Riegel, P; Ruimy, R; Christen, R; Monteil, H
1996-08-01
Over a 14-month period, 415 clinical isolates of coryneform gram-positive rods were recovered from various sources and identified to the species level according to recent identification schemes. Corynebacterium urealyticum, Corynebacterium striatum, Corynebacterium amycolatum, and Corynebacterium jeikeium predominated, accounting for 63% of all isolates. Corynebacterium accolens, Corynebacterium striatum, Corynebacterium argentoratense, Corynebacterium propinquum and Corynebacterium pseudodiphtheriticum were mostly recovered from the respiratory tract, whereas Corynebacterium afermentans, CDC group G, and Corynebacterium jeikeium were mainly isolated from blood. None of the isolates was identified as Corynebacterium diphtheriae or Corynebacterium xerosis. Ampicillin resistance was detected in Corynebacterium jeikeium (96%) and Corynebacterium urealyticum (99%) and varied among Corynebacterium amycolatum (56%) and CDC group G (26%). These data emphasize the need for an accurate identification of coryneform organisms at the species level and for antimicrobial susceptibility testing of these organisms.
Merhej, Vicky; Falsen, Enevold; Raoult, Didier; Roux, Véronique
2009-08-01
Gram-positive, facultatively anaerobic, rod-shaped bacteria were isolated from the blood of a patient with endocarditis (strain 5401744T) and from the hip joint fluid of a patient with an infected orthopaedic prosthesis (strain 5402485T). These strains were characterized by using a polyphasic taxonomic approach. Based on cellular morphology and biochemical criteria the two isolates were tentatively assigned to the genus Corynebacterium, although they did not correspond to any recognized species. The predominant fatty acids were a mix of C18:2omega6,9c and anteiso-C18:0 (32.1% of the total), C16:0 (26.3%) and C18:1omega9c (22.5%) for strain 5402485T and C18:1omega9c (36.4%), C17:1omega9c (27.1%) and C16:0 (10.9%) for strain 5401744T. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain 5401744T was closely related to the type strains of Corynebacterium auris, Corynebacterium capitovis, Corynebacterium lipophiloflavum and Corynebacterium mycetoides (97.0, 96.6, 96.5 and 96.3% similarity, respectively) and strain 5402485T was closely related to the type strains of Corynebacterium macginleyi, Corynebacterium accolens, Corynebacterium tuberculostearicum, Corynebacterium confusum, Corynebacterium mastitidis and Corynebacterium renale (95.6, 95.3, 95.3, 94.5, 94.0 and 93.5%, respectively). On the basis of phenotypic data and phylogenetic inference, these isolates are considered to represent two novel species of the genus Corynebacterium, for which the names Corynebacterium timonense sp. nov. (type strain, 5401744T=CSUR P20T=CIP 109424T=CCUG 53856T) and Corynebacterium massiliense sp. nov. (type strain, 5402485T=CSUR P19T=CIP 109423T=CCUG 53857T) are proposed.
Species identification of corynebacteria by cellular fatty acid analysis.
Van den Velde, Sandra; Lagrou, Katrien; Desmet, Koen; Wauters, Georges; Verhaegen, Jan
2006-02-01
We evaluated the usefulness of cellular fatty acid analysis for the identification of corynebacteria. Therefore, 219 well-characterized strains belonging to 21 Corynebacterium species were analyzed with the Sherlock System of MIDI (Newark, DE). Most Corynebacterium species have a qualitative different fatty acid profile. Corynebacterium coyleae (subgroup 1), Corynebacterium riegelii, Corynebacterium simulans, and Corynebacterium imitans differ only quantitatively. Corynebacterium afermentans afermentans and C. coyleae (subgroup 2) have both a similar qualitative and quantitative profile. The commercially available database (CLIN 40, MIDI) identified only one third of the 219 strains correctly at the species level. We created a new database with these 219 strains. This new database was tested with 34 clinical isolates and could identify 29 strains correctly. Strains that remained unidentified were 2 Corynebacterium aurimucosum (not included in our database), 1 C. afermentans afermentans, and 2 Corynebacterium pseudodiphtheriticum. Cellular fatty acid analysis with a self-created database can be used for the identification and differentiation of corynebacteria.
[Effect of Corynebacterium non diphtheriae on functional activity and apoptosis of macrophages].
Kharseeva, G G; Voronina, N A; Tiukavkina, S Iu
2014-01-01
Determine the ability of Corynebacterium non diphtheriae to induce phagocytosis and apoptosis of macrophages and evaluate regulatory effect of nuetrophilokines (NPK) induced by Corynebacterium non diphtheriae on these processes. The ability of Corynebacterium non diphtheriae, isolated from upper respiratory tract, skin and urogenital tract (UGT) were studied for the ability to induce phagocytosis and apoptosis of mice macrophages (MP; in vitro during staining by May-Grunwald with additional staining by Romanowsky-Giemsa) before and after the addition of NPK induced by Corynebacterium non diphtheriae. Phagocytic index (PI) was the same for all the Corynebacterium non diphtheriae species, phagocytic number (PN) and index of phagocytosis completion (IPC)--were minimal relative to corynebacteria isolated from UGT. All the studied corynebacteria species induced MP apoptosis; the most pronounced apoptogenic effect was detected in Corynebacterium pseudotuberculosis isolated from UGT. NPK increased PN against corynebacteria isolated from the studied biotopes, IPC--only during studies of corynebacteria isolated from skin. The effect of NPK resulted in a reduction of apoptogenic effect for almost all the Corynebacterium non diphtheriae, regardless of the isolation location. A pronounced apoptogenic effect and insufficiency of phagocytosis processes induced by corynebacteria are the means of realization of Corynebacterium non diphtheriae pathogenic effect. NPK use is possible for immune correction of immune deficiency conditions developing against the background of diseases determined by Corynebacterium non diphtheriae.
Corynebacterium Prosthetic Joint Infection
Cazanave, Charles; Greenwood-Quaintance, Kerryl E.; Hanssen, Arlen D.
2012-01-01
Identification of Corynebacterium species may be challenging. Corynebacterium species are occasional causes of prosthetic joint infection (PJI), but few data are available on the subject. Based on the literature, C. amycolatum, C. aurimucosum, C. jeikeium, and C. striatum are the most common Corynebacterium species that cause PJI. We designed a rapid PCR assay to detect the most common human Corynebacterium species, with a specific focus on PJI. A polyphosphate kinase gene identified using whole-genome sequence was targeted. The assay differentiates the antibiotic-resistant species C. jeikeium and C. urealyticum from other species in a single assay. The assay was applied to a collection of human Corynebacterium isolates from multiple clinical sources, and clinically relevant species were detected. The assay was then tested on Corynebacterium isolates specifically associated with PJI; all were detected. We also describe the first case of C. simulans PJI. PMID:22337986
Draft Genome Sequence of Corynebacterium kefirresidentii SB, Isolated from Kefir.
Blasche, Sonja; Kim, Yongkyu; Patil, Kiran R
2017-09-14
The genus Corynebacterium includes Gram-positive species with a high G+C content. We report here a novel species, Corynebacterium kefirresidentii SB, isolated from kefir grains collected in Germany. Its draft genome sequence was remarkably dissimilar (average nucleotide identity, 76.54%) to those of other Corynebacterium spp., confirming that this is a unique novel species. Copyright © 2017 Blasche et al.
Antimicrobial Treatment Options for Granulomatous Mastitis Caused by Corynebacterium Species
Dobinson, Hazel C.; Anderson, Trevor P.; Chambers, Stephen T.; Doogue, Matthew P.; Seaward, Lois
2015-01-01
Corynebacterium species are increasingly recognized as important pathogens in granulomatous mastitis. Currently, there are no published treatment protocols for Corynebacterium breast infections. This study describes antimicrobial treatment options in the context of other management strategies used for granulomatous mastitis. Corynebacterium spp. isolated from breast tissue and aspirate samples stored from 2002 to 2013 were identified and determined to the species level using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), 16S RNA sequencing, and rpoB gene targets. The MICs for 12 antimicrobials were performed using Etest for each isolate. Correlations of these with antimicrobial characteristics, choice of antimicrobial, and disease outcome were evaluated. Corynebacterium spp. from breast tissue and aspirate samples were confirmed in 17 isolates from 16 patients. Based on EUCAST breakpoints, Corynebacterium kroppenstedtii isolates (n = 11) were susceptible to seven antibiotic classes but resistant to β-lactam antibiotics. Corynebacterium tuberculostearicum isolates (n = 4) were multidrug resistant. Two nonlipophilic species were isolated, Corynebacterium glucuronolyticum and Corynebacterium freneyi, both of which have various susceptibilities to antimicrobial agents. Short-course antimicrobial therapy was common (median, 6 courses per subject; range, 1 to 9 courses). Patients with C. kroppenstedtii presented with a hot painful breast mass and underwent multiple surgical procedures (median, 4 procedures; range, 2 to 6 procedures). The management of Corynebacterium breast infections requires a multidisciplinary approach and includes culture and appropriate sensitivity testing to guide antimicrobial therapy. Established infections have a poor outcome, possibly because adequate concentrations of some drugs will be difficult to achieve in lipophilic granulomata. Lipophilic antimicrobial therapy may offer a therapeutic advantage. The role of immunotherapy has not been defined. PMID:26135858
Aravena-Roman, M; Spröer, C; Sträubler, B; Inglis, T; Yassin, A F
2010-07-01
A non-lipophilic coryneform bacterium isolated from an anaerobic Bactec bottle inoculated with an ankle aspirate from a male patient was characterized by phenotypic and molecular taxonomic methods. Chemotaxonomic investigations revealed the presence of short-chain mycolic acids in the cell wall of the bacterium, a feature consistent with members of the genus Corynebacterium. Comparative 16S rRNA gene sequence analysis demonstrated that the isolate displayed 92.0-99.0 % gene sequence similarity with members of the genus Corynebacterium, with Corynebacterium ureicelerivorans as the most closely related phylogenetic species (99.0 % gene sequence similarity). However, the isolate could be genomically separated from C. ureicelerivorans on the basis of DNA-DNA hybridization studies (39.5 % relatedness). Furthermore, the isolate could also be differentiated from C. ureicelerivorans and other species of the genus Corynebacterium on the basis of biochemical properties. Based on both phenotypic and phylogenetic evidence, it is proposed that this isolate be classified as representing a novel species, Corynebacterium pilbarense sp. nov. (type strain IMMIB WACC 658(T)=DSM 45350(T)=CCUG 57942(T)).
Corynebacterium species isolated from patients with mastitis.
Paviour, Sue; Musaad, Sahar; Roberts, Sally; Taylor, Graeme; Taylor, Susan; Shore, Keith; Lang, Selwyn; Holland, David
2002-12-01
Corynebacteria were isolated from breast tissue, pus, or deep wound swabs of 24 women; the most common species isolated was the newly described Corynebacterium kroppenstedtii, followed by Corynebacterium amycolatum and Corynebacterium tuberculostearicum. Gram-positive bacilli were seen in samples sent for culture or in histological specimens for 12 women, and 9 of the 12 women from whom adequate histological specimens were obtained had conditions that met the criteria for granulomatous lobular mastitis, a chronic inflammatory disease of unknown etiology.
Riegel, P; Ruimy, R; de Briel, D; Prévost, G; Jehl, F; Christen, R; Monteil, H
1995-01-01
DNA relatedness experiments were performed with 38 clinical isolates and 13 reference strains of coryneform taxa exhibiting a lipid requirement for optimal growth. Forty-five of these strains split into five genomic groups at the species level, whereas six other strains remained unclustered. Genomospecies II fits Corynebacterium accolens, but the other genomospecies were not genetically related to any of the defined Corynebacterium species. Phylogenetic analyses of genes coding for small-subunit rRNA sequences revealed that two genomospecies (I and III) and C. accolens form a tight cluster within the robust branch that groups all Corynebacterium species presently sequenced. Reference strains of biotypes C-1, C-2, and C-3 of "Corynebacterium pseudogenitalium" were found to fall into genomospecies I, as well as "Corynebacterium tuberculostearicum," Centers for Disease Control and Prevention (CDC) coryneform group G-1, and CDC coryneform group G-2 reference strains. Biochemical tests allowed differentiation between genomospecies except between genomospecies IV and V and between six unclustered strains and genomospecies I. We propose a new classification for these lipid-requiring diphtheroids within the genus Corynebacterium with the delineation of some CDC coryneform group G-1 strains (genomospecies III) as a new species for which the name Corynebacterium macginleyi is proposed. The type strain is strain JCL-2 (CIP 104099), isolated from a human corneal ulcer.
Alatoom, Adnan A.; Cazanave, Charles J.; Cunningham, Scott A.; Ihde, Sherry M.
2012-01-01
We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for identification of 92 clinical isolates of Corynebacterium species in comparison to identification using rpoB or 16S rRNA gene sequencing. Eighty isolates (87%) yielded a score of ≥1.700, and all of these were correctly identified to the species level with the exception of Corynebacterium aurimucosum being misidentified as the closely related Corynebacterium minutissimum. PMID:22075579
Funke, Guido; Lawson, Paul A.; Collins, Matthew D.
1998-01-01
Four strains of an unknown coryneform bacterium were isolated in pure culture from females with urinary tract infections. Strong urease activity and the ability to slowly ferment maltose but not glucose were the most significant phenotypic features of this catalase-positive, nonmotile, nonlipophilic, rod-shaped bacterium which served to distinguish it from all other presently defined coryneform bacteria. Chemotaxonomic investigations demonstrated that the unknown bacterium belonged to the genus Corynebacterium. Comparative 16S rRNA gene sequence analysis revealed that the isolates were genealogically identical and represented a new subline within the genus Corynebacterium, for which the designation Corynebacterium riegelii sp. nov. is proposed. The type strain of Corynebacterium riegelii is CCUG 38180 (DSM 44326, CIP 105310). PMID:9508284
Ang, Lei M N; Brown, Hamish
2007-05-01
Corynebacterium accolens is rarely isolated as a human pathogen. We describe here a case of C. accolens isolated from a breast abscess in a patient previously diagnosed with granulomatous mastitis. The possible association of Corynebacterium accolens and granulomatous mastitis in this patient is discussed.
Ang, Lei M. N.; Brown, Hamish
2007-01-01
Corynebacterium accolens is rarely isolated as a human pathogen. We describe here a case of C. accolens isolated from a breast abscess in a patient previously diagnosed with granulomatous mastitis. The possible association of Corynebacterium accolens and granulomatous mastitis in this patient is discussed. PMID:17344355
[Skin and Soft Tissue Infections Due to Corynebacterium ulcerans - Case Reports].
Jenssen, Christian; Schwede, Ilona; Neumann, Volker; Pietsch, Cristine; Handrick, Werner
2017-10-01
History and clinical findings We report on three patients suffering from skin and soft tissue infections of the legs due to toxigenic Corynebacterium ulcerans strains. In all three patients, there was a predisposition due to chronic diseases. Three patients had domestic animals (cat, dog) in their households. Investigations and diagnosis A mixed bacterial flora including Corynebacterium ulcerans was found in wound swab samples. Diphtheric toxin was produced by the Corynebacterium ulcerans strains in all three cases. Treatment and course In all three patients, successful handling of the skin and soft tissue infections was possible by combining local treatment with antibiotics. Diphtheria antitoxin was not administered in any case. Conclusion Based on a review of the recent literature pathogenesis, clinical symptoms and signs, diagnostics and therapy of skin and soft tissue infections due to Corynebacterium ulcerans are discussed. Corynebacterium ulcerans should be considered as a potential cause of severe skin and soft tissue infections. Occupational or domestic animal contacts should be evaluated. © Georg Thieme Verlag KG Stuttgart · New York.
Yu, Hai-Jing; Deng, Hua; Ma, Jian; Huang, Shu-Jun; Yang, Jian-Min; Huang, Yan-Fen; Mu, Xiao-Ping; Zhang, Liang; Wang, Qi
2016-12-01
Granulomatous mastitis (GM) is a chronic inflammatory breast lesion. Its etiology remains incompletely defined. Although mounting evidence suggests the involvement of Corynebacterium in GM, there has been no systematic study of GM bacteriology using -omics technology. The bacterial diversity and relative abundances in breast abscesses from 19 women with GM were investigated using 16S rDNA metagenomic sequencing and Sanger sequencing. A quantitative PCR (qPCR) assay was also developed to identify Corynebacterium kroppenstedtii. A bioinformatic analysis revealed that Corynebacterium was present in the 19 GM patients, with abundances ranging from 1.1% to 58.9%. Of note, Corynebacterium was the most abundant taxon in seven patients (more than a third of the subjects). The predominance of Corynebacterium kroppenstedtii infection (11 of 19 patients, 57.9%) was confirmed with Sanger sequencing and the qPCR assay. This study profiled the microbiota of patients with GM and indicated an important role for Corynebacterium, and in particular C. kroppenstedtii, in the pathogenesis of this disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab
2018-02-01
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.
Identification of nonlipophilic corynebacteria isolated from dairy cows with mastitis.
Hommez, J; Devriese, L A; Vaneechoutte, M; Riegel, P; Butaye, P; Haesebrouck, F
1999-04-01
Nonlipophilic corynebacteria associated with clinical and subclinical mastitis in dairy cows were found to belong to four species: Corynebacterium amycolatum, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis, and Corynebacterium minutissimum. These species may easily be confused. However, clear-cut differences between C. ulcerans and C. pseudotuberculosis were found in their acid production from maltotriose and ethylene glycol, susceptibility to vibriostatic agent O129, and alkaline phosphatase. Absence of growth at 20 degrees C and lack of alpha-glucosidase and 4MU-alpha-D-glycoside hydrolysis activity differentiated C. amycolatum from C. pseudotuberculosis and C. ulcerans. The mastitis C. pseudotuberculosis strains differed from the biovar equi and ovis reference strains and from caprine field strains in their colony morphologies and in their reduced inhibitory activity on staphylococcal beta-hemolysin. C. amycolatum was the most frequently isolated nonlipophilic corynebacterium.
Identification of Nonlipophilic Corynebacteria Isolated from Dairy Cows with Mastitis
Hommez, Jozef; Devriese, Luc A.; Vaneechoutte, Mario; Riegel, Philippe; Butaye, Patrick; Haesebrouck, Freddy
1999-01-01
Nonlipophilic corynebacteria associated with clinical and subclinical mastitis in dairy cows were found to belong to four species: Corynebacterium amycolatum, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis, and Corynebacterium minutissimum. These species may easily be confused. However, clear-cut differences between C. ulcerans and C. pseudotuberculosis were found in their acid production from maltotriose and ethylene glycol, susceptibility to vibriostatic agent O129, and alkaline phosphatase. Absence of growth at 20°C and lack of α-glucosidase and 4MU-α-d-glycoside hydrolysis activity differentiated C. amycolatum from C. pseudotuberculosis and C. ulcerans. The mastitis C. pseudotuberculosis strains differed from the biovar equi and ovis reference strains and from caprine field strains in their colony morphologies and in their reduced inhibitory activity on staphylococcal β-hemolysin. C. amycolatum was the most frequently isolated nonlipophilic corynebacterium. PMID:10074508
Wojewoda, Christina M; Koval, Christine E; Wilson, Deborah A; Chakos, Mary H; Harrington, Susan M
2012-06-01
Corynebacterium species are well-known causes of catheter-related bloodstream infections. Toxigenic strains of Corynebacterium diphtheriae cause respiratory diphtheria. We report a bloodstream infection caused by a nontoxigenic strain of C. diphtheriae and discuss the epidemiology, possible sources of the infection, and the implications of rapid species identification of corynebacteria.
Wojewoda, Christina M.; Koval, Christine E.; Wilson, Deborah A.; Chakos, Mary H.
2012-01-01
Corynebacterium species are well-known causes of catheter-related bloodstream infections. Toxigenic strains of Corynebacterium diphtheriae cause respiratory diphtheria. We report a bloodstream infection caused by a nontoxigenic strain of C. diphtheriae and discuss the epidemiology, possible sources of the infection, and the implications of rapid species identification of corynebacteria. PMID:22493337
Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species
Ramsey, Matthew M.; Freire, Marcelo O.; Gabrilska, Rebecca A.; Rumbaugh, Kendra P.; Lemon, Katherine P.
2016-01-01
Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe–microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species. PMID:27582729
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species
Oliveira, Alberto; Oliveira, Leticia C.; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B.; Silva, Arthur; Figueiredo, Henrique C. P.; Ghosh, Preetam; Portela, Ricardo W.; De Carvalho Azevedo, Vasco A.; Wattam, Alice R.
2017-01-01
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field. PMID:29075239
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R
2017-01-01
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.
Reece, Rebecca M; Cunha, Cheston B; Rich, Josiah D
2014-09-01
Corynebacterium spp. have proven their pathogenic potential in causing infections, particularly in the setting of immunosuppression and prosthetic devices. We conducted a PubMed literature review of all cases of Corynebacterium prosthetic device infections published in the English language through December 2013. The majority of cases involved peritoneal dialysis and central venous catheters, but prosthetic joints and central nervous system shunts/drains were also involved. The management of these cases in terms of retention or removal of the device was not uniform; however, the overall mortality remained the same among both groups. All of these prosthetic device infections pose potential problems in management when the device cannot be removed safely for the patient, especially with the lack of data on the pathogenicity of Corynebacterium species. However with better identification of species and sensitivities, successful treatment is possible even with retention of the device.
Seminal Corynebacterium strains in infertile men with and without leucocytospermia.
Mashaly, M; Masallat, D T; Elkholy, A A; Abdel-Hamid, I A; Mostafa, T
2016-04-01
This study aimed to identify seminal Corynebacterium strains in infertile men with and without leucocytospermia. Semen samples from 60 infertile men were allocated into two equal groups: semen samples with leucocytospermia and semen samples without leucocytospermia. Semen culture for Corynebacterium species was carried out on Columbia agar medium confirmed by Gram-stained film and biochemical tests followed by analytical profile index biotyping and antibiotic susceptibility. Bacterial isolates were detected in 20/60 semen cultures (33.3%) as Corynebacteria, Staphylococci, Alpha haemolytic streptococci and E. coli. In all, 12/60 (20%) had Corynebacterium positive semen culture, whereas C. seminal was the major isolated species followed by C. amycolatum, C. jekium and C. urealyticum. There was nonsignificant difference between patients with/without Corynebacterium positive culture regarding sperm concentration and normal sperm morphology; however, in positive cultures sperm motility was significantly lower compared with negative cultures. Antimicrobial sensitivity among Corynebacteria strains was highest for vancomycin, rifampicin then imipenem, ampicillin + sulbactam, ciprofloxacin. It is concluded that positive semen cultures for different Corynebacteria species were demonstrated in infertile men, whereas Corynebacterium seminale was the most common isolated species. Vancomycin, rifampicin then imipenem and ampicillin + sulbactam are recommended as sensitive antibiotics. © 2015 Blackwell Verlag GmbH.
Idiopathic Granulomatous Mastitis Associated with Corynebacterium Sp. Infection
Lee, Yun Sun; Balfour, John
2011-01-01
Idiopathic granulomatous mastitis (IGM) is a rare inflammatory condition of the breast. The etiology and treatments options of IGM remain controversial. Previous case reports have suggested that Corynebacterium sp., a gram-positive bacillus endogenous to the skin, may be associated with IGM. In the present report, we describe the first case of IGM with a positive culture for Corynebacterium sp. reported in the United States. PMID:21857740
Nhan, Tu-Xuan; Parienti, Jean-Jacques; Badiou, Guillaume; Leclercq, Roland; Cattoir, Vincent
2012-11-01
The purpose of this retrospective study was to evaluate the pathogenic role of Corynebacterium species in lower respiratory tract infections as well as their routine laboratory investigation. From April 2007 to August 2009, 27 clinical isolates were significantly recovered from respiratory specimens of 27 different patients clinically suspected of having lower respiratory tract infections. The average age of patients was 65 years, while 22 (81%) patients presented at least 1 predisposing condition. Of the 27 patients, 15 (56%) were classified as infected according to Centers for Disease Control and Prevention/National Healthcare Safety Network criteria, with 93% of infections being hospital acquired. All isolates were accurately identified to the species level using molecular methods (i.e., 17 Corynebacterium pseudodiphtheriticum, 7 Corynebacterium striatum, and 3 Corynebacterium accolens), whereas phenotypic methods remained frequently unreliable for identifying C. striatum and C. accolens strains. All tested isolates were susceptible to amoxicillin, imipenem, vancomycin, linezolid, and tigecycline, whereas most of them were resistant to erythromycin. Copyright © 2012 Elsevier Inc. All rights reserved.
Wauters, G; Van Bosterhaut, B; Janssens, M; Verhaegen, J
1998-05-01
Four identification tests, proposed in addition to conventional methods, were evaluated with 320 fermentative nonlipophilic Corynebacterium strains: growth at 20 degrees C, glucose fermentation at 42 degrees C, alkalinization of sodium formate, and acid production from ethylene glycol. These tests were highly discriminant. Corynebacterium amycolatum displayed a unique profile, allowing it to be distinguished from similar species, such as C. xerosis, C. striatum, and C. minutissimum.
Wauters, Georges; Van Bosterhaut, Bernard; Janssens, Michèle; Verhaegen, Jan
1998-01-01
Four identification tests, proposed in addition to conventional methods, were evaluated with 320 fermentative nonlipophilic Corynebacterium strains: growth at 20°C, glucose fermentation at 42°C, alkalinization of sodium formate, and acid production from ethylene glycol. These tests were highly discriminant. Corynebacterium amycolatum displayed a unique profile, allowing it to be distinguished from similar species, such as C. xerosis, C. striatum, and C. minutissimum. PMID:9574722
Corynebacterium endocarditis species-specific risk factors and outcomes
Belmares, Jaime; Detterline, Stephanie; Pak, Janet B; Parada, Jorge P
2007-01-01
Background Corynebacterium species are recognized as uncommon agents of endocarditis, but little is known regarding species-specific risk factors and outcomes in Corynebacterium endocarditis. Methods Case report and Medline search of English language journals for cases of Corynebacterium endocarditis. Inclusion criteria required that cases be identified as endocarditis, having persistent Corynebacterium bacteremia, murmurs described by the authors as identifying the affected valve, or vegetations found by echocardiography or in surgical or autopsy specimens. Cases also required patient-specific information on risk factors and outcomes (age, gender, prior prosthetic valve, other prior nosocomial risk factors (infected valve, involvement of native versus prosthetic valve, need for valve replacement, and death) to be included in the analysis. Publications of Corynebacterium endocarditis which reported aggregate data were excluded. Univariate analysis was conducted with chi-square and t-tests, as appropriate, with p = 0.05 considered significant. Results 129 cases of Corynebacterium endocarditis involving nine species met inclusion criteria. Corynebacterium endocarditis typically infects the left heart of adult males and nearly one third of patients have underlying valvular disease. One quarter of patients required valve replacement and one half of patients died. Toxigenic C. diphtheriae is associated with pediatric infections (p < 0.001). Only C. amycolatum has a predilection for women (p = 0.024), while C. pseudodiphtheriticum infections are most frequent in men (p = 0.023). C. striatum, C. jeikeium and C. hemolyticum are associated with nosocomial risk factors (p < 0.001, 0.028, and 0.024, respectively). No species was found to have a predilection for any particular heart valve. C. pseudodiphtheriticum is associated with a previous prosthetic valve replacement (p = 0.004). C. jeikeium infections are more likely to require valve replacement (p = 0.026). Infections involving toxigenic C. diphtheriae and C. pseudodiphtheriticum are associated with decreased survival (p = 0.001 and 0.032, respectively). Conclusion We report the first analysis of species-specific risk factors and outcomes in Corynebacterium endocarditis. In addition to species-specific associations with age, gender, prior valvular diseases, and other nosocomial risk factors, we found differences in rates of need for valve replacement and death. This review highlights the seriousness of these infections, as up to 28% of patients required valve replacement and 43.5% died. PMID:17284316
Poojary, Indira; Kurian, Ann; V A, Jayalekshmi; Devapriya J, Debora; M A, Thirunarayan
2017-07-01
Corynebacterium species other than Corynebacterium diphtheriae were mostly considered contaminants in the past, but there are reports of their association with wide variety of human infections lately. In this study, we look into Corynebacterium species isolated from breast abscess patients and assess their antimicrobial susceptibility pattern and treatment outcomes. Pus samples from suspected breast abscess cases were examined from October 2014 to September 2015. Growth of Gram-positive bacilli morphologically resembling Corynebacterium species were identified by matrix-assisted laser desorption/ionization- time of flight mass spectrometry identifications generated by the Vitek MS system (bioMérieux, France) (MALDI-TOF Vitek MS system) and antimicrobial susceptibility was done. Corynebacterium species were isolated from 10 female breast abscess patients with median age of 36 years (range 25-59 years). Out of the 10 isolates four isolates were identified as C. kroppenstedtii; one isolate as C. striatum and five isolates were identified as C. amycolatum/C.xerosis. Out of four isolates of C .kroppenstedtii, two isolates were resistant to cotrimoxazole and one C. striatum isolate was resistant to penicillin, ampicillin, cotrimoxazole and clindamycin. Of the five isolates identified as C amycolatum/C xerosis, all were sensitive to vancomycin and linezolid but resistant to clindamycin. All the patients were treated with incision, drainage and antibiotics based on the sensitivity pattern; eight were cured and two patients did not come for follow-up. Corynebacterium species should be considered one of the causative agents of breast abscess and a varied susceptibility profile amongst the different species makes susceptibility testing important. Identification by MALDI-TOF Vitek MS system may not differentiate between C. amycolatum and C. xerosis.
Corynebacterium godavarianum sp. nov., isolated from the Godavari river, India.
Jani, Kunal; Khare, Kaustubh; Senik, Svetlana; Karodi, Prachi; Vemuluri, Venkata Ramana; Bandal, Jayashree; Shouche, Yogesh; Rale, Vinay; Sharma, Avinash
2018-01-01
A Gram-stain-positive, rod-shaped, non-motile bacterium, strain PRD07 T , was isolated from Godavari river, India during the world's largest spiritual and religious mass bathing event 'Kumbh Mela'. Molecular analysis using 16S rRNA gene sequencing and phylogenetic analysis reveals the distinct phylogenetic positioning of strain PRD07 T within the genus Corynebacterium. The strain demonstrated highest sequence similarity to Corynebacterium imitans DSM 44264 T (97.9 %), Corynebacterium appendicis DSM 44531 T (97.1 %) and <96.7 % with all other members of the genus Corynebacterium. The G+C content of PRD07 T was 68.5 mol% (Tm) and the DNA-DNA hybridization depicts 61.09 % genomic relatedness with C. imitans DSM 44264 T . Chemotaxonomic assessment of strain PRD07 T suggested presence of C16 : 0 (31.6 %), C18 : 0 (3.5 %) and C18 : 1ω9c (58.6 %) as the major cellular fatty acids. The major polar lipids of strain PRD07 T were phosphatidylglycerol, diphosphatidylglycerol and glycophospholipid. Differentiating molecular, phylogenetic and chemotaxonomic characteristics of strain PRD07 T with its closest relatives necessitated the description of strain PRD07 T as a novel species of genus Corynebacterium for which the name Corynebacteriumgodavarianum sp. nov., has been proposed. The type strain is PRD07 T (=MCC 3388 T =KCTC 39803 T =LMG 29598 T ).
Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme.
Walter, Britta; Hänssler, Eva; Kalinowski, Jörn; Burkovski, Andreas
2007-01-01
The published genome sequences of Corynebacterium diphtheriae, Corynebacterium efficiens, Corynebacterium glutamicum and Corynebacterium jeikeium were screened for genes encoding central components of nitrogen source uptake, nitrogen assimilation and nitrogen control systems. Interestingly, the soil-living species C. efficiens and C. glutamicum exhibit a broader spectrum of genes for nitrogen transport and metabolism than the pathogenic species C. diphtheriae and C. jeikeium. The latter are characterized by gene decay and loss of functions like urea metabolism and nitrogen-dependent transcription control. The global regulator of nitrogen regulation AmtR and its DNA-binding motif are conserved in C. diphtheriae, C. efficiens and C. glutamicum, while in C. jeikeium, an AmtR-encoding gene as well as putative AmtR-binding motifs are missing. Copyright (c) 2007 S. Karger AG, Basel.
Thompson, J S; Gates-Davis, D R; Yong, D C
1983-01-01
A rapid biochemical method based on the fermentation of carbohydrates, the hydrolysis of urea, and the reduction of nitrate was used to identify Corynebacterium diphtheriae, C. ulcerans, C. pseudodiphtheriticum, C. haemolyticum, C. pseudotuberculosis, C. pyogenes, C. ovis, the Centers for Disease Control JK group, and Rhodococcus (Corynebacterium) equi. With this procedure identification was confirmed for 133 stock cultures and clinical isolates of corynebacteria. Most were identified within 1 h and all were identified within 4 h after inoculation into the test substrates. PMID:6355166
Claeys, G; Vanhouteghem, H; Riegel, P; Wauters, G; Hamerlynck, R; Dierick, J; de Witte, J; Verschraegen, G; Vaneechoutte, M
1996-01-01
Endocarditis of native aortic and mitral valves due to an organism identified as Corynebacterium accolens developed in a 73-year-old patient without predisposing factors. The organism was identified as C. accolens by biochemical identification, amplified rRNA gene restriction analysis, and DNA-DNA hybridization. This is the first case of C. accolens endocarditis reported, adding to the increasing number of Corynebacterium-related cases of endocarditis. PMID:8727922
Claeys, G; Vanhouteghem, H; Riegel, P; Wauters, G; Hamerlynck, R; Dierick, J; de Witte, J; Verschraegen, G; Vaneechoutte, M
1996-05-01
Endocarditis of native aortic and mitral valves due to an organism identified as Corynebacterium accolens developed in a 73-year-old patient without predisposing factors. The organism was identified as C. accolens by biochemical identification, amplified rRNA gene restriction analysis, and DNA-DNA hybridization. This is the first case of C. accolens endocarditis reported, adding to the increasing number of Corynebacterium-related cases of endocarditis.
Baumgardt, Sandra; Loncaric, Igor; Kämpfer, Peter; Busse, Hans-Jürgen
2015-11-01
Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3% similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7% 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA-DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18:1ω9c and C16:0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).
Genome sequence and description of Corynebacterium ihumii sp. nov.
Padmanabhan, Roshan; Dubourg, Grégory; Lagier, Jean-Christophe; Couderc, Carine; Michelle, Caroline; Raoult, Didier; Fournier, Pierre-Edouard
2014-01-01
Corynebacterium ihumii strain GD7T sp. nov. is proposed as the type strain of a new species, which belongs to the family Corynebacteriaceae of the class Actinobacteria. This strain was isolated from the fecal flora of a 62 year-old male patient, as a part of the culturomics study. Corynebacterium ihumii is a Gram positive, facultativly anaerobic, nonsporulating bacillus. Here, we describe the features of this organism, together with the high quality draft genome sequence, annotation and the comparison with other member of the genus Corynebacteria. C. ihumii genome is 2,232,265 bp long (one chromosome but no plasmid) containing 2,125 protein-coding and 53 RNA genes, including 4 rRNA genes. The whole-genome shotgun sequence of Corynebacterium ihumii strain GD7T sp. nov has been deposited in EMBL under accession number GCA_000403725. PMID:25197488
CoryneBase: Corynebacterium Genomic Resources and Analysis Tools at Your Fingertips
Tan, Mui Fern; Jakubovics, Nick S.; Wee, Wei Yee; Mutha, Naresh V. R.; Wong, Guat Jah; Ang, Mia Yang; Yazdi, Amir Hessam; Choo, Siew Woh
2014-01-01
Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/. PMID:24466021
Weiss, K; Laverdière, M; Rivest, R
1996-01-01
Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity. PMID:8849254
Santos, André S; Ramos, Rommel T; Silva, Artur; Hirata, Raphael; Mattos-Guaraldi, Ana L; Meyer, Roberto; Azevedo, Vasco; Felicori, Liza; Pacheco, Luis G C
2018-05-11
Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.
Yagüe, G; Segovia, M; Valero-Guillén, P L
2000-01-28
A chemotaxonomic study of some corynebacteria isolated from clinical samples revealed characteristic thin-layer chromatographic patterns for meso-diaminopimelic acid containing species included in the genera Corynebacterium, Dermabacter and Brevibacterium. Notably, a specific compound was consistently detected in mycolic acid containing species of the genus Corynebacterium. This compound was composed by glycerol and mycolic acids and structural analyses carried out by fast atom bombardment mass spectrometry in C. minutissimum confirmed its identification as mycoloylglycerol. The chain length of mycoloyl groups in this molecule ranged from 28 to 34 carbon atoms, being mono-, di- or triunsaturated. Detection of mycoloylglycerol by thin-layer chromatography may be thus useful for the rapid inclusion of a great variety of corynebacteria of clinical origin in the genus Corynebacterium in laboratories employing chromatographic techniques as an adjunct for the identification of these microorganisms.
Bernard, K. A.; Munro, C.; Wiebe, D.; Ongsansoy, E.
2002-01-01
Nineteen new Corynebacterium species or taxa described since 1995 have been associated with human disease. We report the characteristics of 72 strains identified as or most closely resembling 14 of these newer, medically relevant Corynebacterium species or taxa, as well as describe in brief an isolate of Corynebacterium bovis, a rare pathogen for humans. The bacteria studied in this report were nearly all derived from human clinical specimens and were identified by a polyphasic approach. Most were characterized by nearly full 16S rRNA gene sequence analysis. Some isolates were recovered from previously unreported sources and exhibited unusual phenotypes or represented the first isolates found outside Europe. Products of fermentation, with emphasis on the presence or absence of propionic acid, were also studied in order to provide an additional characteristic with which to differentiate among phenotypically similar species. PMID:12409436
Sing, Andreas; Berger, Anja; Schneider-Brachert, Wulf; Holzmann, Thomas; Reischl, Udo
2011-01-01
The systemic symptoms of diphtheria are caused by the tox-encoded diphtheria toxin (DT) which is produced by toxigenic Corynebacterium spp. Besides the classical agent C. diphtheriae, the zoonotic pathogen C. ulcerans has increasingly been reported as an emerging pathogen for diphtheria. The reliable detection of toxigenic Corynebacterium spp. is of substantial importance for both diphtheria surveillance in the public health sector and the clinical workup of a patient with diphtherialike symptoms. Since the respective tox genes of C. diphtheriae and C. ulcerans differ from each other in both DNA and amino acid sequence, both tox genes should be covered by novel real-time PCR methods. We describe the development and validation of a LightCycler PCR assay which reliably recognizes tox genes from both C. diphtheriae and C. ulcerans and differentiates the respective target genes by fluorescence resonance energy transfer (FRET) hybridization probe melting curve analysis. PMID:21593261
USDA-ARS?s Scientific Manuscript database
Corynebacterium pseudotuberculosis (Actinomycetales: Corynebacteriaceae) infection in horses causes three different disease syndromes: external abscesses, infection of internal organs and ulcerative lymphangitis. The route of infection in horses remains undetermined, but transmission by insect vecto...
USDA-ARS?s Scientific Manuscript database
Corynebacterium pseudotuberculosis (Actinomycetales: Corynebacteriaceae) infection in horses causes external abscesses, infection of internal organs and ulcerative lymphangitis. The exact mechanism of infection remains unknown, but fly transmission is suspected. Scientists at Auburn University and U...
Theel, Elitza S.; Schmitt, Bryan H.; Hall, Leslie; Cunningham, Scott A.; Walchak, Robert C.; Patel, Robin
2012-01-01
An on-plate testing method using formic acid was evaluated on the Bruker Biotyper matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry system using 90 yeast and 78 Corynebacterium species isolates, and 95.6 and 81.1% of yeast and 96.1 and 92.3% of Corynebacterium isolates were correctly identified to the genus and species levels, respectively. The on-plate method using formic acid yielded identification percentages similar to those for the conventional but more laborious tube-based extraction. PMID:22760034
Fatal case of bacteremia caused by an atypical strain of Corynebacterium mucifaciens.
Cantarelli, Vlademir Vicente; Brodt, Teresa Cristina Z; Secchi, Carina; Inamine, Everton; Pereira, Fabiana de Souza; Pilger, Diogo Andre
2006-12-01
Corynebacterium species have often been considered normal skin flora or contaminants; however, in recent years they have been increasingly implicated in serious infections. Moreover, many new species have been discovered and old species renamed, especially after molecular biology techniques were introduced. Corynebacterium mucifaciens is mainly isolated from blood and from other normally-sterile body fluids; it forms slightly yellow, mucoid colonies on blood agar. We report a fatal case of bacteremia due to an atypical strain of C. mucifaciens. This strain had atypical colony morphology; analysis of the 16S rRNA gene was used to define the species.
Theel, Elitza S; Schmitt, Bryan H; Hall, Leslie; Cunningham, Scott A; Walchak, Robert C; Patel, Robin; Wengenack, Nancy L
2012-09-01
An on-plate testing method using formic acid was evaluated on the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry system using 90 yeast and 78 Corynebacterium species isolates, and 95.6 and 81.1% of yeast and 96.1 and 92.3% of Corynebacterium isolates were correctly identified to the genus and species levels, respectively. The on-plate method using formic acid yielded identification percentages similar to those for the conventional but more laborious tube-based extraction.
Experimental transmission of Corynebacterium pseudotuberculosis biovar equi in horses by house flies
USDA-ARS?s Scientific Manuscript database
The route of Corynebacterium pseudotuberculosis infection in horses remains undetermined, but transmission by insects is suspected. Scientists from CMAVE and Auburn University investigated house flies (Musca domestica L.) as possible vectors. Three ponies were directly inoculated with C. pseudotuber...
Johnstone, Kate J; Robson, Jennifer; Cherian, Sarah G; Wan Sai Cheong, Jenny; Kerr, Kris; Bligh, Judith F
2017-06-01
Granulomatous (lobular) mastitis is a rare inflammatory breast disease affecting parous reproductive-aged women. Once considered idiopathic, there is growing evidence of an association with corynebacteria infection, especially in the setting of a distinct histological pattern termed cystic neutrophilic granulomatous mastitis (CNGM). We describe 15 cases with histological features either confirming (n = 12) or suggesting (n = 3) CNGM, and concurrent microbiological evidence of Corynebacterium species. The organism was detected by culture or 16S rRNA gene sequencing of specimens obtained at surgery or fine needle aspiration. In seven cases, Gram-positive organisms were seen within vacuolated spaces. Speciation was performed in nine cases, with Corynebacterium kroppenstedtii subsequently identified. These cases provide further evidence in support of this association and in doing so highlight the importance of recognising these histological clues as well as the limitations of Gram stain and microbiological culture in detecting this previously under-recognised disease process. Copyright © 2017 Royal College of Pathologists of Australasia. All rights reserved.
Contextual control of skin immunity and inflammation by Corynebacterium.
Ridaura, Vanessa K; Bouladoux, Nicolas; Claesen, Jan; Chen, Y Erin; Byrd, Allyson L; Constantinides, Michael G; Merrill, Eric D; Tamoutounour, Samira; Fischbach, Michael A; Belkaid, Yasmine
2018-03-05
How defined microbes influence the skin immune system remains poorly understood. Here we demonstrate that Corynebacteria , dominant members of the skin microbiota, promote a dramatic increase in the number and activation of a defined subset of γδ T cells. This effect is long-lasting, occurs independently of other microbes, and is, in part, mediated by interleukin (IL)-23. Under steady-state conditions, the impact of Corynebacterium is discrete and noninflammatory. However, when applied to the skin of a host fed a high-fat diet, Corynebacterium accolens alone promotes inflammation in an IL-23-dependent manner. Such effect is highly conserved among species of Corynebacterium and dependent on the expression of a dominant component of the cell envelope, mycolic acid. Our data uncover a mode of communication between the immune system and a dominant genus of the skin microbiota and reveal that the functional impact of canonical skin microbial determinants is contextually controlled by the inflammatory and metabolic state of the host. © 2018 Ridaura et al.
Experimental transmission of Corynebacterium pseudotuberculosis in horses by house flies
USDA-ARS?s Scientific Manuscript database
The route of infection of pigeon fever remains undetermined. The purpose of this study was to investigate house flies (Musca domestica L.) as vectors of Corynebacterium pseudotuberculosis in horses. Eight ponies were used in a randomized, controlled, blinded experimental study. Ten wounds were creat...
21 CFR 866.3140 - Corynebacterium spp. serological reagents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140...
21 CFR 866.3140 - Corynebacterium spp. serological reagents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140...
21 CFR 866.3140 - Corynebacterium spp. serological reagents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140...
21 CFR 866.3140 - Corynebacterium spp. serological reagents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140...
21 CFR 866.3140 - Corynebacterium spp. serological reagents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corynebacterium spp. serological reagents. 866.3140 Section 866.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3140...
Native valve endocarditis due to Corynebacterium group JK.
Moffie, B G; Veenendaal, R A; Thompson, J
1990-12-01
We report a case of a 32-yr-old woman on chronic intermittent haemodialysis, who developed endocarditis due to a Corynebacterium group JK, involving both the native aortic and mitral valves. Despite a four-week treatment with vancomycin, an aortic root abscess developed. The diagnosis was confirmed on autopsy.
Corynebacterium macginleyi Conjunctivitis in Canada▿
Alsuwaidi, Ahmed R.; Wiebe, Deborah; Burdz, Tamara; Ng, Betty; Reimer, Aleisha; Singh, Cathleen; Bernard, Kathryn
2010-01-01
This report describes for the first time Corynebacterium macginleyi as a cause of conjunctivitis in Canada, where menaquinone analysis was done as part of the strain characterization. This species is typically isolated from ocular surfaces of patients from Europe and Japan. The isolate was resistant to erythromycin and clindamycin. PMID:20702661
Knox, Karen L; Holmes, Alison H
2002-01-01
The nondiphtheriae corynebacteria are uncommon but increasingly recognized as agents of endocarditis in patients with underlying structural heart disease or prosthetic-valves. We describe three cases of nosocomial endocarditis caused by nondiphtheriae corynebacteria, including the first reported case of Corynebacterium amycolatum, endocarditis. These all occurred in association with indwelling intravascular devices.
Clonal Multidrug-Resistant Corynebacterium striatum Strains, Italy
Campanile, Floriana; Carretto, Edoardo; Barbarini, Daniela; Grigis, Annalisa; Falcone, Marco; Goglio, Antonio; Venditti, Mario
2009-01-01
We assessed the clinical relevance and performed molecular characterization of 36 multidrug-resistant strains of Corynebacterium striatum. Pulsed-field gel electrophoresis confirmed a single clone, possessing erm(X), tetA/B, cmxA/B, and aphA1 genes, but few related subclones. This strain is emerging as a pathogen in Italy. PMID:19116057
[Serological affinity of some species of nonpathogenic corynebacteria].
Furtat, I M; Nohina, T M; Mikhal's'kyĭ, L O; Vedenieieva, O A
2002-01-01
Serological peculiarities of the species strains Corynebacterium glutamicum, C. ammoniagenes, C. vitaeruminis, C. variabilis and strain of Corynebacterium sp. (Brevibacterium stationis) UCM Ac-719 have been investigated with the help of immunoenzyme analysis ELISA with the use of mice immune serum, specific to C. ammoniagenes UCM Ac-732T, C. vitaeruminis UCM Ac-718T, C. variabilis UCM Ac-717T, C. glutamicum UCM Ac-733 and Corynebacterium sp. UCM Ac-719. It has been established that the species of nonpathogenic corynebacteria differ between themselves as to the degree of serological affinity. C. variabilis, C. ammoniagenes and C. glutamicum are the least similar as to this indication. Weak antigenic relations have been revealed in C. vitaeruminis and C. ammoniagenes. The latter displayed the higher, as compared with other strains, affinity for Corynebacterium sp. UCM Ac-719. The highest degree of serological affinity within the species was registered in strains C. glutamicum and C. variabilis. Data obtained evidence that the ELISA method permits conducting the high-reliability species diagnosis of nonpathogenic corynebacteria on the basis of their antigenic characteristics.
[Susceptibility of Corynebacteria isolated in St Petersburg to antibacterial drugs].
Gladin, D P; Kozlova, N S; Zaitseva, T K; Zveriakina, N N; Khval', S A
1997-01-01
Susceptibility of 150 Corynebacterium isolates (91 strains of C.pseudodiphtheriticum and 59 strains of the ANF group corynebacteria) to 21 antibacterial drugs was determined by the method of serial dilutions in a solid medium. It was shown that the MIC of the drugs for the diphtheroids was within the ranges of < 0.015 to > 32.0 micrograms/ml. 66 per cent of the Corynebacterium strains circulating in St. Petersburg was resistant at least to 1 antibacterial drug. The Corynebacterium isolates with moderate resistance to erythromycin and lincomycin (57.3 per cent) and resistant to trimethoprime (16.7 per cent) were the most frequent. 8.0 per cent of the diphtheroids was resistant at least to 4 antibacterial drugs. No significant difference in the susceptibility of the ANF group corynebacteria and C.pseudodiphtheriticum to the drugs was observed. Gentamicin, rifampicin, tetracycline and doxycycline showed high activity against the corynebacteria at present circulating in St. Petersburg. When antibacterial therapy of the infection due to corynebacteria fails it is necessary to estimate antibioticograms of Corynebacterium pure cultures.
[Current treatment strategy in malignant pleural effusion].
Türler, A; Walter, M; Schmitz-Rixen, T
1996-01-01
Malignant pleural effusions are a grave consequence of advanced cancer disease. The successful suppression of pleural fluid reaccumulation can make a major contribution to the management and palliative care of patients with disseminated cancer. Many treatment concepts have been reported in the literature. The recommended therapy in malignant pleural effusions consists of intrapleural instillation of a sclerotic agent to produce pleurodesis. Different substances have been used, including tetracyclines, cytostatic agents, fibrin, talc, Corynebacterium parvum, cytokines and others. We reviewed the most frequently used techniques of pleurodesis in order to define the most effective treatment concept. In 15 prospective randomized trials the success rates varied from 13% with bleomycin to 100% with talc or Corynebacterium parvum. Talc was superior to other agents in 6 of 6, Corynebacterium parvum in 3 of 4 and bleomycin or tetracycline only in 3 of 8 studies. Adverse effects were frequently observed with cytostatic agents, but were very rare in the case of talc or fibrin instillation. Comparing the recently published data pleurodesis with talc appears to be the most effective treatment strategy, followed by Corynebacterium parvum, bleomycin and tetracycline.
Riegel, P; de Briel, D; Prévost, G; Jehl, F; Monteil, H
1994-01-01
Levels of DNA relatedness were determined by performing DNA-DNA hybridization experiments (S1 nuclease procedure) with 13 human isolates exhibiting various antimicrobial susceptibility patterns which had been identified as Corynebacterium jeikeium by classical tests and the API Coryne system and with reference strains of C. jeikeium and related taxa. Twelve of 13 isolates which formed three genomic groups showed between 22 and 75% relatedness with the type strain of C. jeikeium. One of these genomic groups included all the strains resistant to penicillin and gentamicin and is genomically related to the C. jeikeium type strain at the species level. In addition, the reference strain of "Corynebacterium genitalium" biotype II was found to belong to this genospecies and therefore can be considered as a synonym of C. jeikeium. In contrast, one isolate and the reference strains of "Corynebacterium pseudogenitalium" biotypes C-3 and C-4 which were assigned to C. jeikeium by the API Coryne system were less than 10% related to the C. jeikeium type strain. These nongenomically related strains can be differentiated from the jeikeium-related strains on the basis of positive acidification from fructose and growth under anaerobic conditions. Furthermore, these strains exhibited full susceptibility to penicillin whereas the strains related to the C. jeikeium type strain are resistant to or only moderately susceptible to penicillin. No genomic relationship was found between C. jeikeium-related strains and other lipophilic coryneforms, identified as Corynebacterium accolens or Corynebacterium group G or F. Our study demonstrates the necessity to perform the fructose fermentation test or respiratory-type test for the correct identification of lipophilic coryneforms as C. jeikeium. Although these strains show genomic diversity at the species level, in a practical aspect, biochemical properties as well as antimicrobial susceptibility may allow the classification of such isolates in this single taxon. PMID:7989533
Bomar, Lindsey; Brugger, Silvio D; Yost, Brian H; Davies, Sean S; Lemon, Katherine P
2016-01-05
Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization. Copyright © 2016 Bomar et al.
Riegel, P; de Briel, D; Prévost, G; Jehl, F; Monteil, H
1994-08-01
Levels of DNA relatedness were determined by performing DNA-DNA hybridization experiments (S1 nuclease procedure) with 13 human isolates exhibiting various antimicrobial susceptibility patterns which had been identified as Corynebacterium jeikeium by classical tests and the API Coryne system and with reference strains of C. jeikeium and related taxa. Twelve of 13 isolates which formed three genomic groups showed between 22 and 75% relatedness with the type strain of C. jeikeium. One of these genomic groups included all the strains resistant to penicillin and gentamicin and is genomically related to the C. jeikeium type strain at the species level. In addition, the reference strain of "Corynebacterium genitalium" biotype II was found to belong to this genospecies and therefore can be considered as a synonym of C. jeikeium. In contrast, one isolate and the reference strains of "Corynebacterium pseudogenitalium" biotypes C-3 and C-4 which were assigned to C. jeikeium by the API Coryne system were less than 10% related to the C. jeikeium type strain. These nongenomically related strains can be differentiated from the jeikeium-related strains on the basis of positive acidification from fructose and growth under anaerobic conditions. Furthermore, these strains exhibited full susceptibility to penicillin whereas the strains related to the C. jeikeium type strain are resistant to or only moderately susceptible to penicillin. No genomic relationship was found between C. jeikeium-related strains and other lipophilic coryneforms, identified as Corynebacterium accolens or Corynebacterium group G or F. Our study demonstrates the necessity to perform the fructose fermentation test or respiratory-type test for the correct identification of lipophilic coryneforms as C. jeikeium. Although these strains show genomic diversity at the species level, in a practical aspect, biochemical properties as well as antimicrobial susceptibility may allow the classification of such isolates in this single taxon.
Suture-Related Keratitis Caused by Corynebacterium macginleyi▿
Suzuki, Takashi; Iihara, Hirotoshi; Uno, Toshihiko; Hara, Yuko; Ohkusu, Kiyofumi; Hata, Hiroyuki; Shudo, Masachika; Ohashi, Yuichi
2007-01-01
We report two cases of suture-related keratitis following penetrating keratoplasty. In both cases, Corynebacterium macginleyi was isolated from corneal specimens. Scanning electron microscopy revealed that corynebacteria could aggregate and form a biofilm. The MICs of sulbenicillin and fluoroquinolones were high for both isolates. Our findings show that C. macginleyi can cause keratitis with biofilm formation. PMID:17913935
Corynebacterium pseudotuberculosis liver abscess in a mature alpaca (Lama pacos)
Sprake, Philippa; Gold, Jenifer R.
2012-01-01
A mature female alpaca was evaluated for weight loss and a 10-day history of anorexia, diarrhea, abdominal distension, and ventral edema. Ultrasonography revealed a hepatic mass, culture of which identified Corynebacterium pseudotuberculosis. This is the first reported case of an internal caseous lymphadenitis lesion resulting in clinical disease in a camelid. PMID:23024384
Contribution to the taxonomy of haemolytic corynebacteria.
Julák, J; Mára, M; Patocka, F; Potuzníková, B; Zadrazil, S
1978-01-01
In an attempt to assess the taxonomic relationships among human (Corynebacterium haemolyticum), animal (Corynebacterium pyogenes bovis) haemolytic corynebacteria, typical corynebacteria (Corynebacterium diphteriae mitis, C. ovis, C. ulcerans) and group A and G streptococci, a number of biochemical parameters were established: the DNA content of G + C, the presence of the cytochrome system, composition of fatty acids in free lipids and production of carboxylic acids as end products of fermentation. It was found that according to the above criteria, streptococci differed significantly from the corynebacteria studied. In addition, it was possible to differentiate a subgroup of typically aerobic haemolytic corynebacteria (different from both human and animal corynebacteria), possessing a complete cytochrome system, producing propionic acid and having a different composition of fatty acids.
Contribution to the taxonomy of haemolytic corynebacteria.
Julák, J; Mára, M; Patočka, F; Potužníková, B; Zadražil, S
1978-05-01
In an attempt to assess the taxonomic relationships among human (Corynebacterium haemolyticum), animal (Corynebacterium pyogenes bovis) haemolytio corynebacteria, typical corynebacteria (Corynebacterium diphteriae mitis, C. ovis, C. ulcerans) and group A and G streptococci, a number of biochemical parameters were established: the DNA content of G + C, the presence of the cytochrome system, composition of fatty acids in free lipids and production of carboxylic acids as end products of fermentation. It was found that according to the above criteria, streptococci differed significantly from the corynebacteria studied. In addition, it was possible to differentiate a subgroup of typically aerobic haemolytic corynebacteria (different from both human and animal corynebacteria), possessing a complete cytochrome system, producing propionic acid and having a different composition of fatty acids.
Teutsch, Barbara; Berger, Anja; Marosevic, Durdica; Schönberger, Katharina; Lâm, Thiên-Trí; Hubert, Kerstin; Beer, Steffi; Wienert, Peter; Ackermann, Nikolaus; Claus, Heike; Drayß, Maria; Thiel, Kathrin; van der Linden, Mark; Vogel, Ulrich; Sing, Andreas
2017-10-01
The prevalence of protective anti-diphtheria toxin antibodies decreases with age. Therefore, the elderly might serve as reservoir for potentially toxigenic Corynebacterium (C.) species (C. diphtheriae, C. ulcerans, and C. pseudotuberculosis). This study aimed to examine the colonization rate of the nasopharynx with corynebacteria of individuals aged 65 years and older. In the period from October 2012 to June 2013, nasal and throat swabs were taken from 714 asymptomatic subjects aged 65-106 years (average age 77.2) at three regions in Germany and investigated for Corynebacterium species. A total of 402 strains of Corynebacterium species were isolated from 388 out of 714 asymptomatic subjects (carriage rate 54.3%). The carriage rate was significantly higher in study participants living in retirement homes (68.4%) compared to those living autonomously at home (51.1%). Strains were isolated mostly from the nose (99%). Corynebacterium accolens was the most often isolated species (39.8%), followed by C. propinquum (24.1%), C. pseudodiphtheriticum (19.4%), and C. tuberculostearicum (10.2%). No C. diphtheriae, C. ulcerans, and C. pseudotuberculosis strains were isolated. A subsample of 74 subjects was tested serologically for anti-diphtheria antibodies. Protective anti-diphtheria toxin antibodies were found in 29.7% of the subjects; 70.3% showed no protective immunity. These results suggest that carriage of potentially toxigenic corynebacteria is very rare among people aged 65 and older in Germany. However, the low prevalence of protective anti-diphtheria toxin antibodies might pose a risk for acquiring diphtheria especially for the elderly.
Silva, Andréia do Socorro de Sousa; Baraúna, Rafael Azevedo; de Sá, Pablo Caracciolo Gomes; das Graças, Diego Assis; Carneiro, Adriana Ribeiro; Thouvenin, Maxime; Azevedo, Vasco; Badell, Edgar; Guiso, Nicole; da Silva, Artur Luiz da Costa
2014-01-01
Corynebacterium ulcerans is a bacterial species with high importance because it causes infections in animals and, rarely, in humans. Its virulence mechanisms remain unclear. The current study describes the draft genome of C. ulcerans FRC58, which was isolated from the bronchitic aspiration of a patient in France. PMID:24407640
Antimicrobial susceptibility of corynebacteria isolated from ewe's mastitis.
Fernández, E P; Vela, A I; Las Heras, A; Domínguez, L; Fernández-Garayzábal, J F; Moreno, M A
2001-12-01
The antimicrobial susceptibility of 50 coryneform isolates from subclinical mastitis in sheep was evaluated. Arcanobacterium pyogenes (five isolates) had a susceptibility pattern distinct from the Corynebacterium species tested. The Corynebacterium isolates could be divided in two groups according to the MIC values for ciprofloxacin. Their antimicrobial susceptibility was usually unpredictable and consequently antimicrobial susceptibility tests are necessary for clinical and epidemiological purposes.
Turicella otitidis and Corynebacterium auris: 20 years on.
von Graevenitz, A; Funke, G
2014-02-01
Turicella otitidis and Corynebacterium auris, described as new species 20 years ago, have been isolated mainly from the external ear canal and middle ear fluid. While their taxonomic position has been clearly established, their diagnosis in the routine laboratory is difficult. The question of their pathogenic potential in otitis is still open but might be elucidated better if corynebacteria are speciated more often.
Azevedo Antunes, Camila; Richardson, Emily J; Quick, Joshua; Fuentes-Utrilla, Pablo; Isom, Georgia L; Goodall, Emily C; Möller, Jens; Hoskisson, Paul A; Mattos-Guaraldi, Ana Luiza; Cunningham, Adam F; Loman, Nicholas J; Sangal, Vartul; Burkovski, Andreas; Henderson, Ian R
2018-02-01
The genome sequence of the human pathogen Corynebacterium diphtheriae bv. mitis strain ISS 3319 was determined and closed in this study. The genome is estimated to have 2,404,936 bp encoding 2,257 proteins. This strain also possesses a plasmid of 1,960 bp. Copyright © 2018 Azevedo Antunes et al.
rpoB Gene Sequencing for Identification of Corynebacterium Species
Khamis, Atieh; Raoult, Didier; La Scola, Bernard
2004-01-01
The genus Corynebacterium is a heterogeneous group of species comprising human and animal pathogens and environmental bacteria. It is defined on the basis of several phenotypic characters and the results of DNA-DNA relatedness and, more recently, 16S rRNA gene sequencing. However, the 16S rRNA gene is not polymorphic enough to ensure reliable phylogenetic studies and needs to be completely sequenced for accurate identification. The almost complete rpoB sequences of 56 Corynebacterium species were determined by both PCR and genome walking methods. In all cases the percent similarities between different species were lower than those observed by 16S rRNA gene sequencing, even for those species with degrees of high similarity. Several clusters supported by high bootstrap values were identified. In order to propose a method for strain identification which does not require sequencing of the complete rpoB sequence (approximately 3,500 bp), we identified an area with a high degree of polymorphism, bordered by conserved sequences that can be used as universal primers for PCR amplification and sequencing. The sequence of this fragment (434 to 452 bp) allows accurate species identification and may be used in the future for routine sequence-based identification of Corynebacterium species. PMID:15364970
Cell Envelope of Corynebacteria: Structure and Influence on Pathogenicity
Burkovski, Andreas
2013-01-01
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper. PMID:23724339
Cell envelope of corynebacteria: structure and influence on pathogenicity.
Burkovski, Andreas
2013-01-01
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
Nosocomial Endocarditis Caused by Corynebacterium amycolatum and Other Nondiphtheriae Corynebacteria
Holmes, Alison H.
2002-01-01
The nondiphtheriae corynebacteria are uncommon but increasingly recognized as important agents of community-acquired endocarditis in patients with underlying structural heart disease, as well as of prosthetic-valve endocarditis. We describe three cases of nondiphtheriae corynebacterial endocarditis, including the first reported case of endocarditis caused by Corynebacterium amycolatum, occurring over an 18-month period, all in association with indwelling intravascular devices. PMID:11749760
A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory.
Engler, K H; Glushkevich, T; Mazurova, I K; George, R C; Efstratiou, A
1997-02-01
The detection of toxigenicity among Corynebacterium diphtheriae and Corynebacterium ulcerans strains is the most important test for the microbiological diagnosis of diphtheria. Difficulties with current methods, in particular the Elek test, are well documented. We therefore describe a modified Elek test which provides an accurate result after only 16 h of incubation, in contrast to 48 h for the conventional test.
Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip
Hamada, Mazen; Matar, Ammar; Bashir, Abdallah
2015-01-01
Abstract Carbaryl is an important and widely used insecticide that pollutes soil and water systems. Bacteria from the local soil ecosystem of the Gaza Strip capable of utilizing carbaryl as the sole source of carbon and nitrogen were isolated and identified as belonging to Bacillus, Morganella, Pseudomonas, Aeromonas and Corynebacterium genera. Carbaryl biodegradation by Bacillus, Morganella and Corynebacterium isolates was analyzed in minimal liquid media supplemented with carbaryl as the only source of carbon and nitrogen. Bacillus and Morganella exhibited 94.6% and 87.3% carbaryl degradation, respectively, while Corynebacterium showed only moderate carbaryl degradation at 48.8%. These results indicate that bacterial isolates from a local soil ecosystem in the Gaza Strip are able to degrade carbaryl and can be used to decrease the risk of environmental contamination by this insecticide. PMID:26691466
Vandentorren, S; Guiso, N; Badell, E; Boisrenoult, P; Micaelo, M; Troché, G; Lecouls, P; Moquet, M J; Patey, O; Belchior, E
2014-09-25
In March 2014, a person in their eighties who was diagnosed with extensive cellulitis due to toxigenic Corynebacterium ulcerans died from multiple organ failure. Environmental investigation also isolated C. ulcerans in biological samples from two stray cats in contact with the case. This finding provides further evidence that pets can carry toxigenic C. ulcerans and may be a source of the infection in humans.
Rouyer, Cécile; Walewski, Violaine; Badell-Ocando, Edgar; Dumas, Marc; Zumelzu, Coralie; Jaureguy, Françoise; Brisse, Sylvain; Caux, Frédéric; Bouchaud, Olivier; Carbonnelle, Etienne
2017-01-01
Abstract Cutaneous diphtheria is uncommon in Europe. In this study, we report a case of imported cutaneous infection due to a non-toxigenic but tox gene-bearing (NTTB) strain of Corynebacterium diphtheriae. The NTTB strains are recognized as emerging pathogens across Europe, and physicians and bacteriologists should be aware of the circulation of these strains. PMID:28480263
Marston, Chung K.; Jamieson, Frances; Cahoon, Fred; Lesiak, Gail; Golaz, Anne; Reeves, Mike; Popovic, Tanja
2001-01-01
Molecular characterization of 53 U.S. and Canadian Corynebacterium diphtheriae isolates by multilocus enzyme electrophoresis, ribotyping, and random amplified polymorphic DNA showed that strains with distinct molecular subtypes have persisted in the United States and Canada for at least 25 years. These strains are endemic rather than imported from countries with current endemic or epidemic diphtheria. PMID:11283092
Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.
Gui, Yongli; Ma, Yuechao; Xu, Qingyang; Zhang, Chenglin; Xie, Xixian; Chen, Ning
2016-02-20
Here, we report the complete genome sequence of Corynebacterium glutamicum CP, an industrial l-leucine producing strain in China. The whole genome consists of a circular chromosome and a plasmid. The comparative genomics analysis shows that there are many mutations in the key enzyme coding genes relevant to l-leucine biosynthesis compared to C. glutamicum ATCC 13032. Copyright © 2016 Elsevier B.V. All rights reserved.
Hinić, V.; Lang, C.; Weisser, M.; Straub, C.; Frei, R.
2012-01-01
Corynebacterium tuberculostearicum is a lipophilic corynebacterium validly characterized in 2004. We provide clinical information on 18 patients from whom this organism was isolated. The majority of the patients were hospitalized and had a history of prolonged treatment with broad-spectrum antimicrobials. In 7 (38.9%) of the 18 cases, the isolates were found to be clinically relevant. The present report also includes detailed data on the biochemical and molecular identification of C. tuberculostearicum, as well as its identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Our data demonstrate that routine biochemical tests do not provide reliable identification of C. tuberculostearicum. MALDI-TOF MS represents a helpful tool for the identification of this species, since all of the strains matched C. tuberculostearicum as the first choice and 58.3% (7/12) of the strains processed with the full extraction protocol generated scores of >2.000. Nevertheless, partial 16S rRNA gene sequencing still represents the gold standard for the identification of this species. Due to the challenging identification of C. tuberculostearicum, we presume that this organism is often misidentified and its clinical relevance is underestimated. The antimicrobial susceptibility profile of C. tuberculostearicum presented here reveals that 14 (87.5%) of the 16 strains analyzed exhibited multidrug resistance. PMID:22593594
Tiwari, Sandeep; Jamal, Syed Babar; Oliveira, Leticia Castro; Clermont, Dominique; Bizet, Chantal; Mariano, Diego; de Carvalho, Paulo Vinicius Sanches Daltro; Souza, Flavia; Pereira, Felipe Luiz; de Castro Soares, Siomar; Guimarães, Luis C; Dorella, Fernanda; Carvalho, Alex; Leal, Carlos; Barh, Debmalya; Figueiredo, Henrique; Hassan, Syed Shah; Azevedo, Vasco; Silva, Artur
2016-08-11
In this work, we describe a set of features of Corynebacterium auriscanis CIP 106629 and details of the draft genome sequence and annotation. The genome comprises a 2.5-Mbp-long single circular genome with 1,797 protein-coding genes, 5 rRNA, 50 tRNA, and 403 pseudogenes, with a G+C content of 58.50%. Copyright © 2016 Tiwari et al.
Blombach, Bastian; Arndt, Annette; Auchter, Marc; Eikmanns, Bernhard J.
2009-01-01
Pyruvate dehydrogenase complex-deficient strains of Corynebacterium glutamicum produce l-valine from glucose only after depletion of the acetate required for growth. Here we show that inactivation of the DeoR-type transcriptional regulator SugR or replacement of acetate by ethanol already in course of the growth phase results in efficient l-valine production. PMID:19088318
Isolation of Corynebacterium tuscaniae sp. nov. from Blood Cultures of a Patient with Endocarditis
Riegel, Philippe; Creti, Roberta; Mattei, Romano; Nieri, Alfredo; von Hunolstein, Christina
2006-01-01
A strain of an unknown coryneform bacterium was repeatedly isolated in pure culture from the blood of a patient affected by endocarditis. Comparative 16S rRNA gene sequence analysis revealed that this isolate represented a new subline within the genus Corynebacterium. This new taxon can be identified by the presence of corynomycolic acids and its enzymatic activities and fermentation of sugars. Acid production from glucose and maltose, pyrazinamidase and alkaline phoshatase activities, and hippurate hydrolysis were the most characteristic phenotypic features of the bacterium. On the basis of both phenotypic and phylogenetic evidence, it is proposed that this isolate be classified as a novel species, Corynebacterium tuscaniae sp. nov. The type strain, ISS-5309, has been deposited in the American Type Culture Collection (ATCC BAA-1141) and in the Culture Collection of the University of Göteborg (CCUG 51321). PMID:16455875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yassin, Atteyet F.; Lapidus, Alla; Han, James
We report that the Corynebacterium ulceribovis strain IMMIB L-1395T (= DSM 45146T) is an aerobic to facultative anaerobic, Gram-positive, non-spore-forming, non-motile rod-shaped bacterium that was isolated from the skin of the udder of a cow, in Schleswig Holstein, Germany. The cell wall of C. ulceribovis contains corynemycolic acids. The cellular fatty acids are those described for the genus Corynebacterium, but tuberculostearic acid is not present. Here we describe the features of C. ulceribovis strain IMMIB L-1395T, together with genome sequence information and its annotation. The 2,300,451 bp long genome containing 2,104 protein-coding genes and 54 RNA-encoding genes and is partmore » of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.« less
Yassin, Atteyet F.; Lapidus, Alla; Han, James; ...
2015-08-05
We report that the Corynebacterium ulceribovis strain IMMIB L-1395T (= DSM 45146T) is an aerobic to facultative anaerobic, Gram-positive, non-spore-forming, non-motile rod-shaped bacterium that was isolated from the skin of the udder of a cow, in Schleswig Holstein, Germany. The cell wall of C. ulceribovis contains corynemycolic acids. The cellular fatty acids are those described for the genus Corynebacterium, but tuberculostearic acid is not present. Here we describe the features of C. ulceribovis strain IMMIB L-1395T, together with genome sequence information and its annotation. The 2,300,451 bp long genome containing 2,104 protein-coding genes and 54 RNA-encoding genes and is partmore » of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.« less
Colonisation with toxigenic Corynebacterium diphtheriae in a Scottish burns patient, June 2015.
Deshpande, Ashutosh; Inkster, Teresa; Hamilton, Kate; Litt, David; Fry, Norman; Kennedy, Iain T R; Shookhye-Dickson, Jacqueline; Hill, Robert L R
2015-01-01
On 12 June 2015, Corynebacterium diphtheriae was identified in a skin swab from a burns patient in Scotland. The isolate was confirmed to be genotypically and phenotypically toxigenic. Multilocus sequence typing of three patient isolates yielded sequence type ST 125. The patient was clinically well. We summarise findings of this case, and results of close contact identification and screening: 12 family and close contacts and 32 hospital staff have been found negative for C. diphtheriae.
Use of Amplified Fragment Length Polymorphisms for Typing Corynebacterium diphtheriae
De Zoysa, Aruni; Efstratiou, Androulla
2000-01-01
Amplified fragment length polymorphism (AFLP) was investigated for the differentiation of Corynebacterium diphtheriae isolates. Analysis using Taxotron revealed 10 distinct AFLP profiles among 57 isolates. Strains with ribotype patterns D1, D4, and D12 could not be distinguished; however, the technique discriminated isolates of ribotype patterns D3, D6, and D7 further. AFLP was rapid, fairly inexpensive, and reproducible and could be used as an alternative to ribotyping. PMID:11015416
Citron, Diane M.; Warren, Yumi A.; Goldstein, Ellie J. C.
2012-01-01
TD-1792 is a multivalent glycopeptide-cephalosporin heterodimer antibiotic with potent activity against Gram-positive bacteria. We tested TD-1792 against 377 anaerobes and 34 strains of Corynebacterium species. Against nearly all Gram-positive strains, TD-1792 had an MIC90 of 0.25 μg/ml and was typically 3 to 7 dilutions more active than vancomycin and daptomycin. PMID:22290981
Ciok-Pater, Emilia; Mikucka, Agnieszka; Gospodarek, Eugenia
2005-01-01
Lipophilic species of Corynebacterium are increasing problem in hospital infections. The aim of this study was to evaluate occurrence of these microorganisms in the materials taken from patients in the day of admission and during the hospitalization as well as comparison of their antibiotic sensitivity. The investigation included 65 strains isolated from hospitalized patients and 48 strains isolated from unchanged skin. Using Api Coryne test 5 species were identified. C. urealyticum dominated, the other were C. subsp. lipophilum and C. jeikeium. Among strains isolated from unchanged diseased skin the most C. jeikeium and C. accolens occurred. All strains were sensitive to glycopeptide, quinupristin/dalphopristin. The strains isolated from hospitalized patients were usually sensitive to fuside acid, doxycycline as well as tetracycline. Strains isolated from unchanged skin were sensitive to almost all tested antibiotics. In the group of 65 strains isolated from hospitalized patients 99.0% were multiresistant. In the group of strains isolated from unchanged skin only two strains were multiresistant. Differences in antibiotic sensitivity among analysed Corynebacterium sp. were confirmed. Majority of the "hospital strains" were characterized by multiresistance. Basing on these results it is possible to suppose, that multiresistance is main factor that favours lipophilic Corynebacterium species in the process of colonization of mucous membranes, skins as well as developing infections.
A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
Wang, Bo; Hu, Qitiao; Zhang, Yu; Shi, Ruilin; Chai, Xin; Liu, Zhe; Shang, Xiuling; Zhang, Yun; Wen, Tingyi
2018-04-23
Extensive modification of genome is an efficient manner to regulate the metabolic network for producing target metabolites or non-native products using Corynebacterium glutamicum as a cell factory. Genome editing approaches by means of homologous recombination and counter-selection markers are laborious and time consuming due to multiple round manipulations and low editing efficiencies. The current two-plasmid-based CRISPR-Cas9 editing methods generate false positives due to the potential instability of Cas9 on the plasmid, and require a high transformation efficiency for co-occurrence of two plasmids transformation. Here, we developed a RecET-assisted CRISPR-Cas9 genome editing method using a chromosome-borne Cas9-RecET and a single plasmid harboring sgRNA and repair templates. The inducible expression of chromosomal RecET promoted the frequencies of homologous recombination, and increased the efficiency for gene deletion. Due to the high transformation efficiency of a single plasmid, this method enabled 10- and 20-kb region deletion, 2.5-, 5.7- and 7.5-kb expression cassette insertion and precise site-specific mutation, suggesting a versatility of this method. Deletion of argR and farR regulators as well as site-directed mutation of argB and pgi genes generated the mutant capable of accumulating L-arginine, indicating the stability of chromosome-borne Cas9 for iterative genome editing. Using this method, the model-predicted target genes were modified to redirect metabolic flux towards 1,2-propanediol biosynthetic pathway. The final engineered strain produced 6.75 ± 0.46 g/L of 1,2-propanediol that is the highest titer reported in C. glutamicum. Furthermore, this method is available for Corynebacterium pekinense 1.563, suggesting its universal applicability in other Corynebacterium species. The RecET-assisted CRISPR-Cas9 genome editing method will facilitate engineering of metabolic networks for the synthesis of interested bio-based products from renewable biomass using Corynebacterium species as cell factories.
Corynebacterium urealyticum: a comprehensive review of an understated organism
Salem, Nagla; Salem, Lamyaa; Saber, Sally; Ismail, Ghada; Bluth, Martin H
2015-01-01
Corynebacterium urealyticum is a Gram positive, slow-growing, lipophilic, multi-drug resistant, urease positive micro-organism with diphtheroid morphology. It has been reported as an opportunistic nosocomial pathogen and as the cause of a variety of diseases including but not limited to cystitis, pyelonephritis, and bacteremia among others. This review serves to describe C. urealyticum with respect to its history, identification, laboratory investigation, relationship to disease and treatment in order to allow increased familiarity with this organism in clinical disease. PMID:26056481
Evangelista, A T; Coppola, K M; Furness, G
1984-08-01
Twenty-six strains of group JK corynebacteria had the same colonial morphology and biological reactions as the biotypes of the biovars of Corynebacterium genitalium and C. pseudogenitalium. Therefore, group JK corynebacteria can be assigned to the biovars of C. genitalium or C. pseudogenitalium. Although the strains differed in sensitivity to 16 antibiotics tested by Sensi-Discs or by the Micro-Media technique, they are uniformly sensitive to 4-5 micrograms/mL of vancomycin. Medium containing 10 micrograms vancomycin/mL was bactericidal and the killing time was dependent on the concentration. The rate of mutation to resistance to 10 micrograms vancomycin was greater than 1 in 10(10) corynebacteria. Therefore, vancomycin sensitivity is a stable characteristic of these corynebacteria which also indicates that group JK corynebacteria are strains of either C. genitalium or C. pseudogenitalium. Since group JK corynebacteria are considered pathogens, this finding supports the belief that C. genitalium is a pathogen and suggests that some biotypes of the commensal C. pseudogenitalium may infect compromised hosts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung-Jin, E-mail: kkj@postech.ac.kr; Kim, Sujin; Lee, Sujin
2006-11-01
The Corynebacterium glutamicum NTA monooxygenase component A protein, which plays the central role in NTA biodegradation, was crystallized. The initial X-ray crystallographic characterization is reported. Safety and environmental concerns have recently dictated the proper disposal of nitrilotriacetate (NTA). Biodegradation of NTA is initiated by NTA monooxygenase, which is composed of two proteins: component A and component B. The NTA monooxygenase component A protein from Corynebacterium glutamicum was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium sulfate as the precipitant. X-ray diffraction data were collected to a maximum resolution of 2.5 Å on a synchrotron beamline. The crystalmore » belongs to the monoclinic space group C2, with unit-cell parameters a = 111.04, b = 98.51, c = 171.61 Å, β = 101.94°. The asymmetric unit consists of four molecules, corresponding to a packing density of 2.3 Å{sup 3} Da{sup −1}. The structure was solved by molecular replacement. Structure refinement is in progress.« less
Bomar, Lindsey; Brugger, Silvio D.; Yost, Brian H.; Davies, Sean S.
2016-01-01
ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. PMID:26733066
Contemporary microbiology and identification of Corynebacteria spp. causing infections in human.
Zasada, A A; Mosiej, E
2018-06-01
The Corynebacterium is a genus of bacteria of growing clinical importance. Progress in medicine results in growing population of immunocompromised patients and growing number of infections caused by opportunistic pathogens. A new infections caused by new Corynebacterium species and species previously regarded as commensal micro-organisms have been described. Parallel with changes in Corynebacteria infections, the microbiological laboratory diagnostic possibilities are changing. But identification of this group of bacteria to the species level remains difficult. In the paper, we present various manual, semi-automated and automated assays used in clinical laboratories for Corynebacterium identification, such as API Coryne, RapID CB Plus, BBL Crystal Gram Positive ID System, MICRONAUT-RPO, VITEK 2, BD Phoenix System, Sherlock Microbial ID System, MicroSeq Microbial Identification System, Biolog Microbial Identification Systems, MALDI-TOF MS systems, polymerase chain reaction (PCR)-based and sequencing-based assays. The presented assays are based on various properties, like biochemical tests, specific DNA sequences, composition of cellular fatty acids, protein profiles and have specific limitations. The number of opportunistic infections caused by Corynebacteria is increasing due to increase in number of immunocompromised patients. New Corynebacterium species and new human infections, caused by this group of bacteria, has been described recently. However, identification of Corynebacteria is still a challenge despite application of sophisticated laboratory methods. In the study we present possibilities and limitations of various commercial systems for identification of Corynebacteria. © 2018 The Society for Applied Microbiology.
Otitis in a cat associated with Corynebacterium provencense.
Kittl, Sonja; Brodard, Isabelle; Rychener, Lorenz; Jores, Jörg; Roosje, Petra; Gobeli Brawand, Stefanie
2018-06-25
The role of corynebacteria in canine and feline otitis has not been investigated in detail; however, members of this genus are increasingly recognized as pathogens of otitis in both human and veterinary medicine. Here we report the first case of feline otitis associated with the recently described species Corynebacterium provencense. A seven-month old cat presented with a head tilt and ataxia was diagnosed with peripheral vestibular syndrome associated with an otitis media/interna. This took place 6 weeks after resection of a polyp, having initially shown a full recovery with topical ofloxacin and glucocorticoid treatment. Bacteriology of an ear swab yielded a pure culture of corynebacteria, which could not be identified at the species level using routine methods. However, the 16S rRNA gene sequence was 100% identical to the recently published novel corynebacterium species, Corynebacterium provencense. Whole genome sequencing of the cat isolate and calculation of average nucleotide identity (99.1%) confirmed this finding. The cat isolate was found to contain additional presumptive iron acquisition genes that are likely to encode virulence factors. Furthermore, the strain tested resistant to clindamycin, penicillin and ciprofloxacin. The cat was subsequently treated with chloramphenicol, which lead to clinical improvement. Corynebacteria from otitis cases are not routinely identified at the species level and not tested for antimicrobial susceptibility in veterinary laboratories, as they are not considered major pathogens. This may lead to underreporting of this genus or animals being treated with inappropriate antimicrobials since corynebacteria are often resistant to multiple drugs.
[Corynebacterium ulcerans pulmonary infection].
Thouvenin, Maxime; Beilouny, Bassam; Badell, Edgar; Guiso, Nicole
2016-01-01
Corynebacterium ulcerans is a bacterium able to infect humans by inducing a disease close to diphtheria. We describe the case of a 83-year-old patient hospitalized as a matter of urgency in intensive care for which C. ulcerans was isolated in pure culture in its bronchial samples. Even if the isolate was not secreting toxin in vitro, it possesses the tox gene which motivated the use of specific antitoxin serum. After two months of intensive care the patient went out of the service. It is about a remarkable case of clinicobiologic collaboration.
Mikhailovich, V M; Melnikov, V G; Mazurova, I K; Wachsmuth, I K; Wenger, J D; Wharton, M; Nakao, H; Popovic, T
1995-01-01
A total of 250 Corynebacterium diphtheriae isolates from clinical cases and carriers in Russia were assayed by PCR directed at the A subunit of the diphtheria toxin gene to distinguish toxigenic from nontoxigenic strains; 170 strains were positive as indicated by the presence of the 248-bp amplicon. The results of this PCR assay were in complete concordance with those of the standard immunoprecipitation assay (Elek), and the PCR assay is a useful tool for rapid identification in clinical laboratories. PMID:8576378
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, B.K.; Alexander, M.
1992-01-01
A study was conducted to determine some of the factors affecting the P requirement for the biodegradation of p-nitrophenol, phenol, and glucose by Pseudomonas and Corynebacterium strains. Mineralization of glucose was rapid and the Pseudomonas sp. grew extensively in solutions with 5 and 10 mM phosphate, but the rate and extent of degradation were low and the bacterial population never became abundant in media with 0.2 mM phosphate. Similar results were obtained with the Corynebacterium sp. growing in media containing p-nitrophenol or phenol and in solutions with a purified phosphate salt. The extent of growth of the Corynebacterium sp. wasmore » reduced with 2 or 10 mM phosphate in media containing high Fe concentrations. Ca at 5 mM but not 0.5 mM inhibited p-nitrophenol mineralization by the Corynebacterium sp. with phosphate concentrations from 0.2 to 5.0 mM. Phenol mineralization by the Pseudomonas sp. in medium with 0.2 mM phosphate was rapid at pH 5.2, but the bacteria had little or no activity at pH 8.0. In contrast, the activity was greater at pH 8.0 than at pH 5.2 when the culture contained 10 mM phosphate. These effects of pH were similar in media with 5 mM Ca or no added Ca. The authors conclude that the effect of P on bacterial degradation can be influenced by the pH and the concentrations of Fe and Ca.« less
Both, Leonard; Collins, Sarah; de Zoysa, Aruni; White, Joanne; Mandal, Sema
2014-01-01
Human infections caused by toxigenic corynebacteria occur sporadically across Europe. In this report, we undertook the epidemiological and molecular characterization of all toxigenic corynebacterium strains isolated in England between January 2007 and December 2013. Epidemiological aspects include case demographics, risk factors, clinical presentation, treatment, and outcome. Molecular characterization was performed using multilocus sequence typing (MLST) alongside traditional phenotypic methods. In total, there were 20 cases of toxigenic corynebacteria; 12 (60.0%) were caused by Corynebacterium ulcerans, where animal contact was the predominant risk factor. The remaining eight (40.0%) were caused by Corynebacterium diphtheriae strains; six were biovar mitis, which were associated with recent travel abroad. Adults 45 years and older were particularly affected (55.0%; 11/20), and typical symptoms included sore throat and fever. Respiratory diphtheria with the absence of a pharyngeal membrane was the most common presentation (50.0%; 10/20). None of the eight C. diphtheriae cases were fully immunized. Diphtheria antitoxin was issued in two (9.5%) cases; both survived. Two (9.5%) cases died, one due to a C. diphtheriae infection and one due to C. ulcerans. MLST demonstrated that the majority (87.5%; 7/8) of C. diphtheriae strains represented new sequence types (STs). By adapting several primer sequences, the MLST genes in C. ulcerans were also amplified, thereby providing the basis for extension of the MLST scheme, which is currently restricted to C. diphtheriae. Despite high population immunity, occasional toxigenic corynebacterium strains are identified in England and continued surveillance is required. PMID:25502525
Šilar, Radoslav; Holátko, Jiří; Rucká, Lenka; Rapoport, Andrey; Dostálová, Hana; Kadeřábková, Pavla; Nešvera, Jan; Pátek, Miroslav
2016-09-01
Promoter activities in Corynebacterium glutamicum strains with deletions of genes encoding sigma factors of RNA polymerase suggested that transcription from some promoters is controlled by two sigma factors. To prove that different sigma factors are involved in the recognition of selected Corynebacterium glutamicum promoters, in vitro transcription system was applied. It was found that a typical housekeeping promoter Pper interacts with the alternative sigma factor σ(B) in addition to the primary sigma factor σ(A). On the other way round, the σ(B)-dependent promoter of the pqo gene that is expressed mainly in the stationary growth phase was active also with σ(A). Some promoters of genes involved in stress responses (P1clgR, P2dnaK, and P2dnaJ2) were found to be recognized by two stress-responding sigma factors, σ(H) and σ(E). In vitro transcription system thus proved to be a useful direct technique for demonstrating the overlap of different sigma factors in recognition of individual promoters in C. glutamicum.
Antunes, Camila Azevedo; Clark, Laura; Wanuske, Marie-Therès; Hacker, Elena; Ott, Lisa; Simpson-Louredo, Liliane; de Luna, Maria das Gracas; Hirata, Raphael; Mattos-Guaraldi, Ana Luíza; Hodgkin, Jonathan; Burkovski, Andreas
2016-01-01
Caenorhabditis elegans is one of the major model systems in biology based on advantageous properties such as short life span, transparency, genetic tractability and ease of culture using an Escherichia coli diet. In its natural habitat, compost and rotting plant material, this nematode lives on bacteria. However, C. elegans is a predator of bacteria, but can also be infected by nematopathogenic coryneform bacteria such Microbacterium and Leucobacter species, which display intriguing and diverse modes of pathogenicity. Depending on the nematode pathogen, aggregates of worms, termed worm-stars, can be formed, or severe rectal swelling, so-called Dar formation, can be induced. Using the human and animal pathogens Corynebacterium diphtheriae and Corynebacterium ulcerans as well as the non-pathogenic species Corynebacterium glutamicum, we show that these coryneform bacteria can also induce star formation slowly in worms, as well as a severe tail-swelling phenotype. While C. glutamicum had a significant, but minor influence on survival of C. elegans, nematodes were killed after infection with C. diphtheriae and C. ulcerans. The two pathogenic species were avoided by the nematodes and induced aversive learning in C. elegans.
Shu, Qunfeng; Xu, Meijuan; Li, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong; Rao, Zhiming
2018-05-04
L-Ornithine is a non-protein amino acid with extensive applications in the food and pharmaceutical industries. In this study, we performed metabolic pathway engineering of an L-arginine hyper-producing strain of Corynebacterium crenatum for L-ornithine production. First, we amplified the L-ornithine biosynthetic pathway flux by blocking the competing branch of the pathway. To enhance L-ornithine synthesis, we performed site-directed mutagenesis of the ornithine-binding sites to solve the problem of L-ornithine feedback inhibition for ornithine acetyltransferase. Alternatively, the genes argA from Escherichia coli and argE from Serratia marcescens, encoding the enzymes N-acetyl glutamate synthase and N-acetyl-L-ornithine deacetylase, respectively, were introduced into Corynebacterium crenatum to mimic the linear pathway of L-ornithine biosynthesis. Fermentation of the resulting strain in a 5-L bioreactor allowed a dramatically increased production of L-ornithine, 40.4 g/L, with an overall productivity of 0.673 g/L/h over 60 h. This demonstrates that an increased level of transacetylation is beneficial for L-ornithine biosynthesis.
Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J
2015-09-01
We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
Jiang, Yu; Qian, Fenghui; Yang, Junjie; Liu, Yingmiao; Dong, Feng; Xu, Chongmao; Sun, Bingbing; Chen, Biao; Xu, Xiaoshu; Li, Yan; Wang, Renxiao; Yang, Sheng
2017-01-01
Corynebacterium glutamicum is an important industrial metabolite producer that is difficult to genetically engineer. Although the Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been adapted for genome editing of multiple bacteria, it cannot be introduced into C. glutamicum. Here we report a Francisella novicida (Fn) CRISPR-Cpf1-based genome-editing method for C. glutamicum. CRISPR-Cpf1, combined with single-stranded DNA (ssDNA) recombineering, precisely introduces small changes into the bacterial genome at efficiencies of 86–100%. Large gene deletions and insertions are also obtained using an all-in-one plasmid consisting of FnCpf1, CRISPR RNA, and homologous arms. The two CRISPR-Cpf1-assisted systems enable N iterative rounds of genome editing in 3N+4 or 3N+2 days. A proof-of-concept, codon saturation mutagenesis at G149 of γ-glutamyl kinase relieves L-proline inhibition using Cpf1-assisted ssDNA recombineering. Thus, CRISPR-Cpf1-based genome editing provides a highly efficient tool for genetic engineering of Corynebacterium and other bacteria that cannot utilize the Sp CRISPR-Cas9 system. PMID:28469274
Crupper, S S; Iandolo, J J
1996-01-01
A novel antimicrobial agent from Staphylococcus aureus KSI1829, designated Bac1829, was purified by sequential steps of ammonium sulfate precipitation, Sephadex G-50 gel filtration chromatography, and hydrophobic interaction chromatography. Purified Bac1829 has a molecular mass of 6,418 +/- 2 Da. The peptide in heat stable, since full biological activity is retained after heating at 95 degrees C for 15 min, and it is destroyed by digestion with proteases. Amino acid sequence analysis revealed a high concentration of Ala and Gly residues, which respectively comprised 24 and 19% of the total amino acid content. Additionally, high levels of hydrophobic amino acids were present, accounting for the hydrophobic nature of Bac1829. Purified Bac1829 killed exponentially growing Corynebacterium renale in a dose-dependent manner by a bactericidal mode of action. A partial inhibitory spectrum analysis revealed that the following organisms were sensitive to the inhibitory activity of Bac1829: S. aureus RN4220, Streptococcus suis, Corynebacterium pseudotuberculosis, C. renale, Corynebacterium diptheriae, Haemophilus parasuis, Bordetella pertussis, Bordetella bronchoseptica, Moraxella bovis, and Pasteurella multocida. PMID:8795206
Gene expression systems in corynebacteria.
Srivastava, Preeti; Deb, J K
2005-04-01
Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.
Microbe Profile: Corynebacterium diphtheriae - an old foe always ready to seize opportunity.
Hoskisson, Paul A
2018-02-21
Corynebacterium diphtheriae is a globally important Gram-positive aerobic Actinobacterium capable of causing the toxin-mediated disease, diphtheria. Diphtheria was a major cause of childhood mortality prior to the introduction of the toxoid vaccine, yet it is capable of rapid resurgence following the breakdown of healthcare provision, vaccination or displacement of people. The mechanism and treatment of toxin-mediated disease is well understood, however there are key gaps in our knowledge on the basic biology of C. diphtheriae particularly relating to host colonisation, the nature of asymptomatic carriage, population genomics and host adaptation.
Lausberg, Frank; Chattopadhyay, Ava Rebecca; Heyer, Antonia; Eggeling, Lothar; Freudl, Roland
2012-09-01
Here we report on the construction of a tetracycline inducible expression vector that allows a tightly regulable gene expression in Corynebacterium glutamicum which is used in industry for production of small molecules such as amino acids. Using the green fluorescent protein (GFP) as a reporter protein we show that this vector, named pCLTON1, is characterized by tight repression under non-induced conditions as compared to a conventional IPTG inducible expression vector, and that it allows gradual GFP synthesis upon gradual increase of anhydrotetracycline addition. Copyright © 2012 Elsevier Inc. All rights reserved.
Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph
Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.
Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae*
Wesener, Darryl A.; Levengood, Matthew R.
2017-01-01
The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis. In each species, the galactan is constructed from uridine 5′-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope. PMID:28039359
D'Alfonso, Timothy M; Moo, Tracy-Ann; Arleo, Elizabeth K; Cheng, Esther; Antonio, Lilian B; Hoda, Syed A
2015-10-01
Granulomatous lobular mastitis (GLM) is an uncommon condition that typically occurs in parous, reproductive-aged women and can simulate malignancy on the basis of clinical and imaging features. A distinctive histologic pattern termed cystic neutrophilic granulomatous mastitis (CNGM) is seen in some cases of GLM and has been associated with Corynebacterium infection. We sought to further characterize the clinical, imaging, and histopathologic features of CNGM by studying 12 cases and attempted to establish the relationship of this disease with Corynebacterium infection. Patients were women ranging in age from 25 to 49 years (median: 34 y), and all presented with a palpable mass that was painful in half of the cases. In 2 of 9 cases, imaging was highly suspicious for malignancy (BI-RADS 5). CNGM was characterized by lobulocentric granulomas with mixed inflammation and clear vacuoles lined by neutrophils within granulomas. Gram-positive bacilli were identified in 5/12 cases. In 4 patients, the disease process worsened after the diagnostic core biopsy, with the development of a draining sinus in 2 cases. No growth of bacteria was seen in any microbial cultures. No bacterial DNA was identified by 16S rDNA polymerase chain reaction for 1 case that showed gram-positive bacilli on histology. Patients were treated with variable combinations of surgery, antibiotics, and steroids. The time to significant resolution of symptoms ranged from 2 weeks to 6 months. Similar to other forms of GLM, CNGM can mimic malignancy clinically and on imaging. When encountered in a needle core biopsy sample, recognition of the characteristic histologic pattern and its possible association with Corynebacterium infection can help guide treatment.
Development of the Nasopharyngeal Microbiota in Infants with Cystic Fibrosis.
Prevaes, Sabine M P J; de Winter-de Groot, Karin M; Janssens, Hettie M; de Steenhuijsen Piters, Wouter A A; Tramper-Stranders, Gerdien A; Wyllie, Anne L; Hasrat, Raiza; Tiddens, Harm A; van Westreenen, Mireille; van der Ent, Cornelis K; Sanders, Elisabeth A M; Bogaert, Debby
2016-03-01
Cystic fibrosis (CF) is characterized by early structural lung disease caused by pulmonary infections. The nasopharynx of infants is a major ecological reservoir of potential respiratory pathogens. To investigate the development of nasopharyngeal microbiota profiles in infants with CF compared with those of healthy control subjects during the first 6 months of life. We conducted a prospective cohort study, from the time of diagnosis onward, in which we collected questionnaires and 324 nasopharynx samples from 20 infants with CF and 45 age-matched healthy control subjects. Microbiota profiles were characterized by 16S ribosomal RNA-based sequencing. We observed significant differences in microbial community composition (P < 0.0002 by permutational multivariate analysis of variance) and development between groups. In infants with CF, early Staphylococcus aureus and, to a lesser extent, Corynebacterium spp. and Moraxella spp. dominance were followed by a switch to Streptococcus mitis predominance after 3 months of age. In control subjects, Moraxella spp. enrichment occurred throughout the first 6 months of life. In a multivariate analysis, S. aureus, S. mitis, Corynebacterium accolens, and bacilli were significantly more abundant in infants with CF, whereas Moraxella spp., Corynebacterium pseudodiphtericum and Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant in control subjects, after correction for age, antibiotic use, and respiratory symptoms. Antibiotic use was independently associated with increased colonization of gram-negative bacteria such as Burkholderia spp. and members of the Enterobacteriaceae bacteria family and reduced colonization of potential beneficial commensals. From diagnosis onward, we observed distinct patterns of nasopharyngeal microbiota development in infants with CF under 6 months of age compared with control subjects and a marked effect of antibiotic therapy leading toward a gram-negative microbial composition.
Toxigenic Corynebacterium ulcerans isolated from a free-roaming red fox (Vulpes vulpes).
Sting, Reinhard; Ketterer-Pintur, Sandra; Contzen, Matthias; Mauder, Norman; Süss-Dombrowski, Christine
2015-01-01
Corynebacterium (C.) ulcerans could be isolated from the spleen of a red fox (Vulpes vulpes) that had been found dead in the state of Baden-Württemberg, Germany. Pathohistological examination suggested that the fox had died of distemper, as was confirmed by PCR. The isolate was identified biochemically, by MALDI-TOF MS, FT-IR and by partial 16S rRNA, rpoB and tox gene sequencing. Using the Elek test the C. ulcerans isolate demonstrated diphtheria toxin production. FT-IR and sequencing data obtained from the C. ulcerans isolate from the red fox showed higher similarity to isolates from humans than to those from wild game.
Metabolism of tetralin (1,2,3,4-tetrahydronaphthalene) in Corynebacterium sp. strain C125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikkema, J.; Bont, J.A.M. de
1993-02-01
Tetralin, widely used as a solvent in the petrochemical industry and in paints and waxes, degrades slowly in mixed cultures of microorganisms or in the presence of cosubstrates. This study reports on the metabolism of tetralin in the o-xylene-isolated Corynebacterium sp. strain C125. The researchers found that this organism attacks tetralin by an initial oxidation of the aromatic nucleus at positions C-5 and C-6 and they propose a four step inducible degradation pathway for tetralin starting at that point. The presence of the pathway makes this bacteria an excellent catalyst for the specific production of special cis-dihydro diols.
Corynebacterium macginleyi Has to Date Been Isolated Exclusively from Conjunctival Swabs
Funke, Guido; Pagano-Niederer, Maja; Bernauer, Wolfgang
1998-01-01
Fifteen strains of Corynebacterium macginleyi were exclusively isolated from conjunctival swabs of patients with either conjunctivitis or corneal ulcers. Up to now, only three C. macginleyi strains had been described in the literature. The characteristics of the 15 patients from whom C. macginleyi was isolated are outlined, characteristics useful for the identification of C. macginleyi are described, and the antimicrobial susceptibility pattern of the species is provided. C. macginleyi is uniformly susceptible to penicillins, quinolones, and aminoglycosides. Although considered to be of rather low pathogenicity C. macginleyi seems to have the potential to cause superinfections in selected patients with ocular surface problems. PMID:9817893
Hydrocarbon extraction agents and microbiological processes for their production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajic, J.E.; Gerson, D.F.
1987-02-03
A process is described for producing extraction agents useful in the separation of hydrocarbon values from mineral deposits. It comprises cultivating by an aerobic fermentation, in a growth promoting medium and under growth promoting conditions, and on a liquid hydrocarbon substrate, a selected microbial strain of a species of microorganism selected from the group consisting of Arthrobacter terregens, Arthrobacter xerosis, Bacillus megaterium, Corynebacterium lepus, Corynebacterium xerosis, Nocardia petroleophila, and Vibrio ficheri. This is done to produce an extraction agent of microbiological origin in the fermentation medium, subsequently recovering the extraction agent from the fermentation medium and drying the agent tomore » powdered form.« less
The Genus Corynebacterium and Other Medically Relevant Coryneform-Like Bacteria
2012-01-01
Catalase-positive Gram-positive bacilli, commonly called “diphtheroids” or “coryneform” bacteria were historically nearly always dismissed as contaminants when recovered from patients, but increasingly have been implicated as the cause of significant infections. These taxa have been underreported, and the taxa were taxonomically confusing. The mechanisms of pathogenesis, especially for newly described taxa, were rarely studied. Antibiotic susceptibility data were relatively scant. In this minireview, clinical relevance, phenotypic and genetic identification methods, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) evaluations, and antimicrobial susceptibility testing involving species in the genus Corynebacterium and other medically relevant Gram-positive rods, collectively called coryneforms, are described. PMID:22837327
Pinckard, R. N.; Weir, D. M.; McBride, W. H.
1968-01-01
The intravenous injection of 10 mg aggregate-free, centrifuged bovine albumin into adult rabbits has been shown to induce an unresponsive state to bovine serum albumin (BSA) in the majority of rabbits. An intravenous injection of 15 mg of a heat-killed suspension of Corynebacterium parvum either 6 days prior to or simultaneously with centrifuged bovine albumin has been shown to significantly block the induction of unresponsiveness to BSA. Some effects of C. parvum upon the lymphoreticular tissues in the rabbit are reported. ImagesFig. 1Fig. 2 PMID:5301938
2011-01-28
On September 12, 2010, the Idaho Department of Health and Welfare was notified of a case of respiratory diphtheria-like illness in an Idaho man aged 80 years whose pharyngeal specimens yielded Corynebacterium ulcerans. Although C. ulcerans is zoonotic, the patient reported no animal contact or consumption of an unpasteurized dairy product. His vaccination history was unknown. Respiratory diphtheria-like illness from C. ulcerans is uncommon but has been reported in industrialized countries where respiratory diphtheria is rare. The last case of diphtheria-like illness caused by C. ulcerans in the United States was reported in 2005.
Kim, Tae-Hyoun; Kim, Dong-Su; Han, Ju-Hee; Chang, Seo-Na; Kim, Kyung-Sul; Seok, Seung-Hyeok; Kim, Dong-Jae; Park, Jong-Hwan; Park, Jae-Hak
2014-12-01
Corynebacterium (C.) bovis infection in nude mice causes hyperkeratosis and weight loss and has been reported worldwide but not in Korea. In 2011, nude mice from an animal facility in Korea were found to have white flakes on their dorsal skin. Histopathological testing revealed that the mice had hyperkeratosis and Gram-positive bacteria were found in the skin. We identified isolated bacteria from the skin lesions as C. bovis using PCR and 16S rRNA sequencing. To the best of our knowledge, this is the first report of C. bovis infection in nude mice from Korea.
Jo, Sung-Jin; Leong, Chean Ring; Matsumoto, Ken'ichiro; Taguchi, Seiichi
2009-04-01
We previously synthesized poly(3-hydroxybutyrate) [P(3HB)] in recombinant Corynebacterium glutamicum, a prominent producer of amino acids. In this study, a two-step cultivation was established for the dual production of glutamate and P(3HB) due to the differences in the optimal concentration of biotin. Glutamate was extracellularly produced first under the biotin-limited condition of 0.3 microg/L. Production was then shifted to P(3HB) by addition of biotin to a total concentration of 9 microg/L. The final products obtained were 18 g/L glutamate and 36 wt% of P(3HB).
SIALIDASE (NEURAMINIDASE) OF CORYNEBACTERIUM DIPHTHERIAE.
WARREN, L; SPEARING, C W
1963-11-01
Warren, Leonard (National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.) and C. W. Spearing. Sialidase (neuraminidase) of Corynebacterium diphtheriae. J. Bacteriol. 86:950-955. 1963.-The characteristics of a sialidase produced by Corynebacterium diphtheriae were studied. The enzyme was partially purified from preparations of diphtheria toxin on a column of Sephadex G-75. By this means the lethal factor of diphtheria toxin was separated, in part, from the sialidase activity. There appeared to be a close immunological relationship between the sialidases of C. diphtheriae and clostridia, since a preparation of diphtheria antitoxin was as effective an inhibitor of diphtheria sialidase as of the sialidase of three species of clostridia. Conversely, antitoxin to clostridia inhibited diphtheria sialidase. Diphtheria antitoxin was essentially inactive toward influenza virus sialidase, and was completely inactive against purified sialidase of Vibrio cholerae. Removal of sialic acid from the proteins in a preparation of diphtheria antitoxin did not alter the inhibitory activity of the antitoxin against diphtheria sialidase. The enzyme operated optimally at pH 5.5 and did not require calcium ions for activity. The substrate specificity of diphtheria sialidase appears to be the same as that of other previously described sialidases.
SIALIDASE (NEURAMINIDASE) OF CORYNEBACTERIUM DIPHTHERIAE
Warren, Leonard; Spearing, C. W.
1963-01-01
Warren, Leonard (National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.) and C. W. Spearing. Sialidase (neuraminidase) of Corynebacterium diphtheriae. J. Bacteriol. 86:950–955. 1963.—The characteristics of a sialidase produced by Corynebacterium diphtheriae were studied. The enzyme was partially purified from preparations of diphtheria toxin on a column of Sephadex G-75. By this means the lethal factor of diphtheria toxin was separated, in part, from the sialidase activity. There appeared to be a close immunological relationship between the sialidases of C. diphtheriae and clostridia, since a preparation of diphtheria antitoxin was as effective an inhibitor of diphtheria sialidase as of the sialidase of three species of clostridia. Conversely, antitoxin to clostridia inhibited diphtheria sialidase. Diphtheria antitoxin was essentially inactive toward influenza virus sialidase, and was completely inactive against purified sialidase of Vibrio cholerae. Removal of sialic acid from the proteins in a preparation of diphtheria antitoxin did not alter the inhibitory activity of the antitoxin against diphtheria sialidase. The enzyme operated optimally at pH 5.5 and did not require calcium ions for activity. The substrate specificity of diphtheria sialidase appears to be the same as that of other previously described sialidases. PMID:14080806
Characterization of Staphylococcus and Corynebacterium Clusters in the Human Axillary Region
Callewaert, Chris; Kerckhof, Frederiek-Maarten; Granitsiotis, Michael S.; Van Gele, Mireille; Van de Wiele, Tom; Boon, Nico
2013-01-01
The skin microbial community is regarded as essential for human health and well-being, but likewise plays an important role in the formation of body odor in, for instance, the axillae. Few molecular-based research was done on the axillary microbiome. This study typified the axillary microbiome of a group of 53 healthy subjects. A profound view was obtained of the interpersonal, intrapersonal and temporal diversity of the human axillary microbiota. Denaturing gradient gel electrophoresis (DGGE) and next generation sequencing on 16S rRNA gene region were combined and used as extent to each other. Two important clusters were characterized, where Staphylococcus and Corynebacterium species were the abundant species. Females predominantly clustered within the Staphylococcus cluster (87%, n = 17), whereas males clustered more in the Corynebacterium cluster (39%, n = 36). The axillary microbiota was unique to each individual. Left-right asymmetry occurred in about half of the human population. For the first time, an elaborate study was performed on the dynamics of the axillary microbiome. A relatively stable axillary microbiome was noticed, although a few subjects evolved towards another stable community. The deodorant usage had a proportional linear influence on the species diversity of the axillary microbiome. PMID:23950955
Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung
2018-05-01
The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Soo-Young; Kang, Beom Sik; Kim, Ghyung-Hwa
2007-11-01
PHBH from Corynebacterium glutamicum was crystallized using the hanging-drop vapour-diffusion method in the presence of NaH{sub 2}PO{sub 4} and K{sub 2}HPO{sub 4} as precipitants. X-ray diffraction data were collected to a maximum resolution of 2.5 Å on a synchrotron beamline. p-Hydroxybenzoate hydroxylase (PHBH) is an FAD-dependent monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (pOHB) to 3,4-dihydroxybenzoate in an NADPH-dependent reaction and plays an important role in the biodegradation of aromatic compounds. PHBH from Corynebacterium glutamicum was crystallized using the hanging-drop vapour-diffusion method in the presence of NaH{sub 2}PO{sub 4} and K{sub 2}HPO{sub 4} as precipitants. X-ray diffraction data were collectedmore » to a maximum resolution of 2.5 Å on a synchrotron beamline. The crystal belongs to the hexagonal space group P6{sub 3}22, with unit-cell parameters a = b = 94.72, c = 359.68 Å, γ = 120°. The asymmetric unit contains two molecules, corresponding to a packing density of 2.65 Å{sup 3} Da{sup −1}. The structure was solved by molecular replacement. Structure refinement is in progress.« less
Katsukawa, Chihiro; Komiya, Takako; Umeda, Kaoru; Goto, Minami; Yanai, Tokuma; Takahashi, Motohide; Yamamoto, Akihiko; Iwaki, Masaaki
2016-03-01
Toxigenic Corynebacterium ulcerans is a zoonotic pathogen that produces diphtheria toxin and causes a diphtheria-like illness in humans. The organism is known to infect and circulate among dogs, which can then transmit it to humans. Furthermore, previous studies have found that C. ulcerans is carried by wild animals, including game animals. In the present study, we tested hunting and companion dogs for the presence of toxigenic C. ulcerans and succeeded in isolating the bacterium from a hunting dog. Moreover, several hunting dogs had serum diphtheria antitoxin titers that were higher than the titers required for protection in humans, suggesting a history of exposure to toxigenic Corynebacterium strains. Notably, ribotyping, pulsed-field gel electrophoresis and tox gene sequencing demonstrated that the isolate from the hunting dog clustered with previously characterized C. ulcerans strains isolated from wild animals, as opposed to groups of isolates from humans and companion dogs. Interestingly, the wild animal cluster also contains an isolate from an outdoor breeding dog, which could have formed a bridge between isolates from wild animals and those from companion dogs. The results presented herein provide insight into the mechanism by which the zoonotic pathogen C. ulcerans circulates among wild animals, hunting and companion dogs, and humans. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Srivastava, Preeti; Deb, J K
2002-07-02
A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.
Rapid identification of Corynebacterium vaginale in non-purulent vaginitis.
Wells, J I; Goei, S H
1981-01-01
A simple set of tests is proposed to give excellent probability for the identification of Corynebacterium vaginale from clinical material. Using these tests, 380 C vaginale were isolated from genital tract specimens from 1402 patients. Of these isolates 70 were from symptomatic patients. These 70 isolates were subjected to a further set of tests to confirm their identity. The advantage of these primary tests is that they can be completed on the day of isolation of the organism. Of these 70 isolates 66 were confirmed as C vaginale thus giving the primary set of tests a 94% rate of accurate identification. However this rate may be increased beyond 97% by the promotion of one of the key secondary tests to the primary set. PMID:7024317
Crystal structure of heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, Koh; E-mail: idakoh@sci.kitasato-u.ac.jp; Moriguchi, Tomotaka
2005-07-29
Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme. Here we report the crystal structures of the enzyme in complex with dimethylglycine and folinic acid. The {alpha} subunit is composed of two domains, contains NAD{sup +}, and binds folinic acid. The {beta} subunit contains dimethylglycine, FAD, and FMN, and these flavins are approximately 10 A apart. The {gamma} subunit is in contact with two domains of {alpha} subunit and has possibly a folate-binding structure. The {delta} subunit contains a single atom of zinc and has a Cys{sub 3}His zinc finger structure. Based on the structures determined and on themore » previous works, the structure-function relationship on the heterotetrameric sarcosine oxidase is discussed.« less
Clinical microbiology of coryneform bacteria.
Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A
1997-01-01
Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861
Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.
Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao
2017-03-01
Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.
40 CFR 725.421 - Introduced genetic material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... elongation factor 2, leading to inhibition of protein synthesis in target respiratory, heart, kidney, and... protein synthesis inhibitor. Sequence Source Toxin Name Corynebacterium diphtheriae & C. ulcerans...
Folador, Edson Luiz; de Carvalho, Paulo Vinícius Sanches Daltro; Silva, Wanderson Marques; Ferreira, Rafaela Salgado; Silva, Artur; Gromiha, Michael; Ghosh, Preetam; Barh, Debmalya; Azevedo, Vasco; Röttger, Richard
2016-11-04
Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis.
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids.
Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten; Burkovski, Andreas; Lang, Roland
2017-07-01
Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. Copyright © 2017 American Society for Microbiology.
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids
Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten
2017-01-01
ABSTRACT Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro. Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. PMID:28483856
Evaluation of invertebrate infection models for pathogenic corynebacteria.
Ott, Lisa; McKenzie, Ashleigh; Baltazar, Maria Teresa; Britting, Sabine; Bischof, Andrea; Burkovski, Andreas; Hoskisson, Paul A
2012-08-01
For several pathogenic bacteria, model systems for host-pathogen interactions were developed, which provide the possibility of quick and cost-effective high throughput screening of mutant bacteria for genes involved in pathogenesis. A number of different model systems, including amoeba, nematodes, insects, and fish, have been introduced, and it was observed that different bacteria respond in different ways to putative surrogate hosts, and distinct model systems might be more or less suitable for a certain pathogen. The aim of this study was to develop a suitable invertebrate model for the human and animal pathogens Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis, and Corynebacterium ulcerans. The results obtained in this study indicate that Acanthamoeba polyphaga is not optimal as surrogate host, while both Caenorhabtitis elegans and Galleria larvae seem to offer tractable models for rapid assessment of virulence between strains. Caenorhabtitis elegans gives more differentiated results and might be the best model system for pathogenic corynebacteria, given the tractability of bacteria and the range of mutant nematodes available to investigate the host response in combination with bacterial virulence. Nevertheless, Galleria will also be useful in respect to innate immune responses to pathogens because insects offer a more complex cell-based innate immune system compared with the simple innate immune system of C. elegans. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Li, Wei; Han, Lei; Yu, Pengbo; Ma, Chaofeng; Wu, Xiaokang; Moore, John E; Xu, Jiru
2014-04-01
Systemic inflammation contributes to both the development of cancer and of cachexia. The microenvironment of bacterial habitats might be changed during the progression of cancer cachexia. The aim of this study was to quantitatively and qualitatively compare the composition of the skin microbiota between cancer cachexia patients and healthy volunteers. Cutaneous bacteria were swabbed at the axillary fossa of 70 cancer cachexia patients and 34 healthy individuals from China. Nested-PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region and quantitative PCR (qPCR) for total bacteria, Corynebacterium spp., Staphylococcus spp., and Staphylococcus epidermidis were performed on all samples. Barcoded 454 pyrosequencing of the V3-V4 regions was performed on 30 randomly selected samples. By comparing diversity and richness indices, we found that the skin microbiome of cachectic cancer patients is less diverse than that of healthy participants, though these differences were not significant. The main microbes that reside on human skin were divided into four phyla: Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria at the genus level. Significantly fewer Corynebacterium spp. had been observed in cachexia patients compared to healthy subjects. These results suggest that the presence of cancer and cachexia alters human skin bacterial communities. Understanding the changes in microbiota during cancer cachexia may lead to new insights into the syndrome.
Ramos, Rommel Thiago Jucá; Carneiro, Adriana Ribeiro; Soares, Siomar de Castro; dos Santos, Anderson Rodrigues; Almeida, Sintia; Guimarães, Luis; Figueira, Flávia; Barbosa, Eudes; Tauch, Andreas; Azevedo, Vasco; Silva, Artur
2013-03-01
New sequencing platforms have enabled rapid decoding of complete prokaryotic genomes at relatively low cost. The Ion Torrent platform is an example of these technologies, characterized by lower coverage, generating challenges for the genome assembly. One particular problem is the lack of genomes that enable reference-based assembly, such as the one used in the present study, Corynebacterium pseudotuberculosis biovar equi, which causes high economic losses in the US equine industry. The quality treatment strategy incorporated into the assembly pipeline enabled a 16-fold greater use of the sequencing data obtained compared with traditional quality filter approaches. Data preprocessing prior to the de novo assembly enabled the use of known methodologies in the next-generation sequencing data assembly. Moreover, manual curation was proved to be essential for ensuring a quality assembly, which was validated by comparative genomics with other species of the genus Corynebacterium. The present study presents a modus operandi that enables a greater and better use of data obtained from semiconductor sequencing for obtaining the complete genome from a prokaryotic microorganism, C. pseudotuberculosis, which is not a traditional biological model such as Escherichia coli. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Microbial Transformations of Selenium
Doran, J. W.; Alexander, M.
1977-01-01
Resting cell suspensions of a strain of Corynebacterium isolated from soil formed dimethyl selenide from selenate, selenite, elemental selenium, selenomethionine, selenocystine, and methaneseleninate. Extracts of the bacterium catalyzed the production of dimethyl selenide from selenite, elemental selenium, and methaneseleninate, and methylation of the inorganic Se compounds was enhanced by S-adenosylmethionine. Neither trimethylselenonium nor methaneselenonate was metabolized by the Corynebacterium. Resting cell suspensions of a methionine-utilizing pseudomonad converted selenomethionine to dimethyl diselenide. Six of 10 microorganisms able to grow on cystine used selenocystine as a sole source of carbon and formed elemental selenium, and one of the isolates, a pseudomonad, was found also to produce selenide. Soil enrichments converted trimethylselenonium to dimethyl selenide. Bacteria capable of utilizing trimethylselenonium, dimethyl selenide, and dimethyl diselenide as carbon sources were isolated from soil. PMID:16345188
Giri, S; Pati, B R
2004-01-01
A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.
Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1.
Omori, T; Monna, L; Saiki, Y; Kodama, T
1992-01-01
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed. PMID:1575493
Mapping axillary microbiota responsible for body odours using a culture-independent approach.
Troccaz, Myriam; Gaïa, Nadia; Beccucci, Sabine; Schrenzel, Jacques; Cayeux, Isabelle; Starkenmann, Christian; Lazarevic, Vladimir
2015-01-01
Human axillary odour is commonly attributed to the bacterial degradation of precursors in sweat secretions. To assess the role of bacterial communities in the formation of body odours, we used a culture-independent approach to study axillary skin microbiota and correlated these data with olfactory analysis. Twenty-four Caucasian male and female volunteers and four assessors showed that the underarms of non-antiperspirant (non-AP) users have significantly higher global sweat odour intensities and harboured on average about 50 times more bacteria than those of AP users. Global sweat odour and odour descriptors sulfury-cat urine and acid-spicy generally increased from the morning to the afternoon sessions. Among non-AP users, male underarm odours were judged higher in intensity with higher fatty and acid-spicy odours and higher bacterial loads. Although the content of odour precursors in underarm secretions varied widely among individuals, males had a higher acid: sulfur precursor ratio than females did. No direct correlations were found between measured precursor concentration and sweat odours. High-throughput sequencing targeting the 16S rRNA genes of underarm bacteria collected from 11 non-AP users (six females and five males) confirmed the strong dominance of the phyla Firmicutes and Actinobacteria, with 96% of sequences assigned to the genera Staphylococcus, Corynebacterium and Propionibacterium. The proportion of several bacterial taxa showed significant variation between males and females. The genera Anaerococcus and Peptoniphilus and the operational taxonomic units (OTUs) from Staphylococcus haemolyticus and the genus Corynebacterium were more represented in males than in females. The genera Corynebacterium and Propionibacterium were correlated and anti-correlated, respectively, with body odours. Within the genus Staphylococcus, different OTUs were either positively or negatively correlated with axillary odour. The relative abundance of five OTUs (three assigned to S. hominis and one each to Corynebacterium tuberculostearicum and Anaerococcus) were positively correlated with at least one underarm olfactory descriptor. Positive and negative correlations between bacterial taxa found at the phylum, genus and OTU levels suggest the existence of mutualism and competition among skin bacteria. Such interactions, and the types and quantities of underarm bacteria, affect the formation of body odours. These findings open the possibility of developing new solutions for odour control.
[The serological properties of saprophytic corynebacteria studied by immunoenzyme analysis].
Mikhal'skiĭ, L A; Nogina, T M; Furtat, I M
1997-01-01
The degree of serological similarity of saprophytic corynebacteria have been studied using immunoassay ELISA analysis, that is seven collection strains, belonging to Corynebacterium glutamicum (3 strains), C. ammoniagenes (1 strain), C. vitarumen (1 strain), C. variabilis (2 strains) and three industrial strains-lysine producers. Intact and heated bacteria cells have been used as antigens. It has been shown that industrial strain C. glutamicum 22L and collection strains C. glutamicum IMV AC-715, IMV AC-714, IMV AC-733 have the highest degree of serological relationship. C. vitarumen IMV AC-718, C variabilis IMV AC-716 as well as Corynebacterium sp. E531 and VNIIgenetics 90 are close to them according to their serological properties. C. ammoniagenes IMV AC-732 and C. variabilis IMV AC-717 strains have the lowest degree of similarity with other saprophytic corynebacteria which have been studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrick, C.A.; Haskins, W.P.; Vidaver, A.K.
1984-07-01
Gene transfer systems for phytopathogenic corynebacteria have not been reported previously. In this paper a conjugative 46-megadalton plasmid (pDG101) found in Corynebacterium flaccumfaciens subsp. oorii CO101 is described that mediates resistance to arsenite, arsenate, and antimony(III). Transfer of the plasmid from CO101 to four other strains from the C. flaccumfaciens group occurred between cells immobilized on nitrocellulose filters or on agar surfaces. Transconjugant strains expressed the same levels of metal resistance as the donor strain and were able to act as donor strains in subsequent matings. The physical presence of the plasmid was detected by agarose gel electrophoresis. Arsenite-sensitive derivativesmore » of the donor and transconjugant strains were obtained after heat treatment; these were cured of pDG101.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoepe, Jan, E-mail: jschoepe@smail.uni-koeln.de; Niefind, Karsten; Chatterjee, Shivani
2006-07-01
The crystallization and preliminary X-ray characterization of a shikimate dehydrogenase from C. glutamicum is presented. The shikimate dehydrogenase from Corynebacterium glutamicum has been cloned into an Escherichia coli expression vector, overexpressed and purified. Native crystals were obtained by the vapour-diffusion technique using 2-methyl-2,4-pentanediol as a precipitant. The crystals belong to the centred monoclinic space group C2, with unit-cell parameters a = 118.77, b = 63.17, c = 35.67 Å, β = 92.26° (at 100 K), and diffract to 1.64 Å on a synchrotron X-ray source. The asymmetric unit is likely to contain one molecule, corresponding to a packing density ofmore » 2.08 Å{sup 3} Da{sup −1} and a solvent content of about 41%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, J.A.; Aluisio, A.L.
1981-01-01
In order to assess the effects of air pollution on plant disease development, the authors investigated the effects of SO/sub 2/ on lesion development by two bacterial pathogens. Maize or soybean plants were exposed to sulfur dioxide (SO/sub 2/) at 524 ..mu..g m/sup -3/ or 262 ..mu..g m/sup -3/ before, after or before and after inoculation with Corynebacterium nebraskense or Xanthomonas phaseoli var. sojensis, respectively. Lesion development was inhibited in both cases, regardless of when the exposures occurred. The time of exposure, however, altered the subsequent effect on lesion size. Dry weight and sulfur content of host tissue were notmore » altered by the joint effects of the pollutant and the pathogens.« less
Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omori, Toshio; Monna, L.; Saiki, Yuko
1992-03-01
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS{sub 2}, FeS{sub 2}, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Restingmore » cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.« less
Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel
2014-01-01
The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.
[Pneumonia caused byCorynebacterium pseudodiphtheriticum].
Furiasse, Daniela; Gasparotto, Ana M; Monterisi, Aída; Castellano, Gabriela; Rocchi, Marta
Microorganisms of the genera Corynebacterium, specie pseudodiphtheriticum are a part of the indigenous microbiota of human skin and oropharinx. Nevertheless in recent decades these bacilli are emerging as opportunistic pathogens causing clinically significant infections in patients with previous compromise. We report the case of a 76 years old female patient, with a history of hypertension, hypothyroidism, type 2 diabetes and chronic renal failure, who presented pneumonia during their stay at the intensive care unit. The induced sputum revealed a representative sample with monomicrobial gram positive pleomorphic coryneform rods (Gram stain) and cultures demonstrated the presence of C. pseudodiphtheriticum as the only bacteria recovered. The pacient received an empirical third generation cephalosporin medication with a succesfull recovery. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Szemraj, Magdalena; Kwaszewska, Anna; Pawlak, Renata; Szewczyk, Eligia M
2014-10-01
Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections.
Li, Hedan; Zhang, Lirong; Guo, Wei; Xu, Daqing
2016-12-01
Gene disruption and replacement in Corynebacterium glutamicum is dependent upon a high transformation efficiency. The cglIR-cgIIR restriction system is a major barrier to introduction of foreign DNA into Corynebacterium glutamicum cells. To improve the transformation efficiency of C. glutamicum, the cglIM gene encoding methyltransferase in the cglIR-cglIIR-cglIM restriction-modification system of C. glutamicum ATCC 13032 was chromosomally integrated and expressed in Escherichia coli, resulting in an engineered strain E. coli AU1. The electro-transformation experiments of C. glutamicum ATCC 13032 with the E. coli-C. glutamicum shuttle plasmid pAU4 showed that the transformation efficiency of C. glutamicum with pAU4 DNA extracted from E. coli TG1/pAU4 was 1.80±0.21×10 2 cfu/μg plasmid DNA, while using pAU4 DNA extracted from E. coli AU1/pAU4, the transformation efficiency reached up to 5.22±0.33×10 6 cfu/μg plasmid DNA. The results demonstrated that E. coli AU1 is able to confer the cglIM-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the cglIR-cglIIR restriction and efficiently transferred into C. glutamicum. E. coli AU1 is a useful intermediate host for efficient transformation of C. glutamicum. Copyright © 2016. Published by Elsevier B.V.
Hernández-León, Fernando; Acosta-Dibarrat, Jorge; Vázquez-Chagoyán, Juan Carlos; Rosas, Pomposo Fernandez; de Oca-Jiménez, Roberto Montes
2016-07-22
Corynebacterium xerosis is a commensal organism found in skin and mucous membranes of humans. It is considered an unusual pathogen, and it is rarely found in human and animal clinical samples. Here we describe the isolation of C. xerosis from a 4-months-old Pelifolk lamb located in Tesistán, central western Mexico. This microorganism should be considered for differential diagnosis in cutaneous abscessed lesions in sheep, as it represents a zoonotic risk factor for human infection in sheep farms. The animal exhibited a hard-consistency, 5 cm diameter abscess, without drainage, in the neck. The presumptive clinical diagnosis was caseous lymphadenitis, caused by Corynebacterium pseudotuberculosis. Samples were obtained by puncture and cultured in 8 % sheep blood agar under microaerophilic conditions. Colonies were non-haemolytic, brown-yellowish and showed microscopic and biochemical features similar to C. pseudotuberculosis, except for the urea test. A multiplex-PCR for the amplification of partial sequences of the pld, rpoB and intergenic fragment from 16S to 23S genes suggested that isolate could be C. xerosis, which was later confirmed by sequencing analysis of the rpoB gene. This study shows for the first time isolation and molecular characterization of C. xerosis from a clinical sample of an ovine cutaneous abscess in Mexico. This finding highlights the need for differential diagnosis of this pathogen in ovine skin abscesses, as well as epidemiological and control studies of this pathogen in sheep farms.
Liu, Xiuxia; Yang, Sun; Wang, Fen; Dai, Xiaofeng; Yang, Yankun; Bai, Zhonghu
2017-02-01
The dissolved oxygen (DO) level of a culture of Corynebacterium glutamicum (C. glutamicum) in a bioreactor has a significant impact on the cellular redox potential and the distribution of energy and metabolites. In this study, to gain a deeper understanding of the effects of DO on the metabolism of C. glutamicum, we sought to systematically explore the influence of different DO concentrations on genetic regulation and metabolism through transcriptomic analysis. The results revealed that after 20 h of fermentation, oxygen limitation enhanced the glucose metabolism, pyruvate metabolism and carbon overflow, and restricted NAD + availability. A high oxygen supply enhanced the TCA cycle and reduced glyoxylate metabolism. Several key genes involved in response of C. glutamicum to different oxygen concentrations were examined, which provided suggestions for target site modifications in developing optimized oxygen supply strategies. These data provided new insights into the relationship between oxygen supply and metabolism of C. glutamicum.
Efstratiou, Androulla; Engler, Kathryn H.; Dawes, Charlotte S.; Sesardic, Dorothea
1998-01-01
We have compared molecular, immunochemical, and cytotoxic assays for the detection of diphtheria toxin from 55 isolates of Corynebacterium diphtheriae and Corynebacterium ulcerans originally isolated in five different countries. The suitabilities and accuracies of these assays for the laboratory diagnosis of diphtheria were compared and evaluated against the “gold standard” in vivo methods. The in vivo and Vero cell cytotoxicity assays were accurate in their abilities to detect diphtheria toxin but were time-consuming; however, the cytotoxicity assay is a suitable in vitro alternative to the in vivo virulence test. There was complete concordance between all the phenotypic methods. Genotypic tests based upon PCR were rapid; however, PCR must be used with caution because some isolates of C. diphtheriae possessed toxin genes but failed to express a biologically active toxin. Therefore, phenotypic confirmation of toxigenicity for the microbiological diagnosis of diphtheria is recommended. PMID:9774560
Efstratiou, A; Engler, K H; Dawes, C S; Sesardic, D
1998-11-01
We have compared molecular, immunochemical, and cytotoxic assays for the detection of diphtheria toxin from 55 isolates of Corynebacterium diphtheriae and Corynebacterium ulcerans originally isolated in five different countries. The suitabilities and accuracies of these assays for the laboratory diagnosis of diphtheria were compared and evaluated against the "gold standard" in vivo methods. The in vivo and Vero cell cytotoxicity assays were accurate in their abilities to detect diphtheria toxin but were time-consuming; however, the cytotoxicity assay is a suitable in vitro alternative to the in vivo virulence test. There was complete concordance between all the phenotypic methods. Genotypic tests based upon PCR were rapid; however, PCR must be used with caution because some isolates of C. diphtheriae possessed toxin genes but failed to express a biologically active toxin. Therefore, phenotypic confirmation of toxigenicity for the microbiological diagnosis of diphtheria is recommended.
Laub, R; Delville, J; Cocito, C
1978-01-01
Serological relatedness of ribosomes from microorganisms of the Mycobacterium, Nocardia, and Corynebacterium genera has been analyzed by the microplate immunodiffusion technique. Mycobacterium and Nocardia proved homogeneous and closely related taxa, whereas Corynebacterium was found to be a heterogeneous phylum connected by remote links to the others. The taxonomic position of "diphtheroid microorganisms" (non-acid-fast, gram-positive bacteria morphologically similar to corynebactria), which were found together with Mycobacterium leprae in human leprosy lesions, was also investigated. Ribosomes of diphtheroid bacteria strongly cross-reacted with antisera against several mycobacteria and nocardiae but not against corynebacteria. Moreover, ribosomes from independently isolated diphtheroid strains proved serologically related and yielded strong cross-reactions with antisera against M. leprae as well as with sera from leprosy patients. Hence, diphtheroid microorganisms represent a homogeneous group immunologically related to mycobacteria in general and more specifically to M. leprae. Images PMID:730371
Production of L-valine from metabolically engineered Corynebacterium glutamicum.
Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J
2018-05-01
L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.
Coryneform bacteria in infectious diseases: clinical and laboratory aspects.
Coyle, M B; Lipsky, B A
1990-01-01
Coryneform isolates from clinical specimens frequently cannot be identified by either reference laboratories or research laboratories. Many of these organisms are skin flora that belong to a large number of taxonomic groups, only 40% of which are in the genus Corynebacterium. This review provides an update on clinical presentations, microbiological features, and pathogenic mechanisms of infections with nondiphtheria Corynebacterium species and other pleomorphic gram-positive rods. The early literature is also reviewed for a few coryneforms, especially those whose roles as pathogens are controversial. Recognition of newly emerging opportunistic coryneforms is dependent on sound identification schemes which cannot be developed until cell wall analyses and nucleic acid studies have defined the taxonomic groups and all of the reference strains within each taxon have been shown by molecular methods to be authentic members. Only then can reliable batteries of biochemical tests be selected for distinguishing each taxon. PMID:2116939
Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis
Kobayashi, Tetsuro; Glatz, Martin; Horiuchi, Keisuke; Kawasaki, Hiroshi; Akiyama, Haruhiko; Kaplan, Daniel H.; Kong, Heidi H.; Amagai, Masayuki; Nagao, Keisuke
2015-01-01
Summary Staphylococcus aureus skin colonization is universal in atopic dermatitis and common in cancer patients treated with epidermal growth factor receptor inhibitors. However, the causal relationship of dysbiosis and eczema has yet to be clarified. Herein, we demonstrate that Adam17fl/flSox9-Cre mice, generated to model ADAM17-deficiency in human, developed eczematous dermatitis with naturally occurring dysbiosis, similar to that observed in atopic dermatitis. Corynebacterium mastitidis, S. aureus, and Corynebacterium bovis sequentially emerged during the onset of eczematous dermatitis, and antibiotic specific for these bacterial species almost completely reversed dysbiosis and eliminated skin inflammation. Whereas S. aureus prominently drove eczema formation, C. bovis induced robust T helper 2 cell responses. Langerhans cells were required for eliciting immune responses against S. aureus inoculation. These results characterize differential contributions of dysbiotic flora during eczema formation, and highlight the microbiota-host immunity axis as a possible target for future therapeutics in eczematous dermatitis. PMID:25902485
Chudnicka, Alina; Kozioł-Montewka, Maria
2003-01-01
Taking into account the increasing contribution of species, which enter into the composition of purely physiological flora of the organism, of the Corynebacterium type and related coryneforms in opportunistic infections in people, the analysis of strains was made from different clinical materials from patients. Their identification was made on the basis of biochemical properties and their antibiotic sensitivity was characterized. It was found that strains with similar biochemical properties (C.striatum, C.amycolatum ) should be identified by means of genetic methods, all the more that they were isolated from clinically important materials. Out of the examined strains the biggest number of infections were caused by C.pseudodiphtheriticum, next C. striatum/C. amycolatum, Brevibacterium sp., C.propinquum, one: C.afermentans, C.jeikeium, C.group G, C.group F1, C.accolens, C.macqinleyi. The highest sensitivity of isolated strains was to Vancomycin, Teicoplanin and Imipenem.
Responsiveness of senescent mice to the antitumor properties of Corynebacterium parvum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhas, J.M.; Ullrich, R.L.
1976-01-01
The antitumor properties of Corynebacterium parvum have been studied in young (3- to 8-month-old) and aged (18 or more months old) BALB/c mice given s.c., i.m., i.p., or i.v. transplants of the highly malignant, weakly immunogenic line 1 lung carcinoma, and aged (25- to 33-month-old) BALB/c mice bearing primary mammary tumors. These aged BALB/c mice were shown to be less immunoresponsive than their younger counterparts, and this, in combination with nonimmunological factors, made them more sensitive to the lethal effects of the line 1 carcinoma. Correspondingly, C. parvum proved to have less antitumor activity in aged mice than it didmore » in young mice. In spite of this relatively weaker, antitumor activity for C. parvum in aged mice, repeated injections of this agent were able to induce temporary regressions of the primary mammary tumors studied and thereby prolong survival time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.
1989-01-01
Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmidsmore » consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, J.G.; Christie, G.H.; Scott, M.T.
1973-05-01
The PFC response to the thymus-independent antigen SIII (type 3 pneumococcal polysaccharide) was amplified in mice injected 4 days previously with killed Corynebacterium parvum. This adjuvant activity was demonstrable with high (2 to 50 mu g) but not low (0.1 to 0.5 mu g) doses of SIII. Induction of tolerance was unaffected. Depression of the response resulted from simultaneous injection of SIII with either C. parvum or Bordetella pertussis, while prior treatment with the latter was without effect. Responsiveness to SIII was transiently but potently suppressed in spleen cells transferred into lethally irradiated, C. parvum pretreated mice. Although C. parvummore » is an effective B cell adjuvant, other data imply that it acts indirectly on these lymphocytes. It is argued that both adjuvant and suppressive activities of C. parvum on the B cell response to SIII are most probably mediated by activated macrophages. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, E.A.; Bannon, G.A.; Glenn, K.C.
2008-11-21
The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysinemore » revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.« less
Outbreak of Corynebacterium pseudodiphtheriticum Infection in Cystic Fibrosis Patients, France
Bittar, Fadi; Cassagne, Carole; Bosdure, Emmanuelle; Stremler, Nathalie; Dubus, Jean-Christophe; Sarles, Jacques; Reynaud-Gaubert, Martine; Raoult, Didier
2010-01-01
An increasing body of evidence indicates that nondiphtheria corynebacteria may be responsible for respiratory tract infections. We report an outbreak of Corynebacterium pseudodiphtheriticum infection in children with cystic fibrosis (CF). To identify 18 C. pseudodiphtheriticum strains isolated from 13 French children with CF, we used molecular methods (partial rpoB gene sequencing) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Clinical symptoms were exhibited by 10 children (76.9%), including cough, rhinitis, and lung exacerbations. The results of MALDI-TOF identification matched perfectly with those obtained from molecular identification. Retrospective analysis of sputum specimens by using specific real-time PCR showed that ≈20% of children with CF were colonized with these bacteria, whereas children who did not have CF had negative test results. Our study reemphasizes the conclusion that correctly identifying bacteria at the species level facilitates detection of an outbreak of new or emerging infections in humans. PMID:20678316
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, J.G.; Christie, G.H.; Scott, M.T.
1973-05-01
The PFC response to the thymus-independent antigen SIII(type 3 pneumococcal polysaccharide) was amplified in mice injected 4 days previously with killed Corynebacterium parvum. This adjuvant activity was demonstrable with high (2 to 50 mu g) but not low (0.1 to 0.5 mu g) doses of SIII. Induction of tolerance was unaffected. Depression of the response resulted from simultaneous injection of SIII with either C. parvum or Bordetella pertussis, while prior treatment with the latter was without effect. Responsiveness to SIII was transiently but potently suppressed in spleen cells transferred into lethally irradiated, C. parvum pretreated mice. Although C. parvum ismore » an effective B cell adjuvant, other data imply that it acts indirectly on these iymphocytes. It is argued that both adjuvant and suppressive activities of C. parvum on the B cell response to SIII are most probably mediated by activated macrophages. (auth)« less
Tumour growth, phagocytic activity and antibody response in corynebacterium parvum-treated mice
Woodruff, M. F. A.; McBride, W. H.; Dunbar, Noreen
1974-01-01
Serum from both normal and T cell-deprived female adult CBA mice shows a background titre of antibody to Corynebacterium parvum of about 2–4 log2 units by a latex agglutination test. Intraperitoneal injection of C. parvum causes a marked rise in titre which reaches its peak after about a month, and a second injection at that time evokes a further response. Treatment with mercaptoethanol reduces the background titre, and also the titre 1–3 weeks after immunization by 1–2 log units. Subcutaneous injection of C. parvum on the other hand evokes little or no antibody response. Both the antitumour effect of C. parvum, and its effect on clearance of colloidal carbon from the blood stream, can occur in the presence of high levels of antibody directed against the organism. Theoretical and possible therapeutic implications of these findings are discussed. PMID:4549691
Brooks, B W; Barnum, D A
1984-01-01
Twenty bovine udder quarters colonized with Corynebacterium bovis SR6 and 20 uncolonized quarters were challenged by inoculation of Staphylococcus aureus Newbould 305 (ATCC 29740) into the teat cistern. The percentage of infection in quarters colonized with C. bovis (50%) was significantly lower than that in controls (100%). By similar challenge no significant difference was observed between the percentage of infection with Streptococcus agalactiae ATCC 27956 in 33 quarters colonized with C. bovis (70%) compared to 33 controls (87.9%). A total of 37 quarters colonized with C. bovis and 37 control quarters were challenged with Staph. aureus Newbould 305 (ATCC 29740) and Maxi (ATCC 27543) and Strep. agalactiae (ATCC 27956) by exposure of the teat orifice. The percentage of teat ducts colonized with C. bovis which became infected with either pathogen was not different from that for controls. PMID:6372969
[Metabolic flux analysis of L-serine synthesis by Corynebacterium glutamicum SYPS-062].
Zhang, Xiaomei; Dou, Wenfang; Xu, Hongyu; Xu, Zhenghong
2010-10-01
Corynebacterium glutamicum SYPS-062 was an L-serine producing strain stored at our lab and could produce L-serine directly from sugar. We studied the effects of cofactors in one carbon unit metabolism-folate and VB12 on the cell growth, sucrose consumption and L-serine production by SYPS-062. In the same time, the metabolic flux distribution was determined in different conditions. The supplementation of folate or VB12 enhanced the cell growth, energy synthesis, and finally increased the flux of pentose phosphate pathway (HMP), whereas the carbon flux to L-serine was decreased. The addition of VB12 not only increased the ratio of L-serine synthesis pathway on G3P joint, but also caused the insufficiency of tricarboxylic acid cycle (TCA) flux, which needed more anaplerotic reaction flux to replenish TCA cycle, that was an important limiting factor for the further increasing of the L-serine productivity.
du Plessis, Mignon; Wolter, Nicole; Allam, Mushal; de Gouveia, Linda; Moosa, Fahima; Ntshoe, Genevie; Blumberg, Lucille; Cohen, Cheryl; Smith, Marshagne; Mutevedzi, Portia; Thomas, Juno; Horne, Valentino; Moodley, Prashini; Archary, Moherndran; Mahabeer, Yesholata; Mahomed, Saajida; Kuhn, Warren; Mlisana, Koleka; McCarthy, Kerrigan; von Gottberg, Anne
2017-08-01
In 2015, a cluster of respiratory diphtheria cases was reported from KwaZulu-Natal Province in South Africa. By using whole-genome analysis, we characterized 21 Corynebacterium diphtheriae isolates collected from 20 patients and contacts during the outbreak (1 patient was infected with 2 variants of C. diphtheriae). In addition, we included 1 cutaneous isolate, 2 endocarditis isolates, and 2 archived clinical isolates (ca. 1980) for comparison. Two novel lineages were identified, namely, toxigenic sequence type (ST) ST-378 (n = 17) and nontoxigenic ST-395 (n = 3). One archived isolate and the cutaneous isolate were ST-395, suggesting ongoing circulation of this lineage for >30 years. The absence of preexisting molecular sequence data limits drawing conclusions pertaining to the origin of these strains; however, these findings provide baseline genotypic data for future cases and outbreaks. Neither ST has been reported in any other country; this ST appears to be endemic only in South Africa.
Guo, Xuan; Wang, Jing; Xie, Xixian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning
2013-06-01
During L-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for L-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower L-alanine excretion and no improved L-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower L-alanine excretion and identical L-glutamate production, however, 8.5 % higher L-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in L-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for L-glutamate synthesis and decreased byproduct excretion at the pyruvate node.
Oliveira, Alberto F; Folador, Edson L; Gomide, Anne C P; Goes-Neto, Aristóteles; Azevedo, Vasco A C; Wattam, Alice R
2018-02-15
The genus Corynebacterium includes species of great importance in medical, veterinary and biotechnological fields. The genus-specific families (PLfams) from PATRIC have been used to observe conserved proteins associated to all species. Our results showed a large number of conserved proteins that are associated with the cellular division process. Was not observe in our results other proteins like FtsA and ZapA that interact with FtsZ. Our findings point that SepF overlaps the function of this proteins explored by molecular docking, protein-protein interaction and sequence analysis. Transcriptomic analysis showed that these two (Sepf and FtsZ) proteins can be expressed in different conditions together. The work presents novelties on molecules participating in the cell division event, from the interaction of FtsZ and SepF, as new therapeutic targets.
De Zoysa, Aruni; Efstratiou, Androulla; Mann, Ginder; Harrison, Timothy G; Fry, Norman K
2016-12-01
Toxigenic corynebacteria are uncommon in the UK; however, laboratory confirmation by the national reference laboratory can inform public health action according to national guidelines. Standard phenotypic tests for identification and toxin expression of isolates can take from ≥24 to ≥48 h from receipt. To decrease the time to result, a real-time PCR (qPCR) assay was developed for confirmation of both identification of Corynebacterium diphtheriae and Corynebacterium ulcerans/Corynebacterium pseudotuberculosis and detection of the diphtheria toxin gene. Target genes were the RNA polymerase β-subunit-encoding gene (rpoB) and A-subunit of the diphtheria toxin gene (tox). Green fluorescent protein DNA (gfp) was used as an internal process control. qPCR results were obtained within 3 to 4 h after receipt of isolate. The assay was validated according to published guidelines and demonstrated high diagnostic sensitivity (100 %), high specificity (98-100 %) and positive and negative predictive values of 91 to 100 % and 100 %, respectively, compared to both block-based PCR and the Elek test, together with a greatly reduced time from isolate receipt to reporting. Limitations of the qPCR assay were the inability to distinguish between C. ulcerans and C. pseudotuberculosis and that the presence of the toxin gene as demonstrated by qPCR may not always predict toxin expression. Thus, confirmation of expression of diphtheria toxin is always sought using the phenotypic Elek test. The new qPCR assay was formally introduced as the front-line test for putative toxigenic corynebacteria to inform public health action in England and Wales on 1 April 2014.
De Sousa-D'Auria, Célia; Kacem, Raoudha; Puech, Virginie; Tropis, Marielle; Leblon, Gérard; Houssin, Christine; Daffé, Mamadou
2003-07-15
Mycolic acids, the major lipid constituents of Corynebacterineae, play an essential role in maintaining the integrity of the bacterial cell envelope. We have previously characterized a corynebacterial mycoloyltransferase (PS1) homologous in its N-terminal part to the three known mycobacterial mycoloyltransferases, the so-called fibronectin-binding proteins A, B and C. The genomes of Corynebacterium glutamicum (ATCC13032 and CGL2005) and Corynebacterium diphtheriae were explored for the occurrence of other putative corynebacterial mycoloyltransferase-encoding genes (cmyt). In addition to csp1 (renamed cmytA), five new cmyt genes (cmytB-F) were identified in the two strains of C. glutamicum and three cmyt genes in C. diphtheriae. In silico analysis showed that each of the putative cMyts contains the esterase domain, including the three key amino acids necessary for the catalysis. In C. glutamicum CGL2005 cmytE is a pseudogene. The four new cmyt genes were disrupted in this strain and overexpressed in the inactivated strains. Quantitative analyses of the mycolate content of all these mutants demonstrated that each of the new cMyt-defective strains, except cMytC, accumulated trehalose monocorynomycolate and exhibited a lower content of covalently bound corynomycolate than did the parent strain. For each mutant, the mycolate content was fully restored by complementation with the corresponding wild-type gene. Finally, complementation of the cmytA-inactivated mutant by the individual new cmyt genes established the existence of two classes of mycoloyltransferases in corynebacteria.
Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric
2016-02-01
We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.
Eguchi, Hiroshi; Kuwahara, Tomomi; Miyamoto, Tatsuro; Nakayama-Imaohji, Haruyuki; Ichimura, Minoru; Hayashi, Tetsuya; Shiota, Hiroshi
2008-02-01
The clinical importance of nondiphtherial Corynebacterium, a ubiquitous member of the normal human microflora of the skin and mucous membrane, for ocular surface infections has been recognized recently. We performed an antimicrobial susceptibility test with Etest strips for three fluoroquinolones (ciprofloxacin, norfloxacin, and levofloxacin) and a taxonomic analysis on 21 isolates of Corynebacterium from ophthalmic samples. Of these, 16 isolates were identified as C. macginleyi at the species level on the basis of 16S rRNA gene sequence comparisons. The remaining five isolates were determined to be C. mastitidis (four) or C. accolens (one). Eleven of the C. macginleyi isolates showed high levels of resistance to all of the fluoroquinolones tested, and one isolate was resistant to norfloxacin alone. An analysis of the amplified quinolone-resistance-determining regions of the gyrA genes revealed that a single amino acid substitution in position 83 of the gyrA product was sufficient to generate the norfloxacin resistance phenotype, and double mutations leading to amino acid changes in positions 83 and 87 were necessary for high-level resistance against the other fluoroquinolones. We conducted the first example of multilocus sequence typing (MLST) analysis on C. macginleyi. The MLST analysis grouped the majority of C. macginleyi isolates into a single lineage, and another molecular strain typing by random amplified polymorphic DNA fragment patterns supported the finding, indicating that a particular lineage of C. macginleyi is dominant on the human ocular surface. This type of population might be particularly adaptable to the milieu on the human ocular surface.
Eguchi, Hiroshi; Kuwahara, Tomomi; Miyamoto, Tatsuro; Nakayama-Imaohji, Haruyuki; Ichimura, Minoru; Hayashi, Tetsuya; Shiota, Hiroshi
2008-01-01
The clinical importance of nondiphtherial Corynebacterium, a ubiquitous member of the normal human microflora of the skin and mucous membrane, for ocular surface infections has been recognized recently. We performed an antimicrobial susceptibility test with Etest strips for three fluoroquinolones (ciprofloxacin, norfloxacin, and levofloxacin) and a taxonomic analysis on 21 isolates of Corynebacterium from ophthalmic samples. Of these, 16 isolates were identified as C. macginleyi at the species level on the basis of 16S rRNA gene sequence comparisons. The remaining five isolates were determined to be C. mastitidis (four) or C. accolens (one). Eleven of the C. macginleyi isolates showed high levels of resistance to all of the fluoroquinolones tested, and one isolate was resistant to norfloxacin alone. An analysis of the amplified quinolone-resistance-determining regions of the gyrA genes revealed that a single amino acid substitution in position 83 of the gyrA product was sufficient to generate the norfloxacin resistance phenotype, and double mutations leading to amino acid changes in positions 83 and 87 were necessary for high-level resistance against the other fluoroquinolones. We conducted the first example of multilocus sequence typing (MLST) analysis on C. macginleyi. The MLST analysis grouped the majority of C. macginleyi isolates into a single lineage, and another molecular strain typing by random amplified polymorphic DNA fragment patterns supported the finding, indicating that a particular lineage of C. macginleyi is dominant on the human ocular surface. This type of population might be particularly adaptable to the milieu on the human ocular surface. PMID:18077650
Pathogenicity and Genetic Variation of 3 Strains of Corynebacterium bovis in Immunodeficient Mice
Dole, Vandana S; Henderson, Kenneth S; Fister, Richard D; Pietrowski, Michael T; Maldonado, Geomaris; Clifford, Charles B
2013-01-01
Corynebacterium bovis has been associated with hyperkeratotic dermatitis and acanthosis in mice. We studied 3 different strains of C. bovis: one previously described to cause hyperkeratotic dermatitis (HAC), one that infected athymic nude mice without leading to the classic clinical signs, and one of bovine origin (ATCC 7715). The 3 strains showed a few biochemical and genetic differences. Immunodeficient nude mice were housed in 3 independent isolators and inoculated with pure cultures of the 3 strains. We studied the transmission of these C. bovis studies to isolator-bedding and contact sentinels housed for 5 to 12 wk in filter-top or wire-top cages in the respective isolators. Using a 16S rRNA-based qPCR assay, we did not find consistent differences in growth and transmission among the 3 C. bovis strains, and neither the incidence nor severity of hyperkeratosis or acanthosis differed between strains. Housing in filter-top compared with wire-top cages did not alter the morbidity associated with any of the strains. Our findings confirmed the variability in the gross and histologic changes associated with C. bovis infection of mice. Although bacteriology was a sensitive method for the detection of Corynebacterium spp., standard algorithms occasionally misidentified C. bovis and several related species. Our study demonstrates that PCR of skin swabs or feces is a sensitive and specific method for the detection of C. bovis infection in mice. An rpoB-based screen of samples from North American vivaria revealed that HAC is the predominant C. bovis strain in laboratory mice. PMID:23849444
Nakamura, T; Nagasawa, T; Yu, F; Watanabe, I; Yamada, H
1992-01-01
During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074. Images PMID:1447132
Pathogenicity and genetic variation of 3 strains of Corynebacterium bovis in immunodeficient mice.
Dole, Vandana S; Henderson, Kenneth S; Fister, Richard D; Pietrowski, Michael T; Maldonado, Geomaris; Clifford, Charles B
2013-07-01
Corynebacterium bovis has been associated with hyperkeratotic dermatitis and acanthosis in mice. We studied 3 different strains of C. bovis: one previously described to cause hyperkeratotic dermatitis (HAC), one that infected athymic nude mice without leading to the classic clinical signs, and one of bovine origin (ATCC 7715). The 3 strains showed a few biochemical and genetic differences. Immunodeficient nude mice were housed in 3 independent isolators and inoculated with pure cultures of the 3 strains. We studied the transmission of these C. bovis studies to isolator-bedding and contact sentinels housed for 5 to 12 wk in filter-top or wire-top cages in the respective isolators. Using a 16S rRNA-based qPCR assay, we did not find consistent differences in growth and transmission among the 3 C. bovis strains, and neither the incidence nor severity of hyperkeratosis or acanthosis differed between strains. Housing in filter-top compared with wire-top cages did not alter the morbidity associated with any of the strains. Our findings confirmed the variability in the gross and histologic changes associated with C. bovis infection of mice. Although bacteriology was a sensitive method for the detection of Corynebacterium spp., standard algorithms occasionally misidentified C. bovis and several related species. Our study demonstrates that PCR of skin swabs or feces is a sensitive and specific method for the detection of C. bovis infection in mice. An rpoB-based screen of samples from North American vivaria revealed that HAC is the predominant C. bovis strain in laboratory mice.
Abdali, Narges; Younas, Farhan; Mafakheri, Samaneh; Pothula, Karunakar R; Kleinekathöfer, Ulrich; Tauch, Andreas; Benz, Roland
2018-05-09
Corynebacterium urealyticum, a pathogenic, multidrug resistant member of the mycolata, is known as causative agent of urinary tract infections although it is a bacterium of the skin flora. This pathogenic bacterium shares with the mycolata the property of having an unusual cell envelope composition and architecture, typical for the genus Corynebacterium. The cell wall of members of the mycolata contains channel-forming proteins for the uptake of solutes. In this study, we provide novel information on the identification and characterization of a pore-forming protein in the cell wall of C. urealyticum DSM 7109. Detergent extracts of whole C. urealyticum cultures formed in lipid bilayer membranes slightly cation-selective pores with a single-channel conductance of 1.75 nS in 1 M KCl. Experiments with different salts and non-electrolytes suggested that the cell wall pore of C. urealyticum is wide and water-filled and has a diameter of about 1.8 nm. Molecular modelling and dynamics has been performed to obtain a model of the pore. For the search of the gene coding for the cell wall pore of C. urealyticum we looked in the known genome of C. urealyticum for a similar chromosomal localization of the porin gene to known porH and porA genes of other Corynebacterium strains. Three genes are located between the genes coding for GroEL2 and polyphosphate kinase (PKK2). Two of the genes (cur_1714 and cur_1715) were expressed in different constructs in C. glutamicum ΔporAΔporH and in porin-deficient BL21 DE3 Omp8 E. coli strains. The results suggested that the gene cur_1714 codes alone for the cell wall channel. The cell wall porin of C. urealyticum termed PorACur was purified to homogeneity using different biochemical methods and had an apparent molecular mass of about 4 kDa on tricine-containing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Biophysical characterization of the purified protein (PorACur) suggested indeed that cur_1714 is the gene coding for the pore-forming protein in C. urealyticum because the protein formed in lipid bilayer experiments the same pores as the detergent extract of whole cells. The study is the first report of a cell wall channel in the pathogenic C. urealyticum.
Ribosomal RNA and ribosomal proteins in corynebacteria.
Martín, Juan F; Barreiro, Carlos; González-Lavado, Eva; Barriuso, Mónica
2003-09-04
Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.
Taylor, Graeme B; Paviour, Sue D; Musaad, Sahar; Jones, Wayne O; Holland, David J
2003-04-01
Granulomatous mastitis is a rare condition of unknown aetiology. The great majority of cases has not been associated with bacterial pathogens if women with mammary tuberculosis are excluded. We noted that some women in Auckland with a histological diagnosis of granulomatous mastitis had both microbiological and histological evidence of corynebacteria infection and aimed to study this further. Thirty-four women were reviewed who presented with inflammatory breast disease and had microbiological specimens from which corynebacteria were isolated and/or histological specimens containing coryneform bacteria. These 34 cases were compared with 28 controls with similar histology but no evidence of corynebacteria infection. Twenty-seven (79%) of the cases and 21 (75%) of the controls had histological and/or cytological evidence of suppurative granulomas. Fourteen of the 34 cases also had Gram-positive bacilli (GPB), recognisable as coryneform bacteria, in histological sections. In all cases the bacilli were confined to empty spaces, consistent with dissolved lipid, and were surrounded by neutrophils and, frequently, suppurative granulomas. Corynebacterium species were isolated from 52 of 116 microbiological specimens taken from the 34 cases. Forty of these 52 cultures were pure. Twenty-four of the cultures were further classified biochemically and using 16S rRNA gene sequencing. Twenty of the 24 were lipophilic Corynebacterium species and 14 were identified as Corynebacterium kroppenstedtii. The cases were more likely to present with fever or neutrophilia and more often formed sinuses than the controls but other clinical features were similar. Maori and Pacific Islanders accounted for 77% of the women across both groups. We suggest granulomatous mastitis can be associated with corynebacteria infection, particularly infection by C. kroppenstedtii. The significance of this finding, which has previously been described in only a single case report, is discussed.
Vaneechoutte, M; Riegel, P; de Briel, D; Monteil, H; Verschraegen, G; De Rouck, A; Claeys, G
1995-10-01
The 16S rRNA genes (rDNA) of 50 strains belonging to 26 different coryneform bacterial species and genomospecies and of the type strain of Rhodococcus equi were enzymatically amplified. Amplified rDNA restriction analysis (ARDRA) with the enzymes AluI, CfoI and RsaI was carried out. The combination of the ARDRA patterns obtained after restriction with these three different enzymes enabled the differentiation between the following species: Corynebacterium accolens (number of strains = 2), C. afermentans subsp. afermentans (2), C. afermentans subsp. lipophilum (2), C. amycolatum (3), CDC coryneform group ANF-1-like (1), CDC coryneform group ANF-3-like (1), C. cystitidis (1), C. diphtheriae (4), C. jeikeium (3), C. macginleyi (2), C. minutissimum (1), C. pilosum (1), C. pseudotuberculosis (2), C. renale (2), C. striatum (2), C. urealyticum (3), C. xerosis (1), CDC coryneform groups B-1 (2), B-3 (2), F-1, genomospecies 1 and 2 (6), G, genomospecies 1 (1) and G, genomospecies 2 (2). The following strains or species could not be differentiated from each other: C. pseudodiphtheriticum (2) from C. propinquum (former CDC coryneform group ANF-3) (2), CDC coryneform group F-1, genomospecies 1 (4) from genomospecies 2 (2) and C. jeikeium genomospecies A (1) from genomospecies C (2). ARDRA may represent a possible alternative for identification of coryneforms, since this technique enabled the identification of most coryneforms tested and since DNA extraction (i.e. cell lysis by boiling), amplification, restriction and electrophoresis can be carried out within 8 hours. This might allow quick identification of C. diphtheriae and other possible pathogens of the genus Corynebacterium.
Bergamini, M.; Fabrizi, P.; Pagani, S.; Grilli, A.; Severini, R.; Contini, C.
2000-01-01
This study evaluated whether a correlation exists between carriage of corynebacteria and the lack of immunity to diphtheria toxoid. Samples of both nasal and pharyngeal secretions were taken from 500 apparently healthy subjects of both sexes and of all ages and inoculated onto Tinsdale's medium. A serum sample was also taken for ELISA test to determine the titre of diphtheria toxin antibodies. None of the subjects carried Corynebacterium diphtheriae. Ninety-three strains of Corynebacterium spp. were isolated from 93 subjects and 86 of these were classified to species or group level by biochemical tests. C. xerosis was the most common (25.8%) followed by C. pseudodiphthericum (16.1%), C. jeikeium and C. striatum (both 10.8%), and C. urealyticum (9.7%). Three other species accounted for approximately 20% of strains and seven were unclassified as biochemically atypical corynebacteria. Non-protective antibodies to diphtheria toxin were found in 80 of the 93 subjects and a strong statistical association was demonstrated between carriage of corynebacteria and non-protective levels of anti-toxin antibodies. The remaining 13 subjects had protective levels of antitoxin antibodies. In contrast, only 45 of the 407 non-colonized subjects had non-protective antitoxin titres. The prevalence of carriage increased with age among males as did the percentage of non-protected subjects. The prevalence of female carriers of corynebacteria was significantly lower. Serum samples from 12 subjects with different antibody titres to diphtheria toxoid reacted to varying degrees with whole-cell lysates of a number of species of corynebacteria. The results suggest that a causal relationship may exist between nasopharyngeal carriage of corynebacteria and a low anti-diphtheria toxin immune response. PMID:11057966
Shi, Meng; Wei, Yiping; Hu, Wenjie; Nie, Yong; Wu, Xiaolei; Lu, Ruifang
2018-01-01
Periodontitis is a kind of infectious disease initiated by colonization of subgingival periodontal pathogens, which cause destruction of tooth-supporting tissues, and is a predominant threat to oral health as the most common cause of loss of teeth. The aim of this pilot study was to characterize the subgingival bacterial biodiversity of periodontal pockets with different probing depths in patients with different forms of periodontitis. Twenty-one subgingival plaque samples were collected from three patients with chronic periodontitis (ChP), three patients with aggressive periodontitis (AgP) and three periodontally healthy subjects (PH). Each patient with periodontitis was sampled at three sites, at different probing depths (PDs, one each at 4 mm, 5-6 mm, and ≥ 7 mm). Using 16S rRNA gene high-throughput sequencing and bioinformatic analysis, we found that subgingival communities in health and periodontitis samples largely differed. Meanwhile, Acholeplasma, Fretibacterium, Porphyromonas, Peptococcus, Treponema_2, Defluviitaleaceae_UCG_011, Filifactor , and Mycoplasma increased with the deepening of the pockets in ChP, whilst only Corynebacterium was negatively associated with PD. In AgP, Corynebacterium and Klebsiella were positively associated with PD, while Serratia, Pseudoramibacter, Defluviitaleaceae_UCG_011 , and Desulfobulbus were negatively associated with PD. And among these two groups, Corynebacterium shifted differently. Moreover, in subgingival plaque, the unweighted UniFrac distances between samples from pockets with different PD in the same patients were significantly lower than those from pockets within the same PD category from different patients. This study demonstrated the shift of the subgingival microbiome in individual teeth sites during disease development. Within the limitation of the relative small sample size, this pilot study shed new light on the dynamic relationship between the extent of periodontal destruction and the subgingival microbiome.
Nasal Airway Microbiota Profile and Severe Bronchiolitis in Infants: A Case-control Study.
Hasegawa, Kohei; Linnemann, Rachel W; Mansbach, Jonathan M; Ajami, Nadim J; Espinola, Janice A; Petrosino, Joseph F; Piedra, Pedro A; Stevenson, Michelle D; Sullivan, Ashley F; Thompson, Amy D; Camargo, Carlos A
2017-11-01
Little is known about the relationship of airway microbiota with bronchiolitis in infants. We aimed to identify nasal airway microbiota profiles and to determine their association with the likelihood of bronchiolitis in infants. A case-control study was conducted. As a part of a multicenter prospective study, we collected nasal airway samples from 40 infants hospitalized with bronchiolitis. We concurrently enrolled 110 age-matched healthy controls. By applying 16S ribosomal RNA gene sequencing and an unbiased clustering approach to these 150 nasal samples, we identified microbiota profiles and determined the association of microbiota profiles with likelihood of bronchiolitis. Overall, the median age was 3 months and 56% were male. Unbiased clustering of airway microbiota identified 4 distinct profiles: Moraxella-dominant profile (37%), Corynebacterium/Dolosigranulum-dominant profile (27%), Staphylococcus-dominant profile (15%) and mixed profile (20%). Proportion of bronchiolitis was lowest in infants with Moraxella-dominant profile (14%) and highest in those with Staphylococcus-dominant profile (57%), corresponding to an odds ratio of 7.80 (95% confidence interval, 2.64-24.9; P < 0.001). In the multivariable model, the association between Staphylococcus-dominant profile and greater likelihood of bronchiolitis persisted (odds ratio for comparison with Moraxella-dominant profile, 5.16; 95% confidence interval, 1.26-22.9; P = 0.03). By contrast, Corynebacterium/Dolosigranulum-dominant profile group had low proportion of infants with bronchiolitis (17%); the likelihood of bronchiolitis in this group did not significantly differ from those with Moraxella-dominant profile in both unadjusted and adjusted analyses. In this case-control study, we identified 4 distinct nasal airway microbiota profiles in infants. Moraxella-dominant and Corynebacterium/Dolosigranulum-dominant profiles were associated with low likelihood of bronchiolitis, while Staphylococcus-dominant profile was associated with high likelihood of bronchiolitis.
Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W
2012-03-01
There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.
Okai, Naoko; Masuda, Takaya; Takeshima, Yasunobu; Tanaka, Kosei; Yoshida, Ken-Ichi; Miyamoto, Masanori; Ogino, Chiaki; Kondo, Akihiko
2017-12-01
Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.
Metabolic engineering of Corynebacterium glutamicum for L-arginine production.
Park, Seok Hyun; Kim, Hyun Uk; Kim, Tae Yong; Park, Jun Seok; Kim, Suok-Su; Lee, Sang Yup
2014-08-05
L-arginine is an important amino acid for diverse industrial and health product applications. Here we report the development of metabolically engineered Corynebacterium glutamicum ATCC 21831 for the production of L-arginine. Random mutagenesis is first performed to increase the tolerance of C. glutamicum to L-arginine analogues, followed by systems metabolic engineering for further strain improvement, involving removal of regulatory repressors of arginine operon, optimization of NADPH level, disruption of L-glutamate exporter to increase L-arginine precursor and flux optimization of rate-limiting L-arginine biosynthetic reactions. Fed-batch fermentation of the final strain in 5 l and large-scale 1,500 l bioreactors allows production of 92.5 and 81.2 g l(-1) of L-arginine with the yields of 0.40 and 0.35 g L-arginine per gram carbon source (glucose plus sucrose), respectively. The systems metabolic engineering strategy described here will be useful for engineering Corynebacteria strains for the industrial production of L-arginine and related products.
CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup
2017-07-01
Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
Cohabitation--relationships of corynebacteria and staphylococci on human skin.
Kwaszewska, Anna; Sobiś-Glinkowska, Maria; Szewczyk, Eligia M
2014-11-01
Skin microbiome main cultivable aerobes in human are coagulase-negative staphylococci and lipophilic corynebacteria. Staphylococcus strains (155) belonging to 10 species and 105 strains of Corynebacterium belonging to nine species from the skin swabs of healthy male volunteers were investigated to determine their enzymatic activity to main metabolic substrates: carbohydrates, proteins, lipids, and response to factors present on the skin such as osmotic pressure, pH, and organic acids. The results showed that lipophilic corynebacteria have different capacity for adaptation on the skin than staphylococci. Most of Corynebacterium spp. expressed lack of proteinase, phospholipase, and saccharolytic enzymes activity. Corynebacteria were also more sensitive than Staphylococcus spp. to antimicrobial agents existing on human skin, especially to low pH. These characters can explain domination of Staphylococcus genera on healthy human skin. It can be suggested that within these two bacterial genus, there exists conceivable cooperation and reciprocal protection which results in their quantitative ratio. Such behavior must be considered as crucial for the stability of the population on healthy skin.
Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis.
Kobayashi, Tetsuro; Glatz, Martin; Horiuchi, Keisuke; Kawasaki, Hiroshi; Akiyama, Haruhiko; Kaplan, Daniel H; Kong, Heidi H; Amagai, Masayuki; Nagao, Keisuke
2015-04-21
Staphylococcus aureus skin colonization is universal in atopic dermatitis and common in cancer patients treated with epidermal growth factor receptor inhibitors. However, the causal relationship of dysbiosis and eczema has yet to be clarified. Herein, we demonstrate that Adam17(fl/fl)Sox9-(Cre) mice, generated to model ADAM17-deficiency in human, developed eczematous dermatitis with naturally occurring dysbiosis, similar to that observed in atopic dermatitis. Corynebacterium mastitidis, S. aureus, and Corynebacterium bovis sequentially emerged during the onset of eczematous dermatitis, and antibiotics specific for these bacterial species almost completely reversed dysbiosis and eliminated skin inflammation. Whereas S. aureus prominently drove eczema formation, C. bovis induced robust T helper 2 cell responses. Langerhans cells were required for eliciting immune responses against S. aureus inoculation. These results characterize differential contributions of dysbiotic flora during eczema formation, and highlight the microbiota-host immunity axis as a possible target for future therapeutics in eczematous dermatitis. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Ying; Graduate School of Chinese Academy of Sciences, Beijing 100049; Yan Dazhong
2006-07-28
Ralstonia sp. strain U2 metabolizes naphthalene via gentisate (2,5-dihydroxybenzoate) to central metabolites, but it was found unable to utilize gentisate as growth substrate. A putative gentisate transporter encoded by ncg12922 from Corynebacterium glutamicum ATCC 13032 was functionally expressed in Ralstonia sp. strain U2, converting strain U2 to a gentisate utilizer. After ncg12922 was inserted into plasmid pGFPe with green fluorescence protein gene gfp, the expressed fusion protein Ncg12922-GFP could be visualized in the periphery of Escherichia coli cells under confocal microscope, consistent with a cytoplasmic membrane location. In contrast, GFP was ubiquitous in the cytoplasm of E. coli cells carryingmore » pGFPe only. Gentisate 1,2-dioxygenase activity was present in the cell extract from strain U2 induced with gentisate but at a much lower level (one-fifth) than that obtained with salicylate. However, it exhibited a similar level in strain U2 containing Ncg12922 induced either by salicylate or gentisate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moroson, H.; Stowe, S.; Rotman, M.
1978-01-01
Evidence is presented that combined radiotherapy and Corynebacterium parvum treatment gives better results than radiotherapy alone in rats bearing a chemically-induced highly-immunogenic transplanted fibrosarcoma termed BP 179; however, similar behavior is not observed with either of two weakly-immunogenic mammary carcinomas, 13762 or ME/H. Relative immunogenicity is determined by the ability of immunized rats to reject tumor cell challenge. Both 13762 and ME/H carcinomata grow progressively and metastasize early to the retroperitoneal cavity and lungs if they are left untreated. Local radiotherapy of the primary tumor has no influence on growth of metastases whether it is combined with C. parvum ormore » not. Results of cell-mediated cytotoxicity studies with lymphocytes from BP 179 and ME/H tumor bearing rats treated with radiation or radiation plus C. parvum support the in vivo findings of combined radiotherapy. These data suggest that unlike strongly immunogenic tumors, weakly immunogenic tumors will not respond better to C. parvum combined with radiation therapy.« less
Corynebacterium glutamicum promoters: a practical approach
Pátek, Miroslav; Holátko, Jiří; Busche, Tobias; Kalinowski, Jörn; Nešvera, Jan
2013-01-01
Summary Transcription initiation is the key step in gene expression in bacteria, and it is therefore studied for both theoretical and practical reasons. Promoters, the traffic lights of transcription initiation, are used as construction elements in biotechnological efforts to coordinate ‘green waves’ in the metabolic pathways leading to the desired metabolites. Detailed analyses of Corynebacterium glutamicum promoters have already provided large amounts of data on their structures, regulatory mechanisms and practical capabilities in metabolic engineering. In this minireview the main aspects of promoter studies, the methods developed for their analysis and their practical use in C. glutamicum are discussed. These include definitions of the consensus sequences of the distinct promoter classes, promoter localization and characterization, activity measurements, the functions of transcriptional regulators and examples of practical uses of constitutive, inducible and modified promoters in biotechnology. The implications of the introduction of novel techniques, such as in vitro transcription and RNA sequencing, to C. glutamicum promoter studies are outlined. PMID:23305350
Ebisawa, Makoto; Tsukahara, Takamitsu; Fudou, Ryosuke; Ohta, Yasuhiro; Tokura, Mitsunori; Onishi, Norimasa; Fujieda, Takeshi
2017-05-01
Fermentation by Corynebacterium glutamicum is used by various industries to produce L-Glutamate, and the heat-killed cell preparation of this bacterium (HCCG) is a by-product of the fermentation process. In present study, we evaluated the immunostimulating and survival effects against enterohemorrhagic Escherichia coli (STEC) infection of HCCG. HCCG significantly stimulated in vitro IgA and interleukin-12 p70 production in murine Peyer's patch cells and peritoneal macrophages, respectively. Oral administration of 10 mg/kg body weight (BW) of HCCG for seven consecutive days stimulated IgA concentration in murine cecal digesta. Mice were orally administered HCCG for 17 consecutive days (d0-d17), and challenged with STEC on d4 to d6. Survival of mice tended to improve by 100 mg/kg BW of HCCG administration compared with those in control group. In conclusion, HCCG supplementation was found to prevent STEC infection in mice, and thus it may have the potential to stimulate the immune status of mammals.
Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae
2018-05-01
Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.
Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum.
Zhang, Shuanghong; Liu, Dingyu; Mao, Zhitao; Mao, Yufeng; Ma, Hongwu; Chen, Tao; Zhao, Xueming; Wang, Zhiwen
2018-05-01
To develop an efficient synthetic promoter library for fine-tuned expression of target genes in Corynebacterium glutamicum. A synthetic promoter library for C. glutamicum was developed based on conserved sequences of the - 10 and - 35 regions. The synthetic promoter library covered a wide range of strengths, ranging from 1 to 193% of the tac promoter. 68 promoters were selected and sequenced for correlation analysis between promoter sequence and strength with a statistical model. A new promoter library was further reconstructed with improved promoter strength and coverage based on the results of correlation analysis. Tandem promoter P70 was finally constructed with increased strength by 121% over the tac promoter. The promoter library developed in this study showed a great potential for applications in metabolic engineering and synthetic biology for the optimization of metabolic networks. To the best of our knowledge, this is the first reconstruction of synthetic promoter library based on statistical analysis of C. glutamicum.
Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing
2016-09-01
The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar. Copyright © 2016. Published by Elsevier B.V.
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Jojima, Toru; Noburyu, Ryoji; Sasaki, Miho; Tajima, Takahisa; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-02-01
Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.
Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
Okino, Shohei; Suda, Masako; Fujikura, Keitaro; Inui, Masayuki; Yukawa, Hideaki
2008-03-01
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of L-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce D-lactic acid. The modification involved expression of fermentative D-lactate dehydrogenase (D-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in L-lactate dehydrogenase (L-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum DeltaldhA/pCRB201 and C. glutamicum DeltaldhA/pCRB204, respectively. The productivity of C. glutamicum DeltaldhA/pCRB204 was fivefold higher than that of C. glutamicum DeltaldhA/pCRB201. By using C. glutamicum DeltaldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l(-1)) of D-lactic acid of greater than 99.9% optical purity was produced within 30 h.
Baio, Paulo Victor Pereira; Mota, Higor Franceschi; Freitas, Andréa D'avila; Gomes, Débora Leandro Rama; Ramos, Juliana Nunes; Sant'Anna, Lincoln Oliveira; Souza, Mônica Cristina; Camello, Thereza Cristina Ferreira; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza
2013-01-01
Corynebacterium striatum is a potentially pathogenic microorganism with the ability to produce outbreaks of nosocomial infections. Here, we document a nosocomial outbreak caused by multidrug-resistant (MDR) C. striatum in Rio de Janeiro, Brazil. C. striatum identification was confirmed by 16S rRNA and rpoB gene sequencing. Fifteen C. striatum strains were isolated from adults (half of whom were 50 years of age and older). C. striatum was mostly isolated in pure culture from tracheal aspirates of patients undergoing endotracheal intubation procedures. The analysis by pulsed-field gel electrophoresis (PFGE) indicated the presence of four PFGE profiles, including two related clones of MDR strains (PFGE I and II). The data demonstrated the predominance of PFGE type I, comprising 11 MDR isolates that were mostly isolated from intensive care units and surgical wards. A potential causal link between death and MDR C. striatum (PFGE types I and II) infection was observed in five cases. PMID:23440110
Trichomycosis (Trichobacteriosis): Clinical and Microbiological Experience with 56 Cases
Bonifaz, Alexandro; Váquez-González, Denisse; Fierro, Leonel; Araiza, Javier; Ponce, Rosa María
2013-01-01
Background: Trichomycosis is asymptomatic bacterial infection of the axillary hairs caused by Corynebacterium sp. Objective: to bring a series of cases of trichomycosis, its clinical and microbiological experience. Materials and Methods: This report consists in a linear and observational retrospective study of 15 years of cases of trichomycosis confirmed clinically and microbiologically. Results: Fifty six confirmed cases of trichomycosis were included in this report. The majority were men 53/56 (94.6%), mean age was 32.5 years. The most commonly affected area was the axilla (92%), trichomycosis flava was the principal variant 55/56 (98.2%) and signs and symptoms associated were hyperhidrosis (87.5%), hairs’ texture change (57.1%) and odor (35.7%). Bacterial concretions were observed in all cases, and the predominant causative agent in 89.3% of all cases was Corynebacterium sp. Thirty patients were included in therapeutic portion of the study, and 28 (93.3%) of them experienced a clinical and microbiological cure. Conclusion: Trichomycosis is asymptomatic, superficial infection, which primarily affects axillary hairs. PMID:23960390
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira
2016-06-01
L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.
Jones, Ronald N; Stilwell, Matthew G
2013-06-01
Dalbavancin is an investigational lipoglycopeptide having an extended serum elimination half-life allowing once-weekly dosing. Data from testing 1357 strains of uncommonly isolated species expand the dalbavancin spectrum details as follows (MIC50/90): β-haemolytic streptococcal serogroups C, F, and G (≤0.03/≤0.03 μg/mL), 7 viridans group of streptococci (≤0.03/≤0.03-0.06 μg/mL), 5 Corynebacterium spp. (0.06/0.12 μg/mL), Listeria monocytogenes (0.06/0.12 μg/mL), and Micrococcus spp. (≤0.03/≤0.03 μg/mL). Among all reported isolates, 99.8% of tested strains were inhibited at dalbavancin MIC values at ≤0.12 μg/mL. Dalbavancin remains very potent against rarer Gram-positive pathogens, using in vitro test experience with organisms cultured through 2011. Copyright © 2013 Elsevier Inc. All rights reserved.
Martínez, Jorge; Segura, Pablo; García, David; Aduriz, Gorka; Ibabe, José C; Peris, Bernardo; Corpa, Juan M
2006-09-01
A seven-year-old female Indian python (Python molurus) weighing about 35kg was euthanased after several clinical episodes of stomatitis, pneumonia, ophthalmitis and dystocia over a period of four years. The animal had been maintained in a terrarium in a circus truck at an adequate temperature. During shows, however, the snake was considered to be exposed to stressful conditions for several hours at a time at low temperatures and with noise and bright lights. A post-mortem examination indicated ulcerative stomatitis, osteomyelitis, severe pneumonia and numerous granulomata and multifocal necrosis in stomach and spleen. Corynebacterium macginleyi was isolated in pure culture from the ulcerative stomatitis, and mixed with Stenotrophomonas maltophilia from the lungs and spleen. The findings indicated that the snake had died from a septicaemic process caused by C. macginleyi, probably originating from the stomatitis. The role of S. maltophilia as a secondary agent is discussed. The stress of the circus show and poor husbandry may have predisposed the animal to infection and septicaemia. This is the first report of C. macginleyi causing disease in a snake.
Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima
2014-01-01
Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and 13C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products. PMID:24334667
Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping
2014-02-01
Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and (13)C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products.
Küberl, Andreas; Polen, Tino; Bott, Michael
2016-04-26
The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.
Barzantny, H; Brune, I; Tauch, A
2012-02-01
During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Joo, Young-Chul; Hyeon, Jeong Eun; Han, Sung Ok
2017-06-14
l-Cysteine is a valuable sulfur-containing amino acid widely used as a nutrition supplement in industrial food production, agriculture, and animal feed. However, this amino acid is mostly produced by acid hydrolysis and extraction from human or animal hairs. In this study, we constructed recombinant Corynebacterium glutamicum strains that overexpress combinatorial genes for l-cysteine production. The aims of this work were to investigate the effect of the combined overexpression of serine acetyltransferase (CysE), O-acetylserine sulfhydrylase (CysK), and the transcriptional regulator CysR on l-cysteine production. The CysR-overexpressing strain accumulated approximately 2.7-fold more intracellular sulfide than the control strain (empty pMT-tac vector). Moreover, in the resulting CysEKR recombinant strain, combinatorial overexpression of genes involved in l-cysteine production successfully enhanced its production by approximately 3.0-fold relative to that in the control strain. This study demonstrates a biotechnological model for the production of animal feed supplements such as l-cysteine using metabolically engineered C. glutamicum.
Sing, Andreas; Konrad, Regina; Meinel, Dominik M; Mauder, Norman; Schwabe, Ingo; Sting, Reinhard
2016-08-01
Corynebacterium diphtheriae, the classical causative agent of diphtheria, is considered to be nearly restricted to humans. Here we report the first finding of a non-toxigenic C. diphtheriae biovar belfanti strain in a free-roaming wild animal. The strain obtained from the subcutis and mammary gland of a dead red fox (Vulpes vulpes) was characterized by biochemical and molecular methods including MALDI-TOF and Multi Locus Sequence Typing. Since C. diphtheriae infections of animals, usually with close contact to humans, are reported only very rarely, an intense review comprising also scientific literature from the beginning of the 20th century was performed. Besides the present case, only 11 previously reported C. diphtheriae animal infections could be verified using current scientific criteria. Our report is the first on the isolation of C. diphtheriae from a wildlife animal without any previous human contact. In contrast, the very few unambiguous publications on C. diphtheriae in animals referred to livestock or pet animals with close human contact. C. diphtheriae carriage in animals has to be considered as an exceptionally rare event.
FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum.
Tsuge, Yota; Kudou, Motonori; Kawaguchi, Hideo; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko
2016-03-01
Lignocellulosic hydrolysates contain compounds that inhibit microbial growth and fermentation, thereby decreasing the productivity of biofuel and biochemical production. In particular, the heterocyclic aldehyde furfural is one of the most toxic compounds found in these hydrolysates. We previously demonstrated that Corynebacterium glutamicum converts furfural into the less toxic compounds furfuryl alcohol and 2-furoic acid. To date, however, the genes involved in these oxidation and reduction reactions have not been identified in the C. glutamicum genome. Here, we show that Cgl0331 (designated FudC) is mainly responsible for the reduction of furfural into furfuryl alcohol in C. glutamicum. Deletion of the gene encoding FudC markedly diminished the in vivo reduction of furfural to furfuryl alcohol. Purified His-tagged FudC protein from Escherichia coli was also shown to convert furfural into furfuryl alcohol in an in vitro reaction utilizing NADPH, but not NADH, as a cofactor. Kinetic measurements demonstrated that FudC has a high affinity for furfural but has a narrow substrate range for other aldehydes compared to the protein responsible for furfural reduction in E. coli.
Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.
Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko
2014-10-01
The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.
Abbouni, Bouziane; Elhariry, Hesham M; Auling, Georg
2003-01-01
Cell division of the wild type strain Corynebacterium (formerly Brevibacterium) ammoniagenes ATCC 6872 which requires 1 microM Mn2+ for balanced growth was inhibited by addition of 20 mM hydroxyurea (HU) or 10 mM p-methoxyphenol (MP) to a Mn2+-supplemented fermentation medium at an appropriate time. Scanning electron microscopy (SEM) showed a restricted elongation characteristic of arrest of the cell cycle in coryneform bacteria. The cultures treated with HU or MP had, respectively, a fourfold or sixfold enhanced accumulation of NAD+ by a salvage biosynthetic pathway. An assay of nucleotide-permeable cells for ribonucleotide reductase activity using [3H-CDP] as substrate revealed a pre-early and complete decline of DNA precursor biosynthesis not found in the untreated control. Overproduction of NAD+ is an alternative to the conventional fermentation process using Mn2+ deficiency. A simple model is presented to discuss the metabolic regulation of the new process based on the presence of a manganese ribonucleotide reductase (Mn-RNR) in the producing strain.
Cooper, D G; Zajic, J E; Gracey, D E
1979-01-01
The saponifiable carboxylic acids of the extracellular product of Corynebacterium lepus grown on kerosene have been isolated and characterized. About 25% of these acids were a mixture of simple, saturated fatty acids ranging from C13 to C24 and including both even and odd homologues. The distribution of these acids was bimodal, with maxima at C15 and C21. The other 75% of the acids was a mixture of corynomycolic acids [R1--CH(OH)--CH(R2)--COOH] ranging from C28 to C43. The R1 alkyl fragments varied from C16 to C25, and R2 fragments varied from C6 to C14. Both even and odd corynomycolic acid homologues were observed, and the distribution had a single pronounced maximum at C32 and C33. Bacterial utilization of the carboxylic oxidation products of the kerosene substrate is suggested to account for the wide distribution in chain length of these saturated fatty acids and for the observation of both even and odd homologues. PMID:422512
Malignant otitis externa in a healthy non-diabetic patient.
Liu, Xiao-Long; Peng, Hong; Mo, Ting-Ting; Liang, Yong
2016-08-01
A healthy 60-year-old male was initially treated for external otitis, and subsequently received multiple surgeries including abscess drainage, temporal bone debridement, canaloplasty of the external auditory meatus, and fistula excision and was treated with numerous antibiotics at another hospital over a 1-year period. He was seen at our hospital on February 14, 2014 with a complaint of a non-healing wound behind the left ear and drainage of purulent fluid. He had no history of diabetes mellitus or compromised immune function. Computed tomography (CT) and magnetic resonance imaging (MRI) studies at our hospital showed osteomyelitis involving the left temporal, occipital, and sphenoid bones, the mandible, and an epidural abscess. Routine blood testing and tests of immune function were normal, and no evidence of other infectious processes was found. He was diagnosed with malignant otitis externa (MOE). Bone debridement and incision and drainage of the epidural abscess were performed, and vancomycin was administered because culture results revealed Corynebacterium jeikeium, Corynebacterium xerosis, and Enterococcus faecalis. MOE should be considered in healthy patients with external otitis who fail initial treatment.
Shi, Xinchi; Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Zhao, Nan; Ying, Hanjie
2014-12-01
An immobilized fermentation system, using cassava bagasse hydrolysate (CBH) and mixed alkalis, was developed to achieve economical succinic acid production by Corynebacterium glutamicum. The C. glutamicum strains were immobilized in porous polyurethane filler (PPF). CBH was used efficiently as a carbon source instead of more expensive glucose. Moreover, as a novel method for regulating pH, the easily decomposing NaHCO3 was replaced by mixed alkalis (NaOH and Mg(OH)2) for succinic acid production by C. glutamicum. Using CBH and mixed alkalis in the immobilized batch fermentation system, succinic acid productivity of 0.42gL(-1)h(-1) was obtained from 35gL(-1) glucose of CBH, which is similar to that obtained with conventional free-cell fermentation with glucose and NaHCO3. In repeated batch fermentation, an average of 22.5gL(-1) succinic acid could be obtained from each batch, which demonstrated the enhanced stability of the immobilized C. glutamicum cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.
Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan
2015-05-01
In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia
2015-11-01
Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Bonifaz, Alexandro; Ramírez-Ricarte, Ixchel; Rodríguez-Leviz, Alejandra; Hernández, Marco A; Mena, Carlos; Valencia, Adriana
2017-04-01
Trichomycosis is a superficial infection caused by Corynebacterium flavescens, which regularly affects axillary, and to a a lesser extent, pubic, scrotal and intergluteal, and exceptionally, head hairs or trichomycosis capitis (TC). This condition is characterised by the formation of bacterial nodules. Clinically, it can be confused with white piedra or pediculosis. The diagnosis is made by microscopic and dermoscopic observation and confirmed by culture. To present a case of TC in an infant and illustrate the microscopic, dermoscopic, and ultrastructural characteristics. A 6 month-old boy, otherwise healthy, with multiple yellowish concretions on the hairs of the head. TC was confirmed by yellow fluorescence with Woods light; white-yellowish beads, like rosaries of crystalline stones were observed on dermoscopy, direct examination showed bacterial masses, and Corynebacterium flavescens was identified by culture. A superficial infection, without perforation of the hairs, was confirmed by electron microscopy. Treatment with fusidic acid for 3 weeks achieved a clinical and microbiological cure. TC is a rare condition that affects children, and tends to be mistaken for other diseases of the hair, such as pediculosis and mycotic infections.
Küberl, Andreas; Polen, Tino; Bott, Michael
2016-01-01
The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093
Droppa-Almeida, Daniela; Franceschi, Elton; Padilha, Francine Ferreira
2018-01-01
Caseous lymphadenitis (CLA) is a disease caused by Corynebacterium pseudotuberculosis bacteria that affects sheep and goats. The absence of a serologic diagnose is a factor that contributes for the disease dissemination, and due to the formation of granuloma, the treatment is very expensive. Therefore, prophylaxis is the approach with best cost-benefit relation; however, it still lacks an effective vaccine. In this sense, this work seeks to apply bioinformatic tools to design an effective vaccine against CLA, using CP40 protein as standard for the design of immunodominant epitopes, from which a total of 6 sequences were obtained, varying from 10 to 16 amino acid residues. The evaluation of different properties of the vaccines showed that the vaccine is a potent and nonallergenic antigen remaining stable in a wide range of temperatures. The initial tertiary structure of the vaccine was then predicted and a model selected. Later, the process of CP40 protein and TLR2 receptor binding was performed, presenting interaction with this receptor, which plays an important role in the activation of the immune response. PMID:29780242
Risely, Alice; Waite, David W; Ujvari, Beata; Hoye, Bethany J; Klaassen, Marcel
2018-03-01
Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average <1% abundance), with this effect holding across both species and sites. However, other than this specific association, community structure and diversity was almost identical between migrants and residents, with migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a major physiological challenge across two species and two distant populations. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie
2018-01-01
Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients for cellulosic fermentations.
Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong
2016-11-01
l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H 2 O 2 -forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H 2 O 2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3g/L and 0.326g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H 2 O 2 synthesis and increasing the ATP supply. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Characterization of the microflora of the human axilla.
Taylor, D; Daulby, A; Grimshaw, S; James, G; Mercer, J; Vaziri, S
2003-06-01
It is widely accepted that axillary malodour is attributable to the microbial biotransformation of odourless, natural secretions into volatile odorous products. Consequently, there is a need to understand the microbial ecology of the axilla in order that deodorant products, which control microbial action in this region, can be developed in the appropriate manner. A detailed characterization of the axillary microflora of a group of human volunteers has been performed. The axillary microflora is composed of four principal groups of bacteria (staphylococci, aerobic coryneforms, micrococci and propionibacteria), and the yeast genus Malassezia. Results indicated that the axillary microflora was dominated by either staphylococcal or aerobic coryneform species. Comparisons between axillary bacterial numbers and levels of axillary odour demonstrated the greatest association between odour levels and the presence of aerobic coryneforms in the under-arm. As the taxonomy of cutaneous aerobic coryneforms is poorly understood, a further study was conducted to characterize selected axillary aerobic coryneform isolates. Using the molecular technique of 16S rDNA sequencing, selected genomic sequences of a number of axillary aerobic coryneform isolates were obtained. Comparisons with sequence databases indicated the likely presence of a range of Corynebacterium species on axillary skin, although the majority of isolates were most similar to either Corynebacterium G-2 CDC G5840 or C. mucifaciens DMMZ 2278. Although for a panel of individuals differences in the carriage of Corynebacterium species were noted, similar species were carried by a number of panellists. All isolates examined in this limited evaluation failed to demonstrate the capability to metabolize long-chain fatty acids (LCFAs) to shorter chain, more volatile products. The application of this modern molecular phylogenetic technique has increased understanding of the diversity of aerobic coryneform carriage in the axilla, and on human skin. The application of this technique in other studies to assess the ethnic differences in cutaneous bacterial ecology, or the effects on the microflora of specific product use, will assist in the future development of novel deodorant systems.
[Method and procedures in bacteriological study of necrotic teeth].
Rodríguez-Ponce, A; López Campos, A; López Paz, J; Pazos Sierra, R
1991-01-01
Research was conducted of 160 radicular canals with necrotic pulp. Results of different bacteriological analyses are presented. Culture analyses in aerobic and anaerobic media, resulted in the isolation of Staphylococcus Epidermidis, Streptococcus Viridans and Corynebacterium sp in the group studied, as the most frequent bacteria. There was no evidence of a specific germ linked with the pulp necrosis.
JPRS Report, Science & Technology, USSR: Life Sciences
1987-07-10
amount and speed of formation of phytoalexins correlates directly to the resistance of plants to diseases [3-5]. Recently, metabolites of...including the genera Alkaligenes, Achromobacter , Pseudomonas, Corynebacterium, plus fungi, algae and protozoans, total micro- organisms biomass 2 g/1. The...activates the 47 central nervous system. All endocrine and autonomic reactions which arise in response to stress are secondary , resulting from
Holátko, Jiří; Silar, Radoslav; Rabatinová, Alžbeta; Sanderová, Hana; Halada, Petr; Nešvera, Jan; Krásný, Libor; Pátek, Miroslav
2012-10-01
To facilitate transcription studies in Corynebacterium glutamicum, we have developed an in vitro transcription system for this bacterium used as an industrial producer of amino acids and a model organism for actinobacteria. This system consists of C. glutamicum RNA polymerase (RNAP) core (α2, β, β'), a sigma factor and a promoter-carrying DNA template, that is specifically recognized by the RNAP holoenzyme formed. The RNAP core was purified from the C. glutamicum strain with the modified rpoC gene, which produced His-tagged β' subunit. The C. glutamicum sigA and sigH genes were cloned and overexpressed using the Escherichia coli plasmid vector, and the sigma subunits σ(A) and σ(H) were purified by affinity chromatography. Using the reconstituted C. glutamicum holo-RNAPs, recognition of the σ(A)- and σ(H)-dependent promoters and synthesis of the specific transcripts was demonstrated. The developed in vitro transcription system is a novel tool that can be used to directly prove the specific recognition of a promoter by the particular σ factor(s) and to analyze transcriptional control by various regulatory proteins in C. glutamicum.
Brunger, Axel T; Das, Debanu; Deacon, Ashley M; Grant, Joanna; Terwilliger, Thomas C; Read, Randy J; Adams, Paul D; Levitt, Michael; Schröder, Gunnar F
2012-04-01
Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence.
Adhesion by pathogenic corynebacteria.
Rogers, Elizabeth A; Das, Asis; Ton-That, Hung
2011-01-01
Pathogenic members of the genus Corynebacterium cause a wide range of serious infections in humans including diphtheria. Adhesion to host cells is a crucial step during infection. In Corynebacterium diphtheriae, adhesion is mediated primarily by filamentous structures called pili or fimbriae that are covalently attached to the bacterial cell wall. C. diphtheriae produces three distinct pilus structures, SpaA-, SpaD- and SpaH-type pili. Similar to other types, the prototype SpaA pilus consists of SpaA forming the pilus shaft and two minor pilins SpaB and SpaC located at the base and at the tip, respectively. The minor pilins SpaB/SpaC are critical for bacterial binding to human pharyngeal cells, and thus represent the major adhesins of corynebacteria. Like pili of many other gram-positive microbes, the assembly of corynebacterial pili occurs by a two-step mechanism, whereby pilins are covalently polymerized by a transpeptidase enzyme named pilin-specific sortase and the generated pilus polymer is subsequently anchored to the cell wall peptidoglycan via the base pilin by the housekeeping sortase or a non-polymerizing sortase. This chapter reviews the current knowledge of corynebacterial adhesion, with a specific focus on pilus structures, their assembly, and the mechanism of adhesion mediated by pili.
Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai
2014-01-01
Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.
Oral microbiota in youth with perinatally acquired HIV infection.
Starr, Jacqueline R; Huang, Yanmei; Lee, Kyu Ha; Murphy, C M; Moscicki, Anna-Barbara; Shiboski, Caroline H; Ryder, Mark I; Yao, Tzy-Jyun; Faller, Lina L; Van Dyke, Russell B; Paster, Bruce J
2018-05-31
Microbially mediated oral diseases can signal underlying HIV/AIDS progression in HIV-infected adults. The role of the oral microbiota in HIV-infected youth is not known. The Adolescent Master Protocol of the Pediatric HIV/AIDS Cohort Study is a longitudinal study of perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) youth. We compared oral microbiome levels and associations with caries or periodontitis in 154 PHIV and 100 PHEU youth. Species richness and alpha diversity differed little between PHIV and PHEU youth. Group differences in average counts met the significance threshold for six taxa; two Corynebacterium species were lower in PHIV and met thresholds for noteworthiness. Several known periodontitis-associated organisms (Prevotella nigrescens, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Filifactor alocis) exhibited expected associations with periodontitis in PHEU youth, associations not observed in PHIV youth. In both groups, odds of caries increased with counts of taxa in four genera, Streptococcus, Scardovia, Bifidobacterium, and Lactobacillus. The microbiomes of PHIV and PHEU youth were similar, although PHIV youth seemed to have fewer "health"-associated taxa such as Corynebacterium species. These results are consistent with the hypothesis that HIV infection, or its treatment, may contribute to oral dysbiosis.
Brunger, Axel T.; Das, Debanu; Deacon, Ashley M.; Grant, Joanna; Terwilliger, Thomas C.; Read, Randy J.; Adams, Paul D.; Levitt, Michael; Schröder, Gunnar F.
2012-01-01
Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence. PMID:22505259
Zhang, Jingjing; Xu, Meijuan; Ge, Xiaoxun; Zhang, Xian; Yang, Taowei; Xu, Zhenghong; Rao, Zhiming
2017-02-01
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second step of L-arginine biosynthesis and is inhibited by L-arginine in Corynebacterium crenatum. To ascertain the basis for the arginine sensitivity of CcNAGK, residue E19 which located at the entrance of the Arginine-ring was subjected to site-saturated mutagenesis and we successfully illustrated the inhibition-resistant mechanism. Typically, the E19Y mutant displayed the greatest deregulation of L-arginine feedback inhibition. An equally important strategy is to improve the catalytic activity and thermostability of CcNAGK. For further strain improvement, we used site-directed mutagenesis to identify mutations that improve CcNAGK. Results identified variants I74V, F91H and K234T display higher specific activity and thermostability. The L-arginine yield and productivity of the recombinant strain C. crenatum SYPA-EH3 (which possesses a combination of all four mutant sites, E19Y/I74V/F91H/K234T) reached 61.2 and 0.638 g/L/h, respectively, after 96 h in 5 L bioreactor fermentation, an increase of approximately 41.8% compared with the initial strain.
Structural and Enzymatic Analysis of MshA from Corynebacterium glutamicum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetting,M.; Frantom, P.; Blanchard, J.
2008-01-01
The glycosyltransferase termed MshA catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-l-myo-inositol-1-phosphate in the first committed step of mycothiol biosynthesis. The structure of MshA from Corynebacterium glutamicum was determined both in the absence of substrates and in a complex with UDP and 1-l-myo-inositol-1-phosphate. MshA belongs to the GT-B structural family whose members have a two-domain structure with both domains exhibiting a Rossman-type fold. Binding of the donor sugar to the C-terminal domain produces a 97 rotational reorientation of the N-terminal domain relative to the C-terminal domain, clamping down on UDP and generating the binding site for 1-l-myo-inositol-1-phosphate. The structuremore » highlights the residues important in binding of UDP-N-acetylglucosamine and 1-l-myo-inositol-1-phosphate. Molecular models of the ternary complex suggest a mechanism in which the {beta}-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attack of the 3-hydroxyl group of 1-l-myo-inositol-1-phosphate while at the same time promoting the cleavage of the sugar nucleotide bond.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaidi, B.R.; Murakami, Y.; Alexander, M.
1988-12-01
Corynebacterium sp. added to lake water rapidly mineralized 100 ..mu..g and 1.0 mg of p-nitrophenol (PNP)/L but acted very slowly on the substrate present at 26 ..mu..g/L. The rate and extent of mineralization of the lowest PNP concentration in Beebe Lake water varied according to the time the sample was taken and were directly related to rainfall, and presumably runoff, in the watershed. The addition of high concentrations of inorganic P or N to water samples collected after a drought period, during which mineralization by the bacterium was slow, enhanced PNP decomposition. Mineralization in Cayuga Lake water was increased slightlymore » by 10 mg of K/sub 2/HPO/sub 4//L, but the enhancement was marked by 100 mg/L. The stimulation was a response to P and K. Glucose stimulated PNP mineralization in samples from Beebe and Cayuga Lakes, and K/sub 2/HOP/sub 4/ further increased the rate and extent of the transformation. The addition of either of two eucaryotic inhibitors increased the rate of Corynebacterium sp. growth in lake water amended with 26 ..mu..g of PNP/L but decreased the rate of mineralization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, R.L.; Adams, L.M.
1978-02-01
The effectiveness of Corynebacterium parvum in combination with local irradiation has been examined in the treatment of the murine line 1 lung carcinoma, a highly radioresistant, weakly immunogenic tumor that kills the host by means of metastatic spread. Sixteen-week-old, specific-pathogen-free female BABL/c mice were given 10/sup 6/ tumor cells im into the right thigh. Tumors were irradiated on Day 7 after transplant. Those receiving C. parvum treatment were given 0.1 mg either by the intralesional (il), ip, or iv route on Day 4 after transplant or by the il or ip route on Day 8. An additional group received C.more » parvum ip once a week for 4 weeks beginning on Day 8. The influence of the various treatments on local control and metastasis was assessed. To evaluate further the time course and incidence of metastases, cleared lungs were examined at 21, 28, and 35 days in groups given irradiation combined with C. parvum on day 8. C. parvum was more effective in facilitating local control and inhibiting metastatic spread when given after radiation exposure rather than before.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Y.; Magura, C.; Feola, J.
1977-07-01
Ten days after total-body irradiation with 550 rads of /sup 60/Co, spleen colonies were observed in adult C57BL mice. A change in radiosensitivity induced by Corynebacterium parvum, as measured by increased numbers of colony-forming units that survived the 550 rads, began shortly after C. parvum stimulation and extended for at least 7 days before irradiation. C. parvum given 4-24 hours before, followed by high specific activity (/sup 3/H)thymidine (HSATT) 1 hour before total-body irradiation greatly reduced survival of the stem cells that formed spleen colonies (CFU/sub s/) and CFU/sub s/ radiosensitivity to control levels. The HSATT sensitivity by ''suicide'' assaymore » in vivo and the time-response change in radiosensitivity corresponded with the decrease in radiosensitivity, which showed that CFU/sub s/ were stimulated by C. parvum administration and entered the S-phase shortly after stimulation. The data indicated a resting population close to the S-phase. After stimulation, this population entered S-phase. Syngeneic mouse lymphoma cells injected iv 24 hours earlier did not elicit any effect as a stimulus to CFU/sub s/ radiosensitivity change.« less
Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua
2013-01-04
ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.
Titov, Leonid; Kolodkina, Valentina; Dronina, Alina; Grimont, Francine; Grimont, Patrick A. D.; Lejay-Collin, Monique; de Zoysa, Aruni; Andronescu, Constantin; Diaconescu, Angela; Marin, Byanca; Efstratiou, Androulla
2003-01-01
One hundred two Corynebacterium diphtheriae strains (93 of the gravis biotype and nine of the mitis biotype) isolated from clinical cases during the Belarus diphtheria epidemic were characterized by biotyping, toxigenicity testing by the Elek test and an indirect hemagglutination assay, phage typing, and ribotyping. The gravis biotype strains were characterized as high and medium toxin producers, and strains of biotype mitis were characterized as low and medium toxin producers. Most strains (82 of 102) were distributed among five phage types. Seventy-two strains (64 of the gravis biotype and 8 of the mitis biotype) belonged to phage type VI ls5,34add. Hybridization of genomic DNA digested with BstEII and PvuII revealed five ribotype patterns, namely, D1, D4, D6, D7, and D13. The majority of gravis biotype strains belonged to ribotypes D1 (49 of 93) and D4 (33 of 93) and included one clonal group of C. diphtheriae. This clone predominated in all regions in Belarus. There was a statistical association between ribotypes and phage types but not between ribotypes and levels of toxin production. PMID:12624069
Krahenbuhl, J L; Lambert, L H; Remington, J S
1976-01-01
Injection of mice with Corynebacterium parvum or living or killed Toxoplasma gondii was studied to determine the efficacy of these treatments in activating peritoneal macrophages to inhibit the uptake of [3H]TdR (cytostasis) by tumour target cells in vitro. In the presence of activated macrophages from mice treated i.p. with a wide dose range of either C. parvum or living Toxoplasma, cytostasis was usually greater than 99%. This population of activated macrophages was transient in C. parvum-treated mice, but persists, probably for life, in Toxoplasma-infected mice. Whereas the i.p. route of administration of C. parvum was more efficient in activating macrophages than the i.v. route, the s.c. route appeared to be relatively ineffective. Treatment with killed Toxoplasma by any route was also relatively ineffective in activating macrophages. In contrast Toxoplasma infection resulted in highly activated peritoneal macrophages, regardless of the route of administration. Depending upon the route of initial treatment, the route of readministration of C. parvum had either no appreciable effect or resulted in a marked alteration in the cytostatic capacity of peritoneal macrophages. PMID:992714
Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun
2016-11-02
The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.
Rosberg-Cody, Eva; Liavonchanka, Alena; Göbel, Cornelia; Ross, R Paul; O'Sullivan, Orla; Fitzgerald, Gerald F; Feussner, Ivo; Stanton, Catherine
2011-02-17
The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.
Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F
2014-12-20
The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.
Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T
2004-06-01
Telavancin is a new semisynthetic glycopeptide anti-infective with multiple mechanisms of action, including inhibition of bacterial membrane phospholipid synthesis and inhibition of bacterial cell wall synthesis. We determined the in vitro activities of telavancin, vancomycin, daptomycin, linezolid, quinupristin-dalfopristin, imipenem, piperacillin-tazobactam, and ampicillin against 268 clinical isolates of anaerobic gram-positive organisms and 31 Corynebacterium strains using agar dilution methods according to National Committee for Clinical Laboratory Standards procedures. Plates with daptomycin were supplemented with Ca(2+) to 50 mg/liter. The MICs at which 90% of isolates tested were inhibited (MIC(90)s) for telavancin and vancomycin were as follows: Actinomyces spp. (n = 45), 0.25 and 1 microg/ml, respectively; Clostridium difficile (n = 14), 0.25 and 1 microg/ml, respectively; Clostridium ramosum (n = 16), 1 and 4 microg/ml, respectively; Clostridium innocuum (n = 15), 4 and 16 microg/ml, respectively; Clostridium clostridioforme (n = 15), 8 and 1 microg/ml, respectively; Eubacterium group (n = 33), 0.25 and 2 microg/ml, respectively; Lactobacillus spp. (n = 26), 0.5 and 4 microg/ml, respectively; Propionibacterium spp. (n = 34), 0.125 and 0.5 microg/ml, respectively; Peptostreptococcus spp. (n = 52), 0.125 and 0.5 microg/ml, respectively; and Corynebacterium spp. (n = 31), 0.03 and 0.5 microg/ml, respectively. The activity of TD-6424 was similar to that of quinupristin-dalfopristin for most strains except C. clostridioforme and Lactobacillus casei, where quinupristin-dalfopristin was three- to fivefold more active. Daptomycin had decreased activity (MIC > 4 microg/ml) against 14 strains of Actinomyces spp. and all C. ramosum, Eubacterium lentum, and Lactobacillus plantarum strains. Linezolid showed decreased activity (MIC > 4 microg/ml) against C. ramosum, two strains of C. difficile, and 15 strains of Lactobacillus spp. Imipenem and piperacillin-tazobactam were active against >98% of strains. The MICs of ampicillin for eight Clostridium spp. and three strains of L. casei were >1 microg/ml. The MIC(90) of TD-6424 for all strains tested was =2 microg/ml. TD-6424 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation.
Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F
2015-03-01
Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH-accepting NDH-II(D213G) and thus by coupling to electron transport phosphorylation (ETP). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kim, Ju-Sim; Holmes, Randall K.
2012-01-01
Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H2O2. In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ∼2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H2O2. In contrast, exposure of C. diphtheriae C7(β) to H2O2 did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H2O2 sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H2O2. In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H2O2 resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position −55 to −10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H2O2. PMID:22438866
Bercot, Béatrice; Kannengiesser, Caroline; Oudin, Claire; Grandchamp, Bernard; Sanson-le Pors, Marie-José; Mouly, Stéphane; Elbim, Carole
2009-09-01
We report the first case of granulomatous mastitis due to Corynebacterium kroppenstedtii linked to strongly impaired neutrophil responses to Nod2 agonist and a single nucleotide polymorphism within the NOD2 gene (SNP13 [Leu1007fsinsC]) in a heterozygous state. These findings provided the first demonstration of impaired Nod2 function associated with corynebacterial infection.
Schäfer, A; Kalinowski, J; Pühler, A
1994-01-01
Corynebacterial recipient cells exposed to heat, organic solvents, pH shifts, or detergents show an increased fertility in subsequent interspecific matings with Escherichia coli. This effect is independent of de novo protein biosynthesis and seems to be due to a direct inactivation of a restriction system active against foreign DNA that enters the cell by IncP-mediated conjugation. Images PMID:8135527
Khamis, Atieh; Raoult, Didier; La Scola, Bernard
2005-01-01
Higher proportions (91%) of 168 corynebacterial isolates were positively identified by partial rpoB gene determination than by that based on 16S rRNA gene sequences. This method is thus a simple, molecular-analysis-based method for identification of corynebacteria, but it should be used in conjunction with other tests for definitive identification. PMID:15815024
Gram-positive Rod Surveillance for Early Anthrax Detection
Begier, Elizabeth M.; Barrett, Nancy L.; Mshar, Patricia A.; Johnson, David G.
2005-01-01
Connecticut established telephone-based gram-positive rod (GPR) reporting primarily to detect inhalational anthrax cases more quickly. From March to December 2003, annualized incidence of blood isolates was 21.3/100,000 persons; reports included 293 Corynebacterium spp., 193 Bacillus spp., 73 Clostridium spp., 26 Lactobacillus spp., and 49 other genera. Around-the-clock GPR reporting has described GPR epidemiology and enhanced rapid communication with clinical laboratories. PMID:16229790
2013-01-01
GC) content of deoxyribonucleic acid (DNA).1 This organism belongs to the actinobacteria , which includes the genera Actinomyces, Corynebacterium...however, it still remains unclear how Rothia species respond to environmental stress. The responsiveness and adaptation of a few actinobacteria to various... actinobacteria , the number of sigma factors in R. mucilaginosa is relatively small (microbial signal transduction (MiST2) database, http://mistdb.com/); however
Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung
2010-01-01
Summary Adherence to host tissues mediated by pili is pivotal in the establishment of infection by many bacterial pathogens. Corynebacterium diphtheriae assembles on its surface three distinct pilus structures. The function and the mechanism of how various pili mediate adherence, however, have remained poorly understood. Here we show that the SpaA-type pilus is sufficient for the specific adherence of corynebacteria to human pharyngeal epithelial cells. The deletion of the spaA gene, which encodes the major pilin forming the pilus shaft, abolishes pilus assembly but not adherence to pharyngeal cells. In contrast, adherence is greatly diminished when either minor pilin SpaB or SpaC is absent. Antibodies directed against either SpaB or SpaC block bacterial adherence. Consistent with a direct role of the minor pilins, latex beads coated with SpaB or SpaC protein bind specifically to pharyngeal cells. Therefore, tissue tropism of corynebacteria for pharyngeal cells is governed by specific minor pilins. Importantly, immunoelectron microscopy and immunofluorescence studies reveal clusters of minor pilins that are anchored to cell surface in the absence of a pilus shaft. Thus, the minor pilins may also be cell wall anchored in addition to their incorporation into pilus structures that could facilitate tight binding to host cells during bacterial infection. PMID:17376076
2010-01-01
Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated the function of surface-associated protein DIP1281, previously annotated as hypothetical invasion-associated protein. Results Microscopic inspection of DIP1281 mutant strains revealed an increased size of the single cells in combination with an altered less club-like shape and formation of chains of cells rather than the typical V-like division forms or palisades of growing C. diphtheriae cells. Cell viability was not impaired. Immuno-fluorescence microscopy, SDS-PAGE and 2-D PAGE of surface proteins revealed clear differences of wild-type and mutant protein patterns, which were verified by atomic force microscopy. DIP1281 mutant cells were not only altered in shape and surface structure but completely lack the ability to adhere to host cells and consequently invade these. Conclusions Our data indicate that DIP1281 is predominantly involved in the organization of the outer surface protein layer rather than in the separation of the peptidoglycan cell wall of dividing bacteria. The adhesion- and invasion-negative phenotype of corresponding mutant strains is an effect of rearrangements of the outer surface. PMID:20051108
Krauze-Baranowska, M; Majdan, M; Hałasa, R; Głód, D; Kula, M; Fecka, I; Orzeł, A
2014-10-01
Raspberries, derived from different cultivar varieties, are a popular ingredient of everyday diet, and their biological activity is a point of interest for researchers. The ethanol-water extracts from four varieties of red (Rubus idaeus'Ljulin', 'Veten', 'Poranna Rosa') and black (Rubus occidentalis'Litacz') raspberries were evaluated in the range of their antimicrobial properties as well as phenolic content - sanguiin H-6, free ellagic acid and anthocyanins. The antimicrobial assay was performed with the use of fifteen strains of bacteria, both Gram-negative and Gram-positive. The antimicrobial activity of the extracts varied and depended on the analysed strain of bacteria and cultivar variety, with the exception of Helicobacter pylori, towards which the extracts displayed the same growth inhibiting activity. Two human pathogens Corynebacterium diphtheriae and Moraxella catarrhalis proved to be the most sensitive to raspberry extracts. Contrary to the extracts, sanguiin H-6 and ellagic acid were only active against eight and nine bacterial strains, respectively. The determined MIC and MBC values of both compounds were several times lower than the tested extracts. The highest sensitivity of Corynebacterium diphtheriae to extracts from both black and red raspberries may be due to its sensitivity to sanguiin H-6 and ellagic acid.
Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo
2014-01-01
Background L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. Methods The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. Results The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Conclusion Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life. PMID:25215180
Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo
2014-07-01
L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life.
Pérez-García, Fernando; Vasco-Cárdenas, María F; Barreiro, Carlos
2016-09-02
Production enhancement of industrial microbial products or strains has been traditionally tackled by mutagenesis with chemical methods, irradiation or genetic manipulation. However, the final yield increase must go hand in hand with the resistance increasing against the usual inherent toxicity of the final products. Few studies have been carried out on resistance improvement and even fewer on the initial selection of naturally-generated biotypes, which could decrease the artificial mutagenesis. This fact is vital in the case of GRAS microorganisms as Corynebacterium glutamicum involved in food, feed and cosmetics production. The characteristic wide diversity and plasticity in terms of their genetic material of Actinobacteria eases the biotypes generation. Thus, differences in morphology, glutamate and lysine production and growth in media supplemented with dicarboxylic acids were analysed in four biotypes of C. glutamicum ATCC 13032. A 2D-DIGE analysis of these biotypes growing with itaconic acid allowed us to define their differences. Thus, an optimized central metabolism and better protection against the generated stress conditions present the CgL biotype as a suitable platform for production of itaconic acid, which is used as a building block (e.g.: acrylic plastic). This analysis highlights the preliminary biotypes screening as a way to reach optimal industrial productions.
Guo, Jing; Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Yang, Taowei; Zhang, Xian; Xu, Zhenghong
2017-03-01
There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l -1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, J.; Curran, R.D.; Ochoa, J.B.
1991-02-01
Nitric oxide, a highly reactive radical, was recently identified as an intermediate of L-arginine metabolism in mammalian cells. We have shown that nitric oxide synthesis is induced in vitro in cultured hepatocytes by supernatants from activated Kupffer cells or in vivo by injecting rats with nonviable Corynebacterium parvum. In both cases, nitric oxide biosynthesis in hepatocytes was associated with suppression of total protein synthesis. This study attempts to determine the effect of nitric oxide biosynthesis on the activity of specific hepatocytic mitochondrial enzymes and to determine whether inhibition of protein synthesis is caused by suppression of energy metabolism. Exposure ofmore » hepatocytes to supernatants from activated Kupffer cells led to a 30% decrease of aconitase (Krebs cycle) and complex I (mitochondrial electron transport chain) activity. Using NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis, we demonstrated that the inhibition of mitochondrial aconitase activity was due, in part, to the action of nitric oxide. In contrast, in vivo nitric oxide synthesis of hepatocytes from Corynebacterium parvum-treated animals had no effect on mitochondrial respiration. This suggests that inhibition of protein synthesis by nitric oxide is not likely to be mediated by inhibition of energy metabolism.« less
Rübenhagen, R; Rönsch, H; Jung, H; Krämer, R; Morbach, S
2000-01-14
The secondary glycine betaine uptake system BetP of Corynebacterium glutamicum was purified from Escherichia coli membranes in strep-tagged form after heterologous expression of the betP gene and was reconstituted in E. coli lipids. BetP retained its kinetic properties (V(max) and K(m) for betaine and Na(+)) as compared with intact cells. The influence of driving forces (Na(+) gradient and/or electrical potential) on betaine uptake was quantified in proteoliposomes. BetP was effectively regulated by the external osmolality and was stimulated by the local anesthetic tetracaine. A shift of the optimum of osmotic stimulation to higher osmolalities was linearly correlated with an increasing share of phosphatidyl glycerol, the major lipid of the C. glutamicum plasma membrane in the E. coli lipid proteoliposomes. This finding correlates with results demonstrating an identical shift when betP was expressed in E. coli instead of C. glutamicum. These data indicate that (i) BetP comprises all elements of osmosensing and osmoregulatory mechanisms of betaine uptake, (ii) osmoregulation of BetP is directly related to protein/membrane interactions, (iii) the turgor pressure presumably plays no major role in osmoregulation of BetP, and (iv) the regulatory properties of BetP may be related to the physical state of the surrounding membrane.
Sulakvelidze, Alexander; Kekelidze, Merab; Gomelauri, Tsaro; Deng, Yingkang; Khetsuriani, Nino; Kobaidze, Ketino; De Zoysa, Aruni; Efstratiou, Androulla; Morris, J. Glenn; Imnadze, Paata
1999-01-01
Sixty-six Corynebacterium diphtheriae strains (62 of the gravis biotype and 4 of the mitis biotype) isolated during the Georgian diphtheria epidemic of 1993 to 1998 and 13 non-Georgian C. diphtheriae strains (10 Russian and 3 reference isolates) were characterized by (i) biotyping, (ii) toxigenicity testing with the Elek assay and PCR, (iii) the randomly amplified polymorphic DNA (RAPD) technique, and (iv) pulsed-field gel electrophoresis (PFGE). Fifteen selected strains were ribotyped. Six RAPD types and 15 PFGE patterns were identified among all strains examined, and 12 ribotypes were found among the 15 strains that were ribotyped. The Georgian epidemic apparently was caused by one major clonal group of C. diphtheriae (PFGE type A, ribotype R1), which was identical to the predominant epidemic strain(s) isolated during the concurrent diphtheria epidemic in Russia. A dendrogram based on the PFGE patterns revealed profound differences between the minor (nonpredominant) epidemic strains found in Georgia and Russia. The methodologies for RAPD typing, ribotyping, and PFGE typing of C. diphtheriae strains were improved to enable rapid and convenient molecular typing of the strains. The RAPD technique was adequate for biotype differentiation; however, PFGE and ribotyping were better (and equal to each other) at discriminating between epidemiologically related and unrelated isolates. PMID:10488190
Enteral tube feeding alters the oral indigenous microbiota in elderly adults.
Takeshita, Toru; Yasui, Masaki; Tomioka, Mikiko; Nakano, Yoshio; Shimazaki, Yoshihiro; Yamashita, Yoshihisa
2011-10-01
Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive.
Effects of cosmetics on the skin microbiome of facial cheeks with different hydration levels.
Lee, Hyo Jung; Jeong, Sang Eun; Lee, Soyoun; Kim, Sungwoo; Han, Hyuntak; Jeon, Che Ok
2018-04-01
Basic cosmetics was used by volunteers belonging to high (HHG) and low (LHG) hydration groups for 4 weeks, and bacterial communities and biophysical parameters in facial skin were analyzed. Hydration level increases and transepidermal water loss and roughness decreases were observed in both groups after cosmetic use. Bacterial diversity was greater in LHG than HHG, and increased after cosmetic use in both groups. Bray-Curtis dissimilarities that were higher in LHG than HHG increased in HHG after cosmetic use, whereas they decreased in LHG. The phyla Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes and the genera Propionibacterium, Ralstonia, Burkholderia, Staphylococcus, Corynebacterium, Cupriavidus, and Pelomonas were identified as common groups and they were not significantly different between LHG and HHG except for Propionibacterium that was more abundant in HHG. After cosmetic use, Propionibacterium, Staphylococcus, and Corynebacterium decreased, whereas Ralstonia, not a core genus, increased, as did KEGG categories of lipid metabolism and xenobiotics biodegradation and metabolism, suggesting that Ralstonia in skin may have the ability to metabolize cosmetics components. Bacterial communities after cosmetic use were different from those in both LHG and HHG before the cosmetic use, indicating that bacterial communities in LHG were not shifted to resemble those in HHG by cosmetics use. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Su, Haifeng; Jiang, Juan; Lu, Qiuli; Zhao, Zhao; Xie, Tian; Zhao, Hai; Wang, Maolin
2015-02-07
Early trials have demonstrated great potential for the use of duckweed (family Lemnaceae) as the next generation of energy plants for the production of biofuels. Achieving this technological advance demands research to develop novel bioengineering microorganisms that can ferment duckweed feedstock to produce higher alcohols. In this study, we used relevant genes to transfer five metabolic pathways of isoleucine, leucine and valine from the yeast Saccharomyces cerevisiae into the bioengineered microorganism Corynebacterium crenatum. Experimental results showed that the bioengineered strain was able to produce 1026.61 mg/L of 2-methyl-1-butanol by fermenting glucose, compared to 981.79 mg/L from the acid hydrolysates of duckweed. The highest isobutanol yields achieved were 1264.63 mg/L from glucose and 1154.83 mg/L from duckweed, and the corresponding highest yields of 3-methyl-1-butanol were 748.35 and 684.79 mg/L. Our findings demonstrate the feasibility of using bioengineered C. crenatum as a platform to construct a bacterial strain that is capable of producing higher alcohols. We have also shown the promise of using duckweed as the basis for developing higher alcohols, illustrating that this group of plants represents an ideal fermentation substrate that can be considered the next generation of alternative energy feedstocks.
Alvarez, Laura; William, Aillin; Castro, Isabel; Valenzuela, Fernanda; Estevao Belchior, Silvia
Corynebacterium pseudotuberculosis is transmitted among sheep in Argentine Patagonia causing pseudotuberculosis. The bacterium penetrates the skin or mucous membrane wounds, infecting the superficial lymph nodes and viscera. When surface abscesses are cut during shearing, they drain their purulent contents and contaminate tools and the soil. The objective of this work was to evaluate the survival capacity of C. pseudotuberculosis over time, in soils from the extra-Andean Patagonia region. Five types of superficial soils were collected from different areas in Chubut province (extra-Andean Patagonia), having distinctive physicochemical properties including organic matter content (very high to nonexistent), pH (neutral to strongly alkaline), electrical conductivity (saline to non-saline) and texture (sandy, clayey, silty loam). Different aliquots of each type of soil were inoculated with C. pseudotuberculosis PAT10 strain isolated from a Patagonian sheep, and were stored at room temperature. The number of surviving bacteria was determined at various times. Sixty percent (60%) of the inoculated C. pseudotuberculosis population survived for 80 to 210 days in soils with moderate to high organic matter content respectively. Silty soils favored bacterial survival, whereas the variables pH and salinity had no effect on survival. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto
2018-01-25
Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.
NASA Astrophysics Data System (ADS)
Podder, M. S.; Majumder, C. B.
2016-11-01
The optimization of biosorption/bioaccumulation process of both As(III) and As(V) has been investigated by using the biosorbent; biofilm of Corynebacterium glutamicum MTCC 2745 supported on granular activated carbon/MnFe2O4 composite (MGAC). The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ions was proved by FT-IR. To determine the most appropriate correlation for the equilibrium curves employing the procedure of the non-linear regression for curve fitting analysis, isotherm studies were performed for As(III) and As(V) using 30 isotherm models. The pattern of biosorption/bioaccumulation fitted well with Vieth-Sladek isotherm model for As(III) and Brouers-Sotolongo and Fritz-Schlunder-V isotherm models for As(V). The maximum biosorption/bioaccumulation capacity estimated using Langmuir model were 2584.668 mg/g for As(III) and 2651.675 mg/g for As(V) at 30 °C temperature and 220 min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0. D-R isotherm studies specified that ion exchange might play a prominent role.
Radmacher, Eva; Vaitsikova, Adela; Burger, Udo; Krumbach, Karin; Sahm, Hermann; Eggeling, Lothar
2002-01-01
Mutants of Corynebacterium glutamicum were made and enzymatically characterized to clone ilvD and ilvE, which encode dihydroxy acid dehydratase and transaminase B, respectively. These genes of the branched-chain amino acid synthesis were overexpressed together with ilvBN (which encodes acetohydroxy acid synthase) and ilvC (which encodes isomeroreductase) in the wild type, which does not excrete l-valine, to result in an accumulation of this amino acid to a concentration of 42 mM. Since l-valine originates from two pyruvate molecules, this illustrates the comparatively easy accessibility of the central metabolite pyruvate. The same genes, ilvBNCD, overexpressed in an ilvA deletion mutant which is unable to synthesize l-isoleucine increased the concentration of this amino acid to 58 mM. A further dramatic increase was obtained when panBC was deleted, making the resulting mutant auxotrophic for d-pantothenate. When the resulting strain, C. glutamicum 13032ΔilvAΔpanBC with ilvBNCD overexpressed, was grown under limiting conditions it accumulated 91 mM l-valine. This is attributed to a reduced coenzyme A availability and therefore reduced flux of pyruvate via pyruvate dehydrogenase enabling its increased drain-off via the l-valine biosynthesis pathway. PMID:11976094
l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿
Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.
2007-01-01
Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ΔaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ΔaceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h−1 (1.17 g l−1 h−1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513
Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko
2014-01-01
Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).
Anaerobic Growth of Corynebacterium glutamicum via Mixed-Acid Fermentation
Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie
2015-01-01
Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. PMID:26276118
An RNAi-Enhanced Logic Circuit for Cancer Specific Detection and Destruction
2013-02-01
monomeric protein secreted by Corynebacterium diphtheriae, and pro-apoptotic members of Bcl-2 family: mBax (Mus musculus), hBax ( Homo sapiens ), and its...Gata3 mStaple. Intron- feature sequences – donor site, branch point, poly- pyrimidine tract, and acceptor site – were selected based on previously...sequences found in literature our intron features were chosen according SplicePort [4], an online analyzer that detects the likelihood of splicing to
Vaginitis. Reducing the number of refractory cases.
Josey, W E
1977-09-01
Therapeutic failure in vaginitis can be minimized if all cases are properly diagnosed and specific therapy is given. Use of wet mounts combined with liberal use of cultures, especially for Corynebacterium vaginale, should result in an accurate diagnosis in over 90% of cases. Treatment of choice for candidiasis is nystatin or miconazole nitrate applied topically. For trichomoniasis, metronidazole should be given orally to both sexual partners. Ampicillin, cephalexin, or cephradine are recommended for C vaginale infection.
Corynebacterial pneumonia in an African hedgehog.
Raymond, J T; Williams, C; Wu, C C
1998-04-01
A 3-mo-old, male African hedgehog (Atelerix albiventris) was anorectic and lethargic for a period of 3 days prior to death. Necropys revealed lungs that were diffusely firm, dark red, and dorsally adhered by fibrinous tags to the pericardial sac. Histopathology revealed necrosuppurative bronchopneumonia with pulmonary abscesses and suppurative pericarditis and myocarditis. A Corynebacterium sp. was isolated from the lungs. We believe this is the first reported case of corynebacterial pneumonia in an African hedgehog.
A Novel Corynebacterium glutamicum l-Glutamate Exporter.
Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2018-03-15
Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to product excretion as well as product reuptake, making transporter engineering a useful strategy for strain improvement. The significance of our research is in identifying and characterizing a novel l-glutamate exporter from the industrial workhorse Corynebacterium glutamicum , which will enrich the understanding of l-glutamate excretion and provide a new target for studying bacterial amino acid transport and engineering transport reactions. Copyright © 2018 American Society for Microbiology.
2012-01-01
Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia. PMID:22524407
Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki
2016-01-01
ABSTRACT Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum, SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3′-to-5′ exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3′ maturation of 4.5S RNA in C. glutamicum. The mature form of 4.5S RNA was inefficiently formed in ΔrneG Δpnp mutant cells, suggesting the existence of an alternative pathway for the 3′ maturation of 4.5S RNA. Primer extension analysis also revealed that the 5′ mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δpnp, ΔrneG, and ΔybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum, which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3′ maturation of the SRP RNA (4.5S RNA) in this bacterium. This indicates that 3′ end processing in this organism is different from that in other bacteria, such as Escherichia coli. PMID:28031281
Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki
2017-03-01
Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in Δ rneG Δ pnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ pnp , Δ rneG , and Δ ybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in this bacterium. This indicates that 3' end processing in this organism is different from that in other bacteria, such as Escherichia coli . Copyright © 2017 American Society for Microbiology.
Arden, Sheldon B.; Chang, Woo-Hyun; Barksdale, Lane
1972-01-01
In Corynebacterium diphtheriae and closely related neuraminidase-producing corynebacteria, we have found an N-acetylneuraminate (NAN) lyase activity which cleaves NAN into N-acetyl-d-mannosamine and, presumably, pyruvate. In vitro, these lyases can be shown to synthesize NAN. A survey of representative corynebacteria, “plant pathogenic corynebacteria,” mycobacteria, and nocardias revealed that only those corynebacteria closely related to C. diphtheriae exhibited both neuraminidase and NAN lyase activities. PMID:4629654
Shelley, W B; Miller, M A
1984-06-01
Study of a case of trichomycosis axillaris by electron microscopy revealed a specific encapsulated Corynebacterium adhering to but not penetrating the hair shaft. External to this were two other biochemically distinctive pleomorphic Corynebacteria shown to be incapable of direct adherence to the hair. All three types were entrapped in a virtually insoluble cement substance, which they elaborate and which is responsible for the grossly visible colonization that is so characteristic of this disease.
Systems metabolic engineering strategies for the production of amino acids.
Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning
2017-06-01
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Li, Yanjun; Sun, Lanchao; Feng, Jia; Wu, Ruifang; Xu, Qingyang; Zhang, Chenglin; Chen, Ning; Xie, Xixian
2016-06-01
Production of L-glutamate using a biotin-deficient strain of Corynebacterium glutamicum has a long history. The process is achieved by controlling biotin at suboptimal dose in the initial fermentation medium, meanwhile feeding NH4OH to adjust pH so that α-ketoglutarate (α-KG) can be converted to L-glutamate. In this study, we deleted glutamate dehydrogenase (gdh1 and gdh2) of C. glutamicum GKG-047, an L-glutamate overproducing strain, to produce α-KG that is the direct precursor of L-glutamate. Based on the method of L-glutamate fermentation, we developed a novel double-phase pH and biotin control strategy for α-KG production. Specifically, NH4OH was added to adjust the pH at the bacterial growth stage and NaOH was used when the cells began to produce acid; besides adding an appropriate amount of biotin in the initial medium, certain amount of additional biotin was supplemented at the middle stage of fermentation to maintain a high cell viability and promote the carbon fixation to the flux of α-KG production. Under this control strategy, 45.6 g/L α-KG accumulated after 30-h fermentation in a 7.5-L fermentor and the productivity and yield achieved were 1.52 g/L/h and 0.42 g/g, respectively.
Exit-site infections by non-diphtheria corynebacteria in CAPD.
Schiffl, Helmut; Mücke, Claudia; Lang, Susanne M
2004-01-01
Non-diphtheria corynebacteria species cause disease in risk populations such as immunocompromised patients and patients with indwelling medical devices. Despite reports of exit-site infection and peritonitis caused by non-diphtheria corynebacteria, these organisms are frequently dismissed as contaminants. During a 10-year observation period, we prospectively identified 8 cases of exit-site/tunnel infections caused by 2 different species of corynebacteria (Corynebacterium striatum in 5 and C. jeikeium in 3 cases). Four patients experienced a second episode of exit-site infection 3 months (2 cases), 25 months, and 40 months, respectively, after termination of an oral cephalosporin therapy of 4 to 6 weeks' duration. Non-diphtheria corynebacteria accounted for 9% of all exit-site infections during the study period. All catheter-related infections healed; no catheter had to be removed. The diagnosis of catheter-related non-diphtheria corynebacteria infection may be suspected when Gram stain shows gram-positive rods and with colony morphology and commercial biochemical identification systems. Susceptibility of non-diphtheria corynebacteria to antibiotics may vary, especially in C. jeikeium. Virtually all Corynebacterium species are sensitive to vancomycin. Empirical antibiotic therapy with vancomycin should be initiated while antibiotic susceptibility testing is being carried out. Oral cephalosporin may be an alternative treatment regimen for exit-site infections if sensitive. This study highlights the importance of non-diphtheria corynebacteria as emerging nosocomial pathogens in the population of end-stage renal disease patients on on continuous ambulatory peritoneal dialysis.
Artsatbanov, V Yu; Vostroknutova, G N; Shleeva, M O; Goncharenko, A V; Zinin, A I; Ostrovsky, D N; Kapreliants, A S
2012-04-01
Artificial generation of oxygen superoxide radicals in actively growing cultures of Mycobacterium tuberculosis, Myc. smegmatis, and Corynebacterium ammoniagenes is followed by accumulation in the bacterial cells of substantial amounts of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) - an intermediate of the non-mevalonate pathway of isoprenoid biosynthesis (MEP) - most possibly due to the interaction of the oxygen radicals with the 4Fe-4S group in the active center and inhibition of the enzyme (E)-4-oxy-3-methylbut-2-enyl diphosphate synthase (IspG). Cadmium ions known to inhibit IspG enzyme in chloroplasts (Rivasseau, C., Seemann, M., Boisson, A. M., Streb, P., Gout, E., Douce, R., Rohmer, M., and Bligny, R. (2009) Plant Cell Environ., 32, 82-92), when added to culture of Myc. smegmatis, substantially increase accumulation of MEcDP induced by oxidative stress with no accumulation of other organic phosphate intermediates in the cell. Corynebacterium ammoniagenes'', well-known for its ability to synthesize large amounts of MEcDP, was also shown to accumulate this unique cyclodiphosphate in actively growing culture when NO at low concentration is artificially generated in the medium. A possible role of the MEP-pathway of isoprenoid biosynthesis and a role of its central intermediate MEcDP in bacterial response to nitrosative and oxidative stress is discussed.
2010-01-01
Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains. PMID:20942914
Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun
2016-03-10
Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. Copyright © 2016 Elsevier B.V. All rights reserved.
Microbiological and biochemical origins of human axillary odour.
James, A Gordon; Austin, Corrine J; Cox, Diana S; Taylor, David; Calvert, Ralph
2013-03-01
The generation of malodour on various sites of the human body is caused by the microbial biotransformation of odourless natural secretions into volatile odorous molecules. On the skin surface, distinctive odours emanate, in particular, from the underarm (axilla), where a large and permanent population of microorganisms thrives on secretions from the eccrine, apocrine and sebaceous glands. Traditional culture-based microbiological studies inform us that this resident microbiota consists mainly of Gram-positive bacteria of the genera Staphylococcus, Micrococcus, Corynebacterium and Propionibacterium. Among the molecular classes that have been implicated in axillary malodour are short- and medium-chain volatile fatty acids, 16-androstene steroids and, most recently, thioalcohols. Most of the available evidence suggests that members of the Corynebacterium genus are the primary causal agents of axillary odour, with the key malodour substrates believed to originate from the apocrine gland. In this article, we examine, in detail, the microbiology and biochemistry of malodour formation on axillary skin, focussing on precursor-product relationships, odour-forming enzymes and metabolic pathways and causal organisms. As well as reviewing the literature, some relevant new data are presented and considered alongside that already available in the public domain to reach an informed view on the current state-of-the-art, as well as future perspectives. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Jo, Suah; Yoon, Jinkyung; Lee, Sun-Mi; Um, Youngsoon; Han, Sung Ok; Woo, Han Min
2017-09-20
Xylose-negative Corynebacterium glutamicum has been engineered to utilize xylose as the sole carbon source via either the xylose isomerase (XI) pathway or the Weimberg pathway. Heterologous expression of xylose isomerase and overexpression of a gene encoding for xylulose kinase enabled efficient xylose utilization. In this study, we show that two functionally-redundant transcriptional regulators (GntR1 and GntR2) present on xylose repress the pentose phosphate pathway genes. For efficient xylose utilization, pentose phosphate pathway genes and a phosphoketolase gene were overexpressed with the XI pathway in C. glutamicum. Overexpression of the genes encoding for transaldolase (Tal), 6-phosphogluconate dehydrogenase (Gnd), or phosphoketolase (XpkA) enhanced the growth and xylose consumption rates compared to the wild-type with the XI pathway alone. However, co-expression of these genes did not have a synergetic effect on xylose utilization. For the succinate production from xylose, overexpression of the tal gene with the XI pathway in a succinate-producing strain improved xylose utilization and increased the specific succinate production rate by 2.5-fold compared to wild-type with the XI pathway alone. Thus, overexpression of the tal, gnd, or xpkA gene could be helpful for engineering C. glutamicum toward production of value-added chemicals with efficient xylose utilization. Copyright © 2017 Elsevier B.V. All rights reserved.
Porco, Antonietta; Gamero, Elida E; Mylonás, Elena; Istúriz, Tomás
2008-01-01
Corynebacterium glutamicum is widely used in the industrial production of amino acids. We have found that this bacterium grows exponentially on a mineral medium supplemented with gluconate. Gluconate permease and Gluconokinase are expressed in an inducible form and, 6-phosphogluconate dehydrogenase, although constitutively expressed, shows a 3-fold higher specific level in gluconate grown cells than those grown in fructose under similar conditions. Interestingly, these activities are lower than those detected in the strain Escherichia coli M1-8, cultivated under similar conditions. Additionally, here we also confirmed that this bacterium lacks 6-phosphogluconate dehydratase activity. Thus, gluconate must be metabolized through the pentose phosphate pathway. Genes encoding gluconate transport and its phosphorylation were cloned from C. glutamicum, and expressed in suitable E. coli mutants. Sequence analysis revealed that the amino acid sequences obtained from these genes, denoted as gntP and gntK, were similar to those found in other bacteria. Analysis of both genes by RT-PCR suggested constitutive expression, in disagreement with the inducible character of their corresponding activities. The results suggest that gluconate might be a suitable source of reduction potential for improving the efficiency in cultures engaged in amino acids production. This is the first time that gluconate specific enzymatic activities are reported in C. glutamicum.
Yomantas, Yurgis A V; Abalakina, Elena G; Lobanova, Juliya S; Mamontov, Victor A; Stoynova, Nataliya V; Mashko, Sergey V
2018-05-15
The genomes of two new lytic phages of Corynebacterium glutamicum ATCC 13032, φ673 and φ674, were sequenced and annotated (GenBank: MG324353, MG324354). Electron microscopy studies of both virions revealed that taxonomically they belong to the Siphoviridae family and have a polyhedral head with a width of 50 nm and a non-contractile tail with a length of 250 nm. The genomes of φ673 and φ674 consist of linear double-stranded DNA molecules with lengths of 44,530 bp (G+C = 51.1%) and 43,193 bp (G+C = 50.7%) and identical, protruding, cohesive 3' ends 13 nt in length. The level of identity between the φ673 and φ674 genomes is 85.2%. Two major structural proteins of each virion were separated via SDS-PAGE and identified using peptide mass fingerprinting. Based on bioinformatic analysis, 56 and 54 ORFs were predicted for φ673 and φ674, respectively. Only 20 of the putative gene products of φ673 and 20 of φ674 could be assigned to known functions. Both genomes were divided into functional modules. Nine putative promoters in the φ673 genome and eight in the φ674 genome were predicted. One bidirectional Rho-independent transcription terminator was identified and experimentally confirmed in each phage genome.
Gorshkova, Natalya V; Lobanova, Juliya S; Tokmakova, Irina L; Smirnov, Sergey V; Akhverdyan, Valerii Z; Krylov, Alexander A; Mashko, Sergey V
2018-03-01
A dual-component Mu-transposition system was modified for the integration/amplification of genes in Corynebacterium. The system consists of two types of plasmids: (i) a non-replicative integrative plasmid that contains the transposing mini-Mu(LR) unit bracketed by the L/R Mu ends or the mini-Mu(LER) unit, which additionally contains the enhancer element, E, and (ii) an integration helper plasmid that expresses the transposition factor genes for MuA and MuB. Efficient transposition in the C. glutamicum chromosome (≈ 2 × 10 -4 per cell) occurred mainly through the replicative pathway via cointegrate formation followed by possible resolution. Optimizing the E location in the mini-Mu unit significantly increased the efficiency of Mu-driven intramolecular transposition-amplification in C. glutamicum as well as in gram-negative bacteria. The new C. glutamicum genome modification strategy that was developed allows the consequent independent integration/amplification/fixation of target genes at high copy numbers. After integration/amplification of the first mini-Mu(LER) unit in the C. glutamicum chromosome, the E-element, which is bracketed by lox-like sites, is excised by Cre-mediated fashion, thereby fixing the truncated mini-Mu(LR) unit in its position for the subsequent integration/amplification of new mini-Mu(LER) units. This strategy was demonstrated using the genes for the citrine and green fluorescent proteins, yECitrine and yEGFP, respectively.
Engineered coryneform bacteria as a bio-tool for arsenic remediation.
Villadangos, Almudena F; Ordóñez, Efrén; Pedre, Brandán; Messens, Joris; Gil, Jose A; Mateos, Luis M
2014-12-01
Despite current remediation efforts, arsenic contamination in water sources is still a major health problem, highlighting the need for new approaches. In this work, strains of the nonpathogenic and highly arsenic-resistant bacterium Corynebacterium glutamicum were used as inexpensive tools to accumulate inorganic arsenic, either as arsenate (As(V)) or arsenite (As(III)) species. The assays made use of "resting cells" from these strains, which were assessed under well-established conditions and compared with C. glutamicum background controls. The two mutant As(V)-accumulating strains were those used in a previously published study: (i) ArsC1/C2, in which the gene/s encoding the mycothiol-dependent arsenate reductases is/are disrupted, and (ii) MshA/C mutants unable to produce mycothiol, the low molecular weight thiol essential for arsenate reduction. The As(III)-accumulating strains were either those lacking the arsenite permease activities (Acr3-1 and Acr3-2) needed in As(III) release or recombinant strains overexpressing the aquaglyceroporin genes (glpF) from Corynebacterium diphtheriae or Streptomyces coelicolor, to improve As(III) uptake. Both genetically modified strains accumulated 30-fold more As(V) and 15-fold more As(III) than the controls. The arsenic resistance of the modified strains was inversely proportional to their metal accumulation ability. Our results provide the basis for investigations into the use of these modified C. glutamicum strains as a new bio-tool in arsenic remediation efforts.
Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi
2018-02-16
l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.
Lubitz, Dorit; Jorge, João M P; Pérez-García, Fernando; Taniguchi, Hironori; Wendisch, Volker F
2016-10-01
L-arginine is a semi-essential amino acid with application in cosmetic, pharmaceutical, and food industries. Metabolic engineering strategies have been applied for overproduction of L-arginine by Corynebacterium glutamicum. LysE was the only known L-arginine exporter of this bacterium. However, an L-arginine-producing strain carrying a deletion of lysE still accumulated about 10 mM L-arginine in the growth medium. Overexpression of the putative putrescine and cadaverine export permease gene cgmA was shown to compensate for the lack of lysE with regard to L-arginine export. Moreover, plasmid-borne overexpression of cgmA rescued the toxic effect caused by feeding of the dipeptide Arg-Ala to lysE-deficient C. glutamicum and argO-deficient Escherichia coli strains. Deletion of the repressor gene cgmR improved L-arginine titers by 5 %. Production of L-lysine and L-citrulline was not affected by cgmA overexpression. Taken together, CgmA may function as an export system not only for the diamine putrescine and cadaverine but also for L-arginine. The major export system for L-lysine and L-arginine LysE may also play a role in L-citrulline export since production of L-citrulline was reduced when lysE was deleted and improved by 45 % when lysE was overproduced.
Organ distribution of technetium-99m-labeled Corynebacterium parvum in normal and tumor-bearing mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, R.F.; Singla, O.
1978-01-01
The distribution patterns were studied for /sup 99m/Tc-labeled Corynebacterium parvum in normal and tumor-bearing mice. C57BL/6 mice were given i.v., i.p., or s.c. injections of 250 ..mu..g of /sup 99m/Tc-labeled C. parvum and killed at 10 min, 1, 4, and 24 hr. After iv. administration, labeled organisms were distributed primarily to the liver, the lungs, and the blood (46% of injected dose), followed by the gastrointestinal tract, the spleen, and the kidneys (11%). Total recoverable radioactivity, which was defined as the percentage of injected dose that was recovered, ranged from 59% at 10 min to 15% at 24 hr. Inmore » contrast to this, /sup 99m/TcS colloid, an inert particulate material, was localized almost entirely in the liver, and the amount recoverable remained constant over 24 hr. One hr after i.p. administration of /sup 99m/Tc-labeled C. parvum, the gastrointestinal tract accounted for 27% of the injected radioactivity, followed by liver, blood, and spleen (12%). This was rapidly excreted between 4 and 24 hr, at which time only 12% of the injected dose was recovered. The skin accounted for 54.6% of the injected radioactivity 1 hr after s.c. injection, 6% 4 hr after s.c. injection, and 0.8% at 24 hr after s.c. injection.« less
Ramos, Angelina; Honrubia, Maria P; Vega, Daniel; Ayala, Juan A; Bouhss, Ahmed; Mengin-Lecreulx, Dominique; Gil, José A
2004-04-01
The sequence of a 4.6-kb region of DNA from Corynebacterium glutamicum ATCC 13869 lying upstream from the ftsQ-ftsZ region has been determined. The region contains four genes with high similarity to the murD, ftsW, murG, and murC genes from different microorganisms. The products of these mur genes probably catalyse several steps in the formation of the precursors for peptidoglycan synthesis in C. glutamicum, whereas ftsW might play also a role in the stabilisation of the FtsZ ring during cell division. The murC gene product was purified to near homogeneity and its UDP-N-acetylmuramate: L-alanine adding activity was demonstrated. Northern analysis indicated that ftsW, murG and ftsQ are poorly expressed in C. glutamicum whereas murC and ftsZ are expressed at higher levels at the beginning of the exponential phase. Dicistronic (ftsQ-ftsZ) and monocistronic (murC and ftsZ) transcripts can be detected using specific probes and are in agreement with the lack of transcriptional terminators in the partially analysed dcw cluster. Disruption experiments performed in C. glutamicum using internal fragments of the ftsW, murG and murC genes allowed us to conclude that FtsW, MurG, and MurC are essential gene products in C. glutamicum.
Enteral Tube Feeding Alters the Oral Indigenous Microbiota in Elderly Adults ▿ †
Takeshita, Toru; Yasui, Masaki; Tomioka, Mikiko; Nakano, Yoshio; Shimazaki, Yoshihiro; Yamashita, Yoshihisa
2011-01-01
Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive. PMID:21821752
Renshaw, H W; Graff, V P; Gates, N L
1979-08-01
The relationship between the visceral form of caseous lymphadenitis and a chronic debilitating condition of mature sheep designated as the thin ewe syndrome was investigated. Internal abscesses were found during necropsy in 81% of animals with thin ewe syndrome and Corynebacterium pseudotuberculosis (C ovis) was recovered from 86% of the animals with internal abscesses. Other pyogenic bacteria, including C pyogenes, C equi, Staphylococcus epidermis, S aureus, and Pseudomonas aeruginosa were often recovered in association with C pseudotuberculosis. Moraxella sp was recovered in 41% of the animals with internal abscesses. In some abscesses, Moraxella sp was the dominant microorganism isolated and in others, they were outnumbered only by C pseudotuberculosis. Species isolated included M bovis, M osloensis, and M nonliquefaciens. The potential importance of Moraxella sp to the cause and pathogenesis of the thin ewe syndrome is not known. The results of the present study indicate that visceral caseous lymphadenitis is either an important contributing factor to the development of thin ewe syndrome or that the presence of thin ewe syndrome may predispose affected sheep to the development of visceral caseous lymphadenitis. A skin test reagent prepared by sonicating C pseudotuberculosis was of limited value in detecting animals with visceral caseous lymphadenitis. Only 56% of the animals with abscesses caused by C pseudotuberculosis gave positive delayed-type hypersensitivity skin test responses.
Henke, Nadja A; Heider, Sabine A E; Peters-Wendisch, Petra; Wendisch, Volker F
2016-06-30
Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L(-1)·h(-1) which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L(-1), the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum.
Henke, Nadja A.; Heider, Sabine A. E.; Peters-Wendisch, Petra; Wendisch, Volker F.
2016-01-01
Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum. PMID:27376307
Si, Mei-Ru; Zhang, Lei; Yang, Zhi-Fang; Xu, Yi-Xiang; Liu, Ying-Bao; Jiang, Cheng-Ying; Wang, Yao; Liu, Shuang-Jiang
2014-01-01
NrdH redoxins are small protein disulfide oxidoreductases behaving like thioredoxins but sharing a high amino acid sequence similarity to glutaredoxins. Although NrdH redoxins are supposed to be another candidate in the antioxidant system, their physiological roles in oxidative stress remain unclear. In this study, we confirmed that the Corynebacterium glutamicum NrdH redoxin catalytically reduces the disulfides in the class Ib ribonucleotide reductases (RNR), insulin and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), by exclusively receiving electrons from thioredoxin reductase. Overexpression of NrdH increased the resistance of C. glutamicum to multiple oxidative stresses by reducing ROS accumulation. Accordingly, elevated expression of the nrdH gene was observed when the C. glutamicum wild-type strain was exposed to oxidative stress conditions. It was discovered that the NrdH-mediated resistance to oxidative stresses was largely dependent on the presence of the thiol peroxidase Prx, as the increased resistance to oxidative stresses mediated by overexpression of NrdH was largely abrogated in the prx mutant. Furthermore, we showed that NrdH facilitated the hydroperoxide reduction activity of Prx by directly targeting and serving as its electron donor. Thus, we present evidence that the NrdH redoxin can protect against the damaging effects of reactive oxygen species (ROS) induced by various exogenous oxidative stresses by acting as a peroxidase cofactor. PMID:24375145
Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris
2015-05-01
Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Kim, Eun-Mi; Um, Youngsoon; Bott, Michael; Woo, Han Min
2015-10-01
Thermochemical processing provides continuous production of bio-oils from lignocellulosic biomass. Levoglucosan, a pyrolytic sugar substrate C6H10O5 in a bio-oil, has been used for ethanol production using engineered Escherichia coli. Here we provide the first example for succinate production from levoglucosan with Corynebacterium glutamicum, a well-known industrial amino acid producer. Heterologous expression of a gene encoding a sugar kinase from Lipomyces starkeyi, Gibberella zeae or Pseudomonas aeruginosa was employed for levoglucosan conversion in C. glutamicum because the wild type was unable to utilize levoglucosan as sole carbon source. As result, expression of a levoglucosan kinase (LGK) of L. starkeyi only enabled growth with levoglucosan as sole carbon source in CgXII minimal medium by catalyzing conversion of levoglucosan to glucose-6-phosphate. Subsequently, the lgk gene was expressed in an aerobic succinate producer of C. glutamicum, strain BL-1. The recombinant strain showed a higher succinate yield (0.25 g g(-1)) from 2% (w/v) levoglucosan than the reference strain BL-1 from 2% (w/v) glucose (0.19 g g(-1)), confirming that levoglucosan is an attractive carbon substrate for C. glutamicum producer strains. In summary, we demonstrated that a pyrolytic sugar could be a potential carbon source for microbial cell factories. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Jooya, Neda; Chang, Chungyu; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung
2015-12-01
The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae. © 2015 John Wiley & Sons Ltd.
Reardon-Robinson, Melissa E.; Osipiuk, Jerzy; Jooya, Neda; Chang, Chungyu; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung
2016-01-01
Summary The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae. PMID:26294390
Podder, M S; Majumder, C B
2016-11-05
The optimization of biosorption/bioaccumulation process of both As(III) and As(V) has been investigated by using the biosorbent; biofilm of Corynebacterium glutamicum MTCC 2745 supported on granular activated carbon/MnFe2O4 composite (MGAC). The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ions was proved by FT-IR. To determine the most appropriate correlation for the equilibrium curves employing the procedure of the non-linear regression for curve fitting analysis, isotherm studies were performed for As(III) and As(V) using 30 isotherm models. The pattern of biosorption/bioaccumulation fitted well with Vieth-Sladek isotherm model for As(III) and Brouers-Sotolongo and Fritz-Schlunder-V isotherm models for As(V). The maximum biosorption/bioaccumulation capacity estimated using Langmuir model were 2584.668mg/g for As(III) and 2651.675mg/g for As(V) at 30°C temperature and 220min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0. D-R isotherm studies specified that ion exchange might play a prominent role. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Chuanzhi; Zhang, Junli; Kang, Zhen; Du, Guocheng; Chen, Jian
2015-05-01
Microbial production of L-phenylalanine (L-Phe) from renewable sources has attracted much attention recently. In the present study, Corynebacterium glutamicum 13032 was rationally engineered to produce L-Phe from inexpensive glucose. First, all the L-Phe biosynthesis pathway genes were investigated and the results demonstrated that in addition to AroF and PheA, the native PpsA, TktA, AroE and AroA, and the heterologous AroL and TyrB were also the key enzymes for L-Phe biosynthesis. Through combinational expression of these key enzymes, the L-Phe production was increased to 6.33 ± 0.13 g l(-1) which was about 1.48-fold of that of the parent strain C. glutamicum (pXM-pheA (fbr)-aroF (fbr)) (fbr, feedback-inhibition resistance). Furthermore, the production of L-Phe was improved to 9.14 ± 0.21 g l(-1) by modifying the glucose and L-Phe transport systems and blocking the acetate and lactate biosynthesis pathways. Eventually, the titer of L-Phe was enhanced to 15.76 ± 0.23 g l(-1) with a fed-batch fermentation strategy. To the best of our knowledge, this was the highest value reported in rationally engineered C. glutamicum 13032 strains. The results obtained will also contribute to rational engineering of C. glutamicum for production of other valuable aromatic compounds.
Alibi, Sana; Ferjani, Asma; Boukadida, Jalel; Cano, María Eliecer; Fernández-Martínez, Marta; Martínez-Martínez, Luis; Navas, Jesús
2017-08-28
Corynebacterium striatum is a nosocomial opportunistic pathogen increasingly associated with a wide range of human infections and is often resistant to several antibiotics. We investigated the susceptibility of 63 C. striatum isolated at the Farhat-Hached hospital, Sousse (Tunisia), during the period 2011-2014, to a panel of 16 compounds belonging to the main clinically relevant classes of antimicrobial agents. All strains were susceptible to vancomycin, linezolid, and daptomycin. Amikacin and gentamicin also showed good activity (MICs 90 = 1 and 2 mg/L, respectively). High rates of resistance to penicillin (82.5%), clindamycin (79.4%), cefotaxime (60.3%), erythromycin (47.6%), ciprofloxacin (36.5%), moxifloxacin (34.9%), and rifampicin (25.4%) were observed. Fifty-nine (93.7%) out of the 63 isolates showed resistance to at least one compound and 31 (49.2%) were multidrug-resistant. Twenty-nine resistance profiles were distinguished among the 59 resistant C. striatum. Most of the strains resistant to fluoroquinolones showed a double mutation leading to an amino acid change in positions 87 and 91 in the quinolone resistance-determining region of the gyrA gene. The 52 strains resistant to penicillin were positive for the gene bla, encoding a class A β-lactamase. Twenty-two PFGE patterns were identified among the 63 C. striatum, indicating that some clones have spread within the hospital.
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
Lubitz, Dorit; Wendisch, Volker F
2016-10-07
Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.
Minton, J P; Rossio, J L; Dixon, B; Dodd, M C
1976-01-01
Corynebacterium parvum, a Gram-positive anaerobic bacillus thought to be a strong immunological stimulant, has been shown to decrease tumour growth and prolong survival in patients with metastatic disease. Study of the effect of a single injection of a strain of C. parvum (CN. 6134) in six patients with stage IV metastatic breast cancer is reported. Results of laboratory tests to judge the physical and immunological effects of the drug infusion 24 hr post-treatment and weekly thereafter for 3 weeks are evaluated. Within 24 hr after C. parvum administration, most patients experienced fever and nausea. Blood counts and differential counts exhibited increased values 24 hr after treatment with a strong shift to the left. Lymphocyte and monocyte counts were greatly depressed at 24 hr. T-cell numbers in peripheral blood did not appear to be altered, but the picture with regard to B cells was less clear. Normal count was recovered by day 8. It appears that intravenous administration of C. parvum produces a temporary marked immunological depression which returns to essentially normal values in 8 days. The return to normal may be accompanied by resolution of the endotoxin-like syndrome of side-effects. Further study of patients receiving this therapeutic agent is important to detect enhancement of the anti-tumour immunological response precipitated. PMID:1084821
Functional Characterization of Corynebacterium glutamicum Mycothiol S-Conjugate Amidase
Si, Meiru; Long, Mingxiu; Chaudhry, Muhammad Tausif; Xu, Yixiang; Zhang, Pan; Zhang, Lei; Shen, Xihui
2014-01-01
The present study focuses on the genetic and biochemical characterization of mycothiol S-conjugate amidase (Mca) of Corynebacterium glutamicum. Recombinant C. glutamicum Mca was heterologously expressed in Escherichia coli and purified to apparent homogeneity. The molecular weight of native Mca protein determined by gel filtration chromatography was 35 kDa, indicating that Mca exists as monomers in the purification condition. Mca showed amidase activity with mycothiol S-conjugate of monobromobimane (MSmB) in vivo while mca mutant lost the ability to cleave MSmB. In addition, Mca showed limited deacetylase activity with N-acetyl-D-glucosamine (GlcNAc) as substrate. Optimum pH for amidase activity was between 7.5 and 8.5, while the highest activity in the presence of Zn2+ confirmed Mca as a zinc metalloprotein. Amino acid residues conserved among Mca family members were located in C. glutamicum Mca and site-directed mutagenesis of these residues indicated that Asp14, Tyr137, His139 and Asp141 were important for activity. The mca deletion mutant showed decreased resistance to antibiotics, alkylating agents, oxidants and heavy metals, and these sensitive phenotypes were recovered in the complementary strain to a great extent. The physiological roles of Mca in resistance to various toxins were further supported by the induced expression of Mca in C. glutamicum under various stress conditions, directly under the control of the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH. PMID:25514023
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum
Wichmann, Julian; Baier, Thomas; Frohwitter, Jonas; Risse, Joe M.; Peters-Wendisch, Petra; Kruse, Olaf
2018-01-01
Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1. PMID:29673223
[ROLE OF BIOLOGICAL PROPERTIES OF CORYNEBACTERIA IN ASSOCIATIVE SYMBIOSIS].
Gladysheva, I V; Cherkasov, S V
2015-01-01
Microorganisms of the Corynebacterium genus are examined in the review as a component of a single microecological system of humans in the context of their interaction with the macroorganism, dominant and associative microorganisms under the conditions of both normo- and pathocenosis. Adhesive ability, antagonistic activity, pathogenicity and persistence factors, antibiotics resistance are described. The role of non-pathogenic corynebacteria in the formation of microbiocenoses of human body and realization of colonization resistance is shown on an example of vaginal biotope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.; Sugiman-Marangos, S; Junop, M
2009-01-01
The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.
COMPLETE REDUCTION OF TELLURITE TO PURE TELLURIUM METAL BY MICROORGANISMS
Tucker, Fayne L.; Walper, John F.; Appleman, Milo Don; Donohue, Jerry
1962-01-01
Tucker, Fayne L. (University of Southern California, Los Angeles), John F. Walper, Milo Don Appleman, and Jerry Donohue. Complete reduction of tellurite to pure tellurium metal by microorganisms. J. Bacteriol. 83:1313–1314. 1962—The black precipitate produced in the presence of potassium tellurite by growing cells of Streptococcus faecalis N83 and Corynebacterium diphtheriae was shown, by X-ray diffraction analysis, to consist of metallic tellurium. The metal was not complexed, to any significant degree, with any organic material. PMID:13922991
New lipopeptide produced by Corynebacterium aquaticum from a low-cost substrate.
Martins, Paola Chaves; Bastos, Cibele Garcia; Granjeiro, Paulo Afonso; Martins, Vilásia Guimarães
2018-04-26
Conventional biosurfactants have high production costs. Therefore, the use of low-cost carbon sources for their production is attractive for industry. The ability to remain stable under various environmental conditions further extends industrial application. Here we aimed to evaluate the stability of a new lipopeptide produced by Corynebacterium aquaticum using fish residue as an unconventional energy source. The biosurfactant was produced using 3% fish residue, 2% of the microorganism, and mineral medium. Biosurfactant characterization was performed by thin layer chromatography (TLC), as well as by testing its infrared, surface tension, emulsifying activity, and ionic character. The stability of the biosurfactant was evaluated by testing its surface tension at a range of temperatures, pH, and saline concentrations, as well as after 6 months of storage. The biosurfactant was characterized as a lipopeptide due to its retention time, which was coincident with the amino acid and lipid chains obtained in the TLC analysis, being confirmed by some regions of absorption verified in the infrared analysis. The surface tension and emulsifying activity of the biosurfactant were 27.8 mN/m and 87.6%, respectively, and showed anionic character. The biosurfactant was stable at temperatures of 20 to 121 °C, in saline concentrations of 1 to 7%, and at pH close to neutrality. Based on our findings, it is possible to use unconventional sources of energy to produce a lipopeptide biosurfactant that can act under various environments.
Chen, Zhen; Meyer, Weiqian; Rappert, Sugima; Sun, Jibin; Zeng, An-Ping
2011-07-01
Product feedback inhibition of allosteric enzymes is an essential issue for the development of highly efficient microbial strains for bioproduction. Here we used aspartokinase from Corynebacterium glutamicum (CgAK), a key enzyme controlling the biosynthesis of industrially important aspartate family amino acids, as a model to demonstrate a fast and efficient approach to the deregulation of allostery. In the last 50 years many researchers and companies have made considerable efforts to deregulate this enzyme from allosteric inhibition by lysine and threonine. However, only a limited number of positive mutants have been identified so far, almost exclusively by random mutation and selection. In this study, we used statistical coupling analysis of protein sequences, a method based on coevolutionary analysis, to systematically clarify the interaction network within the regulatory domain of CgAK that is essential for allosteric inhibition. A cluster of interconnected residues linking different inhibitors' binding sites as well as other regions of the protein have been identified, including most of the previously reported positions of successful mutations. Beyond these mutation positions, we have created another 14 mutants that can partially or completely desensitize CgAK from allosteric inhibition, as shown by enzyme activity assays. The introduction of only one of the inhibition-insensitive CgAK mutations (here Q298G) into a wild-type C. glutamicum strain by homologous recombination resulted in an accumulation of 58 g/liter L-lysine within 30 h of fed-batch fermentation in a bioreactor.
Chen, Zhen; Meyer, Weiqian; Rappert, Sugima; Sun, Jibin; Zeng, An-Ping
2011-01-01
Product feedback inhibition of allosteric enzymes is an essential issue for the development of highly efficient microbial strains for bioproduction. Here we used aspartokinase from Corynebacterium glutamicum (CgAK), a key enzyme controlling the biosynthesis of industrially important aspartate family amino acids, as a model to demonstrate a fast and efficient approach to the deregulation of allostery. In the last 50 years many researchers and companies have made considerable efforts to deregulate this enzyme from allosteric inhibition by lysine and threonine. However, only a limited number of positive mutants have been identified so far, almost exclusively by random mutation and selection. In this study, we used statistical coupling analysis of protein sequences, a method based on coevolutionary analysis, to systematically clarify the interaction network within the regulatory domain of CgAK that is essential for allosteric inhibition. A cluster of interconnected residues linking different inhibitors' binding sites as well as other regions of the protein have been identified, including most of the previously reported positions of successful mutations. Beyond these mutation positions, we have created another 14 mutants that can partially or completely desensitize CgAK from allosteric inhibition, as shown by enzyme activity assays. The introduction of only one of the inhibition-insensitive CgAK mutations (here Q298G) into a wild-type C. glutamicum strain by homologous recombination resulted in an accumulation of 58 g/liter l-lysine within 30 h of fed-batch fermentation in a bioreactor. PMID:21531824
Gao, Yong-Gui; Suzuki, Hiroaki; Itou, Hiroshi; Zhou, Yong; Tanaka, Yoshikazu; Wachi, Masaaki; Watanabe, Nobuhisa; Tanaka, Isao; Yao, Min
2008-01-01
LldR (CGL2915) from Corynebacterium glutamicum is a transcription factor belonging to the GntR family, which is typically involved in the regulation of oxidized substrates associated with amino acid metabolism. In the present study, the crystal structure of LldR was determined at 2.05-Å resolution. The structure consists of N- and C-domains similar to those of FadR, but with distinct domain orientations. LldR and FadR dimers achieve similar structures by domain swapping, which was first observed in dimeric assembly of transcription factors. A structural feature of Zn2+ binding in the regulatory domain was also observed, as a difference from the FadR subfamily. DNA microarray and DNase I footprint analyses suggested that LldR acts as a repressor regulating cgl2917-lldD and cgl1934-fruK-ptsF operons, which are indispensable for l-lactate and fructose/sucrose utilization, respectively. Furthermore, the stoichiometries and affinities of LldR and DNAs were determined by isothermal titration calorimetry measurements. The transcriptional start site and repression of LldR on the cgl2917-lldD operon were analysed by primer extension assay. Mutation experiments showed that residues Lys4, Arg32, Arg42 and Gly63 are crucial for DNA binding. The location of the putative ligand binding cavity and the regulatory mechanism of LldR on its affinity for DNA were proposed. PMID:18988622
Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine
2013-01-01
Background L-ornithine is effective in the treatment of liver diseases and helps strengthen the heart. The commercial applications mean that efficient biotechnological production of L-ornithine has become increasingly necessary. Adaptive evolution strategies have been proven a feasible and efficient technique to achieve improved cellular properties without requiring metabolic or regulatory details of the strain. The evolved strains can be further optimised by metabolic engineering. Thus, metabolic evolution strategy was used for engineering Corynebacterium glutamicum to enhance L-ornithine production. Results A C. glutamicum strain was engineered by using a combination of gene deletions and adaptive evolution with 70 passages of growth-based selection. The metabolically evolved C. glutamicum strain, named ΔAPE6937R42, produced 24.1 g/L of L-ornithine in a 5-L bioreactor. The mechanism used by C. glutamicum ΔAPE6937R42 to produce L-ornithine was investigated by analysing transcriptional levels of select genes and NADPH contents. The upregulation of the transcription levels of genes involved in the upstream pathway of glutamate biosynthesis and the elevated NADPH concentration caused by the upregulation of the transcriptional level of the ppnK gene promoted L-ornithine production in C. glutamicum ΔAPE6937R42. Conclusions The availability of NADPH plays an important role in L-ornithine production in C. glutamicum. Our results demonstrated that the combination of growth-coupled evolution with analysis of transcript abundances provides a strategy to engineer microbial strains for improving production of target compounds. PMID:23725060
Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin
2016-03-09
Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.
Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.
Krylov, Alexander A; Kolontaevsky, Egor E; Mashko, Sergey V
2014-10-01
Brevibacterium lactofermentum and Corynebacterium glutamicum are important biotechnology species of the genus Corynebacterium. The single-strand DNA annealing protein (SSAP)-independent oligonucleotide-mediated recombination procedure was successfully applied to the commonly used wild-type strains B. lactofermentum AJ1511 and C. glutamicum ATCC13032. When the rpsL gene was used as a target, the optimized protocol yielded up to (1.4±0.3)×10(3) and (6.7±1.3)×10(3) streptomycin-resistant colonies per 10(8) viable cells for the corresponding strains. We tested the influence of several parameters that are known to enhance the efficiency of oligonucleotide-mediated recombination in other bacterial species. Among them, increasing the concentration of oligonucleotides and targeting the lagging strand of the chromosome have proven to have positive effects on both of the tested species. No difference in the efficiency of recombination was observed between the oligonucleotides phosphorothiorated at the 5' ends and the unmodified oligonucleotides or between the oligonucleotides with four mutated nucleotides and those with one mutated nucleotide. The described approach demonstrates that during the adaptation of the recombineering technique, testing SSAP-independent oligonucleotide-mediated recombination could be a good starting point. Such testing could decrease the probability of an incorrect interpretation of the effect of exogenous protein factors (such as SSAP and/or corresponding exonucleases) due to non-optimal experimental conditions. In addition, SSAP-independent recombination itself could be useful in combination with suitable selection/enrichment methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Xing; Wang, Xiuwen; Yin, Mengxin; Xiao, Zijun; Ma, Cuiqing; Lin, Zhixin; Wang, Peng George; Xu, Ping
2007-08-01
Attempts were made with success to develop a two-step biocatalytic process for uridine 5'-monophosphate (UMP) production from orotic acid by Corynebacterium ammoniagenes ATCC 6872: the strain was first cultivated in a high salt mineral medium, and then cells were harvested and used as the catalyst in the UMP production reaction. Effects of cultivation and reaction conditions on UMP production were investigated. The cells exhibited the highest biocatalytic ability when cultivated in a medium containing corn steep liquor at pH 7.0 for 15 h in the exponential phase of growth. To optimize the reaction, both "one-factor-at-a-time" method and statistical method were performed. By "one-factor-at-a-time" optimization, orotic acid, glucose, phosphate ion (equimolar KH(2)PO(4) and K(2)HPO(4)), MgCl(2), Triton X-100 were shown to be the optimum components for the biocatalytic reaction. Phosphate ion and C. ammoniagenes cell were furthermore demonstrated as the most important main effects on UMP production by Plackett-Burman design, indicating that 5-phosphoribosyl-1-pyrophosphate (PRPP) synthesis was the rate-limiting step for pyrimidine nucleotides production. Optimization by a central composition design (CCD) was then performed, and up to 32 mM (10.4 g l(-1)) UMP was accumulated in 24 h from 38.5 mM (6 g l(-1)) orotic acid. The yield was threefold higher than the original UMP yield before optimization.
Stroupe, Cody; Pendley, Joseph; Isang, Emmanuel; Helms, Benjamin
2017-01-01
Lactobacillus species causing infective endocarditis is rare. Most reported cases arise from the oral ingestion of Lactobacillus via dairy or nutritional supplements in patients with congenital valve disease or replacement. We present a case of native valve bacterial endocarditis caused by Lactobacillus arising from dental abscesses. Additionally, there was an error in identification of the Lactobacillus as Corynebacterium , which led to inadequate treatment. A 51-year-old male presented to an outside clinic with several weeks of subjective fevers and malaise. The provider obtained two sets of blood cultures. Both grew Gram-positive bacilli identified as Corynebacterium . Once hospitalized he persistently had positive blood cultures despite treatment with vancomycin and gentamicin. The specimens were sent to a reference lab. The cultures were confirmed to be Lactobacillus zeae resistant to vancomycin and gentamicin. Once he was started on appropriate therapy his blood cultures showed no further growth of bacteria. The infected teeth were removed as it was felt they were the source of the bacteremia. This case presents two interesting topics in one encounter. First, Lactobacillus is not a common culprit in endocarditis. Secondly, the incorrect identification of the gram-positive bacilli bacteria led to prolonged bacteremia in our patient. The patient was evaluated by cardiothoracic surgery at our facility and it was determined that he would likely need a mitral valve replacement versus repair. The decision was made to treat the patient with six weeks Penicillin-VK prior to the operation. He is currently completing his antibiotic therapy.
Noack, Stephan; Voges, Raphael; Gätgens, Jochem; Wiechert, Wolfgang
2017-09-20
Corynebacterium glutamicum serves as important production host for small molecular compounds that are derived from precursor molecules of the central carbon metabolism. It is therefore a well-studied model organism of industrial biotechnology. However, a deeper understanding of the regulatory principles underlying the synthesis of central metabolic enzymes under different environmental conditions as well as its impact on cell growth is still missing. We studied enzyme abundances in C. glutamicum in response to growth on: (i) one limiting carbon source by sampling chemostat and fed-batch cultivations and (ii) changing carbon sources provided in excess by sampling batch cultivations. The targeted quantification of 20 central metabolic enzymes by isotope dilution mass spectrometry revealed that cells maintain stable enzyme concentrations when grown on d-glucose as single carbon and energy source and, most importantly, independent of its availability. By contrast, switching from d-glucose to d-fructose, d-mannose, d-arabitol, acetate, l-lactate or l-glutamate results in highly specific enzyme regulation patterns that can partly be explained by the activity of known transcriptional regulators. Based on these experimental results we propose a simple framework for modeling cell population growth as a nested function of nutrient supply and intracellular enzyme abundances. In summary, our study extends the basis for the formulation of predictive mechanistic models of bacterial growth, applicable in industrial bioprocess development. Copyright © 2017 Elsevier B.V. All rights reserved.
Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria.
Oram, Mark; Woolston, Joelle E; Jacobson, Andrew D; Holmes, Randall K; Oram, Diana M
2007-04-15
In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.
Boysen, Courtney; Davis, Elizabeth G.; Beard, Laurie A.; Lubbers, Brian V.; Raghavan, Ram K.
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed. PMID:26473728
Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
Peng, Feng; Wang, Xinyue; Sun, Yang; Dong, Guibin; Yang, Yankun; Liu, Xiuxia; Bai, Zhonghu
2017-11-14
Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.
de Steenhuijsen Piters, Wouter A A; Bogaert, Debby
2016-02-02
The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. Copyright © 2016 de Steenhuijsen Piters and Bogaert.
DNA from uncultured organisms as a source of 2,5-diketo-L-gluconic acid reductases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eschenfeldt, W. H.; Stols, L.; Rosenbaum, H.
2001-09-01
Total DNA of a population of uncultured organisms was extracted from soil samples, and by using PCR methods, the genes encoding two different 2,5-diketo-D-gluconic acid reductases (DKGRs) were recovered. Degenerate PCR primers based on published sequence information gave internal gene fragments homologous to known DKGRs. Nested primers specific for the internal fragments were combined with random primers to amplify flanking gene fragments from the environmental DNA, and two hypothetical full-length genes were predicted from the combined sequences. Based on these predictions, specific primers were used to amplify the two complete genes in single PCRs. These genes were cloned and expressedmore » in Escherichia coli. The purified gene products catalyzed the reduction of 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid. Compared to previously described DKGRs isolated from Corynebacterium spp., these environmental reductases possessed some valuable properties. Both exhibited greater than 20-fold-higher k{sub cat}/K{sub m} values than those previously determined, primarily as a result of better binding of substrate. The K{sub m} values for the two new reductases were 57 and 67 {mu}M, versus 2 and 13 mM for the Corynebacterium enzymes. Both environmental DKGRs accepted NADH as well as NADPH as a cosubstrate; other DKGRs and most related aldo-keto reductases use only NADPH. In addition, one of the new reductases was more thermostable than known DKGRs.« less
Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure
de Steenhuijsen Piters, Wouter A. A.
2016-01-01
ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716
Nishio, Yousuke; Koseki, Chie; Tonouchi, Naoto; Matsui, Kazuhiko; Sugimoto, Shinichi; Usuda, Yoshihiro
2017-07-11
Strains of the bacterium, Corynebacterium glutamicum, are widely used for the industrial production of L-glutamic acid and various other substances. C. glutamicum ssp. lactofermentum AJ 1511, formerly classified as Brevibacterium lactofermentum, and the closely related C. glutamicum ATCC 13032 have been used as industrial strains for more than 50 years. We determined the whole genome sequence of C. glutamicum AJ 1511 and performed genome-wide comparative analysis with C. glutamicum ATCC 13032 to determine strain-specific genetic differences. This analysis revealed that the genomes of the two industrial strains are highly similar despite the phenotypic differences between the two strains. Both strains harbored unique genes but gene transpositions or inversions were not observed. The largest unique region, a 220-kb AT-rich region located between 1.78 and 2.00 Mb position in C. glutamicum ATCC 13032 genome, was missing in the genome of C. glutamicum AJ 1511. The next two largest unique regions were present in C. glutamicum AJ 1511. The first region (413-484 kb position) contains several predicted transport proteins, enzymes involved in sugar metabolism, and transposases. The second region (1.47-1.50 Mb position) encodes restriction modification systems. A gene predicted to encode NADH-dependent glutamate dehydrogenase, which is involved in L-glutamate biosynthesis, is present in C. glutamicum AJ 1511. Strain-specific genes identified in this study are likely to govern phenotypes unique to each strain.
Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F
2015-12-01
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Dhar, Kiran S; Wendisch, Volker F; Nampoothiri, Kesavan Madhavan
2016-07-20
Xylitol is a non-fermentable sugar alcohol used as sweetener. Corynebacterium glutamicum ATCC13032 was metabolically engineered for xylitol production from the lignocellulosic pentose sugars xylose and arabinose. Direct conversion of xylose to xylitol was achieved through the heterologous expression of NAD(P)H-dependent xylose reductase (xr) gene from Rhodotorula mucilaginosa. Xylitol synthesis from arabinose was attained through polycistronic expression of l-arabinose isomerase (araA), d-psicose 3 epimerase (dpe) and l-xylulose reductase (lxr) genes from Escherichia coli, Agrobacterium tumefaciens and Mycobacterium smegmatis, respectively. Expression of xr and the synthetic araA-dpe-lxr operon under the control of IPTG-inducible Ptac promoter enabled production of xylitol from both xylose and arabinose in the mineral (CGXII) medium with glucose as carbon source. Additional expression of a pentose transporter (araTF) gene enhanced xylitol production by about four-fold compared to the parent strain. The constructed strain Cg-ax3 produced 6.7±0.4g/L of xylitol in batch fermentations and 31±0.5g/L of xylitol in fed-batch fermentations with a specific productivity of 0.28±0.05g/g cdw/h. The strain Cg-ax3 was also validated for xylitol production from pentose rich, acid pre-treated liquor of sorghum stover (SAPL) and the results were comparable in both SAPL (27±0.3g/L) and mineral medium (31±0.5g/L). Copyright © 2016 Elsevier B.V. All rights reserved.
Radek, Andreas; Müller, Moritz-Fabian; Gätgens, Jochem; Eggeling, Lothar; Krumbach, Karin; Marienhagen, Jan; Noack, Stephan
2016-08-10
Wild-type Corynebacterium glutamicum has no endogenous metabolic activity for utilizing the lignocellulosic pentose d-xylose for cell growth. Therefore, two different engineering approaches have been pursued resulting in platform strains harbouring a functional version of either the Isomerase (ISO) or the Weimberg (WMB) pathway for d-xylose assimilation. In a previous study we found for C. glutamicum WMB by-product formation of xylitol during growth on d-xylose and speculated that the observed lower growth rates are due to the growth inhibiting effect of this compound. Based on a detailed phenotyping of the ISO, WMB and the wild-type strain of C. glutamicum, we here show that this organism has a natural capability to synthesize xylitol from d-xylose under aerobic cultivation conditions. We furthermore observed the intracellular accumulation of xylitol-5-phosphate as a result of the intracellular phosphorylation of xylitol, which was particularly pronounced in the C. glutamicum ISO strain. Interestingly, low amounts of supplemented xylitol strongly inhibit growth of this strain on d-xylose, d-glucose and d-arabitol. These findings demonstrate that xylitol is a suitable substrate of the endogenous xylulokinase (XK, encoded by xylB) and its overexpression in the ISO strain leads to a significant phosphorylation of xylitol in C. glutamicum. Therefore, in order to circumvent cytotoxicity by xylitol-5-phosphate, the WMB pathway represents an interesting alternative route for engineering C. glutamicum towards efficient d-xylose utilization. Copyright © 2016 Elsevier B.V. All rights reserved.
Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping
2014-09-01
Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Kikuchi, Yoshimi; Date, Masayo; Itaya, Hiroshi; Matsui, Kazuhiko; Wu, Long-Fei
2006-01-01
Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins. PMID:16997984
Pancreatic abscess caused by Corynebacterium coyleae mimicking malignant neoplasm.
Taguchi, Masashi; Nishikawa, Shoichiro; Matsuoka, Hidehiko; Narita, Ryoichi; Abe, Shintaro; Fukuda, Kazumasa; Miyamoto, Hiroshi; Taniguchi, Hatsumi; Otsuki, Makoto
2006-11-01
A 50-year-old female was referred to our hospital because of postprandial epigastric pain and pancreatic head mass. On admission, an elastic hard mass with tenderness was palpable in the epigastric region. Laboratory findings showed no abnormalities, except for a slightly elevated C-reactive protein value and iron deficiency anemia. Serum levels of pancreatic enzymes and tumor markers were also within the reference range. Computed tomography (CT) demonstrated a 5-cm heterogenous mass at the head of the pancreas. Angiography showed that gastroduodenal artery was transformed and narrowed by the mass. Smooth stenosis of portal vein was also observed. Fusion CT-positron emission tomography with 2-deoxy-2-[F]fluoro-D-glucose demonstrated a focus of increased uptake in the pancreatic head mass. We suspected the mass of malignancy but, surprisingly, tumor size was gradually decreased without any therapies. Biopsy specimens from the mass of the pancreas showed marked inflammatory cell infiltration and marked interstitial fibrosis without malignant cells. Thereafter, we could isolate Corynebacterium coyleae from the biopsy specimen. We diagnosed the mass as a pancreatic abscess caused by C. coyleae and started with the intravenous antibiotics therapy. Subsequent follow-up CT and ultrasonography showed dramatic improvement in pancreatic mass. We present here a case of pancreatic abscess which was difficult to differentiate from malignant lesion by various imaging studies. Moreover, we could culture and identify C. coyleae which had never been reported to be the source of pancreatic abscess.
Chemical pleurodesis for malignant pleural effusions.
Walker-Renard, P B; Vaughan, L M; Sahn, S A
1994-01-01
To provide information about available agents for chemical pleurodesis. A MEDLINE search (1966 to October 1992) was conducted using the terms malignant pleural effusion and pleurodesis. All articles containing references to patients with recurrent, symptomatic, malignant pleural effusions treated with chemical pleurodesis were selected and reviewed for pleurodesis regimen, number of patients treated, success rate (complete response), and adverse effects. The agents studied included doxycycline, minocycline, tetracycline, bleomycin, cisplatin, doxorubicin, etoposide, fluorouracil, interferon-beta, mitomycin-c, Corynebacterium parvum, methylprednisolone, and talc. Independent extraction by three observers. Studies including a total of 1168 patients with malignant pleural effusions were reviewed for efficacy of the pleurodesis agent and studies including 1140 patients were reviewed for toxicity. Chemical pleurodesis produced a complete response in 752 (64%) of 1168 patients. The success rate of the pleurodesis agents varied from 0% with etoposide to 93% with talc. Corynebacterium parvum, the tetracyclines, and bleomycin had success rates of 76%, 67%, and 54%, respectively. The most commonly reported adverse effects were pain (265 of 1140, 23%) and fever (220 of 1140, 19%). Doxycycline and minocycline, with success rates of 72% and 86%, respectively, appear to be effective tetracycline-replacement agents in the few patients studied. Talc appears to be the most effective and least expensive agent; however, insufflation has the disadvantages of the expense of thoracoscopy and the usual need for general anesthesia. Bleomycin appears to be less effective than talc and the tetracyclines and is substantially more expensive.
Liu, Dong-Xin; Fan, Chang-Sheng; Tao, Ju-Hong; Liang, Guo-Xin; Gao, Shan-E; Wang, Hai-Jiao; Li, Xin; Song, Da-Xin
2004-01-01
AIM: To study the effect of integration of tandem aroG-pheA genes into the tyrA locus of Corynebacterium glutamicum (C. glutamicum) on the production of L-phenylalanine. METHODS: By nitrosoguanidine mutagenesis, five p-fluorophenylalanine (FP)-resistant mutants of C.glutamicum FP were selected. The tyrA gene encoding prephenate dehydrogenase (PDH) of C.glutamicum was amplified by polymerase chain reaction (PCR) and cloned on the plasmid pPR. Kanamycin resistance gene (Km) and the PBF-aroG-pheA-T (GA) fragment of pGA were inserted into tyrA gene to form targeting vectors pTK and pTGAK, respectively. Then, they were transformed into C.glutamicum FP respectively by electroporation. Cultures were screened by a medium containing kanamycin and detected by PCR and phenotype analysis. The transformed strains were used for L-phenylalanine fermentation and enzyme assays. RESULTS: Engineering strains of C.glutamicum (Tyr-) were obtained. Compared with the original strain, the transformed strain C. glutamicum GAK was observed to have the highest elevation of L-phenylalanine production by a 1.71-fold, and 2.9-, 3.36-, and 3.0-fold in enzyme activities of chorismate mutase, prephenate dehydratase and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, respectively. CONCLUSION: Integration of tandem aroG-pheA genes into tyrA locus of C. glutamicum chromosome can disrupt tyrA gene and increase the yield of L-phenylalanine production. PMID:15534933
Boysen, Courtney; Davis, Elizabeth G; Beard, Laurie A; Lubbers, Brian V; Raghavan, Ram K
2015-01-01
Kansas witnessed an unprecedented outbreak in Corynebacterium pseudotuberculosis infection among horses, a disease commonly referred to as pigeon fever during fall 2012. Bayesian geostatistical models were developed to identify key environmental and climatic risk factors associated with C. pseudotuberculosis infection in horses. Positive infection status among horses (cases) was determined by positive test results for characteristic abscess formation, positive bacterial culture on purulent material obtained from a lanced abscess (n = 82), or positive serologic evidence of exposure to organism (≥ 1:512)(n = 11). Horses negative for these tests (n = 172)(controls) were considered free of infection. Information pertaining to horse demographics and stabled location were obtained through review of medical records and/or contact with horse owners via telephone. Covariate information for environmental and climatic determinants were obtained from USDA (soil attributes), USGS (land use/land cover), and NASA MODIS and NASA Prediction of Worldwide Renewable Resources (climate). Candidate covariates were screened using univariate regression models followed by Bayesian geostatistical models with and without covariates. The best performing model indicated a protective effect for higher soil moisture content (OR = 0.53, 95% CrI = 0.25, 0.71), and detrimental effects for higher land surface temperature (≥ 35°C) (OR = 2.81, 95% CrI = 2.21, 3.85) and habitat fragmentation (OR = 1.31, 95% CrI = 1.27, 2.22) for C. pseudotuberculosis infection status in horses, while age, gender and breed had no effect. Preventative and ecoclimatic significance of these findings are discussed.
Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki
2013-02-01
We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.
Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki
2013-01-01
We previously demonstrated efficient l-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the l-valine yield. Eliminating these by-products therefore was deemed key to improving the l-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and l-valine production dropped considerably due to the severely elevated intracellular NADH/NAD+ ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher l-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM l-valine at a yield of 88% mol mol of glucose−1 after 24 h under oxygen deprivation, a vastly improved yield over our previous best. PMID:23241971
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F
2012-03-01
Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.
Chung, Soon-Chun; Park, Joon-Song; Yun, Jiae; Park, Jin Hwan
2017-03-01
Succinate is a renewable-based platform chemical that may be used to produce a wide range of chemicals including 1,4-butanediol, tetrahydrofurane, and γ-butyrolactone. However, industrial fermentation of organic acids is often subject to end-product inhibition, which significantly retards cell growth and limits metabolic activities and final productivity. In this study, we report the development of metabolically engineered Corynebacterium glutamicum for high production of succinate by release of end-product inhibition coupled with an increase of key metabolic flux. It was found that the rates of glucose consumption and succinate production were significantly reduced by extracellular succinate in an engineered strain, S003. To understand the mechanism underlying the inhibition by succinate, comparative transcriptome analysis was performed. Among the downregulated genes, overexpression of the NCgl0275 gene was found to suppress the inhibition of glucose consumption and succinate production, resulting in a 37.7% increase in succinate production up to 55.4g/L in fed-batch fermentation. Further improvement was achieved by increasing the metabolic flux from PEP to OAA. The final engineered strain was able to produce 152.2g/L succinate, the highest production reported to date, with a yield of 1.1g/g glucose under anaerobic condition. These results suggest that the release of end-product inhibition coupled with an increase in key metabolic flux is a promising strategy for enhancing production of succinate. Copyright © 2017. Published by Elsevier Inc.
Surface Microflora of Four Smear-Ripened Cheeses
Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.
2005-01-01
The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673
Tanner, Michael A.; Shoskes, Daniel; Shahed, Asha; Pace, Norman R.
1999-01-01
The etiology of chronic prostatitis syndromes in men is controversial, particularly when positive cultures for established uropathogens are lacking. Although identification of bacteria in prostatic fluid has relied on cultivation and microscopy, most microorganisms in the environment, including some human pathogens, are resistant to cultivation. We report here on an rRNA-based molecular phylogenetic approach to the identification of bacteria in prostate fluid from prostatitis patients. Positive bacterial signals were seen for 65% of patients with chronic prostatitis overall. Seven of 11 patients with bacterial signals but none of 6 patients without bacterial signals were cured with antibiotic-based therapy. Results indicate the occurrence in the prostate fluid of a wide spectrum of bacterial species representing several genera. Most rRNA genes were closely related to those of species belonging to the genera Corynebacterium, Staphylococcus, Peptostreptococcus, Streptococcus, and Escherichia. Unexpectedly, a wide diversity of Corynebacterium species was found in high proportion compared to the proportions of other bacterial species found. A subset of these 16S rRNA sequences represent those of undescribed species on the basis of their positions in phylogenetic trees. These uncharacterized organisms were not detected in control samples, suggesting that the organisms have a role in the disease or are the consequence of the disease. These studies show that microorganisms associated with prostatitis generally occur as complex microbial communities that differ between patients. The results also indicate that microbial communities distinct from those associated with prostatitis may occur at low levels in normal prostatic fluid. PMID:10325338
Unno, Masaki; Ardèvol, Albert; Rovira, Carme; Ikeda-Saito, Masao
2013-01-01
Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit. PMID:24106279
Reddy, B S; Chaudhury, A; Kalawat, U; Jayaprada, R; Reddy, Gsk; Ramana, B V
2012-01-01
Coryneform or the non-diphtherial Corynebacterium species largely remains a neglected group with the traditional consideration of these organisms as contaminants. This concept, however, is slowly changing in the light of recent observations. This study has been done to find out the species distribution and antibiogram of various members of the clinically relevant Coryneform group, isolated from various clinical materials. One hundred and fourteen non-duplicate isolates of diphtheroids from various clinical isolates were selected for the study. The isolates were identified to the species level by using a battery of tests; and antimicrobial susceptibility was tested by using a combination of Clinical and Laboratory Standards Institute (CLSI) and the British Society for Antimicrobial Chemotherapy (BSAC) guidelines, in the absence of definitive CLSI guidelines. Corynebacterium amycolatum was the predominant species (35.9%) in our series followed by the CDC Group G organisms (15.7%). Each of the remaining 19 species comprised of less than 10% of the isolates. More than half the total isolates were resistant to the penicillins, erythromycin, and clindamycin; while excellent activity (all the strains being susceptible) was shown by vancomycin, linezolid, and tigecycline. Chloramphenicol and tetracycline also had good activity in inhibiting more than 80% of the isolates. Multiply drug resistance was exhibited by all the species. This study was an attempt to establish the clinical significance of coryneform organisms. The high level of resistance shown by this group to some of the common antibacterial agents highlights the importance of processing these isolates in select conditions to guide the clinicians towards an appropriate therapy.
Bott, Michael; Brocker, Melanie
2012-06-01
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.
Baumgart, Meike; Luder, Kerstin; Grover, Shipra; Gätgens, Cornelia; Besra, Gurdyal S; Frunzke, Julia
2013-12-30
The development of new drugs against tuberculosis and diphtheria is focused on disrupting the biogenesis of the cell wall, the unique architecture of which confers resistance against current therapies. The enzymatic pathways involved in the synthesis of the cell wall by these pathogens are well understood, but the underlying regulatory mechanisms are largely unknown. Here, we characterize IpsA, a LacI-type transcriptional regulator conserved among Mycobacteria and Corynebacteria that plays a role in the regulation of cell wall biogenesis. IpsA triggers myo-inositol formation by activating ino1, which encodes inositol phosphate synthase. An ipsA deletion mutant of Corynebacterium glutamicum cultured on glucose displayed significantly impaired growth and presented an elongated cell morphology. Further studies revealed the absence of inositol-derived lipids in the cell wall and a complete loss of mycothiol biosynthesis. The phenotype of the C. glutamicum ipsA deletion mutant was complemented to different extend by homologs from Corynebacterium diphtheriae (dip1969) and Mycobacterium tuberculosis (rv3575), indicating the conserved function of IpsA in the pathogenic species. Additional targets of IpsA with putative functions in cell wall biogenesis were identified and IpsA was shown to bind to a conserved palindromic motif within the corresponding promoter regions. Myo-inositol was identified as an effector of IpsA, causing the dissociation of the IpsA-DNA complex in vitro. This characterization of IpsA function and of its regulon sheds light on the complex transcriptional control of cell wall biogenesis in the mycolata taxon and generates novel targets for drug development.
Abbey, Ashkan M.; Gregori, Ninel Z.; Surapaneni, Krishna; Miller, Darlene
2014-01-01
Purpose While manufacturers recommend cleaning ophthalmic lenses with detergent and water and then a specific disinfectant, disinfectants are rarely used in ophthalmic practices. The aim of this pilot study was to evaluate the efficacy of detergent and water versus bleach, a recommended disinfectant, to eliminate common ocular bacteria and viruses from ophthalmic lenses. Methods Three bacterial strains (Staphylococcus epidermidis, Corynebacterium straitum, and methicillin-resistant Staphylococcus aureus (MRSA) and two viral strains (adenovirus and herpes simplex virus (HSV) type-1) were individually inoculated to 20 gonioscopy and laser lenses. Lenses were washed with detergent and water and then disinfected with 10% bleach. All lenses were cultured after inoculation, after detergent and water, and after the bleach. Bacterial cultures in thioglycollate broth were observed for 3 weeks and viral cultures for 2 weeks. The presence of viruses was also detected by multiplex polymerase chain reaction (PCR). Results All 20 lenses inoculated with Staphylococcus epidermidis, Corynebacterium straitum, adenovirus, and HSV-1 showed growth after inoculation, but no growth after detergent/water and after the bleach. All lenses showed positive HSV and adenovirus PCR after inoculation and negative PCR after detergent/water and after bleach. All MRSA contaminated lenses showed growth after inoculation and no growth after detergent and water. However, one lens showed positive growth after bleach. Conclusions Cleaning with detergent and water appeared to effectively eliminate bacteria and viruses from the surface of contaminated ophthalmic lenses. Further studies are warranted to design practical disinfection protocols that minimize lens damage. PMID:24747806
NASA Astrophysics Data System (ADS)
Viacheslav, Ilyin; Kiryukhina, Nataliya
Nasal carriage of Staphylococcus aureus is a well-documented risk factor of infection and inflammation of the skin, soft tissues and bacteremia. It is also known that most often etiology of these disorders is associated with autoinfection. The present-day methods of opportunistic pathogens eradication from the nasal cavity are based principally on the use of antiseptic and antibacterial agents. For instance, a local antibiotic mupirocin in the form of nasal ointment is considered to be the gold standard for the treatment of S. aureus carriage. The literature describes investigations showing how mupirocin can strengthen antibiotic resistance in S. aureus strains, including those with methicillin resistance (MRSA). It is also common knowledge that recolonization of the nasal mucous membrane takes place within several months after mupirocin treatment. This circumstance dictates the necessity to look for alternative ways of preventing the S. aureus carriage and methods of elimination. One of the methods of nasal S. aureus elimination is implantation of nonpathogenic microorganisms which will extrude opportunistic pathogens without impinging the symbiotic microbiota. Effectiveness of saline suspension of Corynebacterium pseudodiphtheriticum containing spray was assessed in a several chamber experiments with simulation of some spaceflight factors (dry immersion, isolation). Various schemes of application of preparations were applied. In all cases of corynebacteria application the strong inhibiting effect against S. aureus was detected. This fact opens a prospect of using nonpathogenic corynebacteria as a nasal probiotic. Administration of the nasal corynebacteria spray possibly prevented cross-infection by MRSA and appearance of staphylococcal infection. Further pre-clinical and clinical study of this bacterial therapy method is under development.
Van der Auwera, P
1989-01-01
Twelve volunteers, in two groups of six, received daptomycin at a dose of 1 or 2 mg/kg. In addition, they received in a randomly allocated order amikacin (500 mg), daptomycin-amikacin, and vancomycin (500 mg). Thirty-five clinical isolates, including Staphylococcus aureus, S. epidermidis, Corynebacterium sp. group JK, and Enterococcus faecalis, were tested in vitro for the measure of the serum bactericidal titers and killing rates. The mean peak concentrations of daptomycin in serum 1 h after the administration of 1 and 2 mg/kg were 11 and 20 micrograms/ml, respectively. At 24 h after the administration of 2 mg/kg, the mean level in serum was 1.9 micrograms/ml, which is higher than the MICs for susceptible pathogens. Daptomycin and amikacin provided identical concentrations in serum whether given alone or in combination. Among the six regimens tested, those including daptomycin provided the highest and the most prolonged serum bactericidal titers against S. aureus, S. epidermidis, and E. faecalis. The killing rates measured by the killing curves were correlated with the concentration/MIC and concentration/MBC ratios of daptomycin for all strains tested. Significant killing occurred once the concentration of daptomycin in the serum 4- to 6-fold the MIC or 1- to 1.2-fold the MBC. The combination of daptomycin and amikacin had no effect on either the serum bactericidal titers or the rates of killing. Only vancomycin provided significant killing of the strains of Corynebacterium sp. group JK. PMID:2556079
Haque, A S M Tanbirul; Moon, Jin Nam; Saravana, P S; Tilahun, Adane; Chun, Byung-Soo
2016-10-01
In this study, oils from Asarum heterotropoides were extracted by traditional solvent extraction and supercritical CO 2 (SC-CO 2 ) extraction methods and their antioxidant activities along with antimicrobial and inhibitory activities against five human body odor-producing bacteria (Staphylococcus epidermidis, Propionibacterium freudenreichii, Micrococcus luteus, Corynebacterium jeikeium, and Corynebacterium xerosis) were evaluated. The oil was found to contain 15 components, among which the most abundant component was methyl eugenol (37.6%), which was identified at every condition studied in different extraction methods. The oil extracted with n-hexane and ethanol mixture exhibited a strong antioxidant activity (92% ± 2%) and the highest ABTS and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (89% ± 0.2%). The highest amounts of total phenolic content and total flavonoid content were 23.1±0.4 mg/g and 4.9±0.1 mg/g, respectively, in the traditional method. In the SC-CO 2 method performed at 200 bar/50°C using ethanol as an entrainer, the highest inhibition zone was recorded against all the aforementioned bacteria. In particular, strong antibacterial activity (38±2 mm) was found against M. luteus. The minimum inhibitory concentration (MIC) for the oil against bacteria ranged from 10.1±0.1 μg/mL to 46±2 μg/mL. The lowest MIC was found against M. luteus. Methyl eugenol was found to be one of the major compounds working against human body odor-producing bacteria. Copyright © 2016. Published by Elsevier B.V.
Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas
2012-06-15
Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor. Copyright © 2012 Elsevier B.V. All rights reserved.
Maeda, Tomoya; Tanaka, Yuya; Inui, Masayuki
2018-06-01
The Corynebacterium glutamicum R grtA (cgR_2936), grtB (cgR_2934) and grtC (cgR_2933) genes were identified as paralogs encoding glutamine-rich toxic proteins. We also identified a new antisense small RNA AsgR (antisense sRNA for grtA) that overlaps the 3' end of the grtA gene. Single over-expressions of grtA, grtB and grtC resulted in complete inhibition of Escherichia coli cell growth. This growth was rescued by co-expression of AsgR. Similar effects were observed in C. glutamicum, although the toxicities of these proteins were moderate. Inhibition of AsgR transcription resulted in increased levels and prolonged half-lives of grtA, grtB and grtC mRNAs. We also found that the expression levels of grtA, grtB and grtC were increased in an RNase III deletion mutant. Primer extension analysis revealed the RNase III cleavage site to be in the 3' untranslated region (3'-UTR) of the grtA mRNA. The expression levels of grtA, grtB and grtC were increased after exposure to several stresses, including heat shock, treatment with penicillin G, lysozyme or H 2 O 2 . The deletions of grtABC and asgR genes resulted in decreased survival rate under several stresses. These results indicate that GrtABC and AsgR constitute a type I toxin-antitoxin-like system in C. glutamicum. © 2018 John Wiley & Sons Ltd.
Bacteriophage-based Vectors for Site-specific Insertion of DNA in the Chromosome of Corynebacteria
Oram, Mark; Woolston, Joelle E.; Jacobson, Andrew D.; Holmes, Randall K.; Oram, Diana M.
2007-01-01
In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as β. β-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally-encoded genes, is regulated by the DtxR protein in response to Fe2+ levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the β-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae ΔdtxR strain. Additionally, strains of β-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for β, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species. PMID:17275217
Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi
2018-05-01
Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Böhm, Kati; Meyer, Fabian; Rhomberg, Agata; Kalinowski, Jörn; Donovan, Catriona; Bramkamp, Marc
2017-06-06
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum IMPORTANCE Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum , an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods. Copyright © 2017 Böhm et al.
Burr, Holly N; Lipman, Neil S; White, Julie R; Zheng, Junting; Wolf, Felix R
2011-01-01
Athymic nude mice infected with Corynebacterium bovis typically exhibit transient hyperkeratotic dermatitis. Our vivarium experienced an increased incidence of disease characterized by persistent skin lesions and increased mortality, leading to this study. For detection of infection, skin and buccal swab methods showed comparable sensitivities in nude mice. Various prevention, treatment, and eradication strategies were evaluated through clinical assessment, microbiology, and histopathology. In experimentally naïve athymic nude mice, a 2-wk course of prophylactic amoxicillin-containing diet (1200 ppm amoxicillin; effective dose, 200 mg/kg) was ineffective at preventing infection or disease. There was also no significant difference in disease duration or severity in athymic nude mice that received amoxicillin diet or penicillin–streptomycin topical spray (penicillin, 2500 U/mL; streptomycin, 2500 µg/mL). Prolonged treatment with 4 or 8 wk of amoxicillin diet cleared only a small number of athymic nude mice that had subclinical C. bovis infections. Antibiotic sensitivity of C. bovis isolates demonstrated a small colony isolate with less susceptibility to all antibiotics compared with a large colony isolate. Resistance did not appear to develop after prolonged treatment with amoxicillin. Provocation testing by administration of cyclophosphamide (50 mg/kg IP every 48 to 72 h for 90 d) to subclinically infected athymic nude mice resulted in prolonged clinical disease that waxed and waned without progression to severe disease. Our findings suggest that antibiotic prophylaxis and treatment of clinical disease in experimentally naïve mice is unrewarding, eradication of bacterial infection is difficult, and severe disease associated with C. bovis is likely multifactorial. PMID:21640035
Turner, Claudia; de Goffau, Marcus C.; Wagner, Josef; Bentley, Stephen D.; Goldblatt, David; Nosten, Francois
2017-01-01
A longitudinal study was undertaken in infants living in the Maela refugee camp on the Thailand-Myanmar border between 2007 and 2010. Nasopharyngeal swabs were collected monthly, from birth to 24 months of age, with additional swabs taken if the infant was diagnosed with pneumonia according to WHO clinical criteria. At the time of collection, swabs were cultured for Streptococcus pneumoniae and multiple serotype carriage was assessed. The bacterial 16S rRNA gene profiles of 544 swabs from 21 infants were analysed to see how the microbiota changes with age, respiratory infection, antibiotic consumption and pneumococcal acquisition. The nasopharyngeal microbiota is a somewhat homogenous community compared to that of other body sites. In this cohort it is dominated by five taxa: Moraxella, Streptococcus, Haemophilus, Corynebacterium and an uncharacterized Flavobacteriaceae taxon of 93% nucleotide similarity to Ornithobacterium. Infant age correlates with certain changes in the microbiota across the cohort: Staphylococcus and Corynebacterium are associated with the first few months of life while Moraxella and the uncharacterised Flavobacteriaceae increase in proportional abundance with age. Respiratory illness and antibiotic use often coincide with an unpredictable perturbation of the microbiota that differs from infant to infant and in different illness episodes. The previously described interaction between Dolosigranulum and Streptococcus was observed in these data. Monthly sampling demonstrates that the nasopharyngeal microbiota is in flux throughout the first two years of life, and that in this refugee camp population the pool of potential bacterial colonisers may be limited. PMID:28968382
Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.
Fiuza, Maria; Canova, Marc J; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A
2008-12-26
The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.
Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.
2008-01-01
The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis. PMID:18974047
Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism
Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan
2015-01-01
Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770
Henke, Nadja A.; Heider, Sabine A. E.; Hannibal, Silvin; Wendisch, Volker F.; Peters-Wendisch, Petra
2017-01-01
Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin. PMID:28484430
Townsend, Philip D.; Jungwirth, Britta; Pojer, Florence; Bußmann, Michael; Money, Victoria A.; Cole, Stewart T.; Pühler, Alfred; Tauch, Andreas; Bott, Michael; Cann, Martin J.; Pohl, Ehmke
2014-01-01
The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator) transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition. PMID:25469635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne
The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encodingmore » the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.« less
Kennerknecht, Nicole; Sahm, Hermann; Yen, Ming-Ren; Pátek, Miroslav; Saier, Jr., Milton H.; Eggeling, Lothar
2002-01-01
Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes l-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for l-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports l-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of l-leucine and l-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in α-proteobacteria but not in other prokaryotes analyzed. PMID:12081967
Fluctuation of Bacteria on Bleb Surface After Trabeculectomy With Adjunctive Mitomycin C.
Takahashi, Nobumichi; Sawada, Akira; Mochizuki, Kiyofumi; Katada, Toshihiko; Yamamoto, Tetsuya
2016-05-01
To determine whether the bacterial and floral patterns on the bleb surface are affected by the season in eyes that had undergone trabeculectomy with adjunctive mitomycin C. Forty-four glaucoma patients who had an avascular or a hypovascular cystic filtering bleb were studied. Swabs of the bleb surface were taken 4 times in 1 year. The samples were cultured, and all organisms isolated were identified and tested for antibiotic sensitivity and resistance. Of the 176 specimens, 48 tested positive in cultures. Out of the 44 glaucoma eyes that had undergone trabeculectomy, 30 (68.2%) eyes were culture positive. A total of 58 strains were isolated. The organisms isolated were 22 strains of Staphylococcus epidermidis, 21 strains of Propionibacterium acnes, 8 strains of Corynebacterium sp., 5 strains of Staphylococcus sp., and 1 strain of both Neisseria sp., and Candida parapsilosis. Fifteen eyes had a positive culture ≥2 times, and in 10 of these eyes, the same strain was isolated. There was no resistance to vancomycin by S. epidermidis, P. acnes, and Corynebacterium sp. All of the isolates of S.epidermidis were sensitive to minocycline and amikacin. The rate of bacterial detection in the spring was 13.6%, summer was 20.5%, autumn was 45.5%, and winter was 29.5%. The increase in the incidence of bacterial presence during autumn was significant (P=0.006; the Fisher exact probability test). It is not rare to detect the bacterial organisms on the bleb surface in glaucomatous eyes that had undergone trabeculectomy. The prevalence varied with the season and was highest in the autumn.
Zhang, Yue; Liu, Zhi-Rong; Chen, Hui; Fan, Ying-Chuan; Duo, Ji; Zheng, Hong; Wang, Guang-Jin; Li, Yu-Chan; Jiachu, Dan-Ba; Zewang, Ge-Ma
2013-01-01
AIM To compare the bacterial flora in palpebral conjunctiva of xerophthalmia seniors of Tibetan, Yi and Han, and analyze the differences and similarities of the bacteria. METHODS The test subjects were selected from 2 Tibetan, 2 Yi and 3 Han populated places, respectively. Total 222 seniors (444 eyes) with dry eye were examined. Secretion was collected from the palpebral conjunctiva of the subjects and then inoculated onto a blood agar plate. After 48h of incubation, the bacteria were examined for the differences and similarities between different ethnics. RESULTS There was no significant difference (P>0.05) of Gram stain characterization, dominant bacteria and number of the bacterial species present in oxrophthalmia patients among Tibetan, Yi and Han nationalities. The bacteria presented in all groups include staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa. The bacteria detected from the two of three ethnic groups were staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae, and staphylococcus heads. The incidence rate of bacteria-associated dry eye in Tibetan population was significantly lower than that of Han and Yi population. CONCLUSION There is no significant difference in the bacteria flora of palpebral conjunctiva observed among dry eye elder populations of Tibetan, Yi and Han people. All of staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa, staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae and staphylococcus heads are common bacteria flora of the three nationalities inhibiting in this area. PMID:23991377
Coorevits, L; Heytens, S; Boelens, J; Claeys, G
2017-04-01
The workup and interpretation of urine cultures is not always clear-cut, especially for midstream samples contaminated with commensals. Standard urine culture (SUC) protocols are designed in favor of growth of uropathogens at the expense of commensals. In selected clinical situations, however, it is essential to trace fastidious or new uropathogens by expanding the urine culture conditions (EUC). The aim of our study was to map the microflora in midstream urine specimens from healthy controls by means of EUC, in view of the interpretation of bacterial culture results in symptomatic patients. Midstream urine specimens from 101 healthy controls (86 females and 15 males) were examined using both SUC and EUC. Whilst 73 % of samples examined by SUC showed no growth at 10 3 colony-forming units (CFU)/mL, 91 % of samples examined by EUC grew bacterial species in large numbers (≥10 4 CFU/mL). Asymptomatic bacteriuria, as defined by the European guidelines for urinalysis, was detected in six samples with both protocols. EUC revealed 98 different species, mostly Lactobacillus, Staphylococcus, Streptococcus, and Corynebacterium. None of the samples grew Staphylococcus saprophyticus, Corynebacterium urealyticum, or Aerococcus urinae. Samples from females contained higher bacterial loads and showed higher bacterial diversity compared to males. Midstream urine of healthy controls contains large communities of living bacteria that comprise a resident microflora, only revealed by EUC. Hence, the use of EUC instead of SUC in a routine setting would result in more sensitive but less specific results, requiring critical interpretation. In our view, EUC should be reserved for limited indications.
Schroeder, Brenda K; Schneider, William L; Luster, Douglas G; Sechler, Aaron; Murray, Timothy D
2018-05-01
Aplanobacter agropyri was first described in 1915 by O'Gara and later transferred to the genus Corynebacterium by Burkholder in 1948 but it was not included in the Approved Lists of Bacterial Names in 1980 and, consequently, is not recognized as a validly published species. In the 1980s, bacteria resembling Corynebacterium agropyri were isolated from plant samples stored at the Washington State Mycological Herbarium and from a diseased wheatgrass plant collected in Cardwell, Montana, USA. In the framework of this study, eight additional isolates were recovered from the same herbarium plant samples in 2011. The isolates are slow-growing, yellow-pigmented, Gram-stain-positive and coryneform. The peptidoglycan is type B2γ containing diaminobutyric acid, alanine, glycine and glutamic acid, the cell-wall sugars are rhamnose and mannose, the major respiratory quinone is MK-10, and the major fatty acids are anteiso-15 : 0, anteiso 17 : 0 and iso-16 : 0, all of which are typical of the genus Rathayibacter. Phylogenetic analysis of 16S rRNA gene sequences placed the strains in the genus Rathayibacter and distinguished them from the six other described species of Rathayibacter. DNA-DNA hybridization confirmed that the strains were members of a novel species. Based on phenotypic, chemotaxonomic and phylogenetic characterization, it appears that strains CA-1 to CA-12 represent a novel species, and the name Rathayibacter agropyri (non O'Gara 1916) comb. nov., nom. rev. is proposed; the type strain is CA-4 T (=DSM 104101 T ;=ATCC TSD-78 T ).
Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo
2015-01-01
The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.
Li, Yiming; Syvitski, Ray T; Chu, Grace C; Ikeda-Saito, Masao; Mar, Gerd N La
2003-02-28
The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO.
Hasegawa, Satoshi; Uematsu, Kimio; Natsuma, Yumi; Suda, Masako; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki
2012-01-01
Production of l-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the l-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall l-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of l-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for l-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD+ ratio significantly decreased, and glucose consumption and l-valine production drastically improved. Moreover, l-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD+ ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for l-valine production under oxygen deprivation conditions. The l-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM l-valine after 24 h with a yield of 0.63 mol mol of glucose−1, and the l-valine productivity reached 1,940 mM after 48 h. PMID:22138982
Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669
Hasegawa, Satoshi; Uematsu, Kimio; Natsuma, Yumi; Suda, Masako; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki
2012-02-01
Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.
Nguyen, Anh Q. D.; Schneider, Jens; Reddy, Gajendar Komati; Wendisch, Volker F.
2015-01-01
Corynebacterium glutamicum shows great potential for the production of the glutamate-derived diamine putrescine, a monomeric compound of polyamides. A genome-scale stoichiometric model of a C. glutamicum strain with reduced ornithine transcarbamoylase activity, derepressed arginine biosynthesis, and an anabolic plasmid-addiction system for heterologous expression of E. coli ornithine decarboxylase gene speC was investigated by flux balance analysis with respect to its putrescine production potential. Based on these simulations, enhancing glycolysis and anaplerosis by plasmid-borne overexpression of the genes for glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase as well as reducing 2-oxoglutarate dehydrogenase activity were chosen as targets for metabolic engineering. Changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and changing threonine 15 of OdhI to alanine reduced 2-oxoglutarate dehydrogenase activity about five fold and improved putrescine titers by 28%. Additional engineering steps improved further putrescine production with the largest contributions from preventing the formation of the by-product N-acetylputrescine by deletion of spermi(di)ne N-acetyltransferase gene snaA and from overexpression of the gene for a feedback-resistant N-acetylglutamate kinase variant. The resulting C. glutamicum strain NA6 obtained by systems metabolic engineering accumulated two fold more putrescine than the base strain, i.e., 58.1 ± 0.2 mM, and showed a specific productivity of 0.045 g·g−1·h−1 and a yield on glucose of 0.26 g·g−1. PMID:25919117
Sato, Hiroki; Orishimo, Keita; Shirai, Tomokazu; Hirasawa, Takashi; Nagahisa, Keisuke; Shimizu, Hiroshi; Wachi, Masaaki
2008-07-01
Corynebacterium glutamicum is a biotin auxotrophic bacterium in which glutamate production is induced under biotin-limited conditions. During glutamate production, anaplerotic reactions catalyzed by phosphoenolpyruvate carboxylase (PEPC) and a biotin-containing enzyme pyruvate carboxylase (PC) are believed to play an important role in supplying oxaloacetate in the tricarboxylic acid cycle. To understand the distinct roles of PEPC and PC on glutamate production by C. glutamicum, we observed glutamate production induced under biotin-limited conditions in the disruptants of the genes encoding PEPC (ppc) and PC (pyc), respectively. The pyc disruptant retained the ability to produce high amounts of glutamate, and lactate was simultaneously produced probably due to the increased intracellular pyruvate levels. On the other hand, the ppc knockout mutant could not produce glutamate. Additionally, glutamate production in the pyc disruptant was enhanced by overexpression of ppc rather than disruption of the lactate dehydrogenase gene (ldh), which is involved in lactate production. Metabolic flux analysis based on the 13C-labeling experiment and measurement of 13C-enrichment in glutamate using nuclear magnetic resonance spectroscopy revealed that the flux for anaplerotic reactions in the pyc disruptant was lower than that in the wild type, concomitantly increasing the flux for lactate formation. Moreover, overexpression of ppc increased this flux in both the pyc disruptant and the wild type. Our results suggest that the PEPC-catalyzed anaplerotic reaction is necessary for glutamate production induced under biotin-limited conditions, because PC is not active during glutamate production, and overexpression of ppc effectively enhances glutamate production under biotin-limited conditions.
Supkulsutra, Tanyanut; Maeda, Tomoya; Kumagai, Kosuke; Wachi, Masaaki
2013-01-01
Corynebacterium glutamicum is a Gram-positive, rod-shaped, aerobic bacterium used for the fermentative production of L-glutamate. LldR (NCgl2814) is known as a repressor for ldhA and lldD encoding lactate dehydrogenases. LdhA is responsible for production of L-lactate, while LldD is for its assimilation. Since L-lactate production was observed as a by-product of glutamate production under biotin-limited conditions, LldR might play a regulatory role in the glutamate metabolism. Here for the first time, we investigated effects of overproduction or deletion of LldR on the glutamate metabolism under biotin-limited conditions in C. glutamicum. It was found that glutamate production under biotin-limited conditions was decreased by overproduction of LldR. In the wild-type cells, L-lactate was produced in the first 24 h and it was re-consumed thereafter. On the other hand, in the overproduced cells, L-lactate was produced like the wild type, but it was not re-consumed. This means that L-lactate assimilation, which is catalyzed by LldD, was suppressed by the overproduction of LldR, but L-lactate production, which is catalyzed by LdhA, was not affected, indicating that LldR mainly controls the expression of lldD but not of ldhA under biotin-limited conditions. This was confirmed by quantitative real-time RT-PCR. From these results, it is suggested that L-lactate metabolism, which is controlled by LldR, has a buffering function of the pyruvate pool for glutamate production.
Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael
2015-03-01
2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1) h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Rapid detection of Corynebacterium pseudotuberculosis in clinical samples from sheep.
Kumar, Jyoti; Tripathi, Bhupendra Nath; Kumar, Rajiv; Sonawane, Ganesh Gangaram; Dixit, Shivendra Kumar
2013-08-01
Corynebacterium pseudotuberculosis, a Gram-positive bacterium is the causative agent of caseous lymphadenitis (CLA), a chronic disease of sheep, goats and other warm blooded animals. In the present study, a total of 1,080 sheep reared under semi-intensive system on organized farms situated in the semi arid tropical region of Rajasthan, India, was clinically examined. Pus samples from superficial lymph nodes of 25 (2.31%) adult sheep showing clinical lesions similar to CLA were collected for laboratory analyses. On the basis of morphological, cultural and biochemical characteristics 12 (48%) bacterial isolates from pus identified it as C. pseudotuberculosis. A polymerase chain reaction (PCR) assay targeting Putative oligopeptide/dipeptide ABC transporter, nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase coenzyme F420-dependent and proline iminopeptidase (PIP) genes of C. pseudotuberculosis was developed that showed 14 pus samples as positive. All C. pseudotuberculosis isolates were also found positive for these genes in the PCR. The specificity of the PCR products was confirmed by sequencing of the amplified products that showed 98-100% homology with published sequences available in the NCBI database. The present study shows the incidence of CLA as 2.31%, 1.1% and 1.29% based on clinical, bacterial culture and direct pus PCR assay, respectively. The PCR assay was rapid, specific and as significant as bacterial culture in detecting bacteria directly in the clinical pus samples. The PCR assay developed in the study can be applied for the diagnosis and control of CLA. Furthermore, the assay can also be applied to detect C. pseudotuberculosis in various clinical samples.
Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo
2015-01-01
The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26°C. A total of 371g housefly larvae meal and 2,064g digested residue were bio-converted from 3,500g raw GFR mixture contaning1, 400g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources. PMID:25992605
Park, Jong-Uk; Jo, Jae-Hyung; Kim, Young-Ji; Chung, So-Sun; Lee, Jin-Ho; Lee, Hyune Hwan
2008-04-01
The heat-inducible expression vectors for Corynebacterium glutamicum and C. ammoniagenes were constructed by using the lambdaOL1 and the cryptic promoters, CJ1 and CJ4 that express genes constitutively in C. ammoniagenes.. Although the promoters were isolated from C. ammoniagenes, CJ1 and CJ4 were also active in C. glutamicum. To construct vectors, the OL1 from the lambdaPL promoter was isolated and fused to the CJ1 and CJ4 promoters by recombinant PCR. The resulting artificial promoters, CJ1O and CJ4O, which have one lambdaOL1, and CJ1OX2, which has two successive lambdaOL1, were fused to the green fluorescent protein (GFP) gene followed by subcloning into pCES208. The expression of GFP in the corynebacteria harboring the vectors was regulated successfully by the temperature sensitive cI857 repressor. Among them, C. ammoniagenes harboring plasmid pCJ1OX2G containing GFP fused to CJ1OX2 showed more GFP than the other ones and the expression was tightly regulated by the repressor. To construct the generally applicable expression vector using the plasmid pCJ1OX2G, the His-tag, enterokinase (EK) moiety, and the MCS were inserted in front of the GFP gene. Using the vector, the expression of pyrR from C. glutamicum was tried by temperature shift-up. The results indicated that the constructed vectors (pCeHEMG) can be successfully used in the expression and regulation of foreign genes in corynebacteria.
Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong
2013-11-01
γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.
Release of antimicrobial actives from microcapsules by the action of axillary bacteria.
Kromidas, L; Perrier, E; Flanagan, J; Rivero, R; Bonnet, I
2006-04-01
We describe the use of unique microcapsules that may be degraded by the actions of bacteria. These microcapsules are approximately 35 mum in diameter, are composed of natural protein, and may be filled with a variety of actives. We describe the use of antimicrobial actives such as farnesol and methylparaben to demonstrate that their release by the degradative actions of axillary bacteria such as Corynebacterium minutissimum, C. urealyticum, and Staphylococcus epidermidis leads to their demise. These microcapsules may be used in consumer products such as deodorants and antiperpirants that may, under actual use conditions, control malodor.
Becker, Judith; Wittmann, Christoph
2015-03-09
Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1975-12-01
Micrococcus sp., capable of reducing 10- 3M sodium arsenate o Tarsenite--Th-s property was possessed by growing cells, resting cells, and the soluble...Corynebacterium, and Micrococcus sp. K-29 KA4 TABLE K-12. Microorgani ms Producing Water-Soluble Metabolites from Dieldrin - 14C, Isolated after 8 Weeks... Micrococcus 0 0 0 1 1 11.5 Bacillus 1 1 3.4 0 0 0 Yeasts 1 1 8.0 2 2 5.5 Total 73 35 104 56 *Per cent increase in water soluble activity brought about
Influence of Corynebacterium pseudotuberculosis infection on level of acute phase proteins in goats.
Jeber, Z K H; MohdJin, Z; Jesse, F F; Saharee, A A; Sabri, J; Yusoff, R; Wahid, H
2016-03-09
Goat caseous lymphadenitis (CLA) is a chronic disease caused by Corynebacterium pseudotuberculosis. However, there is paucity of data about goat's acute phase response during the course of CLA. This study was conducted to investigate the response of acute phase proteins, mainly haptoglobin (Hp), serum amyloid A (SAA) and the negative acute phase response, especially albumin after an experimental challenge of C. pseudotuberculosis and phospholipase D (PLD) in Cross bred Boer goats. Serum Hp concentration in goats challenged with C. pseudotuberculosis (inoculated with 1x10(9) cfu subcutaneously) showed a significant increase, 5 fold in males (0.98 ± 0.12 mg/ml) and 3 fold in females (0.66 ± 0.12 mg/ml) compared to the control (0.2 ± 0.02 mg/ml). Challenge with PLD (1 ml/20 kg body weight intravenously) also showed significant increase, 4 fold in males and females (0.89 ± 0.11 mg/ml; 0.82 ± 0.12 mg/ml) respectively compared to the control (0.2 ± 0.02 mg/ml). Albumin concentration showed a significant decrease in both treated groups compared to the control. There were no significant changes in SAA concentration between challenged and control goats. There was a significant response by Hp to C. pseudotuberculosis infection and PLD challenge. This was supported by the early acute response in which Hp was detected before CLA lesions were developed. Therefore, it concluded that C. pseudotuberculosis and PLD can influence the level of acute phase proteins in goats.
2012-01-01
Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation. PMID:22243621
Mateos, Luis M; Villadangos, Almudena F; de la Rubia, Alfonso G; Mourenza, Alvaro; Marcos-Pascual, Laura; Letek, Michal; Pedre, Brandán; Messens, Joris; Gil, Jose A
2017-01-01
Arsenic (As) is widespread in the environment and highly toxic. It has been released by volcanic and anthropogenic activities and causes serious health problems worldwide. To survive arsenic-rich environments, soil and saprophytic microorganisms have developed molecular detoxification mechanisms to survive arsenic-rich environments, mainly by the enzymatic conversion of inorganic arsenate (As V ) to arsenite (As III ) by arsenate reductases, which is then extruded by arsenite permeases. One of these Gram-positive bacteria, Corynebacterium glutamicum, the workhorse of biotechnological research, is also resistant to arsenic. To sanitize contaminated soils and waters, C. glutamicum strains were modified to work as arsenic "biocontainers." Two chromosomally encoded ars operons (ars1 and ars2) are responsible for As resistance. The genes within these operons encode for metalloregulatory proteins (ArsR1/R2), arsenite permeases (Acr3-1/-2), and arsenate reductases (ArsC1/C2/C1'). ArsC1/C2 arsenate reductases are coupled to the low molecular weight thiol mycothiol (MSH) and to the recently discovered mycoredoxin-1 (Mrx-1) present in most Actinobacteria. This MSH/Mrx-1 redox system protects cells against different forms of stress, including reactive oxygen species (ROS), metals, and antibiotics. ROS can modify functional sulfur cysteines by oxidizing the thiol (-SH) to a sulfenic acid (-SOH). These oxidation-sensitive protein cysteine thiols are redox regulated by the MSH/Mrx-1 couple in Corynebacterium and Mycobacterium. In summary, the molecular mechanisms involved in arsenic resistance system in C. glutamicum have paved the way for understanding the cellular response against oxidative stress in Actinobacteria. Copyright © 2017 Elsevier Inc. All rights reserved.
2013-01-01
Background The development of new drugs against tuberculosis and diphtheria is focused on disrupting the biogenesis of the cell wall, the unique architecture of which confers resistance against current therapies. The enzymatic pathways involved in the synthesis of the cell wall by these pathogens are well understood, but the underlying regulatory mechanisms are largely unknown. Results Here, we characterize IpsA, a LacI-type transcriptional regulator conserved among Mycobacteria and Corynebacteria that plays a role in the regulation of cell wall biogenesis. IpsA triggers myo-inositol formation by activating ino1, which encodes inositol phosphate synthase. An ipsA deletion mutant of Corynebacterium glutamicum cultured on glucose displayed significantly impaired growth and presented an elongated cell morphology. Further studies revealed the absence of inositol-derived lipids in the cell wall and a complete loss of mycothiol biosynthesis. The phenotype of the C. glutamicum ipsA deletion mutant was complemented to different extend by homologs from Corynebacterium diphtheriae (dip1969) and Mycobacterium tuberculosis (rv3575), indicating the conserved function of IpsA in the pathogenic species. Additional targets of IpsA with putative functions in cell wall biogenesis were identified and IpsA was shown to bind to a conserved palindromic motif within the corresponding promoter regions. Myo-inositol was identified as an effector of IpsA, causing the dissociation of the IpsA-DNA complex in vitro. Conclusions This characterization of IpsA function and of its regulon sheds light on the complex transcriptional control of cell wall biogenesis in the mycolata taxon and generates novel targets for drug development. PMID:24377418
Fajt, V. R.; Lawhon, S. D.; Adams, L. G.; Tell, L. A.; Bissett, W. T.
2013-01-01
Corynebacterium pseudotuberculosis causes chronic, suppurative, abscessing conditions in livestock and humans. We used an in vivo model to evaluate antimicrobial efficacy for focal abscesses caused by C. pseudotuberculosis. Tissue chambers were surgically implanted in the subcutaneous tissues of the right and left paralumbar fossa of 12 goats to serve as a model for isolated, focal abscesses. For each goat, one tissue chamber was inoculated with C. pseudotuberculosis, while the contralateral chamber served as an uninoculated control. Six goats were administered a single dose of tulathromycin at 2.5 mg/kg of body weight subcutaneously, while the other six received the same dose by injection directly into the inoculated chambers. Our objective was to compare the effects and tulathromycin concentrations in interstitial fluid (IF) samples collected from C. pseudotuberculosis-infected and control chambers following subcutaneous or intrachamber injection of tulathromycin. In addition, the effects of tulathromycin on the quantity of C. pseudotuberculosis reisolated from inoculated chambers were assessed over time. Tulathromycin IF concentrations from C. pseudotuberculosis-infected and control tissue chambers were similar to those in plasma following subcutaneous administration. Following intrachamber administration, tulathromycin IF concentrations in infected chambers were continuously above the MIC for the C. pseudotuberculosis isolate for 15 days. There were no significant differences for plasma area under the curve and elimination half-lives between subcutaneous and intrachamber administration. Six of the 12 infected chambers had no growth of C. pseudotuberculosis 15 days postadministration. Results of this study indicate that tulathromycin may be beneficial in the treatment of focal infections such as those caused by C. pseudotuberculosis. PMID:24100501
Lappan, Rachael; Imbrogno, Kara; Sikazwe, Chisha; Anderson, Denise; Mok, Danny; Coates, Harvey; Vijayasekaran, Shyan; Bumbak, Paul; Blyth, Christopher C; Jamieson, Sarra E; Peacock, Christopher S
2018-02-20
Recurrent acute otitis media (rAOM, recurrent ear infection) is a common childhood disease caused by bacteria termed otopathogens, for which current treatments have limited effectiveness. Generic probiotic therapies have shown promise, but seem to lack specificity. We hypothesised that healthy children with no history of AOM carry protective commensal bacteria that could be translated into a specific probiotic therapy to break the cycle of re-infection. We characterised the nasopharyngeal microbiome of these children (controls) in comparison to children with rAOM (cases) to identify potentially protective bacteria. As some children with rAOM do not appear to carry any of the known otopathogens, we also hypothesised that characterisation of the middle ear microbiome could identify novel otopathogens, which may also guide the development of more effective therapies. Middle ear fluids, middle ear rinses and ear canal swabs from the cases and nasopharyngeal swabs from both groups underwent 16S rRNA gene sequencing. The nasopharyngeal microbiomes of cases and controls were distinct. We observed a significantly higher abundance of Corynebacterium and Dolosigranulum in the nasopharynx of controls. Alloiococcus, Staphylococcus and Turicella were abundant in the middle ear and ear canal of cases, but were uncommon in the nasopharynx of both groups. Gemella and Neisseria were characteristic of the case nasopharynx, but were not prevalent in the middle ear. Corynebacterium and Dolosigranulum are characteristic of a healthy nasopharyngeal microbiome. Alloiococcus, Staphylococcus and Turicella are possible novel otopathogens, though their rarity in the nasopharynx and prevalence in the ear canal means that their role as normal aural flora cannot be ruled out. Gemella and Neisseria are unlikely to be novel otopathogens as they do not appear to colonise the middle ear in children with rAOM.
Braverman, Y; Chizov-Ginzburg, A; Saran, A; Winkler, M
1999-12-01
A study was conducted to assess the role of houseflies, Musca domestica L. in harbouring Corynebacterium pseudotuberculosis in dairy farms in Israel. The bacterium was isolated in June 1993 from 40 wild houseflies which had fed on a lesion on a cow, and from 28 laboratory flies fed on contaminated milk from a cow infected with mastitis. The bacterium was recovered from the body surface of 10 flies (of a total of 160) 10 min after being dipped entirely in a bacterial broth. The bacterium was recovered from the body surface of 10 flies (of a total of 40) 5 min after being fed on contaminated milk. When 110 flies were fed on contaminated sugar cubes, the bacterium was recovered externally from 70 flies 5 min later, and from an additional 20 flies 10 min after feeding. Of 110 flies, 80 excreted bacteria in saliva from 5 min to 3 h after feeding on contaminated milk. Bacteria were isolated from the intestine of 40 of 60 flies between 1 h and 4 h after feeding on contaminated milk. Bacteria were found in the faeces of 30 of 60 flies, between 1 h and 4 h after feeding on contaminated milk. In the light of these findings, and given the fact that this species of fly has a predilection to feed on milk residues of cow teats, the authors concluded that the housefly plays an important role in harbouring and disseminating C. pseudotuberculosis in dairy herds in Israel. In contrast, stable flies (Stomoxys calcitrans L.) are not important in the habouring and dissemination of the bacteria, since bacteria were not recovered 5, 10, 15, 30 min, 2 h or 24 h after membrane feeding on a mixture of bacterial broth and blood.
Radoš, Dušica; Turner, David L; Fonseca, Luís L; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J; Neves, Ana Rute; Santos, Helena
2014-05-01
Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation.
Gopinath, Vipin; Meiswinkel, Tobias M; Wendisch, Volker F; Nampoothiri, K Madhavan
2011-12-01
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the L-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more L-glutamate and L-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM L-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM L-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.
Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E
2012-03-01
Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The present study therefore demonstrated that the soil investigated harbours hydrocarbon-degrading bacterial populations which can be biostimulated to achieve effective bioremediation of oil-contaminated soil.
Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong
2018-05-03
L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.
Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru
In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.
Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2017-11-16
Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.
Enhancement of thermal response of normal and malignant tissues by Corynebacterium parvum. [Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urano, M.; Yamashita, T.; Suit, H.D.
1984-06-01
Further studies were carried out on the combined effects of Corynebacterium parvum and hyperthermia on animal tissues and cultured Chinese hamster ovary cells. Experimental animals were C3Hf/Sed mice derived from a defined flora mouse colony. Tumors were eighth-generation isotransplants of a spontaneous fibrosarcoma, FSa-II. Hyperthermia was given by immersing the mouse foot or culture flasks in the constant temperature water bath. Present experiments include thermal enhancement of C. parvum at different temperatures, effect of the agent on the kinetics of thermal resistance, and the mechanism of the thermal enhancement. The thermal enhancement by C. parvum was independent of temperature inmore » a range between 42.5 and 46.5 degrees, and it increased with decreasing temperature. The analysis of the Arrhenius plot suggested a comparable activation energy for combined treatments and for heat alone between 42.5 and 46.5 degrees. The thermal resistance developed very rapidly in both normal and tumor tissues. Systemic administration of C. parvum failed to modify the kinetics of thermal resistance. Several experiments were attempted in order to disclose the mechanism. A single injection of C. parvum-induced macrophages failed to enhance thermal response of the mouse foot, while 3 daily injections of the macrophages enhanced the response, indicating that the enhancement by C. parvum is at least partly attributed to the C. parvum-induced macrophages. Whole-body irradiation of 6 Gy and/or administration of anti-mouse T-cell serum and histamine failed to inhibit the C. parvum enhancement of thermal response. No thermal enhancement was observed for Chinese hamster ovary cells treated at 43.0 degrees in vitro with C. parvum or thiomersalate, a preservative supplemented in C. parvum, although cytotoxic effect was shown at a high concentration of thiomersalate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdivieso, M.; Tenczynski, T.F.; Rodriguez, V.
1981-07-15
Thirty-five consecutive patients with small cell bronchogenic carcinoma (SCBC) received chemoimmunotherapy with VP-16-213, Ifosfamide, vincristine, Adriamycin, and Corynebacterium parvum. Of 33 evaluable patients, 26 (79%) responded with complete (55%) or partial (24%) remissions. Complete remissions were more common among patients with limited disease (11/14 patients, 79%) compared with those with extensive disease (7/19 patients, 37%) and among patients (11/14 patients, 79%) compared with those with extensive disease (7/19 patients, 37%) and among patients who were ambulatory prior to therapy (16/25 patients, 64%) compared with those who were nonambulatory (2/8 patients, 25%). Myelosuppression consisted primarily of neutropenia. Eight percent of themore » treatment courses in 29% of the patients were associated with hematuria and/or documented episodes of infection during neutropenia. There were three deaths possibly related to treatment, in two of which there was no evidence of disease at post-mortem examination. Six patients relapsed in the central nervous system (CNS). In four instances, CNS relapse was the only site of tumor progression. Central nervous system relapse was more common among evaluable patients who did not receive prophylactic brain irradiation (5/17 patients, 29%, vs. 1/15 patients, 7%; P . 0.23). The median survival duration for all patients was 63 weeks, being slightly longer for patients with limited disease than for those with extensive disease (70.9 weeks vs. 56 weeks; P . 0.18). This was also true for patients who achieved complete rather than partial remissions (71 weeks vs. 50 weeks; P . 0.09). Patients receiving prophylactic brain irradiation experienced longer survival (100.8 weeks vs. 48 weeks; P . 0.01).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Y.
1989-05-01
Administration of Corynebacterium parvum (CP), 56 mg/kg ip to CBA/J mice effected the induction of prostaglandin E2 (PGE2) producing macrophages (M phi) in the bone marrow and the spleen. Maximal release of PGE2 from M phi cultured in vitro with calcium ionophore A23187 for 2 h was reached by marrow M phi removed on 5 days after CP (450 ng/mg cell protein), and by splenic M phi 9 days after CP (400 ng/mg). Neither M phi population, however, yielded more than 6.0 ng/mg leukotriene C4. To assess ontogenic relationships mice were depleted of bone marrow and blood monocytes by ivmore » injection of the bone-seeking isotope, 89Sr. CP was given at several points before or after bone marrow cell depletion. PGE2 production by splenic M phi harvested on day 9 after CP was profoundly impaired when CP was administered either concurrently with or 3 days after 89Sr. When CP was administered 1, 3, 5, and 7 days before 89Sr, however, the induction of PGE2-producing M phi in the spleen was unaffected. To determine whether bone marrow cells from CP-injected donors can restore PGE2-producing splenic M phi (PGSM) in 89Sr-mice, recipient mice which had and had not received CP 3 days after 89Sr were transfused with 5 x 10(6) syngeneic bone marrow cells from donor mice prepared at varying intervals after CP administration. The results clearly indicate the capacity of bone marrow cells harvested on either day 1 or 2 following CP to restore PGSM in CP-primed, but not unprimed, recipients.« less
Metabolism of azo dyes by human skin microbiota
Stingley, Robin L.; Zou, Wen; Heinze, Thomas M.; Chen, Huizhong; Cerniglia, Carl E.
2018-01-01
Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74–100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes. PMID:19729456
Schiller, Dirk; Ott, Vera; Krämer, Reinhard; Morbach, Susanne
2006-03-24
The glycine betaine carrier BetP from Corynebacterium glutamicum was recently shown to function as both an osmosensor and osmoregulator in proteoliposomes made from Escherichia coli phospholipids by sensing changes in the internal K+ concentration as a measure of hyperosmotic stress (Rübenhagen, R., Morbach, S., and Krämer, R. (2001) EMBO J. 20, 5412-5420). Furthermore, evidence was provided that a stretch of 25 amino acids of the C-terminal domain of BetP is critically involved in K+ sensing. This K+-sensitive region has been further characterized. Glu572 turned out to be important for osmosensing in E. coli cells and in proteoliposomes made from E. coli phospholipids. BetP mutants E572K, E572P, and E572A/H573A/R574A were unable to detect an increase in the internal K+ concentration in this membrane environment. However, these BetP variants regained their ability to detect osmotic stress in membranes with increased phosphatidylglycerol content, i.e. in intact C. glutamicum cells or in proteoliposomes mimicking the composition of the C. glutamicum membrane. Mutants E572P and Y550P were still insensitive to osmotic stress also in this membrane background. These results led to the following conclusions. (i) The K+ sensor in mutants E572Q, E572D, and E572K is only partially impaired. (ii) Restoration of activity regulation is not possible if the correct conformation or orientation of the C-terminal domain is compromised by a proline residue at position 572 or 550. (iii) Phosphatidylglycerol in the membrane of C. glutamicum seems to stabilize the inactive conformation of BetP C252T and other mutants.
Schiller, Dirk; Rübenhagen, René; Krämer, Reinhard; Morbach, Susanne
2004-05-18
The glycine betaine carrier BetP of Corynebacterium glutamicum was recently shown to function both as an osmosensor and as an osmoregulator in proteoliposomes by sensing changes in the internal K(+) concentration as a measure of hyperosmotic stress. In vivo analysis of mutants carrying deletions at the C-terminal extension of BetP indicated that this domain participates in osmostress-dependent activity regulation. To address the question, whether a putative K(+) sensor is located within the C-terminal domain, several mutants with truncations in this domain were purified and reconstituted in proteoliposomes of Escherichia coli phospholipids, since this in vitro system allowed variation of the K(+) concentration at the lumenal side. Truncation of 12 amino acids led to a partly deregulated BetP in terms of osmoregulation; however, K(+) sensitivity was not impaired in this mutant. The deletion of 25 amino acid residues at the C-terminal end of BetP led to both deregulation of the carrier activity, i.e., high activity independent of external osmolality, and loss of K(+)-dependent transport stimulation, indicating that this region of the C-terminal domain is necessary for K(+) sensing and/or K(+)-dependent carrier activation. Immunological and proteolysis analyses showed that BetP and its recombinant forms were reconstituted in a right-side-out orientation, i.e., the C-terminal domain faces the lumen of the proteoliposomes and is thus able to detect the K(+) signal at the inside. This is the first experimental demonstration of a direct connection between an osmotic stimulus, i.e., the change in internal K(+), and a putative sensor domain.
Corynebacterium glutamicum as a Host for Synthesis and Export of d-Amino Acids▿
Stäbler, Norma; Oikawa, Tadao; Bott, Michael; Eggeling, Lothar
2011-01-01
A number of d-amino acids occur in nature, and there is growing interest in their function and metabolism, as well as in their production and use. Here we use the well-established l-amino-acid-producing bacterium Corynebacterium glutamicum to study whether d-amino acid synthesis is possible and whether mechanisms for the export of these amino acids exist. In contrast to Escherichia coli, C. glutamicum tolerates d-amino acids added extracellularly. Expression of argR (encoding the broad-substrate-specific racemase of Pseudomonas taetrolens) with its signal sequence deleted results in cytosolic localization of ArgR in C. glutamicum. The isolated enzyme has the highest activity with lysine (100%) but also exhibits activity with serine (2%). Upon overexpression of argR in an l-arginine, l-ornithine, or l-lysine producer, equimolar mixtures of the d- and l-enantiomers accumulated extracellularly. Unexpectedly, argR overexpression in an l-serine producer resulted in extracellular accumulation of a surplus of d-serine (81 mM d-serine and 37 mM l-serine) at intracellular concentrations of 125 mM d-serine plus 125 mM l-serine. This points to a nonlimiting ArgR activity for intracellular serine racemization and to the existence of a specific export carrier for d-serine. Export of d-lysine relies fully on the presence of lysE, encoding the exporter for l-lysine, which is apparently promiscuous with respect to the chirality of lysine. These data show that d-amino acids can also be produced with C. glutamicum and that in special cases, due to specific carriers, even a preferential extracellular accumulation of this enantiomer is possible. PMID:21257776
Enns, D K; Crandall, P G; O'Bryan, C A; Griffis, C L; Martin, E M
2007-05-01
Americans consume almost 40 kg per capita of chicken each year. Increasing consumption of chicken surpassed pork in 1982 and beef in 1992. The objectives of this study were to examine the effectiveness of a novel, 2-step cooking method of grilling, slicing, vacuum packaging, and hot water pasteurization to inhibit the growth of Listeria monocytogenes in chicken breast meat. Because this study required the use of pilot plant scale pasteurization equipment, Listeria innocua M1, a nonpathogen with slightly greater heat resistance than L. monocytogenes, was used as a surrogate. We first examined the lethal effects of grilling on a boneless skinless chicken breast to mimic cross-contaminated, surface-inoculated Listeria. Searing produced a mean reduction of 2.5 log CFU/g of Listeria and a moisture loss of only 7% (w/w). A 2nd experiment studied the lethal effect of pasteurization of the sliced seared chicken breast. L. innocua M1 inoculated between the slices mimicked contamination in deep muscle. Pasteurization in a 71 degrees C bath (final internal temperature of 66 degrees C) gave an additional 2.3 log CFU/g reduction. L. innocua M1 did not show significant regrowth during a wk of refrigerated storage. The combined 2-step cooking method of searing and pasteurization gave a combined 4.8 log reduction in LI M1. In parallel tests a non-Listeria indicator, Corynebacterium glutamicum, inoculated between sliced, seared chicken, showed a 3 log reduction after pasteurization for 10 min in a 71 degrees C bath compared to 2.3 log reduction of Listeria. Corynebacterium regrowth occurred much faster than did L. innocua M1.
The Effect of Chronic Alcoholism on the Conjunctival Flora.
Gunduz, Göksel; Gunduz, Abuzer; Polat, Nihat; Cumurcu, Birgul Elbozan; Yakupogulları, Yusuf
2016-06-01
We aimed to investigate the effect of alcohol abuse on the conjunctival flora. The cases were evaluated as two groups. The study group consisted of 55 heavy-drinking males diagnosed with alcohol abuse, while the control group consisted of 55 males without a history of alcohol abuse. Samples were taken from the inferior fornix conjunctiva with sterile cotton-tipped swabs (Amies transport medium) for culture. The samples were inoculated into blood agar, chocolate agar, eosine methylene blue agar and Saboraud-Dextrose agar (Oxoid/UK) with the dilution method. The microorganisms that grew in study group subjects were Coagulase Negative Staphylococcus (CNS) in 30 (54.5%), Staphylococcus aureus in 14 (25.5%), Moraxella spp. in 3 (5.5%), Streptococcus spp. in 3 (5.5), Bacillus spp. in 3 (5.5%), Corynebacterium spp. in 3 (5.5%), Candida spp. in 3 (5.5%), Haemophilus spp. in 2 (3.6%), Acinetobacter spp. in 2 (3.6%), Neisseria spp. in 1 (1.8%) and Micrococcus spp. in 1 (1.8%). The results for control group were CNS in 31 (56.4%), Bacillus spp. in 7 (12.7%), S. aureus in 5 (9.1%), and Corynebacterium spp. in 2 (3.6%). Moraxella spp., Streptococcus spp., Candida spp., Haemophilus spp., Acinetobacter spp., Neisseria spp. and Micrococcus spp. microorganisms grew in the conjunctival flora samples of the study group but not in the control group. S. aureus colonization was significantly higher in the study group than the control group (p < 0.05). The S. aureus colonization rate was statistically significantly higher in the study group. Some microorganisms only grew in the conjunctival flora samples of the study group. These findings indicate that the conjunctival flora in persons with chronic alcoholism is different than the normal population.
Shi, Feng; Luan, Mingyue; Li, Yongfu
2018-04-18
Glutamate decarboxylase (GAD) converts L-glutamate (Glu) into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene, gadB2 or gadB1, can synthesize GABA from its own produced Glu. To enhance GABA production in C. glutamicum, ribosomal binding site (RBS) sequence and promoter were searched and optimized for increasing the expression efficiency of gadB2. R4 exhibited the highest strength among RBS sequences tested, with 6 nt the optimal aligned spacing (AS) between RBS and start codon. This combination of RBS sequence and AS contributed to gadB2 expression, increased GAD activity by 156% and GABA production by 82% compared to normal strong RBS and AS combination. Then, a series of native promoters were selected for transcribing gadB2 under optimal RBS and AS combination. P dnaK , P dtsR , P odhI and P clgR expressed gadB2 and produced GABA as effectively as widely applied P tuf and P cspB promoters and more effectively than P sod promoter. However, each native promoter did not work as well as the synthetic strong promoter P tacM , which produced 20.2 ± 0.3 g/L GABA. Even with prolonged length and bicistronic architecture, the strength of P dnaK did not enhance. Finally, gadB2 and mutant gadB1 were co-expressed under the optimal promoter and RBS combination, thus converted Glu into GABA completely and improved GABA production to more than 25 g/L. This study provides useful promoters and RBS sequences for gene expression in C. glutamicum.
Unthan, Simon; Baumgart, Meike; Radek, Andreas; Herbst, Marius; Siebert, Daniel; Brühl, Natalie; Bartsch, Anna; Bott, Michael; Wiechert, Wolfgang; Marin, Kay; Hans, Stephan; Krämer, Reinhard; Seibold, Gerd; Frunzke, Julia; Kalinowski, Jörn; Rückert, Christian; Wendisch, Volker F; Noack, Stephan
2015-02-01
For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
Witthoff, Sabrina; Mühlroth, Alice
2013-01-01
Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532
Sun, Yang; Guo, Wenwen; Wang, Fen; Peng, Feng; Yang, Yankun; Dai, Xiaofeng; Liu, Xiuxia; Bai, Zhonghu
2016-01-01
Dissolved oxygen (DO) is an important factor in the fermentation process of Corynebacterium glutamicum, which is a widely used aerobic microbe in bio-industry. Herein, we described RNA-seq for C. glutamicum under different DO levels (50%, 30% and 0%) in 5 L bioreactors. Multivariate data analysis (MVDA) models were used to analyze the RNA-seq and metabolism data to investigate the global effect of DO on the transcriptional distinction of the substance and energy metabolism of C. glutamicum. The results showed that there were 39 and 236 differentially expressed genes (DEGs) under the 50% and 0% DO conditions, respectively, compared to the 30% DO condition. Key genes and pathways affected by DO were analyzed, and the result of the MVDA and RNA-seq revealed that different DO levels in the fermenter had large effects on the substance and energy metabolism and cellular redox balance of C. glutamicum. At low DO, the glycolysis pathway was up-regulated, and TCA was shunted by the up-regulation of the glyoxylate pathway and over-production of amino acids, including valine, cysteine and arginine. Due to the lack of electron-acceptor oxygen, 7 genes related to the electron transfer chain were changed, causing changes in the intracellular ATP content at 0% and 30% DO. The metabolic flux was changed to rebalance the cellular redox. This study applied deep sequencing to identify a wealth of genes and pathways that changed under different DO conditions and provided an overall comprehensive view of the metabolism of C. glutamicum. The results provide potential ways to improve the oxygen tolerance of C. glutamicum and to modify the metabolic flux for amino acid production and heterologous protein expression.
Sartori, Melina; Nesci, Andrea; García, Julián; Passone, María A; Montemarani, Analía; Etcheverry, Miriam
Eight potential biological control agents (BCAs) were evaluated in planta in order to assess their effectiveness in reducing disease severity of northern leaf blight caused by Exserohilum turcicum. The assay was carried out in greenhouse. Twenty-six-day-old plants, V4 phenological stage, were inoculated with antagonists by foliar spray. Only one biocontrol agent was used per treatment. Ten days after this procedure, all treatments were inoculated with E. turcicum by foliar application. Treatments performed were: C-Et: control of E. turcicum; T1: isolate 1 (Enterococcus genus)+E. turcicum; T2: isolate 2 (Corynebacterium genus)+E. turcicum; T3: isolate 3 (Pantoea genus)+E. turcicum; T4: isolate 4 (Corynebacterium genus)+E. turcicum; T5: isolate 5 (Pantoea genus)+E. turcicum; T6: isolate 6 (Bacillus genus)+E. turcicum; T7: isolate 7 (Bacillus genus)+E. turcicum; T8: isolate 8 (Bacillus genus)+E. turcicum. Monitoring of antagonists on the phyllosphere was performed at different times. Furthermore, the percentage of infected leaves and, plant and leaf incidence were determined. Foliar application of different bacteria significantly reduced the leaf blight between 30-78% and 39-56% at 20 and 39 days respectively. It was observed that in the V10 stage of maize plants, isolate 8 (Bacillus spp.) caused the greatest effect on reducing the severity of northern leaf blight. Moreover, isolate 8 was the potential BCA that showed more stability in the phyllosphere. At 39 days, all potential biocontrol agents had a significant effect on controlling the disease caused by E. turcicum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Choi, Su-In; Park, Jihoon; Kim, Pil
2017-03-28
To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum -synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis , Lactobacillus rhamosus , and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at 4°C with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.
Wei, Liang; Xu, Ning; Wang, Yiran; Zhou, Wei; Han, Guoqiang; Ma, Yanhe; Liu, Jun
2018-05-01
Due to the lack of efficient control elements and tools, the fine-tuning of gene expression in the multi-gene metabolic pathways is still a great challenge for engineering microbial cell factories, especially for the important industrial microorganism Corynebacterium glutamicum. In this study, the promoter library-based module combination (PLMC) technology was developed to efficiently optimize the expression of genes in C. glutamicum. A random promoter library was designed to contain the putative - 10 (NNTANANT) and - 35 (NNGNCN) consensus motifs, and refined through a three-step screening procedure to achieve numerous genetic control elements with different strength levels, including fluorescence-activated cell sorting (FACS) screening, agar plate screening, and 96-well plate screening. Multiple conventional strategies were employed for further precise characterizations of the promoter library, such as real-time quantitative PCR, sodium dodecyl sulfate polyacrylamide gel electrophoresis, FACS analysis, and the lacZ reporter system. These results suggested that the established promoter elements effectively regulated gene expression and showed varying strengths over a wide range. Subsequently, a multi-module combination technology was created based on the efficient promoter elements for combination and optimization of modules in the multi-gene pathways. Using this technology, the threonine biosynthesis pathway was reconstructed and optimized by predictable tuning expression of five modules in C. glutamicum. The threonine titer of the optimized strain was significantly improved to 12.8 g/L, an approximate 6.1-fold higher than that of the control strain. Overall, the PLMC technology presented in this study provides a rapid and effective method for combination and optimization of multi-gene pathways in C. glutamicum.
Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W.; Krämer, Reinhard
2013-01-01
The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [14C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum. PMID:23543710
Meinel, D M; Kuehl, R; Zbinden, R; Boskova, V; Garzoni, C; Fadini, D; Dolina, M; Blümel, B; Weibel, T; Tschudin-Sutter, S; Widmer, A F; Bielicki, J A; Dierig, A; Heininger, U; Konrad, R; Berger, A; Hinic, V; Goldenberger, D; Blaich, A; Stadler, T; Battegay, M; Sing, A; Egli, A
2016-12-01
Toxigenic Corynebacterium diphtheriae is an important and potentially fatal threat to patients and public health. During the current dramatic influx of refugees into Europe, our objective was to use whole genome sequencing for the characterization of a suspected outbreak of C. diphtheriae wound infections among refugees. After conventional culture, we identified C. diphtheriae using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and investigated toxigenicity by PCR. Whole genome sequencing was performed on a MiSeq Illumina with >70×coverage, 2×250 bp read length, and mapping against a reference genome. Twenty cases of cutaneous C. diphtheriae in refugees from East African countries and Syria identified between April and August 2015 were included. Patients presented with wound infections shortly after arrival in Switzerland and Germany. Toxin production was detected in 9/20 (45%) isolates. Whole genome sequencing-based typing revealed relatedness between isolates using neighbour-joining algorithms. We detected three separate clusters among epidemiologically related refugees. Although the isolates within a cluster showed strong relatedness, isolates differed by >50 nucleotide polymorphisms. Toxigenic C. diphtheriae associated wound infections are currently observed more frequently in Europe, due to refugees travelling under poor hygienic conditions. Close genetic relatedness of C. diphtheriae isolates from 20 refugees with wound infections indicates likely transmission between patients. However, the diversity within each cluster and phylogenetic time-tree analysis suggest that transmissions happened several months ago, most likely outside Europe. Whole genome sequencing offers the potential to describe outbreaks at very high resolution and is a helpful tool in infection tracking and identification of transmission routes. Copyright © 2016. Published by Elsevier Ltd.
The effect of successful contact lens wear on mucosal immunity of the eye.
McClellan, K A; Cripps, A W; Clancy, R L; Billson, F A
1998-08-01
This study aimed to assess the effect of contact lens wear on the mucosal defenses of the outer eye against infection. A case-controlled study of daily contact lens wearers in their initial 6 months of contact lens wear. Contact lens wearers (mean age, 23.1 years; 47 subjects) were compared with age-matched control subjects (mean age, 24.7 years; 44 subjects). Outer eye defenses were studied by assay of tear constituents and quantitative conjunctival microbiology. Antimicrobial activity of tears was studied by assay of total immunoglobulin A (IgA), IgA isotype-specific antibodies reactive with Escherichia coli, Haemophilus influenzae, Staphylococcus epidermidis, albumin and lysozyme, and the ocular surface microbial load determined using quantitative microbiology of the conjunctival sac. The IgA isotype-specific antibodies reactive with E. coli (P = 0.03) and S. epidermidis (P = 0.068) were lower in contact lens wearers, but antibody:albumin ratios were not significantly different in the two groups. Contact lens wear also had no significant effect on tear IgA, albumin, or lysozyme or its ratios with albumin. Bacterial numbers and colonization rates for coagulase-negative staphylococci were greater in contact lens wearers than in age-matched control subjects. Corynebacterium sp. and non-Enterobacteriaceae (P = 0.007) were isolated more frequently and in greater numbers from contact lens wearers. Colonization rates were increased for Corynebacterium sp., but non-Enterobacteriaceae were transient. In both daily contact lens wearers and age-matched control subjects, most conjunctival flora were transient rather than colonizing, and no subject developed an outer eye infection during the study. These results suggest that daily contact lens wear does not significantly alter the mucosal defenses of the outer eye that function to eliminate organisms from the conjunctival sac and prevent outer eye infection.
Brune, Iris; Becker, Anke; Paarmann, Daniel; Albersmeier, Andreas; Kalinowski, Jörn; Pühler, Alfred; Tauch, Andreas
2006-12-15
A 70mer oligonucleotide microarray was constructed to analyze genome-wide expression profiles of Corynebacterium jeikeium, a skin bacterium that is predominantly present in the human axilla and involved in axillary odor formation. Oligonucleotides representing 100% of the predicted coding regions of the C. jeikeium K411 genome were designed and spotted in quadruplicate onto epoxy-coated glass slides. The quality of the printed microarray was demonstrated by co-hybridization with fluorescently labeled cDNA probes obtained from exponentially growing C. jeikeium cultures. Accordingly, genes detected with different intensities resulting in log(2) transformed ratios greater than 0.8 or smaller than -0.8 can be regarded as differentially expressed with a confidence level greater than 99%. In an application example, we measured global changes of gene expression during growth of C. jeikeium in the presence of different concentrations of the deodorant component 4-hydroxy-3-methoxybenzyl alcohol that is active in preventing body odor formation. Global expression profiling revealed that low concentrations of 4-hydroxy-3-methoxybenzyl alcohol (0.5 and 2.5mg/ml) had almost no detectable effect on the transcriptome of C. jeikeium. A slightly higher concentration of 4-hydroxy-3-methoxybenzyl alcohol (5mg/ml) resulted in differential expression of 95 genes, 86 of which showed an enhanced expression when compared to a control culture. Besides many genes encoding proteins that apparently participate in transcription and translation, the drug resistance determinant cmx and the predicted virulence factors sapA and sapD showed significantly enhanced expression levels. Differential expression of relevant genes was validated by real-time reverse transcription PCR assays.
Silva, Wanderson M; Carvalho, Rodrigo D; Soares, Siomar C; Bastos, Isabela Fs; Folador, Edson L; Souza, Gustavo Hmf; Le Loir, Yves; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco
2014-12-04
Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.
Cerdeira, Louise Teixeira; Carneiro, Adriana Ribeiro; Ramos, Rommel Thiago Jucá; de Almeida, Sintia Silva; D'Afonseca, Vivian; Schneider, Maria Paula Cruz; Baumbach, Jan; Tauch, Andreas; McCulloch, John Anthony; Azevedo, Vasco Ariston Carvalho; Silva, Artur
2011-08-01
Due to the advent of the so-called Next-Generation Sequencing (NGS) technologies the amount of monetary and temporal resources for whole-genome sequencing has been reduced by several orders of magnitude. Sequence reads can be assembled either by anchoring them directly onto an available reference genome (classical reference assembly), or can be concatenated by overlap (de novo assembly). The latter strategy is preferable because it tends to maintain the architecture of the genome sequence the however, depending on the NGS platform used, the shortness of read lengths cause tremendous problems the in the subsequent genome assembly phase, impeding closing of the entire genome sequence. To address the problem, we developed a multi-pronged hybrid de novo strategy combining De Bruijn graph and Overlap-Layout-Consensus methods, which was used to assemble from short reads the entire genome of Corynebacterium pseudotuberculosis strain I19, a bacterium with immense importance in veterinary medicine that causes Caseous Lymphadenitis in ruminants, principally ovines and caprines. Briefly, contigs were assembled de novo from the short reads and were only oriented using a reference genome by anchoring. Remaining gaps were closed using iterative anchoring of short reads by craning to gap flanks. Finally, we compare the genome sequence assembled using our hybrid strategy to a classical reference assembly using the same data as input and show that with the availability of a reference genome, it pays off to use the hybrid de novo strategy, rather than a classical reference assembly, because more genome sequences are preserved using the former. Copyright © 2011 Elsevier B.V. All rights reserved.
Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe
2015-01-01
Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars. © 2014 Wiley Periodicals, Inc.
Sun, Yang; Guo, Wenwen; Wang, Fen; Peng, Feng; Yang, Yankun; Dai, Xiaofeng; Liu, Xiuxia; Bai, Zhonghu
2016-01-01
Dissolved oxygen (DO) is an important factor in the fermentation process of Corynebacterium glutamicum, which is a widely used aerobic microbe in bio-industry. Herein, we described RNA-seq for C. glutamicum under different DO levels (50%, 30% and 0%) in 5 L bioreactors. Multivariate data analysis (MVDA) models were used to analyze the RNA-seq and metabolism data to investigate the global effect of DO on the transcriptional distinction of the substance and energy metabolism of C. glutamicum. The results showed that there were 39 and 236 differentially expressed genes (DEGs) under the 50% and 0% DO conditions, respectively, compared to the 30% DO condition. Key genes and pathways affected by DO were analyzed, and the result of the MVDA and RNA-seq revealed that different DO levels in the fermenter had large effects on the substance and energy metabolism and cellular redox balance of C. glutamicum. At low DO, the glycolysis pathway was up-regulated, and TCA was shunted by the up-regulation of the glyoxylate pathway and over-production of amino acids, including valine, cysteine and arginine. Due to the lack of electron-acceptor oxygen, 7 genes related to the electron transfer chain were changed, causing changes in the intracellular ATP content at 0% and 30% DO. The metabolic flux was changed to rebalance the cellular redox. This study applied deep sequencing to identify a wealth of genes and pathways that changed under different DO conditions and provided an overall comprehensive view of the metabolism of C. glutamicum. The results provide potential ways to improve the oxygen tolerance of C. glutamicum and to modify the metabolic flux for amino acid production and heterologous protein expression. PMID:27907077
Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K
2016-01-01
Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks' air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection.
Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds
Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K
2016-01-01
Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks’ air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection. PMID:26817981
Yi, E. S.; Lee, H.; Suh, Y. K.; Tang, W.; Qi, M.; Yin, S.; Remick, D. G.; Ulich, T. R.
1996-01-01
Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 11 Figure 13 Figure 12 Figure 14 PMID:8863677
Household siblings and nasal and fecal microbiota in infants.
Hasegawa, Kohei; Linnemann, Rachel W; Mansbach, Jonathan M; Ajami, Nadim J; Espinola, Janice A; Fiechtner, Lauren G; Petrosino, Joseph F; Camargo, Carlos A
2017-04-01
Early-life exposure to older siblings is associated with a lower risk of asthma. To date, no study has addressed the impact of having siblings on both the airway and fecal microbiota during infancy. The aim of this study was therefore to profile the nasal airway and fecal microbiota in infants, and to examine the association between having siblings and microbiota profile. We conducted a cross-sectional study of 105 healthy infants (aged <1 year). Using 16S rRNA gene sequencing and an unbiased clustering approach to the nasal airway and fecal samples, we identified microbiota profiles and then determined the association between having siblings and microbiome profile. Overall, the median age was 3.4 months (IQR, 2.0-4.7 months); 43% had siblings in the household. Unbiased clustering of nasal airway microbiota identified three profiles: Moraxella dominant (43%), Corynebacterium/Dolosigranulum dominant (36%), and mixed (21%). Infants with siblings were more likely to have a Moraxella-dominant profile than Corynebacterium/Dolosigranulum-dominant profile (76% vs 18%), while those without siblings had the opposite pattern (18% vs 50%; P < 0.001, multivariable-adjusted). Fecal microbiota consisted of three profiles: Bifidobacterium dominant (39%), Escherichia dominant (31%), and Enterobacter dominant (30%). Infants with siblings were more likely to have a Bifidobacterium-dominant profile than Escherichia-dominant profile (49% vs 24%) while those without siblings had the opposite pattern (32% vs 37%; P = 0.04, multivariable-adjusted). In this cross-sectional study, infants with siblings were more likely to have a Moraxella-dominant nasal microbiota profile and Bifidobacterium-dominant fecal microbiota profile. These findings should facilitate further investigation of the interplay between early-life environmental exposure, the microbiome, and childhood asthma. © 2016 Japan Pediatric Society.
Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas
2010-01-01
Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942
Hou, Xiaohu; Chen, Xinde; Zhang, Yue; Qian, He; Zhang, Weiguo
2012-12-01
Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for L-valine production by over-expressing ilvEBN ( r ) C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products' accumulation in L-valine fermentation and also to increase the availability of precursor for L-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of L-isoleucine. Effect of different relative dissolved oxygen on L-valine production and by-products' formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for L-valine fermentation with almost no L-lactic acid and L-glutamate formed. To minimize L-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of L-alanine accumulated by alaT inactivated strains harboring ilvEBN ( r ) C genes, L-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. Meanwhile, L-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. This study provides combined strategies to improve L-valine yield by minimization of by-products' production.
Elišáková, Veronika; Pátek, Miroslav; Holátko, Jiří; Nešvera, Jan; Leyval, Damien; Goergen, Jean-Louis; Delaunay, Stéphane
2005-01-01
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions. PMID:15640189
Cao, Yan; Duan, Zuoying; Shi, Zhongping
2014-02-01
Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.
Schneider, Jens; Peters-Wendisch, Petra; Stansen, K Corinna; Götker, Susanne; Maximow, Stanislav; Krämer, Reinhard; Wendisch, Volker F
2012-01-13
The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.
Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich
2014-01-01
The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339
Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho
2013-06-01
Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.
Tsuge, Yota; Uematsu, Kimio; Yamamoto, Shogo; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-07-01
Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.
Freyre-González, Julio A; Tauch, Andreas
2017-09-10
Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong
2015-02-01
The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.
Metabolism of azo dyes by human skin microbiota.
Stingley, Robin L; Zou, Wen; Heinze, Thomas M; Chen, Huizhong; Cerniglia, Carl E
2010-01-01
Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74-100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes.
Bio-based production of organic acids with Corynebacterium glutamicum
Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J
2013-01-01
The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID:23199277
Shi, Feng; Zhang, Ming; Li, Yongfu
2017-06-01
L-Glutamate decarboxylase (GAD) transforms L-glutamate into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene(s) can synthesize GABA from its own produced L-glutamate. To enhance GABA production in recombinant C. glutamicum strain SH, metabolic engineering strategies were used to improve the supply of the GABA precursor, L-glutamate. Five new strains were constructed here. First, the ppc gene was coexpressed with two GAD genes (gadB1 and gadB2). Then, the mdh gene was deleted in C. glutamicum SH. Next, gadB1-gadB2 and gadB1-gadB2-ppc co-expression plasmids were transformed into C. glutamicum strains SH and Δmdh, resulting in four recombinant GAD strains SE1, SE2, SDE1, and SDE2, respectively. Finally, the mdh gene was overexpressed in mdh-deleted SDE1, generating the mdh-complemented GAD strain SDE3. After fermenting for 72 h, GABA production increased to 26.3 ± 3.4, 24.8 ± 0.7, and 25.5 ± 3.3 g/L in ppc-overexpressed SE2, mdh-deleted SDE1, and mdh-deleted ppc-overexpressed SDE2, respectively, which was higher than that in the control GAD strain SE1 (22.7 ± 0.5 g/L). While in the mdh-complemented SDE3, GABA production decreased to 20.0 ± 0.6 g/L. This study demonstrates that the recombinant strains SE2, SDE1, and SDE2 can be used as candidates for GABA production.
Litsanov, Boris; Brocker, Melanie
2012-01-01
Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pycP458S into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD+-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose). PMID:22389371
Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph
2014-09-01
Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Alimu, Reyihanguli; Mao, Xinfang; Liu, Zhongyuan
2013-06-01
To improve the expression level of tmAMP1m gene from Tenebrio molitor in Escherichia coli, we studied the effects of expression level and activity of the fusion protein HIS-TmAMP1m by conditions, such as culture temperature, inducing time and the final concentration of inductor Isopropyl beta-D-thiogalactopyranoside (IPTG). We analyzed the optimum expression conditions by Tricine-SDS-PAGE electrophoresis, meanwhile, detected its antibacterial activity by using agarose cavity diffusion method. The results suggest that when inducing the recombinant plasmid with a final IPTG concentration of 0.1 mmol/L at 37 degrees C for 4 h, there was the highest expression level of fusion protein HIS-TmAMP1m in Escherichia coli. Under these conditions, the expression of fusion protein accounted for 40% of the total cell lysate with the best antibacterial activity. We purified the fusion protein HIS-TmAMPlm with nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography matrices. Western blotting analysis indicates that the His monoclonal antibody could be specifically bound to fusion protein HIS-TmAMPlm. After expression by inducing, the fusion protein could inhibit the growth of host cell transformed by pET30a-tmAMP1m. The fusion protein HIS-TmAMP1m had better stability and remained higher antibacterial activities when incubated at 100 degrees C for 10 h, repeated freeze thawing at -20 degrees C, dissolved in strong acid and alkali, or treated by organic solvents and protease. Moreover, the minimum inhibitory concentration results demonstrated that the fusion protein HIS-TmAMP1m has a good antibacterial activity against Staphylococcus aureus, Staphylococcus sp., Corynebacterium glutamicum, Bacillus thuringiensis, Corynebacterium sp. This study laid the foundation to promote the application of insect antimicrobial peptides and further research.
Rapid identification of antibiotic-resistant corynebacteria with the API 20S system.
Kelly, M C; Smith, I D; Anstey, R J; Thornley, J H; Rennie, R P
1984-01-01
The API 20S system (Analytab Products, Plainview, N.Y.) was evaluated for the rapid identification of multiply antibiotic-resistant aerobic diphtheroids. Sixty-eight clinical isolates of multiply resistant Centers for Disease Control group JK and group D2 corynebacteria had API 20S profiles which were clearly different from those of a number of strains of other Corynebacterium species which were tested. The API 20S system allowed more rapid identification of antibiotic-resistant diphtheroids than conventional biochemical tests. Its use for corynebacteria other than group JK and group D2 is not recommended at this time. PMID:6699150
Modulation of eukaryotic cell apoptosis by members of the bacterial order Actinomycetales.
Barry, Daniel P; Beaman, Blaine L
2006-10-01
Apoptosis, or programmed cell death, is normally responsible for the orderly elimination of aged or damaged cells, and is a necessary part of the homeostasis and development of multicellular organisms. Some pathogenic bacteria can disrupt this process by triggering excess apoptosis or by preventing it when appropriate. Either event can lead to disease. There has been extensive research into the modulation of host cell death by microorganisms, and several reviews have been published on the phenomenon. Rather than covering the entire field, this review focuses on the dysregulation of host cell apoptosis by members of the order Actinomycetales, containing the genera Corynebacterium, Mycobacterium, Rhodococcus, and Nocardia.
[Effect of medicinal plant extracts on the growth of microorganisms].
Baronets, N G; Adlova, G P; Mel'nikova, V A
2001-01-01
Extracts obtained from sweatweed and licorice roots, flax seeds, milfoil, bur-marigold, plantain, coltsfoot, nettle, Indian corn stigmas, laminaria produced a stimulating effect on the growth of Candida albicans test strain and Streptococcus pyogenes test strain Dick 1. Sweatweed, licorice, Aerva lanata and violet extracts influenced the growth of Corynebacterium xerosis 1911, while sweatweed, violet, horse-tail, bur-marigold, camomile, plantain, and nettle extracts influenced the growth of shigellae. The stimulating effect could be supposedly produced by biologically active substances contained in medicinal plants (organic acids, alkaloids, carotinoids, vitamins, microelements). Further studies aimed at the identification of substances producing the stimulating effect are planned.
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch, Ansgar; Haussmann, Ute; Burkovski, Andreas
2011-08-01
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nosocomial infections of ocular conjunctiva in newborns delivered by cesarian section.
Bezirtzoglou, E; Romond, C
1991-01-01
Colonization of the ocular conjunctiva in newborns delivered by cesarian section occurs usually within the first day of life. We have studied the flora of the ocular conjunctiva at birth, from 19 newborns delivered by cesarian section, coming from two different maternity hospitals. Ocular conjunctiva cultures yielded the main predominant flora in both maternity hospitals considered. The most common genus of this flora are: Staphylococcus, Corynebacterium and Propionibacterium acnes. Peptostreptococcus productus, Neisseria, Eubacterium and Clostridium perfringens are isolated occasionally. In newborns delivered by cesarian section, this flora principally acquired may be the consequence of the presence of bacteria in the ambient air, as well as differences in care provided by the nosocomial personnel.
Renshaw, Andrew A; Derhagopian, Robert P; Gould, Edwin W
2011-09-01
Although granulomatous lobular mastitis is associated with gram-positive bacilli such as Corynebacterium, this association is not well known. We report 3 cases of mastitis caused by gram-positive bacilli. All 3 abscesses were suppurative with distinct enlarged cystic spaces in which rare gram-positive bacilli were identified. Two cases were also granulomatous. Cultures in all 3 cases were negative. All 3 patients recovered after biopsy and tetracycline-based therapy. Infection in the breast by gram-positive bacilli is associated with a distinct histologic pattern, including cystic spaces in the setting of neutrophilic/granulomatous inflammation that can be recognized and should prompt careful search for the organism within enlarged vacuoles.
Braña, Alfredo F; Sarmiento-Vizcaíno, Aida; Pérez-Victoria, Ignacio; Otero, Luis; Fernández, Jonathan; Palacios, Juan José; Martín, Jesús; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Reyes, Fernando; García, Luis A; Blanco, Gloria
2017-02-24
Two new antibiotics, branimycins B (2) and C (3), were produced by fermentation of the abyssal actinobacterium Pseudonocardia carboxydivorans M-227, isolated from deep seawater of the Avilés submarine Canyon. Their structures were elucidated by HRMS and NMR analyses. These compounds exhibit antibacterial activities against a panel of Gram-positive bacteria, including Corynebacterium urealyticum, Clostridium perfringens, and Micrococcus luteus, and against the Gram-negative bacterium Neisseria meningitidis. Additionally, branimycin B displayed moderate antibacterial activity against other Gram-negative bacteria such as Bacteroides fragilis, Haemophilus influenzae, and Escherichia coli, and branimycin C against the Gram-positive Enterococcus faecalis and methicillin-sensitive and methicillin-resistant Staphylococcus aureus.
Study of methods for the improvement of bacterial transport media
NASA Technical Reports Server (NTRS)
Gardner, R. L.; Beakley, J. W.
1973-01-01
A series of 500 transport media recipes was tested for ability to hold pure cultures of Streptococcus equisimilus, Corynebacterium equi, Neisseria perflava, and Haemophilus parainfluenzae for 21 days. Stuart Medium Base with 0.4% agar was used as the control medium for this and the other experiments in the investigation. At the end of the holding period inoculated transport media were quantitatively assayed, and the control media were assayed immediately after inoculation. Three vials of each medium were inoculated with an organism, and each vial's medium was diluted and spread on duplicate plates. Assay media for this experiment included Brain Heart Infusion,(BHIA) Tryptic Soy Agar, and BHIA with 1% Isovitalex enrichment.
Wang, Zhihao; Chan, Siu Hung Joshua; Sudarsan, Suresh; Blank, Lars M; Jensen, Peter Ruhdal; Solem, Christian
2016-11-01
The performance of Corynebacterium glutamicum cell factories producing compounds which rely heavily on NADPH has been reported to depend on the sugar being metabolized. While some aspects of this phenomenon have been elucidated, there are still many unresolved questions as to how sugar metabolism is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed us to propose a simple model explaining the correlation between sugar phosphate concentration, gene expression and ultimately the observed phenotype. To guide us in our analysis and help us identify bottlenecks in metabolism we debugged an existing genome-scale model onto which we overlaid the transcriptome data. Based on the results obtained we managed to enhance the NADPH supply and transform the wild-type strain into delivering the highest yield of lysine ever obtained on sucrose and fructose, thus providing a good example of how regulatory mechanisms can be harnessed for bioproduction. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael
2015-01-01
Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698
Engineering Corynebacterium glutamicum for the production of 2,3-butanediol.
Radoš, Dušica; Carvalho, Ana Lúcia; Wieschalka, Stefan; Neves, Ana Rute; Blombach, Bastian; Eikmanns, Bernhard J; Santos, Helena
2015-10-29
2,3-Butanediol is an important bulk chemical with a wide range of applications. In bacteria, this metabolite is synthesised from pyruvate via a three-step pathway involving α-acetolactate synthase, α-acetolactate decarboxylase and 2,3-butanediol dehydrogenase. Thus far, the best producers of 2,3-butanediol are pathogenic strains, hence, the development of more suitable organisms for industrial scale fermentation is needed. Herein, 2,3-butanediol production was engineered in the Generally Regarded As Safe (GRAS) organism Corynebacterium glutamicum. A two-stage fermentation process was implemented: first, cells were grown aerobically on acetate; in the subsequent production stage cells were used to convert glucose into 2,3-butanediol under non-growing and oxygen-limiting conditions. A gene cluster, encoding the 2,3-butanediol biosynthetic pathway of Lactococcus lactis, was assembled and expressed in background strains, C. glutamicum ΔldhA, C. glutamicum ΔaceEΔpqoΔldhA and C. glutamicum ΔaceEΔpqoΔldhAΔmdh, tailored to minimize pyruvate-consuming reactions, i.e., to prevent carbon loss in lactic, acetic and succinic acids. Producer strains were characterized in terms of activity of the relevant enzymes in the 2,3-butanediol forming pathway, growth, and production of 2,3-butanediol under oxygen-limited conditions. Productivity was maximized by manipulating the aeration rate in the production phase. The final strain, C. glutamicum ΔaceEΔpqoΔldhAΔmdh(pEKEx2-als,aldB,Ptuf butA), under optimized conditions produced 2,3-butanediol with a 0.66 mol mol(-1) yield on glucose, an overall productivity of 0.2 g L(-1) h(-1) and a titer of 6.3 g L(-1). We have successfully developed C. glutamicum into an efficient cell factory for 2,3-butanediol production. The use of the engineered strains as a basis for production of acetoin, a widespread food flavour, is proposed.
Gailly, C; Sandra, P; Verzele, M; Cocito, C
1982-06-15
The cell wall of leprosy-derived corynebacteria (a group of 'diphtheroids' isolated from human leprosy lesions and patients' blood) was previously shown to contain, in addition to peptidoglycan and arabinogalactan, mycolic acids. These alpha-branched beta-hydroxy fatty acids were attributed to the corynomycolic group, according to their RF in monodimensional thin-layer chromatography. In the present work, mycolic acids from leprosy-derived and reference corynebacteria have been fractionated by monodimensional and bidimensional thin-layer chromatography and by gas chromatography. Pyrolyzed mycolic acids have been analyzed on conventional packed columns, whereas intact methyl esters of mycolic acids with free and silylated beta-hydroxyl group have been analyzed on capillary columns, and their structure has been established by mass spectrometry. In all leprosy-derived corynebacteria, some 20 components containing 24-36 carbon atoms and 0-4 double bonds were obtained. The three major groups had 32, 34 and 36 carbons, and the frequency of unsaturated versus saturated chains increased proportionally to the molecular weight. For comparison, the main components of a reference corynebacterium. Corynebacterium diphtheriae PW8, had 30 and 32 carbons, and their hydrocarbon chains were essentially saturated. This work confirms the relative chemical homogeneity of different leprosy-derived corynebacteria and describes some peculiar traits in the chemical structure of this group of organisms. In addition, it shows the complexity of the mycolic acid fraction of corynebacterial cell wall and suggests that the mycolic acid pattern is a sort of fingerprint of each bacterial strain grown under standard conditions. Finally, the fractionation of intact corynomycolic acid methyl esters with free or silylated beta-hydroxyl group by capillary gas chromatography proved to be the best analytical procedure at present available for resolving this complex mixture of corynomycolate isomers. Structural determination of silylated samples by mass spectrometry is preferred because they have more diagnostic fragments.
Emter, Roger; Natsch, Andreas
2008-01-01
Human axillary odor is formed by the action of Corynebacteria on odorless axilla secretions. Sulfanylalkanols, 3-methyl-3-sulfanylhexan-1-ol in particular, form one key class of the odoriferous compounds. A conjugate with the dipeptide Cys-Gly has been reported as the secreted precursor for 3-methyl-3-sulfanylhexan-1-ol. Here, we confirm the Cys-Gly-(S) conjugate as the major precursor of this odorant, with lower levels of the Cys-(S) conjugate being present in axilla secretions. The enzymatic release of 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate by the axilla isolate Corynebacterium Ax20 was thus investigated. Cellular extracts of Ax20 released 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate and from the Cys-(S) conjugate, whereas the previously isolated C-S lyase of this bacterial strain was only able to cleave the Cys-(S) conjugate. o-Phenanthroline blocked the release from the Cys-Gly-(S) conjugate but did not affect cleavage of the Cys-(S) conjugate, indicating that in a first step, a metal-dependent dipeptidase hydrolyzes the Cys-Gly bond. This enzyme was purified by four chromatographic steps and gel electrophoresis, and the partial amino acid sequence was determined. The corresponding gene was cloned and expressed in Escherichia coli. It codes for a novel dipeptidase with a high affinity toward the Cys-Gly-(S) conjugate of 3-methyl-3-sulfanylhexan-1-ol. Co-incubating either the synthetic Cys-Gly-(S) conjugate or fresh axilla secretions with both the C-S lyase and the novel dipeptidase did release 3-methyl-3-sulfanylhexan-1-ol, proving that the sequential action of these two enzymes from the skin bacterium Corynebacterium Ax20 does release the odorant from the key secreted precursor. PMID:18515361
2010-01-01
Background Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. Results Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. Conclusion The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host. PMID:21192786
Emter, Roger; Natsch, Andreas
2008-07-25
Human axillary odor is formed by the action of Corynebacteria on odorless axilla secretions. Sulfanylalkanols, 3-methyl-3-sulfanylhexan-1-ol in particular, form one key class of the odoriferous compounds. A conjugate with the dipeptide Cys-Gly has been reported as the secreted precursor for 3-methyl-3-sulfanylhexan-1-ol. Here, we confirm the Cys-Gly-(S) conjugate as the major precursor of this odorant, with lower levels of the Cys-(S) conjugate being present in axilla secretions. The enzymatic release of 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate by the axilla isolate Corynebacterium Ax20 was thus investigated. Cellular extracts of Ax20 released 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate and from the Cys-(S) conjugate, whereas the previously isolated C-S lyase of this bacterial strain was only able to cleave the Cys-(S) conjugate. o-Phenanthroline blocked the release from the Cys-Gly-(S) conjugate but did not affect cleavage of the Cys-(S) conjugate, indicating that in a first step, a metal-dependent dipeptidase hydrolyzes the Cys-Gly bond. This enzyme was purified by four chromatographic steps and gel electrophoresis, and the partial amino acid sequence was determined. The corresponding gene was cloned and expressed in Escherichia coli. It codes for a novel dipeptidase with a high affinity toward the Cys-Gly-(S) conjugate of 3-methyl-3-sulfanylhexan-1-ol. Co-incubating either the synthetic Cys-Gly-(S) conjugate or fresh axilla secretions with both the C-S lyase and the novel dipeptidase did release 3-methyl-3-sulfanylhexan-1-ol, proving that the sequential action of these two enzymes from the skin bacterium Corynebacterium Ax20 does release the odorant from the key secreted precursor.
Microbial diversity and dynamics during the production of May bryndza cheese.
Pangallo, Domenico; Saková, Nikoleta; Koreňová, Janka; Puškárová, Andrea; Kraková, Lucia; Valík, Lubomír; Kuchta, Tomáš
2014-01-17
Diversity and dynamics of microbial cultures were studied during the production of May bryndza cheese, a traditional Slovak cheese produced from unpasteurized ewes' milk. Quantitative culture-based data were obtained for lactobacilli, lactococci, total mesophilic aerobic counts, coliforms, E. coli, staphylococci, coagulase-positive staphylococci, yeasts, fungi and Geotrichum spp. in ewes' milk, curd produced from it and ripened for 0 - 10 days, and in bryndza cheese produced from the curd, in three consecutive batches. Diversity of prokaryotes and eukaryotes in selected stages of the production was studied by non-culture approach based on amplification of 16S rDNA and internal transcribed spacer region, coupled to denaturing gradient gel electrophoresis and sequencing. The culture-based data demonstrated an overall trend of growth of the microbial population contributing to lactic acid production and to ripening of the cheese, lactobacilli, lactococci and Geotrichum spp. growing up to densities of 10(8) CFU/g, 10(9) CFU/g and 10(5) CFU/g, respectively, in all three consecutive batches of bryndza cheese. The diversity of bacteria encompassed Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter sp., Acinetobacter johnsonii, Citrobacter braakii, Clostridium bartlettii, Corynebacterium callunae, Corynebacterium maris, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter hormaechei, Enterococcus faecium, Enterococcus pallens, Escherichia coli, Haemophilus haemolyticus, Hafnia alvei, Kluyvera cryocrescens, Lactobacillus helveticus, Lactococcus garvieae, Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis, "Leuconostoc garlicum", Mannheimia glucosida, Mannheimia haemolytica, Pseudomonas sp., Ps. fluorescens, "Ps. reactans", Raoultella ornithinolytica, R. terrigena, "Rothia arfidiae", Staphylococcus aureus, Staph. epidermidis, Staph. felis, Staph. pasteuri, Staph. sciuri, Staph. xylosus, Streptococcus parauberis, Str. thermophilus and Variovorax paradoxus. The diversity of yeasts and fungi encompassed Alternaria alternata, "Ascomycete sp.", Aspergillus fumigatus, Beauveria brongniartii, Candida xylopsoci, C. inconspicua, Cladosporium cladosporioides, Debaromyces hansenii, Fomes fomentarius, Galactomyces candidus, Gymnoascus reesii, Chaetomium globosum, Kluyveromyces marxianus, Metarhizium anisopliae, Penicillium aurantiogriseum, P. camemberti, P. freii, P. polonicum, P. viridicatum, Pichia kudriavzevii, Sordaria alcina, Trichosporon lactis and Yarrowia lipolytica. © 2013.
Xu, Jian-Zhong; Yang, Han-Kun; Liu, Li-Ming; Wang, Ying-Yu; Zhang, Wei-Guo
2018-03-25
l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L -1 ), carbon yield (from 0.35 to 0.44 g [g glucose] -1 ) and productivity (from 2.07 to 2.93 g L -1 hr -1 ) of l-lysine in JL-6 ΔdapB::Ec-dapB C115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapB C115G,G116C , followed by JL-6 Cg-dapB C37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapB C46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity. © 2018 Wiley Periodicals, Inc.
2011-01-01
Background Corynebacterium variabile is part of the complex microflora on the surface of smear-ripened cheeses and contributes to the development of flavor and textural properties during cheese ripening. Still little is known about the metabolic processes and microbial interactions during the production of smear-ripened cheeses. Therefore, the gene repertoire contributing to the lifestyle of the cheese isolate C. variabile DSM 44702 was deduced from the complete genome sequence to get a better understanding of this industrial process. Results The chromosome of C. variabile DSM 44702 is composed of 3, 433, 007 bp and contains 3, 071 protein-coding regions. A comparative analysis of this gene repertoire with that of other corynebacteria detected 1, 534 predicted genes to be specific for the cheese isolate. These genes might contribute to distinct metabolic capabilities of C. variabile, as several of them are associated with metabolic functions in cheese habitats by playing roles in the utilization of alternative carbon and sulphur sources, in amino acid metabolism, and fatty acid degradation. Relevant C. variabile genes confer the capability to catabolize gluconate, lactate, propionate, taurine, and gamma-aminobutyric acid and to utilize external caseins. In addition, C. variabile is equipped with several siderophore biosynthesis gene clusters for iron acquisition and an exceptional repertoire of AraC-regulated iron uptake systems. Moreover, C. variabile can produce acetoin, butanediol, and methanethiol, which are important flavor compounds in smear-ripened cheeses. Conclusions The genome sequence of C. variabile provides detailed insights into the distinct metabolic features of this bacterium, implying a strong adaption to the iron-depleted cheese surface habitat. By combining in silico data obtained from the genome annotation with previous experimental knowledge, occasional observations on genes that are involved in the complex metabolic capacity of C. variabile were integrated into a global view on the lifestyle of this species. PMID:22053731
Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi
2016-02-01
Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Oide, Shinichi; Inui, Masayuki
2017-12-01
Trehalose is a compatible solute widely distributed in nature. The most prevalent pathway for its synthesis starts from condensation of glucose 6-phosphate (Glc6P) and uridine 5'-diphosphoglucose (UDP-Glc) catalyzed by trehalose 6-phosphate synthase (TPS). A previous laboratory evolution experiment with the bacterium Corynebacterium glutamicum generated strains adapted to supraoptimal temperatures, and the R328H substitution of the TPS encoded by otsA was shown to be associated with thermotolerance acquired by the evolved strains. In this study, we found that the OtsA:R328H substitution promotes both intra- and extracellular trehalose accumulation and demonstrated that build-up of intracellular trehalose accounts for the OtsA R 328H -dependent thermotolerance, using the mycobacterial trehalose-specific transporter. Counterintuitively, characterization of the recombinant OtsA proteins revealed that the mutation downshifts the temperature optimum of OtsA. A search for the molecular basis of OtsA R 328H -dependent enhancement of trehalose synthesis led to the unexpected findings that trehalose is an effective inhibitor of OtsA and that OtsA R 328H is highly tolerant to the trehalose-mediated inhibition. The only available report on such feedback regulation of TPS is for the silk moth from over 50 years ago [Murphy TA and Wyatt GR (1965) J Biol Chem 240, 1500-1508]. While trehalose acts as a Glc6P-competitive inhibitor in the silk moth, the disaccharide was found to inhibit OtsA in a UDP-Glc-competitive manner in C. glutamicum, suggesting independent origins of the negative feedback regulations found for the two species. We showed that overexpression of the wild-type OtsA counteracts the trehalose-dependent regulation and restores the evolved strain-like phenotype to the isogenic wild-type otsA revertant, demonstrating that thermotolerance conferred by OtsA R 328H is attributable to its feedback-resistant property. © 2017 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hae Joo; Paterson, Neil G.; Kim, Chae Un
2014-05-01
Two crystal structures of the major pilin SpaD from C. diphtheriae have been determined at 1.87 and 2.5 Å resolution. The N-terminal domain is found to contain an isopeptide bond that forms slowly over time in the recombinant protein. Given its structural context, this provides insight into the relationship between internal isopeptide-bond formation and pilus assembly. The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specificmore » sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys–Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5 Å resolution and of a two-domain (D2-D3) construct at 1.87 Å resolution, show that each of the three Ig-like domains contains a single Lys–Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.« less
Benamrouche, N; Hasnaoui, S; Badell, E; Guettou, B; Lazri, M; Guiso, N; Rahal, K
2016-12-01
The objectives of this study were to undertake the microbiological and molecular characterization of Corynebacterium diphtheriae isolates collected in Algeria during epidemic and post-epidemic periods between 1992 and 2015. Microbiological characterization includes the determination of biotype and toxigenicity status using phenotypic and genotypic methods. Antimicrobial susceptibility was determined by the E-test method. Molecular characterization was performed by multi-locus sequence typing. In total, there were 157 cases of C. diphtheriae isolates, 127 in patients with respiratory diphtheria and 30 with ozena. Isolates with a mitis biotype were predominant (122 out of 157; 77.7%) followed by belfanti (28 out of 157; 17.8%) and gravis biotype (seven out of 157; 4.5%). Toxigenic isolates were predominant in the period 1992-2006 (74 out of 134) whereas in the period 2007-2015, only non-toxigenic isolates circulated (23 out of 23). All 157 isolates were susceptible to erythromycin, gentamicin, vancomycin and cotrimoxazole. Reduced susceptibility to penicillin G, cefotaxime, tetracycline and chloramphenicol was detected in 90 (57.3%), 88 (56.1%), 112 (71.3%) and 90 (57.3%) isolates, respectively. Multi-locus sequence typing analysis indicates that sequence type 116 (ST-116) was the most frequent, with 65 out of 100 isolates analysed, in particular during the epidemic period 1992-1999 (57 out of 65 isolates). In the post-epidemic period, 2000-2015, 13 different sequence types were isolated. All belfanti isolates (ten out of 100 isolates) belonged to closely related sequence types grouped in a phylogenetically distinct eBurst group and were collected exclusively in ozena cases. In conclusion, the epidemic period was associated with ST-116 while the post-epidemic period was characterized by more diversity. Belfanti isolates are grouped in a phylogenetically distinct clonal complex. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Whole metagenome profiles of particulates collected from the International Space Station
Be, Nicholas A.; Avila-Herrera, Aram; Allen, Jonathan E.; ...
2017-07-17
Background The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized. Methods This study examined the whole metagenome of ISS microbes at both species- and gene-levelmore » resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared. Results Species-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples. Conclusion Species-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. Lastly, the overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.« less
Yang, Jiangang; Li, Jitao; Men, Yan; Zhu, Yueming; Zhang, Ying; Ma, Yanhe
2015-01-01
The property of loose stereochemical control at aldol products from aldolases helped to synthesize multiple polyhydroxylated compounds with nonnatural stereoconfiguration. In this study, we discovered for the first time that some fructose 1,6-diphosphate aldolases (FruA) and tagatose 1,6-diphosphate (TagA) aldolases lost their strict stereoselectivity when using l-glyceraldehyde and synthesized not only l-sorbose but also a high proportion of l-psicose. Among the aldolases tested, TagA from Bacillus licheniformis (BGatY) showed the highest enzyme activity with l-glyceraldehyde. Subsequently, a “one-pot” reaction based on BGatY and fructose-1-phosphatase (YqaB) generated 378 mg/liter l-psicose and 199 mg/liter l-sorbose from dihydroxyacetone-phosphate (DHAP) and l-glyceraldehyde. Because of the high cost and instability of DHAP, a microbial fermentation strategy was used further to produce l-sorbose/l-psicose from glucose and l-glyceraldehyde, in which DHAP was obtained from glucose through the glycolytic pathway, and some recombination pathways based on FruA or TagA and YqaB were constructed in Escherichia coli and Corynebacterium glutamicum strains. After evaluation of different host cells and combinations of FruA or TagA with YqaB and optimization of gene expression, recombinant C. glutamicum strain WT(pXFTY) was selected and produced 2.53 g/liter total ketoses, with a yield of 0.50 g/g l-glyceraldehyde. Moreover, deletion of gene cgl0331, encoding the Zn-dependent alcohol dehydrogenase in C. glutamicum, was confirmed for the first time to significantly decrease conversion of l-glyceraldehyde to glycerol and to increase yield of target products. Finally, fed-batch culture of strain SY14(pXFTY) produced 3.5 g/liter l-sorbose and 2.3 g/liter l-psicose, with a yield of 0.61 g/g l-glyceraldehyde. This microbial fermentation strategy also could be applied to efficiently synthesize other l-sugars. PMID:25888171
Becker, Judith; Schäfer, Rudolf; Kohlstedt, Michael; Harder, Björn J; Borchert, Nicole S; Stöveken, Nadine; Bremer, Erhard; Wittmann, Christoph
2013-11-15
The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L(-1) day(-1) under growth conditions that did not rely on the use of high-salinity media. The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the industrial workhorse C. glutamicum and thereby paved the way for further improvements in ectoine yield and biotechnological process optimization.
Letek, Michal; Valbuena, Noelia; Ramos, Angelina; Ordóñez, Efrén; Gil, José A.; Mateos, Luís M.
2006-01-01
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP. PMID:16385030
Letek, Michal; Valbuena, Noelia; Ramos, Angelina; Ordóñez, Efrén; Gil, José A; Mateos, Luís M
2006-01-01
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Effects of pathogen-specific clinical mastitis on probability of conception in Holstein dairy cows.
Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T
2014-11-01
The objective of this study was to estimate the effects of pathogen-specific clinical mastitis (CM), occurring in different weekly intervals before or after artificial insemination (AI), on the probability of conception in Holstein cows. Clinical mastitis occurring in weekly intervals from 6 wk before until 6 wk after AI was modeled. The first 4 AI in a cow's lactation were included. The following categories of pathogens were studied: Streptococcus spp. (comprising Streptococcus dysgalactiae, Streptococcus uberis, and other Streptococcus spp.); Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level that can be detected from our microbiological procedures) observed in the culture sample and cases with contamination (≥ 3 pathogens in the sample); and other pathogens [including Citrobacter, yeasts, Trueperella pyogenes, gram-negative bacilli (i.e., gram-negative organisms other than E. coli, Klebsiella spp., Enterobacter, and Citrobacter), Corynebacterium bovis, Corynebacterium spp., Pasteurella, Enterococcus, Pseudomonas, Mycoplasma, Prototheca, and others]. Other factors included in the model were parity (1, 2, 3, 4 and higher), season of AI (winter, spring, summer, autumn), day in lactation of first AI, farm, and other non-CM diseases (retained placenta, metritis, ketosis, displaced abomasum). Data from 90,271 AI in 39,361 lactations in 20,328 cows collected from 2003/2004 to 2011 from 5 New York State dairy farms were analyzed in a generalized linear mixed model with a Poisson distribution. The largest reductions in probability of conception were associated with CM occurring in the week before AI or in the 2 wk following AI. Escherichia coli and Klebsiella spp. had the greatest adverse effects on probability of conception. The probability of conception for a cow with any combination of characteristics may be calculated based on the parameter estimates. These findings may be helpful to farmers in assessing reproduction in their dairy cows for more effective cow management. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chi, Bui Khanh; Busche, Tobias; Van Laer, Koen; Bäsell, Katrin; Becher, Dörte; Clermont, Lina; Seibold, Gerd M.; Persicke, Marcus; Kalinowski, Jörn; Messens, Joris
2014-01-01
Abstract Aims: Protein S-bacillithiolation was recently discovered as important thiol protection and redox-switch mechanism in response to hypochlorite stress in Firmicutes bacteria. Here we used transcriptomics to analyze the NaOCl stress response in the mycothiol (MSH)-producing Corynebacterium glutamicum. We further applied thiol-redox proteomics and mass spectrometry (MS) to identify protein S-mycothiolation. Results: Transcriptomics revealed the strong upregulation of the disulfide stress σH regulon by NaOCl stress in C. glutamicum, including genes for the anti sigma factor (rshA), the thioredoxin and MSH pathways (trxB1, trxC, cg1375, trxB, mshC, mca, mtr) that maintain the redox balance. We identified 25 S-mycothiolated proteins in NaOCl-treated cells by liquid chromatography–tandem mass spectrometry (LC-MS/MS), including 16 proteins that are reversibly oxidized by NaOCl in the thiol-redox proteome. The S-mycothiolome includes the methionine synthase (MetE), the maltodextrin phosphorylase (MalP), the myoinositol-1-phosphate synthase (Ino1), enzymes for the biosynthesis of nucleotides (GuaB1, GuaB2, PurL, NadC), and thiamine (ThiD), translation proteins (TufA, PheT, RpsF, RplM, RpsM, RpsC), and antioxidant enzymes (Tpx, Gpx, MsrA). We further show that S-mycothiolation of the thiol peroxidase (Tpx) affects its peroxiredoxin activity in vitro that can be restored by mycoredoxin1. LC-MS/MS analysis further identified 8 proteins with S-cysteinylations in the mshC mutant suggesting that cysteine can be used for S-thiolations in the absence of MSH. Innovation and Conclusion: We identified widespread protein S-mycothiolations in the MSH-producing C. glutamicum and demonstrate that S-mycothiolation reversibly affects the peroxidase activity of Tpx. Interestingly, many targets are conserved S-thiolated across bacillithiol- and MSH-producing bacteria, which could become future drug targets in related pathogenic Gram-positives. Antioxid. Redox Signal. 20, 589–605. PMID:23886307
Whole metagenome profiles of particulates collected from the International Space Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Be, Nicholas A.; Avila-Herrera, Aram; Allen, Jonathan E.
Background The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized. Methods This study examined the whole metagenome of ISS microbes at both species- and gene-levelmore » resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared. Results Species-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples. Conclusion Species-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. Lastly, the overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.« less
Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun
2015-12-29
In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C. glutamicum, emphasizing the importance of developing IS element free host strains.
Laccase catalysed grafting of phenolic onto xylan to improve its applicability in films
NASA Astrophysics Data System (ADS)
Pei, Jicheng; Wang, Bing; Zhang, Fangdong; Li, Zhongyang; Yin, Yunbei; Zhang, Dongxu
2015-07-01
Xylan can be tailored for various value-added applications. However, its use in aqueous systems is hampered by its complex structure, and small molecular weight. This research aimed at improving the xylan molecular weight and changing its structure. Laccase-catalysed oxidation of 4-coumaric acid (PCA), ferulic acid (FA), syringaldehyde (SD), and vanillin (VA) onto xylan was grafted to study the changes in its structure, tensile properties, and antibacterial activities. A Fourier transform infrared (FTIR) spectrum analyser was used to observe the changes in functional groups of xylan. The results showed a band at 1635 cm-1 corresponding to the stretching vibration of conjugated carbonyl carboxy hemoglobin and a benzene ring structure were strengthened; the appearance of a new band between 1200 cm-1 and 1270 cm-1 corresponding to alkyl ethers on the aryl C-O stretching vibration was due to the fact that during the grafting process, the number of benzene ring structures increased and covalent connections occurred between phenols and xylan. The reaction mechanism for the laccase-catalysed oxidation of phenol compounds onto xylan was preliminary explored by 13C-NMR. The results showed that PCA-xylan, FA-xylan graft poly onto xylan by Cγ ester bond, SD-xylan graft poly onto xylan by ether bond and an ester bond, and VD-xylan graft poly onto xylan by ether bond. The film strength of xylan derivatives has been significantly increased, especially for the PCA-xylan derivative. The increases in tensile stress at break, tensile strength, tensile yield stress, and Young's modulus were: 24.04%, 31.30%, 55.56%, and 28.21%, respectively. After laccase/phenolics were modified, xylan had a good antibacterial effect to E. coli, Corynebacterium glutamicum, and Bacillus subtilis. The SD-xylan, FA-xylan, and PCA-xylan showed a greater efficacy against E. coli, Corynebacterium glutamicum, and Bacillus subtilis, respectively.
Arabitol Metabolism of Corynebacterium glutamicum and Its Regulation by AtlR
Laslo, Tanja; von Zaluskowski, Philipp; Gabris, Christina; Lodd, Elisabeth; Rückert, Christian; Dangel, Petra; Kalinowski, Jörn; Auchter, Marc; Seibold, Gerd
2012-01-01
Expression profiling of Corynebacterium glutamicum in comparison to a derivative deficient in the transcriptional regulator AtlR (previously known as SucR or MtlR) revealed eight genes showing more than 4-fold higher mRNA levels in the mutant. Four of these genes are located in the direct vicinity of the atlR gene, i.e., xylB, rbtT, mtlD, and sixA, annotated as encoding xylulokinase, the ribitol transporter, mannitol 2-dehydrogenase, and phosphohistidine phosphatase, respectively. Transcriptional analysis indicated that atlR and the four genes are organized as atlR-xylB and rbtT-mtlD-sixA operons. Growth experiments with C. glutamicum and C. glutamicum ΔatlR, ΔxylB, ΔrbtT, ΔmtlD, and ΔsixA derivatives with sugar alcohols revealed that (i) wild-type C. glutamicum grows on d-arabitol but not on other sugar alcohols, (ii) growth in the presence of d-arabitol allows subsequent growth on d-mannitol, (iii) d-arabitol is cometabolized with glucose and preferentially utilized over d-mannitol, (iv) RbtT and XylB are involved in d-arabitol but not in d-mannitol metabolism, (v) MtlD is required for d-arabitol and d-mannitol metabolism, and (vi) SixA is not required for growth on any of the substrates tested. Furthermore, we show that MtlD confers d-arabitol and d-mannitol dehydrogenase activities, that the levels of these and also xylulokinase activities are generally high in the C. glutamicum ΔatlR mutant, whereas in the parental strain, they were high when cells were grown in the presence of d-arabitol and very low when cells were grown in its absence. Our results show that the XylB, RbtT, and MtlD proteins allow the growth of C. glutamicum on d-arabitol and that d-arabitol metabolism is subject to arabitol-dependent derepression by AtlR. PMID:22178972
Reichel, Mirja; Heisig, Peter; Kampf, Günter
2008-12-02
Effective neutralization of active agents is essential to obtain valid efficacy results, especially when non-volatile active agents like chlorhexidine digluconate (CHG) are tested. The aim of this study was to determine an effective and non-toxic neutralizing mixture for a propan-1-ol solution containing 2% CHG. Experiments were carried out according to ASTM E 1054-02. The neutralization capacity was tested separately with five challenge microorganisms in suspension, and with a rayon swab carrier. Either 0.5 mL of the antiseptic solution (suspension test) or a saturated swab with the antiseptic solution (carrier test) was added to tryptic soy broth containing neutralizing agents. After the samples were mixed, aliquots were spread immediately and after 3 h of storage at 2 - 8 degrees C onto tryptic soy agar containing a neutralizing mixture. The neutralizer was, however, not consistently effective in the suspension test. Immediate spread yielded a valid neutralization with Staphylococcus aureus, Staphylococcus epidermidis and Corynebacterium jeikeium but not with Micrococcus luteus (p < 0.001) and Candida albicans (p < 0.001). A 3-h storage period of the neutralized active agents in suspension resulted in significant carry-over activity of CHG in addition against Staphylococcus epidermidis (p < 0.001) and Corynebacterium jeikeium (p = 0.044). In the carrier test, the neutralizing mixture was found to be effective and non toxic to all challenge microorganisms when spread immediately. However, after 3 h storage of the neutralized active agents significant carry-over activity of CHG against Micrococcus luteus (p = 0.004; Tukey HSD) was observed. Without effective neutralization in the sampling fluid, non-volatile active ingredients will continue to reduce the number of surviving microorganisms after antiseptic treatment even if the sampling fluid is kept cold straight after testing. This can result in false-positive antiseptic efficacy data. Attention should be paid during the neutralization validation process to the amount of antiseptic solution, the storage time and to the choice of appropriate and sensitive microorganisms.
2014-01-01
Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213
Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian
2013-09-01
Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.
Lange, C.; Rittmann, D.; Wendisch, V. F.; Bott, M.; Sahm, H.
2003-01-01
Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain. PMID:12732517