Science.gov

Sample records for cortico-basal ganglionic degeneration

  1. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography.

    PubMed Central

    Eidelberg, D; Dhawan, V; Moeller, J R; Sidtis, J J; Ginos, J Z; Strother, S C; Cederbaum, J; Greene, P; Fahn, S; Powers, J M

    1991-01-01

    Regional metabolic rate for glucose (rCMRGlc) was estimated using [18F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) in five patients (four men, one woman; mean age 68; mean disease duration 2.4 years) with clinical findings consistent with the syndrome of cortico-basal ganglionic degeneration (CBGD). Left-right rCMRGlc asymmetry, (L-R)/(L + R) x 100, was calculated for 13 grey matter regions and compared with regional metabolic data from 18 normal volunteers and nine patients with asymmetrical Parkinson's disease (PD). In the CBGD group mean metabolic asymmetry values in the thalamus, inferior parietal lobule and hippocampus were greater than those measured in normal control subjects and patients with asymmetrical PD (p less than 0.02). Parietal lobe asymmetry of 5% or more was evident in all CBGD patients, whereas in PD patients and normal controls, all regional asymmetry measures were less than 5% in absolute value. Measures of frontal, parietal and hemispheric metabolic asymmetry were found to be positively correlated with asymmetries in thalamic rCMRGlc (p less than 0.05). The presence of cortico-thalamic metabolic asymmetry is consistent with the focal neuropathological changes reported in CBGD brains. Our findings suggest that metabolic asymmetries detected with FDG/PET may support a diagnosis of CBGD in life. Images PMID:1744638

  2. Transcranial Magnetic Stimulation (TMS) as a Tool for Early Diagnosis and Prognostication in Cortico-Basal Ganglia Degeneration (CBD) Syndromes: Review of Literature and Case Report

    PubMed Central

    Issac, Thomas Gregor; Chandra, Sadanandavalli Retnaswami; Nagaraju, B. C.

    2016-01-01

    Background: Cortico basal degeneration (CBD) of the brain is a rare progressive neurodegenerative disease which encompasses unique neuropsychiatric manifestations. Early diagnosis is essential for initiating proper treatment and favorable outcome. Transcranial Magnetic Stimulation (TMS), a well-known technique for assessment of cortical excitatory and inhibitory properties. It was suggested that in a degenerative disease like CBD which involves the cortex as well as the subcortical structures, comparing both hemispheres, a differential pattern in TMS can be obtained which would help in early identification, prognostication and early therapeutic intervention. Case Report: We describe a case of CBD with corroborative clinical and imaging picture wherein single pulse TMS was used over both the hemispheres measuring the following parameters of interest which included: Motor Threshold (MT), Central Motor Conduction Time (CMCT) and Silent Period (SP). Results and Conclusion: Differential patterns of MT, CMCT and SP was obtained by stimulating over both the hemispheres with the affected hemisphere showing significantly reduced MT and prolonged CMCT implying early impairment of cortical and subcortical structures thereby revealing the potential application of TMS being utilized in a novel way for early detection and prognostication in CBD syndromes. PMID:27011412

  3. Transcranial Magnetic Stimulation (TMS) as a Tool for Early Diagnosis and Prognostication in Cortico-Basal Ganglia Degeneration (CBD) Syndromes: Review of Literature and Case Report.

    PubMed

    Issac, Thomas Gregor; Chandra, Sadanandavalli Retnaswami; Nagaraju, B C

    2016-01-01

    Cortico basal degeneration (CBD) of the brain is a rare progressive neurodegenerative disease which encompasses unique neuropsychiatric manifestations. Early diagnosis is essential for initiating proper treatment and favorable outcome. Transcranial Magnetic Stimulation (TMS), a well-known technique for assessment of cortical excitatory and inhibitory properties. It was suggested that in a degenerative disease like CBD which involves the cortex as well as the subcortical structures, comparing both hemispheres, a differential pattern in TMS can be obtained which would help in early identification, prognostication and early therapeutic intervention. We describe a case of CBD with corroborative clinical and imaging picture wherein single pulse TMS was used over both the hemispheres measuring the following parameters of interest which included: Motor Threshold (MT), Central Motor Conduction Time (CMCT) and Silent Period (SP). Differential patterns of MT, CMCT and SP was obtained by stimulating over both the hemispheres with the affected hemisphere showing significantly reduced MT and prolonged CMCT implying early impairment of cortical and subcortical structures thereby revealing the potential application of TMS being utilized in a novel way for early detection and prognostication in CBD syndromes.

  4. Changes in ganglion cells during retinal degeneration.

    PubMed

    Saha, Susmita; Greferath, Ursula; Vessey, Kirstan A; Grayden, David B; Burkitt, Anthony N; Fletcher, Erica L

    2016-08-04

    Inherited retinal degeneration such as retinitis pigmentosa (RP) is associated with photoreceptor loss and concomitant morphological and functional changes in the inner retina. It is not known whether these changes are associated with changes in the density and distribution of synaptic inputs to retinal ganglion cells (RGCs). We quantified changes in ganglion cell density in rd1 and age-matched C57BL/6J-(wildtype, WT) mice using the immunocytochemical marker, RBPMS. Our data revealed that following complete loss of photoreceptors, (∼3months of age), there was a reduction in ganglion cell density in the peripheral retina. We next examined changes in synaptic inputs to A type ganglion cells by performing double labeling experiments in mice with the ganglion cell reporter lines, rd1-Thy1 and age-matched wildtype-Thy1. Ribbon synapses were identified by co-labelling with CtBP2 (RIBEYE) and conventional synapses with the clustering molecule, gephyrin. ON RGCs showed a significant reduction in RIBEYE-immunoreactive synapse density while OFF RGCs showed a significant reduction in the gephyrin-immmunoreactive synapse density. Distribution patterns of both synaptic markers across the dendritic trees of RGCs were unchanged. The change in synaptic inputs to RGCs was associated with a reduction in the number of immunolabeled rod bipolar and ON cone bipolar cells. These results suggest that functional changes reported in ganglion cells during retinal degeneration could be attributed to loss of synaptic inputs. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Humanized Foxp2 specifically affects cortico-basal ganglia circuits.

    PubMed

    Reimers-Kipping, S; Hevers, W; Pääbo, S; Enard, W

    2011-02-23

    It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution and influence aspects of speech and language. Recently it was shown that when these substitutions are introduced into the endogenous Foxp2 gene of mice, they increase dendrite length and long-term depression (LTD) in medium spiny neurons of the striatum. Here we investigated if these effects are found in other brain regions. We found that neurons in the cerebral cortex, the thalamus and the striatum have increased dendrite lengths in the humanized mice whereas neurons in the amygdala and the cerebellum do not. In agreement with previous work we found increased LTD in medium spiny neurons, but did not detect alterations of synaptic plasticity in Purkinje cells. We conclude that although Foxp2 is expressed in many brain regions and has multiple roles during mammalian development, the evolutionary changes that occurred in the protein in human ancestors specifically affect brain regions that are connected via cortico-basal ganglia circuits.

  6. Voluntary saccade inhibition deficits correlate with extended white-matter cortico-basal atrophy in Huntington's disease.

    PubMed

    Vaca-Palomares, Israel; Coe, Brian C; Brien, Donald C; Munoz, Douglas P; Fernandez-Ruiz, Juan

    2017-01-01

    The ability to inhibit automatic versus voluntary saccade commands in demanding situations can be impaired in neurodegenerative diseases such as Huntington's disease (HD). These deficits could result from disruptions in the interaction between basal ganglia and the saccade control system. To investigate voluntary oculomotor control deficits related to the cortico-basal circuitry, we evaluated early HD patients using an interleaved pro- and anti-saccade task that requires flexible executive control to generate either an automatic response (look at a peripheral visual stimulus) or a voluntary response (look away from the stimulus in the opposite direction). The impairments of HD patients in this task are mainly attributed to degeneration in the striatal medium spiny neurons leading to an over-activation of the indirect-pathway thorough the basal ganglia. However, some studies have proposed that damage outside the indirect-pathway also contribute to executive and saccade deficits. We used the interleaved pro- and anti-saccade task to study voluntary saccade inhibition deficits, Voxel-based morphometry and Tract-based spatial statistic to map cortico-basal ganglia circuitry atrophy in HD. HD patients had voluntary saccade inhibition control deficits, including increased regular-latency anti-saccade errors and increased anticipatory saccades. These deficits correlated with white-matter atrophy in the inferior fronto-occipital fasciculus, anterior thalamic radiation, anterior corona radiata and superior longitudinal fasciculus. These findings suggest that cortico-basal ganglia white-matter atrophy in HD, disrupts the normal connectivity in a network controlling voluntary saccade inhibitory behavior beyond the indirect-pathway. This suggests that in vivo measures of white-matter atrophy can be a reliable marker of the progression of cognitive deficits in HD.

  7. Neural representation of a target auditory memory in a cortico-basal ganglia pathway.

    PubMed

    Achiro, Jennifer M; Bottjer, Sarah W

    2013-09-04

    Vocal learning in songbirds, like speech acquisition in humans, entails a period of sensorimotor integration during which vocalizations are evaluated via auditory feedback and progressively refined to achieve an imitation of memorized vocal sounds. This process requires the brain to compare feedback of current vocal behavior to a memory of target vocal sounds. We report the discovery of two distinct populations of neurons in a cortico-basal ganglia circuit of juvenile songbirds (zebra finches, Taeniopygia guttata) during vocal learning: (1) one in which neurons are selectively tuned to memorized sounds and (2) another in which neurons are selectively tuned to self-produced vocalizations. These results suggest that neurons tuned to learned vocal sounds encode a memory of those target sounds, whereas neurons tuned to self-produced vocalizations encode a representation of current vocal sounds. The presence of neurons tuned to memorized sounds is limited to early stages of sensorimotor integration: after learning, the incidence of neurons encoding memorized vocal sounds was greatly diminished. In contrast to this circuit, neurons known to drive vocal behavior through a parallel cortico-basal ganglia pathway show little selective tuning until late in learning. One interpretation of these data is that representations of current and target vocal sounds in the shell circuit are used to compare ongoing patterns of vocal feedback to memorized sounds, whereas the parallel core circuit has a motor-related role in learning. Such a functional subdivision is similar to mammalian cortico-basal ganglia pathways in which associative-limbic circuits mediate goal-directed responses, whereas sensorimotor circuits support motor aspects of learning.

  8. Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia.

    PubMed

    Cordon, Ivan; Nicolás, María Jesús; Arrieta, Sandra; Lopetegui, Eneko; López-Azcárate, Jon; Alegre, Manuel; Artieda, Julio; Valencia, Miguel

    2015-08-01

    Recent studies have suggested the implication of the basal ganglia in the pathogenesis of schizophrenia. To investigate this hypothesis, here we have used the ketamine model of schizophrenia to determine the oscillatory abnormalities induced in the rat motor circuit of the basal ganglia. The activity of free moving rats was recorded in different structures of the cortico-basal ganglia circuit before and after an injection of a subanesthesic dose of ketamine (10mg/kg). Spectral estimates of the oscillatory activity, phase-amplitude cross-frequency coupling interactions (CFC) and imaginary event-related coherence together with animals׳ behavior were analyzed. Oscillatory patterns in the cortico-basal ganglia circuit were highly altered by the effect of ketamine. CFC between the phases of low-frequency activities (delta, 1-4; theta 4-8Hz) and the amplitude of high-gamma (~80Hz) and high-frequency oscillations (HFO) (~150Hz) increased dramatically and correlated with the movement increment shown by the animals. Between-structure analyses revealed that ketamine had also a massive effect in the low-frequency mediated synchronization of the HFO's across the whole circuit. Our findings suggest that ketamine administration results in an aberrant hypersynchronization of the whole cortico-basal circuit where the tandem theta/HFO seems to act as the main actor in the hyperlocomotion shown by the animals. Here we stress the importance of the basal ganglia circuitry in the ketamine model of schizophrenia and leave the door open to further investigations devoted to elucidate to what extent these abnormalities also reflect the prominent neurophysiological deficits observed in schizophrenic patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  9. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs.

    PubMed

    Gremel, C M; Lovinger, D M

    2017-01-01

    The mammalian forebrain is characterized by the presence of several parallel cortico-basal ganglia circuits that shape the learning and control of actions. Among these are the associative, limbic and sensorimotor circuits. The function of all of these circuits has now been implicated in responses to drugs of abuse, as well as drug seeking and drug taking. While the limbic circuit has been most widely examined, key roles for the other two circuits in control of goal-directed and habitual instrumental actions related to drugs of abuse have been shown. In this review we describe the three circuits and effects of acute and chronic drug exposure on circuit physiology. Our main emphasis is on drug actions in dorsal striatal components of the associative and sensorimotor circuits. We then review key findings that have implicated these circuits in drug seeking and taking behaviors, as well as drug use disorders. Finally, we consider different models describing how the three cortico-basal ganglia circuits become involved in drug-related behaviors. This topic has implications for drug use disorders and addiction, as treatments that target the balance between the different circuits may be useful for reducing excessive substance use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice.

    PubMed

    Enard, Wolfgang; Gehre, Sabine; Hammerschmidt, Kurt; Hölter, Sabine M; Blass, Torsten; Somel, Mehmet; Brückner, Martina K; Schreiweis, Christiane; Winter, Christine; Sohr, Reinhard; Becker, Lore; Wiebe, Victor; Nickel, Birgit; Giger, Thomas; Müller, Uwe; Groszer, Matthias; Adler, Thure; Aguilar, Antonio; Bolle, Ines; Calzada-Wack, Julia; Dalke, Claudia; Ehrhardt, Nicole; Favor, Jack; Fuchs, Helmut; Gailus-Durner, Valérie; Hans, Wolfgang; Hölzlwimmer, Gabriele; Javaheri, Anahita; Kalaydjiev, Svetoslav; Kallnik, Magdalena; Kling, Eva; Kunder, Sandra; Mossbrugger, Ilona; Naton, Beatrix; Racz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Schrewe, Anja; Busch, Dirk H; Graw, Jochen; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Quintanilla-Martinez, Leticia; Schulz, Holger; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fisher, Simon E; Morgenstern, Rudolf; Arendt, Thomas; de Angelis, Martin Hrabé; Fischer, Julia; Schwarz, Johannes; Pääbo, Svante

    2009-05-29

    It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.

  11. Ultrastructural localization of calcyon in the primate cortico-basal ganglia-thalamocortical loop.

    PubMed

    Négyessy, László; Bergson, Clare; Garab, Sándor; Simon, László; Goldman-Rakic, Patricia S

    2008-07-25

    Recent observations suggest that calcyon, a novel single transmembrane protein implicated in schizophrenia and attention-deficit/hyperactivity disorder, regulates clathrin-mediated endocytosis in brain. To explore the role of calcyon in neurotransmission, we investigated its distribution in the neuropil of the primate prefrontal cortex (PFC), striatum (STR) and mediodorsal thalamic nucleus (MD), three brain regions implicated in these neuropsychiatric disorders. Calcyonimmunoreactivity revealed by immunoperoxidase technique, was localized in both pre- and postsynaptic structures including axons, spines and dendrites, as well as myelinated fibers and astroglial processes in all the three brain regions. The morphological diversity of immunopositive boutons suggest that in addition to glutamatergic, calcyon could regulate GABAergic as well as monoaminergic neurotransmission. Consistent with the role of calcyon in endocytosis, calcyon-immunoreactivity was rarely found at the synaptic membrane specializations proper, although it was present in distal compartments of neuronal processes establishing synapses. Given the widespread upregulation of calcyon in schizophrenic brain, these findings underscore a potential association with deficits in a range of neurotransmitter systems in the cortico-basal ganglia-thalamic loop.

  12. Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training.

    PubMed

    Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-06-02

    Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training.

  13. Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training

    PubMed Central

    Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training. PMID:26035693

  14. Overlapping connections within the motor cortico-basal ganglia circuit: fMRI-tractography analysis.

    PubMed

    Oguri, Takuya; Sawamoto, Nobukatsu; Tabu, Hayato; Urayama, Shin-ichi; Matsuhashi, Masao; Matsukawa, Noriyuki; Ojika, Kosei; Fukuyama, Hidenao

    2013-09-01

    Contribution of the subcortical nuclei to the coordination of human behavior is dependent on the existence of appropriate anatomical architecture. Interpretations of available data have led to opposing 'information funneling' and 'parallel processing' hypotheses. Using motor circuit as a model, we examined whether cortico-subcortical circuits, especially cortico-basal ganglia circuits, are funneled or parallel in the control of volitional movement. Twenty-five healthy subjects underwent functional magnetic resonance imaging (fMRI). Activated clusters during self-initiated, sequential finger-to-thumb opposition movements of the left hand were identified in the bilateral supplementary motor area (SMA), right lateral premotor cortex (PM) and primary motor cortex (M1), and in the right striatum and thalamus. These functionally defined clusters were applied to probabilistic tractography based on diffusion-weighted MRI to examine patterns of connectivity. Striatal and thalamic sub-regions with high probabilities of connection to the motor cortices partially overlapped, with connection to the two premotor areas outspreading rostrally relative to M1. We suggest that, on a macroscopic anatomical level, there is overlap as well as segregation among connections of the motor cortices with the striatum and thalamus. This supports the notion that neuronal information of the motor cortices is funneled, and parallel processing is not an exclusive principle in the basal ganglia. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution.

    PubMed

    Marchand, William R; Lee, James N; Suchy, Yana; Garn, Cheryl; Johnson, Susanna; Wood, Nicole; Chelune, Gordon

    2011-03-01

    Normal human aging is associated with declining motor control and function. It is thought that dysfunction of the cortico-basal ganglia circuitry may contribute to age-related sensorimotor impairment, however the underlying mechanisms are poorly characterized. The aim of this study was to enhance our understanding of age-related changes in the functional architecture of these circuits. Fifty-nine subjects, consisting of a young, middle and old group, were studied using functional MRI and a motor activation paradigm. Functional connectivity analyses and examination of correlations of connectivity strength with performance on the activation task as well as neurocognitive tasks completed outside of magnet were conducted. Results indicated that increasing age is associated with changes in the functional architecture of the cortico-basal ganglia circuitry. Connectivity strength increased between subcortical nuclei and cortical motor and sensory regions but no changes were found between subcortical components of the circuitry. Further, increased connectivity was correlated with poorer performance on a neurocognitive task independently of age. This result suggests that increased connectivity reflects a decline in brain function rather than a compensatory process. These findings advance our understanding of the normal aging process. Further, the methods employed will likely be useful for future studies aimed at disambiguating age-related versus illness progression changes associated with neuropsychiatric disorders that involve the cortico-basal ganglia circuitry.

  16. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    PubMed Central

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  17. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    PubMed

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  18. Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates.

    PubMed

    Sgambato-Faure, Véronique; Worbe, Yulia; Epinat, Justine; Féger, Jean; Tremblay, Léon

    2016-01-01

    The ventral striatum (VS) is of particular interest in the study of neuropsychiatric disorders. In this study, performed on non-human primates, we associated local perturbation with monosynaptic axonal tracer injection into medial, central and lateral VS to characterize anatomo-functional circuits underlying the respective expression of sexual manifestations, stereotyped behaviors and hypoactive state associated with loss of food motivation. For the three behavioral effects, we demonstrated the existence of three distinct cortico-basal ganglia (BG) circuits that were topographically organized and overlapping at some cortical (orbitofrontal cortex, anterior cingulate cortex) and subcortical (caudal levels of BG) levels, suggesting interactions between motivation domains. Briefly, erection was associated with a circuit involving the orbitofrontal cortex, medial prefrontal cortex (areas 10, 11) and limbic parts of BG, i.e. medial parts of the pallidal complex and the substantia nigra pars reticulata (SNr). Stereotyped behavior was linked to a circuit involving the lateral orbitofrontal cortex (area 12/47) and limbic parts of the pallidal complex and of the SNr, while the apathetic state was underlined by a circuit involving not only the orbital and medial prefrontal cortex but also the lateral prefrontal cortex (area 8, 45), the anterior insula and the lateral parts of the medial pallidal complex and of the ventro-medial SNr. For the three behavioral effects, the cortico-BG circuits mainly involved limbic regions of the external and internal pallidum, as well as the limbic part of the substantia nigra pars reticulata (SNr), suggesting the involvement of both direct and indirect striatal pathways and both output BG structures. As these motivation disorders could still be induced in dopamine (DA)-depleted monkeys, we suggest that DA issued from the substantia nigra pars compacta (SNc) modulates their expression rather than causes them. Finally, this study may give some

  19. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    PubMed Central

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-01-01

    Objective Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells of both wild type mice and the rd10 mouse model of retinal degeneration. Main results Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance During degeneration, physiological changes in retinal ganglion cells affect the threshold stimulation currents required to evoke action potentials. PMID:26905177

  20. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  1. Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia

    PubMed Central

    Herro, Angela M; Lam, Byron L

    2015-01-01

    Background The aim of this study was to demonstrate the relationship between topographic reduction in macular ganglion cell complex (GCC) thickness as detected with spectral-domain optical coherence tomography and visual field defects caused by ischemic occipital cortical injury. Methods This study was a retrospective review of all patients who presented to our eye institution between January 2012 and July 2014 with visual field defects secondary to ischemic cortical injury. The visual field defect pattern and mean deviation were analyzed. Retinal nerve fiber layer (RNFL) and macular GCC were both assessed with spectral-domain optical coherence tomography. Patients with any ocular pathology that could affect these measurements were excluded. The topographic relationship of visual field defect to reduction in GCC was specifically analyzed. Results Nine patients met the inclusion criteria. Their average age was 65 (57–73) years; eight were men and six had right hemianopsias. The laterality of the visual field defect was used to assign an affected and unaffected side of analysis for RNFL and GCC layer thickness. A right hemianopsia meant that the nasal fibers of the right eye and temporal fibers of the left eye were assigned as the “affected side”, and the temporal fibers of the right eye and nasal fibers of the left eye were assigned as “unaffected”. There was no statistically significant difference between affected and unaffected RNFL. However, there was a significant difference in GCC layer reduction between the affected and unaffected sides (P=0.029). Conclusion There is evidence of retrograde trans-synaptic retinal ganglion cell loss in patients with homonymous hemianopsias from cortical visual impairment. This relationship is reflected in thinning of the GCC and maintains the topographic relationship of the visual field defect. PMID:26089638

  2. Degeneration and regeneration in the superior cervical sympathetic ganglion after Latrodectus venom.

    PubMed

    Daniel, S E

    1989-06-01

    The effects of the venom of the spider Latrodectus mactans hasselti on the superior cervical ganglion were studied in the guinea pig. Under anaesthesia the ganglion was bathed in venom solution for 15 min. Shortly afterwards animals salivated profusely and later developed unilateral ptosis and enophthalmos. Postoperative survival times ranged from 15 min to 10 weeks. Electron microscopy showed acute swelling of preganglionic cholinergic nerve terminals, followed by degeneration with separation of synapses. Other ganglionic elements appeared to be undamaged, although after detachment of synapses the dendritic postsynaptic specializations were reduced in number. Recovery was very rapid; axon growth cones were identifiable at 18 h and synapse reformation was well established by 2 weeks. With longer survival times there was progressive restoration of normal morphology such that by 8 weeks regeneration appeared complete. These experiments indicate that the preganglionic cholinergic nerve terminals are selectively affected by Latrodectus venom and have a considerable capacity for appropriate regeneration.

  3. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration.

    PubMed

    Gómez-Vicente, Violeta; Lax, Pedro; Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

  4. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  5. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.

    PubMed

    Morita, Kenji; Kato, Ayaka

    2014-01-01

    It has been suggested that the midbrain dopamine (DA) neurons, receiving inputs from the cortico-basal ganglia (CBG) circuits and the brainstem, compute reward prediction error (RPE), the difference between reward obtained or expected to be obtained and reward that had been expected to be obtained. These reward expectations are suggested to be stored in the CBG synapses and updated according to RPE through synaptic plasticity, which is induced by released DA. These together constitute the "DA=RPE" hypothesis, which describes the mutual interaction between DA and the CBG circuits and serves as the primary working hypothesis in studying reward learning and value-based decision-making. However, recent work has revealed a new type of DA signal that appears not to represent RPE. Specifically, it has been found in a reward-associated maze task that striatal DA concentration primarily shows a gradual increase toward the goal. We explored whether such ramping DA could be explained by extending the "DA=RPE" hypothesis by taking into account biological properties of the CBG circuits. In particular, we examined effects of possible time-dependent decay of DA-dependent plastic changes of synaptic strengths by incorporating decay of learned values into the RPE-based reinforcement learning model and simulating reward learning tasks. We then found that incorporation of such a decay dramatically changes the model's behavior, causing gradual ramping of RPE. Moreover, we further incorporated magnitude-dependence of the rate of decay, which could potentially be in accord with some past observations, and found that near-sigmoidal ramping of RPE, resembling the observed DA ramping, could then occur. Given that synaptic decay can be useful for flexibly reversing and updating the learned reward associations, especially in case the baseline DA is low and encoding of negative RPE by DA is limited, the observed DA ramping would be indicative of the operation of such flexible reward learning.

  6. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.

    PubMed

    Chersi, Fabian; Mirolli, Marco; Pezzulo, Giovanni; Baldassarre, Gianluca

    2013-05-01

    Dual-system theories postulate that actions are supported either by a goal-directed or by a habit-driven response system. Neuroimaging and anatomo-functional studies have provided evidence that the prefrontal cortex plays a fundamental role in the first type of action control, while internal brain areas such as the basal ganglia are more active during habitual and overtrained responses. Additionally, it has been shown that areas of the cortex and the basal ganglia are connected through multiple parallel "channels", which are thought to function as an action selection mechanism resolving competitions between alternative options available in a given context. In this paper we propose a multi-layer network of spiking neurons that implements in detail the thalamo-cortical circuits that are believed to be involved in action learning and execution. A key feature of this model is that neurons are organized in small pools in the motor cortex and form independent loops with specific pools of the basal ganglia where inhibitory circuits implement a multistep selection mechanism. The described model has been validated utilizing it to control the actions of a virtual monkey that has to learn to turn on briefly flashing lights by pressing corresponding buttons on a board. When the animal is able to fluently execute the task the button-light associations are remapped so that it has to suppress its habitual behavior in order to execute goal-directed actions. The model nicely shows how sensory-motor associations for action sequences are formed at the cortico-basal ganglia level and how goal-directed decisions may override automatic motor responses.

  7. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  8. Rescuing axons from degeneration does not affect retinal ganglion cell death

    PubMed Central

    de Lima, S.; Mietto, B.S.; Paula, C.; Muniz, T.; Martinez, A.M.B.; Gardino, P.F.

    2016-01-01

    After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage. PMID:27007653

  9. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation.

    PubMed

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S

    2015-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  10. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation

    PubMed Central

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S.

    2016-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  11. Degeneration stage-specific response pattern of retinal ganglion cell spikes in rd10 mouse retina.

    PubMed

    Park, D J; Senok, S S; Goo, Y S

    2015-01-01

    It is known that with retinal degeneration there is rewiring of retinal networks. Consequently, electrical stimulation of the degenerating retina produces responses that differ according to the stage of retinal degeneration. We sought to delineate a degeneration stage-specific parameter for the response pattern of retinal ganglion cell (RGC) spikes as a strategy for stage-specific electrical stimulation for perceptual efficiency of prosthetic vision devices. Electrically-evoked RGC spikes were recorded at different degeneration stages in the rd10 mouse model for human retinitis pigmentosa (RP). Retinal explants mounted on an 8×8 multi-electrode array were stimulated by applying 1 Hz cathodic-phase first biphasic current pulses. RGC firing rate during the first 100 ms post-stimulus was compared to that during the 100-1000 ms period and a response ratio of 100 ms (RR100 ms) was calculated through the different postnatal weeks. Our results show that during post-stimulus 100-1000 ms, the degree of correlation between pulse amplitude and evoked RGC spikes drastically decreases at PNW 4.5. This pattern was closely matched by the RR100 ms curve at this stage. We conclude that the RR100 ms might be a good indicator of the therapeutic potential of a retinal electrical prosthesis.

  12. Axonal Degeneration in Retinal Ganglion Cells Is Associated with a Membrane Polarity-Sensitive Redox Process

    PubMed Central

    Catrinescu, Maria-Magdalena; Binan, Loïc; Costantino, Santiago

    2017-01-01

    Axonal degeneration is a pathophysiological mechanism common to several neurodegenerative diseases. The slow Wallerian degeneration (WldS) mutation, which results in reduced axonal degeneration in the central and peripheral nervous systems, has provided insight into a redox-dependent mechanism by which axons undergo self-destruction. We studied early molecular events in axonal degeneration with single-axon laser axotomy and time-lapse imaging, monitoring the initial changes in transected axons of purified retinal ganglion cells (RGCs) from wild-type and WldS rat retinas using a polarity-sensitive annexin-based biosensor (annexin B12-Cys101,Cys260-N,N′-dimethyl-N-(iodoacetyl)-N′-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylenediamine). Transected axons demonstrated a rapid and progressive change in membrane phospholipid polarity, manifested as phosphatidylserine externalization, which was significantly delayed and propagated more slowly in axotomized WldS RGCs compared with wild-type axons. Delivery of bis(3-propionic acid methyl ester)phenylphosphine borane complex, a cell-permeable intracellular disulfide-reducing drug, slowed the onset and velocity of phosphatidylserine externalization in wild-type axons significantly, replicating the WldS phenotype, whereas extracellular redox modulation reversed the WldS phenotype. These findings are consistent with an intra-axonal redox mechanism for axonal degeneration associated with the initiation and propagation of phosphatidylserine externalization after axotomy. SIGNIFICANCE STATEMENT Axonal degeneration is a neuronal process independent of somal apoptosis, the propagation of which is unclear. We combined single-cell laser axotomy with time-lapse imaging to study the dynamics of phosphatidylserine externalization immediately after axonal injury in purified retinal ganglion cells. The extension of phosphatidylserine externalization was slowed and delayed in Wallerian degeneration slow (WldS) axons and this phenotype could

  13. Stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons.

    PubMed

    Zhang, Peng-Zhi; He, Ya; Jiang, Xing-Wang; Chen, Fu-Quan; Chen, Yang; Shi, Li; Chen, Jun; Chen, Xin; Li, Xu; Xue, Tao; Wang, Yafei; Mi, Wen-Juan; Qiu, Jian-Hua

    2013-04-01

    Spiral ganglion neurons (SGNs) are poorly regenerated in the mammalian inner ear. Because of this, stem cell transplantation has been used to replace injured SGNs, and several studies have addressed this approach. However, the difficulty of delivering stem cells into the cochlea and encouraging their migration to Rosenthal's canal (RC), where the SGNs are located, severely restricts this therapeutic strategy. In this study, we attempted to establish a new stem cell transplantation route into the cochlea via the cochlear lateral wall (CLW). First, we tested the precision of this route by injecting Fluorogold into the CLW and next assessed its safety by mock surgeries. Then, using a degenerated SGN animal model, we transplanted neural stem cells (NSCs), derived from the olfactory bulb of C57BL/6-green fluorescent protein (GFP) mice, via the CLW route and examined the cells' distribution in the cochlea. We found the CLW transplantation route is precise and safe. In addition, NSCs migrated into RC with a high efficiency and differentiated into neurons in a degenerated SGN rat model after the CLW transplantation. This result revealed that the basilar membrane (BM) may have crevices permitting the migration of NSCs. The result of this study demonstrates a novel route for cell transplantation to the inner ear, which is important for the replacement of degenerated SGNs and may contribute to the treatment of sensorineural hearing loss. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Time sequence of auditory nerve and spiral ganglion cell degeneration following chronic kanamycin-induced deafness in the guinea pig.

    PubMed

    Kong, W J; Yin, Z D; Fan, G R; Li, D; Huang, X

    2010-05-17

    We investigated the time sequence of morphological changes of the spiral ganglion cell (SGC) and auditory nerve (AN) following chronic kanamycin-induced deafness. Guinea pigs were treated with kanamycin by subcutaneous injection at 500 mg/kg per day for 7 days. Histological changes in hair cells, SGCs, Schwann cells and the area of the cross-sectional of the AN with vestibular ganglion (VG) in the internal acoustic meatus were quantified at 1, 7, 14, 28, 56 and 70 days after kanamycin treatment. Outer hair cells decreased at 7 and 14 days. Loss of inner hair cells occurred at 14 and 28 days. The cross-sectional area of the AN with VG increased at 1 day and decreased shortly following loss of SGCs and Schwann cells at 7, 14 and 28 days after deafening. There was a similar time course of morphological changes in the overall cochlea and the basal turn. Thus, the effects of kanamycin on hair cells, spiral ganglion and Schwann cells are progressive. Early degeneration of SGC and Schwann cell mainly results from the direct toxic effect of kanamycin. However, multiple factors such as loss of hair cell, degeneration of Schwann cell and the progressive damage of kanamycin, may participate in the late degeneration process of SGCs. The molecular mechanism of the degeneration of SGC and Schwann cell should be investigated in the future. Moreover, there is a different time sequence of cell degeneration between acute and chronic deafness by kanamycin.

  15. Selective degeneration of the parvocellular-projecting retinal ganglion cells in a New World monkey, Saimiri sciureus.

    PubMed

    Lynch, J J; Eskin, T A; Merigan, W H

    1989-10-16

    Selective degeneration of retinal ganglion cells projecting to parvocellular layers of the dorsal lateral geniculate nucleus (LGN) was observed in squirrel monkeys (Saimiri sciureus) exposed to a range of doses of acrylamide monomer. Similar acrylamide-induced neuronal loss has previously been reported in parvocellular-projecting ganglion cells of macaques, but no such selective degeneration has been found in acrylamide-dosed rats, squirrels, rabbits or cats. The extent of ganglion cell loss observed in the present study suggests that in the squirrel monkey, as in the macaque, a majority of ganglion cells project to parvocellular layers of the LGN. The locus of optic tract degeneration suggests that the squirrel monkey parvocellular pathway passes in dorsolateral optic tract, as does that of the macaque. Patterns of decreases in cytochrome oxidase activity confirm that, in both of these primates, geniculocortical pathways driven by these vulnerable neurons project to cortical layers 4A and 4C beta. These results suggest close parallels in the neuroanatomical projections and toxic vulnerability of the parvocellular-projecting pathway in New and Old World monkeys. They indicate that acrylamide intoxication can be used to selectively damage this pathway in order to study the functional roles of parallel visual pathways in both New and Old World monkeys.

  16. JUN is important for ocular hypertension-induced retinal ganglion cell degeneration.

    PubMed

    Syc-Mazurek, Stephanie B; Fernandes, Kimberly A; Libby, Richard T

    2017-07-20

    Ocular hypertension, a major risk factor for glaucoma, is thought to trigger glaucomatous neurodegeneration through injury to retinal ganglion cell (RGC) axons. The molecular signaling pathway leading from ocular hypertension to RGC degeneration, however, is not well defined. JNK signaling, a component of the mitogen-activated protein kinase (MAPK) family, and its canonical target, the transcription factor JUN, have been shown to regulate neurodegeneration in many different systems. JUN is expressed after glaucoma-relevant injuries and Jun deficiency protects RGCs after mechanical injury to the optic nerve. Here, we tested the importance of JNK-JUN signaling for RGC death after ocular hypertensive axonal injury in an age-related, mouse model of ocular hypertension. Immunohistochemistry was performed to evaluate JUN expression in ocular hypertensive DBA/2J mice. JUN was expressed in a temporal and spatial pattern consistent with a role in glaucomatous injury. To determine the importance of JUN in ocular hypertension-induced RGC death, a floxed allele of Jun and a retinal expressed cre recombinase (Six3-cre) were backcrossed onto the DBA/2J background. Intraocular pressure (IOP) and gross morphology of the retina and optic nerve head were assessed to determine whether removing Jun from the developing retina altered IOP elevation or retinal development. Jun deficiency in the retina did not alter DBA/2J IOP elevation or retinal development. Optic nerves and retinas were assessed at ages known to have glaucomatous damage in DBA/2J mice. Jun deficiency protected RGC somas from ocular hypertensive injury, but did not protect RGC axons from glaucomatous neurodegeneration. Jun is a major regulator of RGC somal degeneration after glaucomatous ocular hypertensive injury. These results suggest in glaucomatous neurodegeneration, JNK-JUN signaling has a major role as a pro-death signaling pathway between axonal injury and somal degeneration.

  17. Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy

    PubMed Central

    Takada, Yohei; Beyer, Lisa A.; Swiderski, Donald L.; O’Neal, Aubrey L.; Prieskorn, Diane M.; Shivatzki, Shaked; Avraham, Karen B.; Raphael, Yehoash

    2014-01-01

    Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (C×26) mutation, in which cre-Sox10 drives excision of the C×26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of C×26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal’s canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus BDNF (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal’s canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and to a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears. PMID:24333301

  18. Dysfunctional cortico-basal ganglia-thalamic circuit and altered hippocampal-amygdala activity on cognitive set-shifting in non-neuropsychiatric systemic lupus erythematosus.

    PubMed

    Ren, Tao; Ho, Roger Chun-Man; Mak, Anselm

    2012-12-01

    To explore sequential brain activities throughout cognitive set-shifting, which is critical to understanding the basic pathophysiology of cognitive dysfunction, in patients with new-onset systemic lupus erythematosus (SLE) without neuropsychiatric symptoms. Fourteen patients with new-onset SLE but without neuropsychiatric symptoms and 14 healthy controls matched for age, sex, education level, and intelligence quotient with the patients performed a cognitive set-shifting task derived from the Wisconsin Card Sorting Test while they were undergoing event-related functional magnetic resonance imaging of the brain. Blood oxygen level-dependent signals were compared between different stages of cognitive set-shifting in the lupus patients and in the healthy subjects. Lupus patients and healthy subjects demonstrated comparable cognitive function performance, but the cortico-basal ganglia-thalamic-cortical circuit and amygdala-hippocampus coupling, which were involved in response inhibition and active forgetting-learning dynamics, respectively, were demonstrated to be compromised in patients with SLE. Moreover, an increase in contralateral cerebellar-frontal activity was found to compensate for the compromised cortico-basal ganglia-thalamic-cortical circuit in lupus patients in order to maintain their cognitive test performance as comparable to that of the healthy subjects. Our study revealed significant differences in the sequential brain signals during cognitive set-shifting between patients with SLE without neuropsychiatric symptoms and healthy subjects. The results prompt further in-depth investigation for the functional neural basis of cognitive dysfunction involving the aforementioned neural circuits and compensatory pathways in patients with SLE. Copyright © 2012 by the American College of Rheumatology.

  19. Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration

    PubMed Central

    García-Ayuso, Diego; Salinas-Navarro, Manuel; Agudo-Barriuso, Marta; Alarcón-Martínez, Luis; Vidal-Sanz, Manuel

    2011-01-01

    Purpose To analyze the damage produced by light in mydriatic and miotic albino retinas under two different sources of light. Methods Albino Sprague Dawley female rats were exposed to 3,000 lx during 48 h under two different light sources: linear and circular bulbs. Before exposure, their left pupils were dilated. Before and at different times after light exposure (ALE), electroretinographic signals were recorded. One week before processing, retinal ganglion cells (RGCs) were traced by applying fluorogold on the superior colliculi. Just before processing, some animals were intravenously injected with horseradish peroxidase to analyze retinal vascular leakage. At different times ALE, animals were sacrificed and their retinas dissected as whole mounts or cross-sections. Cross-sections were used to study the retinal degeneration and to detect apoptotic nuclei by the transferase dUTP nick end labeling (TUNEL) technique. Whole mounts were used to analyze vascular leakage; investigate the nerve fiber layer, identified by immunodetection of neurofilaments; and quantify the whole population of RGCs identified by fluorogold tracing and Brn3a immunodetection. With the quantitative data, detailed isodensity maps were generated to study the spatial loss of RGCs. Results Phototoxicity causes an immediate and permanent abolishment of the electroretinographic response. Early ALE, photoreceptors degenerate by apoptosis and this death is more severe in mydriatic conditions and under circular bulbs. Photoreceptor loss starts in an arciform dorsomedial retinal area, but at 3 months ALE has spread to the whole retina and there are no differences related to either pupil dilation or light source. Three months ALE, RGC axons show distorted trajectories and abnormal expression of neurofilaments. Six months or more ALE, there is significant death of RGCs caused by axonal strangulation by displaced inner retinal vessels. Topography of the surviving RGCs shows that their loss is not uniform

  20. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration.

    PubMed

    Salinas-Navarro, Manuel; Alarcón-Martínez, Luis; Valiente-Soriano, Francisco J; Jiménez-López, Manuel; Mayor-Torroglosa, Sergio; Avilés-Trigueros, Marcelino; Villegas-Pérez, María Paz; Vidal-Sanz, Manuel

    2010-01-01

    Ocular hypertension (OHT) is the main risk factor of glaucoma, a neuropathy leading to blindness. Here we have investigated the effects of laser photocoagulation (LP)-induced OHT, on the survival and retrograde axonal transport (RAT) of adult rat retinal ganglion cells (RGC) from 1 to 12 wks. Active RAT was examined with fluorogold (FG) applied to both superior colliculi (SCi) 1 wk before processing and passive axonal diffusion with dextran tetramethylrhodamine (DTMR) applied to the optic nerve (ON) 2 d prior to sacrifice. Surviving RGCs were identified with FG applied 1 wk pre-LP or by Brn3a immunodetection. The ON and retinal nerve fiber layer were examined by RT97-neurofibrillar staining. RGCs were counted automatically and color-coded density maps were generated. OHT retinas showed absence of FG+ or DTMR+RGCs in focal, pie-shaped and diffuse regions of the retina which, by two weeks, amounted to, approximately, an 80% of RGC loss without further increase. At this time, there was a discrepancy between the total number of surviving FG-prelabelled RGCs and of DMTR+RGCs, suggesting that a large proportion of RGCs had their RAT impaired. This was further confirmed identifying surviving RGCs by their Brn3a expression. From 3 weeks onwards, there was a close correspondence of DTMR+RGCs and FG+RGCs in the same retinal regions, suggesting axonal constriction at the ON head. Neurofibrillar staining revealed, in ONs, focal degeneration of axonal bundles and, in the retinal areas lacking backlabeled RGCs, aberrant staining of RT97 characteristic of axotomy. LP-induced OHT results in a crush-like injury to ON axons leading to the anterograde and protracted retrograde degeneration of the intraocular axons and RGCs.

  1. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice

    PubMed Central

    Nusbaum, Derek M.; Wu, Samuel M.; Frankfort, Benjamin J.

    2015-01-01

    The purpose of this study was to develop a novel experimental system for the modulation and measurement of intracranial pressure (ICP), and to use this system to assess the impact of elevated ICP on the optic nerve and retinal ganglion cells (RGCs) in CD1 mice. This system involved surgical implantation of an infusion cannula and a radiowave based pressure monitoring probe through the skull and into the subarachnoid space. The infusion cannula was used to increase ICP, which was measured by the probe and transmitted to a nearby receiver. The system provided robust and consistent ICP waveforms, was well tolerated, and was stable over time. ICP was elevated to approximately 30 mmHg for one week, after which we assessed changes in optic nerve structure with transmission electron microscopy in cross section and RGC numbers with antibody staining in retinal flat mounts. ICP elevation resulted in optic nerve axonal loss and disorganization, as well as RGC soma loss. We conclude that the controlled manipulation of ICP in active, awake mice is possible, despite their small size. Furthermore, ICP elevation results in visual system phenotypes of optic nerve and RGC degeneration, suggesting that this model can be used to study the impact of ICP on the visual system. Potentially, this model can also be used to study the relationship between ICP and IOP, as well diseases impacted by ICP variation such as glaucoma, idiopathic intracranial hypertension, and the spaceflight-related visual impairment intracranial pressure syndrome. PMID:25912998

  2. Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism.

    PubMed

    Oueslati, Abid; Breysse, Nathalie; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Salin, Pascal

    2005-12-01

    This study examined the cellular correlates of the akinetic deficits produced in Wistar rats by discrete bilateral 6-hydroxydopamine (6-OHDA) striatal infusions in the dorsolateral striatum, mimicking the preferential denervation of the motor striatal territory in early symptomatic stage of Parkinson's disease (PD). Intraneuronal gene expression of cytochrome oxidase subunit I (COI), a metabolic index of neuronal activity, was increased in the subthalamic nucleus, substantia nigra pars reticulata and decreased in frontal cortical areas, but paradoxically unchanged in the striatum, globus pallidus, entopeduncular nucleus and ventrolateral thalamic nucleus. Neither preproenkephalin A nor preprotachykinin mRNA expression, markers of striatal projection neurons, were modified in the denervated striatal area despite 90% loss of dopamine (DA) terminals. Preproenkephalin A mRNA expression was however, decreased in the nondepleted striatal region, suggesting compensatory increase of dopamine tone from those spared areas. A chronic treatment with the metabotropic glutamate receptor 5 (mGluR5) antagonist 2-methyl-6-(phenylethylnyl)-pyridine (MPEP), which alleviated the akinetic disorders produced by the lesion, reversed the lesion-induced variations of COI gene expression, moderately increased this marker in the structures unaffected by the lesion and did not modify the striatal neuropeptides gene expression. These data suggest that the expression of akinetic deficits in early parkinsonism is associated with focused metabolic changes in the cortico-basal ganglia-cortical loop downstream of the striatum and pallidal complex.

  3. Functional architecture of the cortico-basal ganglia circuitry during motor task execution: correlations of strength of functional connectivity with neuropsychological task performance among female subjects.

    PubMed

    Marchand, William R; Lee, James N; Suchy, Yana; Garn, Cheryl; Chelune, Gordon; Johnson, Susanna; Wood, Nicole

    2013-05-01

    The primary aim of this study was to enhance our understanding of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. Twenty right-handed female subjects without any history of neuropsychiatric illness underwent fMRI at 3 T. The activation paradigm was a complex motor task completed with the nondominant hand. Analyses of functional connectivity strength were conducted for pairs of structures in input, intrinsic, and output segments of the circuitry. Next, connectivity strengths were correlated with results of neurocognitive testing conducted outside of the scanner, which provided information about both motor and cognitive processes. For input pathways, results indicate that SMA-striatum interactions are particularly relevant for motor behavior and disruptions may impact both motor and cognitive functions. For intrinsic pathways, results indicate that thalamus (VA nucleus) to striatum feedback pathway appears to have an important role during task execution and carries information relevant for motor planning. Together, these findings add to accumulating evidence that the GPe may play a role in higher order basal ganglia processing. A potentially controversial finding was that strong functional connectivity appears to occur across intrinsic inhibitory pathways. Finally, output (thalamus to cortex) feedback was only correlated with motor planning. This result suggests circuit processes may be more relevant for future behaviors than the execution of the current task. Copyright © 2012 Wiley Periodicals, Inc.

  4. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection

    PubMed Central

    Munemasa, Yasunari; Kitaoka, Yasushi

    2013-01-01

    Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON). PMID:23316132

  5. Spiral ganglion degeneration and hearing loss as a consequence of satellite cell death in saposin B-deficient mice.

    PubMed

    Akil, Omar; Sun, Ying; Vijayakumar, Sarath; Zhang, Wujuan; Ku, Tiffany; Lee, Chi-Kyou; Jones, Sherri; Grabowski, Gregory A; Lustig, Lawrence R

    2015-02-18

    Saposin B (Sap B) is an essential activator protein for arylsulfatase A in the hydrolysis of sulfatide, a lipid component of myelin. To study Sap B's role in hearing and balance, a Sap B-deficient (B(-/-)) mouse was evaluated. At both light and electron microscopy (EM) levels, inclusion body accumulation was seen in satellite cells surrounding spiral ganglion (SG) neurons from postnatal month 1 onward, progressing into large vacuoles preceding satellite cell degeneration, and followed by SG degeneration. EM also revealed reduced or absent myelin sheaths in SG neurons from postnatal month 8 onwards. Hearing loss was initially seen at postnatal month 6 and progressed thereafter for frequency-specific stimuli, whereas click responses became abnormal from postnatal month 13 onward. The progressive hearing loss correlated with the accumulation of inclusion bodies in the satellite cells and their subsequent degeneration. Outer hair cell numbers and efferent function measures (distortion product otoacoustic emissions and contralateral suppression) were normal in the B(-/-) mice throughout this period. Alcian blue staining of SGs demonstrated that these inclusion bodies corresponded to sulfatide accumulation. In contrast, changes in the vestibular system were much milder, but caused severe physiologic deficits. These results demonstrate that loss of Sap B function leads to progressive sulfatide accumulation in satellite cells surrounding the SG neurons, leading to satellite cell degeneration and subsequent SG degeneration with a resultant loss of hearing. Relative sparing of the efferent auditory and vestibular neurons suggests that alternate glycosphingolipid metabolic pathways predominate in these other systems.

  6. Variance in transneuronal retrograde ganglion cell degeneration in monkeys after removal of striate cortex: effects of size of the cortical lesion.

    PubMed

    Cowey, A; Stoerig, P; Williams, C

    1999-10-01

    The extent of transneuronal retrograde degeneration of ganglion cells in the primate retina depends on the age at which striate cortex was damaged, the survival time, the species, and retinal eccentricity. We here report on the effect of lesion size beyond striate cortex, which we assessed along with retinal ganglion cell degeneration in three groups of macaque monkeys who, in each group, had undergone striate cortical ablation at similar ages and survived for similar periods, which ranged from 302 days to 8 years. Where possible, the number of surviving projection neurones in the degenerated dLGN and its volume were also estimated. Results confirm that both geniculate and retinal degeneration correlate significantly with survival time but that the differences within a group can exceed differences between groups and are best accounted for by the extent of the damage to extra-striate visual cortex and underlying white matter.

  7. Tissue and urokinase plasminogen activators instigate the degeneration of retinal ganglion cells in a mouse model of glaucoma

    PubMed Central

    Chintala, Shravan K

    2015-01-01

    Elevated intraocular pressure (IOP) promotes the degeneration of retinal ganglion cells (RGCs) during the progression of Primary Open-Angle Glaucoma (POAG). However, the molecular mechanisms underpinning IOP-mediated degeneration of RGCs remain unclear. Therefore, by employing a mouse model of POAG, this study examined whether elevated IOP promotes the degeneration of RGCs by up-regulating tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) in the retina. IOP was elevated in mouse eyes by injecting fluorescent-microbeads into the anterior chamber. Once a week, for eight weeks, IOP in mouse eyes was measured by using Tono-Pen XL. At various time periods after injecting microbeads, proteolytic activity of tPA and uPA in retinal protein extracts was determined by fibrinogen/plasminogen zymography assays. Localization of tPA and uPA, and their receptor LRP-1 (low-density receptor-related protein-1) in the retina was determined by immunohistochemistry. RGCs’ degeneration was assessed by immunostaining with antibodies against Brn3a. Injection of microbeads into the anterior chamber led to a progressive elevation in IOP, increased the proteolytic activity of tPA and uPA in the retina, activated plasminogen into plasmin, and promoted a significant degeneration of RGCs. Elevated IOP up-regulated tPA and LRP-1 in RGCs, and uPA in astrocytes. At four weeks after injecting microbeads, RAP (receptor associated protein; 0.5 and 1.0 μM) or tPA-Stop (1.0 and 4.0 μM) was injected into the vitreous humor. Treatment of IOP-elevated eyes with RAP led to a significant decrease in proteolytic activity of both tPA and uPA, and a significant decrease in IOP-mediated degeneration of RGCs. Also, treatment of IOP-elevated eyes with tPA-Stop decreased the proteolytic activity of both tPA and uPA, and, in turn, significantly attenuated IOP-mediated degeneration of RGCs. Results presented in this study provide evidence that elevated IOP promotes the degeneration of

  8. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat.

    PubMed

    Kikuchi, Shin; Ninomiya, Takafumi; Kohno, Takayuki; Kojima, Takashi; Tatsumi, Haruyuki

    2017-06-27

    Cobalt is a trace element that localizes in the human body as cobalamin, also known as vitamin B12. Excessive cobalt exposure induces a peripheral neuropathy, the mechanisms of which are yet to be elucidated. We investigated how cobalt may affect mitochondrial motility in primary cultures of rat dorsal root ganglion (DRG). We observed mitochondrial motility by time-lapse imaging after DsRed2 tagging via lentivirus, mitochondrial structure using transmission electron microscopy (TEM), and axonal swelling using immunocytochemical staining. The concentration of cobaltous ion (Co(2+)) required to significantly suppress mitochondrial motility is lower than that required to induce axonal swelling following a 24-h treatment. Exposure to relatively low concentrations of Co(2+) for 48 h suppressed mitochondrial motility without leading to axonal swelling. TEM images indicated that Co(2+) induces mitochondrial destruction. Our results show that destruction of the axonal mitochondria precedes the axonal degeneration induced by Co(2+) exposure.

  9. Effect of Stimulus Waveform of Biphasic Current Pulse on Retinal Ganglion Cell Responses in Retinal Degeneration (rd1) mice

    PubMed Central

    Ahn, Kun No; Ahn, Jeong Yeol; Kim, Jae-hyung; Cho, Kyoungrok; Koo, Kyo-in; Senok, Solomon S.

    2015-01-01

    A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an 8×8 multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than 10 µA and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to 500 µs (30 µA), changing the intensities (or duration) from 2 to 60 µA (60 to 1000 µs). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse. PMID:25729279

  10. Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells That Depends on Cell Type and Location

    PubMed Central

    Feng, Liang; Zhao, Yan; Yoshida, Miho; Chen, Hui; Yang, Jessica F.; Kim, Ted S.; Cang, Jianhua; Troy, John B.; Liu, Xiaorong

    2013-01-01

    Purpose. Glaucoma is characterized by retinal ganglion cell (RGC) death and frequently associated with elevated IOP. How RGCs degenerate before death is little understood, so we sought to investigate RGC degeneration in a mouse model of ocular hypertension. Methods. A laser-induced mouse model of chronic ocular hypertension mimicked human high-tension glaucoma. Immunohistochemistry was used to characterize overall RGC loss and an optomotor behavioral test to measure corresponding changes in visual capacity. Changes in RGC functional properties were characterized by a large-scale multielectrode array (MEA). The transgenic Thy-1-YFP mouse line, in which a small number of RGCs are labeled with yellow fluorescent protein (YFP), permitted investigation of whether subtypes of RGCs or RGCs from particular retinal areas were differentially vulnerable to elevated IOP. Results. Sustained IOP elevation in mice was achieved by laser photocoagulation. We confirmed RGC loss and decreased visual acuity in ocular hypertensive mice. Furthermore, these mice had fewer visually responsive cells with smaller receptive field sizes compared to controls. We demonstrated that RGC dendritic shrinkage started from the vertical axis of hypertensive eyes and that mono-laminated ON cells were more susceptible to IOP elevation than bi-laminated ON-OFF cells. Moreover, a subgroup of ON RGCs labeled by the SMI-32 antibody exhibited significant dendritic atrophy in the superior quadrant of the hypertensive eyes. Conclusions. RGC degeneration depends on subtype and location in hypertensive eyes. This study introduces a valuable model to investigate how the structural and functional degeneration of RGCs leads to visual impairments. PMID:23322576

  11. Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration

    PubMed Central

    Yee, Christopher W; Toychiev, Abduqodir H; Ivanova, Elena; Sagdullaev, Botir T

    2014-01-01

    Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here, we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30–60 days, to determine how this aberrant activity correlates with morphology. Patch-clamp recordings of excitatory and inhibitory currents were performed, then dendritic structures were visualized by infusion of fluorescent dye. Only RGCs with oscillatory activity were selected for further analysis. Oscillatory frequency and power were calculated using power spectral density analysis of recorded currents. Dendritic arbor stratification, total length, and area were measured from confocal microscope image stacks. These measurements were used to sort RGCs by cluster analysis using Ward’s method. This resulted in a total of 10 clusters, with monostratified and bistratified cells having 5 clusters each. Both populations exhibited correlations between arbor stratification and aberrant inhibitory input, while excitatory input did not vary with arbor distribution. These findings illustrate the relationship between aberrant activity and RGC morphology at early stages of retinal degeneration. PMID:25099614

  12. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration.

    PubMed

    Osborne, Andrew; Hopes, Marina; Wright, Phillip; Broadway, David C; Sanderson, Julie

    2016-02-01

    There is a growing need for models of human diseases that utilise native, donated human tissue in order to model disease processes and develop novel therapeutic strategies. In this paper we assessed the suitability of adult human retinal explants as a potential model of chronic retinal ganglion cell (RGC) degeneration. Our results confirmed that RGC markers commonly used in rodent studies (NeuN, βIII Tubulin and Thy-1) were appropriate for labelling human RGCs and followed the expected differential expression patterns across, as well as throughout, the macular and para-macular regions of the retina. Furthermore, we showed that neither donor age nor post-mortem time (within 24 h) significantly affected the initial expression levels of RGC markers. In addition, the feasibility of using human post mortem donor tissue as a long-term model of RGC degeneration was determined with RGC protein being detectable up to 4 weeks in culture with an associated decline in RGC mRNA and significant, progressive, apoptotic labelling of NeuN(+) cells. Differences in RGC apoptosis might have been influenced by medium compositions indicating that media constituents could play a role in supporting axotomised RGCs. We propose that using ex vivo human explants may prove to be a useful model for testing the effectiveness of neuroprotective strategies.

  13. Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina

    PubMed Central

    Esquiva, Gema; Lax, Pedro; Pérez-Santonja, Juan J.; García-Fernández, José M.; Cuenca, Nicolás

    2017-01-01

    In mammals, melanopsin-expressing retinal ganglion cells (mRGCs) are, among other things, involved in several non-image-forming visual functions, including light entrainment of circadian rhythms. Considering the profound impact of aging on visual function and ophthalmic diseases, here we evaluate changes in mRGCs throughout the life span in humans. In 24 post-mortem retinas from anonymous human donors aged 10–81 years, we assessed the distribution, number and morphology of mRGCs by immunostaining vertical retinal sections and whole-mount retinas with antibodies against melanopsin. Human retinas showed melanopsin immunoreactivity in the cell body, axon and dendrites of a subset of ganglion cells at all ages tested. Nearly half of the mRGCs (51%) were located within the ganglion cell layer (GCL), and stratified in the outer (M1, 12%) or inner (M2, 16%) margin of the inner plexiform layer (IPL) or in both plexuses (M3, 23%). M1 and M2 cells conformed fairly irregular mosaics, while M3 cell distribution was slightly more regular. The rest of the mRGCs were more regularly arranged in the inner nuclear layer (INL) and stratified in the outer margin of the IPL (M1d, 49%). The quantity of each cell type decrease after age 70, when the total number of mRGCs was 31% lower than in donors aged 30–50 years. Moreover, in retinas with an age greater than 50 years, mRGCs evidenced a decrease in the dendritic area that was both progressive and age-dependent, as well as fewer branch points and terminal neurite tips per cell and a smaller Sholl area. After 70 years of age, the distribution profile of the mRGCs was closer to a random pattern than was observed in younger retinas. We conclude that advanced age is associated with a loss in density and dendritic arborization of the mRGCs in human retinas, possibly accounting for the more frequent occurrence of circadian rhythm disorders in elderly persons. PMID:28420980

  14. Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina.

    PubMed

    Esquiva, Gema; Lax, Pedro; Pérez-Santonja, Juan J; García-Fernández, José M; Cuenca, Nicolás

    2017-01-01

    In mammals, melanopsin-expressing retinal ganglion cells (mRGCs) are, among other things, involved in several non-image-forming visual functions, including light entrainment of circadian rhythms. Considering the profound impact of aging on visual function and ophthalmic diseases, here we evaluate changes in mRGCs throughout the life span in humans. In 24 post-mortem retinas from anonymous human donors aged 10-81 years, we assessed the distribution, number and morphology of mRGCs by immunostaining vertical retinal sections and whole-mount retinas with antibodies against melanopsin. Human retinas showed melanopsin immunoreactivity in the cell body, axon and dendrites of a subset of ganglion cells at all ages tested. Nearly half of the mRGCs (51%) were located within the ganglion cell layer (GCL), and stratified in the outer (M1, 12%) or inner (M2, 16%) margin of the inner plexiform layer (IPL) or in both plexuses (M3, 23%). M1 and M2 cells conformed fairly irregular mosaics, while M3 cell distribution was slightly more regular. The rest of the mRGCs were more regularly arranged in the inner nuclear layer (INL) and stratified in the outer margin of the IPL (M1d, 49%). The quantity of each cell type decrease after age 70, when the total number of mRGCs was 31% lower than in donors aged 30-50 years. Moreover, in retinas with an age greater than 50 years, mRGCs evidenced a decrease in the dendritic area that was both progressive and age-dependent, as well as fewer branch points and terminal neurite tips per cell and a smaller Sholl area. After 70 years of age, the distribution profile of the mRGCs was closer to a random pattern than was observed in younger retinas. We conclude that advanced age is associated with a loss in density and dendritic arborization of the mRGCs in human retinas, possibly accounting for the more frequent occurrence of circadian rhythm disorders in elderly persons.

  15. Impairment of intrinsically photosensitive retinal ganglion cells associated with late stages of retinal degeneration.

    PubMed

    Esquiva, Gema; Lax, Pedro; Cuenca, Nicolás

    2013-07-10

    To evaluate quantitative and qualitative age-related changes in intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) in transgenic P23H rats, an animal model of autosomal dominant retinitis pigmentosa (RP) was examined. ipRGC density, morphology, and integrity were characterized by immunohistochemistry in retinas extracted from P23H and Sprague-Dawley (SD) rats aged 4, 12, and 18 months. Differences between SD and P23H rats throughout the experimental stages, as well as the interactions among them, were morphologically evaluated. In rat retinas, we have identified ipRGCs with dendrites stratifying in either the outer margin (M1) or inner side (M2) of the inner plexiform layer, and in both the outer and inner plexuses (M3). A small group of M1 cells had their somas located in the inner nuclear layer (M1d). In SD rats, ipRGCs showed no significant changes associated with age, in terms of either mean cell density or the morphologic parameters analyzed. However, the mean density of ipRGCs in P23H rats fell by approximately 67% between 4 and 18 months of age. Moreover, ipRGCs in these animals showed a progressive age-dependent decrease in the dendritic area, the number of branch points and terminal neurite tips per cell, and the Sholl area. In the P23H rat model of retinitis pigmentosa, density, wholeness, and dendritic arborization of melanopsin-containing ganglion cells decrease in advanced stages of the degenerative disease.

  16. Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION)

    PubMed Central

    Zhang, Cheng; Guo, Yan; Slater, Bernard J; Miller, Neil R.; Bernstein, Steven L.

    2010-01-01

    Using laser-induced photoactivation of intravenously administered rose Bengal in rats, we generated an ischemic infarction of the intrascleral portion of the optic nerve (ON) comparable to that which occurs in humans to investigate optic nerve axon degenerative events following optic nerve infarct and the potential for axon re-growth. Animals were euthanized at different times post infarct. Axon degeneration was evaluated with SMI312 immunolabeling, and GAP-43 immunostaining was used to identify axon regeneration. Terminal dUTP nick end labeling (TUNEL) was used to evaluate retinal ganglion cell (RGC) death. There was significant axon structural disruptinot ion at the anterior intrascleral portion of the ON by 3d post-infarct, extending to the posterior ON by 7d post-stroke. Destruction of normal axon structure and massive loss of axon fibers occurred by 2 weeks. GAP-43 immunoreactivity occurred in the anterior ON by 7d post-infarct, lasting 3-4 weeks, without extension past the primary ischemic lesion. TUNEL-positive cells in the RGC layer appeared by 7d post-insult. These results indicate that following induction of ischemic optic neuropathy, significant axon damage occurs by 3d post-infarct, with later neuronal death. Post-stroke adult rat retinal ganglion cells attempt to regenerate their axons, but this effort is restricted to the unmyelinated region of the anterior ON. These responses are important in understanding pathologic process that underlies human non-arteritic anterior ischemic optic neuropathy (NAION) and may guide both the appropriate treatment of NAION and the window of opportunity for such treatment. PMID:20621651

  17. An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration.

    PubMed

    Zhao, Lei; Chen, Guojun; Li, Jun; Fu, Yingmei; Mavlyutov, Timur A; Yao, Annie; Nickells, Robert W; Gong, Shaoqin; Guo, Lian-Wang

    2017-02-10

    Glaucoma is a common blinding disease characterized by loss of retinal ganglion cells (RGCs). To date, there is no clinically available treatment directly targeting RGCs. We aim to develop an RGC-targeted intraocular drug delivery system using unimolecular micelle nanoparticles (unimNPs) to prevent RGC loss. The unimNPs were formed by single/individual multi-arm star amphiphilic block copolymer poly(amidoamine)-polyvalerolactone-poly(ethylene glycol) (PAMAM-PVL-PEG). While the hydrophobic PAMAM-PVL core can encapsulate hydrophobic drugs, the hydrophilic PEG shell provides excellent water dispersity. We conjugated unimNPs with the cholera toxin B domain (CTB) for RGC-targeting and with Cy5.5 for unimNP-tracing. To exploit RGC-protective sigma-1 receptor (S1R), we loaded unimNPs with an endogenous S1R agonist dehydroepiandrosterone (DHEA) as an FDA-approved model drug. These unimNPs produced a steady DHEA release in vitro for over two months at pH7.4. We then co-injected (mice, intraocular) unimNPs with the glutamate analog N-methyl-d-aspartate (NMDA), which is excito-toxic and induces RGC death. The CTB-conjugated unimNPs (i.e., targeted NPs) accumulated at the RGC layer and effectively preserved RGCs at least for 14days, whereas the unimNPs without CTB (i.e., non-targeted NPs) showed neither accumulation at nor protection of NMDA-treated RGCs. Consistent with S1R functions, targeted NPs relative to non-targeted NPs showed markedly better inhibitory effects on apoptosis and oxidative/inflammatory stresses in the RGC layer. Hence, the DHEA-loaded, CTB-conjugated unimNPs represent an RGC/S1R dual-targeted nanoplatform that generates an efficacious template for further development of a sustainable intraocular drug delivery system to protect RGCs, which may be applicable to treatments directed at glaucomatous pathology.

  18. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma.

    PubMed

    Kwong, Jacky M K; Vo, Nancy; Quan, Ann; Nam, Michael; Kyung, Haksu; Yu, Fei; Piri, Natik; Caprioli, Joseph

    2013-07-01

    Intraocular pressure (IOP) elevation is considered as a major risk factor causing the progression of vision deterioration in glaucoma. Although it is known that the IOP level changes widely throughout the day and night, how the dark or light phase IOP elevation contributes to retinal ganglion cell (RGC) degeneration is still largely unclear. To examine the profile of IOP, modified laser photocoagulation was applied to the trabecular meshwork of Brown Norway rats and both light and dark phase IOPs were monitored approximately 1-2 times a week. The relationship between IOP elevation and RGC degeneration was investigated while RGC body loss was analyzed with Rbpms immunolabeling on retinal wholemount and axonal injury in the optic nerve was semi-quantified. The baseline awake dark and light IOPs were 30.4 ± 2.7 and 20.2 ± 2.1 mmHg respectively. The average dark IOP was increased to 38.2 ± 3.2 mmHg for five weeks after the laser treatment on 270° trabecular meshwork. However, there was no significant loss of RGC body and axonal injury. After laser treatment on 330° trabecular meshwork, the dark and light IOPs were significantly increased to 43.8 ± 4.6 and 23 ± 3.7 mmHg respectively for 5 weeks. The cumulative dark and light IOP elevations were 277 ± 86 and 113 ± 50 mmHg days respectively while the cumulative total (light and dark) IOP elevation was 213 ± 114 mmHg days. After 5 weeks, regional RGC body loss of 29.5 ± 15.5% and moderate axonal injury were observed. Axonal injury and loss of RGC body had a high correlation with the cumulative total IOP elevation (R(2) = 0.60 and 0.65 respectively). There was an association between the cumulative dark IOP elevation and RGC body loss (R(2) = 0.37) and axonal injury (R(2) = 0.51) whereas the associations between neuronal damages and the cumulative light IOP elevation were weak (for RGC body loss, R(2) = 0.01; for axonal injury, R(2) = 0.26). Simple linear regression model

  19. Evidence of neuroanatomical connection between the superior cervical ganglion and hypoglossal nerve in the hamster as revealed by tract-tracing and degeneration methods

    PubMed Central

    TSENG, CHI-YU; LUE, JUNE-HORNG; LEE, SHIH-HSIUNG; WEN, CHEN-YUAN; SHIEH, JENG-YUNG

    2001-01-01

    Previous studies have shown the existence of a sympathetic component in some cranial nerves including the hypoglossal nerve. In this study, the horseradish peroxidase (HRP) tract-tracing retrograde technique and experimental degeneration method were used to elucidate the possible neuroanatomical relationship between the superior cervical ganglion (SCG) and the hypoglossal nerve of hamsters. About 10% of the SCG principal neurons were HRP positive following the tracer application to the trunk of hypoglossal nerve. Most of the HRP-labelled neurons were multipolar and were randomly distributed in the ganglion. When HRP was injected into the medial branch of the hypoglossal nerve, some of the SCG neurons were labelled, but they were not detected when HRP was injected into the lateral branch. The present findings suggest that postganglionic sympathetic fibres from the SCG may travel along the hypoglossal nerve trunk via its medial branch to terminate in visceral targets such as the intralingual glands. By electron microscopy, the HRP reaction product was localised in the neuronal somata and numerous unmyelinated fibres in the SCG. In addition, HRP-labelled axon profiles considered to be the collateral branches of the principal neurons contained numerous clear round and a few dense core vesicles. Besides the above, some HRP-labelled small myelinated fibres, considered to be visceral afferents, were also present. Results of experimental degeneration following the severance of the hypoglossal nerve showed the presence of degenerating neuronal elements both in the hypoglossal nucleus and the SCG. This confirms that the hypoglossal nerve contains sympathetic component from the SCG which may be involved in regulation of the autonomic function of the tongue. PMID:11327203

  20. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells.

    PubMed

    Mesentier-Louro, Louise A; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-05

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75(NTR), TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75(NTR) enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75(NTR) contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  1. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    PubMed Central

    Mesentier-Louro, Louise A.; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A.; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F.; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-01

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration. PMID:28067793

  2. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    PubMed

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  3. Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo.

    PubMed

    Koeberle, P D; Wang, Y; Schlichter, L C

    2010-01-01

    Degeneration of retinal ganglion cells (RGCs) - an important cause of visual impairment - is often modeled by optic nerve transection, which leads to apoptotic death of these central nervous system neurons. With this model, we show that specific voltage-gated K(+) channels (Kv1 family) contribute to the degeneration of rat RGCs and expression of apoptosis-related molecules in vivo. Retinal expression of Kv1.1, Kv1.2, Kv1.3 and Kv1.5 was examined by quantitative real-time reverse transcriptase-PCR and immunohistochemistry. Kv channel blockers and channel-specific short-interfering RNAs (siRNAs) were used to assess their roles in RGC degeneration. We found that (i) rat RGCs express Kv1.1, Kv1.2 and Kv1.3 (but not Kv1.5); (ii) intraocular injection of agitoxin-2 or margatoxin, potent blockers of Kv1.1, Kv1.2 and Kv1.3 channels, dose-dependently reduced the RGC degeneration; (iii) siRNAs applied to the cut optic nerve were rapidly transported throughout RGCs only, in which they reduced the expression of the cognate channel only. Our results show differential roles of the channels; siRNAs directed against Kv1.1 or Kv1.3 channels greatly reduced RGC death, whereas Kv1.2-targeted siRNAs had only a small effect, and siRNAs against Kv1.5 were without effect. (iv) Kv1.1 and Kv1.3 channels apparently contribute to cell-autonomous death of RGCs through different components of the apoptotic machinery. Kv1.1 depletion increased the antiapoptotic gene, Bcl-X(L), whereas Kv1.3 depletion reduced the proapoptotic genes, caspase-3, caspase-9 and Bad.

  4. Lumbar intraspinal extradural ganglion cysts.

    PubMed

    Cho, Sung Min; Rhee, Woo Tack; Choi, Soo Jung; Eom, Dae Woon

    2009-07-01

    The lumbar intraspinal epidural ganglion cyst has been a rare cause of the low back pain or leg pain. Ganglion cysts and synovial cysts compose the juxtafacet cysts. Extensive studies have been performed about the synovial cysts, however, very little has been known about the ganglion cyst. Current report is about two ganglion cysts associated with implicative findings in young male patients. We discuss about the underlying pathology of the ganglion cyst based on intraoperative evidences, associated disc herniation at the same location or severe degeneration of the ligament flavum that the cyst originated from in young patients.

  5. Rotenone causing dysfunctional mitochondria and lysosomes in cerebral ganglions of Lumbricus terrestris degenerate giant fibers and neuromuscular junctions.

    PubMed

    Subaraja, Mamangam; Vanisree, Arambakkam Janardhanam

    2016-06-01

    Rotenone is well-documented to cause neurodegenerative condition such as Parkinson's, in the exposed systems. However, its detrimental effect on particular sites of neuronal pathway is still under investigation. We aimed at elucidating the impact of rotenone on cerebral ganglions (CG) of Lumbricus terrestris which control movement and behaviour of the worms. Worms were exposed to 0-0.4 ppm/mL of rotenone. Mitochondrial and lysosomal integrities were found to be affected beyond 0.2 ppm/mL of rotenone. Activities of cholinergic enzymes and the expression of tyrosine hydroxylase showed an impaired neuronal transmission in CGs at the dose of 0.2 ppm/mL of rotenone. Histopathological and immunoflourescent analyses showed neuronal apoptosis, reduced nucleic acid content and inhibited of neurosecretion at 0.3 ppm/mL. Electron microscopy showed that the neurons and neuromuscular junctions were affected at 0.2 ppm/mL. Dose-dependent changes were also observed in the motor function such as burrowing behaviours and locomotion. Conduction velocity (CV) and locomotion assessment showed that the CV of lateral giant fiber (LGF) was reduced while that of MGF remains unaffected at 0.2 ppm, the dose at which the burrowing behaviour was also not affected. LGF, cholinergic enzymes and tyrosine hydroxylase are primarily targeted by rotenone affecting locomotion at 0.2 ppm/mL while MGF, neuropile and the burrowing behaviour were affected at 0.3 ppm/mL. We demonstrate, in addition to dose-dependent effects, that the bioaccumulation factors range 0.28-0.32 ppm/μg of rotenone cause degenerative impact on giant fibers affecting neuronal behaviors/locomotion of worms. We also propose worms for studying mechanisms of neuronal pathology caused by chemicals prevailing in earth's atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hair Cell Loss, Spiral Ganglion Degeneration, and Progressive Sensorineural Hearing Loss in Mice with Targeted Deletion of Slc44a2/Ctl2.

    PubMed

    Kommareddi, Pavan; Nair, Thankam; Kakaraparthi, Bala Naveen; Galano, Maria M; Miller, Danielle; Laczkovich, Irina; Thomas, Trey; Lu, Lillian; Rule, Kelli; Kabara, Lisa; Kanicki, Ariane; Hughes, Elizabeth D; Jones, Julie M; Hoenerhoff, Mark; Fisher, Susan G; Altschuler, Richard A; Dolan, David; Kohrman, David C; Saunders, Thomas L; Carey, Thomas E

    2015-12-01

    SLC44A2 (solute carrier 44a2), also known as CTL2 (choline transporter-like protein 2), is expressed in many supporting cell types in the cochlea and is implicated in hair cell survival and antibody-induced hearing loss. In mice with the mixed C57BL/6-129 background, homozygous deletion of Slc44a2 exons 3–10 (Slc44a2(Δ/Δ)resulted in high-frequency hearing loss and hair cell death. To reduce effects associated with age-related hearing loss (ARHL) in these strains, mice carrying the Slc44a2Δ allele were backcrossed to the ARHL-resistant FVB/NJ strain and evaluated after backcross seven(N7) (99 % FVB). Slc44a2(Δ/Δ) mice produced abnormally spliced Slc44a2 transcripts that contain a frame shift and premature stop codons. Neither full-length SLC44A2 nor a putative truncated protein could be detected in Slc44a2(Δ/Δ) mice, suggesting a likely null allele. Auditory brain stem responses (ABRs) of mice carrying the Slc44a2Δ allele on an FVB/NJ genetic background were tested longitudinally between the ages of 2 and 10 months. By 6 months of age,Slc44a2(Δ/Δ) mice exhibited hearing loss at 32 kHz,but at 12 and 24 kHz had sound thresholds similar to those of wild-type Slc44a2(+/+) and heterozygous +/Slc44a2Δ mice. After 6 months of age, Slc44a2(Δ/Δ) mutants exhibited progressive hearing loss at all frequencies and +/Slc44a2(Δ) mice exhibited moderate threshold elevations at high frequency. Histologic evaluation of Slc44a2(Δ/Δ) mice revealed extensive hair cell and spiral ganglion cell loss, especially in the basal turn of the cochlea. We conclude that Slc44a2 function is required for long-term hair cell survival and maintenance of hearing.

  7. Strategies to preserve or regenerate spiral ganglion neurons.

    PubMed

    Roehm, Pamela C; Hansen, Marlan R

    2005-10-01

    Degeneration of spiral ganglion neurons following hair cell loss carries critical implications for efforts to rehabilitate severe cases of hearing loss with cochlear implants or hair cell regeneration. This review considers recently identified neurotrophic factors and therapeutic strategies which promote spiral ganglion neuron survival and neurite growth. Replacement of these factors may help preserve or regenerate the auditory nerve in patients with extensive hair cell loss. Spiral ganglion neurons depend on neurotrophic factors supplied by hair cells and other targets for their development and continued survival. Loss of this trophic support leads to spiral ganglion neuron death via apoptosis. Hair cells support spiral ganglion neuron survival by producing several peptide neurotrophic factors such as neurotrophin-3 and glial derived neurotrophic factor. In addition, neurotransmitter release from the hair cells drives membrane electrical activity in spiral ganglion neurons which also supports their survival. In animal models, replacement of peptide neurotrophic factors or electrical stimulation with an implanted electrode attenuates spiral ganglion neuron degeneration following deafferentation. Cell death inhibitors can also preserve spiral ganglion neuron populations. Preliminary studies show that transfer of stem cells or neurons from other ganglia are two potential strategies to replace lost spiral ganglion neurons. Inducing the regrowth of spiral ganglion neuron peripheral processes to approximate or contact cochlear implant electrodes may help optimize signaling from a diminished population of neurons. Recent studies of spiral ganglion neuron development and survival have identified several trophic and neuritogenic factors which protect these specialized cells from degeneration following hair cell loss. While still preliminary, such strategies show promise for future clinical applications.

  8. Symptomatic intratendinous ganglion cyst of the patellar tendon.

    PubMed

    Jose, Jean; O'Donnell, Kevin; Lesniak, Bryson

    2011-01-01

    Ganglion cysts have been previously described throughout the body, most commonly about the wrist, hand, knee, ankle, and feet. When symptomatic, they may interfere with joint mechanics, resulting in snapping, catching, and locking. Intratendinous ganglion cysts lack a synovial epithelial lining and are thought to develop from the mucoid degeneration of connective tissue caused by chronic irritation, chronic repetitive injury, and chronic ischemia. On magnetic resonance imaging, ganglion cysts originating from tendons, ligaments, tendon sheaths, menisci, or joint capsules appear as well-defined lobulated masses that follow simple or complex fluid signal intensity on all pulse sequences, with enhancing walls and internal septations on post-contrast images. There may be appreciable degeneration and partial tearing of the structure of origin, particularly if associated with tendons. On ultrasonography, they present as hypoechoic masses, with internal septations and lobulations of varying sizes, without significant vascularity on power or color Doppler sampling. A thin fluid neck extending from the structure of origin (tail sign), when present, is a reliable sign of a ganglion cyst. This article describes a sonographically guided technique to treat symptomatic ganglion cysts within the patellar tendon. Complete evacuation of the ganglion cyst, with disappearance of the tail sign, is considered the determining factor for a successful procedure. A similar technique can be used for the treatment of other symptomatic intratendinous ganglion cysts elsewhere in the body. To our knowledge, symptomatic intratendinous ganglion cysts within the patellar tendon and their treatment have not been previously reported.

  9. Dissociation of Retinal Ganglion Cells Without Enzymes

    PubMed Central

    Hayashida, Yuki; Partida, Gloria J.; Ishida, Andrew T.

    2011-01-01

    We describe here methods for dissociating retinal ganglion cells from adult goldfish and rat without proteolytic enzymes, and show responses of ganglion cells isolated this way to step-wise voltage changes and fluctuating current injections. Taking advantage of the laminar organization of vertebrate retinas, photoreceptors and other cells were lifted away from the distal side of freshly isolated goldfish retinas, after contact with pieces of membrane filter. Likewise, cells were sliced away from the distal side of freshly isolated rat retinas, after these adhered to a membrane filter. The remaining portions of retina were incubated in an enzyme-free, low Ca2+ solution, and triturated. After aliquots of the resulting cell suspension were plated, ganglion cells could be identified by dye retrogradely transported via the optic nerve. These cells showed no obvious morphological degeneration for several days of culture. Perforated-patch whole-cell recordings showed that the goldfish ganglion cells spike tonically in response to depolarizing constant current injections, that these spikes are temporally precise in response to fluctuating current injections, and that the largest voltage-gated Na+ currents of these cells were larger than those of ganglion cells isolated with a neutral protease. PMID:15196824

  10. Dissociation of retinal ganglion cells without enzymes.

    PubMed

    Hayashida, Yuki; Partida, Gloria J; Ishida, Andrew T

    2004-08-15

    We describe here methods for dissociating retinal ganglion cells from adult goldfish and rat without proteolytic enzymes, and show responses of ganglion cells isolated this way to step-wise voltage changes and fluctuating current injections. Taking advantage of the laminar organization of vertebrate retinas, photoreceptors and other cells were lifted away from the distal side of freshly isolated goldfish retinas, after contact with pieces of membrane filter. Likewise, cells were sliced away from the distal side of freshly isolated rat retinas, after these adhered to a membrane filter. The remaining portions of retina were incubated in an enzyme-free, low Ca2+ solution, and triturated. After aliquots of the resulting cell suspension were plated, ganglion cells could be identified by dye retrogradely transported via the optic nerve. These cells showed no obvious morphological degeneration for several days of culture. Perforated-patch whole-cell recordings showed that the goldfish ganglion cells spike tonically in response to depolarizing constant current injections, that these spikes are temporally precise in response to fluctuating current injections, and that the largest voltage-gated Na+ currents of these cells were larger than those of ganglion cells isolated with a neutral protease.

  11. Ganglion cell death in glaucoma: from mice to men.

    PubMed

    Nickells, Robert W

    2007-01-01

    Glaucoma results from the degeneration of retinal ganglion cells and their axons. Over the last 20 years several important advancements have been made in our understanding of the molecular pathology of this disease, particularly through the development of rat models of experimental glaucoma and the characterization of a spontaneous secondary form of glaucoma in DBA/2 substrains of inbred mice. One of these advances is the observation that ganglion cells die by apoptosis, an intrinsic molecular pathway of programmed cell death. An important aspect of this cell death process is the concept that these cells actually undergo compartmentalized self-destruction. Importantly, genetic evidence now suggests that axons die independently of the apoptotic program that executes the cell body or soma. This review briefly summarizes some of the most significant developments in glaucoma research, with respect to the process of ganglion cell degeneration.

  12. Periosteal ganglion: a cause of cortical bone erosion.

    PubMed

    McCarthy, E F; Matz, S; Steiner, G C; Dorfman, H D

    1983-01-01

    Three cases of periosteal ganglia of long bones are presented. These lesions are produced by mucoid degeneration and cyst formation of the periosteum to produce external cortical erosion and reactive periosteal new bone. They are not associated with a soft tissue ganglion or an intraosseous lesion. They may radiologically mimic other periosteal lesions or soft tissue neoplasms which erode bone.

  13. Macular degeneration

    MedlinePlus Videos and Cool Tools

    ... at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating ... choroid layer of blood vessels behind the retina. Macular degeneration results in the loss of central vision only.

  14. Treatment of ganglion cysts.

    PubMed

    Suen, Matthew; Fung, B; Lung, C P

    2013-01-01

    Ganglion cysts are soft tissue swellings occurring most commonly in the hand or wrist. Apart from swelling, most cysts are asymptomatic. Other symptoms include pain, weakness, or paraesthesia. The two main concerns patients have are the cosmetic appearance of the cysts and the fear of future malignant growth. It has been shown that 58% of cysts will resolve spontaneously over time. Treatment can be either conservative or through surgical excision. This review concluded that nonsurgical treatment is largely ineffective in treating ganglion cysts. However, it advised to patients who do not surgical treatment but would like symptomatic relief. Compared to surgery, which has a lower recurrence rate but have a higher complication rate with longer recovery period. It has been shown that surgical interventions do not provide better symptomatic relief compared to conservative treatment. If symptomatic relief is the patient's primary concern, a conservative approach is preferred, whilst surgical intervention will decrease the likelihood of recurrence.

  15. Cerebellar Degeneration

    MedlinePlus

    ... is a process in which neurons in the cerebellum - the area of the brain that controls coordination ... body, can cause neurons to die in the cerebellum. Neurological diseases that feature cerebellar degeneration include: ischemic ...

  16. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  17. Intramuscular dissection of a large ganglion cyst into the gastrocnemius muscle.

    PubMed

    Nicholson, Luke T; Freedman, Harold L

    2012-07-01

    Ganglion cysts are lesions resulting from the myxoid degeneration of the connective tissue associated with joint capsules and tendon sheaths. Most common around the wrist joint, ganglion cysts may be found elsewhere in the body, including in and around the knee joint. Uncommonly, ganglion cysts can present intramuscularly. Previous reports document the existence of intramuscular ganglia, often without histologic confirmation. This article describes a case of an intramuscular ganglion cyst in the medial gastrocnemius muscle of a 53-year-old woman. The patient initially presented for discomfort associated with the lesion. Examination was consistent with intramuscular cystic lesion of unknown etiology. Ultrasound and magnetic resonance imaging revealed the origin of the mass at the semimembranosus-gastrocnemius bursa. Because of its location, the mass was initially suspected to be a dissecting Baker's cyst, an uncommon but previously reported diagnosis. The patient underwent surgical excision, and examination of the intact specimen revealed a thin, fibrous, walled cyst with no lining epithelium, which was consistent with a ganglion cyst. To the authors' knowledge, this is the first report in the orthopedic literature of a ganglion cyst dissecting into the gastrocnemius muscle. Because ganglion cysts commonly require excision for definitive treatment and do not respond well to treatment measures implemented for Baker's cysts, including resection of underlying meniscal tears, the authors believe it is important for orthopedic surgeons to be able to distinguish between Baker's and other cysts associated with the knee joint, including ganglion cysts, which may require more definitive treatment.

  18. Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington's Disease Models.

    PubMed

    Beaumont, Vahri; Zhong, Sheng; Lin, Hai; Xu, WenJin; Bradaia, Amyaouch; Steidl, Esther; Gleyzes, Melanie; Wadel, Kristian; Buisson, Bruno; Padovan-Neto, Fernando E; Chakroborty, Shreaya; Ward, Karen M; Harms, John F; Beltran, Jose; Kwan, Mei; Ghavami, Afshin; Häggkvist, Jenny; Tóth, Miklós; Halldin, Christer; Varrone, Andrea; Schaab, Christoph; Dybowski, J Nikolaj; Elschenbroich, Sarah; Lehtimäki, Kimmo; Heikkinen, Taneli; Park, Larry; Rosinski, James; Mrzljak, Ladislav; Lavery, Daniel; West, Anthony R; Schmidt, Christopher J; Zaleska, Margaret M; Munoz-Sanjuan, Ignacio

    2016-12-21

    Huntington's disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models, and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition was required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms

    PubMed Central

    Hikosaka, Okihide; Isoda, Masaki

    2010-01-01

    Although we carry out most daily tasks nearly automatically, it is occasionally necessary to change a routine if something changes in our environment and the behavior becomes inappropriate. Such behavioral switching can occur either retroactively based on error feedback or proactively by detecting a contextual cue. Recent imaging and electrophysiological data in humans and monkeys have suggested that the frontal cortical areas play executive roles in behavioral switching. The anterior cingulate cortex acts retroactively and the pre-supplementary motor area acts proactively to enable behavioral switching. The lateral prefrontal cortex reconfigures cognitive processes constituting the switched behavior. The subthalamic nucleus and the striatum in the basal ganglia mediate these cortical signals to achieve behavioral switching. We discuss how breaking a routine to allow more adaptive behavior requires a fine-tuned recruitment of the frontal cortical-basal ganglia neural network. PMID:20181509

  20. [Cortico-basal ganglia circuits--parallel closed loops and convergent/divergent connections].

    PubMed

    Miyachi, Shigehiro

    2009-04-01

    The basal ganglia play important roles not only in motor control but also in higher cognitive functions such as reinforcement learning and procedural memory. Anatomical studies on the neuronal connections between the basal ganglia, cerebral cortex, and thalamus have demonstrated that these nuclei and cortical areas are interconnected via independent parallel loop circuits. The association, motor, and limbic cortices project to specific domains in the striatum, which, in turn, project back to the corresponding cortical areas via the substantia nigra/globus pallidus and the thalamus. Likewise, subregions in the motor cortex representing different body parts project to specific regions in the putamen, which project back to the original motor cortical regions. These parallel loops have been thought to be the basic anatomical structures involved in the basal ganglia functions. Furthermore, neuronal projections communicating between different loops (or functional domains) have also been discovered. A considerable number of corticostriatal projections from functionally interrelated cortical areas (e. g., hand representations of the motor cortex and somatosensory cortex) converge at the striatum. It has also been suggested that the location of the substantia nigra is in such that it can transmit information from the 'limbic loop' to the 'association loop', and from the 'association loop' to the 'motor loop'. Furthermore, a recent transsynaptic neuronal tracing study conducted at our laboratory demonstrated that the ventral (limbic) striatum sends divergent outputs to multiple regions in the frontal cortex. These 'inter-loop' connections would be important for the integration of information to achieve goal-directed behaviors.

  1. Neural reprogramming in retinal degenerations

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Anderson, James R.; Kinard, Krista; Marshak, David W.; Wilson, John H.; Wensel, Theodore; Lucas, Robert J.

    2008-01-01

    Purpose Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. We sought to explore the functional expression of ionotropic (iGluR) and group III, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degenerations. Methods Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degenerations and a sample of human RP. Results After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, while amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the numbers of bipolar cells expressing functional iGluRs was double that of normal retina. Conclusions RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some non-glutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late-RP photoreceptor transplant attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function. PMID:17591910

  2. Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells.

    PubMed

    Gaucher, David; Arnault, Emilie; Husson, Zoé; Froger, Nicolas; Dubus, Elisabeth; Gondouin, Pauline; Dherbécourt, Diane; Degardin, Julie; Simonutti, Manuel; Fouquet, Stéphane; Benahmed, M A; Elbayed, K; Namer, Izzie-Jacques; Massin, Pascale; Sahel, José-Alain; Picaud, Serge

    2012-11-01

    In 1970s, taurine deficiency was reported to induce photoreceptor degeneration in cats and rats. Recently, we found that taurine deficiency contributes to the retinal toxicity of vigabatrin, an antiepileptic drug. However, in this toxicity, retinal ganglion cells were degenerating in parallel to cone photoreceptors. The aim of this study was to re-assess a classic mouse model of taurine deficiency following a treatment with guanidoethane sulfonate (GES), a taurine transporter inhibitor to determine whether retinal ganglion cells are also affected. GES treatment induced a significant reduction in the taurine plasma levels and a lower weight increase. At the functional level, photopic electroretinograms were reduced indicating a dysfunction in the cone pathway. A change in the autofluorescence appearance of the eye fundus was explained on histological sections by an increased autofluorescence of the retinal pigment epithelium. Although the general morphology of the retina was not affected, cell damages were indicated by the general increase in glial fibrillary acidic protein expression. When cell quantification was achieved on retinal sections, the number of outer/inner segments of cone photoreceptors was reduced (20 %) as the number of retinal ganglion cells (19 %). An abnormal synaptic plasticity of rod bipolar cell dendrites was also observed in GES-treated mice. These results indicate that taurine deficiency can not only lead to photoreceptor degeneration but also to retinal ganglion cell loss. Cone photoreceptors and retinal ganglion cells appear as the most sensitive cells to taurine deficiency. These results may explain the recent therapeutic interest of taurine in retinal degenerative pathologies.

  3. Amyloidomas of the Gasserian Ganglion

    PubMed Central

    van Lindert, Erik; Bornemann, Antje; Hey, Otto; Perneczky, Axel; Müller-Forell, Wibke

    1995-01-01

    An amyloidoma is a local deposition of amyloid that becomes a space-occupying lesion. Amyloidomas of the central nervous system are very uncommon lesions and only four amyloidomas of the gasserian ganglion have been reported so far. We present the neuroradiologic and surgical characteristics of three more amyloidomas of the gasserian ganglion seen at one neurosurgical department in 11 years. ImagesFigure 1Figure 2p215-bFigure 3 PMID:17170961

  4. Striatopallidonigral degeneration

    PubMed Central

    Bell, W. E.; McCormick, W. F.

    1971-01-01

    A 15-year-old girl is described with a sporadic, progressive illness manifested by unilateral limb rigidity and dystonia. Obvious dysarthria and some intellectual decline also were noted. Neuropathological findings included gross discoloration and shrinkage of the pallida and, microscopically, profound neuronal loss and gliosis of the caudata and putamena, with less severe neuronal loss from the pallida and substantia nigra. The disease bears some similarities to striatonigral degeneration, but certain clinical and morphological differences justify its consideration as a separate syndrome. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:5565467

  5. EVALUATION OF HYPERALGESIA AND HISTOLOGICAL CHANGES OF DORSAL ROOT GANGLION INDUCED BY NUCLEUS PULPOSUS

    PubMed Central

    Grava, André Luiz de Souza; Ferrari, Luiz Fernando; Parada, Carlos Amílcar; Defino, Helton Luiz Aparecido

    2015-01-01

    To evaluate the hyperalgesia and histological abnormalities induced by contact between the dorsal root ganglion and the nucleus pulposus. Methods: Twenty Wistar rats were used, divided into two experimental groups. In one of the groups, a fragment of autologous nucleus pulposus was removed from the sacrococcygeal region and deposited on the L5 dorsal root ganglia. In the other group (control), a fragment of adipose tissue was deposited on the L5 dorsal root ganglia. Mechanical and thermal hyperalgesia was evaluated on the third day and the first, third, fifth and seventh weeks after the operation. A L5 dorsal root ganglion was removed in the first, third, fifth and seventh weeks after the operation for histological study using HE staining and histochemical study using specific labeling for iNOS. Results: Higher intensity of mechanical and thermal hyperalgesia was observed in the group of animals in which the nucleus pulposus was placed in contact with the dorsal root ganglion. In this group, the histological study showed abnormalities of the dorsal root ganglion tissue, characterized by an inflammatory process and axonal degeneration. The histopathological abnormalities of the dorsal root ganglion tissue presented increasing intensity with increasing length of observation, and there was a correlation with maintenance of the hyperalgesia observed in the behavioral assessment. Immunohistochemistry using specific labeling for iNOS in the group of animals in which the nucleus pulposus was placed in contact with the dorsal root ganglion showed higher expression of this enzyme in the nuclei of the inflammatory cells (glial cells) surrounding the neurons. Conclusion: Contact between the nucleus pulposus and the dorsal root ganglion induced mechanical and thermal hyperalgesia and caused histological abnormalities in the dorsal root ganglion components. These abnormalities were characterized by an inflammatory and degenerative process in the structures of the dorsal root

  6. Effects of betaxolol on light responses and membrane conductance in retinal ganglion cells.

    PubMed

    Gross, R L; Hensley, S H; Gao, F; Yang, X L; Dai, S C; Wu, S M

    2000-03-01

    To examine the physiological effects of betaxolol, a beta1-adrenergic receptor blocker commonly used in the treatment of glaucoma, on retinal ganglion cells and to evaluate its potential to elicit responses consistent with a neuroprotective agent against ganglion cell degeneration. Single-unit extracellular recording, electroretinogram (ERG), intracellular and whole-cell patch-clamp recording techniques were made from flatmounted, isolated retina, superfused eyecup, and living retinal slice preparations of the larval tiger salamander. Bath application of 20 microM betaxolol reduced the glutamate-induced increase of spontaneous spike rate in retinal ganglion cell by approximately 30%. The glutamate-induced postsynaptic current recorded under voltage-clamp conditions was reduced by 50 microM betaxolol, and the difference current-voltage (I-V) relation (I(Control)-I(betaxolol)) was N-shaped and AP5-sensitive, characteristic of N-methyl-D-aspartate receptor-mediated current. Application of 50 microM betaxolol reversibly reduced the voltage-gated sodium and calcium currents by approximately one third of their peak amplitudes. The times-to-action of betaxolol on ganglion cells are long (15-35 minutes for 20-50 microM betaxolol), indicative of modulation through slow biochemical cascades. Betaxolol, up to 100 microM, exerted no effects on horizontal cells or the ERG, suggesting that the primary actions of this beta1 blocker are restricted to retinal ganglion cells. These physiological experiments provide supporting evidence that betaxolol acts in a manner consistent with preventing retinal ganglion cell death induced by elevated extracellular glutamate or by increased spontaneous spike rates under pathologic conditions. The physiological actions of betaxolol lead to reducing neurotoxic effects in ganglion cells, which are the most susceptible retinal neurons to glutamate-induced damages under ischemic and glaucomatous conditions. Therefore, betaxolol has the potential to

  7. Dry Macular Degeneration

    MedlinePlus

    ... delay vision loss due to dry macular degeneration. Symptoms Dry macular degeneration symptoms usually develop gradually and without pain. They may ... of printed words Decreased intensity or brightness of ... causes total blindness. Dry macular degeneration is one of two types ...

  8. Macular degeneration (image)

    MedlinePlus

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  9. Vascular Leiomyoma and Geniculate Ganglion

    PubMed Central

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio

    2013-01-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721

  10. Vascular leiomyoma and geniculate ganglion.

    PubMed

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Ciniglio Appiani, Mario

    2013-06-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve.

  11. Ganglion Cyst of the Wrist and Hand

    MedlinePlus

    ... treatment of a ganglion cyst is not surgical. • Observation. Because the ganglion is not cancerous and may ... to go home a er a period of observation in the recovery area. There may be some ...

  12. Arthroscopic excision of ganglion cysts.

    PubMed

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit.

  13. Optic pathway degeneration in Japanese black cattle.

    PubMed

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy.

  14. Optic pathway degeneration in Japanese black cattle

    PubMed Central

    CHIBA, Shiori; FUNATO, Shingo; HORIUCHI, Noriyuki; MATSUMOTO, Kotaro; INOKUMA, Hisashi; FURUOKA, Hidefumi; KOBAYASHI, Yoshiyasu

    2014-01-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy. PMID:25421501

  15. Amyloidoma of the gasserian ganglion.

    PubMed

    DeCastro, S; Sparks, J R; Lapey, J D; Freidberg, S R

    1976-12-01

    A case report, the third in the literature, is presented of a patient whose progressive numbness in the second and third divisions of the trigeminal nerve led to the discovery of an isolated amyloidoma of the gasserian ganglion. The clinical impression of tumor was confirmed by surgical and pathologic findings.

  16. Endoscopic Resection of the Tarsal Tunnel Ganglion.

    PubMed

    Lui, Tun Hing

    2016-10-01

    The tarsal tunnel ganglion is a cause of posterior tarsal tunnel syndrome. Open resection of the ganglion calls for release of the flexor retinaculum and dissection around the tibial neurovascular bundle. This can induce fibrosis around the tibial nerve. We report the technique of endoscopic resection of the tarsal tunnel ganglion. It is indicated for tarsal tunnel ganglia arising from the adjacent joints or tendon sheaths and compressing the tibial nerve from its deep side. It is contraindicated if there is other pathology of the tarsal tunnel that demands open surgery; if the ganglion compresses the tibial nerve from its superficial side, which calls for a different endoscopic approach using the ganglion portal; or if an intraneural ganglion of the tibial nerve is present. The purpose of this technical note is to describe a minimally invasive approach for endoscopic resection of the tarsal tunnel ganglion.

  17. Degenerate metric phase boundaries

    NASA Astrophysics Data System (ADS)

    Bengtsson, I.; Jacobson, T.

    1997-11-01

    The structure of boundaries between degenerate and non-degenerate solutions of Ashtekar's canonical reformulation of Einstein's equations is studied. Several examples are given of such `phase boundaries' in which the metric is degenerate on one side of a null hypersurface and non-degenerate on the other side. These include portions of flat space, Schwarzschild and plane-wave solutions joined to degenerate regions. In the last case, the wave collides with a planar phase boundary and continues on with the same curvature but degenerate triad, while the phase boundary continues in the opposite direction. We conjecture that degenerate phase boundaries are always null.

  18. Neurophysiology of central retinal degeneration in cat.

    PubMed

    Levick, W R; Thibos, L N

    1993-01-01

    Receptive fields of ganglion cells have been studied in cats possessing a chronic, arrested lesion of central retinal degeneration. Lesions were characterized by an ophthalmoscopically sharp border separating apparently normal retina from the region of the lesion. Under direct ophthalmoscopic guidance, a succession of recordings was obtained from ganglion cells having cell bodies at various positions relative to the lesion. Cells located more than 1 deg outside the ophthalmoscopic border had normal visual sensitivity as assessed by area-threshold experiments. Inside the lesion cells within 1 deg of the border had reduced sensitivity which often precluded functional classification by the usual visual tests. Ganglion cells located more than 1 deg inside the border of large lesions were blind and some had abnormal patterns of maintained discharge of action potentials. Nevertheless, the antidromic latencies of these blind cells fell into the familiar conduction groups (T1/T2/T3). Receptive-field maps of cells near the border of the lesion often appeared truncated, with the missing portion of the field covered by the lesion. These observations were consistent with the abnormal form of area-threshold curves. Although the responsiveness of cells near the lesion was abnormally low for grating stimuli, cutoff spatial frequency and orientation bias of these cells were within normal limits.

  19. [A case of pyogenic osteomyelitis of the cervical spine following stellate ganglion block].

    PubMed

    Maeda, Shigeo; Murakawa, Kazushige; Fu, Kazuhide; Kamihara, Masahito; Tashiro, Chikara

    2004-06-01

    A 56-year-old woman had been treated with stellate ganglion block (SGB) for pigmentation degeneration retinopathy over 6 years. She had no history of diabetes mellitus or immunodeficiency. She complained of high back pain but was afebrile. She was diagnosed as pyogenic osteomyelitis by the MRI findings and hematological examination. Antibiotics was administerd for 3 weeks and inflammatory signs disappeared. We should bear in mind that pyogenic osteomyelitis is very rare but one of the most serious complications with SGB.

  20. Reinnervation of Hair Cells by Auditory Neurons after Selective Removal of Spiral Ganglion Neurons

    PubMed Central

    Martinez-Monedero, Rodrigo; Corrales, C. Eduardo; Cuajungco, Math P.; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss can be caused by primary degeneration of spiral ganglion neurons or by secondary degeneration of these neurons after hair cell loss. The replacement of auditory neurons would be an important step in any attempt to restore auditory function in patients with damaged inner ear neurons or hair cells. Application of β-bungarotoxin, a toxin derived from snake venom, to an explant of the cochlea eradicates spiral ganglion neurons while sparing the other cochlear cell types. The toxin was found to bind to the neurons and to cause apoptotic cell death without affecting hair cells or other inner ear cell types as indicated by TUNEL staining, and, thus, the toxin provides a highly specific means of deafferentation of hair cells. We therefore used the denervated organ of Corti for the study of neuronal regeneration and synaptogenesis with hair cells and found that spiral ganglion neurons obtained from the cochlea of an untreated newborn mouse reinnervated hair cells in the toxin-treated organ of Corti and expressed synaptic vesicle markers at points of contact with hair cells. These findings suggest that it may be possible to replace degenerated neurons by grafting new cells into the organ of Corti. PMID:16408287

  1. Retinal remodeling triggered by photoreceptor degenerations.

    PubMed

    Jones, Bryan W; Watt, Carl B; Frederick, Jeanne M; Baehr, Wolfgang; Chen, Ching-Kang; Levine, Edward M; Milam, Ann H; Lavail, Matthew M; Marc, Robert E

    2003-09-08

    Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed.

  2. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  3. Macular Degeneration Partnership

    MedlinePlus

    ... Age Related Macular Degeneration) Partnership Listen AMD Month Public Service Announcement To raise awareness of AMD, the Macular Degeneration Partnership (MDP) is distributing a public service announcement (PSA) nationwide. Seen through the eyes of a ...

  4. Phenotypic map of porcine retinal ganglion cells

    PubMed Central

    Veiga-Crespo, Patricia; del Río, Patricia; Blindert, Marcel; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Purpose Porcine retina is an excellent model for studying diverse retinal processes and diseases. The morphologies of porcine retinal ganglion cells (RGCs) have, however, not yet been described comprehensively. The aim of the present study was to créate a classification of the RGCs using the 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) tracing method. Methods About 170 RGCs were retrogradely labeled by injecting DiI into the optic nerve of postmortem eyes and statistically analyzed by two different clustering methods: Ward’s algorithm and the K-means clustering. Major axis length of the soma, soma area size, and dendritic field area size were selected as main parameters for cluster classification. Results RGC distribution in clusters was achieved according to their morphological parameters. It was feasible to combine both statistical methods, thereby obtaining a robust clustering distribution. Morphological analysis resulted in a classification of RGCs in three groups according to the soma size and dendritic field: A (large somas and large dendritic fields), B (medium to large somas and medium to large dendritic fields), C (medium to small somas and medium to small dendritic fields). Within groups, fine clustering defined several subgroups according to dendritic arborization and level of stratification. Additionally, cells stratifying in two different levels of the inner plexiform layer were observed within the clusters. Conclusions This comprehensive study of RGC morphologies in the porcine retina provides fundamental knowledge about RGC cell types and provides a basis for functional studies toward selective RGC cell degeneration in retinal disorders. PMID:23687427

  5. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  6. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  7. Fine structure of the ganglion of Cephalodiscus gracilis (Pterobranchia, Hemichordata).

    PubMed

    Rehkämper, G; Welsch, U; Dilly, P N

    1987-05-08

    The ganglion of Cephalodiscus gracilis M'Intosh 1882 is entirely intraepithelial and located in the dorsal epidermis immediately behind the tentacular apparatus that is formed by the mesosome (collar). A characteristic feature of the ganglion is a well-developed neuropile in which different types of nerve fibres can be discerned, many of which contain small granules with electron-dense contents. There are no glia-like cells in association with these fibres. Only slender basal processes of epidermal epithelial cells traverse the neuropile. In the depth of the epithelium the neuropile borders the epidermal basal lamina; apically it is covered by a layer of cell bodies, the majority of which belong to what appear to be ordinary ciliated epidermal cells. Besides these epidermal cells the perikarya of two additional types of cells, which are considered to be neurons, can be discerned. One type is characterised by many rough endoplasmic reticulum cisterns and mitochondria, the other by abundant small, electron-dense granules. The nuclei of these cells are comparatively pale and contain a prominent nucleolus. The neuron cell bodies do not form a distinct layer; but they are loosely distributed somewhat deeper than those of the ordinary epidermal cells. They probably send off an apical process to the epidermal surface and a basally directed one into the neuropile. The ganglion has been compared to the nervous systems in cnidarians, some spiralians, and especially other hemichordates, echinoderms, and chordates; it is found to be of primitive rather than degenerate nature. Furthermore, the possible functional significance of its close connection to the food-capturing tentacular apparatus is discussed.

  8. Gene therapy for retinal ganglion cell neuroprotection in glaucoma.

    PubMed

    Wilson, A M; Di Polo, A

    2012-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. The primary cause of glaucoma is not known, but several risk factors have been identified, including elevated intraocular pressure and age. Loss of vision in glaucoma is caused by the death of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. Therapeutic strategies aimed at delaying or halting RGC loss, known as neuroprotection, would be valuable to save vision in glaucoma. In this review, we discuss the significant progress that has been made in the use of gene therapy to understand mechanisms underlying RGC degeneration and to promote the survival of these neurons in experimental models of optic nerve injury.

  9. Age-dependent changes in the regulation mechanisms for intracellular calcium ions in ganglion cells of the mouse retina.

    PubMed

    Mann, Miriam; Haq, Wadood; Zabel, Thomas; Guenther, Elke; Zrenner, Eberhart; Ladewig, Thomas

    2005-12-01

    The purpose of this study was to investigate the role of intracellular calcium buffering in retinal ganglion cells. We performed a quantitative analysis of calcium homeostasis in ganglion cells of early postnatal and adult mice by simultaneous patch-clamp recordings in sliced tissue and microfluorometric calcium measurements with Fura-2. Endogenous calcium homeostasis was quantified by using the 'added buffer' approach which uses amplitudes and decay time constants of calcium transients to give a standard for intracellular calcium buffering. The recovery phase of depolarization-induced calcium transients was well approximated by a mono-exponential function with a decay time constant that showed a linear dependence on dye concentration. Endogenous calcium binding ratios were found to be 575 (n = 18 cells) in early postnatal and 121 (n = 18 cells) in adult retinal ganglion cells. With respect to ganglion cell degeneration at early postnatal stages, our measurements suggest that neuroprotection of a majority of developing ganglion cells partially results from a specialized calcium homeostasis based on high buffering capacities. Furthermore, the dramatic decrease of the intracellular calcium buffering capacity during ganglion cell development may enhance their vulnerability to neurodegeneration.

  10. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

    PubMed Central

    So, Kwok-Fai; Leung, Mason Chin Pang; Cui, Qi

    2014-01-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the first week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These findings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal ganglion cells. PMID:25558230

  11. Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin.

    PubMed

    Berkingali, Nurdanat; Warnecke, Athanasia; Gomes, Priya; Paasche, Gerrit; Tack, Jan; Lenarz, Thomas; Stöver, Timo

    2008-09-01

    The morphological correlate of deafness is the loss of hair cells with subsequent degeneration of spiral ganglion neurons (SGN). Neurotrophic factors have a neuroprotective effect, and especially brain-derived neurotrophic factor (BDNF) has been demonstrated to protect SGN in vitro and after ototoxic trauma in vivo. Erythropoietin (EPO) attenuates hair cell loss in rat cochlea explants that were treated with gentamycin. Recently, it has also been shown that EPO reduces the apoptose rate in hippocampal neurons. Therefore, the aim of the study was to examine the effects of EPO on SGN in vitro. Spiral ganglion cells were isolated from neonatal rats and cultured for 48 h in serum-free medium supplemented with EPO and/or BDNF. Results showed that survival rates of SGN were not significantly improved when cultivated with EPO alone. Also, EPO did not further increase BDNF-induced survival of SGN. However, significant elongation of neurites was determined when SGN were cultivated with EPO alone. Even though a less than additive effect was observed, combined treatment with BDNF and EPO led to a significant elongation of neurites when compared to individual treatment with BDNF or EPO. It can be concluded that EPO induces neurite outgrowth rather than promoting survival. Thus, EPO presents as an interesting candidate to enhance and modulate the regenerative effect of BDNF on SGN.

  12. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  13. Paraldehyde and methylpentynol and ganglionic transmission

    PubMed Central

    Quilliam, J. P.

    1959-01-01

    Paraldehyde and methylpentynol blocked transmission of nerve impulses through the superior cervical ganglion of the cat when the drugs were administered intra-arterially to the ganglion or intravenously using the nictitating membrane as an indicator. Electrical studies showed that concentrations of methylpentynol and paraldehyde which blocked transmission in the isolated rat superior cervical ganglion were without action on the preganglionic nerve fibre. In amounts which blocked transmission in the isolated rat ganglion, paraldehyde had no depolarizing activity directly on the ganglion cells and did not interfere with the depolarizing activity of added acetylcholine. The results suggest that the block in transmission of the impulse could be accounted for by a decrease in the release of acetylcholine from the preganglionic nerve terminals. In both species the block was reversible. PMID:13662589

  14. Paraldehyde and methylpentynol and ganglionic transmission.

    PubMed

    QUILLIAM, J P

    1959-06-01

    Paraldehyde and methylpentynol blocked transmission of nerve impulses through the superior cervical ganglion of the cat when the drugs were administered intra-arterially to the ganglion or intravenously using the nictitating membrane as an indicator. Electrical studies showed that concentrations of methylpentynol and paraldehyde which blocked transmission in the isolated rat superior cervical ganglion were without action on the preganglionic nerve fibre. In amounts which blocked transmission in the isolated rat ganglion, paraldehyde had no depolarizing activity directly on the ganglion cells and did not interfere with the depolarizing activity of added acetylcholine. The results suggest that the block in transmission of the impulse could be accounted for by a decrease in the release of acetylcholine from the preganglionic nerve terminals. In both species the block was reversible.

  15. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.

  16. Absence of galectin-3 promotes neuroprotection in retinal ganglion cells after optic nerve injury.

    PubMed

    Abreu, Carla Andreia; De Lima, Silmara Veline; Mendonça, Henrique Rocha; Goulart, Camila de Oliveira; Martinez, Ana Maria Blanco

    2017-03-01

    A trauma to the mature central nervous system (CNS) often leads to persistent deficits, due to the inability of axons to regenerate after being injured. Increasing evidence suggests that pro-inflammatory and pro-apoptotic genes can present a major obstacle to promoting neuroprotection of retinal ganglion cells and consequently succeed in axonal regeneration. This study evaluated the effect of the absence of galectin-3 (Gal-3) on retinal ganglion cells (RGC) survival and axonal regeneration/degeneration after optic nerve crush injury. Two weeks after crush there was a 2.6 fold increase in the rate of cell survival in Gal-3-/- mice (1283±79.15) compared to WT animals (495.4±53.96). However, no regeneration was observed in the Gal-3-/- mice two weeks after lesion. Furthermore, axonal degeneration presented a particular pattern on those mice; Electron Microscopy (EM) analysis showed incomplete axon degeneration while the WT mice presented an advanced stage of degeneration. This suggests that the removal of the nerve fibers in the Gal 3-/- mice could be deficient and this would cause a delay in the process of Wallerian degeneration once there is a decrease in the number of macrophages/microglia in the nerve. This study demonstrates how the absence of Gal-3 can affect RGC survival and optic nerve regeneration/degeneration after lesion. Our results suggest that the absence of Gal-3 plays an important role in the survival of RGC and thus can be a potential target for therapeutic intervention in RGC neuroprotection.

  17. Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences

    PubMed Central

    Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard

    2016-01-01

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington’s disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661

  18. Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys.

    PubMed

    Devergnas, Annaelle; Pittard, Damien; Bliwise, Donald; Wichmann, Thomas

    2014-08-01

    Parkinsonism is associated with changes in oscillatory activity patterns and increased synchronization of neurons in the basal ganglia and cortex in patients and animal models of Parkinson's disease, but the relationship between these changes and the severity of parkinsonian signs remains unclear. We examined this relationship by studying changes in local field potentials (LFPs) in the internal pallidal segment (GPi) and the subthalamic nucleus (STN), and in encephalographic signals (EEG) from the primary motor cortex (M1) in Rhesus monkeys which were rendered progressively parkinsonian by repeated systemic injections of small doses of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Observations during wakefulness and sleep (defined by EEG and video records) were analyzed separately. The severity of parkinsonism correlated with increases in spectral power at frequencies below 15.5Hz in M1 and GPi and reductions in spectral power at frequencies above 15.6Hz with little change in STN. The severity of parkinsonism also correlated with increases in the coherence between M1 EEG and basal ganglia LFPs in the low frequency band. Levodopa treatment reduced low-frequency activity and increased high-frequency activity in all three areas, but did not affect coherence. The state of arousal also affected LFP and EEG signals in all three structures, particularly in the STN. These results suggest that parkinsonism-associated changes in alpha and low-beta band oscillatory activity can be detected early in the parkinsonian state in M1 and GPi. Interestingly, oscillations detectable in STN LFP signals (including oscillations in the beta-band) do not appear to correlate strongly with the severity of mild-to-moderate parkinsonism in these animals. Levodopa-induced changes in oscillatory M1 EEG and basal ganglia LFP patterns do not necessarily represent a normalization of abnormalities caused by dopamine depletion.

  19. Development of Animal Models of Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Kung, Jennifer; Beier, Corinne; Mandel, Yossi; Dalal, Roopa; Huie, Philip; Wang, Jenny; Lee, Seungjun; Sher, Alexander; Jones, Bryan William; Palanker, Daniel

    2015-01-01

    Purpose Development of nongenetic animal models of local retinal degeneration is essential for studies of retinal pathologies, such as chronic retinal detachment or age-related macular degeneration. We present two different methods to induce a highly localized retinal degeneration with precise onset time, that can be applied to a broad range of species in laboratory use. Methods A 30-μm thin polymer sheet was implanted subretinally in wild-type (WT) rats. The effects of chronic retinal separation from the RPE were studied using histology and immunohistochemistry. Another approach is applicable to species with avascular retina, such as rabbits, where the photoreceptors and RPE were thermally ablated over large areas, using a high power scanning laser. Results Photoreceptors above the subretinal implant in rats degenerated over time, with 80% of the outer nuclear layer disappearing within a month, and the rest by 3 months. Similar loss was obtained by selective photocoagulation with a scanning laser. Cells in the inner nuclear layer and ganglion cell layer were preserved in both cases. However, there were signs of rewiring and decrease in the size of the bipolar cell terminals in the damaged areas. Conclusions Both methods induce highly reproducible degeneration of photoreceptors over a defined area, with complete preservation of the inner retinal neurons during the 3-month follow-up. They provide a reliable platform for studies of local retinal degeneration and development of therapeutic strategies in a wide variety of species. PMID:26207299

  20. Monoamine pharmacology of the lobster cardiac ganglion.

    PubMed

    Berlind, A

    2001-03-01

    Monoamine agonists and antagonists were applied to the lobster cardiac ganglion in an attempt to clarify the different actions of 5-hydroxytryptamine (5HT) and dopamine (DA) on this rhythmic pattern generator. Experiments were designed to determine whether the similar responses to 5HT and DA applied to the anterior region of the ganglion could be separated by pharmacological approaches, and whether the different responses to 5HT applied to the anterior and posterior regions of the ganglion could be attributed to mediation by different receptors. A small number of the 5HT agonists which were tested mimic the effects of 5HT, in that they increase the frequency of bursting and decrease burst duration when applied to the whole ganglion, but decrease burst frequency and increase burst duration when applied only to the posterior half. Other 5HT agonists decrease frequency and prolong bursts when applied to the whole ganglion. Of the DA agonists tested, none acts as DA itself does. Rather, they mimic the effects of 5HT applied to the posterior ganglion, by slowing bursting and prolonging bursts. The actions of agonists do not correspond in any clear way to the receptor specificities as defined in vertebrates. Most antagonists tested do not show similar specificities to their effects in vertebrates. In particular, most of the DA antagonists tested are more effective in blocking exogenous 5HT than DA. One monoamine agonist directly alters the properties of endogenous burst-organizing potentials (driver potentials) in the motorneurons of the ganglion.

  1. Ultrasound-guided aspiration and steroid injection of a posterior cruciate ligament ganglion cyst: report of a case.

    PubMed

    Vilella, Giuseppe Maria; Guerrisi, Pietro; Lucignani, Giulia; Pasquali, Gaia; Drudi, Francesco Maria

    2015-09-01

    Ganglion cysts are benign masses that originate from mucinous degeneration of the connective tissues and are quite rare when arising from the knee joint. Symptoms are often represented by pain, joint tenderness, effusion and occasional swelling with a palpable mass in the popliteal region of the knee. Percutaneous aspiration followed by a corticosteroid injection of a ganglion cyst has either a diagnostic or therapeutic meaning and its guidance through ultrasound allows the operator to make more accurate the procedure, ensuring the correct placement of the needle inside the lesion. We report our experience in the treatment of a voluminous ganglion cyst of the posterior cruciate ligament performed through the ultrasound guidance in a symptomatic young patient.

  2. Anatomical variations of the second thoracic ganglion.

    PubMed

    Singh, B; Ramsaroop, L; Partab, P; Moodley, J; Satyapal, K S

    2005-04-01

    In recent years the second thoracic ganglion has gained anatomical significance as an important conduit for sympathetic innervation of the upper extremity. Thoracoscopic excision of the second thoracic ganglion is now widely recognized as affording the most effective treatment option for palmar hyperhidrosis. This study recorded the incidence, location and associated additional neural connections of the second thoracic ganglion. Bilateral dissection of 20 adult cadavers was undertaken, and all neural connections of the second thoracic ganglion were recorded. Nineteen cadavers (95%) demonstrated additional neural connections between the first thoracic ventral ramus and second intercostal nerve. These were classified as either type A (47.5%) or type B (45%) using the intrathoracic ramus (nerve of Kuntz) between the second intercostal nerve and the ventral ramus of the first thoracic nerve as a basis on both right and left sides. The second thoracic ganglion was commonly located (92.5%) in the second intercostal space at the level of the intervertebral disc between the second and third thoracic vertebrae. Fused ganglia between the second thoracic and first thoracic (5%) and stellate (5%) ganglia were noted. These findings should assist the operating surgeon with a clear knowledge of the anatomy of the second thoracic ganglion during thoracoscopic sympathectomy with a view to improving the success rate for upper limb sympathectomy.

  3. Studies on the crustacean cardiac ganglion.

    PubMed

    Cooke, I M

    1988-01-01

    1. An overview of studies on the decapod crustacean cardiac ganglion is given emphasizing contributions to questions of general interest in cellular neurophysiology. 2. John Welsh, in 1951, introduced this 9-celled, semi-autonomous ganglion as a preparation offering physiologists unique experimental possibilities. 3. It exhibits remarkable reliability and stability in rhythmic pattern generation. The neurons show endogenous burst-forming capability mediated by "driver potentials". 4. These regenerative, Ca-mediated potentials are restricted to the soma, while impulse-generating membrane is segregated to the distal axon. 5. Thus, voltage-clamp analysis of the ionic currents underlying the burst-forming potentials is possible by isolating the soma with a ligature. 6. The isolated ganglion is spontaneously active, but the normal mechanism of pacemaking remains to be clarified, including the possible contribution of stretch-sensitive dendrites. 7. The activity of the ganglion is subject to modulation by neurohumors. These include the transmitter at intraganglionic synapses, transmitters of the pair of inhibitory and the two pairs of acceleratory fibers, and neurohormones released from the pericardial organs. The transmitters are not established. 8. Effects on the ganglion of substances isolated from the pericardial organs have been described. 9. These include 5-hydroxytryptamine, dopamine, octopamine, and two peptides. 10. One of these, proctolin, produces a long-lasting sequence of effects. 11. The work continues to raise new questions for which the ganglion offers excellent research material.

  4. Optical properties of retinal tissue and the potential of adaptive optics to visualize retinal ganglion cells in vivo.

    PubMed

    Prasse, Martina; Rauscher, Franziska Georgia; Wiedemann, Peter; Reichenbach, Andreas; Francke, Mike

    2013-08-01

    Many efforts have been made to improve the diagnostic tools used to identify and to estimate the progress of ganglion cell and nerve fibre degeneration in glaucoma. Imaging by optical coherence tomography and measurements of the dimensions of the optic nerve head and the nerve fibre layer in central retinal areas is currently used to estimate the grade of pathological changes. The visualization and quantification of ganglion cells and nerve fibres directly in patients would dramatically improve glaucoma diagnostics. We have investigated the optical properties of cellular structures of retinal tissue in order to establish a means of visualizing and quantifying ganglion cells in the living retina without staining. We have characterized the optical properties of retinal tissue in several species including humans. Nerve fibres, blood vessels, ganglion cells and their cell processes have been visualized at high image resolution by means of the reflection mode of a confocal laser scanning microscope. The potential of adaptive optics in current imaging systems and the possibilities of imaging single ganglion cells non-invasively in patients are discussed.

  5. Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration.

    PubMed

    Aplin, Felix P; Fletcher, Erica L; Luu, Chi D; Vessey, Kirstan A; Allen, Penelope J; Guymer, Robyn H; Shepherd, Robert K; Shivdasani, Mohit N

    2016-10-01

    Retinal prostheses have emerged as a promising technology to restore vision in patients with severe photoreceptor degeneration. To better understand how neural degeneration affects the efficacy of electronic implants, we investigated the function of a suprachoroidal retinal implant in a feline model. Unilateral retinal degeneration was induced in four adult felines by intravitreal injection of adenosine triphosphate (ATP). Twelve weeks post injection, animals received suprachoroidal electrode array implants in each eye, and responses to electrical stimulation were obtained using multiunit recordings from the visual cortex. Histologic measurements of neural and glial changes in the retina at the implant site were correlated with cortical thresholds from individual stimulating electrodes. Adenosine triphosphate-injected eyes displayed changes consistent with mid-to-late stage retinal degeneration and remodeling. A significant increase in electrical charge was required to induce a cortical response from stimulation of the degenerated retina compared to that in the fellow control eye. Spatial and temporal characteristics of the electrically evoked cortical responses were no different between eyes. Individual electrode thresholds varied in both the control and the ATP-injected eyes and were correlated with ganglion cell density. In ATP-injected eyes, cortical threshold was also independently correlated with an increase in the extent of retinal gliosis. These data suggest that even when ganglion cell density remains unaffected, glial changes in the retina following degeneration can influence the efficacy of suprachoroidal electrical stimulation. A better understanding of how glial change impacts retinal prosthesis function may help to further the optimization of retinal implants.

  6. Direct demonstration of transsynaptic degeneration in the human visual system: a comparison of retrograde and anterograde changes

    PubMed Central

    Beatty, RM; Sadun, AA; Smith, LEH; Vonsattel, JP; Richardson, EP

    1982-01-01

    Transneuronal degeneration of retinal ganglion cells was directly demonstrated in a patient who had unilateral removal of the striate cortex forty years prior to necropsy. For comparison, another case is presented showing anterograde transneuronal atrophy forty years after enucleation of one eye. Images PMID:7069426

  7. Pellucid marginal corneal degeneration.

    PubMed

    Krachmer, J H

    1978-07-01

    Pellucid marginal degeneration of the cornea is a bilateral, clear, inferior, peripheral corneal-thinning disorder. Protrusion of the cornea occurs above a band of thinning, which is located 1 to 2 mm from the limbus and measures 1 to 2 mm in width. American ophthalmologists are generally not familiar with the condition because most of the literature concerning pellucid degeneration is European. Four cases are described. This condition is differentiated from other noninflammatory cornel-thinning disorders such as keratoconus, keratoglobus, keratotorus, and posterior keratoconus. It is also differentiated from peripheral corneal disorders associated with inflammation such as Terrien's peripheral corneal degeneration, Mooren's ulcers, and ulcers from connective tissue disease.

  8. Relationship between dorsal ganglion cysts of the wrist and intraosseous ganglion cysts of the carpal bones.

    PubMed

    Van den Dungen, Sophie; Marchesi, Simona; Ezzedine, Rabih; Bindou, David; Lorea, Patrick

    2005-10-01

    Soft tissue ganglion cysts are the most common benign tumours of the wrist; their pathogenesis remains controversial. We prospectively screened the radiographic appearance of the wrists of 51 patients presenting to a single surgeon with dorsal wrist ganglions during a one-year period. Postero-anterior and lateral radiographs were systematically performed looking for possible associated intraosseous ganglion cysts. There were 51 dorsal soft tissue ganglion cysts in 51 patients. We detected 29 associated intraosseous ganglia in 24 patients (47%): 16 ganglia in the lunate bone (55%), 5 in the capitate bone, 7 in the scaphoid and 1 in the trapezoid. Mean size of the intraosseous ganglia was 3 mm (range, 2 to 5 mm). This high prevalence of intraosseous ganglia in association with soft tissue ganglia has to our knowledge never been reported previously. A common aetiology for these two types of ganglion cysts may explain this high association rate.

  9. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  10. Biomechanics of Disc Degeneration

    PubMed Central

    Palepu, V.; Kodigudla, M.; Goel, V. K.

    2012-01-01

    Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population. PMID:22745914

  11. Wet Macular Degeneration

    MedlinePlus

    ... has a hereditary component. Researchers have identified several genes related to developing the condition. Smoking. Smoking cigarettes or being regularly exposed to smoke significantly increases your risk of macular degeneration. Obesity. Research indicates that being obese increases the chance ...

  12. Involuntary hand levitation associated with parietal damage: another alien hand syndrome.

    PubMed

    Carrilho, P E; Caramelli, P; Cardoso, F; Barbosa, E R; Buchpiguel, C A; Nitrini, R

    2001-09-01

    The alien hand syndrome (AHS) usually consists of an autonomous motor activity perceived as an involuntary and purposeful movement, with a feeling of foreignness of the involved limb, commonly associated with a failure to recognise ownership of the limb in the absence of visual clues. It has been described in association to lesions of the frontal lobes and corpus callosum. However, parietal damage can promote an involuntary, but purposeless, hand levitation, which, sometimes, resembles AHS. In the present study, four patients (cortico-basal ganglionic degeneration - n=2; Alzheimer's disease - n=1 and parietal stroke - n=1) who developed alien hand motor behaviour and whose CT, MRI and/or SPECT have disclosed a major contralateral parietal damage or dysfunction are described. These results reinforce the idea that parietal lobe lesions may also play a role in some patients with purposeless involuntary limb levitation, which is different from the classic forms of AHS.

  13. Morphological properties of mouse retinal ganglion cells.

    PubMed

    Coombs, J; van der List, D; Wang, G-Y; Chalupa, L M

    2006-06-19

    The mouse retina offers an increasingly valuable model for vision research given the possibilities for genetic manipulation. Here we assess how the structural properties of mouse retinal ganglion cells relate to the stratification pattern of the dendrites of these neurons within the inner plexiform layer. For this purpose, we used 14 morphological measures to classify mouse retinal ganglion cells parametrically into different clusters. Retinal ganglion cells were labeled in one of three ways: Lucifer Yellow injection, 'DiOlistics' or transgenic expression of yellow fluorescent protein. The resulting analysis of 182 cells revealed 10 clusters of monostratified cells, with dendrites confined to either On or Off sublaminae of the inner plexiform layer, and four clusters of bistratified cells, dendrites spanning the On and Off sublaminae. We also sought to establish how these parametrically identified retinal ganglion cell clusters relate to cell types identified previously on the basis of immunocytochemical staining and the expression of yellow fluorescent protein. Cells labeled with an antibody against melanopsin were found to be located within a single cluster, while those labeled with the SMI-32 antibody were in four different clusters. Yellow fluorescent protein expressing cells were distributed within 13 of the 14 clusters identified here, which demonstrates that yellow fluorescent protein expression is a useful method for labeling virtually the entire population of mouse retinal ganglion cells. Collectively, these findings provide a valuable baseline for future studies dealing with the effects of genetic mutations on the morphological development of these neurons.

  14. Ectopic ganglion in cauda equina: case report.

    PubMed

    Conner, Andrew K; Fung, Kar-Ming; Peterson, Jo Elle G; Glenn, Chad A; Martin, Michael D

    2016-06-01

    Macroscopic ectopic or heterotopic ganglionic tissue within the cauda equina is a very rare pathological finding and is usually associated with spinal dysraphism. However, it may mimic genuine neoplasms of the cauda equina. The authors describe a 29-year-old woman with a history of back pain, right leg pain, and urinary incontinence in whom imaging demonstrated an enhancing mass located in the cauda equina at the L1-2 interspace. The patient subsequently underwent biopsy and was found to have a focus of ectopic ganglionic tissue that was 1.3 cm in greatest dimension. To the authors' knowledge, ectopic or heterotopic ganglionic tissue within the cauda equina in a patient without evidence of spinal dysraphism has never been reported. This patient presented with imaging and clinical findings suggestive of a neoplasm, and an open biopsy proved the lesion to be ectopic ganglionic tissue. The authors suggest that ectopic ganglionic tissue be added to the list of differential diagnoses of a space-occupying lesion arising from the cauda equina.

  15. Pathogenesis of ganglion "cell death" in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria.

    PubMed

    Osborne, Neville N

    2008-01-01

    Retinal ganglion cell axons within the globe are functionally specialized being richly provided with many mitochondria. The mitochondria produce the high energy requirement for nerve conduction in the unmyelinated part of the ganglion cell axons. We have proposed that in the initiation of glaucoma, an alteration in the quality of blood flow dynamics in the optic nerve head causes a compromise in the retinal ganglion cell axon energy requirement, rendering the ganglion cells susceptible to additional insults. One secondary insult might be light entering the eye to further affect ganglion cell axon mitochondrial function. Other insults to the ganglion cells might be substances (e.g., glutamate, nitric oxide, TNF-alpha) released from astrocytes. These effects ultimately cause ganglion cell death because of the inability of mitochondria to maintain normal function. We therefore suggest that ganglion cell apoptosis in glaucoma is both receptor and mitochondrial mediated. Agents targeted specifically at enhancing ganglion cell mitochondrial energy production should therefore be beneficial in a disease like glaucoma. Ganglion cell death in glaucoma might therefore, in principle, not be unlike the pathophysiology of numerous neurological disorders involving energy dysregulation and oxidative stress. The trigger(s) for ganglion cell apoptosis in glaucoma is/are likely to be multifactorial, and the rationale for targeting impaired energy production as a possibility of improving a patient's quality of life is based on logic derived from laboratory studies where neuronal apoptosis is shown to occur via different mechanisms. Light-induced neuronal apoptosis is likely to be more relevant to ganglion cell death in glaucoma than, for example, neuronal apoptosis associated with Parkinson's disease. Logic suggests that enhancing mitochondrial function generally will slow down ganglion cell apoptosis and therefore benefit glaucoma patients. On the basis of our laboratory studies, we

  16. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon?

    PubMed

    Morquette, Junie Barbara; Di Polo, Adriana

    2008-06-01

    Glaucoma and other optic neuropathies have been traditionally viewed as diseases of the optic nerve that lead to retinal ganglion cell (RGC) degeneration. Accordingly, the primary aim of neuroprotective strategies has been to preserve RGC axons and soma. RGCs are complex and highly polarized central neurons, and their pathologic response in disease is likely to be an integration of signals from all cellular compartments-axons, soma, dendrites, and synaptic contacts. We focus on the role of dendrites and dendritic spines in normal neuronal function, neurologic disorders, and glaucoma. The need to understand the mechanisms underlying RGC dendrite and synapse degeneration in glaucoma and other optic neuropathies is compelling, as it may provide insight into novel therapeutic strategies to prevent vision loss.

  17. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration.

    PubMed

    Jang, Holim; Ahn, Hong Ryul; Jo, Hyoung; Kim, Kyung-A; Lee, Eun Ha; Lee, Ki Won; Jung, Sang Hoon; Lee, Chang Y

    2014-01-08

    This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.

  18. The Effect of Cochlear-Implant-Mediated Electrical Stimulation on Spiral Ganglion Cells in Congenitally Deaf White Cats

    PubMed Central

    Chen, Iris; Limb, Charles J.

    2010-01-01

    It has long been observed that loss of auditory receptor cells is associated with the progressive degeneration of spiral ganglion cells. Chronic electrical stimulation via cochlear implantation has been used in an attempt to slow the rate of degeneration in cats neonatally deafened by ototoxic agents but with mixed results. The present study examined this issue using white cats with a history of hereditary deafness as an alternative animal model. Nineteen cats provided new data for this study: four normal-hearing cats, seven congenitally deaf white cats, and eight congenitally deaf white cats with unilateral cochlear implants. Data from additional cats were collected from the literature. Electrical stimulation began at 3 to 4 or 6 to 7 months after birth, and cats received stimulation for approximately 7 h a day, 5 days a week for 12 weeks. Quantitative analysis of spiral ganglion cell counts, cell density, and cell body size showed no marked improvement between cochlear-implanted and congenitally deaf subjects. Average ganglion cell size from cochlear-implanted and congenitally deaf cats was statistically similar and smaller than that of normal-hearing cats. Cell density from cats with cochlear implants tended to decrease within the upper basal and middle cochlear turns in comparison to congenitally deaf cats but remained at congenitally deaf levels within the lower basal and apical cochlear turns. These results provide no evidence that chronic electrical stimulation enhances spiral ganglion cell survival, cell density, or cell size compared to that of unstimulated congenitally deaf cats. Regardless of ganglion neuron status, there is unambiguous restoration of auditory nerve synapses in the cochlear nucleus of these cats implanted at the earlier age. PMID:20821032

  19. Intraneural ganglion cyst of the tibial nerve.

    PubMed

    Adn, M; Hamlat, A; Morandi, X; Guegan, Y

    2006-08-01

    Intraneural ganglion cyst of the tibial nerve is very rare. To date, only 5 cases of this entity in the popliteal fossa have been reported. We report a new case and review the previously reported cases. A 40-year-old man experienced a mild vague pain in the medial half of his right foot for 3 years. Magnetic resonance imaging scan demonstrated a soft-tissue mass along the right tibial nerve. At surgery, an intraneural ganglion cyst was evacuated. After 12 months, the patient was pain-free with no signs of recurrence. Trauma might be a contributing factor to the development of intraneural ganglion cysts. Application of microsurgical techniques is encouraged.

  20. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants.

    PubMed

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2017-01-01

    Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.

  1. Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration.

    PubMed

    Toychiev, Abduqodir H; Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2013-08-28

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors.

  2. Patterns of intraneural ganglion cyst descent.

    PubMed

    Spinner, Robert J; Carmichael, Stephen W; Wang, Huan; Parisi, Thomas J; Skinner, John A; Amrami, Kimberly K

    2008-04-01

    On the basis of the principles of the unifying articular theory, predictable patterns of proximal ascent have been described for fibular (peroneal) and tibial intraneural ganglion cysts in the knee region. The mechanism underlying distal descent into the terminal branches of the fibular and tibial nerves has not been previously elucidated. The purpose of this study was to demonstrate if and when cyst descent distal to the articular branch-joint connection occurs in intraneural ganglion cysts to understand directionality of intraneural cyst propagation. In Part I, the clinical records and MRIs of 20 consecutive patients treated at our institution for intraneural ganglion cysts (18 fibular and two tibial) arising from the superior tibiofibular joint were retrospectively analyzed. These patients underwent cyst decompression and disconnection of the articular branch. Five of these patients developed symptomatic cyst recurrence after cyst decompression without articular branch disconnection which was done elsewhere prior to our intervention. In Part II, five additional patients with intraneural ganglion cysts (three fibular and two tibial) treated at other institutions without disconnection of the articular branch were compared. These patients in Parts I and II demonstrated ascent of intraneural cyst to differing degrees (12 had evidence of sciatic nerve cross-over). In addition, all of these patients demonstrated previously unrecognized MRI evidence of intraneural cyst extending distally below the level of the articular branch to the joint of origin: cyst within the proximal most portions of the deep fibular and superficial fibular branches in fibular intraneural ganglion cysts and descending tibial branches in tibial intraneural ganglion cysts. The patients in Part I had complete resolution of their cysts at follow-up MRI examination 1 year postoperatively. The patients in Part II had intraneural recurrences postoperatively within the articular branch, the parent

  3. [Ganglion cysts of the hand and wrist].

    PubMed

    Sarig, Oren; Hass, Avraham; Oron, Amir

    2013-10-01

    Ganglion cysts are considered the most common tumor of the wrist and hand. They are most common between the second and fourth decades of life. The most common anatomical location is the dorsal wrist. This article includes a general review of these cysts including symptoms, pathology and methods of diagnosis, as well as a review of these cysts in specific anatomic locations. The article also includes an updated review of the literature comparing open surgery vs. arthroscopic treatment. The authors believe that arthroscopic surgery of ganglion cysts will gain an important role in the treatment of these cysts.

  4. Effects of phenolic acid metabolites formed after chlorogenic acid consumption on retinal degeneration in vivo.

    PubMed

    Jang, Holim; Choi, Yongsoo; Ahn, Hong Ryul; Jung, Sang Hoon; Lee, Chang Yong

    2015-10-01

    Although ingestion of coffee and its constituent chlorogenic acid (CGA) protects the retina from oxidative stress, the bioaccessibility and bioavailability of coffee metabolites are not well understood. The aim of this study was to determine which coffee metabolites reach the retina and protect against retinal degeneration. UPLC-MS/MS was used to detect CGA and coffee metabolites in the rat eye. The methyl thiazolyl tetrazolium assay and double staining with Hoechst and propidium iodide showed that CGA, caffeic acid (CA), and dihydrocaffeic acid (DHCA) protect retinal ganglion cells from hypoxia-induced damage. Western blots showed that treatment with coffee metabolites up-regulated anti-apoptotic proteins such as Bcl-2 and Bcl-XL and down-regulated pro-apoptotic proteins such as Bad, PARP, and cleaved caspase 3. Adult ICR mice were subjected to optic nerve crush-induced retinal ganglion cell death with intravitreal pre-treatment with coffee metabolites 1 day before and 1 h after the procedure. Retrograde Fluorogold(TM) labeling showed severe retinal ganglion cell loss after optic nerve crushing, and coffee metabolites significantly reduced damage to retinal ganglion cells. CGA and coffee metabolites, especially, CA, and DHCA, reach the eye, where they can significantly reduce apoptosis induced by hypoxia and optic nerve crush stress, and thus prevent retinal degeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A ganglion of the patellar tendon in patellar tendon-lateral femoral condyle friction syndrome.

    PubMed

    Touraine, Sébastien; Lagadec, Matthieu; Petrover, David; Genah, Idan; Parlier-Cuau, Caroline; Bousson, Valérie; Laredo, Jean-Denis

    2013-09-01

    Intratendinous ganglia are rare. We report the case of a sedentary woman with chronic mechanical anterolateral pain of the knee and an extensive ganglion of the patellar tendon as indicated on magnetic resonance (MR) and ultrasound (US) examinations. There was evidence of a high-riding patella, patellar malalignment and patellar tendon-lateral femoral condyle friction syndrome with significantly close contact between the patellar tendon and the lateral facet of the femoral trochlea. The ultrasound-guided aspiration of the ganglion enabled a localized injection of an anti-inflammatory drug (cortivazol) and the cytopathological examination of the fluid, which confirmed the diagnosis. Clinical improvement was maintained with knee rehabilitation and was satisfactory at follow-up after 1 year. To our knowledge, we report the first case of a ganglion of the patellar tendon subsequent to patellar tendon-lateral femoral condyle friction syndrome. We found that this case was illustrative of mucoid degeneration in connective tissue due to chronic repetitive microtraumas. Additionally, this case provided the opportunity to discuss the management of this condition in a sedentary individual with a high-riding patella and patellar malalignment.

  6. Ouabain-Induced Apoptosis in Cochlear Hair Cells and Spiral Ganglion Neurons In Vitro

    PubMed Central

    Fu, Yong; Ding, Dalian; Jiang, Haiyan; Salvi, Richard

    2013-01-01

    Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways. PMID:24228256

  7. The molecular basis of retinal ganglion cell death in glaucoma.

    PubMed

    Almasieh, Mohammadali; Wilson, Ariel M; Morquette, Barbara; Cueva Vargas, Jorge Luis; Di Polo, Adriana

    2012-03-01

    Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection. Copyright © 2011. Published by Elsevier Ltd.

  8. Striatal degeneration in childhood.

    PubMed Central

    Erdohazi, M; Marshall, P

    1979-01-01

    The clinical features, and the radiological and neuropathological findings of 3 unrelated children with striatal degeneration are presented. In one case the father had recently developed choreiform movements while in the other two the family history was negative for neurological disorders. Two patients had juvenile onset of psychiatric symptoms, seizures, and rigidity. The 3rd child presented with focal seizures at 9 weeks of age. The neuropathological findings are virtually identical in all 3 cases. The classification of striatal degeneration in childhood is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:434899

  9. Phosphodiesterase Type 4 Inhibitor Rolipram Improves Survival of Spiral Ganglion Neurons In Vitro

    PubMed Central

    Kranz, Katharina; Warnecke, Athanasia; Lenarz, Thomas; Durisin, Martin; Scheper, Verena

    2014-01-01

    Sensorineural deafness is caused by damage of hair cells followed by degeneration of the spiral ganglion neurons and can be moderated by cochlear implants. However, the benefit of the cochlear implant depends on the excitability of the spiral ganglion neurons. Therefore, current research focuses on the identification of agents that will preserve their degeneration. In this project we investigated the neuroprotective effect of Rolipram as a promising agent to improve the viability of the auditory neurons. It is a pharmaceutical agent that acts by selective inhibition of the phosphodiesterase 4 leading to an increase in cyclic AMP. Different studies reported a neuroprotective effect of Rolipram. However, its significance for the survival of SGN has not been reported so far. Thus, we isolated spiral ganglion cells of neonatal rats for cultivation with different Rolipram concentrations and determined the neuronal survival rate. Furthermore, we examined immunocytologically distinct proteins that might be involved in the neuroprotective signalling pathway of Rolipram and determined endogenous BDNF by ELISA. When applied at a concentration of 0.1 nM, Rolipram improved the survival of SGN in vitro. According to previous studies, our immunocytological data showed that Rolipram application induces the phosphorylation and thereby activation of the transcription factor CREB. This activation can be mediated by the cAMP-PKA-signalling pathway as well as via ERK as a part of the MAP-kinase pathway. However, only in cultures pre-treated with BDNF, an endogenous increase of BDNF was detected. We conclude that Rolipram has the potential to improve the vitality of neonatal auditory nerve cells in vitro. Further investigations are necessary to prove the effect of Rolipram in vivo in the adult organism after lesion of the hair cells and insertion of cochlear implants. PMID:24642701

  10. POST GANGLIONIC CHOLINERGIC MEDIATION OF SYMPATHETIC NERVES.

    DTIC Science & Technology

    and cardiovascular function during the neostigmine pressor response have been studied during the period of this report. Area 1 is the study of pre...and post ganglionic nerve potentials. Area 2 is a study of the peripheral vascular tone during the neostigmine pressor response.

  11. Internal carotid false aneurysm after thermocoagulation of the gasserian ganglion.

    PubMed

    Schmerber, Sébastien; Vasdev, Ashok; Chahine, Karim; Tournaire, Romain; Bing, Fabrice

    2008-08-01

    To identify petrous internal carotid bleeding aneurysm as a complication of gasserian ganglion thermocoagulation. A single case presenting with epistaxis and otorrhagia 1 month after gasserian ganglion thermocoagulation in the treatment of refractory trigeminal neuralgia. Gasserian ganglion thermocoagulation, computed tomographic scan, and angiocomputed tomographic scan revealing petrous internal carotid ruptured aneurysm and internal carotid embolization. Radiologic diagnosis of the vascular injury after gasserian ganglion thermocoagulation. Radiologic identification of ruptured internal carotid artery as the cause of simultaneous epistaxis and otorrhagia. Gasserian ganglion thermocoagulation may cause aneurysm and rupture of the petrous portion of the internal carotid artery.

  12. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.

    PubMed

    Syc, Stephanie B; Saidha, Shiv; Newsome, Scott D; Ratchford, John N; Levy, Michael; Ford, E'tona; Crainiceanu, Ciprian M; Durbin, Mary K; Oakley, Jonathan D; Meyer, Scott A; Frohman, Elliot M; Calabresi, Peter A

    2012-02-01

    demonstrate retinal neuronal layer thinning following acute optic neuritis, corroborating the hypothesis that axonal injury may cause neuronal pathology in multiple sclerosis. Further, these data provide evidence of subclinical disease activity, in both participants with multiple sclerosis and with neuromyelitis optica without a history of optic neuritis, a disease in which subclinical disease activity has not been widely appreciated. No pathology was seen in the inner or outer nuclear layers of eyes with optic neuritis, suggesting that retrograde degeneration after optic neuritis may not extend into the deeper retinal layers. The subsequent thinning of the ganglion cell layer following acute optic neuritis, in the absence of evidence of baseline swelling, suggests the potential utility of quantitative optical coherence tomography retinal layer segmentation to monitor neuroprotective effects of novel agents in therapeutic trials.

  13. Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study.

    PubMed

    Sriram, Prema; Graham, Stuart L; Wang, Chenyu; Yiannikas, Con; Garrick, Raymond; Klistorner, Alexander

    2012-03-09

    Recently demonstrated neuronal loss in the inner nuclear layer of the retina in multiple sclerosis (MS) and glaucoma raises the question of a primary (possibly immune-mediated) or secondary (transsynaptic) mechanism of retinal damage in these diseases. In the present study we used optical coherence tomography to investigate retrograde retinal transsynaptic degeneration in patients with long-standing and severe loss of ganglion cells due to optic neuropathy. Fifteen eyes of glaucoma patients with visual field defect limited to upper hemifield and 15 eyes of MS patients with previous episode of optic neuritis (ON) and extensive loss of ganglion cells were imaged using spectral-domain optical coherence tomography and compared with two groups of age-matched controls. Combined retinal ganglion cell layer/inner plexiform layer (GCL/IPL) thickness and inner nuclear layer (INL) thickness were analyzed. In the glaucoma group there was a significant (P = 0.0005) reduction of GCL/IPL thickness in the lower (affected) retina compared with normal controls; however INL thickness was not statistically reduced (P = 0.49). In the MS group reduction of GCL/IPL thickness in both hemifields of ON eyes was also significant (P = 0.0001 and P < 0.0001 for inferior and superior retina respectively). However, similar to the glaucomatous eyes, there was no significant reduction of INL thickness in both hemifields (P = 0.25 and P = 0.45). This study demonstrates no significant loss of INL thickness in parts of the retina with long-standing and severe loss of retinal ganglion cells.

  14. Kraepelin and degeneration theory.

    PubMed

    Hoff, Paul

    2008-06-01

    Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.

  15. Frontotemporal Lobar Degeneration

    PubMed Central

    Josephs, Keith A.

    2009-01-01

    Synopsis Frontotemporal lobar degeneration (FTLD) is a syndromic diagnosis that encompasses at least three different variants. Imaging modalities are clinically useful in FTLD while pathology remains the gold standard for definitive diagnosis. To date three different genes have been identified that account for FTLD. PMID:17659185

  16. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2017-01-12

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  17. Early nuclear exclusion of the transcription factor max is associated with retinal ganglion cell death independent of caspase activity.

    PubMed

    Petrs-Silva, Hilda; de Freitas, Fabíola G; Linden, Rafael; Chiarini, Luciana B

    2004-02-01

    We examined the behavior of the transcription factor Max during retrograde neuronal degeneration of retinal ganglion cells. Using immunohistochemistry, we found a progressive redistribution of full-length Max from the nucleus to the cytoplasm and dendrites of the ganglion cells following axon damage. Then, the axotomized cells lose all their content of Max, while undergoing nuclear pyknosis and apoptotic cell death. After treatment of retinal explants with either anisomycin or thapsigargin, the rate of nuclear exclusion of Max accompanied the rate of cell death as modulated by either drug. Treatment with a pan-caspase inhibitor abolished both TUNEL staining and immunoreactivity for activated caspase-3, but did not affect the subcellular redistribution of Max immunoreactivity after axotomy. The data show that nuclear exclusion of the transcription factor Max is an early event, which precedes and is independent of the activation of caspases, during apoptotic cell death in the central nervous system.

  18. Effect of early postnatal air-conduction auditory deprivation on the development and function of the rat spiral ganglion.

    PubMed

    Wang, F; Gao, X; Chen, J; Liu, S-L; Wang, F-Y; Hei, R-Y; Chen, Y; Qiu, J-H

    2011-09-01

    To evaluate the effect of early postnatal air-conduction auditory deprivation on the development and function of the rat spiral ganglion. Randomised animal study. Sixty neonatal Sprague-Dawley rats were randomly divided into two groups: controls (n = 30) given regular chow and water ad libitum; and study animals (n = 30) fed within a soundproof chamber. Auditory brainstem response testing was conducted in both groups on postnatal day 42. Auditory deprivation between postnatal days 12 and 42 resulted in an increased hearing threshold and reduced auditory brainstem response amplitudes, together with degeneration of type I spiral ganglion neurons and the presence of apoptotic cells. Non-invasive auditory deprivation during a critical developmental period resulted in numerous changes in rat cochlear function and morphology.

  19. Topographic prominence discriminator for the detection of short-latency spikes of retinal ganglion cells.

    PubMed

    Choi, Myoung-Hwan; Ahn, Jungryul; Park, Dae Jin; Lee, Sang Min; Kim, Kwangsoo; Cho, Dong-Il Dan; Senok, Solomon S; Koo, Kyo-In; Goo, Yong Sook

    2017-02-01

    Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm may be used as stand-alone or supplementary to

  20. Topographic prominence discriminator for the detection of short-latency spikes of retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Choi, Myoung-Hwan; Ahn, Jungryul; Park, Dae Jin; Lee, Sang Min; Kim, Kwangsoo; Cho, Dong-il Dan; Senok, Solomon S.; Koo, Kyo-in; Goo, Yong Sook

    2017-02-01

    Objective. Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. Approach. We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. Main results. We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). Significance. We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm

  1. Roles of NAD in Protection of Axon against Degeneration via SIRT1 Pathways.

    PubMed

    Zhang, Jing; Guo, Wei-Hua; Qi, Xiao-Xia; Li, Gui-Bao; Hu, Yan-Lai; Wu, Qi; Ding, Zhao-Xi; Li, Hong-Yu; Hao, Jing; Sun, Jin-Hao

    2016-04-30

    Axonal degeneration is a common pathological change of neurogenical disease which often arises before the neuron death. But it had not found any effective method to protect axon from degeneration. In this study we intended to confirm the protective effect of nicotinamide adenine dinucleotide (NAD), investigate the optimal administration dosage and time of NAD, and identify the relationship between silence signal regulating factor 1 (SIRT1) and axonal degeneration. An axonal degeneration model was established using dorsal root ganglion (DRG) neurons injured by vincristine to observe the protective effects of NAD to the injured axons. In addition, the potential contribution of the SIRT1 in axonal degeneration was also investigated. Through the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunochemistry staining, axons counting and length measuring, transmission electron microscope (TEM) observation, we demonstrated that NAD played an important role in preventing axonal degeneration. Further study revealed that the expression of SIRT1 and phosphorylated Akt1 (p-Akt1) was up-regulated when NAD was added into the culturing medium. Taking together, our results demonstrated that NAD might delay the axonal degeneration through SIRT1/Akt1 pathways.

  2. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  3. From connected pathway flow to ganglion dynamics

    NASA Astrophysics Data System (ADS)

    Rücker, M.; Berg, S.; Armstrong, R. T.; Georgiadis, A.; Ott, H.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Wolf, M.; Khan, F.; Enzmann, F.; Kersten, M.

    2015-05-01

    During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus oscillations caused by snap-off events trigger coalescence of adjacent clusters. The ganglion dynamics occurs at the length scale of oil clusters and thus represents an intermediate flow regime between pore and Darcy scale that is so far dismissed in most upscaling attempts.

  4. Quantum degenerate systems

    SciTech Connect

    Micheli, Fiorenza de; Zanelli, Jorge

    2012-10-15

    A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.

  5. Evidence for a blood-ganglion barrier in the superior cervical ganglion of the rat.

    PubMed

    Depace, D M

    1982-12-01

    The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). By light microscopy, peroxidase activity was found in three locations: in the capsule of the ganglion, in the lumina of the blood vessels, and within macrophages. Electron microscopy revealed that virtually all ganglionic blood vessels contained HRP 5 minutes following its administration. The intensity of peroxidase activity declined over the period of 15 minutes. The enzyme was localized on the luminal surface of the endothelial cells, attaching to the glycocalyx. Endothelial microvilli, projecting into the vessel lumen, were also covered with peroxidase. Micropinocytotic vesicles on the luminal surface of the endothelium contained reaction product. Some of these vesicles were free within the cytoplasm of the endothelium but none was observed on the abluminal surface. Peroxidase activity was not detected in the extracellular space even after 15 minutes. The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions; features associated with the blood-brain barrier of the central nervous system and peripheral nerves. It is proposed that these vessels perform a barrier function between the capillary circulation and the superior cervical ganglion.

  6. Frontotemporal Lobar Degeneration

    PubMed Central

    Rabinovici, Gil D.; Miller, Bruce L.

    2010-01-01

    Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy. The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD

  7. Cataracts and macular degeneration.

    PubMed

    Shoch, D

    1979-09-01

    The intraocular lens restores general vision and some degree of independence and mobility to patients with dense cataracts and macular degeneration. The patient, however, must be repeatedly warned that fine central vision, particularly reading, will not be possible after the surgery. An aphakic spectacle leaves such patients a narrow band of vision when superimposed over the macular lesion, and contact lenses are too small for the patient to manage insertion without help.

  8. Learning LM Specificity for Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  9. Ultrastructural changes of the nodose ganglion cells following an intraneural injection of Ricinus communis agglutinin-60 into the vagus nerve in hamsters.

    PubMed

    Ling, E A; Wen, C Y; Shieh, J Y; Yick, T Y; Wong, W C

    1991-12-01

    Virtually all the ganglion cells in the nodose ganglion in hamsters underwent rapid degeneration following an intraneural injection of RCA-60 into the vagus nerve in the cervical region. The earliest signs of neuronal degeneration were evident in animals which survived 5 days after the ricin application. A remarkable feature was the appearance of a variable number of granular dense bodies measuring 1-4 microns in diameter in the cytoplasm. They were composed of closely stacked cisternae which were continuous at the periphery with those of the rough endoplasmic reticulum. Associated with the membranous cisternae were large accumulations of glycogen. With longer survival time, these glycogen-membrane complexes appeared to disintegrate. Numerous vacuoles and neurofilaments accumulated in their vicinity. Satellite cells were activated between the 7th and 10th postoperative days. These penetrated deeply into the degenerating neurons dividing them into numerous fragments by their extensive cytoplasmic prolongations. The cytoplasmic fragments of the RCA-poisoned neurons eventually became necrotic and disintegrated in the satellite cells, suggesting a rapid mode of neuronophagia. The biosynthesis of acetylcholinesterase was inhibited by the ricin injected as shown by the drastic reduction of the enzyme activity in the rough endoplasmic reticulum and nuclear envelope. Some isolated ganglion cells apparently survived the RCA injection as shown by their occurrence in long surviving animals (30-90 days). A few of them displayed an enhanced density of their cytoplasm and neurites. It is postulated that this was induced by the RCA released from the RCA-poisoned neurons.

  10. Thalamic pain alleviated by stellate ganglion block

    PubMed Central

    Liao, Chenlong; Yang, Min; Liu, Pengfei; Zhong, Wenxiang; Zhang, Wenchuan

    2017-01-01

    Abstract Rationale: Thalamic pain is a distressing and treatment-resistant type of central post-stroke pain. Although stellate ganglion block is an established intervention used in pain management, its use in the treatment of thalamic pain has never been reported. Patient concerns: A 66-year-old woman presented with a 3-year history of severe intermittent lancinating pain on the right side of the face and the right hand. The pain started from the ulnar side of the right forearm after a mild ischemic stroke in bilateral basal ganglia and left thalamus. Weeks later, the pain extended to the dorsum of the finger tips and the whole palmar surface, becoming more severe. Meanwhile, there was also pain with similar characteristics emerging on her right face, resembling atypical trigeminal neuralgia. Diagnoses: Thalamic pain was diagnosed. Interventions: After refusing the further invasive treatment, she was suggested to try stellate ganglion block. Outcomes: After a 3-day period of pain free (numerical rating scale: 0) postoperatively, she reported moderate to good pain relief with a numerical rating scale of about 3 to 4 lasting 1 month after the first injection. Pain as well as the quality of life was markedly improved with less dose of analgesic agents. Lessons: Stellate ganglion block may be an optional treatment for thalamic pain. PMID:28151918

  11. Ganglion cysts of the posterior cruciate ligament.

    PubMed

    Shetty, Gautam M; Nha, Kyung Wook; Patil, Sachin P; Chae, Dong Ju; Kang, Ki Hoon; Yoon, Jung Ro; Choo, Suk Kyu; Yi, Jeong Woo; Kim, Ji Hoon; Baek, Jong Ryoon

    2008-08-01

    Ganglion cysts of the posterior cruciate ligament (PCL) are uncommon lesions found incidentally on MRI and arthroscopy. Twenty patients (11 males and nine females) with the mean age of 35 years presenting with a variety of knee signs and symptoms were found to have PCL cysts on MRI. Out of these, thirteen patients (65%) had isolated symptomatic PCL cysts and seven patients had associated chondral and meniscal lesions. Eight out of the 20 patients (40%) gave a history of antecedent trauma. On arthroscopy, the majority of the cysts were situated at the midsubstance of the ligament with inter-cruciate distension and no involvement of the substance of the ligament. The content of the cysts varied with the majority having yellowish viscous fluid and three containing serous and bloody fluid. All cysts were successfully treated arthroscopically through standard anterior, posteromedial and posterolateral portals with no signs of recurrence on MRI at a mean followup of 24 months. PCL cysts may clinically mimic meniscal or chondral lesions and preoperatively, MRI is essential for the diagnosis of ganglion cysts arising from the PCL. Ganglion cysts of the PCL can be successfully treated arthroscopically using standard portals.

  12. Decreased Expression of DREAM Promotes the Degeneration of Retinal Neurons

    PubMed Central

    Chintala, Shravan; Cheng, Mei; Zhang, Xiao

    2015-01-01

    The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and

  13. Decreased Expression of DREAM Promotes the Degeneration of Retinal Neurons.

    PubMed

    Chintala, Shravan; Cheng, Mei; Zhang, Xiao

    2015-01-01

    The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and

  14. [Protection of T-type calcium channel blocker in spiral ganglion neurons of adult C57BL/6J mice].

    PubMed

    Yu, Yafeng; Pan, Chen; Ling, Hongyang; Wu, Wenying; Xiao, Gensheng

    2014-09-23

    To explore the distribution and expression of three T-type calcium channel receptors (α1G; α1H; α1I) and understand their protective effects in spiral neurons of C57BL/6J mice. The distribution and expression of three T-type calcium channel receptors in spiral ganglion neurons were observed by in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR) in 6-8-week-old C57BL/6J mice. The mice of 24-26-week-old C57BL/6J were divided into 3 groups of zonisamide, benidipine and saline. And the expression changes of calcium-binding proteins calmodulin and calbindin were observed by immunohistochemistry. Three subunits were expressed in spiral ganglion neurons. The decremented quantities were α1H (24.21 ± 0.10), α1I (14.88 ± 0.04) and α1G (10.42 ± 0.02). The expression level of calmodulin in spiral ganglion neurons was lower in the zonisamide-treated group than that in the saline-treated group (0.336 ± 0.041 vs 0.504 ± 0.020, P < 0.05). The expression level of calbindin in spiral ganglion neurons was lower in the zonisamide (0.482 ± 0.045) and benidipine-treated groups (0.511 ± 0.032) than that in the saline-treated group (0.611 ± 0.035, P < 0.05). The expressions of calcium-binding proteins decrease after 4-week dosing of T-type calcium channel blockers in 24-26-week C57BL/6J mice. It implies a relief of calcium overload. T-type calcium channel blockers may protect the murine spiral ganglion neurons from degeneration.

  15. The selectivity of drugs blocking ganglionic transmission in the rat

    PubMed Central

    Quilliam, J. P.; Shand, D. G.

    1964-01-01

    By comparing the effects on ganglionic transmission and on the pre- and post-ganglionic nerves in the isolated superior cervical ganglion preparation of the rat, the selectivity of several drugs was assessed quantitatively. Hexamethonium, tetraethylammonium, nicotine and tubocurarine blocked transmission in concentrations which did not affect nervous conduction and were considered to be highly selective in action. Atropine, amylobarbitone and paraldehyde depressed nervous conduction appreciably in ganglion-blocking doses, but not enough to account wholly for the block in transmission and they were therefore considered as being moderately selective. The ganglion blocking actions of mephenesin, procaine, methylpentynol, methylpentynol carbamate and benactyzine were nonspecific, showing general depression of neuronal activity. Ganglion block with bretylium was nonselective in its site of depression of the postganglionic neurone in concentrations which only partly depressed the preganglionic nerve. PMID:14228129

  16. Simultaneous bilateral ganglion cysts of the anterior cruciate ligaments.

    PubMed

    Demircay, Emre; Ofluoglu, Demet; Ozel, Omer; Oztop, Pinar

    2015-04-01

    Intra-articular ganglion cysts of the anterior cruciate ligament (ACL) are rare, and bilateral ganglion cysts are even rarer. These cysts may cause intermittent or chronic nonspecific knee discomfort. Although three cases of bilateral ganglion cysts have been reported in the literature, the knees were not simultaneously affected in those cases. Herein, we report the case of a 56-year-old woman who presented with simultaneous bilateral ganglion cysts of the ACL that were symptomatic. She was successfully treated with arthroscopic resection and debridement. We also present a brief review of the literature, highlighting the aetiology, diagnosis and management of ganglion cysts of the ACL. To the best of our knowledge, this is the first report of simultaneous bilateral intra-articular ganglion cysts of the ACL.

  17. Trans-synaptic Retrograde Degeneration in the Human Visual System: Slow, Silent, and Real.

    PubMed

    Dinkin, Marc

    2017-02-01

    Degeneration of neuron and axons following injury to cells with which they synapse is termed trans-synaptic degeneration. This phenomenon may be seen in postsynaptic neurons (anterograde) or in presynaptic neurons (retrograde). Retrograde trans-synaptic degeneration (RTSD) of the retinal ganglion cells and retinal nerve fiber layer following injury to the occipital lobe has been well documented histologically in animal studies, but its occurrence in the human retina was, for many years, felt to be limited to cases of neonatal injury during a critical period of neuronal development. Over the last decade, imaging techniques such as MRI and optical coherence tomography have allowed us to visualize and quantify RTSD and analyze its time course and relationship to degree of vision loss and age of cortical injury. A deeper understanding of RTSD in the human visual system may allow us to interfere with its occurrence, potentially allowing for greater recovery following visual cortex injury.

  18. Melanopsin retinal ganglion cell loss in Alzheimer disease

    PubMed Central

    Ross‐Cisneros, Fred N.; Koronyo, Yosef; Hannibal, Jens; Gallassi, Roberto; Cantalupo, Gaetano; Sambati, Luisa; Pan, Billy X.; Tozer, Kevin R.; Barboni, Piero; Provini, Federica; Avanzini, Pietro; Carbonelli, Michele; Pelosi, Annalisa; Chui, Helena; Liguori, Rocco; Baruzzi, Agostino; Koronyo‐Hamaoui, Maya; Sadun, Alfredo A.; Carelli, Valerio

    2015-01-01

    Objective Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer disease (AD). We investigated mRGCs in AD, hypothesizing that they contribute to circadian dysfunction. Methods We assessed retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT) in 21 mild‐moderate AD patients, and in a subgroup of 16 we evaluated rest–activity circadian rhythm by actigraphy. We studied postmortem mRGCs by immunohistochemistry in retinas, and axons in optic nerve cross‐sections of 14 neuropathologically confirmed AD patients. We coimmunostained for retinal amyloid β (Aβ) deposition and melanopsin to locate mRGCs. All AD cohorts were compared with age‐matched controls. Results We demonstrated an age‐related optic neuropathy in AD by OCT, with a significant reduction of RNFL thickness (p = 0.038), more evident in the superior quadrant (p = 0.006). Axonal loss was confirmed in postmortem AD optic nerves. Abnormal circadian function characterized only a subgroup of AD patients. Sleep efficiency was significantly reduced in AD patients (p = 0.001). We also found a significant loss of mRGCs in postmortem AD retinal specimens (p = 0.003) across all ages and abnormal mRGC dendritic morphology and size (p = 0.003). In flat‐mounted AD retinas, Aβ accumulation was remarkably evident inside and around mRGCs. Interpretation We show variable degrees of rest–activity circadian dysfunction in AD patients. We also demonstrate age‐related loss of optic nerve axons and specifically mRGC loss and pathology in postmortem AD retinal specimens, associated with Aβ deposition. These results all support the concept that mRGC degeneration is a contributor to circadian rhythm dysfunction in AD. ANN NEUROL 2016;79:90–109 PMID:26505992

  19. Two Ultracool Degenerate Companions

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2005-07-01

    In the course of an extensive survey for low mass stellar and substellar companions to nearby white dwarfs, two extrememly cool degenerate objects have been discovered. GD 392B is one of only a few known white dwarfs with Teff⪉4000 K and exhibits collision induced absorption in the near infrared tep{far04}. GD 1400B is the second known L dwarf companion to a white dwarf and a possible brown dwarf (Farihi & Christopher 2004). Interested readers should consult the references for a complete description of these two cool objects.

  20. Age-related primary cochlear neuronal degeneration in human temporal bones.

    PubMed

    Makary, Chadi A; Shin, Jennifer; Kujawa, Sharon G; Liberman, M Charles; Merchant, Saumil N

    2011-12-01

    In cases of acquired sensorineural hearing loss, death of cochlear neurons is thought to arise largely as a result of sensory-cell loss. However, recent studies of acoustic overexposure report massive degeneration of the cochlear nerve despite complete hair cell survival (Kujawa and Liberman, J Neurosci 29:14077-14085, 2009). To assess the primary loss of spiral ganglion cells (SGCs) in human ears, neuronal counts were performed in 100 temporal bones from 100 individuals, aged newborn to 100 years, selected to include only cases with a normal population of inner and outer hair cells. Ganglion cell counts declined at a mean rate of 100 cells per year of life. There were no significant gender or inter-aural differences, and a slight increase in degeneration in the basal turn re upper turns was not statistically significant. The age-related decline in SGCs was significantly less than that in prior studies that included ears with hair cell loss (Otte et al., Laryngoscope 88:1231-1246, 1978), but significantly more than for analogous data on vestibular ganglion cells in cases without vestibular hair cell loss (Velazquez-Villasenor et al., Ann Otol Rhinol Laryngol Suppl 181:14-19, 2000). The age-related decline in SGC counts may contribute to the well-known decline in hearing-in-noise performance, and the data will help in interpretation of histopathological findings from temporal bones with known otologic disease.

  1. AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Gheorghe, Andreea; Mahdi, Labib; Musat, Ovidiu

    2015-01-01

    The objective of our study was to review the current knowledge on Age- Related Macular Degeneration, including pathogenesis, ocular manifestations, diagnosis and ancillary testing. Relevant publications on Age-Related Macular Degeneration that were published until 2014. Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterized by the appearance of drusen in the macula, accompanied by choroidal neovascularization (CNV) or geographic atrophy.

  2. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.

    PubMed

    Kujawa, Sharon G; Liberman, M Charles

    2015-12-01

    The classic view of sensorineural hearing loss (SNHL) is that the "primary" targets are hair cells, and that cochlear-nerve loss is "secondary" to hair cell degeneration. Our recent work in mouse and guinea pig has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of cochlear-nerve/hair-cell synapses. Similarly, in age-related hearing loss, degeneration of cochlear synapses precedes both hair cell loss and threshold elevation. This primary neural degeneration has remained hidden for three reasons: 1) the spiral ganglion cells, the cochlear neural elements commonly assessed in studies of SNHL, survive for years despite loss of synaptic connection with hair cells, 2) the synaptic terminals of cochlear nerve fibers are unmyelinated and difficult to see in the light microscope, and 3) the degeneration is selective for cochlear-nerve fibers with high thresholds. Although not required for threshold detection in quiet (e.g. threshold audiometry or auditory brainstem response threshold), these high-threshold fibers are critical for hearing in noisy environments. Our research suggests that 1) primary neural degeneration is an important contributor to the perceptual handicap in SNHL, and 2) in cases where the hair cells survive, neurotrophin therapies can elicit neurite outgrowth from spiral ganglion neurons and re-establishment of their peripheral synapses. This article is part of a Special Issue entitled . Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Apoptosis in human retinal degenerations.

    PubMed

    Xu, G Z; Li, W W; Tso, M O

    1996-01-01

    This paper examined the role of apoptosis in human retinal degenerations including pathologic myopia, age-related macular degeneration, serous retinal detachment, retinal lattice, and paving stone degenerations. Thirty-seven enucleated human eyes with 1 of the above-mentioned retinal degenerations were studied by histopathology and by TdT-mediated biotin-dUTP nicked-end labelling (TUNEL) technique. Tunnel labelling characteristic DNA fragmentation of apoptosis was observed in photoreceptor cells in 2 of the 4 eyes with pathologic myopia and in 4 of 16 eyes with age-related macular degeneration, 2 of which were exudative and 2 of which were atrophic. However, only a few scattered photoreceptor cells were labelled in 4 of 8 eyes with serous retinal detachment secondary to malignant melanoma of the choroid. Moreover, none of the photoreceptors cells in the 4 eyes with retinal lattice degeneration and 6 eyes with retinal paving stone degeneration were labelled. Apoptosis is 1 of the important pathways of photoreceptor cell degeneration in pathologic myopia and age-related macular degeneration.

  4. Synapse formation during embryogenesis on ganglion cells lacking a periphery

    PubMed Central

    Landmesser, Lynn; Pilar, G.

    1974-01-01

    1. The development of transmission was studied in chick ciliary ganglia that had been deprived of their periphery during early embryonic development. 2. Peripherally deprived neurones in the ganglion differentiate in normal numbers and send functional axons into the post-ganglionic nerve. 3. Ganglion cells lacking a periphery follow the normal developmental sequence sending out transient dendrites at the time ganglion cell synapses are formed, and later retracting them when calyces appear. 4. Synapses, which appear functionally and ultrastructurally normal, form on all ganglion cells at the normal time and transmission is normal until Stage 34. Therefore information from the periphery is not required for ganglion cell synapse formation per se. 5. From Stages 35 to 38 most cells die, so that only 8% of the original number of cells remain in the operated ganglion. Transmission fails in many cells during this same time, but precedes cell loss by only a short time, so that deafferentation probably does not contribute substantially to cell death. 6. Both ciliary and choroid cells achieve full cytologic differentiation and are distinct from each other, indicating that the periphery is not required for the elaboration of the distinctive characteristics of these cells. Presynaptic fibres also differentiate into typical bouton as well as calyciform endings. Therefore, the type of preganglionic ending does not depend on ganglion cells establishing proper peripheral contacts. 7. It has not been possible to ascertain whether ganglion cell specificity is affected by the periphery. 8. Peripheral removal affects ganglion cell migration, so that two ganglia are formed. Approximately half of the cells migrate into the remnant optic cup forming a second misplaced ganglion. Ciliary and choroid cells occur in both ganglia and these cells go through the typical sequence of events described above. ImagesPlate 1Plate 2Plate 3 PMID:4373567

  5. Concerted Signaling by Retinal Ganglion Cells

    NASA Astrophysics Data System (ADS)

    Meister, Markus; Lagnado, Leon; Baylor, Denis A.

    1995-11-01

    To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.

  6. Imaging light responses of retinal ganglion cells in the living mouse eye

    PubMed Central

    Yin, Lu; Geng, Ying; Osakada, Fumitaka; Sharma, Robin; Cetin, Ali H.; Callaway, Edward M.; Williams, David R.

    2013-01-01

    This study reports development of a novel method for high-resolution in vivo imaging of the function of individual mouse retinal ganglion cells (RGCs) that overcomes many limitations of available methods for recording RGC physiology. The technique combines insertion of a genetically encoded calcium indicator into RGCs with imaging of calcium responses over many days with FACILE (functional adaptive optics cellular imaging in the living eye). FACILE extends the most common method for RGC physiology, in vitro physiology, by allowing repeated imaging of the function of each cell over many sessions and by avoiding damage to the retina during removal from the eye. This makes it possible to track changes in the response of individual cells during morphological development or degeneration. FACILE also overcomes limitations of existing in vivo imaging methods, providing fine spatial and temporal detail, structure-function comparison, and simultaneous analysis of multiple cells. PMID:23407356

  7. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss.

    PubMed

    You, Yuyi; Gupta, Vivek K; Li, Jonathan C; Klistorner, Alexander; Graham, Stuart L

    2013-01-01

    Optic neuropathy refers to dysfunction and/or degeneration of axons of the optic nerve with subsequent optic nerve atrophy. A common feature of different optic neuropathies is retinal ganglion cell (RGC) apoptosis and axonal damage. Glaucoma and optic neuritis are the two major degenerative causes of optic nerve damage. Here, we review the anatomy and pathology of the optic nerve, and etiological categories of optic neuropathies, and discuss rodent models that can mimic these conditions. Electrophysiology can reveal signature features of RGC damage using the pattern electroretinogram (PERG), scotopic threshold response (STR) and photopic negative response (PhNR). The amplitude of the visual evoked potential (VEP) also reflects RGC axonal damage. The neurotrophin-mediated survival pathways, as well as the extrinsic and intrinsic cell apoptotic pathways, play a critical role in the pathogenesis of RGC loss. Finally, promising neuroprotective approaches based on the molecular signaling are analyzed for the treatment of optic neuropathies.

  8. Imaging individual neurons in the retinal ganglion cell layer of the living eye

    PubMed Central

    Rossi, Ethan A.; Granger, Charles E.; Yang, Qiang; Saito, Kenichi; Schwarz, Christina; Walters, Sarah; Nozato, Koji; Zhang, Jie; Kawakami, Tomoaki; Fischer, William; Latchney, Lisa R.; Hunter, Jennifer J.; Chung, Mina M.; Williams, David R.

    2017-01-01

    Although imaging of the living retina with adaptive optics scanning light ophthalmoscopy (AOSLO) provides microscopic access to individual cells, such as photoreceptors, retinal pigment epithelial cells, and blood cells in the retinal vasculature, other important cell classes, such as retinal ganglion cells, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. Here we show that the individual somas of neurons within the retinal ganglion cell (RGC) layer can be imaged with a modification of confocal AOSLO, in both monkeys and humans. Human images of RGC layer neurons did not match the quality of monkey images for several reasons, including safety concerns that limited the light levels permissible for human imaging. We also show that the same technique applied to the photoreceptor layer can resolve ambiguity about cone survival in age-related macular degeneration. The capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases, such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain. PMID:28049835

  9. Assessment of macular ganglion cell loss patterns in neurologic lesions that mimic glaucoma.

    PubMed

    Shon, Kilhwan; Sung, Kyung Rim

    2014-08-01

    To evaluate patterns of macular retinal ganglion cell (RGC) loss measured by spectral domain optical coherence tomography in patients with neurologic lesions mimicking glaucoma. We evaluated four patients with neurological lesions who showed characteristic patterns of RGC loss, as determined by ganglion cell thickness (GCT) mapping. Case 1 was a 30-year-old man who had been treated with glaucoma medication. A left homonymous vertical pattern of RGC loss was observed in his GCT map and a past brain magnetic resonance imaging (MRI) revealed a hemorrhagic lesion around the right optic radiation. Case 2 was a 72-year-old man with a pituitary adenoma who had a binasal vertical pattern of RGC loss that corresponded with bitemporal hemianopsia. Case 3 was a 77-year-old man treated for suspected glaucoma. His GCT map showed a right inferior quadratic pattern of loss, indicating a right superior homonymous quadranopsia in his visual field (VF). His brain MRI revealed a left posterior cerebral artery territory infarct. Case 4 was a 38-year-old woman with an unreliable VF who was referred for suspected glaucoma. Her GCT map revealed a left homonymous vertical pattern of RGC loss, which may have been related to a previous head trauma. Evaluation of the patterns of macular RGC loss may be helpful in the differential diagnosis of RGC-related diseases, including glaucoma and neurologic lesions. When a patient's VF is unavailable, this method may be an effective tool for diagnosing and monitoring transneuronal retrograde degeneration-related structural changes.

  10. Calpain Inhibition Attenuates Apoptosis of Retinal Ganglion Cells in Acute Optic Neuritis

    PubMed Central

    Smith, Amena W.; Das, Arabinda; Guyton, M. Kelly; Ray, Swapan K.; Rohrer, Baerbel

    2011-01-01

    Purpose. Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with the pathogenesis of multiple sclerosis (MS) and is initiated by the attack of autoreactive T cells against self-myelin antigens, resulting in demyelination, degeneration of retinal ganglion cells (RGCs), and cumulative visual impairment. Methods. Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats on day 0, and animals received daily intraperitoneal injections of calpain inhibitor (calpeptin) or vehicle from day 1 until killed. Retinal cell death was analyzed by DNA fragmentation, and surviving ganglion cells were quantified after double labeling of retinal tissue with TUNEL and Brn3a. The expression of apoptotic and inflammatory proteins was determined by Western blotting. Results. It was demonstrated that calpain inhibition downregulates expression of proapoptotic proteins and the proinflammatory molecule nuclear factor-kappa B (NF-κB) in the retina of Lewis rats with acute EAE. Immunofluorescent labeling revealed that apoptotic cells in the RGC layer of vehicle-treated EAE animals were Brn3a positive, and a moderate dose of calpeptin dramatically reduced the frequency of apoptotic RGCs. Conclusions. These results suggest that calpain inhibition might be a useful supplement to immunomodulatory therapies such as corticosteroids in ON, due to its neuroprotective effect on RGCs. PMID:21613375

  11. Ossified Dorsal Wrist Ganglion Cyst: A Case Report.

    PubMed

    Medina, Juana; Rivlin, Michael; Chan, Joanna; Beredjiklian, Pedro K

    2016-10-01

    Ganglion cysts are the most common wrist tumors, and 60 -70% originate dorsally from the scapholunate interval. Ossification of these lesions is exceedingly rare, with only one such lesion located in the finger reported in the literature. We present a case of an ossified dorsal wrist ganglion in a 68-year-old woman.

  12. Ossified Dorsal Wrist Ganglion Cyst: A Case Report

    PubMed Central

    Medina, Juana; Rivlin, Michael; Chan, Joanna; Beredjiklian, Pedro K.

    2016-01-01

    Ganglion cysts are the most common wrist tumors, and 60 -70% originate dorsally from the scapholunate interval. Ossification of these lesions is exceedingly rare, with only one such lesion located in the finger reported in the literature. We present a case of an ossified dorsal wrist ganglion in a 68-year-old woman. PMID:27847858

  13. Bilateral ganglion cysts of the cruciate ligaments: a case report.

    PubMed

    Willis-Owen, Charles A; Konyves, Arpad; Martin, David K

    2010-08-01

    Symptomatic ganglion cysts of the cruciate ligaments are rare, and bilateral cases are extremely rare, with only one reported case in the literature. We report a case of bilateral cruciate ligament ganglion cysts successfully treated with arthroscopic resection, and review the literature regarding aetiology, diagnosis and management.

  14. The successful arthroscopic treatment of suprascapular intraneural ganglion cysts.

    PubMed

    Prasad, Nikhil K; Spinner, Robert J; Smith, Jay; Howe, Benjamin M; Amrami, Kimberly K; Iannotti, Joseph P; Dahm, Diane L

    2015-09-01

    OBJECT High-resolution magnetic resonance imaging (MRI) can distinguish between intraneural ganglion cysts and paralabral (extraneural) cysts at the glenohumeral joint. Suprascapular intraneural ganglion cysts share the same pathomechanism as their paralabral counterparts, emanating from a tear in the glenoid labrum. The authors present 2 cases to demonstrate that the identification and arthroscopic repair of labral tears form the cornerstone of treatment for intraneural ganglion cysts of the suprascapular nerve. METHODS Two patients with suprascapular intraneural ganglion cysts were identified: 1 was recognized and treated prospectively, and the other, previously reported as a paralabral cyst, was identified retrospectively through the reinter-pretation of high-resolution MR images. RESULTS Both patients achieved full functional recovery and had complete radiological involution of the intraneural ganglion cysts at the 3-month and 12-month follow-ups, respectively. CONCLUSIONS Previous reports of suprascapular intraneural ganglion cysts described treatment by an open approach to decompress the cysts and resect the articular nerve branch to the glenohumeral joint. The 2 cases in this report demonstrate that intraneural ganglion cysts, similar to paralabral cysts, can be treated with arthroscopic repair of the glenoid labrum without resection of the articular branch. This approach minimizes surgical morbidity and directly addresses the primary etiology of intraneural and extraneural ganglion cysts.

  15. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss.

    PubMed

    Bonafede, Lucas; Ficicioglu, Can H; Serrano, Leona; Han, Grace; Morgan, Jessica I W; Mills, Monte D; Forbes, Brian J; Davidson, Stefanie L; Binenbaum, Gil; Kaplan, Paige B; Nichols, Charles W; Verloo, Patrick; Leroy, Bart P; Maguire, Albert M; Aleman, Tomas S

    2015-12-01

    To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC.

  16. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    PubMed Central

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  17. Arginase 2 promotes neurovascular degeneration during ischemia/reperfusion injury

    PubMed Central

    Shosha, Esraa; Xu, Zhimin; Yokota, Harumasa; Saul, Alan; Rojas, Modesto; Caldwell, R William; Caldwell, Ruth B; Narayanan, S Priya

    2016-01-01

    Retinal ischemia is a major cause of visual impairment and blindness and is involved in various disorders including diabetic retinopathy, glaucoma, optic neuropathies and retinopathy of prematurity. Neurovascular degeneration is a common feature of these pathologies. Our lab has previously reported that the ureahydrolase arginase 2 (A2) is involved in ischemic retinopathies. Here, we are introducing A2 as a therapeutic target to prevent neurovascular injury after retinal ischemia/reperfusion (I/R) insult. Studies were performed with mice lacking both copies of A2 (A2−/−) and wild-type (WT) controls (C57BL6J). I/R insult was conducted on the right eye and the left eye was used as control. Retinas were collected for analysis at different times (3 h–4 week after injury). Neuronal and microvascular degeneration were evaluated using NeuN staining and vascular digests, respectively. Glial activation was evaluated by glial fibrillary acidic protein expression. Necrotic cell death was studied by propidium iodide labeling and western blot for RIP-3. Arginase expression was determined by western blot and quantitative RT-PCR. Retinal function was determined by electroretinography (ERG). A2 mRNA and protein levels were increased in WT I/R. A2 deletion significantly reduced ganglion cell loss and microvascular degeneration and preserved retinal morphology after I/R. Glial activation, reactive oxygen species formation and cell death by necroptosis were significantly reduced by A2 deletion. ERG showed improved positive scotopic threshold response with A2 deletion. This study shows for the first time that neurovascular injury after retinal I/R is mediated through increased expression of A2. Deletion of A2 was found to be beneficial in reducing neurovascular degeneration after I/R. PMID:27882947

  18. Bilateral Thoracic Ganglion Cyst : A Rare Case Report

    PubMed Central

    Kazanci, Burak; Tehli, Ozkan; Guclu, Bulent

    2013-01-01

    Ganglion cysts usually arise from the tissues around the facet joints. It is usually associated with degenerative cahanges in facet joints. Bilateral thoracic ganglion cysts are very rare and there is no previous case that located in bilateral intervertebral foramen compressing the L1 nerve root associated with severe radiculopathy. We report a 53 years old woman who presented with bilateral groin pain and severe numbness. Magnetic resonance imaging revealed bilateral cystic mass in the intervertebral foramen between 12th thoracal and 1st lumbar vertebrae. The cystic lesions were removed after bilateral exposure of Th12-L1 foramens. The result of hystopathology confirmed the diagnosis as ganglion cyst. The ganglion cyst may compromise lumbar dorsal ganglion when it located in the intervertebral foramen. The surgeon should keep this rare entity in their mind for differential diagnosis. PMID:23908708

  19. Model of oil ganglion movement in porous media

    SciTech Connect

    Egbogah, E.O.; Wright, R.J.; Dawe, R.A.

    1981-01-01

    This paper presents a simple theory of the movement of a discontinuous oil droplet (ganglion) through a model porous medium. A quantitative description of the ganglion flow in the system was obtained through a tractable solution to the balance of forces controlling ganglion stability during flow of two immiscible fluids within a well-defined geometry. Calculations were based on a constricted conical (divergent-convergent) pore model. Experimental data from a tetragonally packed sphere model were used interactively with a theoretical static analysis to synthesize the relevant features of the ganglion mechanics into a coherent theory of oil mobilization. The model analysis also permits the computation of relative ganglion velocity under various flow conditions. This is an essential parameter for enhanced oil recovery modelling which facilitates the prediction of oil bank movements in porous media. 34 refs.

  20. Ganglion cyst in the supraspinous fossa: arthroscopically undetectable cases.

    PubMed

    Shimokobe, Hisao; Gotoh, Masafumi; Mitsui, Yasuhiro; Yoshikawa, Eiichiro; Kume, Shinichiro; Okawa, Takahiro; Higuchi, Fujio; Nagata, Kensei; Shiba, Naoto

    2013-01-01

    Studies have demonstrated favorable outcomes of arthroscopic decompression for ganglion cyst in the supraspinous fossa; however, little attention has been paid to the difficulty in detecting these cysts during arthroscopy. In this report, we present 2 cases in which ganglion cysts in the supraspinous fossa were undetectable during arthroscopy. The ganglion cysts were not identified in these cases during surgery despite arthroscopic decompression being performed through the area in which the cyst was expected until the suprascapular nerve was entirely exposed. After surgery, magnetic resonance imaging (MRI) confirmed the disappearance of the ganglion cyst and external rotation strength was fully improved, without shoulder pain. We emphasize here that surgeons should be aware of this difficulty when performing arthroscopic decompression of ganglion cysts in the supraspinous fossa.

  1. Experimental retinal detachment causes widespread and multilayered degeneration in rabbit retina.

    PubMed

    Faude, F; Francke, M; Makarov, F; Schuck, J; Gärtner, U; Reichelt, W; Wiedemann, P; Wolburg, H; Reichenbach, A

    2001-05-01

    Retinal detachment remains one of the most frequent causes of visual impairment in humans, even after ophthalmoscopically successful retinal reattachment. This study was aimed at monitoring (ultra-) structural alterations of retinae of rabbits after experimental detachment. A surgical procedure was used to produce local retinal detachments in rabbit eyes similar to the typical lesions in human patients. At various periods after detachment, the detached retinal area as well as neighbouring attached regions were studied by light and electron microscopy. In addition to the well-known degeneration of photoreceptor cells in the detached retina, the following progressive alterations were observed, (i) in both the detached and the attached regions, an incomplete but severe loss of ganglion cell axons occurs; (ii) there is considerable ganglion cell death, particularly in the detached area; (iii) even in the attached retina distant from the detachment, small adherent groups of photoreceptor cells degenerate; (iv) these photoreceptor cells degenerate in an atypical sequence, with severely destructed somata and inner segments but well-maintained outer segments; and (v) the severe loss of retinal neurons is not accompanied by any significant loss of Müller (glial) cells. It is noteworthy that the described progressive (and probably irreparable) retinal destructions occur also in the attached retina, and may account for visual impairment in strikingly large areas of the visual field, even after retinal reattachment.

  2. Genetics Home Reference: Stargardt macular degeneration

    MedlinePlus

    ... Genetics Home Health Conditions Stargardt macular degeneration Stargardt macular degeneration Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Stargardt macular degeneration is a genetic eye disorder that causes progressive ...

  3. Evaluation of Fluoro-Jade C as a marker of degenerating neurons in the rat retina and optic nerve.

    PubMed

    Chidlow, Glyn; Wood, John P M; Sarvestani, Ghafar; Manavis, Jim; Casson, Robert J

    2009-03-01

    Detection of neuronal death is an essential requirement for researchers investigating retinal degeneration. Fluoro-Jade C (FJC) is a novel, fluorescent dye that has been successfully used to label degenerating neurons in the brain, but its effectiveness in the eye has not been ascertained. In the current study, we determined the efficacy of FJC for detection of neuronal degeneration in the retina and optic nerve in various paradigms of injury. N-methyl-D-aspartate (NMDA) and kainic acid-induced excitotoxicity, optic nerve transection, and bilateral occlusion of the common carotid arteries (BCCAO) were performed using standard techniques. Rats were killed at various time points and the retinas with optic nerves attached were removed for tissue processing prior to labelling for FJC, for DNA fragmentation by TUNEL or for immunohistochemical analysis. Retinas from RCS rats of different ages were also analysed. After excitotoxicity-induced injury, cell bodies and dendrites within the ganglion cell and inner plexiform layers were specifically labelled by FJC within 6h, a time point comparable to the appearance of TUNEL-positive nuclei and to reductions in mRNA levels of retinal ganglion cell-specific proteins, but in advance of alterations in some immunohistochemical markers. The number of FJC-labelled cell bodies in the retina declined over time as cell loss proceeded, although dendritic staining remained prominent. Colocalisation of FJC with TUNEL and with immunohistochemical neuronal markers was achieved. FJC was successful at identifying somato-dendritic degeneration following ischemia induced by BCCAO, but surprisingly, not after optic nerve transection. FJC visualised photoreceptor degeneration in the RCS rat, albeit less effectively than with the TUNEL assay, and was also effective for imaging and quantifying degenerating axons in the optic nerve after multiple injuries. In addition to labelling degenerating neurons, however, FJC also bound non-specifically to

  4. A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4.

    PubMed Central

    Lyon, M F; Ogunkolade, B W; Brown, M C; Atherton, D J; Perry, V H

    1993-01-01

    When a nerve axon is cut or crushed, the nerve fibers in the distal part of the axon, separated from the cell body, undergo a form of spontaneous degeneration, known as Wallerian degeneration. A substrain of the mouse inbred strain C57BL, known as C57BL/Ola, carries a mutant form of a gene involved in Wallerian degeneration in the peripheral and central nervous systems, and in retrograde degeneration of retinal ganglion cells. Wallerian degeneration in this substrain is abnormally slow. Previously the defect had been shown to be due to an autosomal dominant gene. The locus has been given the name and symbol Wallerian degeneration Wld, with the mutant allele Wlds (Wallerian degeneration-slow). The Wld locus has now been mapped, by using conventional and molecular markers, to the distal end of chromosome 4, near the locus of pronatriodilatin (Pnd). The order of loci (with recombination distances in centimorgans, cM) is cen-D4Mit11-8.9 +/- 1.7 cM-Fuca-2.5 +/- 0.93 cM-Akp-2-3.2 +/- 1.1 cM-D4Mit48-3.5 +/- 1.1 cM-(Wld, Pnd, D4Mit49)-0.71 +/- 0.50 cM-(Eno-1, D4Mit33)-1.4 +/- 0.70 cM-D4Mit42-2.5 +/- 0.93 cM-D4Smh6b. The information on the position of the Wld locus should be valuable in further characterization of this gene involved in nerve degeneration and regeneration. PMID:8415768

  5. Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss.

    PubMed

    Kroon, Steven; Ramekers, Dyan; Smeets, Emma M; Hendriksen, Ferry G J; Klis, Sjaak F L; Versnel, Huib

    2017-03-01

    Damage to and loss of the organ of Corti leads to secondary degeneration of the spiral ganglion cell (SGC) somata of the auditory nerve. Extensively examined in animal models, this degeneration process of SGC somata following deafening is well known. However, degeneration of auditory nerve axons, which conduct auditory information towards the brainstem, and its relation to SGC soma degeneration are largely unknown. The consequences of degeneration of the axons are relevant for cochlear implantation, which is applied to a deafened system but depends on the condition of the auditory nerve. We investigated the time sequence of degeneration of myelinated type I axons in deafened guinea pigs. Auditory nerves in six normal-hearing and twelve deafened animals, two, six and fourteen weeks (for each group four) after deafening were histologically analyzed. We developed a semi-automated method for axon counting, which allowed for a relatively large sample size (20% of the total cross-sectional area of the auditory nerve). We observed a substantial loss of auditory nerve area (29%), reduction in axon number (59%) and decrease in axoplasm area (41%) fourteen weeks after deafening compared to normal-hearing controls. The correlation between axonal degeneration and that of the SGC somata in the same cochleas was high, although axonal structures appeared to persist longer than the somata, suggesting a slower degeneration process. In the first two weeks after induction of deafness, the axonal cross-sectional area decreased but the axon number did not. In conclusion, the data strongly suggest that each surviving SGC possesses an axon.

  6. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  7. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  8. Subparaneurial ganglion cysts of the fibular and tibial nerves: A new variant of intraneural ganglion cysts.

    PubMed

    Prasad, Nikhil K; Desy, Nicholas M; Howe, B Matthew; Amrami, Kimberly K; Spinner, Robert J

    2016-05-01

    Over the last decade, the mechanism of formation of intraneural ganglion cysts has been established through a meticulous review of clinical findings and correlation with patterns produced on magnetic resonance imaging (MRI). Pathognomonic imaging patterns distinguish these rare lesions from the more common extraneural variants in almost all cases. In this report, we present a new pattern of cyst occurrence in the subparaneurial compartment of the nerve and provide potential anatomic explanations for its pathogenesis. Using an anatomic framework of connective tissue compartments of the nerve, we reviewed 63 (56 fibular and seven tibial) intraneural ganglion cysts in the knee region evaluated at our institution and all reports with MRI in the world's literature for evidence of cyst occurrence in the subparaneurial compartment. We identified six cases (five in the common fibular nerve and one in the tibial nerve) at our institution that had MR evidence of cyst in the subparaneurial compartment with a new complex lobulated pattern. All cases had articular branch connections to the superior tibiofibular joint, which at operation were resected along with the joints. Follow-up revealed complete recovery in all instances and no clinical or radiological signs of recurrence. Three cases out of 80 in the literature exhibited the new complex lobulated MRI pattern. We present a new pattern of intraneural ganglion cyst occurrence in a potential space that surrounds peripheral nerves--the subparaneurial compartment. We believe that the unifying articular theory applies to the pathogenesis and management of these rare variants.

  9. Permissive role for mGlu1 metabotropic glutamate receptors in excitotoxic retinal degeneration.

    PubMed

    Liberatore, Francesca; Bucci, Domenico; Mascio, Giada; Madonna, Michele; Di Pietro, Paola; Beneventano, Martina; Puliti, Alda Maria; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Romano, Maria Rosaria

    2017-09-14

    Neuroprotection is an unmet need in eye disorders characterized by retinal ganglion cell (RGC) death, such as prematurity-induced retinal degeneration, glaucoma, and age-related macular degeneration. In all these disorders excitotoxicity is a prominent component of neuronal damage, but clinical data discourage the development of NMDA receptor antagonists as neuroprotectants. Here, we show that activation of mGlu1 metabotropic glutamate receptors largely contributes to excitotoxic degeneration of RGCs. Mice at postnatal day 9 were challenged with a toxic dose of monosodium glutamate (MSG, 3g/kg), which caused the death of >70% of Brn-3a(+) RGCs. Systemic administration of the mGlu1 receptor negative allosteric modulator (NAM), JNJ16259685 (2.5mg/kg, s.c.), was largely protective against MSG-induced RGC death. This treatment did not cause changes in motor behavior in the pups. We also injected MSG to crv4 mice, which lack mGlu1 receptors because of a recessive mutation of the gene encoding the mGlu1 receptor. MSG did not cause retinal degeneration in crv4 mice, whereas it retained its toxic activity in their wild-type littermates. These findings demonstrate that mGlu1 receptors play a key role in excitotoxic degeneration of RGCs, and encourage the study of mGlu1 receptor NAMs in models of retinal neurodegeneration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    PubMed

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  11. Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia.

    PubMed

    Ueki, Yumi; Ramirez, Grisela; Salcedo, Ernesto; Stabio, Maureen E; Lefcort, Frances

    2016-01-01

    Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein (IKBKAP). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre (Tα1-Cre). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.

  12. Tendoscopic Excision of an Intratendinous Ganglion in the Flexor Hallucis Longus Tendon: A Case Report.

    PubMed

    Endo, Jun; Yamaguchi, Satoshi; Sasho, Takahisa

    2016-01-01

    Intratendinous ganglion cysts are rare lesions of unknown etiology that originate within a tendon. We report the case of a 34-year-old female with an intratendinous ganglion in the plantar portion of the flexor hallucis longus tendon. The intratendinous ganglion recurred after ultrasound-guided needle aspiration. Tendoscopic excision of the intratendinous ganglion cyst achieved a satisfactorily result without recurrence.

  13. Imaging frontotemporal lobar degeneration.

    PubMed

    Diehl-Schmid, Janine; Onur, Oezguer A; Kuhn, Jens; Gruppe, Traugott; Drzezga, Alexander

    2014-10-01

    The term frontotemporal lobar degeneration (FTLD) refers to a group of neurodegenerative disorders that target the frontal and temporal lobes. It accounts for approximately 10 % of pathologically confirmed dementias but has been demonstrated to be as prevalent as Alzheimer's disease in patients below the age of 65. The 3 major clinical syndromes associated with FTLD include behavioral variant frontotemporal dementia, semantic and nonfluent variants of primary progressive aphasia. The more recently introduced term logopenic variant appears to represent an atypical form of Alzheimer's disease in the majority of cases. The neuropathology underlying these clinical syndromes is very heterogeneous and does not correlate well with the clinical phenotype. This causes great difficulties in early and reliable diagnosis and treatment of FTLD. However, significant advances have been made in recent years via the application of magnetic resonance imaging and positron emission tomography imaging methods as biomarkers. The current review aims to provide a synopsis on the value of magnetic resonance imaging-based and molecular imaging procedures in FTLD.

  14. [Age related macular degeneration].

    PubMed

    Sayen, Alexandra; Hubert, Isabelle; Berrod, Jean-Paul

    2011-02-01

    Age-related macular degeneration (ARMD) is a multifactorial disease caused by a combination of genetic and environmental factors. It is the first cause of blindness in patients over 50 in the western world. The disease has been traditionally classified into early and late stages with dry (atrophic) and wet (neovascular) forms: neovascular form is characterized by new blood vessels development under the macula (choroidal neovascularisation) which lead to a rapid decline of vision associated with metamorphopsia and requiring an urgent ophtalmological examination. Optical coherence tomography is now one of the most important part of the examination for diagnosis and treatment. Patient with age related maculopathy should consider taking a dietary supplement such that used in AREDS. The treatment of the wet ARMD has largely beneficied since year 2006 of anti-VEGF (vascular endothelial growth factor) molecules such as ranibizumab or bevacizumab given as repeated intravitreal injections. A systematic follow up each 4 to 8 week in required for several years. There is no effective treatment at the moment for dry AMD. For patients with binocular visual acuity under 60/200 rehabilitation includes low vision specialist, vision aids and psychological support.

  15. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion

    PubMed Central

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-01-01

    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: http://dx.doi.org/10.7554/eLife.19749.001 PMID:27735788

  16. Dual ACL Ganglion Cysts: Significance of Detailed Arthroscopy.

    PubMed

    Mittal, Samarth; Singla, Amit; Nag, H L; Meena, Sanjay; Lohiya, Ramprakash; Agarwal, Abhinav

    2014-01-01

    Intra-articular ganglion cysts of the knee joint are rare and most frequently are an incidental finding on MRI and arthroscopy. Most of the previous studies have reported a single ganglion cyst in the knee. There have been previous reports of more than one cyst in the same knee but not in the same structure within the knee. We are reporting a case of dual ACL (anterior cruciate ligament) ganglion cysts one of which was missed on radiological examination but later detected during arthroscopy. To the best of our knowledge, no such case has been reported in the indexed English literature till date.

  17. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway

    PubMed Central

    Han, Ming-lei; Liu, Guo-hua; Guo, Jin; Yu, Shu-juan; Huang, Jing

    2016-01-01

    Retinal ganglion cell (RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB)-associated signaling pathways have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect hydrogen peroxide (H2O2)-induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H2O2. Western blot assay showed that in H2O2 -damaged RGC-5 cells, imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay also demonstrated that imipramine ameliorated H2O2 -induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse the protective effect of imipramine on H2O2 -induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the TrkB signaling pathway. PMID:27127489

  18. Degenerate Quantum Gases of Strontium

    NASA Astrophysics Data System (ADS)

    Stellmer, Simon; Schreck, Florian; Killian, Thomas C.

    2014-03-01

    Degenerate quantum gases of alkaline-earth-like elements open new opportunities in research areas ranging from molecular physics to the study of strongly correlated systems. These experiments exploit the rich electronic structure of these elements, which is markedly different from the one of other species for which quantum degeneracy has been attained. Specifically, alkaline-earth-like atoms, such as strontium, feature metastable triplet states, narrow intercombination lines, and a nonmagnetic, closed-shell ground state. This review covers the creation of quantum degenerate gases of strontium and the first experiments performed with this new system. It focuses on laser-cooling and evaporation schemes, which enable the creation of Bose-Einstein condensates and degenerate Fermi gases of all strontium isotopes, and shows how they are used for the investigation of optical Feshbach resonances, the study of degenerate gases loaded into an optical lattice, as well as the coherent creation of Sr2 molecules.

  19. Age-Related Macular Degeneration

    MedlinePlus

    ... version of this page please turn Javascript on. Age-related Macular Degeneration About AMD Click for more ... a leading cause of vision loss among people age 60 and older. It causes damage to the ...

  20. Ionic channel changes in glaucomatous retinal ganglion cells: multicompartment modeling.

    PubMed

    Maturana, Matias I; Turpin, Andrew; McKendrick, Allison M; Kameneva, Tatiana

    2014-01-01

    This research takes a step towards discovering underlying ionic channel changes in the glaucomatous ganglion cells. Glaucoma is characterized by a gradual death of retinal ganglion cells. In this paper, we propose a hypothesis that the ionic channel concentrations change during the progression of glaucoma. We use computer simulation of a multi-compartment morphologically correct model of a mouse retinal ganglion cell to verify our hypothesis. Using published experimental data, we alter the morphology of healthy ganglion cells to replicate glaucomatous cells. Our results suggest that in glaucomatous cell, the sodium channel concentration decreases in the soma by 30% and by 60% in the dendrites, calcium channel concentration decreases by 10% in all compartments, and leak channel concentration increases by 40% in the soma and by 100% in the dendrites.

  1. A synovial ganglion of the knee: two cases in athletes.

    PubMed

    Dragoni, S; Giombini, A; Di Cesare, A; Ripani, M

    2008-08-01

    The objective of the study is to describe two cases of proximal tibiofibular ganglion cysts in high level athletes. In May 2003 and March 2005 two athletes (one tennis player in the top eighty of the Italian national ranking and a gymnast belonging to the Italian rhythmic gymnastics national team) were referred to our institution complaining of postero-lateral knee discomfort and the presence of localized swelling over the fibular head and the antero-lateral aspect of the leg, with a clinically suspected diagnosis of ganglion cyst of the proximal tibiofibular joint. Ultrasonography clearly detected the fluid-filled structures while magnetic resonance imaging confirmed the diagnosis, also showing precisely the anatomic relationship between the ganglions and the surrounding structures. Both athletes underwent surgical excision and the histological examination was compatible with a proximal tibiofibular joint ganglion cyst; as yet they have had no recurrence.

  2. Ganglion cyst of the posterior cruciate ligament in a child.

    PubMed

    Hameed, Shamsi Abdul; Sujir, Premjit; Naik, Monappa A; Rao, Sharath K

    2012-04-01

    Ganglion cysts are more commonly associated with the anterior cruciate ligament than the posterior cruciate ligament (PCL). A literature review showed that all reported cases of ganglion cysts to date involved adults. We report a rare case of ganglion cyst in the PCL of a four-year-old boy, and discuss its aetiology, clinical presentation, imaging features and management. Ganglion cysts of the PCL may be confused with meniscal cysts arising from tears of the posterior horn of the medial meniscus on magnetic resonance (MR) imaging. Hence, the posterior horn of the medial meniscus has to be carefully evaluated to rule out a tear. MR imaging is the method of choice to confirm diagnosis, and arthroscopic resection is a safe treatment modality even in children.

  3. Retinal Changes in an ATP-Induced Model of Retinal Degeneration

    PubMed Central

    Aplin, Felix P.; Vessey, Kirstan A.; Luu, Chi D.; Guymer, Robyn H.; Shepherd, Robert K.; Fletcher, Erica L.

    2016-01-01

    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration. PMID:27199678

  4. Retinal Changes in an ATP-Induced Model of Retinal Degeneration.

    PubMed

    Aplin, Felix P; Vessey, Kirstan A; Luu, Chi D; Guymer, Robyn H; Shepherd, Robert K; Fletcher, Erica L

    2016-01-01

    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.

  5. Testing Proposed Neuronal Models of Effective Connectivity Within the Cortico-basal Ganglia-thalamo-cortical Loop During Loss of Consciousness.

    PubMed

    Crone, Julia Sophia; Lutkenhoff, Evan Scott; Bio, Branden Joseph; Laureys, Steven; Monti, Martin Max

    2017-04-01

    In recent years, a number of brain regions and connectivity patterns have been proposed to be crucial for loss and recovery of consciousness but have not been compared in detail. In a 3 T resting-state functional magnetic resonance imaging paradigm, we test the plausibility of these different neuronal models derived from theoretical and empirical knowledge. Specifically, we assess the fit of each model to the dynamic change in effective connectivity between specific cortical and subcortical regions at different consecutive levels of propofol-induced sedation by employing spectral dynamic causal modeling. Surprisingly, our findings indicate that proposed models of impaired consciousness do not fit the observed patterns of effective connectivity. Rather, the data show that loss of consciousness, at least in the context of propofol-induced sedation, is marked by a breakdown of corticopetal projections from the globus pallidus. Effective connectivity between the globus pallidus and the ventral posterior cingulate cortex, present during wakefulness, fades in the transition from lightly sedated to full loss of consciousness and returns gradually as consciousness recovers, thereby, demonstrating the dynamic shift in brain architecture of the posterior cingulate "hub" during changing states of consciousness. These findings highlight the functional role of a previously underappreciated direct pallido-cortical connectivity in supporting consciousness. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Disentangling the Role of Cortico-Basal Ganglia Loops in Top-Down and Bottom-Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease.

    PubMed

    Tommasi, Giorgio; Fiorio, Mirta; Yelnik, Jérôme; Krack, Paul; Sala, Francesca; Schmitt, Emmanuelle; Fraix, Valérie; Bertolasi, Laura; Le Bas, Jean-François; Ricciardi, Giuseppe Kenneth; Fiaschi, Antonio; Theeuwes, Jan; Pollak, Pierre; Chelazzi, Leonardo

    2015-06-01

    It is solidly established that top-down (goal-driven) and bottom-up (stimulus-driven) attention mechanisms depend on distributed cortical networks, including prefrontal and frontoparietal regions. On the other hand, it is less clear whether the BG also contribute to one or the other of these mechanisms, or to both. The current study was principally undertaken to clarify this issue. Parkinson disease (PD), a neurodegenerative disorder primarily affecting the BG, has proven to be an effective model for investigating the contribution of the BG to different brain functions; therefore, we set out to investigate deficits of top-down and bottom-up attention in a selected cohort of PD patients. With this objective in mind, we compared the performance on three computerized tasks of two groups of 12 parkinsonian patients (assessed without any treatment), one otherwise pharmacologically treated and the other also surgically treated, with that of a group of controls. The main behavioral tool for our study was an attentional capture task, which enabled us to tap the competition between top-down and bottom-up mechanisms of visual attention. This task was suitably combined with a choice RT and a simple RT task to isolate any specific deficit of attention from deficits in motor response selection and initiation. In the two groups of patients, we found an equivalent increase of attentional capture but also comparable delays in target selection in the absence of any salient distractor (reflecting impaired top-down mechanisms) and movement initiation compared with controls. In contrast, motor response selection processes appeared to be prolonged only in the operated patients. Our results confirm that the BG are involved in both motor and cognitive domains. Specifically, damage to the BG, as it occurs in PD, leads to a distinct deficit of top-down control of visual attention, and this can account, albeit indirectly, for the enhancement of attentional capture, reflecting weakened ability of top-down mechanisms to antagonize bottom-up control.

  7. Auditory experience refines cortico-basal ganglia inputs to motor cortex via remapping of single axons during vocal learning in zebra finches.

    PubMed

    Miller-Sims, Vanessa C; Bottjer, Sarah W

    2012-02-01

    Experience-dependent changes in neural connectivity underlie developmental learning and result in life-long changes in behavior. In songbirds axons from the cortical region LMAN(core) (core region of lateral magnocellular nucleus of anterior nidopallium) convey the output of a basal ganglia circuit necessary for song learning to vocal motor cortex [robust nucleus of the arcopallium (RA)]. This axonal projection undergoes remodeling during the sensitive period for learning to achieve topographic organization. To examine how auditory experience instructs the development of connectivity in this pathway, we compared the morphology of individual LMAN(core)→RA axon arbors in normal juvenile songbirds to those raised in white noise. The spatial extent of axon arbors decreased during the first week of vocal learning, even in the absence of normal auditory experience. During the second week of vocal learning axon arbors of normal birds showed a loss of branches and varicosities; in contrast, experience-deprived birds showed no reduction in branches or varicosities and maintained some arbors in the wrong topographic location. Thus both experience-independent and experience-dependent processes are necessary to establish topographic organization in juvenile birds, which may allow birds to modify their vocal output in a directed manner and match their vocalizations to a tutor song. Many LMAN(core) axons of juvenile birds, but not adults, extended branches into dorsal arcopallium (Ad), a region adjacent to RA that is part of a parallel basal ganglia pathway also necessary for vocal learning. This transient projection provides a point of integration between the two basal ganglia pathways, suggesting that these branches convey corollary discharge signals as birds are actively engaged in learning.

  8. Sphenopalatine ganglion stimulation for vasospasm after experimental subarachnoid hemorrhage.

    PubMed

    Takahashi, Masataka; Zhang, Zhen-Du; Macdonald, R Loch

    2011-04-01

    Sphenopalatine ganglion stimulation activates perivascular vasodilatory nerves in the ipsilateral anterior circle of Willis. This experiment tested whether stimulation of the ganglion could reverse vasospasm and improve cerebral perfusion after subarachnoid hemorrhage (SAH) in monkeys. Thirteen cynomolgus monkeys underwent baseline angiography followed by creation of SAH by placement of autologous blood against the right intradural internal carotid artery, the middle cerebral artery (MCA), and the anterior cerebral artery. Seven days later, angiography was repeated, and the right sphenopalatine ganglion was exposed microsurgically. Angiography was repeated 15 minutes after exposure of the ganglion. The ganglion was stimulated electrically 3 times, and angiography was repeated during and 15 and 30 minutes after stimulation. Cerebral blood flow (CBF) was monitored using laser Doppler flowmetry, and intracranial pressure (ICP) was measured throughout. The protocol was repeated again. Evans blue was injected and the animals were killed. The brains were removed for analysis of water and Evans blue content and histology. Subarachnoid hemorrhage was associated with significant vasospasm of the ipsilateral major cerebral arteries (23% ± 10% to 39% ± 4%; p < 0.05, paired t-tests). Exposure of the ganglion and sham stimulation had no significant effects on arterial diameters, ICP, or CBF (4 monkeys, ANOVA and paired t-tests). Sphenopalatine ganglion stimulation dilated the ipsilateral extracranial and intracranial internal carotid artery, MCA, and anterior cerebral artery compared with the contralateral arteries (9 monkeys, 7% ± 9% to 15% ± 19%; p < 0.05, ANOVA). There was a significant increase in ipsilateral CBF. Stimulation had no effect on ICP or brain histology. Brain water content did not increase but Evans blue content was significantly elevated in the MCA territory of the stimulated hemisphere. Sphenopalatine ganglion stimulation decreased vasospasm and increased

  9. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection.

    PubMed

    Wise, Andrew K; Tu, Tian; Atkinson, Patrick J; Flynn, Brianna O; Sgro, Beatrice E; Hume, Cliff; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2011-08-01

    A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the

  10. Ganglion ultrastructure in phylactolaemate Bryozoa: evidence for a neuroepithelium.

    PubMed

    Gruhl, Alexander; Bartolomaeus, Thomas

    2008-05-01

    In contrast to other Bryozoa, members of the subtaxon Phylactolaemata bear a subepithelial cerebral ganglion that resembles a hollow vesicle rather than being compact. In older studies this ganglion was said to originate by an invagination of the pharyngeal epithelium. Unfortunately, documentation for this is fragmentary. In chordates the central nervous system also arises by an invagination-like process, but this mode is uncommon among invertebrate phyla. As a first attempt to gather more data about this phenomenon, cerebral ganglia in two phylactolaemate species, Fredericella sultana and Plumatella emarginata, were examined at the ultrastructural level. In both species the ganglion bears a small central lumen. The ganglionic cells are organized in the form of a neuroepithelium. They are polarized and interconnected by adherens junctions on their apical sides and reside on a basal lamina. The nerve cell somata are directed towards the central lumen, whereas the majority of nervous processes are distributed basally. Orientation of the neuroepithelial cells can be best explained by the possibility that they develop by invagination. A comparison with potential outgroups reveals that a neuroepithelial ganglion is at least derived. Since, however, a reliable phylogenetic system of the Bryozoa is missing, a decision on whether such a ganglion is apomorphic for Bryozoa or evolved within this taxon can hardly be made. (c) 2007 Wiley-Liss, Inc.

  11. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    PubMed Central

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  12. Ih without Kir in Adult Rat Retinal Ganglion Cells

    PubMed Central

    Lee, Sherwin C.; Ishida, Andrew T.

    2011-01-01

    Antisera directed against hyperpolarization-activated mixed-cation (“Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization due to activation of Ih. However, patch-clamp studies have reported that rat ganglion cells lack inward rectification, or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that while we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells, and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings. PMID:17488978

  13. Functional organization of ganglion cells in the salamander retina.

    PubMed

    Segev, Ronen; Puchalla, Jason; Berry, Michael J

    2006-04-01

    Recently, we reported a novel technique for recording all of the ganglion cells in a retinal patch and showed that their receptive fields cover visual space roughly 60 times over in the tiger salamander. Here, we carry this analysis further and divide the population of ganglion cells into functional classes using quantitative clustering algorithms that combine several response characteristics. Using only the receptive field to classify ganglion cells revealed six cell types, in agreement with anatomical studies. Adding other response measures served to blur the distinctions between these cell types rather than resolve further classes. Only the biphasic off type had receptive fields that tiled the retina. Even when we attempted to split these classes more finely, ganglion cells with almost identical functional properties were found to have strongly overlapping spatial receptive fields. A territorial spatial organization, where ganglion cell receptive fields tend to avoid those of other cells of the same type, was only found for the biphasic off cell. We further studied the functional segregation of the ganglion cell population by computing the amount of visual information shared between pairs of cells under natural movie stimulation. This analysis revealed an extensive mixing of visual information among cells of different functional type. Together, our results indicate that the salamander retina uses a population code in which every point in visual space is represented by multiple neurons with subtly different visual sensitivities.

  14. Directional summation in non-direction selective retinal ganglion cells.

    PubMed

    Abbas, Syed Y; Hamade, Khaldoun C; Yang, Ellen J; Nawy, Scott; Smith, Robert G; Pettit, Diana L

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network.

  15. Directional Summation in Non-direction Selective Retinal Ganglion Cells

    PubMed Central

    Abbas, Syed Y.; Hamade, Khaldoun C.; Yang, Ellen J.; Nawy, Scott; Smith, Robert G.; Pettit, Diana L.

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  16. Intraneural Ganglion in Superficial Radial Nerve Mimics de Quervain Tenosynovitis

    PubMed Central

    Haller, Justin M.; Potter, Michael Q.; Sinclair, Micah; Hutchinson, Douglas T.

    2014-01-01

    Background Intraneural ganglions in peripheral nerves of the upper extremity are extremely rare and poorly understood. Case Description We report a patient with symptoms consistent with de Quervain tenosynovitis who was found to have an intraneural ganglion in the superficial radial nerve. The ganglion did not communicate with the wrist joint. We removed the intraneural ganglion, and the patient's symptoms resolved. At her 6-month postoperative follow-up, she remained asymptomatic. Literature Review: There is only one case report of intraneural ganglion in the superficial radial nerve. In that case, the patient had symptoms consistent with nerve irritation, including radiating pain and paresthesias. In contrast to that previous report, the patient in the current case had only localized pain, no paresthesias, and a physical exam consistent with de Quervain tenosynovitis. Clinical Relevance This case demonstrates that an intraneural ganglion cyst can mimic the symptoms of de Quervain tenosynovitis without the more usual presentation of painful paresthesias. PMID:25364639

  17. Topography of ganglion cell production in the cat's retina

    SciTech Connect

    Walsh, C.; Polley, E.H.

    1985-03-01

    The ganglion cells of the cat's retina form several classes distinguishable in terms of soma size, axon diameter, dendritic morphology, physiological properties, and central connections. Labeling with (/sup 3/H)thymidine shows that the ganglion cells which survive in the adult are produced as several temporally shifted, overlapping waves: medium-sized cells are produced before large cells, whereas the smallest ganglion cells are produced throughout the period of ganglion cell generation. Large cells and medium-sized cells show the same distinctive pattern of production, forming rough spirals around the area centralis. The oldest cells tend to lie superior and nasal to the area centralis, whereas cells in the inferior nasal retina and inferior temporal retina are, in general, progressively younger. Within each retinal quadrant, cells nearer the area centralis tend to be older than cells in the periphery, but there is substantial overlap. The retinal raphe divides the superior temporal quadrant into two zones with different patterns of cell addition. Superior temporal retina near the vertical meridian adds cells only slightly later than superior nasal retina, whereas superior temporal retina near the horizontal meridian adds cells very late, contemporaneously with inferior temporal retina. The broader wave of production of smaller ganglion cells seems to follow this same spiral pattern at its beginning and end. The presence of the area centralis as a nodal point about which ganglion cell production in the retinal quadrants pivots suggests that the area centralis is already an important retinal landmark even at the earliest stages of retinal development.

  18. [Neurophysiology of corticobasal degeneration].

    PubMed

    Tyvaert, L; Cassim, F; Derambure, P; Defebvre, L

    2007-09-01

    Corticobasal degeneration (CBD) is a neurodegenerative disorder of mid- to late-adult life. From a clinical standpoint, CBD is characterized by (i) an insidious onset and a slowly progressing, unilateral, levodopa-unresponsive parkinsonian syndrome with dystonia or myoclonus and (ii) cerebral features such as apraxia, alien limb phenomena and cortical sensory loss. Decisive clinical diagnostic criteria are not available and thus a neuropathological study remains essential for accurate CBD diagnosis. Consequently, additional non-clinical criteria must be identified in order to improve diagnosis while patients are still alive. Electrophysiological exploration can yield functional information on a number of brain structures (both cortical and sub-cortical) involved in CBD. The disorder features a specific cortical (frontoparietal) alteration which could help with differential diagnoses for other extrapyramidal syndromes. Hence, exploration of a patient's myoclonus can provide some specific arguments for CBD. Indeed, myoclonus displays a number of clinical and electromyographical characteristics which are consistent with a cortical origin (a shorter latency of the cortical C response, for example). However, some typical cortical features are missing (giant somesthesic evoked potentials, and cortical potentials preceding myoclonus in jerk-locked back-averaging studies). Some authors explain these abnormalities in terms of a sub-cortical origin for the myoclonus. The frontoparietal alteration in CBD has also been explored in studies of oculomotor movement. Indeed, asymmetric lengthening of the lateral ocular saccade latency argues more in favour of CBD than progressive supranuclear palsy. Moreover, cognitive function is also compromised in the early stages of CBD, although it is sometimes difficult to distinguish between CBD, PSP and frontotemporal dementia. Studying cognitive potentials enables one to confirm subcorticofrontal abnormalities and to dissociate CBD

  19. Evaluating retinal ganglion cell loss and dysfunction.

    PubMed

    Mead, Ben; Tomarev, Stanislav

    2016-10-01

    Retinal ganglion cells (RGC) bear the sole responsibility of propagating visual stimuli to the brain. Their axons, which make up the optic nerve, project from the retina to the brain through the lamina cribrosa and in rodents, decussate almost entirely at the optic chiasm before synapsing at the superior colliculus. For many traumatic and degenerative ocular conditions, the dysfunction and/or loss of RGC is the primary determinant of visual loss and are the measurable endpoints in current research into experimental therapies. To actually measure these endpoints in rodent models, techniques must ascertain both the quantity of surviving RGC and their functional capacity. Quantification techniques include phenotypic markers of RGC, retrogradely transported fluorophores and morphological measurements of retinal thickness whereas functional assessments include electroretinography (flash and pattern) and visual evoked potential. The importance of the accuracy and reliability of these techniques cannot be understated, nor can the relationship between RGC death and dysfunction. The existence of up to 30 types of RGC complicates the measuring process, particularly as these may respond differently to disease and treatment. Since the above techniques may selectively identify and ignore particular subpopulations, their appropriateness as measures of RGC survival and function may be further limited. This review discusses the above techniques in the context of their subtype specificity.

  20. Electrophysiological assessment of retinal ganglion cell function

    PubMed Central

    Porciatti, Vittorio

    2015-01-01

    The function of retinal ganglion cells (RGCs) can be non-invasively assessed in experimental and genetic models of glaucoma by means of variants of the ERG technique that emphasize the activity of inner retina neurons. The best understood technique is the Pattern Electroretinogram (PERG) in response to contrast-reversing gratings or checkerboards, which selectively depends on the presence of functional RGCs. In glaucoma models, the PERG can be altered before histological loss of RGCs; PERG alterations may be either reversed with moderate IOP lowering or exacerbated with moderate IOP elevation. Under particular luminance-stimulus conditions, the Flash-ERG displays components that may reflect electrical activity originating in the proximal retina and be altered in some experimental glaucoma models (positive Scotopic Threshold response, pSTR; negative Scotopic Threshold Response, nSTR; Photopic Negative Response, PhNR; Oscillatory Potentials, OPs; multifocal ERG, mfERG). It is not yet known which of these components is most sensitive to glaucomatous damage. Electrophysiological assessment of RGC function appears to be a necessary outcome measure in experimental glaucoma models, which complements structural assessment and may even predict it. Neuroprotective strategies could be tested based on enhancement of baseline electrophysiological function that results in improved RGC survival. The use of electrophysiology in glaucoma models may be facilitated by specifically designed instruments that allow high throughput, robust assessment of electrophysiological function. PMID:25998495

  1. Genetic Networks in Mouse Retinal Ganglion Cells

    PubMed Central

    Struebing, Felix L.; Lee, Richard K.; Williams, Robert W.; Geisert, Eldon E.

    2016-01-01

    Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma. PMID:27733864

  2. Polymodal Sensory Integration in Retinal Ganglion Cells.

    PubMed

    Križaj, David

    2016-01-01

    An animal's ability to perceive the external world is conditioned by its capacity to extract and encode specific features of the visual image. The output of the vertebrate retina is not a simple representation of the 2D visual map generated by photon absorptions in the photoreceptor layer. Rather, spatial, temporal, direction selectivity and color "dimensions" of the original image are distributed in the form of parallel output channels mediated by distinct retinal ganglion cell (RGC) populations. We propose that visual information transmitted to the brain includes additional, light-independent, inputs that reflect the functional states of the retina, anterior eye and the body. These may include the local ion microenvironment, glial metabolism and systemic parameters such as intraocular pressure, temperature and immune activation which act on ion channels that are intrinsic to RGCs. We particularly focus on light-independent mechanical inputs that are associated with physical impact, cell swelling and intraocular pressure as excessive mechanical stimuli lead to the counterintuitive experience of "pressure phosphenes" and/or debilitating blinding disease such as glaucoma and diabetic retinopathy. We point at recently discovered retinal mechanosensitive ion channels as examples through which molecular physiology brings together Greek phenomenology, modern neuroscience and medicine. Thus, RGC output represents a unified picture of the embodied context within which vision takes place.

  3. Advances in retinal ganglion cell imaging

    PubMed Central

    Balendra, S I; Normando, E M; Bloom, P A; Cordeiro, M F

    2015-01-01

    Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic. PMID:26293138

  4. Extraneural rupture of intraneural ganglion cysts.

    PubMed

    Shahid, Kameron R; Hébert-Blouin, Marie-Noëlle; Amrami, Kimberly K; Spinner, Robert J

    2011-01-01

    Rupture of simple (extraneural) cysts such as popliteal cysts (Baker's cysts) is a well-known occurrence. The purpose of this report is to introduce the similar occurrence of extraneural rupture of peroneal and tibial intraneural cysts in the knee region, describe the associated magnetic resonance imaging (MRI) findings, and identify risk factors. There was MRI evidence of rupture in 20 of 38 intraneural cases reviewed, mainly in the region of the fibular head and popliteal fossa. Ruptured intraneural cysts and simple cysts share these MRI findings: T2 hyperintense fluid within surrounding intermuscular fascial planes and enhancement with intravenous contrast consistent with inflammation. The mean maximal diameter of the ruptured intraneural cysts was statistically significantly smaller than that of the unruptured cysts. The authors believe that extraneural rupture of an intraneural cyst is due to increased intraarticular pressures transmitted within the cyst and/or elevated extrinsic pressure delivered to the cyst, such as by trauma, akin to the etiology of rupture of extraneural ganglion cysts.

  5. Age-related macular degeneration.

    PubMed

    Lim, Laurence S; Mitchell, Paul; Seddon, Johanna M; Holz, Frank G; Wong, Tien Y

    2012-05-05

    Age-related macular degeneration is a major cause of blindness worldwide. With ageing populations in many countries, more than 20% might have the disorder. Advanced age-related macular degeneration, including neovascular age-related macular degeneration (wet) and geographic atrophy (late dry), is associated with substantial, progressive visual impairment. Major risk factors include cigarette smoking, nutritional factors, cardiovascular diseases, and genetic markers, including genes regulating complement, lipid, angiogenic, and extracellular matrix pathways. Some studies have suggested a declining prevalence of age-related macular degeneration, perhaps due to reduced exposure to modifiable risk factors. Accurate diagnosis combines clinical examination and investigations, including retinal photography, angiography, and optical coherence tomography. Dietary anti-oxidant supplementation slows progression of the disease. Treatment for neovascular age-related macular degeneration incorporates intraocular injections of anti-VEGF agents, occasionally combined with other modalities. Evidence suggests that two commonly used anti-VEGF therapies, ranibizumab and bevacizumab, have similar efficacy, but possible differences in systemic safety are difficult to assess. Future treatments include inhibition of other angiogenic factors, and regenerative and topical therapies.

  6. Age-related macular degeneration

    PubMed Central

    Coleman, Hanna R; Chan, Chi-Chao; Ferris, Frederick L; Chew, Emily Y

    2008-01-01

    Age-related macular degeneration is the leading cause of blindness in elderly populations of European descent. The most consistent risk factors associated with this ocular condition are increasing age and cigarette smoking. Genetic investigations have shown that complement factor H, a regulator of the alternative complement pathway, and LOC387715/HtrA1 are the most consistent genetic risk factors for age-related macular degeneration. Although the pathogenesis of this disease is unknown, oxidative stress might have an important role. Treatment with antioxidant vitamins and zinc can reduce the risk of developing advanced age-related macular degeneration by about a quarter in those at least at moderate risk. Intravitreal injections of ranibizumab, a monoclonal antibody that inhibits all forms of vascular endothelial growth factor, have been shown to stabilise loss of vision and, in some cases, improve vision in individuals with neovascular age-related macular degeneration. These findings, combined with assessments of possible environmental and genetic interactions and new approaches to modulate inflammatory pathways, will hopefully further expand our ability to understand and treat age-related macular degeneration. PMID:19027484

  7. Heat Shock Proteins In The Retina: Focus On Hsp70 and Alpha Crystallins In Ganglion Cell Survival

    PubMed Central

    Piri, Natik; Kwong, Jacky MK; Gu, Lei; Caprioli, Joseph

    2016-01-01

    Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' antiapoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies. PMID:27017896

  8. Increased Na+ and K+ currents in small mouse dorsal root ganglion neurons after ganglion compression.

    PubMed

    Fan, Ni; Sikand, Parul; Donnelly, David F; Ma, Chao; Lamotte, Robert H

    2011-07-01

    We investigated the effects of chronic compression (CCD) of the L3 and L4 dorsal root ganglion (DRG) on pain behavior in the mouse and on the electrophysiological properties of the small-diameter neuronal cell bodies in the intact ganglion. CCD is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. On days 1, 3, 5, and 7 after the onset of compression, there was a significant decrease from preoperative values in the threshold mechanical force required to elicit a withdrawal of the foot ipsilateral to the CCD (tactile allodynia). Whole cell patch-clamp recordings were obtained, in vitro, from small-sized somata and, for the first time, in the intact DRG. Under current clamp, CCD neurons exhibited a significantly lower rheobase compared with controls. A few CCD but no control neurons exhibited spontaneous action potentials. CCD neurons showed an increase in the density of TTX-resistant and TTX-sensitive Na(+) current. CCD neurons also exhibited an enhanced density of voltage-dependent K(+) current, due to an increase in delayed rectifier K(+) current, without a change in the transient or "A" current. We conclude that CCD in the mouse produces a model of radicular pain, as we have previously demonstrated in the rat. While the role of enhanced K(+) current remains to be elucidated, we speculate that it represents a compensatory neuronal response to reduce ectopic or aberrant levels of neuronal activity produced by the injury.

  9. Pharmacological Inhibition of Caspase-2 Protects Axotomised Retinal Ganglion Cells from Apoptosis in Adult Rats

    PubMed Central

    Vigneswara, Vasanthy; Berry, Martin; Logan, Ann; Ahmed, Zubair

    2012-01-01

    Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL+ RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with z-VDVAD suppressed cleaved caspase-2 activation by >85% at 3–4 days after ONC. Increasing concentrations of z-VDVAD protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as glaucoma and optic neuritis. PMID:23285297

  10. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  11. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice.

    PubMed

    Hafler, Brian P; Klein, Zoe A; Jimmy Zhou, Z; Strittmatter, Stephen M

    2014-11-07

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn(-/-) mice develop degenerative pathology similar to features of human CLN11.

  12. PGC-1α regulation of mitochondrial degeneration in experimental diabetic neuropathy.

    PubMed

    Choi, Joungil; Chandrasekaran, Krish; Inoue, Tatsuya; Muragundla, Anjaneyulu; Russell, James W

    2014-04-01

    Mitochondrial degeneration is considered to play an important role in the development of diabetic peripheral neuropathy in humans. Mitochondrial degeneration and the corresponding protein regulation associated with the degeneration were studied in an animal model of diabetic neuropathy. PGC-1α and its-regulated transcription factors including TFAM and NRF1, which are master regulators of mitochondrial biogenesis, are significantly downregulated in streptozotocin diabetic dorsal root ganglion (DRG) neurons. Diabetic mice develop peripheral neuropathy, loss of mitochondria, decreased mitochondrial DNA content and increased protein oxidation. Importantly, this phenotype is exacerbated in PGC-1α (-/-) diabetic mice, which develop a more severe neuropathy with reduced mitochondrial DNA and a further increase in protein oxidation. PGC-1α (-/-) diabetic mice develop an increase in total cholesterol and triglycerides, and a decrease in TFAM and NRF1 protein levels. Loss of PGC-1α causes severe mitochondrial degeneration with vacuolization in DRG neurons, coupled with reduced state 3 and 4 respiration, reduced expression of oxidative stress response genes and an increase in protein oxidation. In contrast, overexpression of PGC-1α in cultured adult mouse neurons prevents oxidative stress associated with increased glucose levels. The study provides new insights into the role of PGC-1α in mitochondrial regeneration in peripheral neurons and suggests that therapeutic modulation of PGC-1α function may be an attractive approach for treatment of diabetic neuropathy.

  13. Quantum Degenerate Gases of Strontium

    NASA Astrophysics Data System (ADS)

    Desalvo, Brian; Martinez de Escobar, Natali; Mickelson, Pacal; Yan, Mi; Killian, Thomas

    2010-03-01

    We have produced quantum degenerate gases of three of the four stable isotopes of strontium. Using two-stage laser trapping and cooling followed by direct evaporative cooling in a far-off- resonance optical dipole trap (ODT), a stable Bose-Einstein Condensate (BEC) of ^84Sr is formed. Via dual species trapping and sympathetic cooling in an ODT, an attractive BEC of ^88Sr is created, as well as a degenerate Fermi gas of ^87Sr. Differences in the evaporation scheme used to reach degeneracy for each isotope will be presented as well as the varied dynamics of the gases.

  14. Trigeminal ganglion cells cocultured with gut express vasoactive intestinal peptide.

    PubMed

    Davis, J P; Epstein, M L

    1987-12-01

    The plasticity of neural crest cells for the expression of adrenergic and cholinergic transmitter phenotypes has been well studied. The object of this study was to determine if cells of a sensory ganglion are capable of neuropeptide transmitter plasticity. We studied whether cells of the trigeminal ganglion, which do not express the neuropeptide vasoactive intestinal peptide (VIP) in vivo, would express this peptide when grown with a tissue the gut, that contains large numbers of VIP neurons. Embryonic aneural chick rectum was explanted with the embryonic quail trigeminal ganglion on the chorioallantoic membrane of chick hosts for 7-8 days. The explants were fixed, sectioned, and stained for VIP immunoreactivity (IR), for neurofilament protein immunoreactivity, and for the quail nucleolar marker. In sections of the explants we observed two populations of quail neurons: small (10-13 microns) VIP-IR cells and large (25-32 microns) cells lacking VIP-IR and resembling native trigeminal neurons. Trigeminal ganglia explanted with embryonic heart or trigeminal ganglia explanted alone lacked small VIP-IR cells but contained large VIP-negative neurons. These results show that cells of the trigeminal ganglion grown with the gut can express a neuropeptide they do not express in the absence of the gut or in vivo. Thus the embryonic trigeminal ganglion contains cells that are plastic with respect to neuropeptide expression.

  15. The Grueneberg ganglion: a novel sensory system in the nose.

    PubMed

    Fleischer, Joerg; Breer, Heinz

    2010-07-01

    Within the nasal epithelium of mammals, there are several compartments which are populated with neuronal cells. One of them - the so-called Grueneberg ganglion - is composed of ciliated neurons residing in the anterior region of the nose. Although cells of the Grueneberg ganglion lack direct contact with the lumen of the nasal cavity, they are endowed with features indicative of olfactory sensory neurons, such as the olfactory marker protein and distinct olfactory receptors, as well as projection of axonal processes to the olfactory bulb of the brain. These findings have led to the notion that the Grueneberg ganglion might be a novel olfactory subsystem; a concept which was lately supported by the observation that chemical cues activate Grueneberg ganglion neurons. Unexpectedly, it was recently found that these cells also respond to cool ambient temperatures, presumably via a signaling pathway mediated by second messengers. Thus, the Grueneberg ganglion may operate as a dual sensory organ involved in the detection of both chemical and thermal stimuli.

  16. Ganglion and “Dendrite” Populations in EAS Ears

    PubMed Central

    Rask-Andersen, Helge; Liu, Wei; Linthicum, Fred H

    2010-01-01

    Background/Aims EAS technique combines electric and acoustic stimulation in the same ear and utilizes both low frequency acoustic hearing and electric stimulation of preserved neurons. We present data of ganglion cell and dendrite populations in ears from normal individuals and those suffered from adult-onset hereditary progressive hearing loss with various residual low tone hearing. Some of these were potential candidates for EAS surgery. The data may give us information about the neuro-anatomic situation in EAS ears. Methods Dendrites and ganglion cells were calculated and audio-cytocochleograms constructed. The temporal bones were from the collection at the House Ear Institute in Los Angeles, USA. Normal human anatomy, based on surgical specimens, is presented. Results IHCs and OHCs, supporting cells, ganglion cells and dendrites were preserved in the apical region. In the mid-frequency region, around 1 kHz, the OC with inner and outer hair cells were often conserved while in the lower basal turn, representing frequencies above 3 kHz, OC was atrophic and replaced by thin cells. Despite loss of hair cells and lamina fibers ganglion cells were present even after 28 years duration of deafness. Conclusions Conditions with profound SNHL with preserved low tone hearing may have several causes and the pathology may vary accordingly. In our patients with progressive adult-onset SNHL (amalgamated into “presbyacusis”) neurons were conserved even after long duration of deafness. These spiral ganglion cells may be excellent targets for electric stimulation using EAS technique. PMID:19955718

  17. Stereology of the pterygopalatine ganglion of the rat.

    PubMed

    Costa, W S; Morais, R; Mandarim-De-Lacerda, C A

    1992-01-01

    The right pterygopalatine ganglia (PG) of 9 male Wistar-strain rats were dissected, embedded in Epon (3 specimens) or paraffin (6 specimens), and prepared for stereological examination under light microscopy. The perikarya were quantitatively characterized, and the ganglionic volume was determined. Stereology is an efficient method for the quantitative evaluation of the perikarya of the PG. The results(expressed as mean +/- standard deviation) were: a) areal fraction occupied by the perikarya = 53.8 +/- 7.4%; b) the perikaryal surface area per volume = 0.101 +/- 0.013 microns-1; c) the number of perikarya per volume x 10(-5) = 5.26 +/- 0.99 microns-3; d) the mean profile area of the perikarya (apk) = 505.93 +/- 78.29 microns 2; e) the mean perikaryal volume (vpk) = 9,179.33 +/- 1,533.52 microns 3; and f) the ganglionic volume = 0.210 +/- 0.127 mm3. The low coefficient of variation the apk and vpk values suggests the presence of only one population of neurons in the PG of the rat. The number of perikarya in the PG is about 11,046 per ganglion. As compared to analogous data in the otic ganglion of the rat, the PG did not show statistically significant stereological differences, but the relatively higher number of neurons found in the PG is probably associated with the higher functional activity of this ganglion.

  18. Effects of haloperidol and phentolamine on the crustacean cardiac ganglion.

    PubMed

    Berlind, A

    2001-09-01

    Haloperidol (a dopamine D2 blocker in vertebrates) and phentolamine (an alpha-adrenergic blocker) alter the pattern of bursting by the isolated cardiac ganglion of the lobster when perfused at concentrations of 10(-6)-10(-5) mol/l. Both drugs decrease the frequency of bursting and increase burst duration. They are most effective in slowing the ganglion when applied selectively to the anterior ganglionic trunk, the same region of the ganglion where dopamine (DA) and 5-hydroxytryptamine (5HT) are most effective in speeding up bursting. When exogenous monoamine transmitters are applied in the presence of 3x10(-6) mol/l haloperidol, the effect of 5HT, but not of DA, is significantly reduced. At the same concentration, phentolamine does not suppress the actions of DA, 5HT or noradrenaline (NA). Both haloperidol and phentolamine significantly alter the properties of endogenous burst-organizing potentials (driver potentials) generated by motorneurons in the ganglion. It is possible that the effects of these drugs on bursting reflect alteration of endogenous electrical properties of the constituent neurons, rather than receptor antagonism.

  19. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.

    PubMed

    Nuschke, Andrea C; Farrell, Spring R; Levesque, Julie M; Chauhan, Balwantray C

    2015-12-01

    Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models

  20. Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Developmental Mechanism.

    PubMed

    Teotia, Pooja; Chopra, Divyan A; Dravid, Shashank Manohar; Van Hook, Matthew J; Qiu, Fang; Morrison, John; Rizzino, Angie; Ahmad, Iqbal

    2017-03-01

    Glaucoma is a complex group of diseases wherein a selective degeneration of retinal ganglion cells (RGCs) lead to irreversible loss of vision. A comprehensive approach to glaucomatous RGC degeneration may include stem cells to functionally replace dead neurons through transplantation and understand RGCs vulnerability using a disease in a dish stem cell model. Both approaches require the directed generation of stable, functional, and target-specific RGCs from renewable sources of cells, that is, the embryonic stem cells and induced pluripotent stem cells. Here, we demonstrate a rapid and safe, stage-specific, chemically defined protocol that selectively generates RGCs across species, including human, by recapitulating the developmental mechanism. The de novo generated RGCs from pluripotent cells are similar to native RGCs at the molecular, biochemical, functional levels. They also express axon guidance molecules, and discriminate between specific and nonspecific targets, and are nontumorigenic. Stem Cells 2017;35:572-585. © 2016 AlphaMed Press.

  1. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Pathology and possible mechanisms of nervous system response to disc degeneration.

    PubMed

    Brisby, Helena

    2006-04-01

    Degeneration of the intervertebral disc is clinically considered to be an important source of pain in patients with low-back pain. Disc deterioration and/or degeneration may influence the nervous system by stimulation of nociceptors in the anulus fibrosus, causing nociceptive pain that is often referred to as discogenic pain. The stimulation of the nociceptors may be of mechanical or inflammatory origin. Deterioration of a disc with loss of normal structure and weight-bearing properties may lead to abnormal motions that cause mechanical stimulation. This theory is supported by the fact that patients commonly experience an increase in pain with weight-bearing and certain movements. In addition, an ingrowth of vessels and nerve fibers into deeper layers of the anulus fibrosus has been observed in degenerated discs. A large number of inflammatory and signaling substances, such as tumor necrosis factor and interleukins (interleukin-1beta, interleukin-6, and interleukin-8), may also play a role in the development of back pain. Independent of stimulus of the nociceptors, the pain impulses are conducted through myelinated A delta fibers and unmyelinated C fibers to the dorsal root ganglion and continue by way of the spinothalamic tract to the thalamus and the somatosensory cortex. In response to stimulation of the nociceptors in the disc, the somatosensory system may increase its sensitivity, resulting in a nonfunctional response; that is, normally innocuous stimuli may generate an amplified response (peripheral sensitization). When disc degeneration leads to a disc herniation, the adjacent nervous system structures, such as the nerve roots or the dorsal root ganglion, can be affected, causing neuropathic pain of mechanical or biochemical origin. Disc deterioration also influences other spinal structures, such as facet joints, ligaments, and muscles, which can also become pain generators. Thus, disc degeneration may be responsible for the development of chronic low

  3. Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress.

    PubMed

    Gupta, Vivek K; You, Yuyi; Klistorner, Alexander; Graham, Stuart L

    2012-11-01

    Tropomyosin-receptor-kinase B (TrkB receptor) activation plays an important role in the survival of retinal ganglion cells (RGCs). This study reports a novel finding that, SH2 domain-containing phosphatase-2 (Shp-2) binds to the TrkB receptor in RGCs and negatively regulates its activity under glaucomatous stress. This enhanced binding of TrkB and Shp2 is mediated through caveolin. Caveolin 1 and 3 undergo hyper-phosphorylation in RGCs under stress and bind to the Shp2 phosphatase. Shp2 undergoes activation under glaucomatous stress conditions in RGCs in vivo with a concurrent loss of TrkB activity. Inhibiting the Shp2 phosphatase restored TrkB activity in cells exposed to excitotoxic and oxidative stress. Collectively, these findings implicate a molecular basis of Shp2 mediated TrkB deactivation leading to RGC degeneration observed in glaucoma. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Classification of nAChRβ2-immunoreactive retinal ganglion cells and their tectal projections in chicks.

    PubMed

    Naito, Jumpei; Tanada, Yukiko; Watanabe, Takumi

    2013-12-01

    The relationship between the type of retinal ganglion cell (RGC) and the retinoreceptive layer of the tectum is investigated by the immunostaining of RGCs with nicotinic acetylcholine receptorβ2 (nAChRβ2) antibody and intracellular staining by DiI and also by anterograde degeneration and biotinylated dextran amine labeling of retinotectal fibers in chicks. The results strongly suggest that many of the RGCs that express immunoreactivity to nAChRβ2 send axons to tectal layer 7 and are mainly classified into the simple-type of Groups II and III, which contain the cells providing middle-sized to large dendritic fields with simple dendritic arborization. These nAChRβ2-immunoreactive RGCs receive visual information via the multiple sublayers of the inner plexiform layer.

  5. Ataxias and Cerebellar or Spinocerebellar Degeneration

    MedlinePlus

    ... underlying cause of the degeneration. Many ataxias are hereditary and are classified by chromosomal location and pattern ... underlying cause of the degeneration. Many ataxias are hereditary and are classified by chromosomal location and pattern ...

  6. Expression of Aquaporin-6 in Rat Retinal Ganglion Cells.

    PubMed

    Jang, Sun Young; Lee, Eung Suk; Ohn, Young-Hoon; Park, Tae Kwann

    2016-08-01

    Several aquaporins (AQPs) have been identified to be present in the eyes, and it has been suggested that they are involved in the movement of water and small solutes. AQP6, which has low water permeability and transports mainly anions, was recently discovered in the eyes. In the present study, we investigate the localization of AQP6 in the rat retina and show that AQP6 is selectively localized to the ganglion cell layer and the outer plexiform layer. Along with the gradual decrease in retinal ganglion cells after a crushing injury of optic nerve, immunofluorescence signals of AQP6 gradually decreased. Confocal microscope images confirmed AQP6 expression in retinal ganglion cells and Müller cells in vitro. Therefore, AQP6 might participate in water and anion transport in these cells.

  7. Gasserian ganglion: appearance on contrast-enhanced MR.

    PubMed

    Downs, D M; Damiano, T R; Rubinstein, D

    1996-02-01

    To characterize the appearance of the gasserian ganglion on contrast-enhanced MR images. We retrospectively reviewed the MR images from 57 patients with suspected pituitary disease. These patients had undergone unenhanced and contrast-enhanced MR imaging of the sella, including evaluation of Meckel's cave. None of the patients had clinical signs or symptoms referable to the fifth cranial nerve or ganglion. Correlation was made with a previous study that compared gross anatomy with high-resolution CT scans of cadaveric specimens. A discrete semilunar enhancing structure within the inferolateral aspect of Meckel's cave was identified in 100 of the 114 caves examined; the other 14 caves had a thickened area of enhancement that blended with the dura inferolaterally. A small semilunar structure within the inferolateral aspect of Meckel's cave was also identified on CT scans of the cadaveric specimens. The gasserian ganglion enhances on MR images and should not be confused with a pathologic process.

  8. Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal

    PubMed Central

    Schwartz, Greg; Taylor, Sam; Fisher, Clark; Harris, Rob; Berry, Michael J.

    2011-01-01

    SUMMARY We show that when a moving object suddenly reverses direction, there is a brief, synchronous burst of firing within a population of retinal ganglion cells. This burst can be driven by either the leading or trailing edge of the object. The latency is constant for movement at different speeds, objects of different size, and bright versus dark contrasts. The same ganglion cells that signal a motion reversal also respond to smooth motion. We show that the brain can build a pure reversal detector using only a linear filter that reads out synchrony from a group of ganglion cells. These results indicate that not only can the retina anticipate the location of a smoothly moving object, but that it can also signal violations in its own prediction. We show that the reversal response cannot be explained by models of the classical receptive field and suggest that nonlinear receptive field subunits may be responsible. PMID:17880898

  9. KR-31378, a potassium-channel opener, induces the protection of retinal ganglion cells in rat retinal ischemic models.

    PubMed

    Choi, Anho; Choi, Jun-Sub; Yoon, Yone-Jung; Kim, Kyung-A; Joo, Choun-Ki

    2009-04-01

    KR-31378 is a newly developed K(ATP)-channel opener. To investigate the ability of KR-31378 to protect retinal ganglion cells (RGC), experiments were conducted using two retinal ischemia models. Retinal ischemia was induced by transient high intraocular pressure (IOP) for acute ischemia and by three episcleral vein occlusion for chronic retinal ischemia. KR-31378 was injected intraperitoneally and administered orally in the acute and chronic ischemia models, respectively. Under the condition of chronic ischemia, RGC density in the KR-31378-treated group was statistically higher than that in the non-treated group, and IOP was reduced. In the acute retinal ischemia model, 90% of RGC were degenerated after one week in non-treated retina, but, RGC in KR-31378-treated retina were protected from ischemic damage in a dose-dependent manner and showed inhibited glial fibrillary acidic protein (GFAP) expression. Furthermore, the KR-31378 protective effect was inhibited by glibenclamide treatment in acute ischemia. These findings indicate that systemic KR-31378 treatment may protect against ischemic injury-induced ganglion cell loss in glaucoma.

  10. P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration.

    PubMed

    Niyadurupola, Nuwan; Sidaway, Peter; Ma, Ning; Rhodes, Jeremy D; Broadway, David C; Sanderson, Julie

    2013-03-01

    There is evidence implicating ischemia and excitotoxicity in the pathogenesis of glaucoma. ATP-mediated excitotoxicity via activation of the P2X7 receptor (P2X7R) has been proposed to play a role in retinal ganglion cell (RGC) degeneration in this disease. The aim of this research was to determine whether stimulation of the P2X7R mediated ischemia-induced RGC death in the human retina. Human organotypic retinal cultures were exposed to the P2X7R agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) and simulated ischemia (oxygen/glucose deprivation) in the presence or absence of the P2X7R antagonist, Brilliant Blue G (BBG). Neuronal death in the RGC layer was quantified by neuronal nuclei (NeuN)-positive cell counts and quantitative real-time PCR for THY-1 mRNA. The P2X7R was localized by immunohistochemistry and P2X7R mRNA profiling using a cryosectioning technique. P2X7R stimulation by BzATP (100 μM) induced loss of RGC markers in human organotypic retinal cultures (HORCs), which was inhibited by BBG (1 μM). Simulated ischemia led to loss of RGCs that was also inhibited by BBG, indicating that ischemia-induced RGC degeneration was mediated by the P2X7R. The P2X7R was immunolocalized to the outer and inner plexiform layers of the human retina, and P2X7R mRNA expression was confirmed in the inner retina and ganglion cell layer. These studies demonstrated that stimulation of the P2X7R can mediate RGC death and that this mechanism plays a role in ischemia-induced neurodegeneration in the human retina.

  11. Effect of geranylgeranylacetone on the protection of retinal ganglion cells in a mouse model of normal tension glaucoma.

    PubMed

    Dong, Zhenyu; Shinmei, Yasuhiro; Dong, Yoko; Inafuku, Saori; Fukuhara, Junichi; Ando, Ryo; Kitaichi, Nobuyoshi; Kanda, Atsuhiro; Tanaka, Kohichi; Noda, Kousuke; Harada, Takayuki; Chin, Shinki; Ishida, Susumu

    2016-10-01

    Glaucoma is characterized by axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies, and lowering intraocular pressure is associated with an attenuation of progressive optic nerve damage. Nevertheless, intraocular pressure (IOP) reduction alone was not enough to inhibit the progression of disease, which suggests the contribution of other factors to the glaucoma pathogenesis. In this study, we investigated the cytoprotective effect of geranylgeranylacetone (GGA) on RGCs degeneration using a normal tension glaucoma (NTG) mouse model, which lacks glutamate/aspartate transporter (GLAST) and demonstrates spontaneous RGC and optic nerve degeneration without elevated intraocular pressure (IOP). Three-week-old GLAST(+/-) mice were given oral administration of GGA at 100, 300, or 600 mg/kg/day or vehicle alone, and littermate control mice were given vehicle alone for 14 days, respectively. At 5 weeks after birth, the number of RGCs was counted in paraffin sections of retinal tissues stained with hematoxylin and eosin. In addition, retrograde labeling technique was also used to quantify the number of RGC. Expression and localization of heat shock protein 70 (HSP70) in retinas were evaluated by reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Activities of caspase-9 and -3 in retinas were also assessed. The number of RGCs of GLAST(+/-) mice significantly decreased, as compared to that of control mice. RGC loss was significantly suppressed by administration of GGA at 600 mg/kg/day, compared with vehicle alone. Following GGA administration, HSP70 was significantly upregulated together with reduction in the activities of caspase-9 and -3. Our studies highlight HSP70 induction in the retina is available to suppress RGC degeneration, and thus GGA may be applicable for NTG as a promising therapy.

  12. Morphology, topography and cytoarchitectonics of the pterygopalatine ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest).

    PubMed

    Szczurkowski, Aleksander; Kuder, Tadeusz; Nowak, Elzbieta; Kuchinka, Jacek

    2002-01-01

    Using the thiocholine method of Koelle and Friedenwald and histological techniques the pterygopalatine ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest) was studied. The ganglion was found to be a single irregular cluster of neurocytes, situated on the medial surface of the maxillary nerve. The ganglion is composed of oval, elliptical and sometimes fusiform ganglionic neurones in compact arrangement without a thick connective-tissue capsule.

  13. Morphology, topography and cytoarchitectonics of the otic ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest).

    PubMed

    Szczurkowski, A; Kuder, T; Nowak, E; Kuchinka, J

    2001-01-01

    Using the thiocholine method of Koelle and Friedenwald and histological techniques, the otic ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest) was studied. The ganglion was found to be a single oval cluster of neurocytes, situated at the medial and posterior surface of the mandibular nerve just above the maxillary artery. The ganglion is composed of typical ganglionic neurons in compact arrangement without a thick connective-tissue capsule.

  14. Retinal ganglion cell topography and spatial resolving power in penguins.

    PubMed

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  15. Stellate Ganglion Block as Rescue Therapy in Refractory Ventricular Tachycardia

    PubMed Central

    Rajesh, M. C.; Deepa, K. V.; Ramdas, E. K.

    2017-01-01

    Pain physicians and anesthesiologists routinely perform stellate ganglion block for the treatment of painful upper extremity sympathetic dystrophy. Close proximity of ganglion to vascular structures warrants some expertise and training in the procedure. Off late, successful use of the technique in intractable ventricular tachyarrhythmias has come in literature. We have few cases wherein we could successfully ablate intractable ventricular tachycardia with stellate block which was refractory to repeated shocks. We are reporting one such case with the intention of making an awareness in the anesthesia community about this treatment option. PMID:28298801

  16. Low Dimensional Dynamics in the Crayfish 6th Ganglion

    NASA Astrophysics Data System (ADS)

    Pei, Xing; Moss, Frank

    1996-03-01

    Finding low dimensional dynamical behavior in biological preparations has received much attention. Neurons are, however, subject to random processes, or "noise". Thus specific dynamical behavior is evidenced by well defined signatures embedded in noisy data files(D. Pierson and F. Moss Phys. Rev. Lett. 75, 2124 (1995)). We report the results of a statistical search for unstable periodic orbits in the periodically stimulated 6th ganglion of the crayfish Procambarus clarkii. Electrophysiological recordings from the caudal photoreceptor neuron within the ganglion provide the data. We discuss the results in terms of the cyclic theory of chaos.

  17. Locked-in syndrome during stellate ganglion block.

    PubMed

    Chaturvedi, A; Dash, Hh

    2010-07-01

    Intra-arterial injection of a local anaesthetic during stellate ganglion blockade may cause life-threatening complications. The usual complications are apnoea, unconsciousness and seizures. However, occasionally an unusual complication, 'locked-in' syndrome, has also been reported. In this syndrome the patients remain conscious despite their inability to move, breathe or speak. Here we describe a patient who developed features akin to the locked-in syndrome along with severe hypotension and bradycardia, after an injection of only 2 ml of lignocaine during a stellate ganglion block.

  18. Ganglion cysts arising from a canine stifle joint.

    PubMed

    Murata, Daiki; Sogawa, Takeshi; Tokunaga, Satoshi; Iwanaga, Tomoko; Kawaguchi, Hiroaki; Miyoshi, Noriaki; Momoi, Yasuyuki; Fujiki, Makoto; Miura, Naoki

    2014-03-01

    A 10-year-old, neutered male Labrador retriever presented with progressive left hind lameness. Ultrasonography revealed large, subcutaneous, ovoid cysts around the stifle joint. Radiographic and computed tomographic images revealed periosteal reaction of the distal femur. Magnetic resonance (MR) imaging showed a large cyst that was hypointense in T1-weighted images, hyperintense in T2-weighted images and had a thin lining that was enhanced by intravenous gadonium injection. The cyst communicated with the joint cavity and other small cysts around the joint. Histopathology of an excisional biopsy specimen led to diagnosis of ganglion cyst. This report provides MR images of a ganglion cyst in a canine stifle.

  19. [Ganglion--cysts of the hand and wrist].

    PubMed

    Nielsen, Niels H Søe; Jensen, Nina Vendel

    2007-04-02

    Ganglion cysts of the hand and wrist occur most frequently during the second through fourth decade and women are more frequently affected than men. Ganglion cysts may arise in any location in the hand and wrist but are usually adjacent to joins or tendons and sometimes bones. Patients often present with a history of an asymptomatic mass and many patients seek the advice of a physician because of the cosmetic appearance of the cyst. Observation is acceptable in most instances. Indication for operative treatment includes pain, interference with activity, nerve compression and ulceration of the mucous cysts.

  20. Oil ganglion dynamics during immiscible displacement: model formulation

    SciTech Connect

    Payatakes, A.C.; Ng, K.M.; Flumerfelt, R.W.

    1980-05-01

    A model is formulated in order to study the transient behavior of oil ganglion populations during immiscible displacement in oil recovery processes. The model is composed of 3 components: a suitable model for granular porous media; a stochastic simulation method capable of predicting the expected fate (mobilization, breakup, stranding) of solitary oil ganglia moving through granular porous media; and 2 coupled ganglion population balance equations, one applying to moving ganglia and the other to stranded ones. The porous medium model consists of a regular network of randomly sized unit cells of the constricted tube type. 32 references.

  1. [Development and topography of the ganglion pelvinum in the gerbil].

    PubMed

    Frewein, J

    1978-01-01

    In the gerbil the nerve cells of the plexus pelvinus are concentrated on each side in a solid glanglion pelvinum. This deviates essentially from the pattern in man and the domestic animals where these cells are scattered all over the plexus pelvinus. The large ganglion pelvinum is connected craniodorsally with the nervus hypogastricus and dorsally with the nervi pelvini (from the first 2 or 3 sacral nerves and the last lumbar nerve). The apertura pelvis cranialis appears long and very oblique and, therefore, in the gerbil the ganglion pelvinum is located on each side cranially to the corpus ossis pubis and can be reached by a ventral laparotomy.

  2. ["Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole].

    PubMed

    Zeitoun, M

    2017-01-01

    connecting the two previous ones. In pathologically thin areas, the distribution of these three functional groups seems to correspond to the progression of glaucomatous visual degradation, including a period of resistance, a period of rapid decline, finally leading to complete functional loss. In the studied area, the analysis of retinal ganglion cell complex is relevant to identify areas which are still functional when they exceed 70 microns. Scotomas correspond to the thin areas less than 70 microns. The functionality of areas which are pathologically thinned by glaucomatous degeneration is not correlated to their thickness. In the future, the correlation between structure and function, currently "regional" may be realized "point by point" once automation of the visual field superimposition is made available for the ganglion cell complex. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss

    PubMed Central

    Shepherd, Robert K.; Coco, Anne; Epp, Stephanie B.

    2008-01-01

    Exogenous neurotrophins (NTs) have been shown to rescue spiral ganglion neurons (SGNs) from degeneration following a sensorineural hearing loss (SNHL). Furthermore, chronic electrical stimulation (ES) has been shown to retard SGN degeneration in some studies but not others. Since there is evidence of even greater SGN rescue when NT administration is combined with ES, we examined whether chronic ES can maintain SGN survival long after cessation of NT delivery. Young adult guinea pigs were profoundly deafened using ototoxic drugs; five days later they were unilaterally implanted with an electrode array and drug delivery system. Brain derived neurotrophic factor (BDNF) was continuously delivered to the scala tympani over a four week period while the animal simultaneously received ES via bipolar electrodes in the basal turn (i.e. turn 1) scala tympani. One cohort (n=5) received ES for six weeks (i.e. including a two week period after the cessation of BDNF delivery; ES6); a second cohort (n=5) received ES for 10 weeks (i.e. a six week period following cessation of BDNF delivery; ES10). The cochleae were harvested for histology and SGN density determined for each cochlear turn for comparison with normal hearing controls (n=4). The withdrawal of BDNF resulted in a rapid loss of SGNs in turns 2–4 of the deafened/BDNF-treated cochleae; this was significant as early as two weeks following removal of the NT when compared with normal controls (p<0.05). Importantly, there was not a significant reduction in SGNs in turn 1 (i.e. adjacent to the electrode array) two and six weeks after NT removal, as compared with normal controls. This result suggests that chronic ES can prevent the rapid loss of SGNs that occurs after the withdrawal of exogenous NTs. Implications for the clinical delivery of NTs are discussed. PMID:18243608

  4. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off

  5. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment

    PubMed Central

    Landry, Thomas G.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.

    2011-01-01

    Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two-weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p < 0.05) compared with AP-treated control animals. ES in combination with NT did not enhance SGN survival compared with NT alone. SGN function was assessed by measuring electrically-evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. PMID:21762764

  6. A novel system for the classification of diseased retinal ganglion cells.

    PubMed

    Tribble, James R; Cross, Stephen D; Samsel, Paulina A; Sengpiel, Frank; Morgan, James E

    2014-11-01

    Retinal ganglion cell (RGC) dendritic atrophy is an early feature of many forms of retinal degeneration, providing a challenge to RGC classification. The characterization of these changes is complicated by the possibility that selective labeling of any particular class can confound the estimation of dendritic remodeling. To address this issue we have developed a novel, robust, and quantitative RGC classification based on proximal dendritic features which are resistant to early degeneration. RGCs were labeled through the ballistic delivery of DiO and DiI coated tungsten particles to whole retinal explants of 20 adult Brown Norway rats. RGCs were grouped according to the Sun classification system. A comprehensive set of primary and secondary dendrite features were quantified and a new classification model derived using principal component (PCA) and discriminant analyses, to estimate the likelihood that a cell belonged to any given class. One-hundred and thirty one imaged RGCs were analyzed; according to the Sun classification, 24% (n = 31) were RGCA, 29% (n = 38) RGCB, 32% (n = 42) RGCC, and 15% (n = 20) RGCD. PCA gave a 3 component solution, separating RGCs based on descriptors of soma size and primary dendrite thickness, proximal dendritic field size and dendritic tree asymmetry. The new variables correctly classified 73.3% (n = 74) of RGCs from a training sample and 63.3% (n = 19) from a hold out sample indicating an effective model. Soma and proximal dendritic tree morphological features provide a useful surrogate measurement for the classification of RGCs in disease. While a definitive classification is not possible in every case, the technique provides a useful safeguard against sample bias where the normal criteria for cell classification may not be reliable.

  7. Retinal degeneration mutants in the mouse.

    PubMed

    Chang, B; Hawes, N L; Hurd, R E; Davisson, M T; Nusinowitz, S; Heckenlively, J R

    2002-02-01

    The Jackson Laboratory, having the world's largest collection of mouse mutant stocks and genetically diverse inbred strains, is an ideal place to look for genetically determined eye variations and disorders. Through ophthalmoscopy, electroretinography and histology, we have discovered disorders affecting all aspects of the eye including the lid, cornea, iris, lens and retina, resulting in corneal disorders, cataracts, glaucoma and retinal degenerations. Mouse models of retinal degeneration have been investigated for many years in the hope of understanding the causes of photoreceptor cell death. Sixteen naturally occurring mouse mutants that manifest degeneration of photoreceptors in the retina with preservation of all other retinal cell types have been found: retinal degeneration (formerly rd, identical with rodless retina, r, now Pde6b(rd1)); Purkinje cell degeneration (pcd); nervous (nr); retinal degeneration slow (rds, now Prph(Rd2)); retinal degeneration 3 (rd3); motor neuron degeneration (mnd); retinal degeneration 4 (Rd4); retinal degeneration 5 (rd5, now tub); vitiligo (vit, now Mitf(mi-vit)); retinal degeneration 6 (rd6); retinal degeneration 7 (rd7, now Nr2e3(rd7)); neuronal ceroid lipofuscinosis (nclf); retinal degeneration 8 (rd8); retinal degeneration 9 (Rd9); retinal degeneration 10 (rd10, now Pde6b(rd10)); and cone photoreceptor function loss (cpfl1). In this report, we first review the genotypes and phenotypes of these mutants and second, list the mouse strains that carry each mutation. We will also provide detailed information about the cpfl1 mutation. The phenotypic characteristics of cpfl1 mice are similar to those observed in patients with complete achromatopsia (ACHM2, OMIM 216900) and the cpfl1 mutation is the first naturally-arising mutation in mice to cause cone-specific photoreceptor function loss. cpfl1 mice may provide a model for congenital achromatopsia in humans.

  8. Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice

    PubMed Central

    Larabee, Chelsea M.; Hu, Yang; Desai, Shruti; Georgescu, Constantin; Wren, Jonathan D.; Axtell, Robert C.

    2016-01-01

    Purpose Optic neuritis affects most patients with multiple sclerosis (MS), and current treatments are unreliable. The purpose of this study was to characterize the contribution of Th1 and Th17 cells to the development of optic neuritis. Methods Mice were passively transferred myelin-specific Th1 or Th17 cells to induce experimental autoimmune encephalomyelitis (EAE), a model of neuroautoimmunity. Visual acuity was assessed daily with optokinetic tracking, and 1, 2, and 3 weeks post-induction, optic nerves and retinas were harvested for immunohistochemical analyses. Results Passive transfer experimental autoimmune encephalomyelitis elicits acute episodes of asymmetric visual deficits and is exacerbated in Th17-EAE relative to Th1-EAE. The Th17-EAE optic nerves contained more inflammatory infiltrates and an increased neutrophil to macrophage ratio. Significant geographic degeneration of the retinal ganglion cells accompanied Th17-EAE but not Th1. Conclusions Th17-induced transfer EAE recapitulates pathologies observed in MS-associated optic neuritis, namely, monocular episodes of vision loss, optic nerve inflammation, and geographic retinal ganglion cell (RGC) degeneration. PMID:27122964

  9. Phospholipid flippase ATP8A2 is required for normal visual and auditory function and photoreceptor and spiral ganglion cell survival.

    PubMed

    Coleman, Jonathan A; Zhu, Xianjun; Djajadi, Hidayat R; Molday, Laurie L; Smith, Richard S; Libby, Richard T; John, Simon W M; Molday, Robert S

    2014-03-01

    ATP8A2 is a P4-ATPase that is highly expressed in the retina, brain, spinal cord and testes. In the retina, ATP8A2 is localized in photoreceptors where it uses ATP to transport phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the exoplasmic to the cytoplasmic leaflet of membranes. Although mutations in ATP8A2 have been reported to cause mental retardation in humans and degeneration of spinal motor neurons in mice, the role of ATP8A2 in sensory systems has not been investigated. We have analyzed the retina and cochlea of ATP8A2-deficient mice to determine the role of ATP8A2 in visual and auditory systems. ATP8A2-deficient mice have shortened photoreceptor outer segments, a reduction in photoresponses and decreased photoreceptor viability. The ultrastructure and phagocytosis of the photoreceptor outer segment appeared normal, but the PS and PE compositions were altered and the rhodopsin content was decreased. The auditory brainstem response threshold was significantly higher and degeneration of spiral ganglion cells was apparent. Our studies indicate that ATP8A2 plays a crucial role in photoreceptor and spiral ganglion cell function and survival by maintaining phospholipid composition and contributing to vesicle trafficking.

  10. Light scattering of degenerate fermions

    NASA Astrophysics Data System (ADS)

    Aubin, S.; Leblanc, L. J.; Myrskog, S.; Extavour, M. H. T.; McKay, D.; Stummer, A.; Thywissen, J. H.

    2006-05-01

    We report on progress in measuring the suppression of resonant light scattering in a gas of degenerate fermions. A gas of trapped degenerate fermions is expected to exhibit narrower optical linewidths and longer excited state lifetimes than single atoms when the Fermi energy is larger than the photon recoil energy [1-3]. In this case, the number of available states into which a scattered atom can recoil is significantly reduced due to the filling of the Fermi sea. We produce a degenerate gas of 4x10^4 ultra-cold fermionic ^40K atoms by sympathetic cooling with bosonic ^87Rb in a micro-magnetic chip trap. The atoms can then be loaded into a tight dipole trap just above the surface of the chip and probed with a near resonance laser pulse. [1] Th. Busch, J. R. Anglin, J. I. Cirac, and P. Zoller, Europhys. Lett. 44, 1 (1998). [2] B. DeMarco and D. S. Jin, Phys. Rev. A 58, R4267 (1998). [3] J. Javanainen and J. Ruostekosky, Phys. Rev. A 52, 3033 (1995). Work supported by NSERC, CFI, OIT, Research Corporation, and PRO.

  11. General Pathophysiology in Retinal Degeneration

    PubMed Central

    Wert, Katherine J.; Lin, Jonathan H.; Tsang, Stephen H.

    2015-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/ or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  12. Radial keratotomy associated endothelial degeneration

    PubMed Central

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    Purpose To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Methods Retrospective case series were used. Results Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38–72 years), averaging 18.7 years (range: 11–33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch’s Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet’s stripping automated endothelial keratoplasty (DSAEK) in the other eye. Conclusions RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch’s dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration. PMID:22347792

  13. Radial keratotomy associated endothelial degeneration.

    PubMed

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Retrospective case series were used. Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38-72 years), averaging 18.7 years (range: 11-33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch's Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet's stripping automated endothelial keratoplasty (DSAEK) in the other eye. RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch's dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.

  14. Morphological signs of apoptosis in axotomized ganglion cells of the rabbit retina.

    PubMed

    Germain, F; Fernández, E; de la Villa, P

    2007-02-09

    Optic nerve section in mammals induces apoptotic death of retinal ganglion cells (RGCs). However, a small population of RGCs survives for a relatively long time. These cells experience significant morphological changes due to the apoptotic process, but some of these changes are not clearly differentiated from those experienced in necrotic cells. In the present work, rabbit RGCs were studied 1 month after optic nerve section using light microscopy after neurobiotin injection, transmission electron microscopy (EM) and scanning electron microscopy (SEM). Apoptosis was identified by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling and characteristic signs of apoptosis were observed in the EM images. Ultrastructural analyses showed vacuolar degeneration in the cytoplasm and normal cellular structure loss. Signs of membrane changes were observed in axotomized RGCs by SEM. Early changes seen in the cell membrane suggest that axotomy may cause important changes in the cytoskeleton. We conclude that characteristic signs of apoptosis at the cell membrane level are clearly observed in rabbit RGCs after axotomy and they may be responsible for the cellular death.

  15. Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons.

    PubMed

    Whitlon, Donna S; Grover, Mary; Dunne, Sara F; Richter, Sonja; Luan, Chi-Hao; Richter, Claus-Peter

    2015-11-02

    The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs.

  16. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro

    PubMed Central

    Pettingill, Lisa N.; Minter, Ricki L.; Shepherd, Robert K.

    2009-01-01

    The intracochlear infusion of neurotrophic factors via a mini-osmotic pump has been shown to prevent deafness-induced spiral ganglion neuron (SGN) degeneration; however, the use of pumps may increase the incidence of infection within the cochlea, making this technique unsuitable for neurotrophin administration in a clinical setting. Cell- and gene-based therapies are potential therapeutic options. This study investigated whether Schwann cells which were genetically modified to over-express the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (Ntf3, formerly NT-3) could support SGN survival in an in vitro model of deafness. Co-culture of either BDNF over-expressing Schwann cells or Ntf3 over-expressing Schwann cells with SGNs from early postnatal rats significantly enhanced neuronal survival in comparison to both control Schwann cells and conventional recombinant neurotrophin proteins. Transplantation of neurotrophin over-expressing Schwann cells into the cochlea may provide an alternative means of delivering neurotrophic factors to the deaf cochlea for therapeutic purposes. PMID:18304740

  17. Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons

    PubMed Central

    Whitlon, Donna S.; Grover, Mary; Dunne, Sara F.; Richter, Sonja; Luan, Chi-Hao; Richter, Claus-Peter

    2015-01-01

    The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs. PMID:26521685

  18. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma

    NASA Astrophysics Data System (ADS)

    Schori, Hadas; Kipnis, Jonathan; Yoles, Eti; Woldemussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Schwartz, Michal

    2001-03-01

    Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ± 101 compared with 1,414 ± 36; P <0.05), but not when they were immunized 48h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8%±6.8% to 4.3%±1.6%, without affecting the intraocular pressure

  19. Encoding Visual Information in Retinal Ganglion Cells with Prosthetic Stimulation

    PubMed Central

    Freeman, Daniel K; Rizzo, Joseph F; Fried, Shelley I

    2011-01-01

    Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal prosthesis, it is important to consider both how visual information is encoded in ganglion cell spike trains, and how retinal neurons respond to electric stimulation. The goal of the current review is to bring together these two concepts in order to guide the development of more effective stimulation strategies. We review the experiments to date that have studied how retinal neurons respond to electric stimulation and discuss these findings in the context of known retinal signaling strategies. The results from such in vitro studies reveal the advantages and disadvantages of activating the ganglion cell directly with the electric stimulus (direct activation) as compared to activation of neurons that are presynaptic to the ganglion cell (indirect activation). While direct activation allows high temporal but low spatial resolution, indirect activation yields improved spatial resolution but poor temporal resolution. Finally, we use knowledge gained from in vitro experiments to infer the patterns of elicited activity in ongoing human trials, providing insights into some of the factors limiting the quality of prosthetic vision. PMID:21593546

  20. Molecular Responses of the Spiral Ganglion to Aminoglycosides

    ERIC Educational Resources Information Center

    Balaban, Carey D.

    2005-01-01

    Aminoglycosides are toxic to both the inner ear hair cells and the ganglion cells that give rise to the eighth cranial nerve. According to recent studies, these cells have a repertoire of molecular responses to aminoglycoside exposure that engages multiple neuroprotective mechanisms. The responses appear to involve regulation of ionic homeostasis,…

  1. Ganglion cyst on the posterior cruciate ligament: a case report

    PubMed Central

    Durante, Jaclyn A.

    2009-01-01

    Objective: To present the diagnostic and clinical features of a ganglion cyst located on the posterior cruciate ligament and create awareness amongst clinicians of this uncommon diagnosis. Clinical Features: A 24-year old woman complaining of intermittent left knee pain brought on by an increase in mileage during her training for a half-marathon. A diagnosis of mild chondromalacia patella and a ganglion cyst on the posterior cruciate ligament was made via diagnostic imaging. Intervention and outcome: Patient was followed up with imaging. The patient chose to withdraw a surgical consult due to patient preference. No conservative treatment was provided. Conclusion: Although chondromalacia patella is the more probable, a secondary diagnostic consideration in this patient could be a ganglion cyst. A ganglion cyst on the posterior cruciate ligament is an uncommon diagnosis and the clinical manifestations are variable and non-specific. It is important to be aware of its clinical features and to obtain appropriate methods of imaging to generate the diagnosis promptly. PMID:20037698

  2. Arthroscopic Treatment of Intraosseous Ganglion Cyst of the Lunate Bone.

    PubMed

    Cerlier, Alexandre; Gay, André-Mathieu; Levadoux, Michel

    2015-10-01

    Intraosseous ganglion cysts are rare causes of wrist pain. Surgical treatment of this pathologic condition yields good results and a low recurrence rate. The main complications are joint stiffness and vascular disturbances of the lunate bone. Wrist arthroscopy is a surgical technique that reduces the intra-articular operative area and therefore minimizes postoperative stiffness. This article describes an arthroscopic technique used for lunate intraosseous cyst resection associated with an autologous bone graft in a series of cases to prevent joint stiffness while respecting the scapholunate ligament. This study was based on a series of 4 patients, all of whom had wrist pain because of intraosseous ganglion cysts. Arthrosynovial cyst resection, ganglion curettage, and bone grafting were performed arthroscopically. Pain had totally disappeared within 2 months after the operation in 100% of patients. The average hand grip strength was estimated at 100% compared with the opposite side, and articular ranges of motion were the same on both sides in 100% of cases. No complications were reported after surgery. On the basis of these results, arthroscopic treatment of intraosseous synovial ganglion cysts seems to be more efficient and helpful in overcoming the limitations of classic open surgery in terms of complications.

  3. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  4. Molecular Responses of the Spiral Ganglion to Aminoglycosides

    ERIC Educational Resources Information Center

    Balaban, Carey D.

    2005-01-01

    Aminoglycosides are toxic to both the inner ear hair cells and the ganglion cells that give rise to the eighth cranial nerve. According to recent studies, these cells have a repertoire of molecular responses to aminoglycoside exposure that engages multiple neuroprotective mechanisms. The responses appear to involve regulation of ionic homeostasis,…

  5. Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia

    PubMed Central

    Ramirez, Grisela

    2016-01-01

    Abstract Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein (IKBKAP). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre (Tα1-Cre). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients. PMID:27699209

  6. Twelve chromatically opponent ganglion cell types in turtle retina.

    PubMed

    Rocha, F A F; Saito, C A; Silveira, L C L; de Souza, J M; Ventura, D F

    2008-01-01

    The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has an ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working in the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.

  7. Retinal ganglion cell adaptation to small luminance fluctuations.

    PubMed

    Freeman, Daniel K; Graña, Gilberto; Passaglia, Christopher L

    2010-08-01

    To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has involved logarithmic changes in light level. We report that luminance gain controls are recruited for remarkably small fluctuations in luminance as well. Using spike recordings from the rat optic tract, we show that ganglion cell responses to a brief flash of light are modulated in amplitude by local background fluctuations as little as 15% contrast. The time scale of the gain control is rapid (<125 ms), at least for on cells. The retinal locus of adaptation precedes the ganglion cell spike generator because response gain changes of on cells were uncorrelated with firing rate. The mechanism seems to reside within the inner retinal network and not in the photoreceptors, because the adaptation profiles of on and off cells differed markedly. The response gain changes follow Weber's law, suggesting that network mechanisms of luminance adaptation described in previous work modulates retinal ganglion cell sensitivity, not just when we move between different lighting environments, but also as our eyes scan a visual scene. Finally, we show that response amplitude is uniformly reduced for flashes on a modulated background that has spatial contrast, indicating that another gain control that integrates luminance signals nonlinearly over space operates within the receptive field center of rat ganglion cells.

  8. A morphological study of the retinal ganglion cells of the Afghan pika (Ochotona rufescens).

    PubMed

    Akaishi, Y; Uchiyama, H; Ito, H; Shimizu, Y

    1995-03-01

    The distribution and morphology of the retinal ganglion cells was studied in a relative of the rabbit, the Afghan pika. The total number of retinal ganglion cells was approximately 170,000. The total number of optic nerve fibers was between 160,000 and 190,000, corresponding to the total number of retinal ganglion cells. Retinal ganglion cells were found to have a horizontal region of high-density. The maximum density was 5250 cells/mm2. This region was located in the central retina below the optic disc. This area contained numerous closely packed small ganglion cells, while the peripheral retina (especially in the dorsal periphery) contained large ganglion cells more loosely dispersed. The retinal ganglion cells labeled by horseradish peroxidase (HRP) were morphologically classified into three types based on dendritic length and ramification pattern.

  9. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs.

    PubMed

    Pichard, Virginie; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Hulin, Philippe; Tshilenge, Kizito-Tshitoko; Biget, Marine; Ameline, Baptiste; Deschamps, Jack-Yves; Weber, Michel; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2016-05-01

    We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.

  10. Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc-content

    PubMed Central

    Risbud, Makarand V.; Shapiro, Irving. M

    2014-01-01

    Degeneration of the intervertebral disc is the major contributor to back/neck and radicular pain. It is characterized by an elevation in levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1 α/β, IL-6 and IL-17 secreted by the disc cells themselves; these cytokines promote matrix degradation, chemokine production and changes in cell phenotype. The resulting imbalance between catabolic and anabolic responses leads to degeneration, as well as herniation and radicular pain. Release of chemokines from degenerating discs promote infiltration and activation of T and B cells, macrophages, neutrophils, and mast cells further amplifying the inflammatory cascade. Immunocyte migration into the disc is accompanied by the appearance of microvasculature and nerve fibers arising from the dorsal root ganglion (DRG). In this inflammatory milieu, neurogenic factors in particular nerve growth factor (NGF) and brain-derive neurotrophic factor (BDNF) generated by disc and immune cells induce expression of pain associated cation channels in DRGs. Depolarization of these channels is likely to promote discogenic and radicular pain and reinforce the cytokine-mediated degenerative cascade. Taken together, the enhanced understanding of the contribution of cytokines and immune cells to catabolic and nociceptive processes provide new targets for treating symptomatic disc disease. PMID:24166242

  11. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  12. Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress.

    PubMed

    Gupta, Vivek K; You, Yuyi; Li, Jonathan C; Klistorner, Alexander; Graham, Stuart L

    2013-01-01

    A preferential loss of retinal ganglion cells (RGCs) is observed in glaucoma and optic neuritis. Loss of tropomyosin-related kinase receptor B (TrkB)-mediated signaling has been implicated in this degeneration. Our study indicates that 7,8-dihydroxyflavone (7,8 DHF) robustly upregulates the TrkB signaling in the primary rat RGCs and the retinal neuronal precursor RGC-5 cell line by promoting phosphorylation of TrkB receptor, leading to enhanced TrkB receptor tyrosine kinase activity. The flavonoid derivative 7,8 DHF acts a potent TrkB agonist and upregulates the downstream AKT and MAPK/ERK survival signaling pathways in a TrkB-dependent manner in both primary rat RGCs as well as the RGC-5 cell line. Excitotoxicity and oxidative injury have been alleged in the specific RGC degeneration in various forms of glaucoma. A novel finding of this study is that treatment with 7,8 DHF protects these cells significantly from excitotoxic and oxidative stress-induced apoptosis and cell death. 7,8 DHF also promotes neuritogenesis by stimulating neurite outgrowth, suggesting a possible therapeutic strategy for protection of RGCs in various optic neuropathies.

  13. Transmission from photoreceptors to ganglion cells in turtle retina.

    PubMed

    Baylor, D A; Fettiplace, R

    1977-10-01

    1. Synaptic transfer between photoreceptors and impulse-generating cells was studied in isolated eyecups from turtles. Single red-sensitive cones or rods were stimulated by current passed through an intracellular electrode, and impulses generated by the resulting synaptic action were recorded with an external micro-electrode. This technique permits study of retinal transmission without the operation of the visual transduction mechanism. Antidromic stimulation of the optic nerve indicated that most of the impulse-generating cells were ganglion cells.2. Individual ganglion cells responded transiently to changes in the membrane potential of a receptor and could be classified into three groups on the basis of the direction of the effective change in potential. Off centre ganglion cells responded selectively to depolarizations of a receptor, while on centre ganglion cells responded selectively to hyperpolarizations. On-off ganglion cells responded to both depolarizations and hyperpolarizations of a receptor.3. Ganglion cells gave the same pattern of response to electrical hyperpolarization of a receptor and to light in the centre of their receptive fields. Subthreshold depolarizing currents passed in a receptor antagonized the ganglion cell's response to light, and subthreshold hyperpolarizing currents reinforced the response. These observations are consistent with the view that the hyperpolarization generated by visual transduction is responsible for regulating the release of transmitter at the first retinal synapse.4. When a receptor was stimulated with weak current pulses of fixed intensity the number and latency of the ganglion cell impulses fluctuated randomly in successive trials. The relation between the fraction of trials yielding a response and the stimulus intensity was broad. These results indicate that the link between retinal input and output is noisy.5. In the most sensitive pairs of cells, a response of one or more impulses could be obtained in half the

  14. Age-related macular degeneration

    PubMed Central

    Querques, Giuseppe; Avellis, Fernando Onofrio; Querques, Lea; Bandello, Francesco; Souied, Eric H

    2011-01-01

    Clinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. Implementation: strategy of administration, safety of intravitreal injection PMID:21654887

  15. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy.

  16. Degeneration of a Nonrecombining Chromosome

    NASA Astrophysics Data System (ADS)

    Rice, William R.

    1994-01-01

    Comparative studies suggest that sex chromosomes begin as ordinary autosomes that happen to carry a major sex determining locus. Over evolutionary time the Y chromosome is selected to stop recombining with the X chromosome, perhaps in response to accumulation of alleles beneficial to the heterogametic but harmful to the homogametic sex. Population genetic theory predicts that a nonrecombining Y chromosome should degenerate. Here this prediction is tested by application of specific selection pressures to Drosophila melanogaster populations. Results demonstrate the decay of a nonrecombining, nascent Y chromosome and the capacity for recombination to ameliorate such decay.

  17. New mouse primary retinal degeneration (rd-3)

    SciTech Connect

    Chang, B.; Hawes, N.L.; Roderick, T.H. ); Heckenlively, J.R. )

    1993-04-01

    A new mouse retinal degeneration that appears to be an excellent candidate for modeling human retinitis pigmentosa is reported. In this degeneration, called rd-3, differentiation proceeds postnatally through 2 weeks, and photoreceptor degeneration starts by 3 weeks. The rod photoreceptor loss is essentially complete by 5 weeks, whereas remnant cone cells are seen through 7 weeks. This is the only mouse homozygous retinal degeneration reported to date in which photoreceptors are initially normal. Crosses with known mouse retinal degenerations rd, Rds, nr, and pcd are negative for retinal degeneration in offspring, and linkage analysis places rd-3 on mouse chromosome 1 at 10 [+-]2.5 cM distal to Akp-1. Homology mapping suggests that the homologous human locus should be on chromosome 1q. 32 refs., 3 figs., 3 tabs.

  18. Mathematical glimpse on the Y chromosome degeneration

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  19. [Pathogenesis of age-related macular degeneration].

    PubMed

    Kaarniranta, Kai; Seitsonen, Sanna; Paimela, Tuomas; Meri, Seppo; Immonen, Ilkka

    2009-01-01

    Age-related macular degeneration is a multiform disease of the macula, the region responsible for detailed central vision. In recent years, plenty of new knowledge of the pathogenesis of this disease has been obtained, and the treatment of exudative macular degeneration has greatly progressed. The number of patients with age-related macular degeneration will multiply in the following decades, because knowledge of mechanisms of development of macular degeneration that could be subject to therapeutic measures is insufficient. Central underlying factors are genetic inheritance, exposure of the retina to chronic oxidative stress and accumulation of inflammation-inducing harmful proteins into or outside of retinal cells.

  20. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush.

    PubMed

    Wang, Ruobing; Sun, Qinglei; Xia, Fangzhou; Chen, Zeli; Wu, Jiangchun; Zhang, Yuelu; Xu, Jiajun; Liu, Lin

    2017-06-01

    Secondary degeneration is a common event in traumatic central nervous system disorders, which involves neuronal apoptosis and mitochondrial dysfunction. Exogenous methane exerts the therapeutic effects in many organ injury. Our study aims to investigate the potential neuroprotection of methane in a rat model of optic nerve crush (ONC). Adult male Sprague-Dawley rats were subjected to ONC and administrated intraperitoneally with methane-saturated or normal saline (10 ml/kg) once per day for one week after ONC. The retinal ganglion cells (RGCs) density was assessed by hematoxylin and eosin staining and Fluoro-Gold retrogradely labeling. Visual function was evaluated by flash visual evoked potentials (FVEP). The retinal apoptosis was measured by terminal-deoxy-transferase-mediated dUTP nick end labeling (TUNEL) assay and the expression of apoptosis-related factors, such as phosphorylated Bcl-2-associated death promoter (pBAD), phosphorylated glycogen synthase kinase-3β (pGSK-3β), Bcl-2 associated X protein (Bax) and Bcl-2 extra large (Bcl-xL). Retinal mitochondrial function was assessed by the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), the mitochondrial DNA (mtDNA) copy number, citrate synthase activity and ATP content. Methane treatment significantly improved the RGC loss and visual dysfunction following ONC. As expected, methane also remarkably inhibited the retinal neural apoptosis, such as the fewer TUNEL-positive cells in ganglion cell layer, accompanied by the up-regulations of anti-apoptotic factors (pGSK-3β, pBAD, Bcl-xL) and the down-regulation of pro-apoptotic factor (Bax). Furthermore, methane treatment suppressed up-regulations of critical mitochondrial components (PGC-1α, NRF1 and TFAM) mRNA and mtDNA copy number, as well as improved the reduction of functional mitochondria markers, including citrate synthase

  1. Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension

    PubMed Central

    Jo, Rebecca E.; Ullian, Erik M.; Wong, Rachel O.L.

    2016-01-01

    Key issues concerning ganglion cell type-specific loss and synaptic changes in animal models of experimental glaucoma remain highly debated. Importantly, changes in the structure and function of various RGC types that occur early, within 14 d after acute, transient intraocular pressure elevation, have not been previously assessed. Using biolistic transfection of individual RGCs and multielectrode array recordings to measure light responses in mice, we examined the effects of laser-induced ocular hypertension on the structure and function of a subset of RGCs. Among the α-like RGCs studied, αOFF-transient RGCs exhibited higher rates of cell death, with corresponding reductions in dendritic area, dendritic complexity, and synapse density. Functionally, OFF-transient RGCs displayed decreases in spontaneous activity and receptive field size. In contrast, neither αOFF-sustained nor αON-sustained RGCs displayed decreases in light responses, although they did exhibit a decrease in excitatory postsynaptic sites, suggesting that synapse loss may be one of the earliest signs of degeneration. Interestingly, presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer, corroborating the hypothesis that RGCs with dendrites stratifying in the OFF sublamina may be damaged early. Indeed, OFF arbors of ON-OFF RGCs lose complexity more rapidly than ON arbors. Our results reveal type-specific differences in RGC responses to injury with a selective vulnerability of αOFF-transient RGCs, and furthermore, an increased susceptibility of synapses in the OFF sublamina. The selective vulnerability of specific RGC types offers new avenues for the design of more sensitive functional tests and targeted neuroprotection. SIGNIFICANCE STATEMENT Conflicting reports regarding the selective vulnerability of specific retinal ganglion cell (RGC) types in glaucoma exist. We examine, for the first time, the effects of transient intraocular pressure

  2. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    PubMed

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  3. Regulation of molecular components of the synapse in the developing and adult rat superior cervical ganglion

    SciTech Connect

    Wu, K.; Black, I.B.

    1987-12-01

    Rat superior cervical sympathetic ganglion was used to begin studying the regulation of molecular components of the synapse. Ganglionic postsynaptic densities (PSDs) exhibited a thin, disc-shaped profile electron microscopically, comparable to that described for brain. Moreover, the presumptive ganglionic PSD protein (PSDp) was phosphorylated in the presence of Ca/sup 2 +/ and calmodulin, bound /sup 125/I-labeled calmodulin, and exhibited a M/sub r/ of 51,000 all characteristic of the major PSD protein of brain. These initial studies indicated that ganglionic PSDp and the major PSD protein of brain are comparable, allowing the study synaptic regulation in the well-defined superior cervical sympathetic ganglion. To obtain enough quantities of ganglionic PSDp, the authors used synaptic membrane fractions. During postnatal development, calmodulin binding to the ganglionic PSDp increased 411-fold per ganglion from birth to 60 days, whereas synaptic membrane protein increased only 4.5-fold. Consequently, different synaptic components apparently develop differently. Moreover, denervation of the superior cervical sympathetic ganglion in adult rats caused an 85% decrease in ganglionic PSDp-calmodulin binding, but denervation caused no change in synaptic membrane protein 2 weeks postoperatively. The observations suggest that presynaptic innervation selectively regulates specific molecular components of the postsynaptic membrane structure.

  4. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  5. Incoming synapses and size of small granule-containing cells in a rat sympathetic ganglion after post-ganglionic axotomy.

    PubMed Central

    Case, C P; Matthews, M R

    1986-01-01

    A quantitative ultrastructural study has been made of the reaction of the incoming synapses of small granule-containing cells after axotomy of the major post-ganglionic branches of the superior cervical ganglion of the young adult rat. These cells are intrinsic and interneurone-like in this ganglion, receiving a preganglionic input and giving outgoing synapses to principal post-ganglionic neurones. Unlike their outgoing synapses, which are lost after post-ganglionic axotomy (Case & Matthews, 1986), the incoming synapses of the small granule-containing cells in axotomized ganglia increased in incidence post-operatively. The increase first became clearly evident 5-7 days post-operatively and was greater, being both more sustained and progressive, after bilateral than after unilateral axotomy. After bilateral axotomy the incidence of incoming synapses rose to more than four times that of normal ganglia and was still elevated at 128 days post-operatively, but was within normal limits at 390 days. After a unilateral lesion, increases of similar extent and time course to those in the axotomized ganglia were seen in the incoming synapses of small granule-containing cells in the uninjured contralateral ganglia. The incoming synapses of the small granule-containing cells are multifocal, i.e. show several points or active foci of synaptic specialization. The increase in synapses expressed itself both through an increased incidence of these synaptic active foci per nerve terminal and through an increase in the number of presynaptic nerve terminal profiles associated with the cells. Control observations indicated that the increase in synapses was not due to surgical stress, nor was it attributable solely to post-operative ageing. The nerve terminals which were presynaptic to the small granule-containing cells post-operatively were all of preganglionic origin: no incoming synapses or presynaptic nerve terminals remained at 2 days after a preganglionic denervation of axotomized

  6. The spiral ganglion: connecting the peripheral and central auditory systems

    PubMed Central

    Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K

    2011-01-01

    In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. PMID:21530629

  7. Taurine prevents ultraviolet B induced apoptosis in retinal ganglion cells.

    PubMed

    Dayang, Wu; Dongbo, Pang

    2017-06-07

    Compatible osmolytes accumulation is an active resistance response in retina under ultraviolet radiation and hypertonicity conditions. The purpose of this research is to investigate the protective role of taurine on retina under ultraviolet B radiation. Osmolytes transporters was measured by quantitative realtime PCR. Osmolytes uptake was estimated by radioimmunoassay. Cell viability was caculated by MTT assay. Cell apoptosis was measured by flow cytometry analysis. Hypertonicity accelerated osmolytes uptake into retinal ganglion cells including taurine, betaine and myoinositol. Ultraviolet B radiation increased osmolytes transporter expression and osmolytes uptake. In addition, osmolyte taurine remarkably prevented ultraviolet B radiation induced cell apoptosis in retinal ganglion cells. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  8. The functional diversity of retinal ganglion cells in the mouse.

    PubMed

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems.

  9. High speed coding for velocity by archerfish retinal ganglion cells.

    PubMed

    Kretschmer, Viola; Kretschmer, Friedrich; Ahlers, Malte T; Ammermüller, Josef

    2012-06-18

    Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  10. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  11. Ultrasound-Guided Therapy for Knee and Foot Ganglion Cysts.

    PubMed

    Ju, Brian L; Weber, Kristy L; Khoury, Viviane

    The present study evaluated the effectiveness of ultrasound-guided aspiration/injection of ganglion cysts in the lower extremities (knee and foot) that required referral to the radiology department for precise localization. The present study is the first series to describe such results. The study population consisted of 15 patients who had undergone treatment from April 2012 to January 2015. Follow-up was by telephone survey, which was performed at a mean of 15 ± 6 months after treatment. Almost 90% of patients experienced immediate improvement in symptoms (mostly pain), and 77% of these patients had not experienced a recurrence of symptoms at a mean follow-up time of 14 ± 6 months. In conclusion, ultrasound-guided therapy is a safe and potentially effective treatment for most cases of symptomatic lower extremity ganglion cysts.

  12. Embryonic assembly of auditory circuits: spiral ganglion and brainstem

    PubMed Central

    Marrs, Glen S; Spirou, George A

    2012-01-01

    During early development, peripheral sensory systems generate physiological activity prior to exposure to normal environmental stimuli. This activity is thought to facilitate maturation of these neurons and their connections, perhaps even promoting efficacy or modifying downstream circuitry. In the mammalian auditory system, initial connections form at embryonic ages, but the functional characteristics of these early neural connections have not been assayed. We investigated processes of embryonic auditory development using a whole-head slice preparation that preserved connectivity between peripheral and brainstem stations of the auditory pathway. Transgenic mice expressing fluorescent protein provided observation of spiral ganglion and cochlear nucleus neurons to facilitate targeted electrophysiological recording. Here we demonstrate an apparent peripheral-to-central order for circuit maturation. Spiral ganglion cells acquire action potential-generating capacity at embryonic day 14 (E14), the earliest age tested, and action potential waveforms begin to mature in advance of comparable states for neurons of the ventral cochlear nucleus (VCN) and medial nucleus of the trapezoid body (MNTB). In accordance, auditory nerve synapses in the VCN are functional at E15, prior to VCN connectivity with the MNTB, which occurs at least 1 day later. Spiral ganglion neurons exhibit spontaneous activity at least by E14 and are able to drive third-order auditory brainstem neurons by E17. This activity precedes cochlear-generated wave activity by 4 days and ear canal opening by at least 2 weeks. Together, these findings reveal a previously unknown initial developmental phase for auditory maturation, and further implicate the spiral ganglion as a potential controlling centre in this process. PMID:22371481

  13. Primordial rhythmic bursting in embryonic cochlear ganglion cells.

    PubMed

    Jones, T A; Jones, S M; Paggett, K C

    2001-10-15

    This study examined the nature of spontaneous discharge patterns in cochlear ganglion cells in embryonic day 13 (E13) to early E17 chicken embryos (stages 39-43). Neural recordings were made with glass micropipettes. No sound-driven activity was seen for the youngest embryos (maximum intensity 107 dB sound pressure level). Ganglion cells were labeled with biotinylated dextran amine in four embryos. In two animals, primary afferents projected to hair cells in the middle region along the length of the basilar papilla in which, in one cell, the terminals occupied a neural transverse position and, in the other, a more abneural location. Statoacoustic ganglion cells showing no spontaneous activity were seen for the first time in the chicken. The proportion of "silent" cells was largest at the youngest stages (stage 39, 67%). In active cells, mean spontaneous discharge rates [9.4 +/- 10.4 spikes (Sp)/sec; n = 44] were lower than rates for older embryos (19 +/- 17 Sp/sec) (Jones and Jones, 2000). Embryos at stages 39-41 evidenced even lower rates (4.2 +/- 5.0 Sp/sec). The most salient feature of spontaneous activity for stages 39-43 was a bursting discharge pattern in >75% of active neurons (33 of 44). Moreover, in 55% of these cells, there was a clear, slow, rhythmic bursting pattern. The proportion of cells showing rhythmic bursting was greatest at the youngest stages (39-42) and decreased to <30% at stage 43. Rate of bursting ranged from 1 to 54 bursts per minute. The presence of rhythmic bursting in cochlear ganglion cells at E13-E17 provides an explanation for the existence of such patterns in central auditory relays. The bursting patterns may serve as a patterning signal for central synaptic refinements in the auditory system during development.

  14. Inflammatory profiles in canine intervertebral disc degeneration.

    PubMed

    Willems, Nicole; Tellegen, Anna R; Bergknut, Niklas; Creemers, Laura B; Wolfswinkel, Jeannette; Freudigmann, Christian; Benz, Karin; Grinwis, Guy C M; Tryfonidou, Marianna A; Meij, Björn P

    2016-01-13

    Intervertebral disc (IVD) disease is a common spinal disorder in dogs and degeneration and inflammation are significant components of the pathological cascade. Only limited studies have studied the cytokine and chemokine profiles in IVD degeneration in dogs, and mainly focused on gene expression. A better understanding is needed in order to develop biological therapies that address both pain and degeneration in IVD disease. Therefore, in this study, we determined the levels of prostaglandin E2 (PGE2), cytokines, chemokines, and matrix components in IVDs from chondrodystrophic (CD) and non-chondrodystrophic (NCD) dogs with and without clinical signs of IVD disease, and correlated these to degeneration grade (according to Pfirrmann), or herniation type (according to Hansen). In addition, we investigated cyclooxygenase 2 (COX-2) expression and signs of inflammation in histological IVD samples of CD and NCD dogs. PGE2 levels were significantly higher in the nucleus pulposus (NP) of degenerated IVDs compared with non-degenerated IVDs, and in herniated IVDs from NCD dogs compared with non-herniated IVDs of NCD dogs. COX-2 expression in the NP and annulus fibrosus (AF), and proliferation of fibroblasts and numbers of macrophages in the AF significantly increased with increased degeneration grade. GAG content did not significantly change with degeneration grade or herniation type. Cytokines interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, immune protein (IP)-10, tumor necrosis factor (TNF)-α, and granulocyte macrophage colony-stimulating factor (GM-CSF) were not detectable in the samples. Chemokine (C-C) motif ligand (CCL)2 levels in the NP from extruded samples were significantly higher compared with the AF of these samples and the NP from protrusion samples. PGE2 levels and CCL2 levels in degenerated and herniated IVDs were significantly higher compared with non-degenerated and non-herniated IVDs. COX-2 expression in the NP and AF and reactive changes in the

  15. Loss of function of Ywhah in mice induces deafness and cochlear outer hair cells' degeneration

    PubMed Central

    Buret, L; Rebillard, G; Brun, E; Angebault, C; Pequignot, M; Lenoir, M; Do-cruzeiro, M; Tournier, E; Cornille, K; Saleur, A; Gueguen, N; Reynier, P; Amati-Bonneau, P; Barakat, A; Blanchet, C; Chinnery, P; Yu-Wai-Man, P; Kaplan, J; Roux, A-F; Van Camp, G; Wissinger, B; Boespflug-Tanguy, O; Giraudet, F; Puel, J-L; Lenaers, G; Hamel, C; Delprat, B; Delettre, C

    2016-01-01

    In vertebrates, 14-3-3 proteins form a family of seven highly conserved isoforms with chaperone activity, which bind phosphorylated substrates mostly involved in regulatory and checkpoint pathways. 14-3-3 proteins are the most abundant protein in the brain and are abundantly found in the cerebrospinal fluid in neurodegenerative diseases, suggesting a critical role in neuron physiology and death. Here we show that 14-3-3eta-deficient mice displayed auditory impairment accompanied by cochlear hair cells' degeneration. We show that 14-3-3eta is highly expressed in the outer and inner hair cells, spiral ganglion neurons of cochlea and retinal ganglion cells. Screening of YWHAH, the gene encoding the 14-3-3eta isoform, in non-syndromic and syndromic deafness, revealed seven non-synonymous variants never reported before. Among them, two were predicted to be damaging in families with syndromic deafness. In vitro, variants of YWHAH induce mild mitochondrial fragmentation and severe susceptibility to apoptosis, in agreement with a reduced capacity of mutated 14-3-3eta to bind the pro-apoptotic Bad protein. This study demonstrates that YWHAH variants can have a substantial effect on 14-3-3eta function and that 14-3-3eta could be a critical factor in the survival of outer hair cells. PMID:27275396

  16. Diverse types of ganglion cell photoreceptors in the mammalian retina.

    PubMed

    Sand, Andrea; Schmidt, Tiffany M; Kofuji, Paulo

    2012-07-01

    Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of some guanidine derivatives on neuromuscular and ganglionic transmission

    PubMed Central

    Barzaghi, F.; Mantegazza, P.; Riva, M.

    1962-01-01

    The anticurare activity of some guanidine derivatives has been studied using the fowl sciatic nerve-gastrocnemius muscle preparation and the cat sciatic nerve-gastrocnemius and tibialis anterior muscle preparations. Among the compounds tested, and in decreasing order of potency, were NN-dimethylguanidine, N-methylguanidine, guanidine and N-aminoguanidine which antagonized or prevented tubocurarine or gallamine triethiodide-induced paralysis. None of the derivatives antagonized the effects of suxamethonium or decamethonium. NN-Dimethylguanidine, N-methylguanidine and guanidine antagonized or prevented the curare-like effects of magnesium without altering the activity of hemicholinium. At high doses NN-dimethylguanidine induced a decamethonium-like spastic paralysis in the fowl sciatic nerve-gastrocnemius muscle preparation. NN-Diethylguanidine, however, induced a tubocurarine-like flaccid paralysis. The derivatives possessing anticurare activity were also studied using the cat superior cervical ganglion-nictitating membrane preparation to check their possible effects against ganglionic blocking agents. Only guanidine antagonized or prevented the effects of hexamethonium, pentolinium and mecamylamine; it had no effect on the actions of pempidine and chlorisondamine. NN-Diethylguanidine was the only compound in the series to show a ganglionic blocking action. PMID:13969800

  18. DIVERSE TYPES OF GANGLION CELL PHOTORECEPTORS IN THE MAMMALIAN RETINA

    PubMed Central

    Sand, Andrea; Schmidt, Tiffany M.; Kofuji, Paulo

    2012-01-01

    Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field. PMID:22480975

  19. Attempted reversible sympathetic ganglion block by an implantable neurostimulator.

    PubMed

    Kopelman, Doron; Costa, Mario G; Bejar, Jacob; Zaretsky, Asaph; Hashmonai, Moshe

    2012-05-01

    Primary palmar hyperhidrosis is a pathological condition of excessive perspiration of the hands of unknown aetiology. The only effective treatment for permanent cure is the ablation of the sympathetic ganglia supplying the hands. One of the sequelae is compensatory sweating, namely increased perspiration in other parts of the body. Its mechanism is unknown. In a small proportion of patients, it may attend devastating proportions. It has practically no remedy, and the degree of compensatory hyperhidrosis is unpredictable prior to sympathectomy. The purpose of the present study was to obtain a reversible sympathetic block which may disclose subjects prone to develop severe compensatory hyperhidrosis and unfit for permanent ganglionic ablation. In three dogs, an experimental electrode was implanted via a left thoracotomy on the stellate ganglion, connected to a stimulator. The stimulation was activated after recovery. The contralateral ganglion served as control. Effect of the stimulation was assessed by observing the development of Horner's syndrome, which includes the appearance of miosis, ptosis and enophthalmus. Reversal of the sympathetic block was expected when the neurostimulation was discontinued and assessed by the disappearance of these signs. Stimulation produced only a partial effect - an incomplete Horner's syndrome (miosis and sometime ptosis), which was not completely reversible after ceasing the stimulation. Although neurostimulation achieved a partial sympathetic block, the present method failed to obtain a completely reversible effect. However, these results may indicate that different nervous pathways moderate the various components of the Horner's triad. Concerning the creation of a reversible sympathectomy; other approaches must be sought after.

  20. Cultured Vestibular Ganglion Neurons Demonstrate Latent HSV1 Reactivation

    PubMed Central

    Roehm, Pamela C.; Camarena, Vladimir; Nayak, Shruti; Gardner, James B.; Wilson, Angus; Mohr, Ian; Chao, Moses V.

    2013-01-01

    Objectives/Hypothesis Vestibular neuritis is a common cause of both acute and chronic vestibular dysfunction. Multiple pathologies have been hypothesized to be the causative agent of vestibular neuritis; however, whether herpes simplex type I (HSV1) reactivation occurs within the vestibular ganglion has not been demonstrated previously by experimental evidence. We developed an in vitro system to study HSV1 infection of vestibular ganglion neurons (VGNs) using a cell culture model system. Study design basic science study. Results Lytic infection of cultured rat VGNs was observed following low viral multiplicity of infection (MOI). Inclusion of acyclovir suppressed lytic replication and allowed latency to be established. Upon removal of acyclovir, latent infection was confirmed with reverse-transcription polymerase chain reaction and by RNA fluorescent in situ hybridization for the latency-associated transcript (LAT). 29% cells in latently infected cultures were LAT positive. The lytic IPC27 transcript was not detected by reverse-transcription polymerase chain reaction (RT-PCR). Reactivation of HSV1 occurred at a high frequency in latently infected cultures following treatment with trichostatin A (TSA), a histone deactylase inhibitor. Conclusions VGNs can be both lytically and latently infected with HSV1. Furthermore, latently infected VGNs can be induced to reactivate using TSA. This demonstrates that reactivation of latent HSV1 infection in the vestibular ganglion can occur in a cell culture model, and suggests that reactivation of HSV1 infection a plausible etiologic mechanism of vestibular neuritis. PMID:21898423

  1. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    PubMed

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-02

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage.

  2. Operative treatment for ganglion cysts of the foot and ankle.

    PubMed

    Ahn, Jae Hoon; Choy, Won-Sik; Kim, Ha-Yong

    2010-01-01

    The authors analyzed the clinical results of surgical excision for symptomatic or recurrent ganglion cysts of the foot and ankle, and tried to elucidate the prognostic factors. Fifty-three cases of ganglions in the foot and ankle were followed for more than 24 months after excision. The mean duration of follow-up was 3.7 years. As a preceding treatment, 17 cases received a mean of 1.3 aspirations, and 16 cases recurred after a mean of 1.7 operations. The cyst was most common in the dorsum of the foot and ankle, where 35 cases were found. Thirty cases originated from the tendon sheath, 19 cases from the joint, and 4 cases from others. Preoperative mean AOFAS foot scores were low in the cysts associated with the tarsal tunnel syndrome, and in the cysts of the plantar aspect of the first toe. Postoperative mean AOFAS foot scores were significantly increased in the preceding 2 groups. There were 3 (5.7%) cases of recurrence, all of which originated from the tendon sheath. In the case of ganglion cysts originating from the tendon sheath, careful attention should be paid to locate satellite masses to avoid recurrence.

  3. [Intraneural ganglion of the peroneal nerve. A case report].

    PubMed

    Bischoff, J; Kortmann, K-B; Engelhardt, M

    2010-09-01

    This is a report of a 70-year-old patient with spontaneous pain of the dorsum area of the left foot. A few days later there was a sudden onset of foot drop. First, an idiopathic peroneal palsy was assessed but an MRI showed a cystic tumour near the fibular head. These findings resulted in the patient attending our clinic for surgical treatment. During the operation we found an intraneural ganglion of the deep peroneal nerve and the common peroneal nerve. There was no connection with the superior tibiofibular joint. The ganglion was therefore removed. Two months after the operation the patient reported an improvement of the pain but no improvement of movement of the foot. An intraneural ganglion of the peroneal nerve derives from the superior tibiofibular joint. Given access to the articular branch, the cyst typically spreads out proximally from the deep peroneal nerve to the common peroneal nerve and to the point of the sciatic nerve. The clinical symptoms are correlated with the extent of cyst propagation. Recommended therapy would include the ligation of the aricular branch, or synovectomy, or resection of the superior tibiofibular joint and decompression of the cyst.

  4. Dynamic Characteristics of Retinal Ganglion Cell Responses in Goldfish

    PubMed Central

    Schellart, Nico A. M.; Spekreijse, Henk

    1972-01-01

    A cross-correlation technique has been applied to quantify the dependence of the dynamic characteristics of retinal ganglion cell responses in goldfish on intensity, wavelength, spatial configuration, and spot size. Both theoretical and experimental evidence justify the use of the cross-correlation procedure which allows the completion of rather extensive measurements in a relatively short time. The findings indicate the following. (a) The shape of the amplitude characteristics depends on the energy per unit of time (power) falling within the center of a receptive field rather than on the intensity of the stimulus spot. For spot diameters of up to 1 mm, identical amplitude characteristics can be obtained by interchanging area and intensity. Therefore the receptor processes do not contribute to the change in the amplitude characteristics as a function of the power of the stimulus light. (b) For high frequencies the amplitude characteristics obtained as a function of power join together in a common envelope if plotted on an absolute sensitivity scale. For spontaneous ganglion cells this envelope holds over a range of three log units and the shape is identical for central and peripheral processes. (c) The amplitude characteristics of the central and peripheral processes converging to a ganglion cell are identical, irrespective of the sign (on or off) and the spectral coding of the response. Therefore we have no evidence for interneurons in the goldfish retina unique to the periphery of the receptive field. PMID:5007262

  5. Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

    PubMed Central

    Ahn, Kun No; Song, Yeong Jun; Ahn, Su Heok; Han, Seung Kee; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-01-01

    Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~ 10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using 8×8 microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus. PMID:22359480

  6. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus.

    PubMed

    O'Quin, Kelly E; Yoshizawa, Masato; Doshi, Pooja; Jeffery, William R

    2013-01-01

    The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish) and eyeless (cavefish) morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2) hybrid progeny. We used next generation sequencing (RAD-seq) and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL) affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.

  7. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  8. A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.

    PubMed

    Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2017-02-06

    We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.

  9. Exact propagators for some degenerate hyperbolic operators

    NASA Astrophysics Data System (ADS)

    Beals, Richard; Kannai, Yakar

    2006-10-01

    Exact propagators are obtained for the degenerate second order hyperbolic operators ∂2 t - t 2 l Δ x , l=1,2,..., by analytic continuation from the degenerate elliptic operators ∂2 t + t 2 l Δ x . The partial Fourier transforms are also obtained in closed form, leading to integral transform formulas for certain combinations of Bessel functions and modified Bessel functions.

  10. The molecular basis of intervertebral disc degeneration.

    PubMed

    Kepler, Christopher K; Ponnappan, Ravi K; Tannoury, Chadi A; Risbud, Marakand V; Anderson, David G

    2013-03-01

    Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. To review the current understanding of the molecular basis of disc degeneration. Review article. A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. What Is Age-Related Macular Degeneration?

    MedlinePlus

    ... To Protect Against Macular Degeneration Jan 27, 2016 Eye Exercises May Improve Vision Around Blind Spot Sep 29, 2015 Could Stem Cells Cure Blindness Caused by Macular Degeneration? Sep 29, 2015 Fighting the Signs of Aging? Don’t Forget the Eyes Sep 11, ... Follow The Academy Professionals: Education ...

  12. Kinetics of degenerate atomic gases

    NASA Astrophysics Data System (ADS)

    Geist, W.; You, L.; Kennedy, T. A. B.

    1998-05-01

    Using the Uehling-Uhlenbeck, or quantum Boltzmann equation, we discuss the kinetics and evaporative cooling of quantum degenerate gases confined in magnetic traps with cylindrical symmetry. We study the full nonergodic time evolution and compare with results obtained by making the ergodic or continuum energy approximation(C. W. Gardiner, P. Zoller, R. J. Ballagh, M. J. Davis, ``Quantum kinetic theory. Simulation of the quantum Boltzmann master equation'', Phys. Rev. A 56), 575 (1997).. We report evidence of strongly non-ergodic distribution functions, whose relaxation times do not coincide with other characteristic timescales, but depend on trap anisotropy. We also report our study of condensate growth which exhibits the same qualitative behaviour as observed in a recent experiment(H. J. Miesner, D. M. Stamper, M. R. Andrews, D. S. Durfee, S. Inouve, W. Ketterle, ``Bosonic stimulation in the formation of a Bose-Einstein condensate'', (preprint).). Preliminary results for sympathetic cooling of fermions by bosons will also be presented.

  13. Regularized degenerate multi-solitons

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  14. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  15. Clinicopathological correlations in corticobasal degeneration.

    PubMed

    Lee, Suzee E; Rabinovici, Gil D; Mayo, Mary Catherine; Wilson, Stephen M; Seeley, William W; DeArmond, Stephen J; Huang, Eric J; Trojanowski, John Q; Growdon, Matthew E; Jang, Jung Y; Sidhu, Manu; See, Tricia M; Karydas, Anna M; Gorno-Tempini, Maria-Luisa; Boxer, Adam L; Weiner, Michael W; Geschwind, Michael D; Rankin, Katherine P; Miller, Bruce L

    2011-08-01

    To characterize cognitive and behavioral features, physical findings, and brain atrophy patterns in pathology-proven corticobasal degeneration (CBD) and corticobasal syndrome (CBS) with known histopathology. We reviewed clinical and magnetic resonance imaging data in all patients evaluated at our center with either an autopsy diagnosis of CBD (n = 18) or clinical CBS at first presentation with known histopathology (n = 40). Atrophy patterns were compared using voxel-based morphometry. CBD was associated with 4 clinical syndromes: progressive nonfluent aphasia (n = 5), behavioral variant frontotemporal dementia (n = 5), executive-motor (n = 7), and posterior cortical atrophy (n = 1). Behavioral or cognitive problems were the initial symptoms in 15 of 18 patients; less than half exhibited early motor findings. Compared to controls, CBD patients showed atrophy in dorsal prefrontal and perirolandic cortex, striatum, and brainstem (p < 0.001 uncorrected). The most common pathologic substrates for clinical CBS were CBD (35%), Alzheimer disease (AD, 23%), progressive supranuclear palsy (13%), and frontotemporal lobar degeneration (FTLD) with TDP inclusions (13%). CBS was associated with perirolandic atrophy irrespective of underlying pathology. In CBS due to FTLD (tau or TDP), atrophy extended into prefrontal cortex, striatum, and brainstem, whereas in CBS due to AD, atrophy extended into temporoparietal cortex and precuneus (p < 0.001 uncorrected). Frontal lobe involvement is characteristic of CBD, and in many patients frontal, not parietal or basal ganglia, symptoms dominate early stage disease. CBS is driven by medial perirolandic dysfunction, but this anatomy is not specific to a single underlying histopathology. Antemortem prediction of CBD will remain challenging until clinical features of CBD are redefined, and sensitive, specific biomarkers are identified. Copyright © 2011 American Neurological Association.

  16. Clinicopathological correlations in corticobasal degeneration

    PubMed Central

    Lee, Suzee E.; Rabinovici, Gil D.; Mayo, Mary Catherine; Wilson, Stephen M.; Seeley, William W.; DeArmond, Stephen J.; Huang, Eric J.; Trojanowski, John Q.; Growdon, Matthew E.; Jang, Jung Y.; Sidhu, Manu; See, Tricia M.; Karydas, Anna M.; Gorno-Tempini, Maria-Luisa; Boxer, Adam L.; Weiner, Michael W.; Geschwind, Michael D.; Rankin, Katherine P.; Miller, Bruce L.

    2011-01-01

    Objective To characterize cognitive and behavioral features, physical findings and brain atrophy patterns in pathology-proven corticobasal degeneration (CBD) and corticobasal syndrome (CBS) with known histopathology. Methods We reviewed clinical and MRI data in all patients evaluated at our center with either an autopsy diagnosis of CBD (n=18) or clinical CBS at first presentation with known histopathology (n=40). Atrophy patterns were compared using voxel-based morphometry. Results CBD was associated with four clinical syndromes: progressive nonfluent aphasia (5), behavioral variant frontotemporal dementia (5), executive-motor (7), and posterior cortical atrophy (1). Behavioral or cognitive problems were the initial symptoms in 15/18 patients; less than half exhibited early motor findings. Compared to controls, CBD patients showed atrophy in dorsal prefrontal and peri-rolandic cortex, striatum and brainstem (p<0.001 uncorrected). The most common pathologic substrates for clinical CBS were CBD (35%), Alzheimer’s disease (AD, 23%), progressive supranuclear palsy (13%), and frontotemporal lobar degeneration (FTLD) with TDP inclusions (13%). CBS was associated with perirolandic atrophy irrespective of underlying pathology. In CBS due to FTLD (tau or TDP), atrophy extended into prefrontal cortex, striatum and brainstem, while in CBS due to AD, atrophy extended into temporoparietal cortex and precuneus (p<0.001 uncorrected). Interpretation Frontal lobe involvement is characteristic of CBD, and in many patients frontal, not parietal or basal ganglia symptoms, dominate early-stage disease. CBS is driven by medial peri-rolandic dysfunction, but this anatomy is not specific to one single underlying histopathology. Antemortem prediction of CBD will remain challenging until clinical features of CBD are redefined, and sensitive, specific biomarkers are identified. PMID:21823158

  17. Upregulation of nuclear factor‑κB and acid sensing ion channel 3 in dorsal root ganglion following application of nucleus pulposus onto the nerve root in rats.

    PubMed

    Wang, Dong; Pan, Hao; Zhu, Hang; Zhu, Li; He, Yong-Jiang; Wang, Jian; Jia, Gao-Yong

    2017-10-01

    The nucleus pulposus (NP) is an avascular, hydrated tissue that permits the intervertebral disc to resist compressive loads to the spine. To determine the mechanisms by which intervertebral disc degeneration is caused by the nucleus pulposus, the expression and regulation of nuclear factor (NF)‑κB and acid sensing ion channel 3 (ASIC3) were examined. For the intervertebral disc degeneration model, NP was harvested from the tail of rats and applied to the L5 dorsal root ganglion (DRG). The mechanical pain withdrawal threshold (PWT) in NP model rats was assessed. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to examine NF‑κB and ASIC3 expression levels in DRG. Finally, the effect of the NF‑κB inhibitor pyrrolidine dithiocarbamate (PDTC) and the ASIC3 signaling pathway blocker amiloride were examined. Rats exposed to NP exhibited decreased PWT for 12 days, and NF‑κB and ASIC3 was upregulated in DRG induced by NP 14 days after surgery. After administration of amiloride and PDTC to DRG affected by NP, the levels of nitric oxide (NO), tumor necrosis factor‑α (TNF‑α), interleukin‑6 (IL‑6), NF‑κB and ASIC3 were downregulated, and the levels of aquaporin (AQP) 1 and AQP3 were significantly increased for 14 days. In conclusion, these results suggested that NF‑κB and ASIC3 may serve an important role in intervertebral disc degeneration caused by NP.

  18. Sensitivity of Retinal Ganglion Cell Photoreceptors in Traumatic Brain Injury Patients with Photophobia

    DTIC Science & Technology

    2015-11-01

    AD_________________ Award Number: W81XWH-12-1-0434 TITLE: Sensitivity of retinal ganglion cell photoreceptors in traumatic brain injury patients...1Sep2012 - 31Aug2015 4. TITLE AND SUBTITLE Sensitivity of retinal ganglion cell photoreceptors in traumatic brain 5a. CONTRACT NUMBER W81XWH-12-1... sensitivity of melanopsin-containing retinal ganglion cells in subjects that have had a prior head injury. These intrinsically photosensitive retinal

  19. Surgical treatment of temporomandibular disorder in a 24-year-old male patient with ganglion cyst.

    PubMed

    Zheng, Zhi Wei; Shao, Xia; Yang, Chi; Fang, Yi Ming

    2015-03-01

    Ganglion cysts are common pseudocystic masses, whereas those arising from the temporomandibular joint (TMJ) are rare entities. We report a case of ganglion cyst of the right TMJ with symptomatic bilateral TMJ internal derangement in a 24-year-old man. Disk repositioning using bone anchors and excision of the ganglion cyst were performed. A unique characteristic of inflammatory infiltrates was revealed in the specimen, and the relationship between these 2 distinct entities and probable pathogenesis of infectious involvement are discussed.

  20. Permanent Motor Function Loss by Delayed Treatment of Peroneal Intraneural Ganglion.

    PubMed

    Oshima, Yasushi; Fetto, Joseph F

    2016-11-01

    The low incidence of intraneural ganglion makes it difficult to diagnose and treat before it becomes serious nerve damage. This case describes a 69-year-old female, who suffered from the right drop foot and was diagnosed as a peroneal intraneural ganglion. Resection of the mass relieved the pain; however, motor function was not recovered. Early diagnosis and nerve decompression are essential for the peroneal intraneural ganglion before critical nerve symptoms.

  1. Genetics Home Reference: age-related macular degeneration

    MedlinePlus

    ... Health Conditions age-related macular degeneration age-related macular degeneration Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Age-related macular degeneration is an eye disease that is a leading ...

  2. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells.

    PubMed

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa-using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of

  3. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L.

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa—using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4–5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (‑2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations

  4. [The hemodynamic effect of thoracic sympathetic ganglion blockade in the anesthetized adult mongrel dogs].

    PubMed

    Yamagami, H

    1994-03-01

    Hemodynamic alterations with the thoracic sympathetic ganglion blockade were elucidated in the anesthetized open-chest dogs, under controlled ventilation with 100% oxygen and receiving fentanyl, pentobarbital and pancuronium administration, and the effect of blockade was assessed by increase in skin-surface temperature at the specific regions of the upper extremity. All dogs with thoracic sympathetic ganglion blockade revealed the increased skin temperature in blocked extremities and decreased skin temperature in the contralateral side with simultaneous compensatory vasoconstriction ("Borrowing-Lending phenomenon"). Four groups were classified according to the side and range of blockade: A-group (right Th7.8 ganglion, N = 17), B-group (left-Th7.8 ganglion, N = 8), C-group (right Th2.3 ganglion, N = 13) and D-group (left-Th2.3 ganglion, N = 10). The hemodynamic variables after the middle thoracic sympathetic ganglion blockade showed no remarkable changes but heart-rate, mean arterial blood pressure and cardiac output decreased significantly with the upper right-side thoracic sympathetic ganglion blockade, and the inhibited circulatory state lasted twenty minutes after blockade. No significant skin temperature changes were observed after blockade among four groups. The results suggest that the patient after upper thoracic sympathetic ganglion blockade should be cared with these circulatory changes in mind.

  5. Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network

    PubMed Central

    MILLS, STEPHEN L.; XIA, XIAO-BO; HOSHI, HIDEO; FIRTH, SALLY I.; RICE, MARGARET E.; FRISHMAN, LAURA J.; MARSHAK, DAVID W.

    2008-01-01

    Many retinal ganglion cells are coupled via gap junctions with neighboring amacrine cells and ganglion cells. We investigated the extent and dynamics of coupling in one such network, the OFF α ganglion cell of rabbit retina and its associated amacrine cells. We also observed the relative spread of Neurobiotin injected into a ganglion cell in the presence of modulators of gap junctional permeability. We found that gap junctions between amacrine cells were closed via stimulation of a D1 dopamine receptor, while the gap junctions between ganglion cells were closed via stimulation of a D2 dopamine receptor. The pairs of hemichannels making up the heterologous gap junctions between the ganglion and amacrine cells were modulated independently, so that elevations of cAMP in the ganglion cell open the ganglion cell hemichannels, while elevations of cAMP in the amacrine cell close its hemichannels. We also measured endogenous dopamine release from an eyecup preparation and found a basal release from the dark-adapted retina of approximately 2 pmol/min during the day. Maximal stimulation with light increased the rate of dopamine release from rabbit retina by 66%. The results suggest that coupling between members of the OFF α ganglion cell/amacrine cell network is differentially modulated with changing levels of dopamine. PMID:17711603

  6. Structure formation through self-gravitational instability in degenerate and non-degenerate anisotropic magnetized plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana

    2017-04-01

    The self-gravitational instability is examined for non-degenerate and degenerate magnetized plasma. In the case of non-degenerate collisionless magnetized plasma the pressure is considered as anisotropic while in the case of degenerate situations it is taken as isotropic. The effect of finite Larmor radius correction of non-degenerate ions and viscous dissipation is taken into account in both the cases. Firstly in non-degenerate anisotropic plasma the conventional magnetohydrodynamic model is used to construct basic set of equations within the framework of modified Chew-Goldberger and Low theory. Secondly, in the case of degenerate isotropic plasma, which is considered to be composed of degenerate electrons and non-degenerate ions, the model equations are constructed using quantum magneto hydrodynamic model. The dynamics of degenerate particles are governed by Bohm and exchange potentials. The general dispersion relations are derived for both degenerate and non-degenerate situations separately using linearized perturbation equations. The results are discussed analytically and numerically for various modes of propagation. In case of non degenerate strongly magnetized plasma the effects of stress tensor anisotropy dominate over the influence of FLR effects while the FLR effects prevail in the weak magnetic field region. In case of isotropic degenerate plasma the implications of exchange parameter on the Jeans mass have been estimated and it is found that the increase in exchange parameter increases the limit of Jeans mass. The Jeans length and Jeans mass have been estimated for the white dwarf stars as LJ ≈ 2.1 × 10^{11} m and MJ ≈ 5 × 10^{39} kg respectively assist the existence of super Chandrasekhar white dwarfs.

  7. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice

    PubMed Central

    Barrett, John M.; Degenaar, Patrick; Sernagor, Evelyne

    2015-01-01

    Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA) was recently shown to diminish RGC hyperactivity and improve the signal-to-noise ratio (SNR) of RGC responses to light flashes and electrical stimulation in the rd10 mouse model of RP. We sought to extend these results to spatiotemporally patterned optogenetic stimulation in the faster-degenerating rd1 model and compare the effectiveness of a number of drugs known to disrupt rd1 hyperactivity. We crossed rd1 mice with a transgenic mouse line expressing the light-sensitive cation channel channelrhodopsin2 (ChR2) in RGCs, allowing them to be stimulated directly using high-intensity blue light. We used 60-channel ITO multielectrode arrays to record ChR2-mediated RGC responses from wholemount, ex-vivo retinas to full-field and patterned stimuli before and after application of MFA, 18-β-glycyrrhetinic acid (18BGA, another gap junction blocker) or flupirtine (Flu, a Kv7 potassium channel opener). All three drugs decreased spontaneous RGC firing, but 18BGA and Flu also decreased the sensitivity of RGCs to optogenetic stimulation. Nevertheless, all three drugs improved the SNR of ChR2-mediated responses. MFA also made it easier to discern motion direction of a moving bar from RGC population responses. Our results support the hypothesis that reduction of pathological RGC spontaneous activity characteristic in retinal degenerative disorders may improve the quality of visual responses in retinal prostheses and they provide insights into how best to achieve this for optogenetic prostheses

  8. Early Gene Expression Changes in the Retinal Ganglion Cell Layer of a Rat Glaucoma Model

    PubMed Central

    Guo, Ying; Johnson, Elaine C.; Cepurna, William O.; Dyck, Jennifer A.; Doser, Tom

    2011-01-01

    Purpose. To identify patterns of early gene expression changes in the retinal ganglion cell layer (GCL) of a rodent model of chronic glaucoma. Methods. Prolonged elevation of intraocular pressure (IOP) was produced in rats by episcleral vein injection of hypertonic saline (N = 30). GCLs isolated by laser capture microdissection were grouped by grading of the nerve injury (<25% axon degeneration for early injury; >25% for advanced injury). Gene expression was determined by cDNA microarray of independent GCL RNA samples. Quantitative PCR (qPCR) was used to further examine the expression of selected genes. Results. By array analysis, 533 GCL genes (225 up, 308 down) were significantly regulated in early injury. Compared to only one major upregulated gene class of metabolism regulation, more were downregulated, including mitochondria, ribosome, proteasome, energy pathways, protein synthesis, protein folding, and synaptic transmission. qPCR confirmed an early upregulation of Atf3. With advanced injury, 1790 GCL genes were significantly regulated (997 up, 793 down). Altered gene categories included upregulated protein synthesis, immune response, and cell apoptosis and downregulated dendrite morphogenesis and axon extension. Of all the early changed genes, 50% were not present in advanced injury. These uniquely affected genes were mainly associated with upregulated transcription regulation and downregulated protein synthesis. Conclusions. Early GCL gene responses to pressure-induced injury are characterized by an upregulation of Atf3 and extensive downregulation in genes associated with cellular metabolism and neuronal functions. Most likely, these changes represent those specific to RGCs and are thus potentially important for enhancing RGC survival in glaucoma. PMID:21051717

  9. Multiple Independent Oscillatory Networks in the Degenerating Retina.

    PubMed

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina's first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O'Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self

  10. Postreceptor Neuronal Loss in Intermediate Age-related Macular Degeneration.

    PubMed

    Borrelli, Enrico; Abdelfattah, Nizar Saleh; Uji, Akihito; Nittala, Muneeswar Gupta; Boyer, David S; Sadda, SriniVas R

    2017-09-01

    To investigate the relationship between ganglion cell complex (GCC) thickness and photoreceptor alterations in eyes with intermediate age-related macular degeneration (AMD). Retrospective case-control study. We collected data from 68 eyes with intermediate AMD from 68 patients with spectral-domain optical coherence tomography (SDOCT) imaging. A control group of 50 eyes from 50 healthy subjects was included for comparison. Our main outcome measures for comparison between groups were (1) the average and minimum GCC thickness and (2) the "normalized" reflectivity of the ellipsoid zone (EZ) en face image. The average and minimum GCC thicknesses were thinner in AMD patients (69.54 ± 9.30 μm and 63.22 ± 14.11 μm, respectively) than in healthy controls (78.57 ± 6.28 μm and 76.28 ± 6.85 μm, P < .0001 and P < .0001, respectively). Agreement was found to be excellent in the "normalized" EZ reflectivity assessment (intraclass correlation coefficient = 0.986, coefficient of variation = 1.11). The EZ "normalized" reflectivity was 0.67 ± 0.11 in controls and 0.61 ± 0.09 in the AMD group (P = .006). In univariate analysis, EZ "normalized" reflectivity was found to have a significant direct relationship with average (P < .0001) and minimum (P < .0001) GCC thickness in AMD patients, but not in controls (P = .852 and P = .892, respectively). Eyes with intermediate AMD exhibit GCC thinning, as well as a reduced EZ "normalized" reflectivity, and these parameters are correlated. This study supports the concept of postreceptor retinal neuronal loss as a contributor to retinal thinning in intermediate AMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modified gravitational instability of degenerate and non-degenerate dusty plasma

    NASA Astrophysics Data System (ADS)

    Jain, Shweta; Sharma, Prerana

    2016-09-01

    The gravitational instability of strongly coupled dusty plasma (SCDP) is studied considering degenerate and non-degenerate dusty plasma situations. The SCDP system is assumed to be composed of the electrons, ions, neutrals, and strongly coupled dust grains. First, in the high density regime, due to small interparticle distance, the electrons are considered degenerate, whereas the neutrals, dust grains, and ions are treated non-degenerate. In this case, the dynamics of inertialess electrons are managed by Fermi pressure and Bohm potential, while the inertialess ions are by only thermal pressure. Second, in the non-degenerate regime, both the electrons and ions are governed by the thermal pressure. The generalized hydrodynamic model and the normal mode analysis technique are employed to examine the low frequency waves and gravitational instability in both degenerate and non-degenerate cases. The general dispersion relation is discussed for a characteristic timescale which provides two regimes of frequency, i.e., hydrodynamic regime and kinetic regime. Analytical solutions reveal that the collisions reduce the growth rate and have a strong impact on structure formation in both degenerate and non-degenerate circumstances. Numerical estimation on the basis of observed parameters for the degenerate and non-degenerate cases is presented to show the effects of dust-neutral collisions and dust effective velocity in the presence of polarization force. The values of Jeans length and Jeans mass have been estimated for degenerate white dwarfs as Jeans length L J = 1.3 × 10 5 cm and Jeans mass M J = 0.75 × 10 - 3 M⊙ and for non-degenerate laboratory plasma Jeans length L J = 6.86 × 10 16 cm and Jeans mass M J = 0.68 × 10 10 M⊙. The stability of the SCDP system is discussed using the Routh-Hurwitz criterion.

  12. Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve.

    PubMed

    Fitzgerald, Melinda; Bartlett, Carole A; Payne, Sophie C; Hart, Nathan S; Rodger, Jenny; Harvey, Alan R; Dunlop, Sarah A

    2010-11-01

    Traumatic injury to the central nervous system (CNS) is accompanied by the spreading damage of secondary degeneration, resulting in further loss of neurons and function. Partial transection of the optic nerve (ON) has been used as a model of secondary degeneration, in which axons of retinal ganglion cells in the ventral ON are spared from initial dorsal injury, but are vulnerable to secondary degeneration. We have recently demonstrated that early after partial ON injury, oxidative stress spreads through the ventral ON vulnerable to secondary degeneration via astrocytes, and persists in the nerve in aggregates of cellular debris. In this study, we show that diffuse transcranial irradiation of the injury site with far red to near infrared (NIR) light (WARP 10 LED array, center wavelength 670 nm, irradiance 252 W/m(-2), 30 min exposure), as opposed to perception of light at this wavelength, reduced oxidative stress in areas of the ON vulnerable to secondary degeneration following partial injury. The WARP 10 NIR light treatment also prevented increases in NG-2-immunopositive oligodendrocyte precursor cells (OPCs) that occurred in ventral ON as a result of partial ON transection. Importantly, normal visual function was restored by NIR light treatment with the WARP 10 LED array, as assessed using optokinetic nystagmus and the Y-maze pattern discrimination task. To our knowledge, this is the first demonstration that 670-nm NIR light can reduce oxidative stress and improve function in the CNS following traumatic injury in vivo.

  13. Distribution and morphology of retinal ganglion cells in the Japanese quail.

    PubMed

    Ikushima, M; Watanabe, M; Ito, H

    1986-06-25

    A ganglion cell density map was produced from the Nissl-stained retinal whole mount of the Japanese quail. Ganglion cell density diminished nearly concentrically from the central area toward the retinal periphery. The mean soma area of ganglion cells in isodensity zones increased as the cell density decreased. The histograms of soma areas in each zone indicated that a population of small-sized ganglion cells persists into the peripheral retina. The total number of ganglion cells was estimated at about 2.0 million. Electron microscopic examination of the optic nerve revealed thin unmyelinated axons to comprise 69% of the total fiber count (about 2.0 million). Since there was no discrepancy between both the total numbers of neurons in the ganglion cell layer and optic nerve fibers, it is inferred that displaced amacrine cells are few, if any. The spectrum in optic nerve fiber diameter showed a unimodal skewed distribution quite similar to the histogram of soma areas of ganglion cells in the whole retina. This suggests a close correlation between soma areas and axon diameters. Retinal ganglion cells filled from the optic nerve with horseradish peroxidase were classified into 7 types according to such morphological characteristics as size, shape and location of the soma, as well as dendritic arborization pattern. Taking into account areal ranges of somata of each cell type, it can be assumed that most of the ganglion cells in the whole retinal ganglion cell layer are composed of type I, II and III cells, and that the population of uniformly small-sized ganglion cells corresponds to type I cells and is an origin of unmyelinated axons in the optic nerve.

  14. Molecular Therapy for Disk Degeneration and Pain

    PubMed Central

    Mwale, Fackson

    2013-01-01

    The nucleus pulposus of the intervertebral disk contains high amounts of the proteoglycan aggrecan, which confers the disk with a remarkable ability to resist compression. Other molecules such as collagens and noncollagenous proteins in the extracellular matrix are also essential for function. During disk degeneration, aggrecan and other molecules are lost due to proteolysis. This can result in loss of disk height, which can ultimately lead to pain. Biological therapy of intervertebral disk degeneration aims at preventing or restoring primarily aggrecan content and other molecules using therapeutic molecules. The purpose of the article is to review recent advances in biological repair of degenerate disks and pain. PMID:24436869

  15. Total absorption by degenerate critical coupling

    SciTech Connect

    Piper, Jessica R. Liu, Victor; Fan, Shanhui

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  16. Attempted reversible sympathetic ganglion block by an implantable neurostimulator

    PubMed Central

    Kopelman, Doron; Costa, Mario G.; Bejar, Jacob; Zaretsky, Asaph; Hashmonai, Moshe

    2012-01-01

    OBJECTIVE Primary palmar hyperhidrosis is a pathological condition of excessive perspiration of the hands of unknown aetiology. The only effective treatment for permanent cure is the ablation of the sympathetic ganglia supplying the hands. One of the sequelae is compensatory sweating, namely increased perspiration in other parts of the body. Its mechanism is unknown. In a small proportion of patients, it may attend devastating proportions. It has practically no remedy, and the degree of compensatory hyperhidrosis is unpredictable prior to sympathectomy. The purpose of the present study was to obtain a reversible sympathetic block which may disclose subjects prone to develop severe compensatory hyperhidrosis and unfit for permanent ganglionic ablation. METHODS In three dogs, an experimental electrode was implanted via a left thoracotomy on the stellate ganglion, connected to a stimulator. The stimulation was activated after recovery. The contralateral ganglion served as control. Effect of the stimulation was assessed by observing the development of Horner's syndrome, which includes the appearance of miosis, ptosis and enophthalmus. Reversal of the sympathetic block was expected when the neurostimulation was discontinued and assessed by the disappearance of these signs. RESULTS Stimulation produced only a partial effect – an incomplete Horner's syndrome (miosis and sometime ptosis), which was not completely reversible after ceasing the stimulation. CONCLUSIONS Although neurostimulation achieved a partial sympathetic block, the present method failed to obtain a completely reversible effect. However, these results may indicate that different nervous pathways moderate the various components of the Horner's triad. Concerning the creation of a reversible sympathectomy; other approaches must be sought after. PMID:22316522

  17. A novel technique for experimental stellate ganglion block in rats.

    PubMed

    Abdi, Salahadin; Yang, Zongqi

    2005-08-01

    A stellate ganglion block (SGB) is routinely performed in a clinical setting for the treatment of sympathetically maintained pain syndromes. However, the cardiovascular effects of SGB have not been well defined. The purpose of the present study was to develop a new technique of SGB in a rat model. Our new technique of SGB is a posterior percutaneous approach and uses the cartilaginous process of the C7 spinous process as a landmark. Twenty-six Sprague-Dawley female rats were divided into six groups. Group I (n = 4) underwent right sided SGB, Group II (n = 5) underwent left-sided SGB, and Group III (n = 5) underwent bilateral SGB using bupivacaine 0.25%. Three additional sham groups (n = 4 in each group) served as controls to each of the three treatment groups. Ipsilateral eyelid droop (ptosis) was observed in all animals that underwent SGB with bupivacaine. Heart rate decreased significantly for up to 45 min after bilateral SGB compared with control groups. However, this value did not change in rats after unilateral SGB. In 9 additional rats, we evaluated the accuracy of SGB by injecting methylene blue to stain the right (n = 3), left (n = 3), and bilateral SGB (n = 3). At autopsy, 11 of 12 SG were stained post-methylene blue injection. We conclude from our study that our new approach, posterior percutaneous SGB is a reliable technique that can be used for further studies. We describe a new technique for stellate ganglion block in rats that may be used in future studies to investigate the role of cervical sympathetic nervous system (especially the stellate ganglion) in regulating sympathetically maintained pain and myocardial function.

  18. Proliferation and cell cycle dynamics in the developing stellate ganglion.

    PubMed

    Gonsalvez, David G; Cane, Kylie N; Landman, Kerry A; Enomoto, Hideki; Young, Heather M; Anderson, Colin R

    2013-04-03

    Cell proliferation during nervous system development is poorly understood outside the mouse neocortex. We measured cell cycle dynamics in the embryonic mouse sympathetic stellate ganglion, where neuroblasts continue to proliferate following neuronal differentiation. At embryonic day (E) 9.5, when neural crest-derived cells were migrating and coalescing into the ganglion primordium, all cells were cycling, cell cycle length was only 10.6 h, and S-phase comprised over 65% of the cell cycle; these values are similar to those previously reported for embryonic stem cells. At E10.5, Sox10(+) cells lengthened their cell cycle to 38 h and reduced the length of S-phase. As cells started to express the neuronal markers Tuj1 and tyrosine hydroxylase (TH) at E10.5, they exited the cell cycle. At E11.5, when >80% of cells in the ganglion were Tuj1(+)/TH(+) neuroblasts, all cells were again cycling. Neuroblast cell cycle length did not change significantly after E11.5, and 98% of Sox10(-)/TH(+) cells had exited the cell cycle by E18.5. The cell cycle length of Sox10(+)/TH(-) cells increased during late embryonic development, and ∼25% were still cycling at E18.5. Loss of Ret increased neuroblast cell cycle length at E16.5 and decreased the number of neuroblasts at E18.5. A mathematical model generated from our data successfully predicted the relative change in proportions of neuroblasts and non-neuroblasts in wild-type mice. Our results show that, like other neurons, sympathetic neuron differentiation is associated with exit from the cell cycle; sympathetic neurons are unusual in that they then re-enter the cell cycle before later permanently exiting.

  19. Very Degenerate Higgsino Dark Matter

    DOE PAGES

    Chun, Eung Jin; Jung, Sunghoon; Park, Jong-Chul

    2017-01-03

    In this paper, we present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ~1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lowermore » velocities v/c ≲ 10-3. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. Finally, DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.« less

  20. Very Degenerate Higgsino Dark Matter

    NASA Astrophysics Data System (ADS)

    Chun, Eung Jin; Jung, Sunghoon; Park, Jong-Chul

    2017-01-01

    We present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ˜1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lower velocities v/c ≲ 10-3. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.

  1. Degeneration of Biogenic Superparamagnetic Magnetite

    SciTech Connect

    Li, Dr. Yi-Liang; Pfiffner, Susan M.; Dyar, Dr. M Darby; Vali, Dr. Hojatolah; Konhauser, Dr, Kurt; Cole, David R; Rondinone, Adam Justin; Phelps, Tommy Joe

    2009-01-01

    ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  2. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    PubMed

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.

  3. Hedgehogs and retinal ganglion cells: organizers of the mammalian retina.

    PubMed

    Dakubo, Gabriel D; Wallace, Valerie A

    2004-03-01

    The mature vertebrate retina develops from a population of multipotential neural progenitor cells that give rise to all of the retinal neurons and one glial cell type. Retinal histogenesis is regulated, in part, by cell extrinsic cues. A growing number of studies now implicate signaling by members of the Hedgehog (Hh) family of morphogens in vertebrate retinal development. In this review we will discuss the role of Hh signals from retinal ganglion cells (RGCs), the projection neurons of the retina, on proliferation, differentiation and lamination in the neural retina.

  4. The Sphenopalatine Ganglion: Anatomy, Pathophysiology, and Therapeutic Targeting in Headache.

    PubMed

    Robbins, Matthew S; Robertson, Carrie E; Kaplan, Eugene; Ailani, Jessica; Charleston, Larry; Kuruvilla, Deena; Blumenfeld, Andrew; Berliner, Randall; Rosen, Noah L; Duarte, Robert; Vidwan, Jaskiran; Halker, Rashmi B; Gill, Nicole; Ashkenazi, Avi

    2016-02-01

    The sphenopalatine ganglion (SPG) has attracted the interest of practitioners treating head and face pain for over a century because of its anatomical connections and role in the trigemino-autonomic reflex. In this review, we discuss the anatomy of the SPG, as well as what is known about its role in the pathophysiology of headache disorders, including cluster headache and migraine. We then address various therapies that target the SPG, including intranasal medication delivery, new SPG blocking catheter devices, neurostimulation, chemical neurolysis, and ablation procedures.

  5. Intraosseous ganglion cysts of the carpus: current practice.

    PubMed

    Osagie, Liza; Gallivan, Samantha; Wickham, Neil; Umarji, Shamim

    2015-12-01

    Intraosseous cysts of the carpal bones are an infrequent cause of chronic wrist pain. The main body of work has investigated their occurrence in the proximal carpus, with limited incidence in the distal row. We review the current literature on the treatment of symptomatic carpal cysts following the report of a 17-year-old male with a 12-month history of progressive right wrist pain due to an intraosseous ganglion of the trapezoid. This review explores the pathology of carpal cysts, their varying presentation and current treatments.

  6. Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina.

    PubMed

    Vugler, Anthony A; Redgrave, Peter; Semo, Ma'ayan; Lawrence, Jean; Greenwood, John; Coffey, Peter J

    2007-05-01

    In addition to rods and cones of the outer retina, a third class of photoreceptive cell has recently been described in the inner retina of mammals. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have been shown to relay luminance information to the mammalian brain. In addition to their intrinsic photosensitivity, the function of ipRGCs may also be modulated by signals from within the retina itself. Such signals may emanate from classical photoreceptors in the outer retina or from the circadian activity of adjacent inner retinal neurones. Prime candidates for the latter are the retinal dopamine neurones which ramify at the border of the inner plexiform and inner nuclear layers. In order to investigate the nature of any interaction between dopamine and ipRGC populations in normal retina and to assess the impact of outer retinal degeneration on this interrelationship, we examined the retinae of normal and RCS dystrophic rats. We report a direct interaction between the dendrites of ipRGCs and dopaminergic neurones which is conserved across species. Triple immunolabelling using synaptic markers provides evidence for the unidirectionality of information transfer between the two cell types, with processes of ipRGCs being directly adjacent to sites of dopamine release. This fundamental architectural feature of the mammalian retina appears resistant to degeneration of classical photoreceptors and may provide the anatomical substrate by which dopamine cells influence the physiology of central circadian targets in the brain.

  7. Visual Responses of Photoreceptor-Degenerated Rats Expressing Two Different Types of Channelrhodopsin Genes

    PubMed Central

    Sato, Masatoshi; Sugano, Eriko; Tabata, Kitako; Sannohe, Kei; Watanabe, Yoshito; Ozaki, Taku; Tamai, Makoto; Tomita, Hiroshi

    2017-01-01

    Optogenetic technologies are expected to be applicable for clinical use in restoring vision. However, the degree of recovered visual function is highly dependent on the function of the chosen optogenetic gene. To investigate the effect on visual function of dual expression of genes with different wavelength sensitivities, we transduced a modified Volvox-derived channelrhodopsin gene (mVChR1) via an adeno-associated virus vector into transgenic rats harbouring the ChR2 gene in retinal ganglion cells. These transgenic rats were given an intraperitoneal injection of N-methyl-N-nitrosourea to induce the degeneration of native photoreceptor cells prior to transduction of mVChR1. Optical coherence tomography images indicated the degeneration of the native photoreceptor cells after the N-methyl-N-nitrosourea injection. Complete loss of function of the native photoreceptor cells was confirmed using electroretinograms. In the ChR2 transgenic rats, visually evoked potentials were clearly detectable in spite of native photoreceptor function abolishment; however the responses were limited to within blue wavelengths. In contrast, the limited wavelength sensitivities were improved by the additional transduction of mVChR1, which exhibited sensitivities to green and red. Thus, the transductions of dual genes encoding channelrhodopsins that exhibit different wavelength sensitivities represents a promising candidate method to expand and to enhance rescued wavelength sensitivities in blind subjects. PMID:28112267

  8. Axonal degeneration in peripheral nerves in a case of Leber hereditary optic neuropathy.

    PubMed

    Mnatsakanyan, Lilit; Ross-Cisneros, Fred N; Carelli, Valerio; Wang, Michelle Y; Sadun, Alfredo A

    2011-03-01

    Leber hereditary optic neuropathy (LHON) is a mitochondrial DNA (mtDNA) genetic disorder characterized by profound bilateral loss of central vision due to selective loss of retinal ganglion cells. Most patients with LHON do not have complaints related to the peripheral nervous system. We investigated possible qualitative and quantitative histological changes in the peripheral nerve of a patient with LHON as compared to normal controls. Brachial plexus specimens were obtained at necropsy from a patient with LHON carrying the 3460/ND1 mtDNA mutation and age-matched controls without known history of neurological disease. The nerves were evaluated by light microscope coupled to a digital camera-based morphometric analysis and electron microscopy. Extensive axonal degeneration of the large heavily myelinated fibers was found in the brachial plexus from the patient with LHON. In LHON nerve fascicles, we counted over 10 times as many degenerated profiles as found in the control nerve fascicles. Microscopic examination of the brachial plexus in the patient with LHON clearly demonstrated a significant pattern of neurodegeneration. Our study suggests that peripheral neuropathy may be a subclinical feature associated with LHON.

  9. Persimmon Leaves (Diospyros kaki) Extract Protects Optic Nerve Crush-Induced Retinal Degeneration.

    PubMed

    Ryul Ahn, Hong; Kim, Kyung-A; Kang, Suk Woo; Lee, Joo Young; Kim, Tae-Jin; Jung, Sang Hoon

    2017-04-20

    Retinal ganglion cell (RGC) death is part of many retinal diseases. Here, we report that the ethanol extract of Diospyros kaki (EEDK) exhibits protective properties against retinal degeneration, both in vitro and in vivo. Upon exposure to cytotoxic compounds, RGC-5 cells showed approximately 40% cell viability versus the control, while pre-treatment with EEDK markedly increased cell viability in a concentration-dependent manner. Further studies revealed that cell survival induced by EEDK was associated with decreased levels of apoptotic proteins, such as poly (ADP-ribose) polymerase, p53, and cleaved caspase-3. In addition to apoptotic pathways, we demonstrated that expression levels of antioxidant-associated proteins, such as superoxide dismutase-1, glutathione S-transferase, and glutathione peroxidase-1, were positively modulated by EEDK. In a partial optic nerve crush mouse model, EEDK had similar ameliorating effects on retinal degeneration resulting from mechanical damages. Therefore, our results suggest that EEDK may have therapeutic potential against retinal degenerative disorders, such as glaucoma.

  10. Persimmon Leaves (Diospyros kaki) Extract Protects Optic Nerve Crush-Induced Retinal Degeneration

    PubMed Central

    Ryul Ahn, Hong; Kim, Kyung-A; Kang, Suk Woo; Lee, Joo Young; Kim, Tae-Jin; Jung, Sang Hoon

    2017-01-01

    Retinal ganglion cell (RGC) death is part of many retinal diseases. Here, we report that the ethanol extract of Diospyros kaki (EEDK) exhibits protective properties against retinal degeneration, both in vitro and in vivo. Upon exposure to cytotoxic compounds, RGC-5 cells showed approximately 40% cell viability versus the control, while pre-treatment with EEDK markedly increased cell viability in a concentration-dependent manner. Further studies revealed that cell survival induced by EEDK was associated with decreased levels of apoptotic proteins, such as poly (ADP-ribose) polymerase, p53, and cleaved caspase-3. In addition to apoptotic pathways, we demonstrated that expression levels of antioxidant-associated proteins, such as superoxide dismutase-1, glutathione S-transferase, and glutathione peroxidase-1, were positively modulated by EEDK. In a partial optic nerve crush mouse model, EEDK had similar ameliorating effects on retinal degeneration resulting from mechanical damages. Therefore, our results suggest that EEDK may have therapeutic potential against retinal degenerative disorders, such as glaucoma. PMID:28425487

  11. Treatment of adult neural progenitor cells prior to transplantation affects graft survival and integration in a neonatal and adult rat model of selective retinal ganglion cell depletion.

    PubMed

    Mellough, Carla B; Cui, Qi; Harvey, Alan R

    2007-01-01

    We tested whether microenvironmental changes surrounding apoptotic neural degeneration, cellular pre-treatment and timing of transplant can influence the survival and differentiation of transplanted cells. This was done by transplanting adult hippocampal precursor cells (AHPCs) into normal and retinal ganglion cell (RGC) depleted rat retinae. Apoptotic RGC death was induced in neonates by removal of the contralateral superior colliculus (SC) and in adults by unilateral optic nerve transection, with or without a peripheral nerve (PN) graft. AHPCs were transplanted 24 h after SC ablation, or 5, 7 or 14 days following optic nerve (ON) transection. Hosts received untreated grafts, or grafts treated by co-culture with embryonic retinal explants or the neuropeptide somatostatin. AHPCs integrated within all neonatal and 65% of adult retinae. Greater numbers of AHPCs were observed within the ganglion cell layer (GCL) in SC lesioned hosts. Explant co-culture induced proliferation of grafted AHPCs within host retinae. Somatostatin-treatment resulted in reduced overall engraftment but increased integration within the GCL. In lesioned adults, greatest GCL engraftment was observed following 7 or 14 day grafts. Some AHPCs in the inner retina expressed neuronal antigens and extended processes into the ON. These data indicate that various factors can influence the behaviour of grafted cells and work towards encouraging the functional restoration of retinal circuitry.

  12. Hamiltonian structure for degenerate AKNS systems

    NASA Astrophysics Data System (ADS)

    Corona-Corona, Gulmaro

    1997-01-01

    There is a family of degenerate AKNS systems for which the full theory of generic AKNS systems does not directly extend. The linear space of potentials still has a natural Poisson structure, but the scattering method used by Beals and Sattinger to show complete integrability for the generic AKNS systems fails for the degenerate case. A Poisson structure is not induced on the scattering side as in the generic case. As a consequence, the problem of complete integrability for degenerate AKNS systems still is an open question. In addition, contrary to the generic case, the Lax pair gives flows for degenerate integrable systems that are nonlocal. In general, they do not exist, and they are no longer linear on the scattering side. Necessary conditions for their existence and for linear evolution in the scattering side are found.

  13. Hamiltonian Structure for Degenerate Akns Systems

    NASA Astrophysics Data System (ADS)

    Corona-Corona, Gulmaro

    1995-01-01

    There is a family of degenerate AKNS systems for which the full theory of generic AKNS systems does not directly extend. The linear space of potentials still has a natural Poisson structure. This is studied by the scattering method used by Richard Beals and D.H. Sattinger (Commun. Math. Phys. 138, 409-436, 1991) to show complete integrability for the generic AKNS systems. This method fails for the degenerate case since a Poisson structure is not induced on the scattering side as in the generic case. As a consequence, the problem of complete integrability for degenerate AKNS systems still is an open question. In addition, contrary to the generic case, the Lax pair gives flows for degenerate integrable systems that are nonlocal. In general they do not exist, and they are no longer linear on the scattering side. Necessary conditions for their existence and for linear evolution of the scattering side are found.

  14. Thermal Properties of Degenerate Relativistic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Homorodean, Laurean

    We present the concentration-temperature phase diagram, characteristic functions, thermal equation of state and heat capacity at constant volume for degenerate ideal gases of relativistic fermions and bosons. The nonrelativistic and ultrarelativistic limits of these laws are also discussed.

  15. Degenerate primer design for highly variable genomes.

    PubMed

    Li, Kelvin; Shrivastava, Susmita; Stockwell, Timothy B

    2015-01-01

    The application of degenerate PCR primers towards target amplification and sequencing is a useful technique when a population of organisms under investigation is evolving rapidly, or is highly diverse. Degenerate bases in these primers are specified with ambiguity codes that represent alternative nucleotide configurations. Degenerate PCR primers allow the simultaneous amplification of a heterogeneous population by providing a mixture of PCR primers each of which anneal to an alternative genotype found in the isolated sample. However, as the number of degenerate bases specified in a pair of primers rises, the likelihood of amplifying unwanted alternative products also increases. These alternative products may confound downstream data analyses if their levels begin to obfuscate the desired PCR products. This chapter describes a set of computational methodologies that may be used to minimize the degeneracy of designed primers, while still maximizing the proportion of genotypes assayed in the targeted population.

  16. Components and properties of the G3 ganglion cell circuit in the rabbit retina.

    PubMed

    Hoshi, Hideo; Mills, Stephen L

    2009-03-01

    Each point on the retina is sampled by about 15 types of ganglion cell, each of which is an element in a circuit also containing specific types of bipolar cell and amacrine cell. Only a few of these circuits are well characterized. We found that intracellular injection of Neurobiotin into a specific ganglion cell type targeted by fluorescent markers also stained an asymmetrically branching ganglion cell. It was also tracer-coupled to an unusual type of amacrine cell whose dendrites were strongly asymmetric, coursing in a narrow bundle from the soma in the dorsal direction only. The dendritic field of the ganglion cell stratifies initially in sublamina b (the ON layers), but with few specializations and branches, and then more extensively in sublamina a (the OFF layers) at the level of the processes of the coupled amacrine cell. Intersections of the ganglion and amacrine cell processes contain puncta immunopositive for Cx36. Additionally, we found that the dopaminergic amacrine cell makes contact with both the ganglion cell and the amacrine cell, and that a bipolar cell immunopositive for calbindin synapses onto the sublamina b processes of the ganglion cell. Dopamine D(1) receptor activation reduced tracer flow to the amacrine cells. We have thus targeted and characterized two poorly understood retinal cell types and placed them with two other cell types in a substantial portion of a new retinal circuit. This unique circuit comprised of pronounced asymmetries in the ganglion cell and amacrine cell dendritic fields may result in a substantial orientation bias.

  17. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  18. Ganglion cysts of the proximal tibiofibular joint review of literature with three case reports.

    PubMed

    Vatansever, A; Bal, E; Okcu, G

    2006-11-01

    Proximal tibiofibular ganglion is a rare disorder. It may settle down in the subcutaneous tissue or may develop along the peroneal muscles and nerve. Common clinical findings are various sizes of mass, pain and hypoesthesis due to compression neuropathy. We report three cases of proximal tibiofibular ganglion and review the literature about the diagnostic tools, recurrence rates and treatment modalities.

  19. Use of autologous fibrin sealants to treat ganglion cysts: a report of two cases.

    PubMed

    Nakama, Kenjiro; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Higuchi, Fujio; Nagata, Kensei

    2010-04-01

    Two patients underwent arthroscopy-guided injections of autologous fibrin sealants to treat ganglion cysts causing suprascapular nerve palsies. After at least 2 years of follow-up, both patients had no suprascapular nerve symptoms and their external rotation strength had returned to normal. Magnetic resonance imaging revealed no evidence of ganglion cyst recurrence.

  20. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.

    PubMed

    Takaki, Fumiya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-02-01

    The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.

  1. Quantitative Pfirrmann Disc Degeneration Grading System to Overcome the Limitation of Pfirrmann Disc Degeneration Grade.

    PubMed

    Rim, Dae Cheol

    2016-03-01

    Pfirrmann disc degeneration grade is one of morphologic disc degeneration grading system and it was reliable on routine T2-weighted magnetic resonance (MR) images. The purpose of this study was to evaluate the agreement of Pfirrmann disc degeneration grade, and check the alternative technique of disc degeneration grading system. Fifteen volunteers (4 medical doctors related to spinal disease, 2 medical doctors not related to spinal disease, 6 nurses in spinal hospital, and 3 para-medicines) were included in this study. Three different digitalized MR images were provided all volunteers, and they checked Pfirrmann disc degeneration grade of each disc levels after careful listening to explanation. Indeed, all volunteers checked the signal intensity of disc degeneration at the points of nucleus pulposus (NP), disc membrane, ligaments, fat, and air to modify the quantitative Pfirrmann disc degeneration grade. Total 225 grade results of Pfirrmann disc degeneration grade and 405 signal intensity results of quantitative Pfirrmann disc degeneration grade were analyzed. Average interobserver agreement was "moderate (mean±standard deviation, 0.575±0.251)" from poor to excellent. Completely agreed levels of Pfirrmann disc degeneration grade were only 4 levels (26.67%), and the disagreement levels were observed in 11 levels; two different grades in 8 levels (53.33%) and three different grades in 3 levels (20%). Quantitative Pfirrmann disc degeneration showed relatively cluster distribution with the interobserver deviations of 0.41-1.56 at the ratio of NP and disc membrane, and it showed relatively good cluster and distribution indicating that the proposed grading system has good discrimination ability. Pfirrmann disc degeneration grade showed the limitation of different interobserver results, but this limitation could be overcome by using quantitative techniques of MR signal intensity. Further evaluation is needed to access its advantage and reliabilities.

  2. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy.

    PubMed

    Han, Chongyang; Hoeijmakers, Janneke G J; Liu, Shujun; Gerrits, Monique M; te Morsche, Rene H M; Lauria, Giuseppe; Dib-Hajj, Sulayman D; Drenth, Joost P H; Faber, Catharina G; Merkies, Ingemar S J; Waxman, Stephen G

    2012-09-01

    Patients with small fibre neuropathy typically manifest pain in distal extremities and severe autonomic dysfunction. However, occasionally patients present with minimal autonomic symptoms. The basis for this phenotypic difference is not understood. Sodium channel Na(v)1.7, encoded by the SCN9A gene, is preferentially expressed in the peripheral nervous system within sensory dorsal root ganglion and sympathetic ganglion neurons and their small diameter peripheral axons. We recently reported missense substitutions in SCN9A that encode functional Na(v)1.7 variants in 28% of patients with biopsy-confirmed small fibre neuropathy. Two patients with biopsy-confirmed small fibre neuropathy manifested minimal autonomic dysfunction unlike the other six patients in this series, and both of these patients carry the Na(v)1.7/R185H variant, presenting the opportunity to compare variants associated with extreme ends of a spectrum from minimal to severe autonomic dysfunction. Herein, we show by voltage-clamp that R185H variant channels enhance resurgent currents within dorsal root ganglion neurons and show by current-clamp that R185H renders dorsal root ganglion neurons hyperexcitable. We also show that in contrast, R185H variant channels do not produce detectable changes when studied by voltage-clamp within sympathetic neurons of the superior cervical ganglion, and have no effect on the excitability of these cells. As a comparator, we studied the Na(v)1.7 variant I739V, identified in three patients with small fibre neuropathy characterized by severe autonomic dysfunction as well as neuropathic pain, and show that this variant impairs channel slow inactivation within both dorsal root ganglion and superior cervical ganglion neurons, and renders dorsal root ganglion neurons hyperexcitable and superior cervical ganglion neurons hypoexcitable. Thus, we show that R185H, from patients with minimal autonomic dysfunction, does not produce detectable changes in the properties of

  3. [Presacral schwannoma with degenerated areas ("ancient schwannoma")].

    PubMed

    Netsch, C; Oberhagemann, K; Bach, T; Feyerabend, B; Gross, A J

    2010-10-01

    A presacral, degenerative schwannoma ("ancient schwannoma") is a rare entity. The clinical signs are nonspecific, and a reliable preoperative diagnosis is difficult. Tumor heterogeneity with calcifications may be seen in degenerated schwannomas on MRI or CT but not necessarily. First-line treatment is complete surgical excision. We present the case of a 44-year-old male who required surgery for a presacral mass. Histopathological examination revealed the diagnosis of a schwannoma with degenerated areas.

  4. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease

    PubMed Central

    Atherton, Jeremy F; McIver, Eileen L; Mullen, Matthew RM; Wokosin, David L; Surmeier, D James; Bevan, Mark D

    2016-01-01

    The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI: http://dx.doi.org/10.7554/eLife.21616.001 PMID:27995895

  5. Glutamate stimulation of retinal ganglion cells in normal and s334ter-4 rat retinas: a candidate for a neurotransmitter-based retinal prosthesis.

    PubMed

    Finlayson, Paul G; Iezzi, Raymond

    2010-07-01

    PURPOSE. To investigate the suitability of glutamate as a potential agent for a neurotransmitter-based retinal prosthesis. METHODS. Retinal ganglion cells (RGCs) from P35-70 albino Sprague-Dawley (normal) and P60-254 S334ter-4 (photoreceptor degeneration) rats were recorded extracellularly in flattened eye cup preparations, to assess their responses to glutamate, applied locally via micropipettes. RESULTS. Brief local application of glutamate effectively excited RGCs in both normal and degenerated retinas. Epiretinal surface application of glutamate was less likely to excite RGCs than was subsurface application (20 microm below the epiretinal surface). Glutamate evoked RGC firing rates, and the response patterns were similar for epiretinal surface and subsurface applications. Subsurface application of 2 mM glutamate effectively excited cells within 130 microm of the ejection sites. Response latencies averaged 281 ms and were significantly longer for OFF RGCs than for ON RGCs in normal retinas (P = 0.025). Suppression of activity was observed at shorter latencies ( approximately 100 ms) after glutamate application in most of the spontaneously active RGCs. Responses to each glutamate application were similar, and the duration of activity was directly dependent on the duration of application. RGC responses varied from recurrent high-frequency bursts to sustained firing at rates above 40 spikes/s, in normal and degenerated retinas. Paired, sequential applications of glutamate evoked two distinguishable responses, with interstimulus intervals as low as 200 ms. Overall, RGC response sensitivity to glutamate was similar in normal and degenerated retinas. CONCLUSIONS. Glutamate is an excellent candidate for a neurotransmitter-based retinal prosthesis, as its local application effectively stimulates RGCs with high spatial and temporal resolution.

  6. MALIGNANT DEGENERATION IN BURN SCARS

    PubMed Central

    Castañares, Salvador

    1961-01-01

    The malignant potential of burn scars has been recognized since Marjolin's classical description of cancer arising in several types of post-traumatic scars. With improved burn therapy since the last war, there has been a higher survival rate of severe burns with proportionate increase in cancer associated with burn scars. This will create increasing problems of permanent disability and compensation. The younger the patient at the time of the burn, the longer the time required for the cancer to develop. Acute cancer development in burn scars has been reported after a four-week interval. Cancer may develop from six weeks to fifty years or more. The etiology of cancer in burn scars is not known. The most important clinical finding is the fact that most of the burn cancers occur in areas which were not grafted. The most common type of cancer encountered in burn scars is squamous cell carcinoma, which forms in Marjolin ulcers. Basal cell carcinoma may develop in the most superficial of burn scars. Treatment should be directed primarily to prompt and adequate skin grafting in all deep burns in order to prevent malignant degeneration of the burn scars. Once it has developed the treatment is the same as for other malignancies which are not associated with burns. Wide surgical excision with block dissection of the regional lymph nodes when they are involved is the treatment of choice. The prognosis of burn scar cancer is poor, once the process has extended because of early and distant metastasis. ImagesFigure 1.Figure 2.Figure 2.Figure 3.Figure 3.Figure 4. PMID:13691372

  7. Frontotemporal lobar degeneration: current perspectives

    PubMed Central

    Riedl, Lina; Mackenzie, Ian R; Förstl, Hans; Kurz, Alexander; Diehl-Schmid, Janine

    2014-01-01

    The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer’s disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management. PMID:24600223

  8. Age-related macular degeneration.

    PubMed

    Cheung, Lily K; Eaton, Angie

    2013-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease.

  9. Ganglion and Synovial Cyst of the Temporomandibular Joint: A Case Report and Literature Review

    PubMed Central

    Hofstede, Diederik J.

    2015-01-01

    Summary: Ganglion and synovial cysts of the temporomandibular joint (TMJ) are rare. Although histopathological findings differ, clinical presentation is comparable. This study adds a case report of a ganglion of the TMJ to existing literature and a review of all available case reports on ganglion and synovial cysts of the TMJ. Including our own case report, we reviewed 49 cases of ganglion and synovial cysts of the TMJ. They occurred in a female:male ratio of 3:1, at an median age of 46 years (range, 11–64 years). Patients mainly presented with preauricular swelling and pain. After imaging, the ganglion or synovial cyst was most commonly excised under general anesthesia. No recurrences were described. PMID:26495237

  10. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells.

    PubMed

    Cui, Yuwei; Wang, Yanbin V; Park, Silvia J H; Demb, Jonathan B; Butts, Daniel A

    2016-11-14

    Visual processing depends on specific computations implemented by complex neural circuits. Here, we present a circuit-inspired model of retinal ganglion cell computation, targeted to explain their temporal dynamics and adaptation to contrast. To localize the sources of such processing, we used recordings at the levels of synaptic input and spiking output in the in vitro mouse retina. We found that an ON-Alpha ganglion cell's excitatory synaptic inputs were described by a divisive interaction between excitation and delayed suppression, which explained nonlinear processing that was already present in ganglion cell inputs. Ganglion cell output was further shaped by spike generation mechanisms. The full model accurately predicted spike responses with unprecedented millisecond precision, and accurately described contrast adaptation of the spike train. These results demonstrate how circuit and cell-intrinsic mechanisms interact for ganglion cell function and, more generally, illustrate the power of circuit-inspired modeling of sensory processing.

  11. Spontaneous activity of morphologically identified ganglion cells in the developing ferret retina.

    PubMed

    Liets, Lauren C; Olshausen, Bruno A; Wang, Guo-Yong; Chalupa, Leo M

    2003-08-13

    Whole-cell patch-clamp recordings were made from morphologically identified ganglion cells in the intact retina of developing ferrets. As early as 3 d after birth, all ganglion cells exhibited bursts of spontaneous activity, with the interval between bursts gradually decreasing with maturity. By 2 weeks after birth, ganglion cells could be morphologically differentiated into three major classes (alpha, beta, and gamma), and at this time each cell class was characterized by a distinct pattern of spontaneous activity. Dual patch-clamp recordings from pairs of neighboring cells revealed that cells of all morphological classes burst in a coordinated manner, regardless of cell type. These observations suggest that a common mechanism underlies the bursting patterns exhibited by all ganglion cell classes, and that class-specific firing patterns emerge coincident with retinal ganglion cell morphological differentiation.

  12. A case report of stellate ganglion block in the treatment of epileptic pain

    PubMed Central

    Wang, Shengtao; Zhu, Yangzi

    2017-01-01

    Abstract Rationale: Stellate ganglion blocks have been shown to provide effective pain relief in a number of different conditions, but no one had reported stellate ganglion blocks for the treatment of epileptic pain. We describe a case report of the successful use of stellate ganglion block in the treatment of epileptic pain in the patient. Patient concerns: A 8-year-old girl who had experienced severe paroxysmal pain in her right upper limb. Diagnoses: She was diagnosed as drug-resistant partial epilepsy. Interventions: The patient received stellate ganglion blocks with lidocaine for 2 courses with 2 weeks in a course of treatment and oral carbamazepine once a day. Outcomes: Carbamazepine dosage gradually tapered until stop and epileptic pain attacks become less and less, eventually disappear. Lessons: Stellate ganglion block may be an effective treatment of intractable partial epilepsy. However, more research is now needed to verify the validity. PMID:28178147

  13. The spiral ganglion and Rosenthal's canal in beluga whales.

    PubMed

    Sensor, Jennifer D; Suydam, Robert; George, John C; Liberman, M C; Lovano, Denise; Rhaganti, Mary Ann; Usip, Sharon; Vinyard, Christopher J; Thewissen, J G M

    2015-12-01

    With the increase of human activity and corresponding increase in anthropogenic sounds in marine waters of the Arctic, it is necessary to understand its effect on the hearing of marine wildlife. We have conducted a baseline study on the spiral ganglion and Rosenthal's canal of the cochlea in beluga whales (Delphinapterus leucas) as an initial assessment of auditory anatomy and health. We present morphometric data on the length of the cochlea, number of whorls, neuron densities along its length, Rosenthal's canal length, and cross-sectional area, and show some histological results. In belugas, Rosenthal's canal is not a cylinder of equal cross-sectional area, but its cross-section is greatest near the apex of the basal whorl. We found systematic variation in the numbers of neurons along the length of the spiral ganglion, indicating that neurons are not dispersed evenly in Rosenthal's canal. These results provide data on functionally important structural parameters of the beluga ear. We observed no signs of acoustic trauma in our sample of beluga whales. © 2015 Wiley Periodicals, Inc.

  14. Modeling the variability of firing rate of retinal ganglion cells.

    PubMed

    Levine, M W

    1992-12-01

    Impulse trains simulating the maintained discharges of retinal ganglion cells were generated by digital realizations of the integrate-and-fire model. If the mean rate were set by a "bias" level added to "noise," the variability of firing would be related to the mean firing rate as an inverse square root law; the maintained discharges of retinal ganglion cells deviate systematically from such a relationship. A more realistic relationship can be obtained if the integrate-and-fire mechanism is "leaky"; with this refinement, the integrate-and-fire model captures the essential features of the data. However, the model shows that the distribution of intervals is insensitive to that of the underlying variability. The leakage time constant, threshold, and distribution of the noise are confounded, rendering the model unspecifiable. Another aspect of variability is presented by the variance of responses to repeated discrete stimuli. The variance of response rate increases with the mean response amplitude; the nature of that relationship depends on the duration of the periods in which the response is sampled. These results have defied explanation. But if it is assumed that variability depends on mean rate in the way observed for maintained discharges, the variability of responses to abrupt changes in lighting can be predicted from the observed mean responses. The parameters that provide the best fits for the variability of responses also provide a reasonable fit to the variability of maintained discharges.

  15. [Morphological transformation of sensory ganglion neurons and satellite cells].

    PubMed

    Matsuda, S; Kobayashi, N; Mominoki, K; Wakisaka, H; Mori, M; Murakami, S

    1998-12-01

    Sensory ganglion neurons in higher vertebrates are unique in that they are pseudounipolar with a single stem process that divides at some distance from the cell body into central and peripheral processes. In the early stages of development, these neurons are bipolar but later they became pseudounipolar. This developmental process of sensory ganglion neurons with satellite cells was examined by scanning electron microscopy following removal of connective tissue. This pseudo-unipolarization began earlier but proceeded at a slower rate in chick than in rat embryos. This difference may due to the difference found in the extent and intimacy of satellite cell investments in these two animals, which was due to the fact that sensory neurons undergo pseudo-unipolarization only in the presence of satellite cells in vitro. The neuronal perikaryal projections were observed by scanning electron microscopy after removal of connective tissue and satellite cells. Morphometric analysis reveal that perikaryal projections were more numerous on the surface of mature pseudounipolar neurons than on the surface of premature bipolar neurons, and that the number of projections increased as the neuronal cell bodies grew larger. This may support the hypothesis that perikaryal projections are structural devices for increasing the neuron-satellite interface and for improving the efficiency of metabolic exchange between these two cell types. These results suggest that satellite cells play an important role in neuronal maturation.

  16. Intraneural ganglion cyst: a 200-year-old mystery solved.

    PubMed

    Spinner, Robert J; Vincent, Jean-François; Wolanskyj, Alexandra P; Scheithauer, Bernd W

    2008-10-01

    We describe the first reported case of an intraneural ganglion cyst, an ulnar ("cubital") intraneural cyst, which, on literature review, dated to 1810. For over 80 years, its original brief description by Beauchêne was wrongly attributed to Duchenne, effectively making the reference and specimen inaccessible to scrutiny. Fortunately, the intact cyst had been safely housed in the Musée Dupuytren, Paris, France, thus permitting its examination. Although originally described as a "serous" cyst, our present understanding of the anatomy of the ulnar nerve and of peripheral nerve pathology allowed us to reinterpret it as a mucin-filled, elbow-level, ulnar intraneural ganglion cyst. In addition to its description as a fusiform cystic enlargement of the nerve, we documented similar enlargement of a lumen-bearing branch, the articular branch at the level of the elbow. Based on our assessment of the specimen and with a modern perspective, we concluded that the origin of the cyst was from the postero-medial aspect of the elbow joint and that its fluid content, having dissected through a capsular defect, followed the path of the articular branch into the parent ulnar nerve. The purpose of this report is to clarify historical misconceptions regarding the pathogenesis of this controversial entity.

  17. The circadian response of intrinsically photosensitive retinal ganglion cells.

    PubMed

    Zele, Andrew J; Feigl, Beatrix; Smith, Simon S; Markwell, Emma L

    2011-03-14

    Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or intrinsic (retinal) network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years) with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux). Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO) was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells mediate this circadian variation.

  18. Recurrent intraneural ganglion cysts: Pathoanatomic patterns and treatment implications.

    PubMed

    Desy, Nicholas M; Lipinski, Lindsay J; Tanaka, Shota; Amrami, Kimberly K; Rock, Michael G; Spinner, Robert J

    2015-11-01

    The etiology of intraneural ganglion cysts has been poorly understood. This has resulted in the development of multiple surgical treatment strategies and a high recurrence rate. We sought to analyze these recurrences in order to provide a pathoanatomic explanation and staging classification for intraneural cyst recurrence. An expanded literature search was performed to identify frequencies and patterns in cases of intraneural ganglion cyst recurrences following primary surgery. Two univariate analyses were completed to identify associations between the type of revision surgery and repeat cyst recurrences. The expanded literature search found an 11% recurrence rate following primary surgery, including 64 recurrences following isolated cyst decompression (Group 1); six after articular branch resection (Group 2); and none following surgical procedures that addressed the joint (Group 3). Eight cases did not specify the type of primary surgery. In group 1, forty-eight of the recurrences (75%) were in the parent nerve, three involved only the articular branch, and one travelled along the articular branch in a different distal direction without involving the main parent nerve. In group 2, only one case (17%) recurred/persisted within the parent nerve, one recurred within a persistent articular branch, and one formed within a persistent articular branch and travelled in a different distal direction. Intraneural recurrences most commonly occur following surgical procedures that only target the main parent nerve. We provide proven or theoretical explanations for all identified cases of intraneural recurrences for an occult or persistent articular branch pathway.

  19. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    PubMed Central

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae and provides the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a mini-osmotic pump. In BDNF-treated cochleae SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement in electrically-evoked auditory brainstem response thresholds. Although BDNF may have potential therapeutic value in the developing auditory system, many serious obstacles currently preclude clinical application. PMID:21452221

  20. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion.

    PubMed

    Hadj-Saïd, Wahiba; Froger, Nicolas; Ivkovic, Ivana; Jiménez-López, Manuel; Dubus, Élisabeth; Dégardin-Chicaud, Julie; Simonutti, Manuel; Quénol, César; Neveux, Nathalie; Villegas-Pérez, María Paz; Agudo-Barriuso, Marta; Vidal-Sanz, Manuel; Sahel, Jose-Alain; Picaud, Serge; García-Ayuso, Diego

    2016-09-01

    Taurine depletion is known to induce photoreceptor degeneration and was recently found to also trigger retinal ganglion cell (RGC) loss similar to the retinal toxicity of vigabatrin. Our objective was to study the topographical loss of RGCs and cone photoreceptors, with a distinction between the two cone types (S- and L- cones) in an animal model of induced taurine depletion. We used the taurine transporter (Tau-T) inhibitor, guanidoethane sulfonate (GES), to induce taurine depletion at a concentration of 1% in the drinking water. Spectral-domain optical coherence tomography (SD-OCT) and electroretinograms (ERG) were performed on animals after 2 months of GES treatment administered through the drinking water. Retinas were dissected as wholemounts and immunodetection of Brn3a (RGC), S-opsin (S-cones), and L-opsin (L-cones) was performed. The number of Brn3a+ RGCs, and L- and S-opsin+ cones was automatically quantified and their retinal distribution studied using isodensity maps. The treatment resulted in a significant reduction in plasma taurine levels and a profound dysfunction of visual performance as shown by ERG recordings. Optical coherence tomography analysis revealed that the retina was thinner in the taurine-depleted group. S-opsin+cones were more affected (36%) than L-opsin+cones (27%) with greater cone cell loss in the dorsal area whereas RGC loss (12%) was uniformly distributed. This study confirms that taurine depletion causes RGC and cone loss. Electroretinograms results show that taurine depletion induces retinal dysfunction in photoreceptors and in the inner retina. It establishes a gradient of cell loss depending on the cell type from S-opsin+cones, L-opsin+cones, to RGCs. The greater cell loss in the dorsal retina and of the S-cone population may underline different cellular mechanisms of cellular degeneration and suggests that S-cones may be more sensitive to light-induced retinal toxicity enhanced by the taurine depletion.

  1. Neuropathy-associated Nav1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons.

    PubMed

    Persson, Anna-Karin; Liu, Shujun; Faber, Catharina G; Merkies, Ingemar S J; Black, Joel A; Waxman, Stephen G

    2013-01-01

    Small-fiber neuropathy (SFN) is characterized by injury to small-diameter peripheral nerve axons and intraepidermal nerve fibers (IENF). Although mechanisms underlying loss of IENF in SFN are poorly understood, available data suggest that it results from axonal degeneration and reduced regenerative capacity. Gain-of-function variants in sodium channel Na(V)1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in ∼30% of patients with idiopathic SFN. In the present study, to determine whether these channel variants can impair axonal integrity, we developed an in vitro assay of DRG neurite length, and examined the effect of 3 SFN-associated variant Na(V)1.7 channels, I228M, M932L/V991L (ML/VL), and I720K, on DRG neurites in vitro. At 3 days after culturing, DRG neurons transfected with I228M channels exhibited ∼20% reduced neurite length compared to wild-type channels; DRG neurons transfected with ML/VL and I720K variants displayed a trend toward reduced neurite length. I228M-induced reduction in neurite length was ameliorated by the use-dependent sodium channel blocker carbamazepine and by a blocker of reverse Na-Ca exchange. These in vitro observations provide evidence supporting a contribution of the I228M variant Na(V)1.7 channel to impaired regeneration and/or degeneration of sensory axons in idiopathic SFN, and suggest that enhanced sodium channel activity and reverse Na-Ca exchange can contribute to a decrease in length of peripheral sensory axons.

  2. Ganglions of the hand and wrist: Retrospective statistical analysis of 520 cases.

    PubMed

    Kuliński, Sebastian; Gutkowska, Olga; Mizia, Sylwia; Gosk, Jerzy

    2017-01-01

    Ganglions constitute the most common tumor type of the hand and wrist region. They have a non-neoplastic character and affect patients of all ages. The purpose of this work was to analyze the epidemiological data of a representative group of patients diagnosed with ganglions of the hand and wrist. Five-hundred-and-twenty patients operated on for ganglions of the hand and wrist between the years 2000 and 2014 were included in the study. For the statistical analysis, STATISTICA v. 10 was used. Categorical data was analyzed using the χ2. The distribution of two and more independent samples was compared through the Mann-Whitney U test and Kruskal-Wallis test followed by pairwise comparisons for significant test statistics, respectively. In the studied group of patients, ganglions affected females more often than males, with a 2.8 : 1 ratio. No statistically significant differences in age distribution between women and men (median age 38 vs. 40 years) were found. Ganglions affected both sides of the body with comparable equality. Wrist ganglions predominated (76%). The patients diagnosed with hand ganglions were statistically significantly older (p < 0.001), and the right hand was affected more often (p = 0.003). A statistically significant difference in age distribution between the patients with DWG (dorsal wrist ganglions) and VRG (volar retinacular ganglions) was observed (p < 0.001). DWG affected the left side (p = 0.003) and VRG the right side (p = 0.005) of the body more often. Statistical analysis of our patients confirmed much of the previously published data. Although the diagnosis and treatment of ganglions of the hand and wrist are relatively uncomplicated, the pathophysiology of their formation is still waiting to be thoroughly explained.

  3. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans.

    PubMed

    Zangerl, Barbara; Goldstein, Orly; Philp, Alisdair R; Lindauer, Sarah J P; Pearce-Kelling, Susan E; Mullins, Robert F; Graphodatsky, Alexander S; Ripoll, Daniel; Felix, Jeanette S; Stone, Edwin M; Acland, Gregory M; Aguirre, Gustavo D

    2006-11-01

    Progressive rod-cone degeneration (prcd) is a late-onset, autosomal recessive photoreceptor degeneration of dogs and a homolog for some forms of human retinitis pigmentosa (RP). Previously, the disease-relevant interval was reduced to a 106-kb region on CFA9, and a common phenotype-specific haplotype was identified in all affected dogs from several different breeds and breed varieties. Screening of a canine retinal EST library identified partial cDNAs for novel candidate genes in the disease-relevant interval. The complete cDNA of one of these, PRCD, was cloned in dog, human, and mouse. The gene codes for a 54-amino-acid (aa) protein in dog and human and a 53-aa protein in the mouse; the first 24 aa, coded for by exon 1, are highly conserved in 14 vertebrate species. A homozygous mutation (TGC --> TAC) in the second codon shows complete concordance with the disorder in 18 different dog breeds/breed varieties tested. The same homozygous mutation was identified in a human patient from Bangladesh with autosomal recessive RP. Expression studies support the predominant expression of this gene in the retina, with equal expression in the retinal pigment epithelium, photoreceptor, and ganglion cell layers. This study provides strong evidence that a mutation in the novel gene PRCD is the cause of autosomal recessive retinal degeneration in both dogs and humans.

  4. Functional and morphological study of retinal photoreceptor cell degeneration in transgenic rabbits with a Pro347Leu rhodopsin mutation.

    PubMed

    Asakawa, Ken; Ishikawa, Hitoshi; Uga, Shigekazu; Mashimo, Kimiyo; Shimizu, Kimiya; Kondo, Mineo; Terasaki, Hiroko

    2015-09-01

    To investigate the process of retinal degeneration by analyzing the functional and morphological findings in transgenic rabbits with a Pro347Leu rhodopsin mutation. Wild-type (WT) and transgenic (Tg) rabbits at ages 4, 8 and 12 months were used. We conducted functional evaluation by recording the changes in the pupil response to red and blue light stimulation and the amplitude of the electroretinography (ERG). Morphologically, rod and cone distribution was examined using light and electron microscopy. Immunostaining for the identification of retinal ganglion cells (RGCs) was also confirmed by injecting a TUJ-1 monoclonal antibody. Pupil constriction for infrared pupillography and the a- and b-waves for ERG in Tg rabbits decreased with increasing age; the differences were compared to the age-matched WT rabbits. The subnormal ERG in the Tg rabbits, especially the a-wave decrease and pupil constriction with a long latency time, was induced only during exposure to blue light stimulation at 12 months. Light and electron microscopic findings showed a progressive loss of photoreceptor cells over time manifesting by 8 months in the peripheral retina. Moreover, pyknotic nuclei of the outer nuclear layer in the center of the visual streak were observed. At 12 months, there was disappearance of the rods and ballooning degeneration of the cones. Some remaining RGCs had large cell bodies with long branching dendrites. The changes in the pupil light response and amplitude of the ERG could be used to predict the state of retinal degeneration in the Tg rabbit.

  5. Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations.

    PubMed

    Beltran, William A; Cideciyan, Artur V; Guziewicz, Karina E; Iwabe, Simone; Swider, Malgorzata; Scott, Erin M; Savina, Svetlana V; Ruthel, Gordon; Stefano, Frank; Zhang, Lingli; Zorger, Richard; Sumaroka, Alexander; Jacobson, Samuel G; Aguirre, Gustavo D

    2014-01-01

    Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations.

  6. iPSC-Derived Retina Transplants Improve Vision in rd1 End-Stage Retinal-Degeneration Mice.

    PubMed

    Mandai, Michiko; Fujii, Momo; Hashiguchi, Tomoyo; Sunagawa, Genshiro A; Ito, Shinichiro; Sun, Jianan; Kaneko, Jun; Sho, Junki; Yamada, Chikako; Takahashi, Masayo

    2017-01-10

    Recent success in functional recovery by photoreceptor precursor transplantation in dysfunctional retina has led to an increased interest in using embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal progenitors to treat retinal degeneration. However, cell-based therapies for end-stage degenerative retinas that have lost the outer nuclear layer (ONL) are still a big challenge. In the present study, by transplanting mouse iPSC-derived retinal tissue (miPSC retina) in the end-stage retinal-degeneration model (rd1), we visualized the direct contact between host bipolar cell terminals and the presynaptic terminal of graft photoreceptors by gene labeling, showed light-responsive behaviors in transplanted rd1 mice, and recorded responses from the host retina with transplants by ex vivo micro-electroretinography and ganglion cell recordings using a multiple-electrode array system. Our data provides a proof of concept for transplanting ESC/iPSC retinas to restore vision in end-stage retinal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Canine Retina Has a Primate Fovea-Like Bouquet of Cone Photoreceptors Which Is Affected by Inherited Macular Degenerations

    PubMed Central

    Guziewicz, Karina E.; Iwabe, Simone; Swider, Malgorzata; Scott, Erin M.; Savina, Svetlana V.; Ruthel, Gordon; Stefano, Frank; Zhang, Lingli; Zorger, Richard; Sumaroka, Alexander; Jacobson, Samuel G.; Aguirre, Gustavo D.

    2014-01-01

    Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations. PMID:24599007

  8. Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration

    PubMed Central

    Greferath, Ursula; Anderson, Emily E.; Jobling, Andrew I.; Vessey, Kirstan A.; Martinez, Gemma; de Iongh, Robb U.; Kalloniatis, Michael; Fletcher, Erica L.

    2015-01-01

    While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2–12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration. PMID:26283925

  9. Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations.

    PubMed

    Klistorner, A; Graham, E C; Yiannikas, C; Barnett, M; Parratt, J; Garrick, R; Wang, C; You, Y; Graham, S L

    2017-08-10

    The mechanism of retinal ganglion cell and retinal nerve fiber layer loss in multiple sclerosis (MS) remains unknown. This study aimed to investigate the association between temporal retinal nerve fiber layer (tRNFL) thinning and disease activity in the brain determined by T2 lesions on magnetic resonance imaging (MRI). Fifty-five consecutive patients with relapsing-remitting MS and 25 controls were enrolled. All patients underwent annual optical coherence tomography and high-resolution MRI scans for tRNFL thickness and brain lesion volume analysis, respectively. Significant tRNFL thickness reduction was observed over the 3-year follow-up period at a relatively constant rate (1.02 μm/year). Thinning of tRNFL fibers was more prominent in younger patients (P = 0.01). The tRNFL loss was associated with new MRI lesions in the optic radiations (ORs). There was significantly greater tRNFL thinning in patients with new lesional activity in the ORs compared with patients with new lesions outside the ORs (P = 0.009). This study supports the notion that retrograde transneuronal degeneration caused by OR lesions might play a role in progressive retinal nerve fiber layer loss. In addition, the results of the study also indicate that the disease-related neurodegenerative changes in the retina start much earlier than the clinical diagnosis of MS. © 2017 EAN.

  10. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.

  11. Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of glaucoma.

    PubMed

    Madeira, Maria H; Ortin-Martinez, Arturo; Nadal-Nícolas, Francisco; Ambrósio, António F; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Santiago, Ana Raquel

    2016-06-08

    Glaucoma is the second leading cause of blindness worldwide, being characterized by progressive optic nerve damage and loss of retinal ganglion cells (RGCs), accompanied by increased inflammatory response involving retinal microglial cells. The etiology of glaucoma is still unknown, and despite elevated intraocular pressure (IOP) being a major risk factor, the exact mechanisms responsible for RGC degeneration remain unknown. Caffeine, which is an antagonist of adenosine receptors, is the most widely consumed psychoactive drug in the world. Several evidences suggest that caffeine can attenuate the neuroinflammatory responses and afford protection upon central nervous system (CNS) injury. We took advantage of a well characterized animal model of glaucoma to investigate whether caffeine administration controls neuroinflammation and elicits neuroprotection. Caffeine or water were administered ad libitum and ocular hypertension (OHT) was induced by laser photocoagulation of the limbal veins in Sprague Dawley rats. Herein, we show that caffeine is able to partially decrease the IOP in ocular hypertensive animals. More importantly, we found that drinking caffeine prevented retinal microglia-mediated neuroinflammatory response and attenuated the loss of RGCs in animals with ocular hypertension (OHT). This study opens the possibility that caffeine or adenosine receptor antagonists might be a therapeutic option to manage RGC loss in glaucoma.

  12. Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies.

    PubMed

    Ba-Ali, Shakoor; Lund-Andersen, Henrik

    2017-07-14

    In recent years, chromatic pupillometry is used in humans to evaluate the activity of melanopsin expressing intrinsic photosensitive retinal ganglion cells (ipRGCs). Blue light is used to stimulate the ipRGCs and red light activates the rod/cone photoreceptors. The late re-dilation phase of pupillary light reflex is primarily driven by the ipRGCs. Optic neuropathies i.e. Leber hereditary optic neuropathy (LHON), autosomal dominant optic atrophy (ADOA), nonarteritic anterior ischemic optic neuropathy (NAION), glaucoma, optic neuritis and idiopathic intracranial hypertension (IIH) are among the diseases, which have been subject to pupillometric studies. The ipRGCs are differentially affected in these various optic neuropathies. In mitochondrial optic neuropathies, the ipRGCs are protected against degeneration, whereas in glaucoma, NAION, optic neuritis and IIH the ipRGCs are damaged. Here, we will review the results of pupillometric, histopathological and animal studies evaluating the ipRGCs in mitochondrial and non-mitochondrial optic neuropathies. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  13. Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of glaucoma

    PubMed Central

    Madeira, Maria H.; Ortin-Martinez, Arturo; Nadal-Nícolas, Francisco; Ambrósio, António F.; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Santiago, Ana Raquel

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide, being characterized by progressive optic nerve damage and loss of retinal ganglion cells (RGCs), accompanied by increased inflammatory response involving retinal microglial cells. The etiology of glaucoma is still unknown, and despite elevated intraocular pressure (IOP) being a major risk factor, the exact mechanisms responsible for RGC degeneration remain unknown. Caffeine, which is an antagonist of adenosine receptors, is the most widely consumed psychoactive drug in the world. Several evidences suggest that caffeine can attenuate the neuroinflammatory responses and afford protection upon central nervous system (CNS) injury. We took advantage of a well characterized animal model of glaucoma to investigate whether caffeine administration controls neuroinflammation and elicits neuroprotection. Caffeine or water were administered ad libitum and ocular hypertension (OHT) was induced by laser photocoagulation of the limbal veins in Sprague Dawley rats. Herein, we show that caffeine is able to partially decrease the IOP in ocular hypertensive animals. More importantly, we found that drinking caffeine prevented retinal microglia-mediated neuroinflammatory response and attenuated the loss of RGCs in animals with ocular hypertension (OHT). This study opens the possibility that caffeine or adenosine receptor antagonists might be a therapeutic option to manage RGC loss in glaucoma. PMID:27270337

  14. Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F. III

    2009-06-01

    We and other research groups are designing an electronic retinal prosthesis to provide vision for patients who are blind due to photoreceptor degeneration. In this study, we examined the effect of stimulus waveform on the amount of current needed to activate retinal ganglion cells (RGCs) when the retinal neural network is stimulated. Isolated retinas of wild-type and rd1 mice were stimulated with cathodal and anodal monophasic current pulses of 1 ms duration and symmetric biphasic current pulses (1 ms per phase) delivered through an electrode that was located subretinally. For both wild-type and rd1 mouse retinas, cathodal current pulses were least effective in activating most RGCs. The median threshold current for a cathodal current pulse was 2.0-4.4 fold higher than the median threshold current for either an anodal or a biphasic current pulse. In wild-type mouse retinas, the median threshold current for activating RGCs with anodal current pulses was 23% lower than that with biphasic current pulses. In rd1 mouse retinas, the median threshold currents for anodal and biphasic current pulses were about the same. However, the variance in thresholds of rd1 RGCs for biphasic pulse stimulation was much smaller than for anodal pulse stimulation. Thus, a symmetric biphasic current pulse may be the best stimulus for activating the greatest number of RGCs in retinas devoid of photoreceptors.

  15. Macro- and microstructure of the superior cervical ganglion in dogs, cats and horses during maturation.

    PubMed

    Fioretto, Emerson Ticona; de Abreu, Rogério Navarro; Castro, Marcelo Fernandes de Souza; Guidi, Wanderley Lima; Ribeiro, Antonio Augusto Coppi Maciel

    2007-01-01

    The superior cervical ganglion (SCG) provides sympathetic input to the head and neck, its relation with mandible, submandibular glands, eyes (second and third order control) and pineal gland being demonstrated in laboratory animals. In addition, the SCG's role in some neuropathies can be clearly seen in Horner's syndrome. In spite of several studies published involving rats and mice, there is little morphological descriptive and comparative data of SCG from large mammals. Thus, we investigated the SCG's macro- and microstructural organization in medium (dogs and cats) and large animals (horses) during a very specific period of the post-natal development, namely maturation (from young to adults). The SCG of dogs, cats and horses were spindle shaped and located deeply into the bifurcation of the common carotid artery, close to the distal vagus ganglion and more related to the internal carotid artery in dogs and horses, and to the occipital artery in cats. As to macromorphometrical data, that is ganglion length, there was a 23.6% increase from young to adult dogs, a 1.8% increase from young to adult cats and finally a 34% increase from young to adult horses. Histologically, the SCG's microstructure was quite similar between young and adult animals and among the 3 species. The SCG was divided into distinct compartments (ganglion units) by capsular septa of connective tissue. Inside each ganglion unit the most prominent cellular elements were ganglion neurons, glial cells and small intensely fluorescent cells, comprising the ganglion's morphological triad. Given this morphological arrangement, that is a summation of all ganglion units, SCG from dogs, cats and horses are better characterized as a ganglion complex rather than following the classical ganglion concept. During maturation (from young to adults) there was a 32.7% increase in the SCG's connective capsule in dogs, a 25.8% increase in cats and a 33.2% increase in horses. There was an age-related increase in the

  16. Association Between Regular Cannabis Use and Ganglion Cell Dysfunction.

    PubMed

    Schwitzer, Thomas; Schwan, Raymund; Albuisson, Eliane; Giersch, Anne; Lalanne, Laurence; Angioi-Duprez, Karine; Laprevote, Vincent

    2017-01-01

    Because cannabis use is a major public health concern and cannabis is known to act on central neurotransmission, studying the retinal ganglion cells in individuals who regularly use cannabis is of interest. To determine whether the regular use of cannabis could alter the function of retinal ganglion cells in humans. For this case-control study, individuals who regularly use cannabis, as well as healthy controls, were recruited, and data were collected from February 11 to October 28, 2014. Retinal function was used as a direct marker of brain neurotransmission abnormalities in complex mental phenomena. Amplitude and implicit time of the N95 wave on results of pattern electroretinography. Twenty-eight of the 52 participants were regular cannabis users (24 men and 4 women; median age, 22 years [95% CI, 21-24 years]), and the remaining 24 were controls (20 men and 4 women; median age, 24 years [95% CI, 23-27 years]). There was no difference between groups in terms of age (P = .13) or sex (P = .81). After adjustment for the number of years of education and alcohol use, there was a significant increase for cannabis users of the N95 implicit time on results of pattern electroretinography (median, 98.6 milliseconds [95% CI, 93.4-99.5]) compared with controls (median, 88.4 milliseconds [95% CI, 85.0-91.1]), with 8.4 milliseconds as the median of the differences (95% CI, 4.9-11.5; P < .001, Wald logistic regression). A receiver operating characteristic curve analysis (area under the curve, 0.84 [95% CI, 0.73-0.95]; P < .001) revealed, for a cutoff value of 91.13 milliseconds, a sensitivity of 78.6% (95% CI, 60.5%-89.8%) and a specificity of 75.0% (95% CI, 55.1%-88.0%) for correctly classifying both cannabis users and controls in their corresponding group. The positive predictive value was 78.6% (95% CI, 60.5%-89.8%), and the negative predictive value was 75.0% (95% CI, 55.1%-88.0%). Our results demonstrate a delay in transmission of action potentials by the

  17. Prospectives for gene therapy of retinal degenerations.

    PubMed

    Thumann, Gabriele

    2012-08-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  18. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  19. Oligomeric proanthocyanidin protects retinal ganglion cells against oxidative stress-induced apoptosis

    PubMed Central

    Wang, Hui; Zhang, Chanjuan; Lu, Dan; Shu, Xiaoming; Zhu, Lihong; Qi, Renbing; So, Kwok-Fai; Lu, Daxiang; Xu, Ying

    2013-01-01

    The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuroprotective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal ganglion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 μmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H2O2) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H2O2 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H2O2-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process. PMID:25206541

  20. Synaptic inputs to the ganglion cells in the tiger salamander retina.

    PubMed

    Wunk, D F; Werblin, F S

    1979-03-01

    The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main types of ganglion cell: "on" center, "off" center, "on-off", and a "hybrid" cell that responds transiently to center, but sustainedly, to surround illumination. The results lead to these inferences. The on-ganglion cell receives excitatory synpatic input from the on bipolars and that synapse is "silent" in the dark. The off-ganglion cell receives excitatory synaptic input from the off bipolars with this synapse tonically active in the dark. The on-off and hybrid ganglion cells receive a transient excitatory input with narrow receptive field, not simply correlated with the activity of any presynaptic cell. All cell types receive a broad field transient inhibitory input, which apparently originates in the transient amacrine cells. Thus, most, but not all, ganglion cell responses can be explained in terms of synaptic inputs from bipolar and amacrine cells, integrated at the ganglion cell membrane.

  1. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    PubMed Central

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF. PMID:27935942

  2. Photon capture and signalling by melanopsin retinal ganglion cells

    PubMed Central

    Do, Michael Tri H.; Kang, Shin H.; Xue, Tian; Zhong, Haining; Liao, Hsi-Wen; Bergles, Dwight E.; Yau, King-Wai

    2009-01-01

    A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centers for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behavior remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 104-fold lower than that of rod and cone pigments, resulting in a very low photon-catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Remarkably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex. PMID:19118382

  3. Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling.

    PubMed

    Damodaram, Srikanth; Thalakoti, Srikanth; Freeman, Stacy E; Garrett, Filip G; Durham, Paul L

    2009-01-01

    Sensitization and activation of trigeminal neurons are implicated in the underlying pathology of migraine, acute sinusitis, and allergic rhinitis. Cell bodies of trigeminal neurons that provide sensory innervation of the dura and nasal mucosa reside in the trigeminal ganglion in association with satellite glial cells where they communicate via gap junctions. Gap junctions, channels formed by connexins, modulate the excitability state of both neurons and glia under pathological conditions. Tonabersat, a compound being tested as an antimigraine drug, is thought to block gap junction activity. To investigate the cellular events within trigeminal ganglia that may account for the significant comorbidity of migraine and rhinosinusitis and determine the effect of tonabersat on neuron-satellite glia communication. Sprague Dawley rats injected with True Blue were used to localize neuronal cell bodies in the ganglion and study neuron-glia signaling via gap junctions in the trigeminal ganglion. Dye coupling studies were conducted under basal conditions and in response to tumor necrosis factor-alpha injection into the whisker pad and/or capsaicin injection into the eyebrow. Changes in connexin 26 and active p38 levels were determined by immunohistochemistry. In addition, the effect of tonabersat prior to chemical stimulation on gap junction activity and expression of connexins and active p38 was investigated. Injection of tumor necrosis factor-alpha, a cytokine implicated in the pathology of acute sinusitis and allergic rhinitis, into the V2 region was shown to lower the amount of capsaicin required to stimulate neurons located in the V1 region of the ganglion. While injection of tumor necrosis factor-alpha into the whisker pad or capsaicin injection into the eyebrow alone did not cause increased dye movement, the combination of both stimuli greatly increased neuron-satellite glia communication via gap junctions in both V1 and V2 regions. The change in gap junction activity

  4. Photon capture and signalling by melanopsin retinal ganglion cells.

    PubMed

    Do, Michael Tri H; Kang, Shin H; Xue, Tian; Zhong, Haining; Liao, Hsi-Wen; Bergles, Dwight E; Yau, King-Wai

    2009-01-15

    A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centres for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behaviour remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 10(4)-fold lower than that of rod and cone pigments, resulting in a very low photon catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Notably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.

  5. Interphase gap decreases electrical stimulation threshold of retinal ganglion cells.

    PubMed

    Weitz, A C; Behrend, M R; Humayun, M S; Chow, R H; Weiland, J D

    2011-01-01

    The most common electrical stimulation pulse used in retinal implants is a symmetric biphasic current pulse. Prior electrophysiological studies in peripheral nerve have shown that adding an interphase gap (IPG) between the two phases makes stimulation more efficient. We investigated the effect of IPG duration on retinal ganglion cell (RGC) electrical threshold. We used calcium imaging to measure the activity of RGCs in isolated retina in response to electrical stimulation. By varying IPG duration, we were able to examine the effect of duration on threshold. We further studied this effect by simulating RGC behavior with a Hodgkin-Huxley-type model. Our results indicate that the threshold for electrical activation of RGCs can be reduced by increasing the length of the IPG.

  6. Electronic neuron within a ganglion of a leech (Hirudo medicinalis)

    NASA Astrophysics Data System (ADS)

    Aliaga, J.; Busca, N.; Minces, V.; Mindlin, G. B.; Pando, B.; Salles, A.; Sczcupak, L.

    2003-06-01

    We report the construction of an electronic device that models and replaces a neuron in a midbody ganglion of the leech Hirudo medicinalis. In order to test the behavior of our device, we used a well-characterized synaptic interaction between the mechanosensory, sensitive to pressure, (P) cell and the anteropagoda (because of the action potential shape) (AP) neuron. We alternatively stimulated a P neuron and our device connected to the AP neuron, and studied the response of the latter. The number and timing of the AP spikes were the same when the electronic parameters were properly adjusted. Moreover, after changes in the depolarization of the AP cell, the responses under the stimulation of both the biological neuron and the electronic device vary in a similar manner.

  7. Electronic neuron within a ganglion of a leech (Hirudo medicinalis).

    PubMed

    Aliaga, J; Busca, N; Minces, V; Mindlin, G B; Pando, B; Salles, A; Sczcupak, L

    2003-06-01

    We report the construction of an electronic device that models and replaces a neuron in a midbody ganglion of the leech Hirudo medicinalis. In order to test the behavior of our device, we used a well-characterized synaptic interaction between the mechanosensory, sensitive to pressure, (P) cell and the anteropagoda (because of the action potential shape) (AP) neuron. We alternatively stimulated a P neuron and our device connected to the AP neuron, and studied the response of the latter. The number and timing of the AP spikes were the same when the electronic parameters were properly adjusted. Moreover, after changes in the depolarization of the AP cell, the responses under the stimulation of both the biological neuron and the electronic device vary in a similar manner.

  8. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.

    PubMed

    Yeh, Connie Y; Koehl, Kristin L; Harman, Christine D; Iwabe, Simone; Guzman, José M; Petersen-Jones, Simon M; Kardon, Randy H; Komáromy, András M

    2017-01-01

    The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases.

  9. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response

    PubMed Central

    Yeh, Connie Y.; Koehl, Kristin L.; Harman, Christine D.; Iwabe, Simone; Guzman, José M.; Petersen-Jones, Simon M.; Kardon, Randy H.; Komáromy, András M.

    2017-01-01

    Purpose The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Methods Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Results Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Conclusions Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases. PMID:28061512

  10. Regional differences in myelination of chick vestibulocochlear ganglion cells.

    PubMed

    Sun, Ying-Jie; Kobayashi, Hiroto; Yoshida, Saori; Shirasawa, Nobuyuki; Naito, Akira

    2013-11-01

    In vertebrates, vestibular and cochlear ganglion (VG and CG, respectively) cells are bipolar neurons with myelinated axons and perikarya. The time course of the myelination of the VG and CG cells during development of chick embryos was investigated. Chick VG and CG from embryonic day at 7-20 (E7-20) were prepared for a transmission electron microscopy, myelin basic protein immunohistochemistry, and real-time quantitative RT-PCR. In the VG cells, myelination was first observed on the peripheral axons of the ampullar nerves at E10, on the utricular and saccular nerves at E12, and on the lagenar and neglecta nerves at E13. In the VG central axons, myelination was first seen on the ampullar nerves at E11, on the utricular and saccular nerves at E13, and on the lagenar nerves at E13. In the CG cells, the myelination was first observed on the peripheral and central axons at E14. In both VG and CG, myelination was observed on the perikarya at E17. These results suggest that the onset of the axonal myelination on the VG cells occurred earlier than that on the CG cells, whereas the perikaryal myelination occurred at about the same time on the both types of ganglion cells. Moreover, the myelination on the ampullar nerves occurred earlier than that on the utricular and saccular nerves. The myelination on the peripheral axons occurred earlier than that on the central axons of the VG cells, whereas that on the central and peripheral axons of the CG cells occurred at about the same time. The regional differences in myelination in relation to the onset of functional activities in the VG and CG cells are discussed. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Petrosal ganglion: a more complex role than originally imagined

    PubMed Central

    Retamal, Mauricio A.; Reyes, Edison P.; Alcayaga, Julio

    2014-01-01

    The petrosal ganglion (PG) is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties PG neurons can be ascribed to one of two categories: (i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and (ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, PG neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of PG neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body. PMID:25538627

  12. Voltage dependence of membrane properties of trigeminal root ganglion neurons.

    PubMed

    Puil, E; Gimbarzevsky, B; Miura, R M

    1987-07-01

    1. Membrane potentials of trigeminal root ganglion neurons were varied systematically by intracellular injections of long-lasting step currents to determine the voltage dependence of their membrane electrical properties. The complex impedance and impedance magnitude functions were first determined using oscillatory input currents superimposed on these step currents. 2. Systematic step variations in the membrane potential led to qualitative changes in the impedance magnitude functions. Depolarization of neurons exhibiting resonance at their initial resting membrane potentials resulted in a reduction in the resonance behavior. Hyperpolarization of these neurons to membrane potentials of about -80 to -90 mV led to a disappearance of the resonant peak but increased the maximum of the impedance magnitude. 3. The complex impedance data were fitted with a neuronal model derived from linearized Hodgkin-Huxley-like equations, yielding estimates for the membrane properties. The four parameters of the model were 1) a time invariant, resting membrane conductance, Gr, 2) a voltage- and time-dependent conductance, GL, 3) a time constant, tau u, for the unknown ionic channels that are activated by the 2- to 5-mV oscillatory perturbation of the stepped membrane potential, and 4) Ci, the input capacitance. 4. The results of the curve-fitting procedures suggested that all parameters depended on membrane voltage. The most voltage-dependent parameters were GL and tau u throughout a 25- to 30-mV range that was subthreshold to the production of action potentials. Both Gr and GL increased with subthreshold depolarization. 5. These impedance data suggest the very important role of the membrane potential of the trigeminal root ganglion neurons on their abilities to synthesize and filter inputted electrical signals.

  13. FTY720 protects retinal ganglion cells in experimental glaucoma.

    PubMed

    You, Yuyi; Gupta, Vivek K; Li, Jonathan C; Al-Adawy, Nadia; Klistorner, Alexander; Graham, Stuart L

    2014-04-17

    To investigate the neuroprotective effects of sphingosine-1-phosphate (S1P) analogue fingolimod (FTY720) in experimental glaucoma in rats. A unilateral chronic ocular hypertensive model was established by injections of microbeads into the anterior eye chamber of adult Sprague-Dawley rats. Fingolimod was administered to one group of rats intraperitoneally every week for 3 months. The scotopic threshold response (STR) was recorded to assess the function of the inner retina. Changes in cell density in the ganglion cell layer (GCL) were evaluated by hematoxylin and eosin staining on retinal sections and axonal count of the optic nerve was performed using Bielschowsky's silver staining. Effects of drug treatment on activation of Akt and Erk1/2 were evaluated using Western blotting by assessing phosphorylation levels of these proteins. The expression of S1P receptors in the optic nerve head region was also evaluated using Western blotting and immunohistochemistry. Administration of FTY720 reduced the loss of STR amplitude in glaucomatous eyes (P < 0.05). Counting and plotting the cell numbers/axonal density showed significant neural preservation in the GCL and the optic nerve (P < 0.05). An increased phosphorylation level of Akt and Erk1/2 following FTY720 administration was observed. Both S1P1 and S1P5 receptors were found to be expressed in the retina and the expression of S1P1R was upregulated in experimentally-induced glaucoma. This study demonstrates, for the first time, that FTY720 could act as a neuroprotective agent to protect retinal ganglion cells in experimental glaucoma. Administration of this drug significantly reduces the structural and functional loss of the inner retina elicited indicating that it may potentially be used to attenuate neuronal loss and optic nerve damage in glaucomatous patients. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. Ultrasound-guided stellate ganglion block: safety and efficacy.

    PubMed

    Narouze, Samer

    2014-06-01

    Cervical sympathetic and stellate ganglion blocks (SGB) provide a valuable diagnostic and therapeutic benefit to sympathetically maintained pain syndromes in the head, neck, and upper extremity. With the ongoing efforts to improve the safety of the procedure, the techniques for SGB have evolved over time, from the use of the standard blind technique, to fluoroscopy, and recently to the ultrasound (US)-guided approach. Over the past few years, there has been a growing interest in the ultrasound-guided technique and the many advantages that it might offer. Fluoroscopy is a reliable method for identifying bony surfaces, which facilitates identifying the C6 and C7 transverse processes. However, this is only a surrogate marker for the cervical sympathetic trunk. The ideal placement of the needle tip should be anterolateral to the longus colli muscle, deep to the prevertebral fascia (to avoid spread along the carotid sheath) but superficial to the fascia investing the longus colli muscle (to avoid injecting into the muscle substance). Identifying the correct fascial plane can be achieved with ultrasound guidance, thus facilitating the caudal spread of the injectate to reach the stellate ganglion at C7-T1 level, even if the needle is placed at C6 level. This allows for a more effective and precise sympathetic block with the use of a small injectate volume. Ultrasound-guided SGB may also improve the safety of the procedure by direct visualization of vascular structures (inferior thyroidal, cervical, vertebral, and carotid arteries) and soft tissue structures (thyroid, esophagus, and nerve roots). Accordingly, the risk of vascular and soft tissue injury may be minimized.

  15. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons.

  16. Morphological properties of mouse retinal ganglion cells during postnatal development.

    PubMed

    Coombs, Julie L; Van Der List, Deborah; Chalupa, Leo M

    2007-08-20

    Quantitative methods were used to assess dendritic stratification and other structural features of developing mouse retinal ganglion cells from birth to after eye opening. Cells were labeled by transgenic expression of yellow fluorescent protein, DiOlistics or diffusion of DiI, and subsequently imaged in three dimensions on a confocal microscope followed by morphometric analysis of 13 different structural properties. At postnatal day 1 (P1), the dendrites of all cells ramified across the vertical extent of the inner plexiform layer (IPL). By P3/4, dendrites were largely confined to different strata of the IPL. The stratification of dendrites initially reflected a retraction of widely ramifying dendritic processes, but for the most part this was due to the subsequent vertical expansion of the IPL. By P8, distinct cell classes could be recognized, although these had not yet attained adult-like properties. The structural features differentiating cell classes were found to follow three different developmental trends. The mean values of one set of morphological parameters were essentially unchanged throughout postnatal development; another set of measures showed a rapid rise with age to adult values; and a third set of measures first increased with age and later decreased, with the regressive events initiated around the time of eye opening. These findings suggest that the morphological development of retinal ganglion cells is regulated by diverse factors operating during different but overlapping time periods. Our results also suggest that dendritic stratification may be more highly specified in the developing mammalian retina than has been previously realized.

  17. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder

    PubMed Central

    Roecklein, Kathryn A.; Wong, Patricia M.; Miller, Megan A.; Donofry, Shannon D.; Kamarck, Marissa L.; Brainard, George C.

    2013-01-01

    ROECKLEIN, K.A., WONG, P.M., MILLER, M.A., DONOFRY, S.D., KAMARCK, M.L., BRAINARD, G.C. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder…NEUROSCI BIOBEHAV REV x(x) XXX-XXX, 2012. In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1–2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. PMID:23286902

  18. Effect of stellate ganglion block on laryngopharyngeal reflux disease

    PubMed Central

    Chun, Hye Jung; Lee, Mi Soon; Ahn, Ki Ryang; Kim, Chun Sook; Kang, Kyu Sik; Yoo, Sie Hyeon; Chung, Jin Hun; Kim, Nan-Seol; Seo, Yong Han; Gong, Hyung Youn; Lee, Yong Man

    2013-01-01

    Background Laryngopharyngeal reflux (LPR) disease has many symptoms such as globus pharyngeus, excessive throat clearing and hoarseness. The aim of this study was to investigate the effect of stellate ganglion block (SGB) in addition to proton pump inhibitors (PPI) on LPR. Methods Fifty patients complaining of more than 3 typical LPR symptoms for over 3 months were enrolled in the study. The P group took PPI for 8 weeks. The SP group took PPI and interwent a series of 8 SGB procedure once a week during the period of treatment. The blocks were performed one at a time unilaterally on the right and left stellate ganglions by injecting 1% mepivacaine 6 ml. We evaluated the reflux symptom index (RSI) before treatment and following 4 weeks and 8 weeks of treatment in both groups. Results After 4 weeks of treatment, the RSI of the P group decreased, but not significantly, to 16.6 ± 6.8 compared with the baseline value of 19.2 ± 2.7 (P = 0.093), whereas the RSI of the SP group decreased significantly to 9.8 ± 3.3 compared with the baseline value of 19.0 ± 4.7 (P = 0.000). After 8 weeks of treatment, the RSI of the P group decreased significantly to 13.7 ± 6.7 (P = 0.001) and the RSI of the SP group also decreased significantly to 7.7 ± 3.4 (P = 0.000). There were significant differences in the RSI between the two groups after 4 weeks (P = 0.000) and 8 weeks (P = 0.001) of treatment. Conclusions The symptoms of LPR improved earlier when PPI therapy was combined with SGB compared with PPI therapy alone. PMID:23741567

  19. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells.

    PubMed

    Pan, Feng; Toychiev, Abduqodir; Zhang, Yi; Atlasz, Tamas; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Völgyi, Béla; Akopian, Abram; Bloomfield, Stewart A

    2016-11-15

    Retinal ganglion cells (RGCs) in dark-adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance. Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways. The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals. The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity. The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark-adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Annular puncture with tumor necrosis factor-alpha injection enhances painful behavior with disc degeneration in vivo.

    PubMed

    Lai, Alon; Moon, Andrew; Purmessur, Devina; Skovrlj, Branko; Laudier, Damien M; Winkelstein, Beth A; Cho, Samuel K; Hecht, Andrew C; Iatridis, James C

    2016-03-01

    Painfulintervertebral disc degeneration is extremely common and costly. Effective treatments are lacking because the nature of discogenic pain is complex with limited capacity to distinguish painful conditions from age-related changes in the spine. Hypothesized sources of discogenic pain include chronic inflammation, neurovascular ingrowth, and structural disruption. This study aimed to investigate inflammation, pro-neurovascular growth factors, and structural disruption as sources of painful disc degeneration This study used an in vivo study to address these hypothesized mechanisms with anterior intradiscal injections of tumor necrosis factor-alpha (TNFα), pro-neurovascular growth factors: nerve growth factor and vascular endothelial growth factor (NGF and VEGF), and saline with additional sham surgery and naïve controls. Depth of annular puncture was also evaluated for its effects on structural and painful degeneration. Rat lumbar discs were punctured (shallow or deeper puncture) and intradiscally injected with saline, TNFα, or NGF and VEGF. Structural disc degeneration was assessed using X-ray, magnetic resonance imaging (MRI), and histology. The rat painful condition was evaluated using Von Frey hyperalgesia measurements, and substance P immunostaining in dorsal root ganglion (DRG) was performed to determine the source of pain. Saline injection increased painful responses with degenerative changes in disc height, MRI intensity, and morphologies of disc structure and cell. TNFα and NGF/VEGF accelerated painful behavior, and TNFα-injected animals had increased substance P in DRGs. Deeper punctures led to more severe disc degeneration. Multiple regression analysis showed that the painful behavior was correlated with disc height loss. We concluded that rate and severity of structural disc degeneration was associated with the amount of annular disruption and puncture depth. The painful behavior was associated with disc height loss and discal inflammatory state

  1. GABAergic and glycinergic pathways to goldfish retinal ganglion cells: an ultrastructural double label study

    SciTech Connect

    Muller, J.F.

    1987-01-01

    An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.

  2. Tibial nerve intraneural ganglion cyst in a 10-year-old boy.

    PubMed

    Squires, Judy H; Emery, Kathleen H; Johnson, Neil; Sorger, Joel

    2014-04-01

    Intraneural ganglion cysts are uncommon cystic lesions of peripheral nerves that are typically encountered in adults. In the lower extremity, the peroneal nerve is most frequently affected with involvement of the tibial nerve much less common. This article describes a tibial intraneural ganglion cyst in a 10-year-old boy. Although extremely rare, intraneural ganglion cysts of the tibial nerve should be considered when a nonenhancing cystic structure with intra-articular extension is identified along the course of the nerve. This report also details the unsuccessful attempt at percutaneous treatment with US-guided cyst aspiration and steroid injection, an option recently reported as a viable alternative to open surgical resection.

  3. Autophagy in axonal and dendritic degeneration.

    PubMed

    Yang, Yi; Coleman, Michael; Zhang, Lihui; Zheng, Xiaoxiang; Yue, Zhenyu

    2013-07-01

    Degeneration of axons and dendrites is a common and early pathological feature of many neurodegenerative disorders, and is thought to be regulated by mechanisms distinct from those determining death of the cell body. The unique structures of axons and dendrites (collectively neurites) may cause them to be particularly vulnerable to the accumulation of protein aggregates and damaged organelles. Autophagy is a catabolic mechanism in which cells clear protein aggregates and damaged organelles. Basal autophagy occurs continuously as a housekeeping function, and can be acutely expanded in response to stress or injury. Emerging evidence shows that insufficient or excessive autophagy contributes to neuritic degeneration. Here, we review the recent progress that has begun to reveal the role of autophagy in neurite function and degeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The cell stress machinery and retinal degeneration.

    PubMed

    Athanasiou, Dimitra; Aguilà, Monica; Bevilacqua, Dalila; Novoselov, Sergey S; Parfitt, David A; Cheetham, Michael E

    2013-06-27

    Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness.

  5. Chronic Neurotrophin Delivery Promotes Ectopic Neurite Growth From the Spiral Ganglion of Deafened Cochleae Without Compromising the Spatial Selectivity of Cochlear Implants

    PubMed Central

    Landry, Thomas G.; Fallon, James B.; Wise, Andrew K.; Shepherd, Robert K.

    2015-01-01

    Cochlear implants restore hearing cues in the severe– profoundly deaf by electrically stimulating spiral ganglion neurons (SGNs). However, SGNs degenerate following loss of cochlear hair cells, due at least in part to a reduction in the endogenous neurotrophin (NT) supply, normally provided by hair cells and supporting cells of the organ of Corti. Delivering exogenous NTs to the cochlea can rescue SGNs from degeneration and can also promote the ectopic growth of SGN neurites. This resprouting may disrupt the cochleotopic organization upon which cochlear implants rely to impart pitch cues. Using retrograde labeling and confocal imaging of SGNs, we determined the extent of neurite growth following 28 days of exogenous NT treatment in deafened guinea pigs with and without chronic electrical stimulation (ES). On completion of this treatment, we measured the spread of neural activation to intracochlear ES by recording neural responses across the cochleotopically organized inferior colliculus using multichannel recording techniques. Although NT treatment significantly increased both the length and the lateral extent of growth of neurites along the cochlea compared with deafened controls, these anatomical changes did not affect the spread of neural activation when examined immediately after 28 days of NT treatment. NT treatment did, however, result in lower excitation thresholds compared with deafened controls. These data support the application of NTs for improved clinical outcomes for cochlear implant patients. PMID:23436344

  6. Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants.

    PubMed

    Landry, Thomas G; Fallon, James B; Wise, Andrew K; Shepherd, Robert K

    2013-08-15

    Cochlear implants restore hearing cues in the severe-profoundly deaf by electrically stimulating spiral ganglion neurons (SGNs). However, SGNs degenerate following loss of cochlear hair cells, due at least in part to a reduction in the endogenous neurotrophin (NT) supply, normally provided by hair cells and supporting cells of the organ of Corti. Delivering exogenous NTs to the cochlea can rescue SGNs from degeneration and can also promote the ectopic growth of SGN neurites. This resprouting may disrupt the cochleotopic organization upon which cochlear implants rely to impart pitch cues. Using retrograde labeling and confocal imaging of SGNs, we determined the extent of neurite growth following 28 days of exogenous NT treatment in deafened guinea pigs with and without chronic electrical stimulation (ES). On completion of this treatment, we measured the spread of neural activation to intracochlear ES by recording neural responses across the cochleotopically organized inferior colliculus using multichannel recording techniques. Although NT treatment significantly increased both the length and the lateral extent of growth of neurites along the cochlea compared with deafened controls, these anatomical changes did not affect the spread of neural activation when examined immediately after 28 days of NT treatment. NT treatment did, however, result in lower excitation thresholds compared with deafened controls. These data support the application of NTs for improved clinical outcomes for cochlear implant patients.

  7. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity.

    PubMed

    Yamauchi, Mika; Tsuruma, Kazuhiro; Imai, Shunsuke; Nakanishi, Tomohiro; Umigai, Naofumi; Shimazawa, Masamitsu; Hara, Hideaki

    2011-01-10

    Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage.

  8. Potential Outcome Factors in Subacute Combined Degeneration

    PubMed Central

    Vasconcelos, Olavo M; Poehm, Erika H; McCarter, Robert J; Campbell, William W; Quezado, Zenaide M N

    2006-01-01

    BACKGROUND Subacute combined degeneration is an acquired myelopathy caused by vitamin B12 deficiency. Therapy with B12 leads to improvement in most but to complete recovery in only a few patients. Prognostic indicators in subacute combined degeneration are unknown; therefore, predicting complete recovery of neurologic deficits is challenging. PURPOSE To identify potential correlates of outcome and to generate hypotheses concerning predictors of complete resolution of neurologic deficits in subacute combined degeneration. DATA SOURCE We searched EMBASE (1974 to October 2005), MEDLINE (1968 to October 2005), and references from identified reports. REPORTS SELECTION Reports of patients with subacute combined degeneration containing results of magnetic resonance imaging (MRI) and description of outcome and 1 patient treated by the authors. DATA EXTRACTION, SYNTHESIS We extracted data from 45 reports and 57 patients (36 males, 21 females; age range: 10 to 81) with a diagnosis of subacute combined degeneration, and estimated the strength of association between clinical, laboratory, and radiological factors and complete resolution of signs and symptoms. RESULTS Eight patients (14%) achieved clinical resolution and 49 (86%) improved with B12 therapy. The absence of sensory dermatomal deficit, Romberg, and Babinski signs were associated with a higher complete resolution rate. Patients with MRI lesions in ≤7 segments and age less than 50 also appear to have higher rates of complete resolution. CONCLUSIONS B12 therapy is reported to stop progression and improve neurologic deficits in most patients with subacute combined degeneration. However, complete resolution only occurs in a small percentage of patients and appears to be associated with factors suggestive of less severe disease at the time of diagnosis. PMID:16970556

  9. Oxidative stress induced by loss of Cu,Zn-superoxide dismutase (SOD1) or superoxide-generating herbicides causes axonal degeneration in mouse DRG cultures

    PubMed Central

    Fischer, Lindsey R.

    2014-01-01

    Axonal degeneration is a common pathologic feature in peripheral neuropathy, neurodegenerative disease, and normal aging. Oxidative stress may be an important mechanism of axonal degeneration, but is underrepresented among current experimental models. To test the effects of loss of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) on axon survival, we cultured dorsal root ganglion (DRG) neurons from SOD1 knockout mice. Beginning as early as 48–72 h, we observed striking degeneration of Sod1−/− axons that was prevented by introduction of human SOD1 and was attenuated by antioxidant treatment. To test susceptibility to increased superoxide production, we exposed wild-type DRGs to the redox-cycling herbicides paraquat and diquat (DQ). Dose-dependent axon degeneration was observed, and toxicity of DQ was exacerbated by SOD1 deficiency. MTT staining suggested that DRG axons are more susceptible to injury than their parent cell bodies in both paradigms. Taken together, these data demonstrate susceptibility of DRG axons to oxidative stress-mediated injury due to loss of SOD1 or excess superoxide production. These in vitro models provide a novel means of investigating oxidative stress-mediated injury to axons, to improve our understanding of axonal redox control and dysfunction in peripheral neuropathy. PMID:20039174

  10. Retinal degeneration associated with ectopia lentis.

    PubMed

    Simonelli, F; De Crecchio, G; Testa, F; Nunziata, G; Mazzeo, S; Romano, N; Cavaliere, L; Rinaldi, M M; Rinaldi, E

    1999-06-01

    Two brothers had retinal degeneration, lens subluxation, and myopia since early life. There was no evidence of Marfan syndrome, homocystinuria, or other systemic disease. They had nystagmus, myopia, inferior dislocation of the lens, and posterior subcapsular opacities in both eyes. Fundus examination showed attenuated retinal vessels, macular atrophy with occasional pigment accumulation as clumps, and perivascular sleeves. Electroretinography revealed decreased photopic and scotopic responses. The visual fields were constricted. We believe this to be the first report of retinal degeneration with bilateral lens subluxation in a family. It appears to be inherited in an autosomal recessive fashion.

  11. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  12. Pathogenesis of tendinopathies: inflammation or degeneration?

    PubMed Central

    Abate, Michele; Gravare-Silbernagel, Karin; Siljeholm, Carl; Di Iorio, Angelo; De Amicis, Daniele; Salini, Vincenzo; Werner, Suzanne; Paganelli, Roberto

    2009-01-01

    The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies. PMID:19591655

  13. Visual system degeneration induced by blast overpressure.

    PubMed

    Petras, J M; Bauman, R A; Elsayed, N M

    1997-07-25

    The effect of blast overpressure on visual system pathology was studied in 14 male Sprague-Dawley rats weighing 360-432 g. Blast overpressure was simulated using a compressed-air driven shock tube, with the aim of studying a range of overpressures causing sublethal injury. Neither control (unexposed) rats nor rats exposed to 83 kiloPascals (kPa) overpressure showed evidence of visual system pathology. Neurological injury to brain visual pathways was observed in male rats surviving blast overpressure exposures of 104-110 kPa and 129-173 kPa. Optic nerve fiber degeneration was ipsilateral to the blast pressure wave. The optic chiasm contained small numbers of degenerated fibers. Optic tract fiber degeneration was present bilaterally, but was predominantly ipsilateral. Optic tract fiber degeneration was followed to nuclear groups at the level of the midbrain, midbrain-diencephalic junction, and the thalamus where degenerated fibers arborized among the neurons of: (i) the superior colliculus, (ii) pretectal region, and (iii) the lateral geniculate body. The superior colliculus contained fiber degeneration localized principally to two superficial layers (i) the stratum opticum (layer III) and (ii) stratum cinereum (layer II). The pretectal area contained degenerated fibers which were widespread in (i) the nucleus of the optic tract, (ii) olivary pretectal nucleus, (iii) anterior pretectal nucleus, and (iv) the posterior pretectal nucleus. Degenerated fibers in the lateral geniculate body were not universally distributed. They appeared to arborize among neurons of the dorsal and ventral nuclei: the ventral lateral geniculate nucleus (parvocellular and magnocellular parts); and the dorsal lateral geniculate nucleus. The axonopathy observed in the central visual pathways and nuclei of the rat brain are consistent with the presence of blast overpressure induced injury to the retina. The orbital cavities of the human skull contain frontally-directed eyeballs for binocular

  14. Kinematic control of robot with degenerate wrist

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  15. CT of sarcomatous degeneration in neurofibromatosis

    SciTech Connect

    Coleman, B.G.; Arger, P.H.; Dalinka, M.K.; Obringer, A.C.; Raney, B.R.; Meadows, A.T.

    1983-02-01

    Neurofibromatosis is a relatively common disorder that often involves many organ systems. One of the least understood aspects of this malady is a well documented potential for sarcomatous degeneration of neurofibromas. The inability to identify patients at risk and the lack of noninvasive screening methods for symptomatic patients often leads to late diagnosis. In six of seven subsequently proven neurofibrosarcomas, CT demonstrated low-density areas that histopathologically appeared to be due to necrosis, hemorrhage, and/or cystic degeneration. The density differences within these sarcomas were enhanced by the intravenous adminstration of iodinated contrast agents.

  16. [New aspects in age related macular degeneration].

    PubMed

    Turlea, C

    2012-01-01

    Being the leading cause of blindness in modern world Age Related Macular Degeneration has beneficiated in the last decade of important progress in diagnosis, classification and the discovery of diverse factors who contribute to the etiology of this disease. Treatments have arised who can postpone the irreversible evolution of the disease and thus preserve vision. Recent findings have identified predisposing genetic factors and also inflamatory and imunological parameters that can be modified trough a good and adequate prevention and therapy This articole reviews new aspects of patology of Age Related Macular Degeneration like the role of complement in maintaining inflamation and the role of oxidative stress on different structures of the retina.

  17. Ganglionated plexi stimulation induces pulmonary vein triggers and promotes atrial arrhythmogenecity: In silico modeling study

    PubMed Central

    Hwang, Minki; Lim, Byounghyun; Song, Jun-Seop; Yu, Hee Tae; Ryu, Ah-Jin; Lee, Young-Seon; Joung, Boyoung; Shim, Eun Bo; Pak, Hui-Nam

    2017-01-01

    Background The role of the autonomic nervous system (ANS) on atrial fibrillation (AF) is difficult to demonstrate in the intact human left atrium (LA) due to technical limitations of the current electrophysiological mapping technique. We examined the effects of the ANS on the initiation and maintenance of AF by employing a realistic in silico human left atrium (LA) model integrated with a model of ganglionated plexi (GPs). Methods We incorporated the morphology of the GP and parasympathetic nerves in a three-dimensional (3D) realistic LA model. For the model of ionic currents, we used a human atrial model. GPs were stimulated by increasing the IK[ACh], and sympathetic nerve stimulation was conducted through a homogeneous increase in the ICa-L. ANS-induced wave-dynamics changes were evaluated in a model that integrated a patient’s LA geometry, and we repeated simulation studies using LA geometries from 10 different patients. Results The two-dimensional model of pulmonary vein (PV) cells exhibited late phase 3 early afterdepolarization-like activity under 0.05μM acetylcholine (ACh) stimulation. In the 3D simulation model, PV tachycardia was induced, which degenerated to AF via GP (0.05μM ACh) and sympathetic (7.0×ICa-L) stimulations. Under sustained AF, local reentries were observed at the LA-PV junction. We also observed that GP stimulation reduced the complex fractionated atrial electrogram (CFAE)-cycle length (CL, p<0.01) and the life span of phase singularities (p<