuotopic electrical stimulation with a relatively fine spatial resolution can be accomplished using penetrating electrodes implanted at multiple sites and at different depths within the ON just behind the globe. This study also provides useful experimental data for the design of electrode density and the distribution of penetrating ON electrodes for a visual prosthesis.

  17. Prediction of cortical responses to simultaneous electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Halupka, Kerry J.; Shivdasani, Mohit N.; Cloherty, Shaun L.; Grayden, David B.; Wong, Yan T.; Burkitt, Anthony N.; Meffin, Hamish

    2017-02-01

    Objective. Simultaneous electrical stimulation of multiple electrodes has shown promise in diversifying the responses that can be elicited by retinal prostheses compared to interleaved single electrode stimulation. However, the effects of interactions between electrodes are not well understood and clinical trials with simultaneous stimulation have produced inconsistent results. We investigated the effects of multiple electrode stimulation of the retina by developing a model of cortical responses to retinal stimulation. Approach. Electrical stimuli consisting of temporally sparse, biphasic current pulses, with amplitudes sampled from a bi-dimensional Gaussian distribution, were simultaneously delivered to the retina across a 42-channel electrode array implanted in the suprachoroidal space of anesthetized cats. Visual cortex activity was recorded using penetrating microelectrode arrays. These data were used to identify a linear-nonlinear model of cortical responses to retinal stimulation. The ability of the model to generalize was tested by predicting responses to non-white patterned stimuli. Main results. The model accurately predicted two cortical activity measures: multi-unit neural responses and evoked potential responses to white noise stimuli. The model also provides information about electrical receptive fields, including the relative effects of each stimulating electrode on every recording site. Significance. We have demonstrated a simple model that accurately describes cortical responses to simultaneous stimulation of a suprachoroidal retinal prosthesis. Overall, our results demonstrate that cortical responses to simultaneous multi-electrode stimulation of the retina are repeatable and predictable, and that interactions between electrodes during simultaneous stimulation are predominantly linear. The model shows promise for determining optimal stimulation paradigms for exploiting interactions between electrodes to shape neural activity, thereby improving

  18. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study.

    PubMed

    Yang, L; Udall, W J M; McCloskey, E V; Eastell, R

    2014-01-01

    The quantitative computed tomography (QCT) scans in an individually matched case-control study of women with hip fracture were analysed. There were widespread deficits in the femoral volumetric bone mineral density (vBMD) and cortical thickness of cases, and cortical vBMD and thickness discriminated hip fracture independently of BMD by dual-energy X-ray absorptiometry (DXA). Acknowledging the limitations of QCT associated with partial volume effects, we used QCT in an individually matched case-control study of women with hip fracture to better understand its structural basis. Fifty postmenopausal women (55-89 years) who had sustained hip fractures due to low-energy trauma underwent QCT scans of the contralateral hip within 3 months of the fracture. For each case, postmenopausal women, matched by age (±5 years), weight (±5 kg) and height (±5 cm), were recruited as controls. We quantified cortical, trabecular and integral vBMD and apparent cortical thickness (AppCtTh) in four quadrants of cross-sections along the length of the femoral head (FH), femoral neck (FN), intertrochanter and trochanter and examined their association with hip fracture. Women with hip or intracapsular (IC) fracture had significantly (p < 0.05) lower vBMD and AppCtTh than the controls in the majority of cross-sections and quadrants of the proximal femur, and both cortical and trabecular compartments are involved. Cortical vBMD and AppCtTh in the FH and FN were associated with hip and IC fractures independent of hip areal BMD (aBMD). The combination of AppCtTh and trabecular or integral vBMD discriminated hip fracture, whereas the combination of FH and FN AppCtTh discriminated IC fracture significantly (p < 0.05) better than the hip aBMD. Deficits in vBMD and AppCtTh in cases were widespread in the proximal femur, and cortical vBMD and AppCtTh discriminated hip fracture independently of aBMD by DXA.

  19. Sparse Regression by Projection and Sparse Discriminant Analysis.

    PubMed

    Qi, Xin; Luo, Ruiyan; Carroll, Raymond J; Zhao, Hongyu

    2015-04-01

    Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared to the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplemental materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

  20. Sparse Regression by Projection and Sparse Discriminant Analysis

    PubMed Central

    Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu

    2014-01-01

    Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared to the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplemental materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided. PMID:26345204

  1. Sparse codes of harmonic natural sounds and their modulatory interactions.

    PubMed

    Terashima, Hiroki; Hosoya, Haruo

    2009-01-01

    Sparse coding and its related theories have been successful to explain various response properties of early stages of sensory information processing such as primary visual cortex and peripheral auditory system, which suggests that the emergence of such properties results from adaptation of the nerve system to natural stimuli. The present study continues this line of research in a higher stage of auditory processing, focusing on harmonic structures that are often found in behaviourally important natural sound like animal vocalization. It has been physiologically shown that monkey primary auditory cortices (A1) have neurons with response properties capturing such harmonic structures: their response and modulation peaks are often found at frequencies that are harmonically related to each other. We hypothesize that such relations emerge from sparse coding of harmonic natural sounds. Our simulation shows that similar harmonic relations emerge from frequency-domain sparse codes of harmonic sounds, namely, piano performance and human speech. Moreover, the modulatory behaviours can be explained by competitive interactions of model neurons that capture partially common harmonic structures.

  2. Cortical transients preceding voluntary movement.

    PubMed

    Hartwell, J W

    2009-12-01

    The process of initiating a voluntary muscular movement evidently involves a focusing of diffuse brain activity onto a highly specific location in the primary motor cortex. Even the very simple stereotypic movements used to study the 'contingent negative variation' and the 'readiness potential' begin with EEG indicative of widely distributed brain activity. In natural settings the involvement of diffuse cortical networks is undoubtedly even more important. Eventually, however, activity must coalesce onto specific neurons for the intended movement to ensue. Here we examine that focusing process from a mathematical point of view. Using a digital simulation, we solve the global equations for cortical dynamics and model the flow from diffuse onset to localized spike. From this perspective the interplay between global and local effects is seen as a necessary consequence of a basic cortical architecture which supports wave propagation. Watching the process evolve over time allows us to estimate some characteristic amplitudes and delays.

  3. Sparse Matrix Software Catalog, Sparse Matrix Symposium 1982, Fairfield Glade, Tennessee, October 24-27, 1982,

    DTIC Science & Technology

    1982-10-27

    sparse matrices as well as other areas. Contents 1. operations on Sparse Matrices .. . . . . . . . . . . . . . . . . . . . . . . . I 1.1 Multi...22 2.1.1 Nonsymmetric systems ............................................. 22 2.1.1.1 General sparse matrices ...46 2.1.2.1 General sparse matrices ......................................... 46 2.1.2.2 Band or profile forms

  4. P-SPARSLIB: A parallel sparse iterative solution package

    SciTech Connect

    Saad, Y.

    1994-12-31

    Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.

  5. Sparse Sensing of Aerodynamic Loads on Insect Wings

    NASA Astrophysics Data System (ADS)

    Manohar, Krithika; Brunton, Steven; Kutz, J. Nathan

    2015-11-01

    We investigate how insects use sparse sensors on their wings to detect aerodynamic loading and wing deformation using a coupled fluid-structure model given periodically flapping input motion. Recent observations suggest that insects collect sensor information about their wing deformation to inform control actions for maneuvering and rejecting gust disturbances. Given a small number of point measurements of the chordwise aerodynamic loads from the sparse sensors, we reconstruct the entire chordwise loading using sparsesensing - a signal processing technique that reconstructs a signal from a small number of measurements using l1 norm minimization of sparse modal coefficients in some basis. We compare reconstructions from sensors randomly sampled from probability distributions biased toward different regions along the wing chord. In this manner, we determine the preferred regions along the chord for sensor placement and for estimating chordwise loads to inform control decisions in flight.

  6. Structured sparse models for classification

    NASA Astrophysics Data System (ADS)

    Castrodad, Alexey

    The main focus of this thesis is the modeling and classification of high dimensional data using structured sparsity. Sparse models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and its use has led to state-of-the-art results in many signal and image processing tasks. The success of sparse modeling is highly due to its ability to efficiently use the redundancy of the data and find its underlying structure. On a classification setting, we capitalize on this advantage to properly model and separate the structure of the classes. We design and validate modeling solutions to challenging problems arising in computer vision and remote sensing. We propose both supervised and unsupervised schemes for the modeling of human actions from motion imagery under a wide variety of acquisition condi- tions. In the supervised case, the main goal is to classify the human actions in the video given a predefined set of actions to learn from. In the unsupervised case, the main goal is to an- alyze the spatio-temporal dynamics of the individuals in the scene without having any prior information on the actions themselves. We also propose a model for remotely sensed hysper- spectral imagery, where the main goal is to perform automatic spectral source separation and mapping at the subpixel level. Finally, we present a sparse model for sensor fusion to exploit the common structure and enforce collaboration of hyperspectral with LiDAR data for better mapping capabilities. In all these scenarios, we demonstrate that these data can be expressed as a combination of atoms from a class-structured dictionary. These data representation becomes essentially a "mixture of classes," and by directly exploiting the sparse codes, one can attain highly accurate classification performance with relatively unsophisticated classifiers.

  7. Double shrinking sparse dimension reduction.

    PubMed

    Zhou, Tianyi; Tao, Dacheng

    2013-01-01

    Learning tasks such as classification and clustering usually perform better and cost less (time and space) on compressed representations than on the original data. Previous works mainly compress data via dimension reduction. In this paper, we propose "double shrinking" to compress image data on both dimensionality and cardinality via building either sparse low-dimensional representations or a sparse projection matrix for dimension reduction. We formulate a double shrinking model (DSM) as an l(1) regularized variance maximization with constraint ||x||(2)=1, and develop a double shrinking algorithm (DSA) to optimize DSM. DSA is a path-following algorithm that can build the whole solution path of locally optimal solutions of different sparse levels. Each solution on the path is a "warm start" for searching the next sparser one. In each iteration of DSA, the direction, the step size, and the Lagrangian multiplier are deduced from the Karush-Kuhn-Tucker conditions. The magnitudes of trivial variables are shrunk and the importances of critical variables are simultaneously augmented along the selected direction with the determined step length. Double shrinking can be applied to manifold learning and feature selections for better interpretation of features, and can be combined with classification and clustering to boost their performance. The experimental results suggest that double shrinking produces efficient and effective data compression.

  8. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  9. Distributional Variations in the Quantitative Cortical and Trabecular Bone Radiographic Measurements of Mandible, between Male and Female Populations of Korea, and its Utilization

    PubMed Central

    Park, Soon-Yong; Heo, Min-Suk; Chien, Sung-Il

    2016-01-01

    It is important to investigate the irregularities in aging-associated changes in bone, between men and women for bone strength and osteoporosis. The purpose of this study was to characterize the changes and associations of mandibular cortical and trabecular bone measures of men and women based on age and to the evaluation of cortical shape categories, in a large Korean population. Panoramic radiographs of 1047 subjects (603 women and 444 men) aged between 15 to 90 years were used. Mandibular cortical width (MCW), mandibular cortical index (MCI), and fractal dimensions (FD) of the molar, premolar, and anterior regions of the mandibular trabecular bone were measured. Study subjects were grouped into six 10-years age groups. A local linear regression smoothing with bootstrap resampling for robust fitting of data was used to estimate the relationship between radiographic mandibular variables and age groups as well as genders. The mean age of women (49.56 ± 19.5 years) was significantly higher than that of men (45.57 ± 19.6 years). The MCW of men and women (3.17mm and 2.91mm, respectively, p < 0.0001) was strongly associated with age and MCI. Indeed, trabecular measures also correlated with age in men (r > −0.140, p = 0.003), though not as strongly as in women (r > −0.210, p < 0.0001). In men aged over 55 years, only MCW was significantly associated (r = −0.412, p < 0.0001). Furthermore, by comparison of mandibular variables from different age groups and MCI categories, the results suggest that MCW was detected to be strongly associated in both men and women for the detection of bone strength and osteoporosis. The FD measures revealed relatively higher association with age among women than men, but not as strong as MCW. PMID:28002443

  10. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  11. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  12. A performance study of sparse Cholesky factorization on INTEL iPSC/860

    NASA Technical Reports Server (NTRS)

    Zubair, M.; Ghose, M.

    1992-01-01

    The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.

  13. Dose-shaping using targeted sparse optimization

    SciTech Connect

    Sayre, George A.; Ruan, Dan

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot

  14. Dose-shaping using targeted sparse optimization.

    PubMed

    Sayre, George A; Ruan, Dan

    2013-07-01

    Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method. In designing the energy minimization objective (E tot (sparse)), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot (sparse) improves tradeoff between

  15. Scenario generation for stochastic optimization problems via the sparse grid method

    SciTech Connect

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid method can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.

  16. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    PubMed

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  17. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  18. Fast generation of sparse random kernel graphs

    SciTech Connect

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.

  19. Fast generation of sparse random kernel graphs

    DOE PAGES

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  20. Classification of sparse high-dimensional vectors.

    PubMed

    Ingster, Yuri I; Pouet, Christophe; Tsybakov, Alexandre B

    2009-11-13

    We study the problem of classification of d-dimensional vectors into two classes (one of which is 'pure noise') based on a training sample of size m. The main specific feature is that the dimension d can be very large. We suppose that the difference between the distribution of the population and that of the noise is only in a shift, which is a sparse vector. For Gaussian noise, fixed sample size m, and dimension d that tends to infinity, we obtain the sharp classification boundary, i.e. the necessary and sufficient conditions for the possibility of successful classification. We propose classifiers attaining this boundary. We also give extensions of the result to the case where the sample size m depends on d and satisfies the condition (log m)/log d --> gamma, 0

  1. Estimation of Sparse Directed Acyclic Graphs for Multivariate Counts Data

    PubMed Central

    Han, Sung Won; Zhong, Hua

    2016-01-01

    Summary The next-generation sequencing data, called high throughput sequencing data, are recorded as count data, which is generally far from normal distribution. Under the assumption that the count data follow the Poisson log-normal distribution, this paper provides an L1-penalized likelihood framework and an efficient search algorithm to estimate the structure of sparse directed acyclic graphs (DAGs) for multivariate counts data. In searching for the solution, we use iterative optimization procedures to estimate the adjacency matrix and the variance matrix of the latent variables. The simulation result shows that our proposed method outperforms the approach which assumes multivariate normal distributions, and the log-transformation approach. It also shows that the proposed method outperforms the rank-based PC method under sparse network or hub network structures. As a real data example, we demonstrate the efficiency of the proposed method in estimating the gene regulatory networks of the ovarian cancer study. PMID:26849781

  2. Sparse recovery via convex optimization

    NASA Astrophysics Data System (ADS)

    Randall, Paige Alicia

    This thesis considers the problem of estimating a sparse signal from a few (possibly noisy) linear measurements. In other words, we have y = Ax + z where A is a measurement matrix with more columns than rows, x is a sparse signal to be estimated, z is a noise vector, and y is a vector of measurements. This setup arises frequently in many problems ranging from MRI imaging to genomics to compressed sensing.We begin by relating our setup to an error correction problem over the reals, where a received encoded message is corrupted by a few arbitrary errors, as well as smaller dense errors. We show that under suitable conditions on the encoding matrix and on the number of arbitrary errors, one is able to accurately recover the message.We next show that we are able to achieve oracle optimality for x, up to a log factor and a factor of sqrt{s}, when we require the matrix A to obey an incoherence property. The incoherence property is novel in that it allows the coherence of A to be as large as O(1/ log n) and still allows sparsities as large as O(m/log n). This is in contrast to other existing results involving coherence where the coherence can only be as large as O(1/sqrt{m}) to allow sparsities as large as O(sqrt{m}). We also do not make the common assumption that the matrix A obeys a restricted eigenvalue condition.We then show that we can recover a (non-sparse) signal from a few linear measurements when the signal has an exactly sparse representation in an overcomplete dictionary. We again only require that the dictionary obey an incoherence property.Finally, we introduce the method of l_1 analysis and show that it is guaranteed to give good recovery of a signal from a few measurements, when the signal can be well represented in a dictionary. We require that the combined measurement/dictionary matrix satisfies a uniform uncertainty principle and we compare our results with the more standard l_1 synthesis approach.All our methods involve solving an l_1 minimization

  3. Collective Dynamics in Sparse Networks

    NASA Astrophysics Data System (ADS)

    Luccioli, Stefano; Olmi, Simona; Politi, Antonio; Torcini, Alessandro

    2012-09-01

    The microscopic and macroscopic dynamics of random networks is investigated in the strong-dilution limit (i.e., for sparse networks). By simulating chaotic maps, Stuart-Landau oscillators, and leaky integrate-and-fire neurons, we show that a finite connectivity (of the order of a few tens) is able to sustain a nontrivial collective dynamics even in the thermodynamic limit. Although the network structure implies a nonadditive dynamics, the microscopic evolution is extensive (i.e., the number of active degrees of freedom is proportional to the number of network elements).

  4. Sparse Coding for Alpha Matting.

    PubMed

    Johnson, Jubin; Varnousfaderani, Ehsan Shahrian; Cholakkal, Hisham; Rajan, Deepu

    2016-07-01

    Existing color sampling-based alpha matting methods use the compositing equation to estimate alpha at a pixel from the pairs of foreground ( F ) and background ( B ) samples. The quality of the matte depends on the selected ( F,B ) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to ( F,B ) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms the current stateoftheart in image and video matting.

  5. Sparse Coding for Alpha Matting.

    PubMed

    Johnson, Jubin; Varnousfaderani, Ehsan; Cholakkal, Hisham; Rajan, Deepu

    2016-04-21

    Existing color sampling based alpha matting methods use the compositing equation to estimate alpha at a pixel from pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to (F,B) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms current state-of-the-art in image and video matting.

  6. Discriminative Sparse Representations in Hyperspectral Imagery

    DTIC Science & Technology

    2010-03-01

    classification , and unsupervised labeling (clustering) [2, 3, 4, 5, 6, 7, 8]. Recently, a non-parametric (Bayesian) approach to sparse modeling and com...DISCRIMINATIVE SPARSE REPRESENTATIONS IN HYPERSPECTRAL IMAGERY By Alexey Castrodad, Zhengming Xing John Greer, Edward Bosch Lawrence Carin and...00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Discriminative Sparse Representations in Hyperspectral Imagery 5a. CONTRACT NUMBER 5b. GRANT

  7. Universal Priors for Sparse Modeling(PREPRINT)

    DTIC Science & Technology

    2009-08-01

    UNIVERSAL PRIORS FOR SPARSE MODELING By Ignacio Ramı́rez Federico Lecumberry and Guillermo Sapiro IMA Preprint Series # 2276 ( August 2009...8-98) Prescribed by ANSI Std Z39-18 Universal Priors for Sparse Modeling (Invited Paper) Ignacio Ramı́rez#1, Federico Lecumberry ∗2, Guillermo Sapiro...I. Ramirez, F. Lecumberry , and G. Sapiro. Sparse modeling with univer- sal priors and learned incoherent dictionaries. Submitted to NIPS, 2009. [22

  8. A new sparse Bayesian learning method for inverse synthetic aperture radar imaging via exploiting cluster patterns

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Zhang, Lizao; Duan, Huiping; Huang, Lei; Li, Hongbin

    2016-05-01

    The application of sparse representation to SAR/ISAR imaging has attracted much attention over the past few years. This new class of sparse representation based imaging methods present a number of unique advantages over conventional range-Doppler methods, the basic idea behind these works is to formulate SAR/ISAR imaging as a sparse signal recovery problem. In this paper, we propose a new two-dimensional pattern-coupled sparse Bayesian learning(SBL) method to capture the underlying cluster patterns of the ISAR target images. Based on this model, an expectation-maximization (EM) algorithm is developed to infer the maximum a posterior (MAP) estimate of the hyperparameters, along with the posterior distribution of the sparse signal. Experimental results demonstrate that the proposed method is able to achieve a substantial performance improvement over existing algorithms, including the conventional SBL method.

  9. Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing.

    PubMed

    Yoshida, Ryo; West, Mike

    2010-05-01

    We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate "artificial" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.

  10. Miniature Laboratory for Detecting Sparse Biomolecules

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  11. Image fusion using sparse overcomplete feature dictionaries

    DOEpatents

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  12. Medical Image Fusion Based on Feature Extraction and Sparse Representation

    PubMed Central

    Wei, Gao; Zongxi, Song

    2017-01-01

    As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246

  13. Medical Image Fusion Based on Feature Extraction and Sparse Representation.

    PubMed

    Fei, Yin; Wei, Gao; Zongxi, Song

    2017-01-01

    As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods.

  14. Self-organizing control for space-based sparse antennas

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Jamnejad, Vaharaz; Scharf, Daniel P.; Ploen, Scott R.

    2003-01-01

    An integrated control and electromagnetic/antenna formulation is presented for evaluating the performance of a distributed antenna system as a function of formation geometry. A distributed and self-organizing control law for the control law for the control of multiple antennas in Low Earth Orbit (LEO) is presented. The control system provides collaborative commanding and performance optimization to configure and operate the distributed formation system. A large aperture antenna is thereby realized by a collection of miniature sparse antennas in formation. A case study consisting of a simulation of four antennas in Low Earth orbit (LEO)is presented to demonstrate the concept.

  15. Sparse and stable Markowitz portfolios.

    PubMed

    Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace

    2009-07-28

    We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio.

  16. Sparse and stable Markowitz portfolios

    PubMed Central

    Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace

    2009-01-01

    We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio. PMID:19617537

  17. Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI.

    PubMed

    Petkov, Christopher I; Kayser, Christoph; Augath, Mark; Logothetis, Nikos K

    2009-10-01

    The noninvasive imaging of the monkey auditory system with functional magnetic resonance imaging (fMRI) can bridge the gap between electrophysiological studies in monkeys and imaging studies in humans. Some of the recent imaging of monkey auditory cortical and subcortical structures relies on a technique of "sparse imaging," which was developed in human studies to sidestep the negative influence of scanner noise by adding periods of silence in between volume acquisition. Among the various aspects that have gone into the ongoing optimization of fMRI of the monkey auditory cortex, replacing the more common continuous-imaging paradigm with sparse imaging seemed to us to make the most obvious difference in the amount of activity that we could reliably obtain from awake or anesthetized animals. Here, we directly compare the sparse- and continuous-imaging paradigms in anesthetized animals. We document a strikingly greater auditory response with sparse imaging, both quantitatively and qualitatively, which includes a more expansive and robust tonotopic organization. There were instances where continuous imaging could better reveal organizational properties that sparse imaging missed, such as aspects of the hierarchical organization of auditory cortex. We consider the choice of imaging paradigm as a key component in optimizing the fMRI of the monkey auditory cortex.

  18. Sparse representation for the ISAR image reconstruction

    NASA Astrophysics Data System (ADS)

    Hu, Mengqi; Montalbo, John; Li, Shuxia; Sun, Ligang; Qiao, Zhijun G.

    2016-05-01

    In this paper, a sparse representation of the data for an inverse synthetic aperture radar (ISAR) system is provided in two dimensions. The proposed sparse representation motivates the use a of a Convex Optimization that recovers the image with far less samples, which is required by Nyquist-Shannon sampling theorem to increases the efficiency and decrease the cost of calculation in radar imaging.

  19. Approximate Orthogonal Sparse Embedding for Dimensionality Reduction.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Yang, Jian; Zhang, David

    2016-04-01

    Locally linear embedding (LLE) is one of the most well-known manifold learning methods. As the representative linear extension of LLE, orthogonal neighborhood preserving projection (ONPP) has attracted widespread attention in the field of dimensionality reduction. In this paper, a unified sparse learning framework is proposed by introducing the sparsity or L1-norm learning, which further extends the LLE-based methods to sparse cases. Theoretical connections between the ONPP and the proposed sparse linear embedding are discovered. The optimal sparse embeddings derived from the proposed framework can be computed by iterating the modified elastic net and singular value decomposition. We also show that the proposed model can be viewed as a general model for sparse linear and nonlinear (kernel) subspace learning. Based on this general model, sparse kernel embedding is also proposed for nonlinear sparse feature extraction. Extensive experiments on five databases demonstrate that the proposed sparse learning framework performs better than the existing subspace learning algorithm, particularly in the cases of small sample sizes.

  20. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  1. Large-scale sparse singular value computations

    NASA Technical Reports Server (NTRS)

    Berry, Michael W.

    1992-01-01

    Four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture are presented. Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography are emphasized. The target architectures for implementations are the CRAY-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices.

  2. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model

    PubMed Central

    Murray, John D.; McCormick, David A.

    2016-01-01

    Abstract Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input–output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  3. Scale-Invariant Sparse PCA on High Dimensional Meta-elliptical Data.

    PubMed

    Han, Fang; Liu, Han

    2014-01-01

    We propose a semiparametric method for conducting scale-invariant sparse principal component analysis (PCA) on high dimensional non-Gaussian data. Compared with sparse PCA, our method has weaker modeling assumption and is more robust to possible data contamination. Theoretically, the proposed method achieves a parametric rate of convergence in estimating the parameter of interests under a flexible semiparametric distribution family; Computationally, the proposed method exploits a rank-based procedure and is as efficient as sparse PCA; Empirically, our method outperforms most competing methods on both synthetic and real-world datasets.

  4. Cortical Reorganization following Injury Early in Life

    PubMed Central

    Artzi, Moran; Shiran, Shelly Irene; Weinstein, Maya; Myers, Vicki; Tarrasch, Ricardo; Schertz, Mitchell; Fattal-Valevski, Aviva; Miller, Elka; Gordon, Andrew M.; Green, Dido; Ben Bashat, Dafna

    2016-01-01

    The brain has a remarkable capacity for reorganization following injury, especially during the first years of life. Knowledge of structural reorganization and its consequences following perinatal injury is sparse. Here we studied changes in brain tissue volume, morphology, perfusion, and integrity in children with hemiplegia compared to typically developing children, using MRI. Children with hemiplegia demonstrated reduced total cerebral volume, with increased cerebrospinal fluid (CSF) and reduced total white matter volumes, with no differences in total gray matter volume, compared to typically developing children. An increase in cortical thickness at the hemisphere contralateral to the lesion (CLH) was detected in motor and language areas, which may reflect compensation for the gray matter loss in the lesion area or retention of ipsilateral pathways. In addition, reduced cortical thickness, perfusion, and surface area were detected in limbic areas. Increased CSF volume and precentral cortical thickness and reduced white matter volume were correlated with worse motor performance. Brain reorganization of the gray matter within the CLH, while not necessarily indicating better outcome, is suggested as a response to neuronal deficits following injury early in life. PMID:27298741

  5. A Max-Margin Perspective on Sparse Representation-Based Classification

    DTIC Science & Technology

    2013-11-30

    ABSTRACT 16. SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY...Perspective on Sparse Representation-Based Classification Sparse Representation-based Classification (SRC) is a powerful tool in distinguishing signal...a reconstructive perspective, which neither offer- s any guarantee on its classification performance nor pro- The views, opinions and/or findings

  6. Resistant multiple sparse canonical correlation.

    PubMed

    Coleman, Jacob; Replogle, Joseph; Chandler, Gabriel; Hardin, Johanna

    2016-04-01

    Canonical correlation analysis (CCA) is a multivariate technique that takes two datasets and forms the most highly correlated possible pairs of linear combinations between them. Each subsequent pair of linear combinations is orthogonal to the preceding pair, meaning that new information is gleaned from each pair. By looking at the magnitude of coefficient values, we can find out which variables can be grouped together, thus better understanding multiple interactions that are otherwise difficult to compute or grasp intuitively. CCA appears to have quite powerful applications to high-throughput data, as we can use it to discover, for example, relationships between gene expression and gene copy number variation. One of the biggest problems of CCA is that the number of variables (often upwards of 10,000) makes biological interpretation of linear combinations nearly impossible. To limit variable output, we have employed a method known as sparse canonical correlation analysis (SCCA), while adding estimation which is resistant to extreme observations or other types of deviant data. In this paper, we have demonstrated the success of resistant estimation in variable selection using SCCA. Additionally, we have used SCCA to find multiple canonical pairs for extended knowledge about the datasets at hand. Again, using resistant estimators provided more accurate estimates than standard estimators in the multiple canonical correlation setting. R code is available and documented at https://github.com/hardin47/rmscca.

  7. Sparse Bayesian infinite factor models

    PubMed Central

    Bhattacharya, A.; Dunson, D. B.

    2011-01-01

    We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order dependence typical in factor analysis models and develop an efficient Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved by the joint conjugacy property of the proposed prior, which allows block updating of the loadings matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading matrix through selection of the number of important factors. Theoretical results are provided on the support of the prior and truncation approximation bounds. A fast algorithm is proposed to produce approximate Bayes estimates. Latent factor regression methods are developed for prediction and variable selection in applications with high-dimensional correlated predictors. Operating characteristics are assessed through simulation studies, and the approach is applied to predict survival times from gene expression data. PMID:23049129

  8. Sparse-aperture adaptive optics

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Lloyd, James; Ireland, Michael; Martinache, Frantz; Monnier, John; Woodruff, Henry; ten Brummelaar, Theo; Turner, Nils; Townes, Charles

    2006-06-01

    Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical systems are presented.

  9. Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2015-12-01

    The recently publicly released Human Connectome Project (HCP) grayordinate-based fMRI data not only has high spatial and temporal resolution, but also offers group-corresponding fMRI signals across a large population for the first time in the brain imaging field, thus significantly facilitating mapping the functional brain architecture with much higher resolution and in a group-wise fashion. In this article, we adopt the HCP grayordinate task-based fMRI (tfMRI) data to systematically identify and characterize task-based heterogeneous functional regions (THFRs) on cortical surface, i.e., the regions that are activated during multiple tasks conditions and contribute to multiple task-evoked systems during a specific task performance, and to assess the spatial patterns of identified THFRs on cortical gyri and sulci by applying a computational framework of sparse representations of grayordinate brain tfMRI signals. Experimental results demonstrate that both consistent task-evoked networks and intrinsic connectivity networks across all subjects and tasks in HCP grayordinate data are effectively and robustly reconstructed via the proposed sparse representation framework. Moreover, it is found that there are relatively consistent THFRs locating at bilateral parietal lobe, frontal lobe, and visual association cortices across all subjects and tasks. Particularly, those identified THFRs locate significantly more on gyral regions than on sulcal regions. These results based on sparse representation of HCP grayordinate data reveal novel functional architecture of cortical gyri and sulci, and might provide a foundation to better understand functional mechanisms of the human cerebral cortex in the future.

  10. Sparse Representation of HCP Grayordinate Data Reveals Novel Functional Architecture of Cerebral Cortex

    PubMed Central

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2015-01-01

    The recently publicly released Human Connectome Project (HCP) grayordinate-based fMRI data not only has high spatial and temporal resolution, but also offers group-corresponding fMRI signals across a large population for the first time in the brain imaging field, thus significantly facilitating mapping the functional brain architecture with much higher resolution and in a group-wise fashion. In this paper, we adopt the HCP grayordinate task-based fMRI (tfMRI) data to systematically identify and characterize task-based heterogeneous functional regions (THFRs) on cortical surface, i.e., the regions that are activated during multiple tasks conditions and contribute to multiple task-evoked systems during a specific task performance, and to assess the spatial patterns of identified THFRs on cortical gyri and sulci by applying a computational framework of sparse representations of grayordinate brain tfMRI signals. Experimental results demonstrate that both consistent task-evoked networks and intrinsic connectivity networks across all subjects and tasks in HCP grayordinate data are effectively and robustly reconstructed via the proposed sparse representation framework. Moreover, it is found that there are relatively consistent THFRs locating at bilateral parietal lobe, frontal lobe, and visual association cortices across all subjects and tasks. Particularly, those identified THFRs locate significantly more on gyral regions than on sulcal regions. These results based on sparse representation of HCP grayordinate data reveal novel functional architecture of cortical gyri and sulci, and might provide a foundation to better understand functional mechanisms of the human cerebral cortex in the future. PMID:26466353

  11. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs.

    PubMed

    Bello, Oscar Daniel; Cappa, Andrea Isabel; de Paola, Matilde; Zanetti, María Natalia; Fukuda, Mitsunori; Fissore, Rafael A; Mayorga, Luis S; Michaut, Marcela A

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.

  12. Mesoscopic patterns of neural activity support songbird cortical sequences.

    PubMed

    Markowitz, Jeffrey E; Liberti, William A; Guitchounts, Grigori; Velho, Tarciso; Lois, Carlos; Gardner, Timothy J

    2015-06-01

    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From "time cells" in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song.

  13. Mesoscopic Patterns of Neural Activity Support Songbird Cortical Sequences

    PubMed Central

    Guitchounts, Grigori; Velho, Tarciso; Lois, Carlos; Gardner, Timothy J.

    2015-01-01

    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From “time cells” in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia–projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song. PMID:26039895

  14. Non-convex Statistical Optimization for Sparse Tensor Graphical Model

    PubMed Central

    Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang

    2016-01-01

    We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies.

  15. Sparse matrix methods research using the CSM testbed software system

    NASA Technical Reports Server (NTRS)

    Chu, Eleanor; George, J. Alan

    1989-01-01

    Research is described on sparse matrix techniques for the Computational Structural Mechanics (CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A suite of subroutines to extract from the data base the relevant structural and numerical information about the matrix equations was written, and all the demonstration problems distributed with the testbed were successfully solved. These codes were documented, and performance studies comparing the SPARSPAK technology to the methods currently in the testbed were completed. In addition, some preliminary studies were done comparing some recently developed out-of-core techniques with the performance of the testbed processor INV.

  16. Sparse High Dimensional Models in Economics

    PubMed Central

    Fan, Jianqing; Lv, Jinchi; Qi, Lei

    2010-01-01

    This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635

  17. Evolution of cortical neurogenesis.

    PubMed

    Abdel-Mannan, Omar; Cheung, Amanda F P; Molnár, Zoltán

    2008-03-18

    The neurons of the mammalian neocortex are organised into six layers. By contrast, the reptilian and avian dorsal cortices only have three layers which are thought to be equivalent to layers I, V and VI of mammals. Increased repertoire of mammalian higher cognitive functions is likely a result of an expanded cortical surface area. The majority of cortical cell proliferation in mammals occurs in the ventricular zone (VZ) and subventricular zone (SVZ), with a small number of scattered divisions outside the germinal zone. Comparative developmental studies suggest that the appearance of SVZ coincides with the laminar expansion of the cortex to six layers, as well as the tangential expansion of the cortical sheet seen within mammals. In spite of great variation and further compartmentalisation in the mitotic compartments, the number of neurons in an arbitrary cortical column appears to be remarkably constant within mammals. The current challenge is to understand how the emergence and elaboration of the SVZ has contributed to increased cortical cell diversity, tangential expansion and gyrus formation of the mammalian neocortex. This review discusses neurogenic processes that are believed to underlie these major changes in cortical dimensions in vertebrates.

  18. [Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition].

    PubMed

    Li, Xiao-Song; Gao, Zhi-Hai; Li, Zeng-Yuan; Bai, Li-Na; Wang, Beng-Yu

    2010-01-01

    Based on Hyperion hyperspectral image data, the image-derived shifting sand, false-Gobi spectra, and field-measured sparse vegetation spectra were taken as endmembers, and the sparse vegetation coverage (< 40%) in Minqin oasis-desert transitional zone of Gansu Province was estimated by using fully constrained linear spectral mixture model (LSMM) and non-constrained LSMM, respectively. The results showed that the sparse vegetation fraction based on fully constrained LSMM described the actual sparse vegetation distribution. The differences between sparse vegetation fraction and field-measured vegetation coverage were less than 5% for all samples, and the RMSE was 3.0681. However, the sparse vegetation fraction based on non-constrained LSMM was lower than the field-measured vegetation coverage obviously, and the correlation between them was poor, with a low R2 of 0.5855. Compared with McGwire's corresponding research, the sparse vegetation coverage estimation in this study was more accurate and reliable, having expansive prospect for application in the future.

  19. Feature selection and multi-kernel learning for sparse representation on a manifold.

    PubMed

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2014-03-01

    Sparse representation has been widely studied as a part-based data representation method and applied in many scientific and engineering fields, such as bioinformatics and medical imaging. It seeks to represent a data sample as a sparse linear combination of some basic items in a dictionary. Gao et al. (2013) recently proposed Laplacian sparse coding by regularizing the sparse codes with an affinity graph. However, due to the noisy features and nonlinear distribution of the data samples, the affinity graph constructed directly from the original feature space is not necessarily a reliable reflection of the intrinsic manifold of the data samples. To overcome this problem, we integrate feature selection and multiple kernel learning into the sparse coding on the manifold. To this end, unified objectives are defined for feature selection, multiple kernel learning, sparse coding, and graph regularization. By optimizing the objective functions iteratively, we develop novel data representation algorithms with feature selection and multiple kernel learning respectively. Experimental results on two challenging tasks, N-linked glycosylation prediction and mammogram retrieval, demonstrate that the proposed algorithms outperform the traditional sparse coding methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Structured sparse priors for image classification.

    PubMed

    Srinivas, Umamahesh; Suo, Yuanming; Dao, Minh; Monga, Vishal; Tran, Trac D

    2015-06-01

    Model-based compressive sensing (CS) exploits the structure inherent in sparse signals for the design of better signal recovery algorithms. This information about structure is often captured in the form of a prior on the sparse coefficients, with the Laplacian being the most common such choice (leading to l1 -norm minimization). Recent work has exploited the discriminative capability of sparse representations for image classification by employing class-specific dictionaries in the CS framework. Our contribution is a logical extension of these ideas into structured sparsity for classification. We introduce the notion of discriminative class-specific priors in conjunction with class specific dictionaries, specifically the spike-and-slab prior widely applied in Bayesian sparse regression. Significantly, the proposed framework takes the burden off the demand for abundant training image samples necessary for the success of sparsity-based classification schemes. We demonstrate this practical benefit of our approach in important applications, such as face recognition and object categorization.

  1. Robust feature point matching with sparse model.

    PubMed

    Jiang, Bo; Tang, Jin; Luo, Bin; Lin, Liang

    2014-12-01

    Feature point matching that incorporates pairwise constraints can be cast as an integer quadratic programming (IQP) problem. Since it is NP-hard, approximate methods are required. The optimal solution for IQP matching problem is discrete, binary, and thus sparse in nature. This motivates us to use sparse model for feature point matching problem. The main advantage of the proposed sparse feature point matching (SPM) method is that it generates sparse solution and thus naturally imposes the discrete mapping constraints approximately in the optimization process. Therefore, it can optimize the IQP matching problem in an approximate discrete domain. In addition, an efficient algorithm can be derived to solve SPM problem. Promising experimental results on both synthetic points sets matching and real-world image feature sets matching tasks show the effectiveness of the proposed feature point matching method.

  2. Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset

    PubMed Central

    Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.

    2017-01-01

    The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131

  3. Sparse CSEM inversion driven by seismic coherence

    NASA Astrophysics Data System (ADS)

    Guo, Zhenwei; Dong, Hefeng; Kristensen, Åge

    2016-12-01

    Marine controlled source electromagnetic (CSEM) data inversion for hydrocarbon exploration is often challenging due to high computational cost, physical memory requirement and low resolution of the obtained resistivity map. This paper aims to enhance both the speed and resolution of CSEM inversion by introducing structural geological information in the inversion algorithm. A coarse mesh is generated for Occam’s inversion, where the parameters are fewer than in the fine regular mesh. This sparse mesh is defined as a coherence-based irregular (IC) sparse mesh, which is based on vertices extracted from available geological information. Inversion results on synthetic data illustrate that the IC sparse mesh has a smaller inversion computational cost compared to the regular dense (RD) mesh. It also has a higher resolution than with a regular sparse (RS) mesh for the same number of estimated parameters. In order to study how the IC sparse mesh reduces the computational time, four different meshes are generated for Occam’s inversion. As a result, an IC sparse mesh can reduce the computational cost while it keeps the resolution as good as a fine regular mesh. The IC sparse mesh reduces the computational cost of the matrix operation for model updates. When the number of estimated parameters reduces to a limited value, the computational cost is independent of the number of parameters. For a testing model with two resistive layers, the inversion result using an IC sparse mesh has higher resolution in both horizontal and vertical directions. Overall, the model representing significant geological information in the IC mesh can improve the resolution of the resistivity models obtained from inversion of CSEM data.

  4. Online Dictionary Learning for Sparse Coding

    DTIC Science & Technology

    2009-04-01

    cessing tasks such as denoising (Elad & Aharon, 2006) as well as higher-level tasks such as classification (Raina et al., 2007; Mairal et al., 2008a...Bruckstein, A. M. (2006). The K- SVD : An algorithm for designing of overcomplete dic- tionaries for sparse representations. IEEE Trans. SP...Tibshirani, R. (2004). Least angle regression. Ann. Statist. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations

  5. Cortical Neural Computation by Discrete Results Hypothesis.

    PubMed

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS

  6. Cortical Neural Computation by Discrete Results Hypothesis

    PubMed Central

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast

  7. LiDAR point classification based on sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Nan; Pfeifer, Norbert; Liu, Chun

    2017-04-01

    In order to combine the initial spatial structure and features of LiDAR data for accurate classification. The LiDAR data is represented as a 4-order tensor. Sparse representation for classification(SRC) method is used for LiDAR tensor classification. It turns out SRC need only a few of training samples from each class, meanwhile can achieve good classification result. Multiple features are extracted from raw LiDAR points to generate a high-dimensional vector at each point. Then the LiDAR tensor is built by the spatial distribution and feature vectors of the point neighborhood. The entries of LiDAR tensor are accessed via four indexes. Each index is called mode: three spatial modes in direction X ,Y ,Z and one feature mode. Sparse representation for classification(SRC) method is proposed in this paper. The sparsity algorithm is to find the best represent the test sample by sparse linear combination of training samples from a dictionary. To explore the sparsity of LiDAR tensor, the tucker decomposition is used. It decomposes a tensor into a core tensor multiplied by a matrix along each mode. Those matrices could be considered as the principal components in each mode. The entries of core tensor show the level of interaction between the different components. Therefore, the LiDAR tensor can be approximately represented by a sparse tensor multiplied by a matrix selected from a dictionary along each mode. The matrices decomposed from training samples are arranged as initial elements in the dictionary. By dictionary learning, a reconstructive and discriminative structure dictionary along each mode is built. The overall structure dictionary composes of class-specified sub-dictionaries. Then the sparse core tensor is calculated by tensor OMP(Orthogonal Matching Pursuit) method based on dictionaries along each mode. It is expected that original tensor should be well recovered by sub-dictionary associated with relevant class, while entries in the sparse tensor associated with

  8. Scenario generation for stochastic optimization problems via the sparse grid method

    DOE PAGES

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less

  9. Sparse extreme learning machine for classification.

    PubMed

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon

    2014-10-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.

  10. Visual tracking via robust multitask sparse prototypes

    NASA Astrophysics Data System (ADS)

    Zhang, Huanlong; Hu, Shiqiang; Yu, Junyang

    2015-03-01

    Sparse representation has been applied to an online subspace learning-based tracking problem. To handle partial occlusion effectively, some researchers introduce l1 regularization to principal component analysis (PCA) reconstruction. However, in these traditional tracking methods, the representation of each object observation is often viewed as an individual task so the inter-relationship between PCA basis vectors is ignored. We propose a new online visual tracking algorithm with multitask sparse prototypes, which combines multitask sparse learning with PCA-based subspace representation. We first extend a visual tracking algorithm with sparse prototypes in multitask learning framework to mine inter-relations between subtasks. Then, to avoid the problem that enforcing all subtasks to share the same structure may result in degraded tracking results, we impose group sparse constraints on the coefficients of PCA basis vectors and element-wise sparse constraints on the error coefficients, respectively. Finally, we show that the proposed optimization problem can be effectively solved using the accelerated proximal gradient method with the fast convergence. Experimental results compared with the state-of-the-art tracking methods demonstrate that the proposed algorithm achieves favorable performance when the object undergoes partial occlusion, motion blur, and illumination changes.

  11. Sparse Extreme Learning Machine for Classification

    PubMed Central

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M. Brandon

    2016-01-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM. PMID:25222727

  12. Finding Nonoverlapping Substructures of a Sparse Matrix

    SciTech Connect

    Pinar, Ali; Vassilevska, Virginia

    2005-08-11

    Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.

  13. Learning discriminative dictionary for group sparse representation.

    PubMed

    Sun, Yubao; Liu, Qingshan; Tang, Jinhui; Tao, Dacheng

    2014-09-01

    In recent years, sparse representation has been widely used in object recognition applications. How to learn the dictionary is a key issue to sparse representation. A popular method is to use l1 norm as the sparsity measurement of representation coefficients for dictionary learning. However, the l1 norm treats each atom in the dictionary independently, so the learned dictionary cannot well capture the multisubspaces structural information of the data. In addition, the learned subdictionary for each class usually shares some common atoms, which weakens the discriminative ability of the reconstruction error of each subdictionary. This paper presents a new dictionary learning model to improve sparse representation for image classification, which targets at learning a class-specific subdictionary for each class and a common subdictionary shared by all classes. The model is composed of a discriminative fidelity, a weighted group sparse constraint, and a subdictionary incoherence term. The discriminative fidelity encourages each class-specific subdictionary to sparsely represent the samples in the corresponding class. The weighted group sparse constraint term aims at capturing the structural information of the data. The subdictionary incoherence term is to make all subdictionaries independent as much as possible. Because the common subdictionary represents features shared by all classes, we only use the reconstruction error of each class-specific subdictionary for classification. Extensive experiments are conducted on several public image databases, and the experimental results demonstrate the power of the proposed method, compared with the state-of-the-arts.

  14. Inversion of magnetotelluric data in a sparse model domain

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian G.; Becken, Michael

    2016-08-01

    The inversion of magnetotelluric data into subsurface electrical conductivity poses an ill-posed problem. Smoothing constraints are widely employed to estimate a regularized solution. Here, we present an alternative inversion scheme that estimates a sparse representation of the model in a wavelet basis. The objective of the inversion is to determine the few non-zero wavelet coefficients which are required to fit the data. This approach falls into the class of sparsity constrained inversion schemes and minimizes the combination of the data misfit in a least-squares ℓ2 sense and of a model coefficient norm in an ℓ1 sense (ℓ2-ℓ1 minimization). The ℓ1 coefficient norm renders the solution sparse in a suitable representation such as the multiresolution wavelet basis, but does not impose explicit structural penalties on the model as it is the case for ℓ2 regularization. The presented numerical algorithm solves the mixed ℓ2-ℓ1 norm minimization problem for the nonlinear magnetotelluric inverse problem. We demonstrate the feasibility of our algorithm on synthetic 2-D MT data as well as on a real data example. We found that sparse models can be estimated by inversion and that the spatial distribution of non-vanishing coefficients indicates regions in the model which are resolved.

  15. Treatment of non-sparse cratering in planetary surface dating

    NASA Astrophysics Data System (ADS)

    Kneissl, T.; Michael, G. G.; Schmedemann, N.

    2016-10-01

    We here propose a new technique to derive crater size-frequency distributions (CSFDs) from non-sparsely cratered surfaces, by accounting for the loss of craters due to subsequent crater/ejecta coverage. This approach, which we refer to as the buffered non-sparseness correction (BNSC), relates each crater to a measurement area found by excluding regions in the study area that have been resurfaced by larger craters and their ejecta blankets. The approach includes the well-known buffered crater counting (BCC) technique in order to consider the potential identification of craters whose centers are located outside the counting area. We demonstrate the new approach at two test sites on the Moon, one on the ancient lunar highlands outside the South Pole Aitken basin and the other on the much younger surface of lunar Mare Serenitatis. As expected, the correction has a much stronger effect on ancient, densely cratered surfaces than on younger, sparsely cratered surfaces. Furthermore, these first results indicate that the shapes of CSFDs on ancient terrains are actually very similar to the shapes of CSFDs on younger terrains.

  16. Efficient, sparse biological network determination

    PubMed Central

    August, Elias; Papachristodoulou, Antonis

    2009-01-01

    Background Determining the interaction topology of biological systems is a topic that currently attracts significant research interest. Typical models for such systems take the form of differential equations that involve polynomial and rational functions. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data much harder. The use of linear dynamics and linearization techniques that have been proposed in the past can circumvent this, but the general problem of developing efficient algorithms for models that provide more accurate system descriptions remains open. Results We present a network determination algorithm that can treat model descriptions with polynomial and rational functions and which does not make use of linearization. For this purpose, we make use of the observation that biochemical networks are in general 'sparse' and minimize the 1-norm of the decision variables (sum of weighted network connections) while constraints keep the error between data and the network dynamics small. The emphasis of our methodology is on determining the interconnection topology rather than the specific reaction constants and it takes into account the necessary properties that a chemical reaction network should have – something that techniques based on linearization can not. The problem can be formulated as a Linear Program, a convex optimization problem, for which efficient algorithms are available that can treat large data sets efficiently and uncertainties in data or model parameters. Conclusion The presented methodology is able to predict with accuracy and efficiency the connectivity structure of a chemical reaction network with mass action kinetics and of a gene regulatory network from simulation data even if the dynamics of these systems are non-polynomial (rational) and uncertainties in the data are taken into account. It also produces a network structure that can explain the real experimental

  17. Cortical hierarchy governs rat claustrocortical circuit organization.

    PubMed

    White, Michael G; Cody, Patrick A; Bubser, Michael; Wang, Hui-Dong; Deutch, Ariel Y; Mathur, Brian N

    2017-04-15

    The claustrum is a telencephalic gray matter structure with various proposed functions, including sensory integration and attentional allocation. Underlying these concepts is the reciprocal connectivity of the claustrum with most, if not all, areas of the cortex. What remains to be elucidated to inform functional hypotheses further is whether a pattern exists in the strength of connectivity between a given cortical area and the claustrum. To this end, we performed a series of retrograde neuronal tract tracer injections into rat cortical areas along the cortical processing hierarchy, from primary sensory and motor to frontal cortices. We observed that the number of claustrocortical projections increased as a function of processing hierarchy; claustrum neurons projecting to primary sensory cortices were scant and restricted in distribution across the claustrum, whereas neurons projecting to the cingulate cortex were densely packed and more evenly distributed throughout the claustrum. This connectivity pattern suggests that the claustrum may preferentially subserve executive functions orchestrated by the cingulate cortex. J. Comp. Neurol. 525:1347-1362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Relative species abundance of replicator dynamics with sparse interactions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-11-01

    A theory of relative species abundance on sparsely-connected networks is presented by investigating the replicator dynamics with symmetric interactions. Sparseness of a network involves difficulty in analyzing the fixed points of the equation, and we avoid this problem by treating large self interaction u, which allows us to construct a perturbative expansion. Based on this perturbation, we find that the nature of the interactions is directly connected to the abundance distribution, and some characteristic behaviors, such as multiple peaks in the abundance distribution and all species coexistence at moderate values of u, are discovered in a wide class of the distribution of the interactions. The all species coexistence collapses at a critical value of u, u c , and this collapsing is regarded as a phase transition. To get more quantitative information, we also construct a non-perturbative theory on random graphs based on techniques of statistical mechanics. The result shows those characteristic behaviors are sustained well even for not large u. For even smaller values of u, extinct species start to appear and the abundance distribution becomes rounded and closer to a standard functional form. Another interesting finding is the non-monotonic behavior of diversity, which quantifies the number of coexisting species, when changing the ratio of mutualistic relations Δ . These results are examined by numerical simulations, which show that our theory is exact for the case without extinct species, but becomes less and less precise as the proportion of extinct species grows.

  19. Responses of Neurons in Primary and Inferior Temporal Visual Cortices to Natural Scenes

    NASA Astrophysics Data System (ADS)

    Baddeley, Roland; Abbott, L. F.; Booth, Michael C. A.; Sengpiel, Frank; Freeman, Tobe; Wakeman, Edward A.; Rolls, Edmund T.

    1997-12-01

    The primary visual cortex (V1) is the first cortical area to receive visual input, and inferior temporal (IT) areas are among the last along the ventral visual pathway. We recorded, in area V1 of anaesthetized cats and area IT of awake macaque monkeys, responses of neurons to videos of natural scenes. Responses were analysed to test various hypotheses concerning the nature of neural coding in these two regions. A variety of spike-train statistics were measured including spike-count distributions, interspike interval distributions, coefficients of variation, power spectra, Fano factors and different sparseness measures. All statistics showed non-Poisson characteristics and several revealed self-similarity of the spike trains. Spike-count distributions were approximately exponential in both visual areas for eight different videos and for counting windows ranging from 50 ms to 5 seconds. The results suggest that the neurons maximize their information carrying capacity while maintaining a fixed long-term-average firing rate, or equivalently, minimize their average firing rate for a fixed information carrying capacity.

  20. Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population

    PubMed Central

    Avants, Brian B.; Libon, David J.; Rascovsky, Katya; Boller, Ashley; McMillan, Corey T.; Massimo, Lauren; Coslett, H. Branch; Chatterjee, Anjan; Gross, Rachel G.; Grossman, Murray

    2014-01-01

    This study establishes that sparse canonical correlation analysis (SCCAN) identifies generalizable, structural MRI-derived cortical networks that relate to five distinct categories of cognition. We obtain multivariate psychometrics from the domain-specific sub-scales of the Philadelphia Brief Assessment of Cognition (PBAC). By using a training and separate testing stage, we find that PBAC-defined cognitive domains of language, visuospatial functioning, episodic memory, executive control, and social functioning correlate with unique and distributed areas of gray matter (GM). In contrast, a parallel univariate framework fails to identify, from the training data, regions that are also significant in the left-out test dataset. The cohort includes164 patients with Alzheimer’s disease, behavioral-variant frontotemporal dementia, semantic variant primary progressive aphasia, nonfluent/agrammatic primary progressive aphasia, or corticobasal syndrome. The analysis is implemented with open-source software for which we provide examples in the text. In conclusion, we show that multivariate techniques identify biologically-plausible brain regions supporting specific cognitive domains. The findings are identified in training data and confirmed in test data. PMID:24096125

  1. Sparse source configurations for asteroid tomography

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2014-04-01

    The objective of our recent research has been to develop non-invasive imaging techniques for future planetary research and mining activities involving a challenging in situ environment and tight payload limits [1]. This presentation will deal in particular with an approach in which the internal relative permittivity ∈r or the refractive index n = √ ∈r of an asteroid is to be recovered based on radio signal transmitted by a sparse set [2] of fixed or movable landers. To address important aspects of mission planning, we have analyzed different signal source configurations to find the minimal number of source positions needed for robust localization of anomalies, such as internal voids. Characteristic to this inverse problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), leading to strong refractions and reflections of the signal. Finding an appropriate problemspecific signaling arrangement is an important premission goal for successful in situ measurements. This presentation will include inversion results obtained with laboratory-recorded travel time data y of the form in which n δ denotes a perturbation of a refractive index n = n δ + nbg; gi estimates the total noise due to different error sources; (ybg)i = ∫Ci nbg ds is an entry of noiseless background data ybg; and Ci is a signal path. Also simulated time-evolution data will be covered with respect to potential u satisfying the wave equation ∈rδ2/δt2+ ōδu/δt-∆u = f, where ō is a (latent) conductivity distribution and f is a source term. Special interest will be paid to inversion robustness regarding changes of the prior model and source positioning. Among other things, our analysis suggests that strongly refractive anomalies can be detected with three or four sources independently of their positioning.

  2. Ultrastructural observation on genesis and morphology of cortical granules in Macrobrachium nipponense (Crustacea, Caridea).

    PubMed

    Zhang, Tian-Ting; Jiang, Ye-Qin; Zhou, Hong; Yang, Wan-Xi

    2010-01-01

    Cortical granules are secretory vesicles in oocytes that develop from the Golgi complex. In the freshwater shrimp, Macrobrachium nipponense, mitochondria participates in the formation of cortical granules. We investigated the structural changes of mitochondria and the distribution cortical granules in different stages of oocyte development. Transmission electron microscopy provided evidence for the involvement of mitochondria and a particular spiral lamellar organization and an electron-lucent area in internal cortical granules. The ooplasm provided material for the cortical granules in early oocyte development. We demonstrated that mitochondria play a role in coalescence and maturation of cortical granules in this species. Additionally, a concept of cortical granules regarded as a functional integration is put forward. The genesis of shrimp cortical granules exhibited a particular pathway of maturation. The outer shape and inner organization considering different taxa suggested general as well as specific features of the development of cortical granules.

  3. Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents

    PubMed Central

    Yoshimura, Natsue; Nishimoto, Atsushi; Belkacem, Abdelkader Nasreddine; Shin, Duk; Kambara, Hiroyuki; Hanakawa, Takashi; Koike, Yasuharu

    2016-01-01

    With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing. PMID:27199638

  4. Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents.

    PubMed

    Yoshimura, Natsue; Nishimoto, Atsushi; Belkacem, Abdelkader Nasreddine; Shin, Duk; Kambara, Hiroyuki; Hanakawa, Takashi; Koike, Yasuharu

    2016-01-01

    With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing.

  5. Probabilistic ODF Estimation from Reduced HARDI Data with Sparse Regularization

    PubMed Central

    Tristán-Vega, Antonio; Westin, Carl-Fredrik

    2016-01-01

    High Angular Resolution Diffusion Imaging (HARDI) demands a higher amount of data measurements compared to Diffusion Tensor Imaging (DTI), restricting its use in practice. We propose to represent the probabilistic Orientation Distribution Function (ODF) in the frame of Spherical Wavelets (SW), where it is highly sparse. From a reduced subset of measurements (nearly four times less than the standard for HARDI), we pose the estimation as an inverse problem with sparsity regularization. This allows the fast computation of a positive, unit-mass, probabilistic ODF from 14–16 samples, as we show with both synthetic diffusion signals and real HARDI data with typical parameters. PMID:21995028

  6. Universal Collaboration Strategies for Signal Detection: A Sparse Learning Approach

    NASA Astrophysics Data System (ADS)

    Khanduri, Prashant; Kailkhura, Bhavya; Thiagarajan, Jayaraman J.; Varshney, Pramod K.

    2016-10-01

    This paper considers the problem of high dimensional signal detection in a large distributed network whose nodes can collaborate with their one-hop neighboring nodes (spatial collaboration). We assume that only a small subset of nodes communicate with the Fusion Center (FC). We design optimal collaboration strategies which are universal for a class of deterministic signals. By establishing the equivalence between the collaboration strategy design problem and sparse PCA, we solve the problem efficiently and evaluate the impact of collaboration on detection performance.

  7. Finding nonoverlapping substructures of a sparse matrix

    SciTech Connect

    Pinar, Ali; Vassilevska, Virginia

    2004-08-09

    Many applications of scientific computing rely on computations on sparse matrices, thus the design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of non overlapping rectangular dense blocks in a sparse matrix, which has not been studied in the sparse matrix community. We show that the maximum non overlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm for 2 times 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation algorithms.

  8. Mechanisms of Hierarchical Cortical Maturation

    PubMed Central

    Chomiak, Taylor; Hu, Bin

    2017-01-01

    Cortical information processing is structurally and functionally organized into hierarchical pathways, with primary sensory cortical regions providing modality specific information and associative cortical regions playing a more integrative role. Historically, there has been debate as to whether primary cortical regions mature earlier than associative cortical regions, or whether both primary and associative cortical regions mature simultaneously. Identifying whether primary and associative cortical regions mature hierarchically or simultaneously will not only deepen our understanding of the mechanisms that regulate brain maturation, but it will also provide fundamental insight into aspects of adolescent behavior, learning, neurodevelopmental disorders and computational models of neural processing. This mini-review article summarizes the current evidence supporting the sequential and hierarchical nature of cortical maturation, and then proposes a new cellular model underlying this process. Finally, unresolved issues associated with hierarchical cortical maturation are also addressed. PMID:28959187

  9. Objective sea level pressure analysis for sparse data areas

    NASA Technical Reports Server (NTRS)

    Druyan, L. M.

    1972-01-01

    A computer procedure was used to analyze the pressure distribution over the North Pacific Ocean for eleven synoptic times in February, 1967. Independent knowledge of the central pressures of lows is shown to reduce the analysis errors for very sparse data coverage. The application of planned remote sensing of sea-level wind speeds is shown to make a significant contribution to the quality of the analysis especially in the high gradient mid-latitudes and for sparse coverage of conventional observations (such as over Southern Hemisphere oceans). Uniform distribution of the available observations of sea-level pressure and wind velocity yields results far superior to those derived from a random distribution. A generalization of the results indicates that the average lower limit for analysis errors is between 2 and 2.5 mb based on the perfect specification of the magnitude of the sea-level pressure gradient from a known verification analysis. A less than perfect specification will derive from wind-pressure relationships applied to satellite observed wind speeds.

  10. Parathyroid hormone treatment improves the cortical bone micro-structure by improving the distribution of type I collagen in postmenopausal women with osteoporosis

    PubMed Central

    Ascenzi, Maria-Grazia; Liao, Vivian P.; Lee, Brittany M.; Billi, Fabrizio; Zhou, Hua; Lindsay, Robert; Cosman, Felicia; Nieves, Jeri; Bilezikian, John P.; Dempster, David W.

    2014-01-01

    Although an important index, the level of bone mineral density (BMD) does not completely describe fracture risk. Another bone structural parameter, the orientation of type I collagen, is known to add to risk determination, independently of BMD, ex vivo. We investigated the Haversian system of transiliac crest biopsies from postmenopausal women before and after treatment with parathyroid hormone (PTH). We used the birefringence of circularly polarized light and its underlying collagen arrangements by confocal and electron microscopy, in conjunction with the degree of calcification by high-resolution micro-X-ray. We found that PTH treatment increased the Haversian system area by 48.28±38.78%; decreased bright birefringence from 0.45±0.02 to 0.40±0.01 (scale zero to one, p=0.0005); increased the average percent area of osteons with alternating birefringence from 48.15±10.27 to 66.33±7.73 (p=0.034), decreased non-significantly the semi-homogeneous birefringent osteons (8.36±10.63 vs. 5.41±9.13, p=0.40) and birefringent bright (4.14±8.90 vs. 2.08±3.36, p=0.10) osteons. Further, lamellar thickness significantly increased from 3.78±0.11μm to 4.47±0.14μm (p=0.0002) for bright, and from 3.32±0.12μm to 3.70±0.12μm (p=0.045) for extinct, lamellae. This increased lamellar thickness altered the distribution of birefringence and therefore the distribution of collagen orientation in the tissue. With PTH treatment, a higher percent area of osteons at initial degree of calcification was observed, relative to intermediate-low degree of calcification (57.16±3.08 vs. 32.90±3.69, p=0.04), the percentage of alternating osteons at initial stages of calcification increasing from 19.75±1.22 to 80.13±6.47, p=0.001. In conclusion, PTH treatment increases heterogeneity of collagen orientation, a starting point to study the reduction in fracture risk when PTH is used to treat osteoporosis. PMID:22161803

  11. Sparse Randomized Maximum Likelihood (SpRML) for subsurface flow model calibration and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammadreza M.; Jafarpour, Behnam

    2014-07-01

    Despite their apparent high dimensionality, spatially distributed hydraulic properties of geologic formations can often be compactly (sparsely) described in a properly designed basis. Hence, the estimation of high-dimensional subsurface flow properties from dynamic performance and monitoring data can be formulated and solved as a sparse reconstruction inverse problem. Recent advances in statistical signal processing, formalized under the compressed sensing paradigm, provide important guidelines on formulating and solving sparse inverse problems, primarily for linear models and using a deterministic framework. Given the uncertainty in describing subsurface physical properties, even after integration of the dynamic data, it is important to develop a practical sparse Bayesian inversion approach to enable uncertainty quantification. In this paper, we use sparse geologic dictionaries to compactly represent uncertain subsurface flow properties and develop a practical sparse Bayesian method for effective data integration and uncertainty quantification. The multi-Gaussian assumption that is widely used in classical probabilistic inverse theory is not appropriate for representing sparse prior models. Following the results presented by the compressed sensing paradigm, the Laplace (or double exponential) probability distribution is found to be more suitable for representing sparse parameters. However, combining Laplace priors with the frequently used Gaussian likelihood functions leads to neither a Laplace nor a Gaussian posterior distribution, which complicates the analytical characterization of the posterior. Here, we first express the form of the Maximum A-Posteriori (MAP) estimate for Laplace priors and then use the Monte-Carlo-based Randomize Maximum Likelihood (RML) method to generate approximate samples from the posterior distribution. The proposed Sparse RML (SpRML) approximate sampling approach can be used to assess the uncertainty in the calibrated model with a

  12. A novel sparse boosting method for crater detection in the high resolution planetary image

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Yang, Gang; Guo, Lei

    2015-09-01

    Impact craters distributed on planetary surface become one of the main barriers during the soft landing of planetary probes. In order to accelerate the crater detection, in this paper, we present a new sparse boosting (SparseBoost) method for automatic detection of sub-kilometer craters. The SparseBoost method integrates an improved sparse kernel density estimator (RSDE-WL1) into the Boost algorithm and the RSDE-WL1 estimator is achieved by introducing weighted l1 penalty term into the reduced set density estimator. An iterative algorithm is proposed to implement the RSDE-WL1. The SparseBoost algorithm has the advantage of fewer selected features and simpler representation of the weak classifiers compared with the Boost algorithm. Our SparseBoost based crater detection method is evaluated on a large and high resolution image of Martian surface. Experimental results demonstrate that the proposed method can achieve less computational complexity in comparison with other crater detection methods in terms of selected features.

  13. Fast wavelet based sparse approximate inverse preconditioner

    SciTech Connect

    Wan, W.L.

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  14. Associative fear learning enhances sparse network coding in primary sensory cortex

    PubMed Central

    Gdalyahu, Amos; Tring, Elaine; Polack, Pierre-Olivier; Gruver, Robin; Golshani, Peyman; Fanselow, Michael S.; Silva, Alcino J.; Trachtenberg, Joshua T.

    2012-01-01

    Summary Several models of associative learning predict that stimulus processing changes during association formation. How associative learning reconfigures neural circuits in primary sensory cortex to "learn" associative attributes of a stimulus remains unknown. Using 2-photon in-vivo calcium imaging to measure responses of networks of neurons in primary somatosensory cortex, we discovered that associative fear learning, in which whisker stimulation is paired with foot shock, enhances sparse population coding and robustness of the conditional stimulus, yet decreases total network activity. Fewer cortical neurons responded to stimulation of the trained whisker than in controls, yet their response strength was enhanced. These responses were not observed in mice exposed to a non-associative learning procedure. Our results define how the cortical representation of a sensory stimulus is shaped by associative fear learning. These changes are proposed to enhance efficient sensory processing after associative learning. PMID:22794266

  15. Automatic parcellation of longitudinal cortical surfaces

    NASA Astrophysics Data System (ADS)

    Alassaf, Manal H.; Hahn, James K.

    2015-03-01

    We present a novel automatic method to parcellate the cortical surfaces of the neonatal brain longitudinal atlas at different stages of development. A labeled brain atlas of newborn at 41 weeks gestational age (GA) is used to propagate labels of anatomical regions of interest to an unlabeled spatio-temporal atlas, which provides a dynamic model of brain development at each week between 28-44 GA weeks. First, labels from the cortical volume of the labeled newborn brain are propagated to an age-matched cortical surface from the spatio-temporal atlas. Then, labels are propagated across the cortical surfaces of each week of the spatio-temporal atlas by registering successive cortical surfaces using a novel approach and an energy optimization function. This procedure incorporates local and global, spatial and temporal information when assigning the labels to each surface. The result is a complete parcellation of 17 neonatal brain surfaces of the spatio-temporal atlas with similar points per labels distributions across weeks.

  16. A unified approach to sparse signal processing

    NASA Astrophysics Data System (ADS)

    Marvasti, Farokh; Amini, Arash; Haddadi, Farzan; Soltanolkotabi, Mahdi; Khalaj, Babak Hossein; Aldroubi, Akram; Sanei, Saeid; Chambers, Janathon

    2012-12-01

    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, component analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing, and rate of innovation. The redundancy introduced by channel coding in finite and real Galois fields is then related to over-sampling with similar reconstruction algorithms. The error locator polynomial (ELP) and iterative methods are shown to work quite effectively for both sampling and coding applications. The methods of Prony, Pisarenko, and MUltiple SIgnal Classification (MUSIC) are next shown to be targeted at analyzing signals with sparse frequency domain representations. Specifically, the relations of the approach of Prony to an annihilating filter in rate of innovation and ELP in coding are emphasized; the Pisarenko and MUSIC methods are further improvements of the Prony method under noisy environments. The iterative methods developed for sampling and coding applications are shown to be powerful tools in spectral estimation. Such narrowband spectral estimation is then related to multi-source location and direction of arrival estimation in array processing. Sparsity in unobservable source signals is also shown to facilitate source separation in sparse component analysis; the algorithms developed in this area such as linear programming and matching pursuit are also widely used in compressed sensing. Finally

  17. Sparse regularization for force identification using dictionaries

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  18. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing

    PubMed Central

    Casanova, Manuel F.

    2014-01-01

    The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer’s and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders. PMID:24531625

  19. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    PubMed

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  20. Analog system for computing sparse codes

    DOEpatents

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  1. Tensor methods for large, sparse unconstrained optimization

    SciTech Connect

    Bouaricha, A.

    1996-11-01

    Tensor methods for unconstrained optimization were first introduced by Schnabel and Chow [SIAM J. Optimization, 1 (1991), pp. 293-315], who describe these methods for small to moderate size problems. This paper extends these methods to large, sparse unconstrained optimization problems. This requires an entirely new way of solving the tensor model that makes the methods suitable for solving large, sparse optimization problems efficiently. We present test results for sets of problems where the Hessian at the minimizer is nonsingular and where it is singular. These results show that tensor methods are significantly more efficient and more reliable than standard methods based on Newton`s method.

  2. Fluctuations in percolation of sparse complex networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2017-07-01

    We study the role of fluctuations in percolation of sparse complex networks. To this end we consider two random correlated realizations of the initial damage of the nodes and we evaluate the fraction of nodes that are expected to remain in the giant component of the network in both cases or just in one case. Our framework includes a message-passing algorithm able to predict the fluctuations in a single network, and an analytic prediction of the expected fluctuations in ensembles of sparse networks. This approach is applied to real ecological and infrastructure networks and it is shown to characterize the expected fluctuations in their response to external damage.

  3. A sparse Gaussian process framework for photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  4. Participation of primary motor cortical neurons in a distributed network during maze solution: representation of spatial parameters and time-course comparison with parietal area 7a.

    PubMed

    Crowe, David A; Chafee, Matthew V; Averbeck, Bruno B; Georgopoulos, Apostolos P

    2004-09-01

    revealed that area 7a and M1 begin to encode these factors at the same time, suggesting these brain areas are part of a distributed system performing the spatial computations involved in maze solution.

  5. Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.

    PubMed

    Ding, Lei; Yuan, Han

    2013-04-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance. Copyright © 2011 Wiley Periodicals, Inc.

  6. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture

    PubMed Central

    Knight, James C.; Furber, Steve B.

    2016-01-01

    While the adult human brain has approximately 8.8 × 1010 neurons, this number is dwarfed by its 1 × 1015 synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows 4× more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously. PMID:27683540

  7. Cortical control of facial expression.

    PubMed

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system.

  8. Visualization of Cortical Dynamics

    NASA Astrophysics Data System (ADS)

    Grinvald, Amiram

    2003-03-01

    Recent progress in studies of cortical dynamics will be reviewed including the combination of real time optical imaging based on voltage sensitive dyes, single and multi- unit recordings, LFP, intracellular recordings and microstimulation. To image the flow of neuronal activity from one cortical site to the next, in real time, we have used optical imaging based on newly designed voltage sensitive dyes and a Fuji 128x 128 fast camera which we modified. A factor of 20-40 fold improvement in the signal to noise ratio was obtained with the new dye during in vivo imaging experiments. This improvements has facilitates the exploration of cortical dynamics without signal averaging in the millisecond time domain. We confirmed that the voltage sensitive dye signal indeed reflects membrane potential changes in populations of neurons by showing that the time course of the intracellular activity recorded intracellularly from a single neuron was highly correlated in many cases with the optical signal from a small patch of cortex recorded nearby. We showed that the firing of single cortical neurons is not a random process but occurs when the on-going pattern of million of neurons is similar to the functional architecture map which correspond to the tuning properties of that neuron. Chronic optical imaging, combined with electrical recordings and microstimulation, over a long period of times of more than a year, was successfully applied also to the study of higher brain functions in the behaving macaque monkey.

  9. Data traffic reduction schemes for sparse Cholesky factorizations

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1988-01-01

    Load distribution schemes are presented which minimize the total data traffic in the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems with local and shared memory. The total data traffic in factoring an n x n sparse, symmetric, positive definite matrix representing an n-vertex regular 2-D grid graph using n (sup alpha), alpha is equal to or less than 1, processors are shown to be O(n(sup 1 + alpha/2)). It is O(n(sup 3/2)), when n (sup alpha), alpha is equal to or greater than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal. The schemes allow efficient use of up to O(n) processors before the total data traffic reaches the maximum value of O(n(sup 3/2)). The partitioning employed within the scheme, allows a better utilization of the data accessed from shared memory than those of previously published methods.

  10. Second SIAM conference on sparse matrices: Abstracts. Final technical report

    SciTech Connect

    1996-12-31

    This report contains abstracts on the following topics: invited and long presentations (IP1 & LP1); sparse matrix reordering & graph theory I; sparse matrix tools & environments I; eigenvalue computations I; iterative methods & acceleration techniques I; applications I; parallel algorithms I; sparse matrix reordering & graphy theory II; sparse matrix tool & environments II; least squares & optimization I; iterative methods & acceleration techniques II; applications II; eigenvalue computations II; least squares & optimization II; parallel algorithms II; sparse direct methods; iterative methods & acceleration techniques III; eigenvalue computations III; and sparse matrix reordering & graph theory III.

  11. Learning Stable Multilevel Dictionaries for Sparse Representations.

    PubMed

    Thiagarajan, Jayaraman J; Ramamurthy, Karthikeyan Natesan; Spanias, Andreas

    2015-09-01

    Sparse representations using learned dictionaries are being increasingly used with success in several data processing and machine learning applications. The increasing need for learning sparse models in large-scale applications motivates the development of efficient, robust, and provably good dictionary learning algorithms. Algorithmic stability and generalizability are desirable characteristics for dictionary learning algorithms that aim to build global dictionaries, which can efficiently model any test data similar to the training samples. In this paper, we propose an algorithm to learn dictionaries for sparse representations from large scale data, and prove that the proposed learning algorithm is stable and generalizable asymptotically. The algorithm employs a 1-D subspace clustering procedure, the K-hyperline clustering, to learn a hierarchical dictionary with multiple levels. We also propose an information-theoretic scheme to estimate the number of atoms needed in each level of learning and develop an ensemble approach to learn robust dictionaries. Using the proposed dictionaries, the sparse code for novel test data can be computed using a low-complexity pursuit procedure. We demonstrate the stability and generalization characteristics of the proposed algorithm using simulations. We also evaluate the utility of the multilevel dictionaries in compressed recovery and subspace learning applications.

  12. Global Astrometric Solutions with Sparse Matrix Techniques

    DTIC Science & Technology

    2000-03-01

    Global Astrometric Solutions with Sparse Matrix Techniques Richard L. Branham, Jr. Instituto Argentino de Nivologia y Glaciologia (IANIGLA), C.C...Physikalishen Teorien der hoheren Geodasie, 1 Teil, Leipzig: Teubner. Knuth, D., 1973, The Art of Computer Programming, Vol. 3, Sorting and Search- ing

  13. New methods for sampling sparse populations

    Treesearch

    Anna Ringvall

    2007-01-01

    To improve surveys of sparse objects, methods that use auxiliary information have been suggested. Guided transect sampling uses prior information, e.g., from aerial photographs, for the layout of survey strips. Instead of being laid out straight, the strips will wind between potentially more interesting areas. 3P sampling (probability proportional to prediction) uses...

  14. Spline curve matching with sparse knot sets

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2004-01-01

    This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of thin-plate-spline mapping between sparse knot points and normalized local...

  15. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.

  16. Structured Sparse Method for Hyperspectral Unmixing

    NASA Astrophysics Data System (ADS)

    Zhu, Feiyun; Wang, Ying; Xiang, Shiming; Fan, Bin; Pan, Chunhong

    2014-02-01

    Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method based on the following two aspects. First, we incorporate a graph Laplacian to encode the manifold structures embedded in the hyperspectral data space. In this way, the highly similar neighboring pixels can be grouped together. Second, the lasso penalty is employed in SS-NMF for the fact that pixels in the same manifold structure are sparsely mixed by a common set of relevant bases. These two factors act as a new structured sparse constraint. With this constraint, our method can learn a compact space, where highly similar pixels are grouped to share correlated sparse representations. Experiments on real hyperspectral data sets with different noise levels demonstrate that our method outperforms the state-of-the-art methods significantly.

  17. Sparse matrix orderings for factorized inverse preconditioners

    SciTech Connect

    Benzi, M.; Tuama, M.

    1998-09-01

    The effect of reorderings on the performance of factorized sparse approximate inverse preconditioners is considered. It is shown that certain reorderings can be very beneficial both in the preconditioner construction phase and in terms of the rate of convergence of the preconditioned iteration.

  18. SAR Image Despeckling Via Structural Sparse Representation

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Li, Shutao; Fang, Leyuan; Benediktsson, Jón Atli

    2016-12-01

    A novel synthetic aperture radar (SAR) image despeckling method based on structural sparse representation is introduced. The proposed method utilizes the fact that different regions in SAR images correspond to varying terrain reflectivity. Therefore, SAR images can be split into a heterogeneous class (with a varied terrain reflectivity) and a homogeneous class (with a constant terrain reflectivity). In the proposed method, different sparse representation based despeckling schemes are designed by combining the different region characteristics in SAR images. For heterogeneous regions with rich structure and texture information, structural dictionaries are learned to appropriately represent varied structural characteristics. Specifically, each patch in these regions is sparsely coded with the best fitted structural dictionary, thus good structure preservation can be obtained. For homogenous regions without rich structure and texture information, the highly redundant photometric self-similarity is exploited to suppress speckle noise without introducing artifacts. That is achieved by firstly learning the sub-dictionary, then simultaneously sparsely coding for each group of photometrically similar image patches. Visual and objective experimental results demonstrate the superiority of the proposed method over the-state-of-the-art methods.

  19. Maxdenominator Reweighted Sparse Representation for Tumor Classification

    PubMed Central

    Li, Weibiao; Liao, Bo; Zhu, Wen; Chen, Min; Peng, Li; Wei, Xiaohui; Gu, Changlong; Li, Keqin

    2017-01-01

    The classification of tumors is crucial for the proper treatment of cancer. Sparse representation-based classifier (SRC) exhibits good classification performance and has been successfully used to classify tumors using gene expression profile data. In this study, we propose a three-step maxdenominator reweighted sparse representation classification (MRSRC) method to classify tumors. First, we extract a set of metagenes from the training samples. These metagenes can capture the structures inherent to the data and are more effective for classification than the original gene expression data. Second, we use a reweighted regularization method to obtain the sparse representation coefficients. Reweighted regularization can enhance sparsity and obtain better sparse representation coefficients. Third, we classify the data by utilizing a maxdenominator residual error function. Maxdenominator strategy can reduce the residual error and improve the accuracy of the final classification. Extensive experiments using publicly available gene expression profile data sets show that the performance of MRSRC is comparable with or better than many existing representative methods. PMID:28393883

  20. Automatic anatomy recognition of sparse objects

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Udupa, Jayaram K.; Odhner, Dewey; Wang, Huiqian; Tong, Yubing; Torigian, Drew A.

    2015-03-01

    A general body-wide automatic anatomy recognition (AAR) methodology was proposed in our previous work based on hierarchical fuzzy models of multitudes of objects which was not tied to any specific organ system, body region, or image modality. That work revealed the challenges encountered in modeling, recognizing, and delineating sparse objects throughout the body (compared to their non-sparse counterparts) if the models are based on the object's exact geometric representations. The challenges stem mainly from the variation in sparse objects in their shape, topology, geographic layout, and relationship to other objects. That led to the idea of modeling sparse objects not from the precise geometric representations of their samples but by using a properly designed optimal super form. This paper presents the underlying improved methodology which includes 5 steps: (a) Collecting image data from a specific population group G and body region Β and delineating in these images the objects in Β to be modeled; (b) Building a super form, S-form, for each object O in Β; (c) Refining the S-form of O to construct an optimal (minimal) super form, S*-form, which constitutes the (fuzzy) model of O; (d) Recognizing objects in Β using the S*-form; (e) Defining confounding and background objects in each S*-form for each object and performing optimal delineation. Our evaluations based on 50 3D computed tomography (CT) image sets in the thorax on four sparse objects indicate that substantially improved performance (FPVF~2%, FNVF~10%, and success where the previous approach failed) can be achieved using the new approach.

  1. Merlin/ERM proteins establish cortical asymmetry and centrosome position

    PubMed Central

    Hebert, Alan M.; DuBoff, Brian; Casaletto, Jessica B.; Gladden, Andrew B.; McClatchey, Andrea I.

    2012-01-01

    The ability to generate asymmetry at the cell cortex underlies cell polarization and asymmetric cell division. Here we demonstrate a novel role for the tumor suppressor Merlin and closely related ERM proteins (Ezrin, Radixin, and Moesin) in generating cortical asymmetry in the absence of external cues. Our data reveal that Merlin functions to restrict the cortical distribution of the actin regulator Ezrin, which in turn positions the interphase centrosome in single epithelial cells and three-dimensional organotypic cultures. In the absence of Merlin, ectopic cortical Ezrin yields mispositioned centrosomes, misoriented spindles, and aberrant epithelial architecture. Furthermore, in tumor cells with centrosome amplification, the failure to restrict cortical Ezrin abolishes centrosome clustering, yielding multipolar mitoses. These data uncover fundamental roles for Merlin/ERM proteins in spatiotemporally organizing the cell cortex and suggest that Merlin's role in restricting cortical Ezrin may contribute to tumorigenesis by disrupting cell polarity, spindle orientation, and, potentially, genome stability. PMID:23249734

  2. Cortical spreading depression-induced preconditioning in the brain

    PubMed Central

    Shen, Ping-ping; Hou, Shuai; Ma, Di; Zhao, Ming-ming; Zhu, Ming-qin; Zhang, Jing-dian; Feng, Liang-shu; Cui, Li; Feng, Jia-chun

    2016-01-01

    Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. However, the underlying mechanism for this phenomenon remains relatively unclear. To date, numerous issues exist regarding the experimental model used to precondition the brain with cortical spreading depression, such as the administration route, concentration of potassium chloride, induction time, duration of the protection provided by the treatment, the regional distribution of the protective effect, and the types of neurons responsible for the greater tolerance. In this review, we focus on the mechanisms underlying cortical spreading depression-induced tolerance in the brain, considering excitatory neurotransmission and metabolism, nitric oxide, genomic reprogramming, inflammation, neurotropic factors, and cellular stress response. Specifically, we clarify the procedures and detailed information regarding cortical spreading depression-induced preconditioning and build a foundation for more comprehensive investigations in the field of neural regeneration and clinical application in the future. PMID:28123433

  3. Lineage-specific laminar organization of cortical GABAergic interneurons.

    PubMed

    Ciceri, Gabriele; Dehorter, Nathalie; Sols, Ignasi; Huang, Z Josh; Maravall, Miguel; Marín, Oscar

    2013-09-01

    In the cerebral cortex, pyramidal cells and interneurons are generated in distant germinal zones, and so the mechanisms that control their precise assembly into specific microcircuits remain an enigma. Here we report that cortical interneurons labeled at the clonal level do not distribute randomly but rather have a strong tendency to cluster in the mouse neocortex. This behavior is common to different classes of interneurons, independently of their origin. Interneuron clusters are typically contained within one or two adjacent cortical layers, are largely formed by isochronically generated neurons and populate specific layers, as revealed by unbiased hierarchical clustering methods. Our results suggest that different progenitor cells give rise to interneurons populating infra- and supragranular cortical layers, which challenges current views of cortical neurogenesis. Thus, specific lineages of cortical interneurons seem to be produced to primarily mirror the laminar structure of the cerebral cortex, rather than its columnar organization.

  4. Sparse Poisson noisy image deblurring.

    PubMed

    Carlavan, Mikael; Blanc-Féraud, Laure

    2012-04-01

    Deblurring noisy Poisson images has recently been a subject of an increasing amount of works in many areas such as astronomy and biological imaging. In this paper, we focus on confocal microscopy, which is a very popular technique for 3-D imaging of biological living specimens that gives images with a very good resolution (several hundreds of nanometers), although degraded by both blur and Poisson noise. Deconvolution methods have been proposed to reduce these degradations, and in this paper, we focus on techniques that promote the introduction of an explicit prior on the solution. One difficulty of these techniques is to set the value of the parameter, which weights the tradeoff between the data term and the regularizing term. Only few works have been devoted to the research of an automatic selection of this regularizing parameter when considering Poisson noise; therefore, it is often set manually such that it gives the best visual results. We present here two recent methods to estimate this regularizing parameter, and we first propose an improvement of these estimators, which takes advantage of confocal images. Following these estimators, we secondly propose to express the problem of the deconvolution of Poisson noisy images as the minimization of a new constrained problem. The proposed constrained formulation is well suited to this application domain since it is directly expressed using the antilog likelihood of the Poisson distribution and therefore does not require any approximation. We show how to solve the unconstrained and constrained problems using the recent alternating-direction technique, and we present results on synthetic and real data using well-known priors, such as total variation and wavelet transforms. Among these wavelet transforms, we specially focus on the dual-tree complex wavelet transform and on the dictionary composed of curvelets and an undecimated wavelet transform.

  5. Learning-Based Topological Correction for Infant Cortical Surfaces

    PubMed Central

    Hao, Shijie; Li, Gang; Wang, Li; Meng, Yu

    2017-01-01

    Reconstruction of topologically correct and accurate cortical surfaces from infant MR images is of great importance in neuroimaging mapping of early brain development. However, due to rapid growth and ongoing myelination, infant MR images exhibit extremely low tissue contrast and dynamic appearance patterns, thus leading to much more topological errors (holes and handles) in the cortical surfaces derived from tissue segmentation results, in comparison to adult MR images which typically have good tissue contrast. Existing methods for topological correction either rely on the minimal correction criteria, or ad hoc rules based on image intensity priori, thus often resulting in erroneous correction and large anatomical errors in reconstructed infant cortical surfaces. To address these issues, we propose to correct topological errors by learning information from the anatomical references, i.e., manually corrected images. Specifically, in our method, we first locate candidate voxels of topologically defected regions by using a topology-preserving level set method. Then, by leveraging rich information of the corresponding patches from reference images, we build region-specific dictionaries from the anatomical references and infer the correct labels of candidate voxels using sparse representation. Notably, we further integrate these two steps into an iterative framework to enable gradual correction of large topological errors, which are frequently occurred in infant images and cannot be completely corrected using one-shot sparse representation. Extensive experiments on infant cortical surfaces demonstrate that our method not only effectively corrects the topological defects, but also leads to better anatomical consistency, compared to the state-of-the-art methods.

  6. Stochastic Computations in Cortical Microcircuit Models

    PubMed Central

    Maass, Wolfgang

    2013-01-01

    Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving. PMID:24244126

  7. Analysing Local Sparseness in the Macaque Brain Network

    PubMed Central

    Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.

    2015-01-01

    Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077

  8. Analysing Local Sparseness in the Macaque Brain Network.

    PubMed

    Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A

    2015-01-01

    Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain's function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as "relays" for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways.

  9. A Comparison of Methods for Ocean Reconstruction from Sparse Observations

    NASA Astrophysics Data System (ADS)

    Streletz, G. J.; Kronenberger, M.; Weber, C.; Gebbie, G.; Hagen, H.; Garth, C.; Hamann, B.; Kreylos, O.; Kellogg, L. H.; Spero, H. J.

    2014-12-01

    We present a comparison of two methods for developing reconstructions of oceanic scalar property fields from sparse scattered observations. Observed data from deep sea core samples provide valuable information regarding the properties of oceans in the past. However, because the locations of sample sites are distributed on the ocean floor in a sparse and irregular manner, developing a global ocean reconstruction is a difficult task. Our methods include a flow-based and a moving least squares -based approximation method. The flow-based method augments the process of interpolating or approximating scattered scalar data by incorporating known flow information. The scheme exploits this additional knowledge to define a non-Euclidean distance measure between points in the spatial domain. This distance measure is used to create a reconstruction of the desired scalar field on the spatial domain. The resulting reconstruction thus incorporates information from both the scattered samples and the known flow field. The second method does not assume a known flow field, but rather works solely with the observed scattered samples. It is based on a modification of the moving least squares approach, a weighted least squares approximation method that blends local approximations into a global result. The modifications target the selection of data used for these local approximations and the construction of the weighting function. The definition of distance used in the weighting function is crucial for this method, so we use a machine learning approach to determine a set of near-optimal parameters for the weighting. We have implemented both of the reconstruction methods and have tested them using several sparse oceanographic datasets. Based upon these studies, we discuss the advantages and disadvantages of each method and suggest possible ways to combine aspects of both methods in order to achieve an overall high-quality reconstruction.

  10. Deploying temporary networks for upscaling of sparse network stations

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  11. Increased temporolimbic cortical folding complexity in temporal lobe epilepsy

    PubMed Central

    Voets, N.L.; Bernhardt, B.C.; Kim, H.; Yoon, U.

    2011-01-01

    Objective: Converging evidence suggests that abnormalities of brain development may play a role in the pathogenesis of temporal lobe epilepsy (TLE). As sulco-gyral patterns are thought to be a footprint of cortical development, we set out to quantitatively map folding complexity across the neocortex in TLE. Additionally, we tested whether there was a relationship between cortical complexity and features of hippocampal maldevelopment, commonly referred to as malrotation. Methods: To quantify folding complexity, we obtained whole-brain surface-based measures of absolute mean cortical curvature from MRI scans acquired in 43 drug-resistant patients with TLE with unilateral hippocampal atrophy, and 40 age- and sex-matched healthy controls. In patients, we correlated changes in cortical curvature with 3-dimensional measures of hippocampal positioning. Results: We found increased folding complexity in the temporolimbic cortices encompassing parahippocampal, temporopolar, insular, and fronto-opercular regions. Increased complexity was observed ipsilateral to the seizure focus in patients with left TLE (LTLE), whereas these changes were bilateral in patients with right TLE (RTLE). In both TLE groups, increased temporolimbic complexity was associated with increased hippocampal malrotation. We found tendencies for increased complexity in bilateral posterior temporal cortices in LTLE and contralateral parahippocampal cortices in RTLE to be predictive of unfavorable seizure outcome after surgery. Conclusion: The anatomic distribution of increased cortical complexity overlapping with limbic seizure networks in TLE and its association with hippocampal maldevelopment further imply that neurodevelopmental factors may play a role in the epileptogenic process of TLE. PMID:21148116

  12. Margin based ontology sparse vector learning algorithm and applied in biology science.

    PubMed

    Gao, Wei; Qudair Baig, Abdul; Ali, Haidar; Sajjad, Wasim; Reza Farahani, Mohammad

    2017-01-01

    In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.

  13. Effects of partitioning and scheduling sparse matrix factorization on communication and load balance

    NASA Technical Reports Server (NTRS)

    Venugopal, Sesh; Naik, Vijay K.

    1991-01-01

    A block based, automatic partitioning and scheduling methodology is presented for sparse matrix factorization on distributed memory systems. Using experimental results, this technique is analyzed for communication and load imbalance overhead. To study the performance effects, these overheads were compared with those obtained from a straightforward 'wrap mapped' column assignment scheme. All experimental results were obtained using test sparse matrices from the Harwell-Boeing data set. The results show that there is a communication and load balance tradeoff. The block based method results in lower communication cost whereas the wrap mapped scheme gives better load balance.

  14. Purely Cortical Anaplastic Ependymoma

    PubMed Central

    Romero, Flávio Ramalho; Zanini, Marco Antônio; Ducati, Luis Gustavo; Vital, Roberto Bezerra; de Lima Neto, Newton Moreira; Gabarra, Roberto Colichio

    2012-01-01

    Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma. PMID:23119204

  15. Subject Specific Sparse Dictionary Learning for Atlas based Brain MRI Segmentation

    PubMed Central

    Roy, Snehashis; Carass, Aaron; Prince, Jerry L.; Pham, Dzung L.

    2014-01-01

    Quantitative measurements from segmentations of soft tissues from magnetic resonance images (MRI) of human brains provide important biomarkers for normal aging, as well as disease progression. In this paper, we propose a patch-based tissue classification method from MR images using sparse dictionary learning from an atlas. Unlike most atlas-based classification methods, deformable registration from the atlas to the subject is not required. An “atlas” consists of an MR image, its tissue probabilities, and the hard segmentation. The “subject” consists of the MR image and the corresponding affine registered atlas probabilities (or priors). A subject specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches. The same sparse combination is applied to the segmentation patches of the atlas to generate tissue memberships of the subject. The novel combination of prior probabilities in the example patches enables us to distinguish tissues having similar intensities but having different spatial location. We show that our method outperforms two state-of-the-art whole brain tissue segmentation methods. We experimented on 12 subjects having manual tissue delineations, obtaining mean Dice coefficients of 0:91 and 0:87 for cortical gray matter and cerebral white matter, respectively. In addition, experiments on subjects with ventriculomegaly shows significantly better segmentation using our approach than the competing methods. PMID:25383394

  16. Subject Specific Sparse Dictionary Learning for Atlas based Brain MRI Segmentation.

    PubMed

    Roy, Snehashis; Carass, Aaron; Prince, Jerry L; Pham, Dzung L

    2014-01-01

    Quantitative measurements from segmentations of soft tissues from magnetic resonance images (MRI) of human brains provide important biomarkers for normal aging, as well as disease progression. In this paper, we propose a patch-based tissue classification method from MR images using sparse dictionary learning from an atlas. Unlike most atlas-based classification methods, deformable registration from the atlas to the subject is not required. An "atlas" consists of an MR image, its tissue probabilities, and the hard segmentation. The "subject" consists of the MR image and the corresponding affine registered atlas probabilities (or priors). A subject specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches. The same sparse combination is applied to the segmentation patches of the atlas to generate tissue memberships of the subject. The novel combination of prior probabilities in the example patches enables us to distinguish tissues having similar intensities but having different spatial location. We show that our method outperforms two state-of-the-art whole brain tissue segmentation methods. We experimented on 12 subjects having manual tissue delineations, obtaining mean Dice coefficients of 0:91 and 0:87 for cortical gray matter and cerebral white matter, respectively. In addition, experiments on subjects with ventriculomegaly shows significantly better segmentation using our approach than the competing methods.

  17. Balanced increases in selectivity and tolerance produce constant sparseness along the ventral visual stream

    PubMed Central

    Rust, Nicole C.; DiCarlo, James J.

    2012-01-01

    While popular accounts suggest that neurons along the ventral visual processing stream become increasingly selective for particular objects, this appears at odds with the fact that inferior temporal cortical (IT) neurons are broadly tuned. To explore this apparent contradiction, we compared processing in two ventral stream stages (V4 and IT) in the rhesus macaque monkey. We confirmed that IT neurons are indeed more selective for conjunctions of visual features than V4 neurons, and that this increase in feature conjunction selectivity is accompanied by an increase in tolerance (“invariance”) to identity-preserving transformations (e.g. shifting, scaling) of those features. We report here that V4 and IT neurons are, on average, tightly matched in their tuning breadth for natural images (“sparseness”), and that the average V4 or IT neuron will produce a robust firing rate response (over 50% of its peak observed firing rate) to ~10% of all natural images. We also observed that sparseness was positively correlated with conjunction selectivity and negatively correlated with tolerance within both V4 and IT, consistent with selectivity-building and invariance-building computations that offset one another to produce sparseness. Our results imply that the conjunction-selectivity-building and invariance-building computations necessary to support object recognition are implemented in a balanced fashion to maintain sparseness at each stage of processing. PMID:22836252

  18. [Posterior cortical atrophy].

    PubMed

    Solyga, Volker Moræus; Western, Elin; Solheim, Hanne; Hassel, Bjørnar; Kerty, Emilia

    2015-06-02

    Posterior cortical atrophy is a neurodegenerative condition with atrophy of posterior parts of the cerebral cortex, including the visual cortex and parts of the parietal and temporal cortices. It presents early, in the 50s or 60s, with nonspecific visual disturbances that are often misinterpreted as ophthalmological, which can delay the diagnosis. The purpose of this article is to present current knowledge about symptoms, diagnostics and treatment of this condition. The review is based on a selection of relevant articles in PubMed and on the authors' own experience with the patient group. Posterior cortical atrophy causes gradually increasing impairment in reading, distance judgement, and the ability to perceive complex images. Examination of higher visual functions, neuropsychological testing, and neuroimaging contribute to diagnosis. In the early stages, patients do not have problems with memory or insight, but cognitive impairment and dementia can develop. It is unclear whether the condition is a variant of Alzheimer's disease, or whether it is a separate disease entity. There is no established treatment, but practical measures such as the aid of social care workers, telephones with large keypads, computers with voice recognition software and audiobooks can be useful. Currently available treatment has very limited effect on the disease itself. Nevertheless it is important to identify and diagnose the condition in its early stages in order to be able to offer patients practical assistance in their daily lives.

  19. Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J; Lehmann, Manja; Schott, Jonathan M; Rabinovici, Gil D; Rossor, Martin N; Fox, Nick C

    2013-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome that is characterized by a progressive decline in visuospatial, visuoperceptual, literacy and praxic skills. The progressive neurodegeneration affecting parietal, occipital and occipito-temporal cortices which underlies PCA is attributable to Alzheimer's disease (AD) in the majority of patients. However, alternative underlying aetiologies including Dementia with Lewy Bodies (DLB), corticobasal degeneration (CBD) and prion disease have also been identified, and not all PCA patients have atrophy on clinical imaging. This heterogeneity has led to diagnostic and terminological inconsistencies, caused difficulty comparing studies from different centres, and limited the generalizability of clinical trials and investigations of factors driving phenotypic variability. Significant challenges remain in identifying the factors associated with both the selective vulnerability of posterior cortical regions and the young age of onset seen in PCA. Greater awareness of the syndrome and agreement over the correspondence between syndrome-and disease-level classifications are required in order to improve diagnostic accuracy, research study design and clinical management. PMID:22265212

  20. Adult Visual Cortical Plasticity

    PubMed Central

    Gilbert, Charles D.; Li, Wu

    2012-01-01

    The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310

  1. Bayesian modeling of temporal dependence in large sparse contingency tables

    PubMed Central

    Kunihama, Tsuyoshi; Dunson, David B.

    2013-01-01

    In many applications, it is of interest to study trends over time in relationships among categorical variables, such as age group, ethnicity, religious affiliation, political party and preference for particular policies. At each time point, a sample of individuals provide responses to a set of questions, with different individuals sampled at each time. In such settings, there tends to be abundant missing data and the variables being measured may change over time. At each time point, one obtains a large sparse contingency table, with the number of cells often much larger than the number of individuals being surveyed. To borrow information across time in modeling large sparse contingency tables, we propose a Bayesian autoregressive tensor factorization approach. The proposed model relies on a probabilistic Parafac factorization of the joint pmf characterizing the categorical data distribution at each time point, with autocorrelation included across times. Efficient computational methods are developed relying on MCMC. The methods are evaluated through simulation examples and applied to social survey data. PMID:24482548

  2. Threshold partitioning of sparse matrices and applications to Markov chains

    SciTech Connect

    Choi, Hwajeong; Szyld, D.B.

    1996-12-31

    It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.

  3. Music emotion detection using hierarchical sparse kernel machines.

    PubMed

    Chin, Yu-Hao; Lin, Chang-Hong; Siahaan, Ernestasia; Wang, Jia-Ching

    2014-01-01

    For music emotion detection, this paper presents a music emotion verification system based on hierarchical sparse kernel machines. With the proposed system, we intend to verify if a music clip possesses happiness emotion or not. There are two levels in the hierarchical sparse kernel machines. In the first level, a set of acoustical features are extracted, and principle component analysis (PCA) is implemented to reduce the dimension. The acoustical features are utilized to generate the first-level decision vector, which is a vector with each element being a significant value of an emotion. The significant values of eight main emotional classes are utilized in this paper. To calculate the significant value of an emotion, we construct its 2-class SVM with calm emotion as the global (non-target) side of the SVM. The probability distributions of the adopted acoustical features are calculated and the probability product kernel is applied in the first-level SVMs to obtain first-level decision vector feature. In the second level of the hierarchical system, we merely construct a 2-class relevance vector machine (RVM) with happiness as the target side and other emotions as the background side of the RVM. The first-level decision vector is used as the feature with conventional radial basis function kernel. The happiness verification threshold is built on the probability value. In the experimental results, the detection error tradeoff (DET) curve shows that the proposed system has a good performance on verifying if a music clip reveals happiness emotion.

  4. Fault feature extraction of rolling element bearings using sparse representation

    NASA Astrophysics Data System (ADS)

    He, Guolin; Ding, Kang; Lin, Huibin

    2016-03-01

    Influenced by factors such as speed fluctuation, rolling element sliding and periodical variation of load distribution and impact force on the measuring direction of sensor, the impulse response signals caused by defective rolling bearing are non-stationary, and the amplitudes of the impulse may even drop to zero when the fault is out of load zone. The non-stationary characteristic and impulse missing phenomenon reduce the effectiveness of the commonly used demodulation method on rolling element bearing fault diagnosis. Based on sparse representation theories, a new approach for fault diagnosis of rolling element bearing is proposed. The over-complete dictionary is constructed by the unit impulse response function of damped second-order system, whose natural frequencies and relative damping ratios are directly identified from the fault signal by correlation filtering method. It leads to a high similarity between atoms and defect induced impulse, and also a sharply reduction of the redundancy of the dictionary. To improve the matching accuracy and calculation speed of sparse coefficient solving, the fault signal is divided into segments and the matching pursuit algorithm is carried out by segments. After splicing together all the reconstructed signals, the fault feature is extracted successfully. The simulation and experimental results show that the proposed method is effective for the fault diagnosis of rolling element bearing in large rolling element sliding and low signal to noise ratio circumstances.

  5. Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification

    NASA Astrophysics Data System (ADS)

    Ozer, Ekin; Feng, Maria Q.

    2016-08-01

    Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.

  6. High-performance parallel sparse-direct triangular solves (Invited)

    NASA Astrophysics Data System (ADS)

    Poulson, J.; Ying, L.

    2013-12-01

    Geophysical inverse problems are increasingly posed in the frequency domain in a manner which requires solving many challenging heterogeneous 3D Helmholtz or linear elastic wave equations at each iteration. One effective means of solving such problems, at least when there is no large-scale internal resonance, is to use moving-PML "sweeping preconditioners". Each application of the sweeping preconditioner involves performing many modest-sized sparse-direct triangular solves -- unfortunately, one at a time. While P. et al. have shown that, with a careful implementation of a distributed sparse-direct solver [1,2], challenging 3D problems approaching a billion degrees of freedom can be solved in a few minutes using less than 10,000 cores, this talk discusses how to leverage the existence of many right-hand sides in order to increase the performance of the preconditioner applications by orders of magnitude. [1] http://github.com/poulson/Clique [2] http://github.com/poulson/PSP

  7. A sparse digital signal model for ultrasonic nondestructive evaluation of layered materials.

    PubMed

    Bochud, N; Gomez, A M; Rus, G; Peinado, A M

    2015-09-01

    Signal modeling has been proven to be an useful tool to characterize damaged materials under ultrasonic nondestructive evaluation (NDE). In this paper, we introduce a novel digital signal model for ultrasonic NDE of multilayered materials. This model borrows concepts from lattice filter theory, and bridges them to the physics involved in the wave-material interactions. In particular, the proposed theoretical framework shows that any multilayered material can be characterized by a transfer function with sparse coefficients. The filter coefficients are linked to the physical properties of the material and are analytically obtained from them, whereas a sparse distribution naturally arises and does not rely on heuristic approaches. The developed model is first validated with experimental measurements obtained from multilayered media consisting of homogeneous solids. Then, the sparse structure of the obtained digital filter is exploited through a model-based inverse problem for damage identification in a carbon fiber-reinforced polymer (CFRP) plate.

  8. Fingerprint Compression Based on Sparse Representation.

    PubMed

    Shao, Guangqi; Wu, Yanping; A, Yong; Liu, Xiao; Guo, Tiande

    2014-02-01

    A new fingerprint compression algorithm based on sparse representation is introduced. Obtaining an overcomplete dictionary from a set of fingerprint patches allows us to represent them as a sparse linear combination of dictionary atoms. In the algorithm, we first construct a dictionary for predefined fingerprint image patches. For a new given fingerprint images, represent its patches according to the dictionary by computing l(0)-minimization and then quantize and encode the representation. In this paper, we consider the effect of various factors on compression results. Three groups of fingerprint images are tested. The experiments demonstrate that our algorithm is efficient compared with several competing compression techniques (JPEG, JPEG 2000, and WSQ), especially at high compression ratios. The experiments also illustrate that the proposed algorithm is robust to extract minutiae.

  9. Sparse representation for color image restoration.

    PubMed

    Mairal, Julien; Elad, Michael; Sapiro, Guillermo

    2008-01-01

    Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The K-SVD has been recently proposed for this task and shown to perform very well for various grayscale image processing tasks. In this paper, we address the problem of learning dictionaries for color images and extend the K-SVD-based grayscale image denoising algorithm that appears in. This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to state-of-the-art results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper.

  10. Solving large sparse eigenvalue problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef

    1988-01-01

    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.

  11. Compressed imaging by sparse random convolution.

    PubMed

    Marcos, Diego; Lasser, Theo; López, Antonio; Bourquard, Aurélien

    2016-01-25

    The theory of compressed sensing (CS) shows that signals can be acquired at sub-Nyquist rates if they are sufficiently sparse or compressible. Since many images bear this property, several acquisition models have been proposed for optical CS. An interesting approach is random convolution (RC). In contrast with single-pixel CS approaches, RC allows for the parallel capture of visual information on a sensor array as in conventional imaging approaches. Unfortunately, the RC strategy is difficult to implement as is in practical settings due to important contrast-to-noise-ratio (CNR) limitations. In this paper, we introduce a modified RC model circumventing such difficulties by considering measurement matrices involving sparse non-negative entries. We then implement this model based on a slightly modified microscopy setup using incoherent light. Our experiments demonstrate the suitability of this approach for dealing with distinct CS scenarii, including 1-bit CS.

  12. Feature selection using sparse Bayesian inference

    NASA Astrophysics Data System (ADS)

    Brandes, T. Scott; Baxter, James R.; Woodworth, Jonathan

    2014-06-01

    A process for selecting a sparse subset of features that maximize discrimination between target classes is described in a Bayesian framework. Demonstrated on high range resolution radar (HRR) signature data, this has the effect of selecting the most informative range bins for a classification task. The sparse Bayesian classifier (SBC) model is directly compared against Fisher's linear discriminant analysis (LDA), showing a clear performance gain with the Bayesian framework using HRRs from the publicly available MSTAR data set. The discriminative power of the selected features from the SBC is shown to be particularly dominant over LDA when only a few features are selected or when there is a shift in training and testing data sets, as demonstrated by training on a specific target type and testing on a slightly different target type.

  13. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  14. Sparse model selection via integral terms

    NASA Astrophysics Data System (ADS)

    Schaeffer, Hayden; McCalla, Scott G.

    2017-08-01

    Model selection and parameter estimation are important for the effective integration of experimental data, scientific theory, and precise simulations. In this work, we develop a learning approach for the selection and identification of a dynamical system directly from noisy data. The learning is performed by extracting a small subset of important features from an overdetermined set of possible features using a nonconvex sparse regression model. The sparse regression model is constructed to fit the noisy data to the trajectory of the dynamical system while using the smallest number of active terms. Computational experiments detail the model's stability, robustness to noise, and recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems, and fast-slow systems.

  15. Causal Network Inference Via Group Sparse Regularization

    PubMed Central

    Bolstad, Andrew; Van Veen, Barry D.; Nowak, Robert

    2011-01-01

    This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a “false connection score” ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach. PMID:21918591

  16. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    PubMed

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  17. Time-frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction

    NASA Astrophysics Data System (ADS)

    Ding, Xiaoxi; He, Qingbo

    2016-12-01

    In this paper, a novel transient signal reconstruction method, called time-frequency manifold (TFM) sparse reconstruction, is proposed for bearing fault feature extraction. This method introduces image sparse reconstruction into the TFM analysis framework. According to the excellent denoising performance of TFM, a more effective time-frequency (TF) dictionary can be learned from the TFM signature by image sparse decomposition based on orthogonal matching pursuit (OMP). Then, the TF distribution (TFD) of the raw signal in a reconstructed phase space would be re-expressed with the sum of learned TF atoms multiplied by corresponding coefficients. Finally, one-dimensional signal can be achieved again by the inverse process of TF analysis (TFA). Meanwhile, the amplitude information of the raw signal would be well reconstructed. The proposed technique combines the merits of the TFM in denoising and the atomic decomposition in image sparse reconstruction. Moreover, the combination makes it possible to express the nonlinear signal processing results explicitly in theory. The effectiveness of the proposed TFM sparse reconstruction method is verified by experimental analysis for bearing fault feature extraction.

  18. Motor and sensory cortical reorganization after bilateral forearm transplantation: Four-year follow-up fMRI case study.

    PubMed

    Hernandez-Castillo, Carlos R; Aguilar-Castañeda, Erika; Iglesias, Martin; Fernandez-Ruiz, Juan

    2016-05-01

    The objective of this study was to characterize the cortical activity pattern of one patient who received bilateral forearm transplants. Using fMRI we acquired motor and sensory brain activity every year after surgery and during three consecutive years while the patient underwent physical rehabilitation. The motor related cortical activity evaluated during the first year showed a sparse pattern involving several brain regions. Over time, the analysis showed a progressive delimitation of the motor-related areas that had significant activity. The results also showed continuous size reductions of the activated cluster in the motor cortex. The activation in the sensory cortex showed significant increases in cluster size over time. The intensity of both motor and sensory cortical activations correlated with the Disabilities of the Arm, Shoulder and Hand questionnaire. Our results show significant cortical reorganization of motor and sensory cortices after transplantation of bilateral forearm transplantation over a four-year period.

  19. Sparse image reconstruction for molecular imaging.

    PubMed

    Ting, Michael; Raich, Raviv; Hero, Alfred O

    2009-06-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at subatomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. This paper, therefore, does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing the joint p.d.f. of the observation and image conditioned on the hyperparameters. A thresholding rule that generalizes the hard and soft thresholding rule appears in the course of the derivation. This so-called hybrid thresholding rule, when used in the iterative thresholding framework, gives rise to the hybrid estimator, a generalization of the lasso. Estimates of the hyperparameters for the lasso and hybrid estimator are obtained via Stein's unbiased risk estimate (SURE). A numerical study with a Gaussian psf and two sparse images shows that the hybrid estimator outperforms the lasso.

  20. Dictionary learning algorithms for sparse representation.

    PubMed

    Kreutz-Delgado, Kenneth; Murray, Joseph F; Rao, Bhaskar D; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J

    2003-02-01

    Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial "25 words or less"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).

  1. Dictionary Learning Algorithms for Sparse Representation

    PubMed Central

    Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.

    2010-01-01

    Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811

  2. Spectra of sparse regular graphs with loops.

    PubMed

    Metz, F L; Neri, I; Bollé, D

    2011-11-01

    We derive exact equations that determine the spectra of undirected and directed sparsely connected regular graphs containing loops of arbitrary lengths. The implications of our results for the structural and dynamical properties of network models are discussed by showing how loops influence the size of the spectral gap and the propensity for synchronization. Analytical formulas for the spectrum are obtained for specific lengths of the loops.

  3. Inpainting with sparse linear combinations of exemplars

    SciTech Connect

    Wohlberg, Brendt

    2008-01-01

    We introduce a new exemplar-based inpainting algorithm based on representing the region to be inpainted as a sparse linear combination of blocks extracted from similar parts of the image being inpainted. This method is conceptually simple, being computed by functional minimization, and avoids the complexity of correctly ordering the filling in of missing regions of other exemplar-based methods. Initial performance comparisons on small inpainting regions indicate that this method provides similar or better performance than other recent methods.

  4. Inpainting With Sparse Linear Combinations of Exemplars

    DTIC Science & Technology

    2010-05-01

    Alamos, NM 87545, USA ABSTRACT We introduce a new exemplar-based inpainting algorithm that represents the region to be inpainted as a sparse linear combi...exemplar-based methods. Initial performance comparisons on small inpaint - ing regions indicate that this method provides similar or better performance than...other recent methods. Index Terms— Image restoration, Inpainting , Exemplar 1. INTRODUCTION Exemplar based methods are becoming increasingly popular

  5. SAR Image despeckling via sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Zhongmei; Yang, Xiaomei; Zheng, Liang

    2014-11-01

    SAR image despeckling is an active research area in image processing due to its importance in improving the quality of image for object detection and classification.In this paper, a new approach is proposed for multiplicative noise in SAR image removal based on nonlocal sparse representation by dictionary learning and collaborative filtering. First, a image is divided into many patches, and then a cluster is formed by clustering log-similar image patches using Fuzzy C-means (FCM). For each cluster, an over-complete dictionary is computed using the K-SVD method that iteratively updates the dictionary and the sparse coefficients. The patches belonging to the same cluster are then reconstructed by a sparse combination of the corresponding dictionary atoms. The reconstructed patches are finally collaboratively aggregated to build the denoised image. The experimental results show that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both objective evaluation index (PSNR and ENL) and subjective visual perception.

  6. Imaging black holes with sparse modeling

    NASA Astrophysics Data System (ADS)

    Honma, Mareki; Akiyama, Kazunori; Tazaki, Fumie; Kuramochi, Kazuki; Ikeda, Shiro; Hada, Kazuhiro; Uemura, Makoto

    2016-03-01

    We introduce a new imaging method for radio interferometry based on sparse- modeling. The direct observables in radio interferometry are visibilities, which are Fourier transformation of an astronomical image on the sky-plane, and incomplete sampling of visibilities in the spatial frequency domain results in an under-determined problem, which has been usually solved with 0 filling to un-sampled grids. In this paper we propose to directly solve this under-determined problem using sparse modeling without 0 filling, which realizes super resolution, i.e., resolution higher than the standard refraction limit. We show simulation results of sparse modeling for the Event Horizon Telescope (EHT) observations of super-massive black holes and demonstrate that our approach has significant merit in observations of black hole shadows expected to be realized in near future. We also present some results with the method applied to real data, and also discuss more advanced techniques for practical observations such as imaging with closure phase as well as treating the effect of interstellar scattering effect.

  7. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  8. Sparse Sampling Methods In Multidimensional NMR

    PubMed Central

    Mobli, Mehdi; Maciejewski, Mark W.; Schuyler, Adam D.; Stern, Alan S.; Hoch, Jeffrey C.

    2014-01-01

    Although the discrete Fourier transform played an enabling role in the development of modern NMR spectroscopy, it suffers from a well-known difficulty providing high-resolution spectra from short data records. In multidimensional NMR experiments, so-called indirect time dimensions are sampled parametrically, with each instance of evolution times along the indirect dimensions sampled via separate one-dimensional experiments. The time required to conduct multidimensional experiments is directly proportional to the number of indirect evolution times sampled. Despite remarkable advances in resolution with increasing magnetic field strength, multiple dimensions remain essential for resolving individual resonances in NMR spectra of biological macromolecues. Conventional Fourier-based methods of spectrum analysis limit the resolution that can be practically achieved in the indirect dimensions. Nonuniform or sparse data collection strategies, together with suitable non-Fourier methods of spectrum analysis, enable high-resolution multidimensional spectra to be obtained. Although some of these approaches were first employed in NMR more than two decades ago, it is only relatively recently that they have been widely adopted. Here we describe the current practice of sparse sampling methods and prospects for further development of the approach to improve resolution and sensitivity and shorten experiment time in multidimensional NMR. While sparse sampling is particularly promising for multidimensional NMR, the basic principles could apply to other forms of multidimensional spectroscopy. PMID:22481242

  9. Modified sparse regularization for electrical impedance tomography

    SciTech Connect

    Fan, Wenru Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-15

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L{sub 1} norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.

  10. Digitized tissue microarray classification using sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Xing, Fuyong; Liu, Baiyang; Qi, Xin; Foran, David J.; Yang, Lin

    2012-02-01

    In this paper, we propose a novel image classification method based on sparse reconstruction errors to discriminate cancerous breast tissue microarray (TMA) discs from benign ones. Sparse representation is employed to reconstruct the samples and separate the benign and cancer discs. The method consists of several steps including mask generation, dictionary learning, and data classification. Mask generation is performed using multiple scale texton histogram, integral histogram and AdaBoost. Two separate cancer and benign TMA dictionaries are learned using K-SVD. Sparse coefficients are calculated using orthogonal matching pursuit (OMP), and the reconstructive error of each testing sample is recorded. The testing image will be divided into many small patches. Each small patch will be assigned to the category which produced the smallest reconstruction error. The final classification of each testing sample is achieved by calculating the total reconstruction errors. Using standard RGB images, and tested on a dataset with 547 images, we achieved much better results than previous literature. The binary classification accuracy, sensitivity, and specificity are 88.0%, 90.6%, and 70.5%, respectively.

  11. Automatic target recognition via sparse representations

    NASA Astrophysics Data System (ADS)

    Estabridis, Katia

    2010-04-01

    Automatic target recognition (ATR) based on the emerging technology of Compressed Sensing (CS) can considerably improve accuracy, speed and cost associated with these types of systems. An image based ATR algorithm has been built upon this new theory, which can perform target detection and recognition in a low dimensional space. Compressed dictionaries (A) are formed to include rotational information for a scale of interest. The algorithm seeks to identify y(test sample) as a linear combination of the dictionary elements : y=Ax, where A ∈ Rnxm(n<sparse vector whose non-zero entries identify the input y. The signal x will be sparse with respect to the dictionary A as long as y is a valid target. The algorithm can reject clutter and background, which are part of the input image. The detection and recognition problems are solved by finding the sparse-solution to the undetermined system y=Ax via Orthogonal Matching Pursuit (OMP) and l1 minimization techniques. Visible and MWIR imagery collected by the Army Night Vision and Electronic Sensors Directorate (NVESD) was utilized to test the algorithm. Results show an average detection and recognition rates above 95% for targets at ranges up to 3Km for both image modalities.

  12. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  13. Efficient visual tracking via low-complexity sparse representation

    NASA Astrophysics Data System (ADS)

    Lu, Weizhi; Zhang, Jinglin; Kpalma, Kidiyo; Ronsin, Joseph

    2015-12-01

    Thanks to its good performance on object recognition, sparse representation has recently been widely studied in the area of visual object tracking. Up to now, little attention has been paid to the complexity of sparse representation, while most works are focused on the performance improvement. By reducing the computation load related to sparse representation hundreds of times, this paper proposes by far the most computationally efficient tracking approach based on sparse representation. The proposal simply consists of two stages of sparse representation, one is for object detection and the other for object validation. Experimentally, it achieves better performance than some state-of-the-art methods in both accuracy and speed.

  14. Cortical Clefts and Cortical Bumps: A Continuous Spectrum

    PubMed Central

    Furruqh, Farha; Thirunavukarasu, Suresh; Vivekandan, Ravichandran

    2016-01-01

    Cortical ‘clefts’ (schizencephaly) and cortical ‘bumps’ (polymicrogyria) are malformations arising due to defects in postmigrational development of neurons. They are frequently encountered together, with schizencephalic clefts being lined by polymicrogyria. We present the case of an eight-year-old boy who presented with seizures. Imaging revealed closed lip schizencephaly, polymicrogyria and a deep ‘incomplete’ cleft lined by polymicrogyria not communicating with the lateral ventricle. We speculate that hypoperfusion or ischaemic cortical injury during neuronal development may lead to a spectrum of malformations ranging from polymicrogyria to incomplete cortical clefts to schizencephaly. PMID:27630923

  15. The biology and dynamics of mammalian cortical granules.

    PubMed

    Liu, Min

    2011-11-17

    Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  16. The biology and dynamics of mammalian cortical granules

    PubMed Central

    2011-01-01

    Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals. PMID:22088197

  17. SparseNCA: Sparse Network Component Analysis for Recovering Transcription Factor Activities with Incomplete Prior Information.

    PubMed

    Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin

    2015-10-27

    Network component analysis (NCA) is an important method for inferring transcriptional regulatory networks (TRNs) and recovering transcription factor activities (TFAs) using gene expression data, and the prior information about the connectivity matrix. The algorithms currently available crucially depend on the completeness of this prior information. However, inaccuracies in the measurement process may render incompleteness in the available knowledge about the connectivity matrix. Hence, computationally efficient algorithms are needed to overcome the possible incompleteness in the available data. We present a sparse network component analysis algorithm (sparseNCA), which incorporates the effect of incompleteness in the estimation of TRNs by imposing an additional sparsity constraint using the `1 norm, which results in a greater estimation accuracy. In order to improve the computational efficiency, an iterative re-weighted `2 method is proposed for the NCA problem which not only promotes sparsity but is hundreds of times faster than the `1 norm based solution. The performance of sparseNCA is rigorously compared to that of FastNCA and NINCA using synthetic data as well as real data. It is shown that sparseNCA outperforms the existing state-of-the-art algorithms both in terms of estimation accuracy and consistency with the added advantage of low computational complexity. The performance of sparseNCA compared to its predecessors is particularly pronounced in case of incomplete prior information about the sparsity of the network. Subnetwork analysis is performed on the E.coli data which reiterates the superior consistency of the proposed algorithm.

  18. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes

    NASA Astrophysics Data System (ADS)

    García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  20. Modeling the radiant transfers of sparse vegetation canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Norman, J. M.; Walthall, C. L.

    1985-01-01

    The scattering dynamics of sparse vegetation canopies were studied within the framework of the three-dimensional radiative transfer model of Kimes (1984). The model was upgraded by including an algorithm for the anisotropic scattering of a soil boundary. Validation of the model was carried out using measured directional reflectance data for two canopies exhibiting typical scattering behavior with low and intermediate vegetation density. The canopies were: an orchard grass canopy; and a hard wheat canopy. A number of factors were found contributing to the final reflectance distribution of the canopies, including: (1) the strong anisotropic scattering properties of the soil; (2) the geometric effect of the vegetation probability gap function on the soil anisotropy and solar irradiance; and (3) the anisotropic scattering of vegetation which is controlled by the phase function and the layering of leaves. The application of the theoretical results to the development of earth-observing sensor systems is discussed.

  1. Moving target imaging using sparse and low-rank structure

    NASA Astrophysics Data System (ADS)

    Mason, Eric; Yazici, Birsen

    2016-05-01

    In this paper we present a method for passive radar detection of ground moving targets using sparsely distributed apertures. We assume the scene is illuminated by a source of opportunity and measure the backscattered signal. We correlate measurements from two different receivers, then form a linear forward model that operates on a rank one, positive semi-definite (PSD) operator, formed by taking the tensor product of the phase-space reflectivity function with its self. Utilizing this structure, image formation and velocity estimation are defined in a constrained optimization framework. Additionally, image formation and velocity estimation are formulated as separate optimization problems, this results in computational savings. Position estimation is posed as a rank one PSD constrained least squares problem. Then, velocity estimation is performed as a cardinality constrained least squares problem, solved using a greedy algorithm. We demonstrate the performance of our method with numerical simulations, demonstrate improvement over back-projection imaging, and evaluate the effect of spatial diversity.

  2. Sparse stochastic processes and discretization of linear inverse problems.

    PubMed

    Bostan, Emrah; Kamilov, Ulugbek S; Nilchian, Masih; Unser, Michael

    2013-07-01

    We present a novel statistically-based discretization paradigm and derive a class of maximum a posteriori (MAP) estimators for solving ill-conditioned linear inverse problems. We are guided by the theory of sparse stochastic processes, which specifies continuous-domain signals as solutions of linear stochastic differential equations. Accordingly, we show that the class of admissible priors for the discretized version of the signal is confined to the family of infinitely divisible distributions. Our estimators not only cover the well-studied methods of Tikhonov and l1-type regularizations as particular cases, but also open the door to a broader class of sparsity-promoting regularization schemes that are typically nonconvex. We provide an algorithm that handles the corresponding nonconvex problems and illustrate the use of our formalism by applying it to deconvolution, magnetic resonance imaging, and X-ray tomographic reconstruction problems. Finally, we compare the performance of estimators associated with models of increasing sparsity.

  3. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  4. Distribution

    Treesearch

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  5. Distributions.

    ERIC Educational Resources Information Center

    Bowers, Wayne A.

    This monograph was written for the Conference of the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for students who have had an introductory college physics course. It seeks to provide an introduction to the idea of distributions in general, and to some aspects of the subject in…

  6. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    NASA Astrophysics Data System (ADS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  7. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    SciTech Connect

    Ahlfeld, R. Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  8. Demixing Population Activity in Higher Cortical Areas

    PubMed Central

    Machens, Christian K.

    2009-01-01

    Neural responses in higher cortical areas often display a baffling complexity. In animals performing behavioral tasks, single neurons will typically encode several parameters simultaneously, such as stimuli, rewards, decisions, etc. When dealing with this large heterogeneity of responses, cells are conventionally classified into separate response categories using various statistical tools. However, this classical approach usually fails to account for the distributed nature of representations in higher cortical areas. Alternatively, principal component analysis (PCA) or related techniques can be employed to reduce the complexity of a data set while retaining the distributional aspect of the population activity. These methods, however, fail to explicitly extract the task parameters from the neural responses. Here we suggest a coordinate transformation that seeks to ameliorate these problems by combining the advantages of both methods. Our basic insight is that variance in neural firing rates can have different origins (such as changes in a stimulus, a reward, or the passage of time), and that, instead of lumping them together, as PCA does, we need to treat these sources separately. We present a method that seeks an orthogonal coordinate transformation such that the variance captured from different sources falls into orthogonal subspaces and is maximized within these subspaces. Using simulated examples, we show how this approach can be used to demix heterogeneous neural responses. Our method may help to lift the fog of response heterogeneity in higher cortical areas. PMID:21031029

  9. Cortical control of anticipatory postural adjustments prior to stepping.

    PubMed

    Varghese, J P; Merino, D M; Beyer, K B; McIlroy, W E

    2016-01-28

    Human bipedal balance control is achieved either reactively or predictively by a distributed network of neural areas within the central nervous system with a potential role for cerebral cortex. While the role of the cortex in reactive balance has been widely explored, only few studies have addressed the cortical activations related to predictive balance control. The present study investigated the cortical activations related to the preparation and execution of anticipatory postural adjustment (APA) that precede a step. This study also examined whether the preparatory cortical activations related to a specific movement is dependent on the context of control (postural component vs. focal component). Ground reaction forces and electroencephalographic (EEG) data were recorded from 14 healthy adults while they performed lateral weight shift and lateral stepping with and without initially preloading their weight to the stance leg. EEG analysis revealed that there were distinct movement-related potentials (MRPs) with concurrent event-related desynchronization (ERD) of mu and beta rhythms prior to the onset of APA and also to the onset of foot-off during lateral stepping in the fronto-central cortical areas. Also, the MRPs and ERD prior to the onset of APA and onset of lateral weight shift were not significantly different suggesting the comparable cortical activations for the generation of postural and focal movements. The present study reveals the occurrence of cortical activation prior to the execution of an APA that precedes a step. Importantly, this cortical activity appears independent of the context of the movement.

  10. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    DTIC Science & Technology

    2008-04-30

    Additionally, these cortical areas have been implicated from significantly elevated TOJ thresholds (worse performance) in subjects with dyslexia [5...of the fact that above-average TOJ thresholds occur in subjects with known damage to these same cortical areas ( dyslexia [5], dystonia [6-8], and

  11. Stochastic convex sparse principal component analysis.

    PubMed

    Baytas, Inci M; Lin, Kaixiang; Wang, Fei; Jain, Anil K; Zhou, Jiayu

    2016-12-01

    Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is important. In applications, where the features have some physical meanings, we lose the ability to interpret the principal components extracted by conventional PCA because each principal component is a linear combination of all the original features. For this reason, sparse PCA has been proposed to improve the interpretability of traditional PCA by introducing sparsity to the loading vectors of principal components. The sparse PCA can be formulated as an ℓ1 regularized optimization problem, which can be solved by proximal gradient methods. However, these methods do not scale well because computation of the exact gradient is generally required at each iteration. Stochastic gradient framework addresses this challenge by computing an expected gradient at each iteration. Nevertheless, stochastic approaches typically have low convergence rates due to the high variance. In this paper, we propose a convex sparse principal component analysis (Cvx-SPCA), which leverages a proximal variance reduced stochastic scheme to achieve a geometric convergence rate. We further show that the convergence analysis can be significantly simplified by using a weak condition which allows a broader class of objectives to be applied. The efficiency and effectiveness of the proposed method are demonstrated on a large-scale electronic medical record cohort.

  12. Control and amplification of cortical neurodynamics

    NASA Astrophysics Data System (ADS)

    Liljenstroem, Hans; Aronsson, P.

    1999-03-01

    We investigate different mechanisms for the control and amplification of cortical neurodynamics, using a neural network model of a three layered cortical structure. We show that different dynamical states can be obtained by changing a control parameter of the input-output relation, or by changing the noise level. Point attractor, limit cycle, and strange attractor dynamics occur at different values of the control parameter. For certain, optimal noise levels, system performance is maximized, analogous to stochastic resonance phenomena. Noise can also be used to induce different dynamical states. A few noisy network units distributed in a network layer can result in global synchronous oscillations, or waves of activity moving across the network. We further demonstrate that fast synchronization of network activity can be obtained by implementing electromagnetic interactions between network units.

  13. Adaptive feature extraction using sparse coding for machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Liu, Chengliang; Huang, Yixiang

    2011-02-01

    In the signal processing domain, there has been growing interest in sparse coding with a learned dictionary instead of a predefined one, which is advocated as an effective mathematical description for the underlying principle of mammalian sensory systems in processing information. In this paper, sparse coding is introduced as a feature extraction technique for machinery fault diagnosis and an adaptive feature extraction scheme is proposed based on it. The two core problems of sparse coding, i.e., dictionary learning and coefficients solving, are discussed in detail. A natural extension of sparse coding, shift-invariant sparse coding, is also introduced. Then, the vibration signals of rolling element bearings are taken as the target signals to verify the proposed scheme, and shift-invariant sparse coding is used for vibration analysis. With the purpose of diagnosing the different fault conditions of bearings, features are extracted following the proposed scheme: basis functions are separately learned from each class of vibration signals trying to capture the defective impulses; a redundant dictionary is built by merging all the learned basis functions; based on the redundant dictionary, the diagnostic information is made explicit in the solved sparse representations of vibration signals; sparse features are formulated in terms of activations of atoms. The multiclass linear discriminant analysis (LDA) classifier is used to test the discriminability of the extracted sparse features and the adaptability of the learned atoms. The experiments show that sparse coding is an effective feature extraction technique for machinery fault diagnosis.

  14. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

    PubMed Central

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H

    2017-01-01

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463

  15. Experimental verification of the sparse design of a square partial discharge acoustic emission array sensor

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Liu, Xiong; Tao, Junhan; Li, Tong; Cheng, Shuyi; Lu, Fangcheng

    2015-04-01

    This study experimentally verified the sparse design of a square partial discharge (PD) acoustic emission array sensor proposed in Xie et al (2014 Meas. Sci. Technol. 25 035102). Firstly, this study developed a square PD acoustic emission array sensor and determined the material, centre frequency, thickness, radius, etc of the element of this array sensor through analysis and comparison with others. Moreover, in combination with a sound-absorbing backing and a matching layer, a single acoustic emission array sensor element was designed, which laid the basis for the experimental verification of the ensuing sparse design. On this basis, the assembly of the square acoustic emission array sensor was designed. It realised the plug-and-play ability of the array elements and formed the basis for the experimental study of the following sparse design. Subsequently, this study established and introduced an experimental system and methods for PD positioning. Finally, it experimentally investigated the sparse design of a square PD acoustic emission array sensor. The 9-element square PD acoustic emission array sensor was used as an example to study the positioning effects on PD using the acoustic emission array sensor in optimum and random sparse structures respectively. The results suggested that: (1) the PD acoustic emission array sensor and corresponding experimental system were effective in detecting and positioning the PD; (2) the square PD acoustic emission array sensor proposed in Xie et al (2014 Meas. Sci. Technol. 25 035102) was feasible. Using this array sensor, it was possible to optimise the sparse distribution structure of this acoustic emission array sensor.

  16. Sparse dynamics for partial differential equations

    PubMed Central

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley

    2013-01-01

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273

  17. Guided wavefield reconstruction from sparse measurements

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Ruzzene, Massimo

    2016-02-01

    Guided wave measurements are at the basis of several Non-Destructive Evaluation (NDE) techniques. Although sparse measurements of guided wave obtained using piezoelectric sensors can efficiently detect and locate defects, extensive informa-tion on the shape and subsurface location of defects can be extracted from full-field measurements acquired by Laser Doppler Vibrometers (LDV). Wavefield acquisition from LDVs is generally a slow operation due to the fact that the wave propagation to record must be repeated for each point measurement and the initial conditions must be reached between each measurement. In this research, a Sparse Wavefield Reconstruction (SWR) process using Compressed Sensing is developed. The goal of this technique is to reduce the number of point measurements needed to apply NDE techniques by at least one order of magnitude by extrapolating the knowledge of a few randomly chosen measured pixels over an over-sampled grid. To achieve this, the Lamb wave propagation equation is used to formulate a basis of shape functions in which the wavefield has a sparse representation, in order to comply with the Compressed Sensing requirements and use l1-minimization solvers. The main assumption of this reconstruction process is that every material point of the studied area is a potential source. The Compressed Sensing matrix is defined as being the contribution that would have been received at a measurement location from each possible source, using the dispersion relations of the specimen computed using a Semi-Analytical Finite Element technique. The measurements are then processed through an l1-minimizer to find a minimum corresponding to the set of active sources and their corresponding excitation functions. This minimum represents the best combination of the parameters of the model matching the sparse measurements. Wavefields are then reconstructed using the propagation equation. The set of active sources found by minimization contains all the wave

  18. Partitioning sparse rectangular matrices for parallel processing

    SciTech Connect

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  19. Effective dimension reduction for sparse functional data

    PubMed Central

    YAO, F.; LEI, E.; WU, Y.

    2015-01-01

    Summary We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method. PMID:26566293

  20. Parallel preconditioning techniques for sparse CG solvers

    SciTech Connect

    Basermann, A.; Reichel, B.; Schelthoff, C.

    1996-12-31

    Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method. In particular for very ill-conditioned matrices, sophisticated preconditioner are necessary to obtain both acceptable convergence and accuracy of CG. Here, we investigate variants of polynomial and incomplete Cholesky preconditioners that markedly reduce the iterations of the simply diagonally scaled CG and are shown to be well suited for massively parallel machines.

  1. Effective dimension reduction for sparse functional data.

    PubMed

    Yao, F; Lei, E; Wu, Y

    2015-06-01

    We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method.

  2. Cortico-cortical communication dynamics

    PubMed Central

    Roland, Per E.; Hilgetag, Claus C.; Deco, Gustavo

    2014-01-01

    In principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG), and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review. PMID:24847217

  3. Evaluating mandibular cortical index quantitatively.

    PubMed

    Yasar, Fusun; Akgunlu, Faruk

    2008-10-01

    The aim was to assess whether Fractal Dimension and Lacunarity analysis can discriminate patients having different mandibular cortical shape. Panoramic radiographs of 52 patients were evaluated for mandibular cortical index. Weighted Kappa between the observations were varying between 0.718-0.805. These radiographs were scanned and converted to binary images. Fractal Dimension and Lacunarity were calculated from the regions where best represents the cortical morphology. It was found that there were statistically significant difference between the Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 1 and Cl 2 (Fractal Dimension P:0.000; Lacunarity P:0.003); and Cl 1 and Cl 3 cortical morphology (Fractal Dimension P:0.008; Lacunarity P:0.001); but there was no statistically significant difference between Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 2 and Cl 3 cortical morphology (Fractal Dimension P:1.000; Lacunarity P:0.758). FD and L can differentiate Cl 1 mandibular cortical shape from both Cl 2 and Cl 3 mandibular cortical shape but cannot differentiate Cl 2 from Cl 3 mandibular cortical shape on panoramic radiographs.

  4. Evaluating Mandibular Cortical Index Quantitatively

    PubMed Central

    Yasar, Fusun; Akgunlu, Faruk

    2008-01-01

    Objectives The aim was to assess whether Fractal Dimension and Lacunarity analysis can discriminate patients having different mandibular cortical shape. Methods Panoramic radiographs of 52 patients were evaluated for mandibular cortical index. Weighted Kappa between the observations were varying between 0.718–0.805. These radiographs were scanned and converted to binary images. Fractal Dimension and Lacunarity were calculated from the regions where best represents the cortical morphology. Results It was found that there were statistically significant difference between the Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 1 and Cl 2 (Fractal Dimension P:0.000; Lacunarity P:0.003); and Cl 1 and Cl 3 cortical morphology (Fractal Dimension P:0.008; Lacunarity P:0.001); but there was no statistically significant difference between Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 2 and Cl 3 cortical morphology (Fractal Dimension P:1.000; Lacunarity P:0.758). Conclusions FD and L can differentiate Cl 1 mandibular cortical shape from both Cl 2 and Cl 3 mandibular cortical shape but cannot differentiate Cl 2 from Cl 3 mandibular cortical shape on panoramic radiographs. PMID:19212535

  5. Piano Transcription with Convolutional Sparse Lateral Inhibition

    DOE PAGES

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon

    2017-02-08

    This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less

  6. Learning doubly sparse transforms for images.

    PubMed

    Ravishankar, Saiprasad; Bresler, Yoram

    2013-12-01

    The sparsity of images in a transform domain or dictionary has been exploited in many applications in image processing. For example, analytical sparsifying transforms, such as wavelets and discrete cosine transform (DCT), have been extensively used in compression standards. Recently, synthesis sparsifying dictionaries that are directly adapted to the data have become popular especially in applications such as image denoising. Following up on our recent research, where we introduced the idea of learning square sparsifying transforms, we propose here novel problem formulations for learning doubly sparse transforms for signals or image patches. These transforms are a product of a fixed, fast analytic transform such as the DCT, and an adaptive matrix constrained to be sparse. Such transforms can be learnt, stored, and implemented efficiently. We show the superior promise of our learnt transforms as compared with analytical sparsifying transforms such as the DCT for image representation. We also show promising performance in image denoising that compares favorably with approaches involving learnt synthesis dictionaries such as the K-SVD algorithm. The proposed approach is also much faster than K-SVD denoising.

  7. Sparse Identification of Nonlinear Dynamics (SINDy)

    NASA Astrophysics Data System (ADS)

    Brunton, Steven; Proctor, Joshua; Kutz, Nathan

    2016-11-01

    This work develops a general new framework to discover the governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity techniques and machine learning. The so-called sparse identification of nonlinear dynamics (SINDy) method results in models that are parsimonious, balancing model complexity with descriptive ability while avoiding over fitting. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including the chaotic Lorenz system, to the canonical fluid vortex shedding behind an circular cylinder at Re=100. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing. With abundant data and elusive laws, data-driven discovery of dynamics will continue to play an increasingly important role in the characterization and control of fluid dynamics.

  8. Inferring sparse networks for noisy transient processes

    NASA Astrophysics Data System (ADS)

    Tran, Hoang M.; Bukkapatnam, Satish T. S.

    2016-02-01

    Inferring causal structures of real world complex networks from measured time series signals remains an open issue. The current approaches are inadequate to discern between direct versus indirect influences (i.e., the presence or absence of a directed arc connecting two nodes) in the presence of noise, sparse interactions, as well as nonlinear and transient dynamics of real world processes. We report a sparse regression (referred to as the -min) approach with theoretical bounds on the constraints on the allowable perturbation to recover the network structure that guarantees sparsity and robustness to noise. We also introduce averaging and perturbation procedures to further enhance prediction scores (i.e., reduce inference errors), and the numerical stability of -min approach. Extensive investigations have been conducted with multiple benchmark simulated genetic regulatory network and Michaelis-Menten dynamics, as well as real world data sets from DREAM5 challenge. These investigations suggest that our approach can significantly improve, oftentimes by 5 orders of magnitude over the methods reported previously for inferring the structure of dynamic networks, such as Bayesian network, network deconvolution, silencing and modular response analysis methods based on optimizing for sparsity, transients, noise and high dimensionality issues.

  9. Sparse aperture mask wavefront sensor testbed results

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Riggs, A. J. E.

    2016-07-01

    Coronagraphic exoplanet detection at very high contrast requires the estimation and control of low-order wave- front aberrations. At Princeton High Contrast Imaging Lab (PHCIL), we are working on a new technique that integrates a sparse-aperture mask (SAM) with a shaped pupil coronagraph (SPC) to make precise estimates of these low-order aberrations. We collect the starlight rejected from the coronagraphic image plane and interfere it using a sparse aperture mask (SAM) at the relay pupil to estimate the low-order aberrations. In our previous work we numerically demonstrated the efficacy of the technique, and proposed a method to sense and control these differential aberrations in broadband light. We also presented early testbed results in which the SAM was used to sense pointing errors. In this paper, we will briefly overview the SAM wavefront sensor technique, explain the design of the completed testbed, and report the experimental estimation results of the dominant low-order aberrations such as tip/tit, astigmatism and focus.

  10. Image reconstruction from photon sparse data

    PubMed Central

    Mertens, Lena; Sonnleitner, Matthias; Leach, Jonathan; Agnew, Megan; Padgett, Miles J.

    2017-01-01

    We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected. PMID:28169363

  11. A density functional for sparse matter.

    PubMed

    Langreth, D C; Lundqvist, B I; Chakarova-Käck, S D; Cooper, V R; Dion, M; Hyldgaard, P; Kelkkanen, A; Kleis, J; Kong, Lingzhu; Li, Shen; Moses, P G; Murray, E; Puzder, A; Rydberg, H; Schröder, E; Thonhauser, T

    2009-02-25

    Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed for the nonlocal correlations between electrons and applied to various relevant molecules and materials, including to those layered systems like graphite, boron nitride and molybdenum sulfide, to dimers of benzene, polycyclic aromatic hydrocarbons (PAHs), doped benzene, cytosine and DNA base pairs, to nonbonding forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators. Comparison with results from wavefunction calculations for the smaller systems and with experimental data for the extended ones show the vdW-DF path to be promising. This could have great ramifications.

  12. Sparse spectrum model for a turbulent phase.

    PubMed

    Charnotskii, Mikhail

    2013-03-01

    Monte Carlo (MC) simulation of phase front perturbations by atmospheric turbulence finds numerous applications for design and modeling of the adaptive optics systems, laser beam propagation simulations, and evaluating the performance of the various optical systems operating in the open air environment. Accurate generation of two-dimensional random fields of turbulent phase is complicated by the enormous diversity of scales that can reach five orders of magnitude in each coordinate. In addition there is a need for generation of the long "ribbons" of turbulent phase that are used to represent the time evolution of the wave front. This makes it unfeasible to use the standard discrete Fourier transform-based technique as a basis for the MC simulation algorithm. We propose a new model for turbulent phase: the sparse spectrum (SS) random field. The principal assumption of the SS model is that each realization of the random field has a discrete random spectral support. Statistics of the random amplitudes and wave vectors of the SS model are arranged to provide the required spectral and correlation properties of the random field. The SS-based MC model offers substantial reduction of computer costs for simulation of the wide-band random fields and processes, and is capable of generating long aperiodic phase "ribbons." We report the results of model trials that determine the number of sparse components, and the range of wavenumbers that is necessary to accurately reproduce the random field with a power-law spectrum.

  13. Fast Sparse Level Sets on Graphics Hardware.

    PubMed

    Jalba, Andrei C; van der Laan, Wladimir J; Roerdink, Jos B T M

    2013-01-01

    The level-set method is one of the most popular techniques for capturing and tracking deformable interfaces. Although level sets have demonstrated great potential in visualization and computer graphics applications, such as surface editing and physically based modeling, their use for interactive simulations has been limited due to the high computational demands involved. In this paper, we address this computational challenge by leveraging the increased computing power of graphics processors, to achieve fast simulations based on level sets. Our efficient, sparse GPU level-set method is substantially faster than other state-of-the-art, parallel approaches on both CPU and GPU hardware. We further investigate its performance through a method for surface reconstruction, based on GPU level sets. Our novel multiresolution method for surface reconstruction from unorganized point clouds compares favorably with recent, existing techniques and other parallel implementations. Finally, we point out that both level-set computations and rendering of level-set surfaces can be performed at interactive rates, even on large volumetric grids. Therefore, many applications based on level sets can benefit from our sparse level-set method.

  14. Group sparse optimization by alternating direction method

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Yin, Wotao; Zhang, Yin

    2013-09-01

    This paper proposes efficient algorithms for group sparse optimization with mixed l2,1-regularization, which arises from the reconstruction of group sparse signals in compressive sensing, and the group Lasso problem in statistics and machine learning. It is known that encoding the group information in addition to sparsity can often lead to better signal recovery/feature selection. The l2,1-regularization promotes group sparsity, but the resulting problem, due to the mixed-norm structure and possible grouping irregularity, is considered more difficult to solve than the conventional l1-regularized problem. Our approach is based on a variable splitting strategy and the classic alternating direction method (ADM). Two algorithms are presented, one derived from the primal and the other from the dual of the l2,1-regularized problem. The convergence of the proposed algorithms is guaranteed by the existing ADM theory. General group configurations such as overlapping groups and incomplete covers can be easily handled by our approach. Computational results show that on random problems the proposed ADM algorithms exhibit good efficiency, and strong stability and robustness.

  15. Image reconstruction from photon sparse data

    NASA Astrophysics Data System (ADS)

    Mertens, Lena; Sonnleitner, Matthias; Leach, Jonathan; Agnew, Megan; Padgett, Miles J.

    2017-02-01

    We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected.

  16. Image reconstruction from photon sparse data.

    PubMed

    Mertens, Lena; Sonnleitner, Matthias; Leach, Jonathan; Agnew, Megan; Padgett, Miles J

    2017-02-07

    We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected.

  17. Modeling cortical circuits.

    SciTech Connect

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  18. Cortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons

    PubMed Central

    Kosillo, Polina; Zhang, Yan-Feng; Threlfell, Sarah; Cragg, Stephanie J.

    2016-01-01

    Corticostriatal regulation of striatal dopamine (DA) transmission has long been postulated, but ionotropic glutamate receptors have not been localized directly to DA axons. Striatal cholinergic interneurons (ChIs) are emerging as major players in striatal function, and can govern DA transmission by activating nicotinic receptors (nAChRs) on DA axons. Cortical inputs to ChIs have historically been perceived as sparse, but recent evidence indicates that they strongly activate ChIs. We explored whether activation of M1/M2 corticostriatal inputs can consequently gate DA transmission, via ChIs. We reveal that optogenetic activation of channelrhodopsin-expressing corticostriatal axons can drive striatal DA release detected with fast-scan cyclic voltammetry and requires activation of nAChRs on DA axons and AMPA receptors on ChIs that promote short-latency action potentials. By contrast, DA release driven by optogenetic activation of intralaminar thalamostriatal inputs involves additional activation of NMDA receptors on ChIs and action potential generation over longer timescales. Therefore, cortical and thalamic glutamate inputs can modulate DA transmission by regulating ChIs as gatekeepers, through ionotropic glutamate receptors. The different use of AMPA and NMDA receptors by cortical versus thalamic inputs might lead to distinct input integration strategies by ChIs and distinct modulation of the function of DA and striatum. PMID:27566978

  19. OSKI: A Library of Automatically Tuned Sparse Matrix Kernels

    SciTech Connect

    Vuduc, R; Demmel, J W; Yelick, K A

    2005-07-19

    The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives that provide automatically tuned computational kernels on sparse matrices, for use by solver libraries and applications. These kernels include sparse matrix-vector multiply and sparse triangular solve, among others. The primary aim of this interface is to hide the complex decision-making process needed to tune the performance of a kernel implementation for a particular user's sparse matrix and machine, while also exposing the steps and potentially non-trivial costs of tuning at run-time. This paper provides an overview of OSKI, which is based on our research on automatically tuned sparse kernels for modern cache-based superscalar machines.

  20. OSKI: A library of automatically tuned sparse matrix kernels

    NASA Astrophysics Data System (ADS)

    Vuduc, Richard; Demmel, James W.; Yelick, Katherine A.

    2005-01-01

    The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives that provide automatically tuned computational kernels on sparse matrices, for use by solver libraries and applications. These kernels include sparse matrix-vector multiply and sparse triangular solve, among others. The primary aim of this interface is to hide the complex decisionmaking process needed to tune the performance of a kernel implementation for a particular user's sparse matrix and machine, while also exposing the steps and potentially non-trivial costs of tuning at run-time. This paper provides an overview of OSKI, which is based on our research on automatically tuned sparse kernels for modern cache-based superscalar machines.

  1. Cortical language mapping using electrical cortical stimulation for Mandarin-speaking patients with epilepsy: a report of six case studies.

    PubMed

    Qiao, Liang; Yu, Tao; Sun, Wei; Ni, Duanyu; Li, Yongjie

    2010-11-01

    The goal of this study was to summarize the results of language cortex mapping using electrical cortical stimulation with modified language tasks for Mandarin-speaking patients with epilepsy. Electrical currents were delivered through implanted subdural electrodes to six Mandarin-speaking patients before epilepsy surgery. The current intensities inducing any language disturbance during comprehension, repetition, and speech tasks were recorded, and individual cortical mapping was completed to guide subsequent resection, with the distance between mapped language sites and resected zones kept at a minimum of 0.5 cm. Language function was reassessed and followed up after surgery. Language cortices were successfully identified in three patients, but demonstrated great variability in distribution. There seemed to be no difference in the intensity threshold that induced language interference. None of the six patients exhibited language deficits postsurgery. Electrical cortical stimulation with modified language tasks is valid for identification of cortices underlying Mandarin processing. The great variability in language cortex distribution enhances the necessity of individual language cortical mapping in epilepsy surgery. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Sparse regularization techniques provide novel insights into outcome integration processes.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Frimmel, Steffi; Ruge, Hannes

    2015-01-01

    By exploiting information that is contained in the spatial arrangement of neural activations, multivariate pattern analysis (MVPA) can detect distributed brain activations which are not accessible by standard univariate analysis. Recent methodological advances in MVPA regularization techniques have made it feasible to produce sparse discriminative whole-brain maps with highly specific patterns. Furthermore, the most recent refinement, the Graph Net, explicitly takes the 3D-structure of fMRI data into account. Here, these advanced classification methods were applied to a large fMRI sample (N=70) in order to gain novel insights into the functional localization of outcome integration processes. While the beneficial effect of differential outcomes is well-studied in trial-and-error learning, outcome integration in the context of instruction-based learning has remained largely unexplored. In order to examine neural processes associated with outcome integration in the context of instruction-based learning, two groups of subjects underwent functional imaging while being presented with either differential or ambiguous outcomes following the execution of varying stimulus-response instructions. While no significant univariate group differences were found in the resulting fMRI dataset, L1-regularized (sparse) classifiers performed significantly above chance and also clearly outperformed the standard L2-regularized (dense) Support Vector Machine on this whole-brain between-subject classification task. Moreover, additional L2-regularization via the Elastic Net and spatial regularization by the Graph Net improved interpretability of discriminative weight maps but were accompanied by reduced classification accuracies. Most importantly, classification based on sparse regularization facilitated the identification of highly specific regions differentially engaged under ambiguous and differential outcome conditions, comprising several prefrontal regions previously associated with

  3. Comparative study of two sparse multinomial logistic regression models in decoding visual stimuli from brain activity of fMRI

    NASA Astrophysics Data System (ADS)

    Song, Sutao; Chen, Gongxiang; Zhan, Yu; Zhang, Jiacai; Yao, Li

    2014-03-01

    Recently, sparse algorithms, such as Sparse Multinomial Logistic Regression (SMLR), have been successfully applied in decoding visual information from functional magnetic resonance imaging (fMRI) data, where the contrast of visual stimuli was predicted by a classifier. The contrast classifier combined brain activities of voxels with sparse weights. For sparse algorithms, the goal is to learn a classifier whose weights distributed as sparse as possible by introducing some prior belief about the weights. There are two ways to introduce a sparse prior constraints for weights: the Automatic Relevance Determination (ARD-SMLR) and Laplace prior (LAP-SMLR). In this paper, we presented comparison results between the ARD-SMLR and LAP-SMLR models in computational time, classification accuracy and voxel selection. Results showed that, for fMRI data, no significant difference was found in classification accuracy between these two methods when voxels in V1 were chosen as input features (totally 1017 voxels). As for computation time, LAP-SMLR was superior to ARD-SMLR; the survived voxels for ARD-SMLR was less than LAP-SMLR. Using simulation data, we confirmed the classification performance for the two SMLR models was sensitive to the sparsity of the initial features, when the ratio of relevant features to the initial features was larger than 0.01, ARD-SMLR outperformed LAP-SMLR; otherwise, LAP-SMLR outperformed LAP-SMLR. Simulation data showed ARD-SMLR was more efficient in selecting relevant features.

  4. Paroxysmal kinesigenic dyskinesia: cortical or non-cortical origin.

    PubMed

    van Strien, Teun W; van Rootselaar, Anne-Fleur; Hilgevoord, Anthony A J; Linssen, Wim H J P; Groffen, Alexander J A; Tijssen, Marina A J

    2012-06-01

    Paroxysmal kinesigenic dyskinesia (PKD) is characterized by involuntary dystonia and/or chorea triggered by a sudden movement. Cases are usually familial with an autosomal dominant inheritance. Hypotheses regarding the pathogenesis of PKD focus on the controversy whether PKD has a cortical or non-cortical origin. A combined familial trait of PKD and benign familial infantile seizures has been reported as the infantile convulsions and paroxysmal choreoathetosis (ICCA) syndrome. Here, we report a family diagnosed with ICCA syndrome with an Arg217STOP mutation. The index patient showed interictal EEG focal changes compatible with paroxysmal dystonic movements of his contralateral leg. This might support cortical involvement in PKD.

  5. Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding

    PubMed Central

    Shelton, Jacquelyn A.; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg

    2015-01-01

    Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process. PMID:25954947

  6. Nonlinear spike-and-slab sparse coding for interpretable image encoding.

    PubMed

    Shelton, Jacquelyn A; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg

    2015-01-01

    Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process.

  7. M-estimation for robust sparse unmixing of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Toomik, Maria; Lu, Shijian; Nelson, James D. B.

    2016-10-01

    Hyperspectral unmixing methods often use a conventional least squares based lasso which assumes that the data follows the Gaussian distribution. The normality assumption is an approximation which is generally invalid for real imagery data. We consider a robust (non-Gaussian) approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers and relaxes the linearity assumption. The method consists of several appropriate penalties. We propose to use an lp norm with 0 < p < 1 in the sparse regression problem, which induces more sparsity in the results, but makes the problem non-convex. On the other hand, the problem, though non-convex, can be solved quite straightforwardly with an extensible algorithm based on iteratively reweighted least squares. To deal with the huge size of modern spectral libraries we introduce a library reduction step, similar to the multiple signal classification (MUSIC) array processing algorithm, which not only speeds up unmixing but also yields superior results. In the hyperspectral setting we extend the traditional least squares method to the robust heavy-tailed case and propose a generalised M-lasso solution. M-estimation replaces the Gaussian likelihood with a fixed function ρ(e) that restrains outliers. The M-estimate function reduces the effect of errors with large amplitudes or even assigns the outliers zero weights. Our experimental results on real hyperspectral data show that noise with large amplitudes (outliers) often exists in the data. This ability to mitigate the influence of such outliers can therefore offer greater robustness. Qualitative hyperspectral unmixing results on real hyperspectral image data corroborate the efficacy of the proposed method.

  8. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  9. Feature Selection and Pedestrian Detection Based on Sparse Representation

    PubMed Central

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony. PMID:26295480

  10. Feature Selection and Pedestrian Detection Based on Sparse Representation.

    PubMed

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.

  11. Improving sparse representation algorithms for maritime video processing

    NASA Astrophysics Data System (ADS)

    Smith, L. N.; Nichols, J. M.; Waterman, J. R.; Olson, C. C.; Judd, K. P.

    2012-06-01

    We present several improvements to published algorithms for sparse image modeling with the goal of improving processing of imagery of small watercraft in littoral environments. The first improvement is to the K-SVD algorithm for training over-complete dictionaries, which are used in sparse representations. It is shown that the training converges significantly faster by incorporating multiple dictionary (i.e., codebook) update stages in each training iteration. The paper also provides several useful and practical lessons learned from our experience with sparse representations. Results of three applications of sparse representation are presented and compared to the state-of-the-art methods; image compression, image denoising, and super-resolution.

  12. Multimodal visual dictionary learning via heterogeneous latent semantic sparse coding

    NASA Astrophysics Data System (ADS)

    Li, Chenxiao; Ding, Guiguang; Zhou, Jile; Guo, Yuchen; Liu, Qiang

    2014-11-01

    Visual dictionary learning as a crucial task of image representation has gained increasing attention. Specifically, sparse coding is widely used due to its intrinsic advantage. In this paper, we propose a novel heterogeneous latent semantic sparse coding model. The central idea is to bridge heterogeneous modalities by capturing their common sparse latent semantic structure so that the learned visual dictionary is able to describe both the visual and textual properties of training data. Experiments on both image categorization and retrieval tasks demonstrate that our model shows superior performance over several recent methods such as K-means and Sparse Coding.

  13. Local structure preserving sparse coding for infrared target recognition.

    PubMed

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions.

  14. Viewing a forelimb induces widespread cortical activations.

    PubMed

    Raos, Vassilis; Kilintari, Marina; Savaki, Helen E

    2014-04-01

    Given that prerequisite of activating the mirror neuron system is the preshaping of the hand and its interaction with the object during observation of a reaching-to-grasp-an-object action, the effects of viewing the object, the reaching forelimb and the static hand may obscure the effects of observing the grasping action per se. To disentangle these effects, we employed the (14)C-deoxyglucose quantitative autoradiographic method to map the functional activity in the entire cortex of monkeys (Macaca mulatta) which observed the experimenter performing non-goal-directed (purposeless) forelimb movements towards an object that was previously presented but no longer visible. Thus, our monkeys were exposed to the view of an object, a moving arm and a static hand with extended wrist and fingers. The distribution of metabolic activity was analyzed in 20μm thick brain sections, and two dimensional maps were reconstructed in the occipital operculum, the temporal, the lateral and medial parietal, the lateral and medial frontal, the lateral prefrontal and orbitofrontal cortices, including the cortex within the lunate, superior temporal, lateral, parietoccipital, intraparietal, central, arcuate and principal sulci. Increased metabolic activity, as compared to fixation-control monkeys, was measured in the forelimb representation of the primary motor and somatosensory cortices, the premotor cortices F2 and F5, cingulate motor areas, the secondary somatosensory cortex SII, the posterior intraparietal area 5 and areas TPOc and FST, in the hemisphere contralateral to the moving arm. Moreover, bilateral activations were elicited in areas pre-SMA, 8m, SSA and the somatorecipient area VS, the retroinsula, the auditory belt area CM, motion areas MT, MST, LOP/CIP, area 31, visual areas TEO, V6, V6Av and the parafoveal and peripheral visual representations of areas V1 and V2, respectively. Few parietal, auditory and visual areas were bilaterally depressed. In brief, a surprisingly wide

  15. [Thalamo-cortical system and consciousness].

    PubMed

    Fernández de Molina y Cañas, A

    2000-01-01

    After reviewing the concept of the specific and non specific thalamo-cortical systems, the connectivity of the relay and intralaminar nuclei is analyzed as well as the recent data concerning the chemical identity of thalamic neurones, the concept and distribution of "matrix" and "core" neurones and its functional role. The intrinsic electrical properties of thalamic neurones, its mode of discharge--depending of the membrane potential level--and its functional significance in the context of the brain's global activity are discussed. Of special interest are the studies on the effects of lesion of the relay and intralaminar nuclei as well as its repercussion in the interpretation of the sensory perception. After intralaminar nuclei lesion the individual is not aware of the nformation conveyed through the specific channels. It follows a discussion on the importance of the temporal and spatial mapping in the elaboration of perception and cognition. Due to the intrinsic electrical properties and the connectivity of thalamic neurones two groups of corticothalamic loops are generated, which resonate at a frequency of 40 Hz. The specific thalamo-cortical loops give the content of cognition and the no specific loop, the temporal binding required for the unity of the cognitive experience. Consciousness is then, a product of the resonant thalamo-cortical activity, and the dialogue between the thalamus and cortex, the process that generates subjectivity, the unique experience we all recognized as the existence of the "self".

  16. Negative Correlations in Visual Cortical Networks

    PubMed Central

    Chelaru, Mircea I.; Dragoi, Valentin

    2016-01-01

    The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function. PMID:25217468

  17. Computational modeling of epidural cortical stimulation

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  18. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    SciTech Connect

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.

  19. Multichannel sparse deconvolution of seismic data with shearlet–Cauchy constrained inversion

    NASA Astrophysics Data System (ADS)

    Liu, Chengming; Wang, Deli; Wang, Tong; Feng, Fei; Wang, Yonggang

    2017-10-01

    Multiscale and multidirectional transforms were introduced to represent non-spiky reflectivity instead of assuming spiky reflectivity in the deconvolution problem. The study found that an alternative sparse shearlet coefficient can be used to accurately represent the non-spiky reflectivity and solve the problem in a multichannel way. Such non-spiky reflectivity can help in avoiding the loss of weak reflection events, which is likely to occur in conventional methods due to over sparse constraints on spiky reflectivity. Moreover, compared to single-trace deconvolution methods, the multichannel method can enhance the continuity of reflection events and suppress high-frequency noise in the deconvolved data. Seismic inversion is usually considered an ill-conditioned problem because even very low-level noise can cause large errors in results, and normally requires the regularization of deconvolution operators. In this study, we propose the multichannel sparse deconvolution of seismic data with shearlet–Cauchy constrained inversion. Firstly, a stable method enabling accurate reflectivity estimation was developed based on maximum a posteriori estimation in Bayesian statistics. Then sparse shearlet coefficients are used to represent non-spiky reflectivity. According to the different distributions of noise and signal in the shearlet domain, thresholding methods can be used to suppress noise and increase the noise resistance of the proposed method. A comparison of synthetic data with field seismic data demonstrated the validity of the proposed method.

  20. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    PubMed

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks.

  1. Cognitive Plasticity and Cortical Modules.

    PubMed

    Mercado, Eduardo

    2009-06-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements.

  2. Cognitive Plasticity and Cortical Modules

    PubMed Central

    Mercado, Eduardo

    2009-01-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements. PMID:19750239

  3. Blind source separation by sparse decomposition

    NASA Astrophysics Data System (ADS)

    Zibulevsky, Michael; Pearlmutter, Barak A.

    2000-04-01

    The blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. This situation is common, eg in acoustics, radio, and medical signal processing. We exploit the property of the sources to have a sparse representation in a corresponding signal dictionary. Such a dictionary may consist of wavelets, wavelet packets, etc., or be obtained by learning from a given family of signals. Starting from the maximum a posteriori framework, which is applicable to the case of more sources than mixtures, we derive a few other categories of objective functions, which provide faster and more robust computations, when there are an equal number of sources and mixtures. Our experiments with artificial signals and with musical sounds demonstrate significantly better separation than other known techniques.

  4. A scalable sparse eigensolver for petascale applications

    NASA Astrophysics Data System (ADS)

    Keceli, Murat; Zhang, Hong; Zapol, Peter; Dixon, David; Wagner, Albert

    2015-03-01

    Exploiting locality of chemical interactions and therefore sparsity is necessary to push the limits of quantum simulations beyond petascale. However, sparse numerical algorithms are known to have poor strong scaling. Here, we show that shift-and-invert parallel spectral transformations (SIPs) method can scale up to two-hundred thousand cores for density functional based tight-binding (DFTB), or semi-empirical molecular orbital (SEMO) applications. We demonstrated the robustness and scalability of the SIPs method on various kinds of systems including metallic carbon nanotubes, diamond crystals and water clusters. We analyzed how sparsity patterns and eigenvalue spectrums of these different type of applications affect the computational performance of the SIPs. The SIPs method enables us to perform simulations with more than five hundred thousands of basis functions utilizing more than hundreds of thousands of cores. SIPs has a better scaling for memory and computational time in contrast to dense eigensolvers, and it does not require fast interconnects.

  5. Predicting structure in nonsymmetric sparse matrix factorizations

    SciTech Connect

    Gilbert, J.R.; Ng, E.G.

    1992-10-01

    Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.

  6. Predicting structure in nonsymmetric sparse matrix factorizations

    SciTech Connect

    Gilbert, J.R.; Ng, E.

    1991-12-31

    Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.

  7. Predicting structure in nonsymmetric sparse matrix factorizations

    SciTech Connect

    Gilbert, J.R. ); Ng, E. )

    1991-01-01

    Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.

  8. Preserving sparseness in multivariate polynominal factorization

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1977-01-01

    Attempts were made to factor these ten polynomials on MACSYMA. However it did not get very far with any of the larger polynomials. At that time, MACSYMA used an algorithm created by Wang and Rothschild. This factoring algorithm was also implemented for the symbolic manipulation system, SCRATCHPAD of IBM. A closer look at this old factoring algorithm revealed three problem areas, each of which contribute to losing sparseness and intermediate expression growth. This study led to effective ways of avoiding these problems and actually to a new factoring algorithm. The three problems are known as the extraneous factor problem, the leading coefficient problem, and the bad zero problem. These problems are examined separately. Their causes and effects are set forth in detail; the ways to avoid or lessen these problems are described.

  9. Predicting structure in nonsymmetric sparse matrix factorizations

    SciTech Connect

    Gilbert, J.R. ); Ng, E.G. )

    1992-10-01

    Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.

  10. Surface reconstruction from sparse fringe contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-08-10

    A new approach for reconstruction of 3D surfaces from 2D cross-sectional contours is presented. By using the so-called ''Equal Importance Criterion,'' we reconstruct the surface based on the assumption that every point in the region contributes equally to the surface reconstruction process. In this context, the problem is formulated in terms of a partial differential equation (PDE), and we show that the solution for dense contours can be efficiently derived from distance transform. In the case of sparse contours, we add a regularization term to insure smoothness in surface recovery. The proposed technique allows for surface recovery at any desired resolution. The main advantage of the proposed method is that inherent problems due to correspondence, tiling, and branching are avoided. Furthermore, the computed high resolution surface is better represented for subsequent geometric analysis. We present results on both synthetic and real data.

  11. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  12. Eigensolver for a Sparse, Large Hermitian Matrix

    NASA Technical Reports Server (NTRS)

    Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris

    2003-01-01

    A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).

  13. Bayesian learning of sparse multiscale image representations.

    PubMed

    Hughes, James Michael; Rockmore, Daniel N; Wang, Yang

    2013-12-01

    Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both orthogonal decompositions such as wavelets as well as nonorthogonal, overcomplete representations. Recently, techniques for finding adaptive, sparse representations have yielded state-of-the-art results when applied to traditional image processing problems. Attempts at developing multiscale versions of these so-called dictionary learning models have yielded modest but encouraging results. However, none of these techniques has sought to combine a rigorous statistical formulation of the multiscale dictionary learning problem and the ability to share atoms across scales. We present a model for multiscale dictionary learning that overcomes some of the drawbacks of previous approaches by first decomposing an input into a pyramid of distinct frequency bands using a recursive filtering scheme, after which we perform dictionary learning and sparse coding on the individual levels of the resulting pyramid. The associated image model allows us to use a single set of adapted dictionary atoms that is shared--and learned--across all scales in the model. The underlying statistical model of our proposed method is fully Bayesian and allows for efficient inference of parameters, including the level of additive noise for denoising applications. We apply the proposed model to several common image processing problems including non-Gaussian and nonstationary denoising of real-world color images.

  14. Using sparse photometric data sets for asteroid lightcurve studies

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.; Harris, Alan W.

    2011-12-01

    With the advent of wide-field imagers, it has become possible to conduct a photometric lightcurve survey of many asteroids simultaneously, either for that single purpose (e.g., Dermawan, B., Nakamura, T., Yoshida, F. [2011]. Publ. Astron. Soc. Japan 63, S555-S576; Masiero, J., Jedicke, R., Ďurech, J., Gwyn, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145-171), or as a part of a multipurpose survey (e.g., Pan-STARRS, LSST). Such surveys promise to yield photometric data for many thousands of asteroids, but these data sets will be “sparse” compared to most of those taken in a “targeted” mode directed to one asteroid at a time. We consider the potential limitations of sparse data sets using different sampling rates with respect to specific research questions that might be addressed with lightcurve data. For our study we created synthetic sparse data sets similar to those from wide-field surveys by generating more than 380,000 individual lightcurves that were combined into more than 47,000 composite lightcurves. The variables in generating the data included the number of observations per night, number of nights, noise, and the intervals between observations and nights, in addition to periods ranging from 0.1 to 400 h and amplitudes ranging from 0.1 to 2.0 mag. A Fourier analysis pipeline was used to find the period for each composite lightcurve and then review the derived period and period spectrum to gauge how well an automated analysis of sparse data sets would perform in finding the true period. For this part of the analysis, a normally distributed noise level of 0.03 mag was added to the data, regardless of amplitude, thus simulating a relatively high SNR for the observations. For the second part of the analysis, a smaller set of composite curves was generated with fixed core parameters of eight observations per night, 8 nights within a 14-day span, periods ranging from 2 to 6 h, and an amplitude of either 0.3 mag or 0.4 mag. Individual data sets using

  15. The influence of natural scene dynamics on auditory cortical activity.

    PubMed

    Chandrasekaran, Chandramouli; Turesson, Hjalmar K; Brown, Charles H; Ghazanfar, Asif A

    2010-10-20

    The efficient cortical encoding of natural scenes is essential for guiding adaptive behavior. Because natural scenes and network activity in cortical circuits share similar temporal scales, it is necessary to understand how the temporal structure of natural scenes influences network dynamics in cortical circuits and spiking output. We examined the relationship between the structure of natural acoustic scenes and its impact on network activity [as indexed by local field potentials (LFPs)] and spiking responses in macaque primary auditory cortex. Natural auditory scenes led to a change in the power of the LFP in the 2-9 and 16-30 Hz frequency ranges relative to the ongoing activity. In contrast, ongoing rhythmic activity in the 9-16 Hz range was essentially unaffected by the natural scene. Phase coherence analysis showed that scene-related changes in LFP power were at least partially attributable to the locking of the LFP and spiking activity to the temporal structure in the scene, with locking extending up to 25 Hz for some scenes and cortical sites. Consistent with distributed place and temporal coding schemes, a key predictor of phase locking and power changes was the overlap between the spectral selectivity of a cortical site and the spectral structure of the scene. Finally, during the processing of natural acoustic scenes, spikes were locked to LFP phase at frequencies up to 30 Hz. These results are consistent with an idea that the cortical representation of natural scenes emerges from an interaction between network activity and stimulus dynamics.

  16. Cable energy function of cortical axons.

    PubMed

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-07-21

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  17. Cable energy function of cortical axons

    PubMed Central

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  18. Waves of consciousness: ongoing cortical patterns during binocular rivalry.

    PubMed

    Cosmelli, Diego; David, Olivier; Lachaux, Jean-Philippe; Martinerie, Jacques; Garnero, Line; Renault, Bernard; Varela, Francisco

    2004-09-01

    We present here ongoing patterns of distributed brain synchronous activity that correlate with the spontaneous flow of perceptual dominance during binocular rivalry. Specific modulation of the magnetoencephalographic (MEG) response evoked during conscious perception of a frequency-tagged stimulus was evidenced throughout rivalry. Estimation of the underlying cortical sources revealed, in addition to strong bilateral striate and extrastriate visual cortex activation, parietal, temporal pole and frontal contributions. Cortical activity was significantly modulated concomitantly to perceptual alternations in visual cortex, medial parietal and left frontal regions. Upon dominance, coactivation of occipital and frontal regions, including anterior cingulate and medial frontal areas, was established. This distributed cortical network, as measured by phase synchrony in the frequency tag band, was dynamically modulated in concert with the perceptual dominance of the tagged stimulus. While the anteroposterior pattern was recurrent through subjects, individual variations in the extension of the network were apparent.

  19. Sparse source configurations in radio tomography of asteroids

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2014-07-01

    Our research targets at progress in non-invasive imaging of asteroids to support future planetary research and extra-terrestrial mining activities. This presentation concerns principally radio tomography in which the permittivity distribution inside an asteroid is to be recovered based on the radio frequency signal transmitted from the asteroid's surface and gathered by an orbiter. The focus will be on a sparse distribution (Pursiainen and Kaasalainen, 2013) of signal sources that can be necessary in the challenging in situ environment and within tight payload limits. The general goal in our recent research has been to approximate the minimal number of source positions needed for robust localization of anomalies caused, for example, by an internal void. Characteristic to the localization problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), meaning that a signal path can include strong refractions and reflections. This presentation introduces results of a laboratory experiment in which real travel time data was inverted using a hierarchical Bayesian approach combined with the iterative alternating sequential (IAS) posterior exploration algorithm. Special interest was paid to robustness of the inverse results regarding changes of the prior model and source positioning. According to our results, strongly refractive anomalies can be detected with three or four sources independently of their positioning.

  20. Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves.

    PubMed

    Xu, Kailiang; Minonzio, Jean-Gabriel; Ta, Dean; Hu, Bo; Wang, Weiqi; Laugier, Pascal

    2016-10-01

    The 2-D Fourier transform analysis of multichannel signals is a straightforward method to extract the dispersion curves of guided modes. Basically, the time signals recorded at several positions along the waveguide are converted to the wavenumber-frequency space, so that the dispersion curves (i.e., the frequency-dependent wavenumbers) of the guided modes can be extracted by detecting peaks of energy trajectories. In order to improve the dispersion curve extraction of low-amplitude modes propagating in a cortical bone, a multiemitter and multireceiver transducer array has been developed together with an effective singular vector decomposition (SVD)-based signal processing method. However, in practice, the limited number of positions where these signals are recorded results in a much lower resolution in the wavenumber axis than in the frequency axis. This prevents a clear identification of overlapping dispersion curves. In this paper, a sparse SVD (S-SVD) method, which combines the signal-to-noise ratio improvement of the SVD-based approach with the high wavenumber resolution advantage of the sparse optimization, is presented to overcome the above-mentioned limitation. Different penalty constraints, i.e., l1 -norm, Frobenius norm, and revised Cauchy norm, are compared with the sparse characteristics. The regularization parameters are investigated with respect to the convergence property and wavenumber resolution. The proposed S-SVD method is investigated using synthetic wideband signals and experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. The analysis of the results suggests that the S-SVD method has the potential to significantly enhance the wavenumber resolution and to improve the extraction of the dispersion curves.

  1. Subthreshold membrane responses underlying sparse spiking to natural vocal signals in auditory cortex

    PubMed Central

    Perks, Krista Eva; Gentner, Timothy Q.

    2015-01-01

    Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spectro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are largely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where single neurons show sparse, object-selective spiking responses to conspecific songs. Using whole-cell in-vivo patch clamp techniques in the caudal mesopallium and the caudal nidopallium of starlings, we examine song-driven subthreshold and spiking activity. We find that both the subthreshold and the spiking activity are reliable (i.e., the same song drives a similar response each time it is presented) and specific (i.e. responses to different songs are distinct). Surprisingly, however, the reliability and specificity of the sub-threshold response was uniformly high regardless of when the cell spiked, even for song stimuli that drove no spikes. We conclude that despite a selective and sparse spiking response, high-level auditory cortical neurons are under continuous, non-selective, stimulus-specific synaptic control. To investigate the role of local network inhibition in this synaptic control, we then recorded extracellularly while pharmacologically blocking local GABA-ergic transmission. This manipulation modulated the strength and the reliability of stimulus-driven spiking, consistent with a role for local inhibition in regulating the reliability of network activity and the stimulus specificity of the subthreshold response in single cells. We discuss these results in the context of underlying computations that could generate sparse, stimulus-selective spiking responses, and models for hierarchical pooling. PMID:25728189

  2. Analysis of Cortical Flow Models In Vivo

    PubMed Central

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  3. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging.

    PubMed

    Mainero, Caterina; Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Nielsen, A Scott; Cohen-Adad, Julien; Sloane, Jacob; Kinkel, Revere P

    2015-04-01

    We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤ 3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥ 4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients' normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10(-10) and P < 10(-7)), and mean

  4. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging

    PubMed Central

    Louapre, Céline; Govindarajan, Sindhuja T.; Giannì, Costanza; Nielsen, A. Scott; Cohen-Adad, Julien; Sloane, Jacob; Kinkel, Revere P.

    2015-01-01

    We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients’ normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10−10 and P < 10−7), and mean

  5. Cortical and trabecular load sharing in the human femoral neck.

    PubMed

    Nawathe, Shashank; Nguyen, Bich Phuong; Barzanian, Nasim; Akhlaghpour, Hosna; Bouxsein, Mary L; Keaveny, Tony M

    2015-03-18

    The relative role of the cortical vs trabecular bone in the load-carrying capacity of the proximal femur-a fundamental issue in both basic-science and clinical biomechanics-remains unclear. To gain insight into this issue, we performed micro-CT-based, linear elastic finite element analysis (61.5-micron-sized elements; ~280 million elements per model) on 18 proximal femurs (5M, 13F, ages 61-93 years) to quantify the fraction of frontal-plane bending moment shared by the cortical vs trabecular bone in the femoral neck, as well as the associated spatial distributions of stress. Analyses were performed separately for a sideways fall and stance loading. For both loading modes and across all 18 bones, we found consistent patterns of load-sharing in the neck: most proximally, the trabecular bone took most of the load; moving distally, the cortical bone took increasingly more of the load; and more distally, there was a region of uniform load-sharing, the cortical bone taking the majority of the load. This distal region of uniform load-sharing extended more for fall than stance loading (77 ± 8% vs 51 ± 6% of the neck length for fall vs. stance; mean ± SD) but the fraction of total load taken by the cortical bone in that region was greater for stance loading (88 ± 5% vs. 64 ± 9% for stance vs. fall). Locally, maximum stress levels occurred in the cortical bone distally, but in the trabecular bone proximally. Although the distal cortex showed qualitative stress distributions consistent with the behavior of an Euler-type beam, quantitatively beam theory did not apply. We conclude that consistent and well-delineated regions of uniform load-sharing and load-transfer between the cortical and trabecular bone exist within the femoral neck, the details of which depend on the external loading conditions.

  6. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2016-01-01

    Recently, neuroimaging-based Alzheimer’s disease (AD) or mild cognitive impairment (MCI) diagnosis has attracted researchers in the field, due to the increasing prevalence of the diseases. Unfortunately, the unfavorable high-dimensional nature of neuroimaging data, but a limited small number of samples available, makes it challenging to build a robust computer-aided diagnosis system. Machine learning techniques have been considered as a useful tool in this respect and, among various methods, sparse regression has shown its validity in the literature. However, to our best knowledge, the existing sparse regression methods mostly try to select features based on the optimal regression coefficients in one step. We argue that since the training feature vectors are composed of both informative and uninformative or less informative features, the resulting optimal regression coefficients are inevidently affected by the uninformative or less informative features. To this end, we first propose a novel deep architecture to recursively discard uninformative features by performing sparse multi-task learning in a hierarchical fashion. We further hypothesize that the optimal regression coefficients reflect the relative importance of features in representing the target response variables. In this regard, we use the optimal regression co-efficients learned in one hierarchy as feature weighting factors in the following hierarchy, and formulate a weighted sparse multi-task learning method. Lastly, we also take into account the distributional characteristics of samples per class and use clustering-induced subclass label vectors as target response values in our sparse regression model. In our experiments on the ADNI cohort, we performed both binary and multi-class classification tasks in AD/MCI diagnosis and showed the superiority of the proposed method by comparing with the state-of-the-art methods. PMID:25993900

  7. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2016-06-01

    Recently, neuroimaging-based Alzheimer's disease (AD) or mild cognitive impairment (MCI) diagnosis has attracted researchers in the field, due to the increasing prevalence of the diseases. Unfortunately, the unfavorable high-dimensional nature of neuroimaging data, but a limited small number of samples available, makes it challenging to build a robust computer-aided diagnosis system. Machine learning techniques have been considered as a useful tool in this respect and, among various methods, sparse regression has shown its validity in the literature. However, to our best knowledge, the existing sparse regression methods mostly try to select features based on the optimal regression coefficients in one step. We argue that since the training feature vectors are composed of both informative and uninformative or less informative features, the resulting optimal regression coefficients are inevidently affected by the uninformative or less informative features. To this end, we first propose a novel deep architecture to recursively discard uninformative features by performing sparse multi-task learning in a hierarchical fashion. We further hypothesize that the optimal regression coefficients reflect the relative importance of features in representing the target response variables. In this regard, we use the optimal regression coefficients learned in one hierarchy as feature weighting factors in the following hierarchy, and formulate a weighted sparse multi-task learning method. Lastly, we also take into account the distributional characteristics of samples per class and use clustering-induced subclass label vectors as target response values in our sparse r