Sample records for cosmic background explorer

  1. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  2. Cosmic Background Explorer (COBE) press kit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).

  3. The Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  4. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  5. Contamination control program for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.

    1991-01-01

    Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.

  6. Gravitational-wave stochastic background from cosmic strings.

    PubMed

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

  7. The Cosmic Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  8. Cosmic microwave background probes models of inflation

    NASA Technical Reports Server (NTRS)

    Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.

    1992-01-01

    Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.

  9. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  10. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  11. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movahed, M. Sadegh; Khosravi, Shahram, E-mail: m.s.movahed@ipm.ir, E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated puremore » Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.« less

  12. The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.

  13. Characterizing the Cosmic Infrared Background Fluctuations

    NASA Astrophysics Data System (ADS)

    Li, Yanxia

    2015-08-01

    A salient feature of the Cosmic Infrared Background (CIB) fluctuations is that their spatial power spectrum rises a factor of ~10 above the expected contribution from all known sources at angular scales >20‧‧. A tantalizing large-scale correlation signal between the residual Cosmic X-ray Background (CXB) and CIB found in the Extended Groth Strip (EGS) further suggests that at least 20% of the CIB fluctuations are associated with accreting X-ray sources, with efficient energy production similar to black holes. However, there is still a controversy about the sources that produce the excess flux. They could be faint, local populations with different spatial distribution from other known galaxies, e.g., intra-halo light (emitted from stars in the outskirts of local galaxies), or really high-z populations at the epoch of reionization that we know little of. Constraining the origin of the CIB fluctuations will help to establish our understanding of the overall cosmic energy budget.In this talk, we will present our plan to break down this controversy, current state of data collection and analysis.(1) We will combine the archival Spitzer/IRAC and Herschel/PACS data, with the Chandra data of the Cosmic Evolution Survey (COSMOS), to accurately measure the source-subtracted CIB and CXB fluctuations to the largest angular scale (~1-2 deg) to date. The newly discovered link between CIB and CXB fluctuations found in the EGS will be revisited in the COSMOS, which provides better photon statistics. (2) We have been working on cross-correlating the unresolved background with the discrete sources detected at shorter wavelengths (1- 2μm), using ground-based multi-wavelength observations. In addition to exploring the Pan-STARRS 3PI and Medium Deep Survey database, we have also been awarded the telescope time of CFHT/WIRCam and Subaru/Hyper-Suprime-Cam for this purpose. The preliminary data analysis will be presented.

  14. A cosmic microwave background feature consistent with a cosmic texture.

    PubMed

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  15. Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background.

    PubMed

    Larsen, Patricia; Challinor, Anthony; Sherwin, Blake D; Mak, Daisy

    2016-10-07

    Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck temperature maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857 GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16σ, with an amplitude of A_{delens}=1.12±0.07 relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.

  16. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  17. Cosmic Microwave Background Polarization and Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  18. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    NASA Astrophysics Data System (ADS)

    Tutt, J.; Anderson, C.; McKinney, G.

    Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.

  19. Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Johnson, N. J. E.

    1980-01-01

    Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.

  20. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE PAGES

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    2017-10-26

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  1. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  2. Cosmic microwave background bispectrum from recombination.

    PubMed

    Huang, Zhiqi; Vernizzi, Filippo

    2013-03-08

    We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.

  3. Illuminating the Background: Topics in Cosmic Microwave Background Polarization Research

    NASA Astrophysics Data System (ADS)

    Miller, Nathan J.

    The cosmic microwave background provides a wealth of information about the origin and history of the universe. The statistics of the anisotropy and the polarization of the cosmic microwave background, among other things, can tell us about the distribution of matter, the redshift of reionization, and the nature of the primordial uctuations. From the lensing of cosmic microwave background due to intervening matter, we can extract information about neutrinos and the equation of state of dark energy. A measurement of the large angular scale B-mode polarization has been called the "smoking gun" of in ation, a theory that describes a possible early rapid expansion of the universe. The focus of current experiments is to measure this B-mode polarization, while several experiments, such as POLARBEAR, are also looking to measure the lensing of the cosmic microwave background. This dissertation will discuss several different topics in cosmic microwave background polarization research. I will make predictions for future experiments and I will also show analysis for two current experiments, POLARBEAR and BICEP. I will show how beam systematics affect the measurement of cosmological parameters and how well we must limit these systematics in order to get unbiased constraints on cosmological parameters for future experiments. I will discuss a novel way of using the temperature-polarization cross correlation to constrain the amount of inflationary gravitational waves. Through Markov Chain Monte Carlo methods, I will determine how well future experiments will be able to constrain the neutrino masses and their degeneracy parameters. I will show results from current data analysis and calibration being done on the Cedar Flat deployment for the POLARBEAR experiment which is currently being constructed in the Atacama desert in Chile. Finally, I will analyze the claim of detection of cosmological birefringence in the BICEP data and show that there is reason to believe it is due to

  4. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    NASA Astrophysics Data System (ADS)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  5. Stochastic gravitational wave background from light cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less

  6. Cosmic Microwave Background Timeline

    Science.gov Websites

    about 2.3 K 1948: George Gamow, Ralph Alpher, and Robert Herman predict that a Big Bang universe perfect blackbody spectrum and thereby strongly supporting the hot big bang model, the thermal history of anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  7. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    PubMed

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

  8. Spectral distortions of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Mcdowell, Jonathan C.; Freese, Katherine; Levin, Janna

    1989-01-01

    Recent experiments indicate that the spectrum of the cosmic microwave background deviates from a pure blackbody; here, spectral distortions produced by cosmic dust are considered. The main result is that cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very massive stars) can explain the observed spectral distortions without violating existing cosmological constraints. In addition, it is shown that Compton y-distortions can also explain the observed spectral shape, but the energetic requirements are more severe.

  9. Robust constraint on cosmic textures from the cosmic microwave background.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  10. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.

  11. Anomalous cosmic-microwave-background polarization and gravitational chirality.

    PubMed

    Contaldi, Carlo R; Magueijo, João; Smolin, Lee

    2008-10-03

    We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  12. COBE - Cosmic Background Explorer

    Science.gov Websites

    with that from a precise blackbody. Data from the full four years of COBE observations continue to be stages in the COBE project. DIRBE (Diffuse Infrared Background Experiment) DIRBE has mapped the absolute sky brightness in 10 wavelength bands ranging from 1.25 microns to 240 microns. These data contain the

  13. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  14. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to “see” the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562keV plus the electron neutrino rest mass. The “KArlsruhe TRItium Neutrino” (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜ 1.95K) +3H →3He + e-(Q = 18.6keV + m νec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  15. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to "see" the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562 keV plus the electron neutrino rest mass. The "KArlsruhe TRItium Neutrino" (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜1.95K) + 3H → 3He + e-(Q = 18.6keV + mνec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  16. Cluster richness-mass calibration with cosmic microwave background lensing

    NASA Astrophysics Data System (ADS)

    Geach, James E.; Peacock, John A.

    2017-11-01

    Identifying galaxy clusters through overdensities of galaxies in photometric surveys is the oldest1,2 and arguably the most economical and mass-sensitive detection method3,4, compared with X-ray5-7 and Sunyaev-Zel'dovich effect8 surveys that detect the hot intracluster medium. However, a perennial problem has been the mapping of optical `richness' measurements onto total cluster mass3,9-12. Emitted at a conformal distance of 14 gigaparsecs, the cosmic microwave background acts as a backlight to all intervening mass in the Universe, and therefore has been gravitationally lensed13-15. Experiments such as the Atacama Cosmology Telescope16, South Pole Telescope17-19 and the Planck20 satellite have now detected gravitational lensing of the cosmic microwave background and produced large-area maps of the foreground deflecting structures. Here we present a calibration of cluster optical richness at the 10% level by measuring the average cosmic microwave background lensing measured by Planck towards the positions of large numbers of optically selected clusters, detecting the deflection of photons by structures of total mass of order 1014 M⊙. Although mainly aimed at the study of larger-scale structures, the Planck estimate of the cosmic microwave background lensing field can be used to recover a nearly unbiased lensing signal for stacked clusters on arcminute scales15,21. This approach offers a clean measure of total cluster masses over most of cosmic history, largely independent of baryon physics.

  17. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1992-01-01

    A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.

  18. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behne, Patrick Alan

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulationmore » potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.« less

  19. A Flexible Cosmic Ultraviolet Background Model

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-10-01

    HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.

  20. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    PubMed

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  1. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  2. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.

    1994-01-01

    The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).

  3. ΛGR Centennial: Cosmic Web in Dark Energy Background

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.

  4. Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps

    NASA Astrophysics Data System (ADS)

    De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

  5. Measurements of the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.

    1987-01-01

    Maps of the large scale structure (theta is greater than 6 deg) of the cosmic background radiation covering 90 percent of the sky are now available. The data show a very strong 50-100 sigma (statistical error) dipole component, interpreted as being due to our motion, with a direction of alpha = 11.5 + or - 0.15 hours, sigma = -5.6 + or - 2.0 deg. The inferred direction of the velocity of our galaxy relative to the cosmic background radiation is alpha = 10.6 + or - 0.3 hours, sigma = -2.3 + or - 5 deg. This is 44 deg from the center of the Virgo cluster. After removing the dipole component, the data show a galactic signature but no apparent residual structure. An autocorrelation of the residual data, after substraction of the galactic component from a combined Berkeley (3 mm) and Princeton (12 mm) data sets, show no apparent structure from 10 to 180 deg with a rms of 0.01 mK(sup 2). At 90 percent confidence level limit of .00007 is placed on a quadrupole component.

  6. Quantum effects in the cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Messer, J.

    1990-11-01

    Based on the quantum correlated general relativistic Vlasov equations in an Einstein-de Sitter universe, we show that quantum effects are beyond measurability in the cosmic microwave background radiation.

  7. A Detector for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  8. Can cosmic shear shed light on low cosmic microwave background multipoles?

    PubMed

    Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha

    2003-11-28

    The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.

  9. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  10. First results of the COBE satellite measurement of the anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Aymon, J.; De Amici, G.; Bennett, C. L.; Kogut, A.; Gulkis, S.; Backus, C.; Galuk, K.; Jackson, P. D.; Keegstra, P.

    1991-01-01

    The concept and operation of the Differential Microwave Radiometers (DMR) instrument aboard NASA's Cosmic Background Explorer satellite are reviewed, with emphasis on the software identification and subtraction of potential systematic effects. Preliminary results obtained from the first six months of DMR data are presented, and implications for cosmology are discussed.

  11. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  12. Lorentz-violating electrodynamics and the cosmic microwave background.

    PubMed

    Kostelecký, V Alan; Mewes, Matthew

    2007-07-06

    Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.

  13. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  14. Large-angle cosmic microwave background anisotropies in an open universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  15. Test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1991-01-01

    The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  16. Bayesian Analysis of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey

    2007-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.

  17. How to derotate the cosmic microwave background polarization.

    PubMed

    Kamionkowski, Marc

    2009-03-20

    If the linear polarization of the cosmic microwave background is rotated in a frequency-independent manner as it propagates from the surface of last scatter, it may introduce a B-mode polarization. Here I show that measurement of higher-order TE, EE, EB, and TB correlations induced by this rotation can be used to reconstruct the rotation angle as a function of position on the sky. This technique can be used to distinguish primordial B modes from those induced by rotation. The effects of rotation can be distinguished geometrically from similar effects due to cosmic shear.

  18. Detection prospects of the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  19. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  20. Cosmic microwave background power asymmetry from non-Gaussian modulation.

    PubMed

    Schmidt, Fabian; Hui, Lam

    2013-01-04

    Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.

  1. Polarization Observations with the Cosmic Background Imager

    NASA Astrophysics Data System (ADS)

    Cartwright, J. K.; Padin, S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Taylor, G. B.

    2000-12-01

    The linear polarization of the Cosmic Microwave Background Radiation is a fundamental prediction of the standard model. We report a limit on the polarization of the CMBR for l ~660. This limit was obtained with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from a site at 5000m in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a single, fully steerable platform; this platform can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers, of which 12 are configured for LCP and one is configured for RCP. The 12 cross polarized baselines sample multipoles from l ~600 to l ~3500. The instrumental polarization of the CBI was calibrated with observations of 3C279, a bright polarized source which is unresolved by the CBI. Because the centimeter flux of 3C279 is variable, it was monitored twice per month for 8 months in '00 with the VLA at 22 and 43 GHz. These observations also established the stability of the polarization characteristics of the CBI. This work was made possible by NSF grant AST-9802989

  2. Patterns of the cosmic microwave background from evolving string networks

    NASA Technical Reports Server (NTRS)

    Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert

    1988-01-01

    A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.

  3. Noise correlations in cosmic microwave background experiments

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Kosowsky, Arthur; Myers, Steven T.

    1995-01-01

    Many analysis of microwave background experiments neglect the correlation of noise in different frequency of polarization channels. We show that these correlations, should they be present, can lead to serve misinterpretation of an experiment. In particular, correlated noise arising from either electronics or atmosphere may mimic a cosmic signal. We quantify how the likelihood function for a given experiment varies with noise correlation, using both simple analytic models and actual data. For a typical microwave background anisotropy experiment, noise correlations at the level of 1% of the overall noise can seriously reduce the significance of a given detection.

  4. Cosmic microwave background science at commercial airline altitudes

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Gudmundsson, Jon E.; Peiris, Hiranya V.; Verde, Licia; Errard, Josquin

    2017-07-01

    Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate view of the polarized microwave sky.

  5. The test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1990-01-01

    The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  6. Interpreting the cosmic far-infrared background anisotropies using a gas regulator model

    NASA Astrophysics Data System (ADS)

    Wu, Hao-Yi; Doré, Olivier; Teyssier, Romain; Serra, Paolo

    2018-04-01

    Cosmic far-infrared background (CFIRB) is a powerful probe of the history of star formation rate (SFR) and the connection between baryons and dark matter across cosmic time. In this work, we explore to which extent the CFIRB anisotropies can be reproduced by a simple physical framework for galaxy evolution, the gas regulator (bathtub) model. This model is based on continuity equations for gas, stars, and metals, taking into account cosmic gas accretion, star formation, and gas ejection. We model the large-scale galaxy bias and small-scale shot noise self-consistently, and we constrain our model using the CFIRB power spectra measured by Planck. Because of the simplicity of the physical model, the goodness of fit is limited. We compare our model predictions with the observed correlation between CFIRB and gravitational lensing, bolometric infrared luminosity functions, and submillimetre source counts. The strong clustering of CFIRB indicates a large galaxy bias, which corresponds to haloes of mass 1012.5 M⊙ at z = 2, higher than the mass associated with the peak of the star formation efficiency. We also find that the far-infrared luminosities of haloes above 1012 M⊙ are higher than the expectation from the SFR observed in ultraviolet and optical surveys.

  7. Cosmological Implications of the Effects of X-Ray Clusters on the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1996-01-01

    We have been carrying forward a program to confront X-ray observations of clusters and their evolution as derived from X-ray observatories with observations of the cosmic microwave background radiation (CMBR). In addition to the material covered in our previous reports (including three published papers), most recently we have explored the effects of a cosmological constant on the predicted Sunyaev-Zel'dovich effect from the ensemble of clusters. In this report we summarize that work from which a paper will be prepared.

  8. Cosmic microwave background radiation of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  9. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  10. Cosmic microwave background polarization signals from tangled magnetic fields.

    PubMed

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500

  11. First Intrinsic Anisotropy Observations With the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Padin, S.; Cartwright, J. K.; Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Holzapfel, W. L.; Myers, S. T.; hide

    2001-01-01

    We present the first results of observations of the intrinsic anisotropy of the cosmic microwave background radiation with the Cosmic Background Imager from a site at 5080 in altitude in northern Chile. Our observations show a sharp decrease in C_l in the range l = 400 - 1500. Such a decrease in power at high l is one of the fundamental predictions of the standard cosmological model, and these are the first observations which cover a broad enough 1-range to show this decrease in a single experiment. The power, C_l, at l approximately 600 is higher than measured by Boomerang and Maxima, with the differences being significant at the 2.7sigma and 1.9sigma levels, respectively. The C_l we have measured enable us to place limits on the density parameter, Omega(tot) <= 0.4 or Omega(tot) >= 0.7 (90% confidence).

  12. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  13. Tracing the First Stars with Fluctuations of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.

    2005-01-01

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early-when the Universe was 5200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

  14. Distortion of the cosmic background radiation by superconducting strings

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thompson, C.

    1987-01-01

    Superconducting cosmic strings can be significant energy sources, keeping the universe ionized past the commonly assumed epoch of recombination. As a result, the spectrum of the cosmic background radiation is distorted in the presence of heated primordial gas via the Suniaev-Zel'dovich effect. Thiis distortion can be relatively large: the Compton y parameter attains a maximum in the range 0.001-0.005, with these values depending on the mass scale of the string. A significant contribution to y comes from loops decaying at high redshift when the universe is optically thick to Thomson scattering. Moreover, the isotropic spectral distortion is large compared to fluctuations at all angular scales.

  15. Polarization of Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Buzzelli, A.; Cabella, P.; de Gasperis, G.; Vittorio, N.

    2016-02-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross- correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales.

  16. A Degree-Scale Measurement of the Anisotropy in the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Wollack, Ed; Jarosik, Norm; Netterfield, Barth; Page, Lyman; Wilkinson, David

    1995-01-01

    We report the detection of anisotropy in the microwave sky at 3O GHz and at l deg angular scales. The most economical interpretation of the data is that the fluctuations are intrinsic to the cosmic microwave background. However, galactic free-free emission is ruled out with only 90% confidence. The most likely root-mean-squared amplitude of the fluctuations, assuming they are described by a Gaussian auto-correlation function with a coherence angle of 1.2 deg, is 41(+16/-13) (mu)K. We also present limits on the anisotropy of the polarization of the cosmic microwave background.

  17. The Explorer of Diffuse Galactic Emission (EDGE): Determination of Large-Scale Structure Evolution from Measurement of the Anisotropy of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Wilson, G. W.

    2004-01-01

    The formation of the first objects, stars and galaxies and their subsequent evolution remain a cosmological unknown. Few observational probes of these processes exist. The Cosmic Infrared Background (CIB) originates from this era, and can provide information to test models of both galaxy evolution and the growth of primordial structure. The Explorer of Diffuse Galactic Emission (EDGE) is a proposed balloon-borne mission designed to measure the spatial fluctuations in the CIB from 200 micrometers to 1 millimeter on 6' to 3 degree scales with 2 microKelvin sensitivity/resolution element. Such measurements would provide a sensitive probe of the large-scale variation in protogalaxy density at redshifts approximately 0.5-3. In this paper, we present the scientific justification for the mission and show a concept for the instrument and observations.

  18. Primary and Secondary Anisotropies of Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Seljak, Uros

    2002-01-01

    The three main topics we proposed to do are linear calculations (continuing development of CMBFAST), nonlinear calculations of gas physics relevant to Cosmic Microwave Background (CMB) (Sunyaev-Zeldovich effect, etc.) and nonlinear effects on CMB due to dark matter (gravitational lensing, etc.). We describe each of these topics, as well as additional topics PI and his group worked on that are related to the topics in the proposal.

  19. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  20. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  1. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2008-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown university; University of British Columbia; and University of California, Los Angeles.

  2. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  3. Exploring cosmic origins with CORE: Effects of observer peculiar motion

    NASA Astrophysics Data System (ADS)

    Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the

  4. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    PubMed

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  5. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    NASA Technical Reports Server (NTRS)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  6. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  7. Cosmic Ray Flux in the Presence of a Neutral Background

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, Arfin; Diaz, Abel

    2007-01-01

    The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.

  8. Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.

    PubMed

    Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D

    2001-12-17

    Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.

  9. Exploring cosmic origins with CORE: Inflation

    NASA Astrophysics Data System (ADS)

    Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F.; Paiella, A.; Pajer, E.; Patanchon, G.; Patil, S. P.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Roest, D.; Roman, M.; Rubiño-Martin, J. A.; Salvati, L.; Starobinsky, A. A.; Tartari, A.; Tasinato, G.; Tomasi, M.; Torrado, J.; Trappe, N.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; van de Weygaert, R.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10‑3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10‑3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

  10. Neutral particle background in cosmic ray telescopes composed of silicon solid state detectors

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1977-01-01

    The energy loss-spectrum of secondary charged particles produced by the interaction of gamma-rays and energetic neutrons in silicon solid state detectors has been measured with a satellite-borne cosmic ray telescope. In the satellite measurements presented here two distinct neutral background effects are identified: secondary protons and alpha particles with energies of about 2 to 100 MeV produced by neutron interactions, and secondary electrons with energies of about 0.2 to 10 MeV produced by X-ray interactions. The implications of this neutral background for satellite measurements of low energy cosmic rays are discussed, and suggestions are given for applying these results to other detector systems in order to estimate background contamination and optimize detector system design.

  11. Is the low-l microwave background cosmic?

    PubMed

    Schwarz, Dominik J; Starkman, Glenn D; Huterer, Dragan; Copi, Craig J

    2004-11-26

    The large-angle (low-l) correlations of the cosmic microwave background exhibit several statistically significant anomalies compared to the standard inflationary cosmology. We show that the quadrupole plane and the three octopole planes are far more aligned than previously thought (99.9% C.L.). Three of these planes are orthogonal to the ecliptic at 99.1% C.L., and the normals to these planes are aligned at 99.6% C.L. with the direction of the cosmological dipole and with the equinoxes. The remaining octopole plane is orthogonal to the supergalactic plane at 99.6% C.L.

  12. Correlated perturbations from inflation and the cosmic microwave background.

    PubMed

    Amendola, Luca; Gordon, Christopher; Wands, David; Sasaki, Misao

    2002-05-27

    We compare the latest cosmic microwave background data with theoretical predictions including correlated adiabatic and cold dark matter (CDM) isocurvature perturbations with a simple power-law dependence. We find that there is a degeneracy between the amplitude of correlated isocurvature perturbations and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribution. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature amplitude. The main result is that current microwave background data do not exclude a dominant contribution from CDM isocurvature fluctuations on large scales.

  13. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  14. Detection prospects for the Cosmic Neutrino Background using laser interferometers

    NASA Astrophysics Data System (ADS)

    Domcke, Valerie; Spinrath, Martin

    2017-06-01

    The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.

  15. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  16. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  17. Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes

    NASA Astrophysics Data System (ADS)

    Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk

    2012-03-01

    In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.

  18. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B -Mode Polarization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-01

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l <64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  19. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B-Mode Polarization.

    PubMed

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-03

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l<64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  20. Signatures of a hidden cosmic microwave background.

    PubMed

    Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-09-26

    If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gamma<-->gamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.

  1. Detection prospects for the Cosmic Neutrino Background using laser interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domcke, Valerie; Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw

    The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup couldmore » also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.« less

  2. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  3. Dark energy and the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  4. Dark energy and the cosmic microwave background radiation.

    PubMed

    Dodelson, S; Knox, L

    2000-04-17

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  5. Star formation history from the cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Maniyar, A. S.; Béthermin, M.; Lagache, G.

    2018-06-01

    We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from 0.8 at z = 0 to 8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77-0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.

  6. Cosmology with the cosmic microwave background temperature-polarization correlation

    NASA Astrophysics Data System (ADS)

    Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.

    2017-06-01

    We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-ℓ HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For ΛCDM parameters, TE gives very competitive results compared to TT. For basic ΛCDM model extensions (such as AL, ∑mν, or Neff), it is still limited by the instrumental noise level in the polarization maps.

  7. Precision Measurements of the Cosmic Microwave Background Polarization from the POLARBEAR experiment

    NASA Astrophysics Data System (ADS)

    Steinbach, Bryan

    2013-04-01

    We present status and results from the first season of observations of the POLARBEAR experiment. POLARBEAR is measuring the Cosmic Microwave Background (CMB) polarization anisotropies to constrain neutrino mass, inflation, dark energy, and cosmic birefringence. Since early 2012 POLARBEAR has been performing a deep search in 30 square degrees of sky to find odd parity B modes in the CMB polarization anisotropies induced by gravitational lensing. POLARBEAR observes with 1000 single mode 150GHz detectors with 3.5' FWHM beams from an off axis Gregorian Dragone 3m telescope in the Atacama Desert in Chile.

  8. Non-Gaussianity of the cosmic infrared background anisotropies - II. Predictions of the bispectrum and constraints forecast

    NASA Astrophysics Data System (ADS)

    Pénin, A.; Lacasa, F.; Aghanim, N.

    2014-03-01

    Using a full analytical computation of the bispectrum based on the halo model together with the halo occupation number, we derive the bispectrum of the cosmic infrared background (CIB) anisotropies that trace the clustering of dusty-star-forming galaxies. We focus our analysis on wavelengths in the far-infrared and the sub-millimeter typical of the Planck/HFI and Herschel/SPIRE instruments, 350, 550, 850 and 1380 μm. We explore the bispectrum behaviour as a function of several models of evolution of galaxies and show that it is strongly sensitive to that ingredient. Contrary to the power spectrum, the bispectrum, at the four wavelengths, seems dominated by low-redshift galaxies. Such a contribution can be hardly limited by applying low flux cuts. We also discuss the contributions of halo mass as a function of the redshift and the wavelength, recovering that each term is sensitive to a different mass range. Furthermore, we show that the CIB bispectrum is a strong contaminant of the cosmic microwave background bispectrum at 850 μm and higher. Finally, a Fisher analysis of the power spectrum, bispectrum alone and of the combination of both shows that degeneracies on the halo occupation distribution parameters are broken by including the bispectrum information, leading to tight constraints even when including foreground residuals.

  9. Power spectrum constraints from spectral distortions in the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Hu, Wayne; Scott, Douglas; Silk, Joseph

    1994-01-01

    Using recent experimental limits on chemical potential distortions from Cosmic Background Explorer (COBE) Far Infrared Astronomy Satellite (FIRAS), and the large lever-arm spanning the damping of sub-Jeans scale fluctuations to the COBE DMR fluctuations, we set a constraint on the slope of the primordial power spectrum n. It is possible to analytically calculate the contribution over the full range of scales and redshifts, correctly taking into account fluctuation growth and damping as well as thermalization processes. Assuming conservatively that mu is less than 1.76 x 10(exp -4), we find that the 95% upper limit on n is only weakly dependent on other cosmological parameters, e.g., n is less than 1.60 (h=0.5) and n is less than 1.63 (h=1.0) for Omega(sub 0) = 1, with marginally weaker constraints for Omega(sub 0) is less than 1 in a flat model with a cosmological constant.

  10. 21-cm lensing and the cold spot in the cosmic microwave background.

    PubMed

    Kovetz, Ely D; Kamionkowski, Marc

    2013-04-26

    An extremely large void and a cosmic texture are two possible explanations for the cold spot seen in the cosmic microwave background. We investigate how well these two hypotheses can be tested with weak lensing of 21-cm fluctuations from the epoch of reionization measured with the Square Kilometer Array. While the void explanation for the cold spot can be tested with Square Kilometer Array, given enough observation time, the texture scenario requires significantly prolonged observations, at the highest frequencies that correspond to the epoch of reionization, over the field of view containing the cold spot.

  11. A two-fluid approximation for calculating the cosmic microwave background anisotropies

    NASA Technical Reports Server (NTRS)

    Seljak, Uros

    1994-01-01

    We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.

  12. The cosmic gamma-ray background from Type Ia supernovae

    NASA Technical Reports Server (NTRS)

    The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.

    1993-01-01

    We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.

  13. SYSTEMATIC EFFECTS IN POLARIZING FOURIER TRANSFORM SPECTROMETERS FOR COSMIC MICROWAVE BACKGROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Peter C.; Tucker, Gregory S.; Fixsen, Dale J.

    The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherentmore » to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.« less

  14. Monte Carlo Algorithms for a Bayesian Analysis of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Eriksen, H. K.; ODwyer, I. J.; Wandelt, B. D.; Gorski, K.; Knox, L.; Chu, M.

    2006-01-01

    A viewgraph presentation on the review of Bayesian approach to Cosmic Microwave Background (CMB) analysis, numerical implementation with Gibbs sampling, a summary of application to WMAP I and work in progress with generalizations to polarization, foregrounds, asymmetric beams, and 1/f noise is given.

  15. Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2017-06-01

    We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.

  16. Cosmic sculpture: a new way to visualise the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Sato, S.; Portela Fonseca, A.

    2017-01-01

    3D printing presents an attractive alternative to visual representation of physical datasets such as astronomical images that can be used for research, outreach or teaching purposes, and is especially relevant to people with a visual disability. We here report the use of 3D printing technology to produce a representation of the all-sky cosmic microwave background (CMB) intensity anisotropy maps produced by the Planck mission. The success of this work in representing key features of the CMB is discussed as is the potential of this approach for representing other astrophysical data sets. 3D printing such datasets represents a highly complementary approach to the usual 2D projections used in teaching and outreach work, and can also form the basis of undergraduate projects. The CAD files used to produce the models discussed in this paper are made available.

  17. Search for Linear Polarization of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Lubin, P. M.; Smoot, G. F.

    1978-10-01

    We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination

  18. Cosmic infrared background measurements and star formation history from Planck

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Serra

    2014-05-01

    We present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles l ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(M eff/M ⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.

  19. Is the Cosmic Microwave Background a Shell Around Us? or are the Microwaves Everywhere in the Universe?

    NASA Technical Reports Server (NTRS)

    Mather, John

    2015-01-01

    A: The cosmic microwave background (CMB) radiation fills the universe and travels in all directions. As we see it from here in satellite maps, it is about equally bright in all directions, and thats one of the main reasons we know its cosmic.

  20. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  1. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    PubMed

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes.

  2. Cosmic microwave background constraints on primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Aloni, Daniel; Blum, Kfir; Flauger, Raphael

    2017-05-01

    We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with mBHgtrsim 5 Msolar are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.

  3. Nonlinear Dynamics of the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Inman, Derek

    At least two of the three neutrino species are known to be massive, but their exact masses are currently unknown. Cosmic neutrinos decoupled from the rest of the primordial plasma early on when the Universe was over a billion times hotter than it is today. These relic particles, which have cooled and are now non-relativistic, constitute the Cosmic Neutrino Background and permeate the Universe. While they are not observable directly, their presence can be inferred by measuring the suppression of the matter power spectrum. This suppression is a linear effect caused by the large thermal velocities of neutrinos, which prevent them from collapsing gravitationally on small scales. Unfortunately, it is difficult to measure because of degeneracies with other cosmological parameters and biases arising from the fact that we typically observe point-like galaxies rather than a continous matter field. It is therefore important to look for new effects beyond linear suppression that may be more sensitive to neutrinos. This thesis contributes to the understanding of the nonlinear dynamics of the cosmological neutrino background in the following ways: (i) the development of a new injection scheme for neutrinos in cosmological N-body simulations which circumvents many issues associated with simulating neutrinos at large redshifts, (ii) the numerical study of the relative velocity field between cold dark matter and neutrinos including its reconstruction from density fields, (iii) the theoretical description of neutrinos as a dispersive fluid and its use in modelling the nonlinear evolution of the neutrino density power spectrum, (iv) the derivation of the dipole correlation function using linear response which allows for the Fermi-Dirac velocity distribution to be properly included, and (v) the numerical study and detection of the dipole correlation function in the TianNu simulation. In totality, this thesis is a comprehensive study of neutrino density and velocity fields that may

  4. Cosmic microwave background trispectrum and primordial magnetic field limits.

    PubMed

    Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy

    2012-06-08

    Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.

  5. Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, R.D.

    1980-06-15

    QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion ofmore » the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.« less

  6. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arduini, G.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruce, R.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palm, M.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; RØhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-05-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied.

  7. Cosmic microwave background constraints on primordial black hole dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aloni, Daniel; Blum, Kfir; Flauger, Raphael, E-mail: daniel.aloni@weizmann.ac.il, E-mail: kfir.blum@weizmann.ac.il, E-mail: flauger@physics.ucsd.edu

    We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with m {sub BH}∼> 5 M {sub ⊙} are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.

  8. Detecting Patchy Reionization in the Cosmic Microwave Background.

    PubMed

    Smith, Kendrick M; Ferraro, Simone

    2017-07-14

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  9. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.

  10. Looking for early black holes signatures in the anisotropies of Cosmic backgrounds

    NASA Astrophysics Data System (ADS)

    Cappelluti, Nico

    2016-04-01

    We currently do not know how Super Massive Black Holes are seeded and grow to form the observed massive QSO at z~7. This is puzzling, because at that redshift the Universe was still too young to allow the growth of such massive black holes from stellar remnant black hole seeds. Theoretical models, taking into account the paucity of metals in the early Universe, explain this by invoking the formation of massive black holes seeds at z>10 as Direct Collapse Black holes of remnants of dead POPIII stars. As of today we cannot claim any detection of any high-z (z>7) black hole in their early stage of life. However, our recent measures of the arcminute scale joint fluctuations of the Cosmic X-ray Background and the Cosmic Infrared Background by Chandra and Spitzer can be explained by a population of highly absorbed z>10 Direct Collapse Black Holes.I will review the recent discoveries obtained with different instruments and by different teams and critically discuss these findings and the interpretations.

  11. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  12. Determining neutrino mass from the cosmic microwave background alone.

    PubMed

    Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon

    2003-12-12

    Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

  13. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2017-01-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  14. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-05-20

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency bucketsmore » of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied.« less

  15. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  16. A medium-scale measurement of the cosmic microwave background at 3.3 millimeters

    NASA Technical Reports Server (NTRS)

    Meinhold, Peter; Lubin, Philip

    1991-01-01

    A system has been developed for making measurements of spatial fluctuations in the cosmic microwave background radiation, on an angular scale of 5 arcmin to a few degrees. The system consists of an off-axis Gregorian telescope with a nearly Gaussian response with FWHM adjustable from 20 to 50 arcmin, an SIS coherent receiver operating at 3.3 mm, and a pointing system capable of better than 1 arcmin rms stabilization. This paper reports on results from the system's first balloon flight in August 1988, and ground-based measurements made from the South Pole in December 1988. A portion of the South Pole data is used to place a 95-percent confidence level upper limit of Delta T/T less than 0.000035 for Gaussian sky fluctuations in the background radiation at 20-arcmin angular scale and a limit of Delta T/T less than 0.000033 on overall excess intrinsic sky noise. In addition, dust contamination in cosmic background radiation data is estimated using measurements of the Galaxy from this flight and a previous one, along with the IRAS 100-micron map. These anisotropy results give the most stringent limits on cold dark matter theories to date.

  17. The cosmic MeV neutrino background as a laboratory for black hole formation

    NASA Astrophysics Data System (ADS)

    Yüksel, Hasan; Kistler, Matthew D.

    2015-12-01

    Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  18. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  19. The Cosmic Microwave Background Radiation and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2016-03-01

    The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).

  20. Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, J.; Levin, S.; Anderson, C. H.

    2004-01-01

    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).

  1. Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

    1983-06-01

    We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

  2. Exploring cosmic origins with CORE: The instrument

    NASA Astrophysics Data System (ADS)

    de Bernardis, P.; Ade, P. A. R.; Baselmans, J. J. A.; Battistelli, E. S.; Benoit, A.; Bersanelli, M.; Bideaud, A.; Calvo, M.; Casas, F. J.; Castellano, M. G.; Catalano, A.; Charles, I.; Colantoni, I.; Columbro, F.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; Delabrouille, J.; Doyle, S.; Franceschet, C.; Gomez, A.; Goupy, J.; Hanany, S.; Hills, M.; Lamagna, L.; Macias-Perez, J.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; McCarthy, D.; Mennella, A.; Monfardini, A.; Noviello, F.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Signorelli, G.; Tan, C. Y.; Tartari, A.; Trappe, N.; Triqueneaux, S.; Tucker, C.; Vermeulen, G.; Young, K.; Zannoni, M.; Achúcarro, A.; Allison, R.; Artall, E.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z. Y.; Carvalho, C. S.; Challinor, A.; Chluba, J.; Clesse, S.; De Gasperis, G.; De Zotti, G.; Di Valentino, E.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Hagstotz, S.; Greenslade, J.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Martins, C. J. A. P.; Matarrese, S.; Melchiorri, A.; Melin, J. B.; Molinari, D.; Natoli, P.; Negrello, M.; Notari, A.; Paoletti, D.; Patanchon, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J. A.; Salvati, L.; Tomasi, M.; Tramonte, D.; Trombetti, T.; Väliviita, J.; Van de Weyjgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.

    2018-04-01

    We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a medium-size space mission within the Cosmic Vision Programme of the European Space Agency. The instrument has no moving parts, and uses arrays of diffraction-limited Kinetic Inductance Detectors to cover the frequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane of a 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extraction of the CMB signal from polarized foreground emission. The projected CMB polarization survey sensitivity of this instrument, after foregrounds removal, is 1.7 μKṡarcmin. The design is robust enough to allow, if needed, a downscoped version of the instrument covering the 100 GHz to 600 GHz range with a 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarization survey sensitivity of 3.2 μKṡarcmin.

  3. Characterization and Prediction of the SPI Background

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Jean, P.; Knodlseder, J.; Skinner, G. K.; Weidenspointer, G.

    2003-01-01

    The INTEGRAL Spectrometer, like most gamma-ray instruments, is background dominated. Signal-to-background ratios of a few percent are typical. The background is primarily due to interactions of cosmic rays in the instrument and spacecraft. It characteristically varies by +/- 5% on time scales of days. This variation is caused mainly by fluctuations in the interplanetary magnetic field that modulates the cosmic ray intensity. To achieve the maximum performance from SPI it is essential to have a high quality model of this background that can predict its value to a fraction of a percent. In this poster we characterize the background and its variability, explore various models, and evaluate the accuracy of their predictions.

  4. First detection of cosmic microwave background lensing and Lyman- α forest bispectrum

    DOE PAGES

    Doux, Cyrille; Schaan, Emmanuel; Aubourg, Eric; ...

    2016-11-09

    We present the first detection of a correlation between the Lyman-α forest and cosmic microwave background gravitational lensing. For each Lyman-α forest in SDSS-III/BOSS DR12, we correlate the one-dimensional power spectrum with the cosmic microwave background lensing convergence on the same line of sight from Planck. This measurement constitutes a position-dependent power spectrum, or a squeezed bispectrum, and quantifies the nonlinear response of the Lyman-α forest power spectrum to a large-scale overdensity. The signal is measured at 5σ and is consistent with the expectation of the standard ΛCDM cosmological model. We measure the linear bias of the Lyman-α forest withmore » respect to the dark matter distribution and constrain a combination of nonlinear terms including the nonlinear bias. This new observable provides a consistency check for the Lyman-α forest as a large-scale structure probe and tests our understanding of the relation between intergalactic gas and dark matter. In the future, it could be used to test hydrodynamical simulations and calibrate the relation between the Lyman-α forest and dark matter.« less

  5. Background estimation of cosmic-ray induced neutrons in Chooz site water veto tank for possible future Ricochet Deployment

    NASA Astrophysics Data System (ADS)

    Silva, James

    2017-09-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.

  6. Evaluation of the cosmic-ray induced background in coded aperture high energy gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Barbier, Loius M.; Frye, Glenn M.; Jenkins, Thomas L.

    1991-01-01

    While the application of coded-aperture techniques to high-energy gamma-ray astronomy offers potential arc-second angular resolution, concerns were raised about the level of secondary radiation produced in a thick high-z mask. A series of Monte-Carlo calculations are conducted to evaluate and quantify the cosmic-ray induced neutral particle background produced in a coded-aperture mask. It is shown that this component may be neglected, being at least a factor of 50 lower in intensity than the cosmic diffuse gamma-rays.

  7. Evidence of lensing of the cosmic microwave background by dark matter halos.

    PubMed

    Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J

    2015-04-17

    We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

  8. A Synthesis Of Cosmic X-ray And Infrared Background

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Helou, G.; Armus, L.; Stierwalt, S.

    2012-01-01

    We present a synthesis model of cosmic IR and X-ray background, with the goal to derive a complete census of cosmic evolution of star formation (SF) and black-hole (BH) growth by complementing advantages of X-ray and IR surveys to each other. By assuming that individual galaxies are experiencing both SF and BH accretion, our model decomposes the total IR LF into SF and BH components while taking into account the luminosity-dependent SED and its dispersion of the SF component, and the extinction-dependent SED of the BH component. The best-fit parameters are derived by fitting to the number counts and redshift distributions at X-ray including both hard and soft bands, and mid-IR to submm bands including IRAS, Spitzer, Herschel, SCUBA, Aztec and MAMBO. Based on the fit result, our models provide a series of predictions on galaxy evolution and black-hole growth. For evolution of infrared galaxies, the model predicts that the total infrared luminosity function is best described through evolution in both luminosity and density. For evolution of AGN populations, the model predicts that the evolution of X-ray LF also shows luminosity and density dependent, that the type-1/type-2 AGN fraction is a function of both luminosity and redshift, and that the Compton-thick AGN number density evolves strongly with redshift, contributing about 20% to the total cosmic BH growth. For BH growth in IR galaxies, the model predicts that the majority of BH growth at z>1 occurs in infrared luminous galaxies and the AGN fraction as a function of IR survey is a strong function of the survey depth, ranging from >50% at bright end to below 10% at faint end. We also evaluates various AGN selection techniques at X-ray and IR wavelengths and offer predictions for future missions at X-ray and IR.

  9. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  10. Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum.

    PubMed

    Kiefer, Claus; Krämer, Manuel

    2012-01-13

    We derive the primordial power spectrum of density fluctuations in the framework of quantum cosmology. For this purpose we perform a Born-Oppenheimer approximation to the Wheeler-DeWitt equation for an inflationary universe with a scalar field. In this way, we first recover the scale-invariant power spectrum that is found as an approximation in the simplest inflationary models. We then obtain quantum gravitational corrections to this spectrum and discuss whether they lead to measurable signatures in the cosmic microwave background anisotropy spectrum. The nonobservation so far of such corrections translates into an upper bound on the energy scale of inflation.

  11. Polarization of the Cosmic Microwave Background: Are These Guys Serious?

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2007-01-01

    The polarization of the cosmic microwave background (CMB) could contain the oldest information in the universe, dating from an inflationary epoch just after the Big Bang. Detecting this signal presents an experimental challenge, as it is both faint and hidden behind complicated foregrounds. The rewards, however, are great, as a positive detection would not only establish inflation as a physical reality but also provide a model-independent measurement of the relevant energy scale. I will present the scientific motivation behind measurements of the CMB polarization and discuss how recent experimental progress could lead to a detection in the not-very-distant future.

  12. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  13. The cosmic infrared background experiment (CIBER): instrumentation and first results

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Lee, D. H.; Levenson, L.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.

    2010-07-01

    Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z ~ 6; the wavelength of these photons has been redshifted by (1 + z) into the near infrared today and can be measured using instruments situated above the Earth's atmosphere. First flying in February 2009, the Cosmic Infrared Background ExpeRiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodiacal light foreground with a high resolution spectrometer in each of our six science fields. The scientific motivation for CIBER and details of its first and second flight instrumentation will be discussed. First flight results on the color of the zodiacal light around 1 μm and plans for the future will also be presented.

  14. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  15. Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binétruy, Pierre; Dufaux, Jean-François; Bohé, Alejandro

    We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds.

  16. Cosmic Microwave Background: cosmology from the Planck perspective

    NASA Astrophysics Data System (ADS)

    De Zotti, Gianfranco

    2016-07-01

    The Planck mission has measured the angular anisotropies in the temperature of the Cosmic Microwave Background (CMB) with an accuracy set by fundamental limits. These data have allowed the determination of the cosmological parameters with extraordinary precision. These lecture notes present an overview of the mission and of its cosmological results. After a short history of the project, the Planck instruments and their performances are introduced and compared with those of the WMAP satellite. Next the approach to data analysis adopted by the Planck collaboration is described. This includes the techniques for dealing with the contamination of the CMB signal by astrophysical foreground emissions and for determining cosmological parameters from the analysis of the CMB power spectrum. The power spectra measured by Planck were found to be very well described by the standard spatially flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. This is a remarkable result, considering that the six parameters account for the about 2500 independent power spectrum values measured by Planck (the power was measured for about 2500 multipoles), not to mention the about one trillion science samples produced. A large grid of cosmological models was also explored, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data from ground-based experiments. On the whole, the Planck analysis of the CMB power spectrum allowed to vary and determined 16 parameters. Many other interesting parameters were derived from them. Although Planck was not initially designed to carry out high accuracy measurements of the CMB polarization anisotropies, its capabilities in this respect were significantly enhanced during its development. The quality of its polarization measurements have exceeded all original expectations. Planck's polarisation data confirmed and improved the understanding of the details of the cosmological

  17. Cosmic Microwave Background: cosmology from the Planck perspective

    NASA Astrophysics Data System (ADS)

    De Zotti, Gianfranco

    2017-08-01

    The Planck mission has measured the angular anisotropies in the temperature of the Cosmic Microwave Background (CMB) with an accuracy set by fundamental limits. These data have allowed the determination of the cosmological parameters with extraordinary precision. These lecture notes present an overview of the mission and of its cosmological results. After a short history of the project, the Planck instruments and their performances are introduced and compared with those of the WMAP satellite. Next the approach to data analysis adopted by the Planck collaboration is described. This includes the techniques for dealing with the contamination of the CMB signal by astrophysical foreground emissions and for determining cosmological parameters from the analysis of the CMB power spectrum. The power spectra measured by Planck were found to be very well described by the standard spatially flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. This is a remarkable result, considering that the six parameters account for the about 2500 independent power spectrum values measured by Planck (the power was measured for about 2500 multipoles), not to mention the about one trillion science samples produced. A large grid of cosmological models was also explored, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data from ground-based experiments. On the whole, the Planck analysis of the CMB power spectrum allowed to vary and determined 16 parameters. Many other interesting parameters were derived from them. Although Planck was not initially designed to carry out high accuracy measurements of the CMB polarization anisotropies, its capabilities in this respect were significantly enhanced during its development. The quality of its polarization measurements have exceeded all original expectations. Planck's polarisation data confirmed and improved the understanding of the details of the cosmological

  18. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    PubMed

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  19. Detection of cosmic microwave background structure in a second field with the Cosmic Anisotropy Telescope

    NASA Astrophysics Data System (ADS)

    Baker, Joanne C.; Grainge, Keith; Hobson, M. P.; Jones, Michael E.; Kneissl, R.; Lasenby, A. N.; O'Sullivan, C. M. M.; Pooley, Guy; Rocha, G.; Saunders, Richard; Scott, P. F.; Waldram, E. M.

    1999-10-01

    We describe observations at frequencies near 15GHz of the second 2x2deg^2 field imaged with the Cambridge Cosmic Anisotropy Telescope (CAT). After the removal of discrete radio sources, structure is detected in the images on characteristic scales of about half a degree, corresponding to spherical harmonic multipoles in the range l~330-680. A Bayesian analysis confirms that the signal arises predominantly from the cosmic microwave background (CMB) radiation for multipoles in the lower half of this range; the average broad-band power in a bin with centroid l=422 (θ~51arcmin) is estimated to be ΔTT 2.1-0.5+0.4 x10-5. For multipoles centred on l=615 (θ~35arcmin), we find contamination from Galactic emission is significant, and constrain the CMB contribution to the measured power in this bin to be ΔTT<2.0x10^-5 (1σ upper limit). These new results are consistent with the first detection made by CAT in a completely different area of sky. Together with data from other experiments, this new CAT detection adds weight to earlier evidence from CAT for a downturn in the CMB power spectrum on scales smaller than 1deg. Improved limits on the values of H0 and Ω are determined using the new CAT data.

  20. Polarization Observations with the Cosmic Background Imager

    NASA Astrophysics Data System (ADS)

    Cartwright, J. K.; Padin, S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Taylor, G. B.

    2001-05-01

    We describe polarization observations of the CMBR with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from a site at 5000m in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a single, fully steerable platform; this platform can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers, of which 12 are configured for LCP and one is configured for RCP. The 12 cross polarized baselines sample multipoles from l 600 to l 3500. The instrumental polarization of the CBI was calibrated with observations of 3C279, a bright polarized source which is unresolved by the CBI. Because the centimeter flux of 3C279 is variable, it was monitored twice per month for 8 months in 2000 with the VLA at 22 and 43 GHz. These observations also established the stability of the polarization characteristics of the CBI. This work was made possible by NSF grant AST-9802989

  1. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.

    PubMed

    Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W

    2017-07-21

    We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.

  2. Far Infrared Spectrometry of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  3. BOOK REVIEW: The Cosmic Microwave Background The Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Coles, Peter

    2009-08-01

    With the successful launch of the European Space Agency's Planck satellite earlier this year the cosmic microwave background (CMB) is once again the centre of attention for cosmologists around the globe. Since its accidental discovery in 1964 by Arno Penzias and Robert Wilson, this relic of the Big Bang has been subjected to intense scrutiny by generation after generation of experiments and has gradually yielded up answers to the deepest questions about the origin of our Universe. Most recently, the Wilkinson Microwave Anisotropy Probe (WMAP) has made a full-sky analysis of the pattern of temperature and polarization variations that helped establish a new standard cosmological model, confirmed the existence of dark matter and dark energy, and provided strong evidence that there was an epoch of primordial inflation. Ruth Durrer's book reflects the importance of the CMB for future developments in this field. Aimed at graduate students and established researchers, it consists of a basic introduction to cosmology and the theory of primordial perturbations followed by a detailed explanation of how these manifest themselves as measurable variations in the present-day radiation field. It then focuses on the statistical methods needed to obtain accurate estimates of the parameters of the standard cosmological model, and finishes with a discussion of the effect of gravitational lensing on the CMB and on the evolution of its spectrum. The book apparently grew out of various lecture notes on CMB anisotropies for graduate courses given by the author. Its level and scope are well matched to the needs of such an audience and the presentation is clear and well-organized. I am sure that this book will be a useful reference for more senior scientists too. If I have a criticism, it is not about what is in the book but what is omitted. In my view, one of the most exciting possibilities for future CMB missions, including Planck, is the possibility that they might discover physics

  4. Observable tensor-to-scalar ratio and secondary gravitational wave background

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arindam; Mazumdar, Anupam

    2018-03-01

    In this paper we will highlight how a simple vacuum energy dominated inflection-point inflation can match the current data from cosmic microwave background radiation, and predict large primordial tensor to scalar ratio, r ˜O (10-3-10-2), with observable second order gravitational wave background, which can be potentially detectable from future experiments, such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), Laser Interferometer Space Antenna (eLISA), cosmic explorer (CE), and big bang observatory (BBO).

  5. A New Approach in Coal Mine Exploration Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Darijani, Reza; Negarestani, Ali; Rezaie, Mohammad Reza; Fatemi, Syed Jalil; Akhond, Ahmad

    2016-08-01

    Muon radiography is a technique that uses cosmic ray muons to image the interior of large scale geological structures. The muon absorption in matter is the most important parameter in cosmic ray muon radiography. Cosmic ray muon radiography is similar to X-ray radiography. The main aim in this survey is the simulation of the muon radiography for exploration of mines. So, the production source, tracking, and detection of cosmic ray muons were simulated by MCNPX code. For this purpose, the input data of the source card in MCNPX code were extracted from the muon energy spectrum at sea level. In addition, the other input data such as average density and thickness of layers that were used in this code are the measured data from Pabdana (Kerman, Iran) coal mines. The average thickness and density of these layers in the coal mines are from 2 to 4 m and 1.3 gr/c3, respectively. To increase the spatial resolution, a detector was placed inside the mountain. The results indicated that using this approach, the layers with minimum thickness about 2.5 m can be identified.

  6. Parameter constraints from weak-lensing tomography of galaxy shapes and cosmic microwave background fluctuations

    NASA Astrophysics Data System (ADS)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-08-01

    Recently, it has been shown that cross-correlating cosmic microwave background (CMB) lensing and three-dimensional (3D) cosmic shear allows to considerably tighten cosmological parameter constraints. We investigate whether similar improvement can be achieved in a conventional tomographic setup. We present Fisher parameter forecasts for a Euclid-like galaxy survey in combination with different ongoing and forthcoming CMB experiments. In contrast to a fully 3D analysis, we find only marginal improvement. Assuming Planck-like CMB data, we show that including the full covariance of the combined CMB and cosmic shear data improves the dark energy figure of merit (FOM) by only 3 per cent. The marginalized error on the sum of neutrino masses is reduced at the same level. For a next generation CMB satellite mission such as Prism, the predicted improvement of the dark energy FOM amounts to approximately 25 per cent. Furthermore, we show that the small improvement is contrasted by an increased bias in the dark energy parameters when the intrinsic alignment of galaxies is not correctly accounted for in the full covariance matrix.

  7. Constraining the redshift distribution of ultrahigh-energy-cosmic-ray sources by isotropic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix

    2017-01-01

    By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.

  8. Cosmic Microwave Background Mapmaking with a Messenger Field

    NASA Astrophysics Data System (ADS)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  9. Three-mirror anastigmat for cosmic microwave background observations.

    PubMed

    Padin, S

    2018-03-20

    An off-axis three-mirror anastigmat is proposed for future cosmic microwave background observations. The telescope has a 5 m diameter primary, giving 1.5 ' angular resolution at λ=2  mm, which is sufficient for measurements of gravitational lensing and for galaxy cluster surveys. The design includes several key features, not previously combined in a large telescope, that are important for sensitive measurements, especially on large angular scales: (1) high throughput (8° diameter diffraction-limited field of view at λ=1  mm, and 12×8° at λ=3  mm, so a single telescope could support all the detectors for an optimistic, future experiment); (2) low scattering (all the mirrors are small enough to be monolithic, so there are no segment gaps); (3) full boresight rotation, over the full elevation range, for measuring polarization errors; and (4) a comoving shield or baffle around the entire telescope to control pickup.

  10. Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel'dovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrana, Alexandra; Johnson, Matthew C.; Harris, Mary-Jean, E-mail: aterrana@perimeterinstitute.ca, E-mail: mharris8@perimeterinstitute.ca, E-mail: mjohnson@perimeterinstitute.ca

    Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, andmore » estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more modes than the primary CMB on comparable scales. A basic forecast indicates that a first detection could be made with next-generation CMB experiments and galaxy surveys. This paper motivates a more systematic investigation of how close to the cosmic variance limit it will be possible to get with future observations.« less

  11. Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki

    2016-08-01

    Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.

  12. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    PubMed

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  13. Characterizing the Peak in the Cosmic Microwave Background Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Knox, Lloyd; Page, Lyman

    2000-08-01

    A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between ~70 and 90 μK. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.

  14. Cosmic microwave background snapshots: pre-WMAP and post-WMAP.

    PubMed

    Bond, J Richard; Contaldi, Carlo; Pogosyan, Dmitry

    2003-11-15

    We highlight the remarkable evolution in the cosmic microwave background (CMB) power spectrum C(l) as a function of multipole l over the past few years, and in the cosmological parameters for minimal inflation models derived from it: from anisotropy results before 2000; in 2000 and 2001 from Boomerang, Maxima and the Degree Angular Scale Interferometer (DASI), extending l to approximately 1000; and in 2002 from the Cosmic Background Imager (CBI), Very Small Array (VSA), ARCHEOPS and Arcminute Cosmology Bolometer Array Receiver (ACBAR), extending l to approximately 3000, with more from Boomerang and DASI as well. Pre-WMAP (pre-Wilkinson Microwave Anisotropy Probe) optimal band powers are in good agreement with each other and with the exquisite one-year WMAP results, unveiled in February 2003, which now dominate the l less, similar 600 bands. These CMB experiments significantly increased the case for accelerated expansion in the early Universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with "prior" probabilities on the parameters. The minimal inflation parameter set, [omega(b), omega(cdm), Omega(tot), Omega(Lambda), n(s), tau(C), sigma(8)], is applied in the same way to the evolving data. C(l) database and Monte Carlo Markov Chain (MCMC) methods are shown to give similar values, which are highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated "parameter eigenmodes". Priors applied range from weak ones to stronger constraints from the expansion rate (HST-h), from cosmic acceleration from supernovae (SN1) and from galaxy clustering, gravitational lensing and local cluster abundance (LSS). After marginalizing over the other cosmic and experimental variables for the weak + LSS prior, the pre-WMAP data of January 2003 compared with the post-WMAP data of March 2003 give Omega(tot) = 1.03(-0.04)(+0.05) compared with 1

  15. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    PubMed

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum.

  16. Backlighting the Universe: Understanding the Large-Scale Structure Through Cosmic Microwave Background Observations

    NASA Astrophysics Data System (ADS)

    Schaan, Emmanuel Sebastien

    The primary fluctuations in the cosmic microwave background (CMB), the leftover heat from the big bang, have revealed invaluable clues about our universe (age, history, geometry, composition), and are now measured almost to the cosmic variance limit. While important fundamental physics questions remain to be answered from the primary CMB alone (e.g., detection of gravitational waves from inflation, number of relativistic species), many others require looking beyond the primary anisotropies: what is dark energy, this mysterious component responsible for the accelerated expansion of the universe? What is the nature of the dark matter, five times more abundant than ordinary matter? What are the masses of the neutrinos? The clustering pattern in the spatial distribution of galaxies across the universe, the so-called large-scale structure (LSS), contains the key to these fundamental physics questions, as well as many tightly related astrophysical questions: what are the key processes in galaxy formation? How did the universe transition from neutral to ionized, one billion years after the big bang? However, several hurdles hinder extracting this information: non-linear evolution under gravity is complex to model and turns independent Gaussian initial conditions into coupled non-Gaussian modes; uncertain astrophysical effects obscure the connection between visible and dark matter, and alter the matter power spectrum on small-scales; LSS observables are often complex and systematics-limited. In this thesis, I tackle these issues and explore various ways of using the CMB as a backlight for the LSS, to illuminate aspects of its uncertain physics and systematics. In the coming years, ever more sensitive CMB experiments (AdvACT, SPT-3G, Simons Observatory, CMB Stage 4) will overlap with imaging surveys (DES, HSC, LSST, Euclid, WFIRST) and spectroscopic surveys (DESI, PFS), thus greatly magnifying the power of the methods I developed, and helping to answer some of the most

  17. Estimate of Cosmic Muon Background for Shallow Underground Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Simão, F. R. A.; Anjos, J. C.

    One of the severe limitations in detecting neutrino signals from nuclear reactors is that the copious cosmic ray background imposes the use of a time veto upon the passage of the muons to reduce the number of fake signals due to muon-induced spallation neutrons. For this reason neutrino detectors are usually located underground, with a large overburden. However there are practical limitations that do restrain from locating the detectors at large depths underground. In order to decide the depth underground at which the Neutrino Angra Detector (currently in preparation) should be installed, an estimate of the cosmogenic background in the detector as a function of the depth is required. We report here a simple analytical estimation of the muon rates in the detector volume for different plausible depths, assuming a simple plain overburden geometry. We extend the calculation to the case of the San Onofre neutrino detector and to the case of the Double Chooz neutrino detector, where other estimates or measurements have been performed. Our estimated rates are consistent.

  18. The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the near Infrared Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.

    2013-08-01

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  19. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Bock, J.; Hristov, V.

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less

  20. Polarimeter Arrays for Cosmic Microwave Background Measurements

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Cao, Nga; Chuss, David; Fixsen, Dale; Hsieh, Wen-Ting; Kogut, Alan; Limon, Michele; Moseley, S. Harvey; Phillips, Nicholas; Schneider, Gideon

    2006-01-01

    We discuss general system architectures and specific work towards precision measurements of Cosmic Microwave Background (CMB) polarization. The CMB and its polarization carry fundamental information on the origin, structure, and evolution of the universe. Detecting the imprint of primordial gravitational radiation on the faint polarization of the CMB will be difficult. The two primary challenges will be achieving both the required sensitivity and precise control over systematic errors. At anisotropy levels possibly as small as a few nanokelvin, the gravity-wave signal is faint compared to the fundamental sensitivity limit imposed by photon arrival statistics, and one must make simultaneous measurements with large numbers, hundreds to thousands, of independent background-limited direct detectors. Highly integrated focal plane architectures, and multiplexing of detector outputs, will be essential. Because the detectors, optics, and even the CMB itself are brighter than the faint gravity-wave signal by six to nine orders of magnitude, even a tiny leakage of polarized light reflected or diffracted from warm objects could overwhelm the primordial signal. Advanced methods of modulating only the polarized component of the incident radiation will play an essential role in measurements of CMB polarization. One promising general polarimeter concept that is under investigation by a number of institutions is to first use planar antennas to separate millimeter-wave radiation collected by a lens or horn into two polarization channels. Then the signals can be fed to a pair of direct detectors through a planar circuit consisting of superconducting niobium microstrip transmission lines, hybrid couplers, band-pass filters, and phase modulators to measure the Stokes parameters of the incoming radiation.

  1. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  2. Constraints on universe models with cosmological constant from cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi; Gouda, Naoteru; Sasaki, Misao

    1990-12-01

    Thorough numerical calculations of the fluctuations in the cosmic microwave background radiation using the gage-invariant formalism are carried out for various cosmological models with the cosmological constant. It is shown that a spatially flat cold dark matter-dominated universe of Omega(0) = 0.1 to about 0.4 and H(0) = 50 to about 100 km/s per Mpc with adiabatic perturbations has the possibility of giving the final answer to cosmological puzzles. It is also found that the introduction of the cosmological constant may revive pure baryonic universe models.

  3. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    NASA Astrophysics Data System (ADS)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  4. Late time neutrino masses, the LSND experiment, and the cosmic microwave background.

    PubMed

    Chacko, Z; Hall, Lawrence J; Oliver, Steven J; Perelstein, Maxim

    2005-03-25

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  5. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  6. Imprints of spherical nontrivial topologies on the cosmic microwave background.

    PubMed

    Niarchou, Anastasia; Jaffe, Andrew

    2007-08-24

    The apparent low power in the cosmic microwave background (CMB) temperature anisotropy power spectrum derived from the Wilkinson Microwave Anisotropy Probe motivated us to consider the possibility of a nontrivial topology. We focus on simple spherical multiconnected manifolds and discuss their implications for the CMB in terms of the power spectrum, maps, and the correlation matrix. We perform a Bayesian model comparison against the fiducial best-fit cold dark matter model with a cosmological constant based both on the power spectrum and the correlation matrix to assess their statistical significance. We find that the first-year power spectrum shows a slight preference for the truncated cube space, but the three-year data show no evidence for any of these spaces.

  7. Lenses in the forest: cross correlation of the Lyman-alpha flux with cosmic microwave background lensing.

    PubMed

    Vallinotto, Alberto; Das, Sudeep; Spergel, David N; Viel, Matteo

    2009-08-28

    We present a theoretical estimate for a new observable: the cross correlation between the Lyman-alpha flux fluctuations in quasar spectra and the convergence of the cosmic microwave background as measured along the same line of sight. As a first step toward the assessment of its detectability, we estimate the signal-to-noise ratio using linear theory. Although the signal-to-noise is small for a single line of sight and peaks at somewhat smaller redshifts than those probed by the Lyman-alpha forest, we estimate a total signal-to-noise of 9 for cross correlating quasar spectra of SDSS-III with Planck and 20 for cross correlating with a future polarization based cosmic microwave background experiment. The detection of this effect would be a direct measure of the neutral hydrogen-matter cross correlation and could provide important information on the growth of structures at large scales in a redshift range which is still poorly probed.

  8. Angular power spectrum of the FASTICA cosmic microwave background component from Background Emission Anisotropy Scanning Telescope data

    NASA Astrophysics Data System (ADS)

    Donzelli, S.; Maino, D.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Lubin, P. M.; Meinhold, P. R.; O'Dwyer, I. J.; Seiffert, M. D.; Villela, T.; Wandelt, B. D.; Wuensche, C. A.

    2006-06-01

    We present the angular power spectrum of the cosmic microwave background (CMB) component extracted with FASTICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2-m off-axis telescope with a focal plane comprising eight elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC (University of California) White Mountain Research Station at an altitude of 3800 m. The BEAST CMB angular power spectrum has already been calculated by O'Dwyer et al. using only the Q-band data. With two input channels, FASTICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte Carlo (MC) simulations, we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the Wilkinson Microwave Anisotropy Probe (WMAP) data.

  9. Characterizing the peak in the cosmic microwave background angular power spectrum

    PubMed

    Knox; Page

    2000-08-14

    A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between approximately 70 and 90 &mgr;K. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.

  10. The Complexities of Interstellar Dust and the Implications for the Small-scale Structure in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Verschuur, G. L.; Schmelz, J. T.

    2018-02-01

    A detailed comparison of the full range of PLANCK and Wilkinson Microwave Anisotropy Probe data for small (2° × 2°) areas of sky and the Cosmic Microwave Background Internal Linear Combination (ILC) maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ∼13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question: “to what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the Cosmic Microwave Background small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the Cosmic Microwave Background, or both.

  11. An investigation of the cosmic diffuse X-ray background

    NASA Astrophysics Data System (ADS)

    John, Tomykkutty Velliyedathu

    2016-03-01

    The cosmic diffuse X-ray background (CXB), which is only second to the cosmic microwave background (CMB) in prominence, has challenged astrophysicists ever since its serendipitous discovery in 1962. In the past five decades, we have made considerable progress unraveling its mysterious origins. Nevertheless, precise identification of its various components and their individual contributions still remains a puzzling task. The bulk of the XRB comes from the integrated flux of the most luminous astronomical objects- Active Galactic Nuclei (AGN)- as well as the emission from starburst and normal galaxies and can account for most of the emission above 1 keV. In the energy range below 1 keV, several components can be identified besides the dominant extragalactic component. While two thermal components, one at about one million K and the other at about 2.3 million K adequately account for the emission from hot gas in collisional ionization equilibrium, solar wind charge exchange (SWCX) makes a substantial contribution to the SXRB. One of the biggest challenges is to separate the contributions of individual components. This is made difficult by the fact that the spectral structure of all the Galactic components is similar. Shadow experiments have been used to discriminate the various constituents; however, these have only limited use owing to their dependence on estimates of cloud parameters. The best way to make reliable inferences on the contributions of DXB components is to apply good models to valid data with high statistics. With this in mind, for this work, we selected high quality data, from the well-surveyed sky direction- the Chandra Deep Field South (CDF-S)- with 4 Ms of observing time, analyzed them and using several models, derived the important parameters for the various DXB constituents obtaining very good constraints. In addition, we used the same data, spread over a period of nine years, to make a systematic analysis of the temporal variation of heliospheric

  12. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1?}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  13. The Australia Telescope search for cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Kesteven, Michael J.; Ekers, Ronald D.; Sinclair, Malcolm; Silk, Joseph

    1998-08-01

    In an attempt to detect cosmic microwave background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Q_flat<23.6muK with 95 per cent confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) F_l in multipole l-space peaks at l_eff=4700 and has half-maximum values at l=3350 and 6050.

  14. Studying extragalactic background fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2014-08-01

    Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including

  15. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  16. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  17. Broad-band flared horn with low sidelobes. [applicable to cosmic background radiation measurement

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1981-01-01

    A circular horn antenna flared like a trumpet is analyzed with the geometrical theory of diffraction and then tested experimentally. Sidelobes are found to be extremely low (-75 dB), in agreement with theory. Low sidelobe performance is predicted to be broad-band and to improve at higher frequencies. The full aperture of the tested horn is approximately 50 wavelengths. Suggestions for even better low sidelobe antennas are made. The applicability of this horn to the measurement of cosmic background radiation is noted.

  18. Probing Inflation via Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Cosmic Microwave Background (CMB) has been a rich source of information about the early Universe. Detailed measurements of its spectrum and spatial distribution have helped solidify the Standard Model of Cosmology. However, many questions still remain. Standard Cosmology does not explain why the early Universe is geometrically flat, expanding, homogenous across the horizon, and riddled with a small anisotropy that provides the seed for structure formation. Inflation has been proposed as a mechanism that naturally solves these problems. In addition to solving these problems, inflation is expected to produce a spectrum of gravitational waves that will create a particular polarization pattern on the CMB. Detection of this polarized signal is a key test of inflation and will give a direct measurement of the energy scale at which inflation takes place. This polarized signature of inflation is expected to be -9 orders of magnitude below the 2.7 K monopole level of the CMB. This measurement will require good control of systematic errors, an array of many detectors having the requisite sensitivity, and a reliable method for removing polarized foregrounds, and nearly complete sky coverage. Ultimately, this measurement is likely to require a space mission. To this effect, technology and mission concept development are currently underway.

  19. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  20. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  1. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    PubMed

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  2. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping, E-mail: sperello@arcetri.astro.it, E-mail: weitou@gmail.com, E-mail: d9722518@oz.nthu.edu.tw

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Althoughmore » in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.« less

  3. Searching for concentric low variance circles in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas

    2015-12-01

    In a recent paper, Gurzadyan & Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies, i.e., they are entirely consistent with the predictions of the standard cosmological model.

  4. Correlated isocurvature fluctuation in quintessence and suppressed cosmic microwave background anisotropies at low multipoles.

    PubMed

    Moroi, Takeo; Takahashi, Tomo

    2004-03-05

    We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.

  5. The microphysics and macrophysics of cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less

  6. Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope.

    PubMed

    Hanson, D; Hoover, S; Crites, A; Ade, P A R; Aird, K A; Austermann, J E; Beall, J A; Bender, A N; Benson, B A; Bleem, L E; Bock, J J; Carlstrom, J E; Chang, C L; Chiang, H C; Cho, H-M; Conley, A; Crawford, T M; de Haan, T; Dobbs, M A; Everett, W; Gallicchio, J; Gao, J; George, E M; Halverson, N W; Harrington, N; Henning, J W; Hilton, G C; Holder, G P; Holzapfel, W L; Hrubes, J D; Huang, N; Hubmayr, J; Irwin, K D; Keisler, R; Knox, L; Lee, A T; Leitch, E; Li, D; Liang, C; Luong-Van, D; Marsden, G; McMahon, J J; Mehl, J; Meyer, S S; Mocanu, L; Montroy, T E; Natoli, T; Nibarger, J P; Novosad, V; Padin, S; Pryke, C; Reichardt, C L; Ruhl, J E; Saliwanchik, B R; Sayre, J T; Schaffer, K K; Schulz, B; Smecher, G; Stark, A A; Story, K T; Tucker, C; Vanderlinde, K; Vieira, J D; Viero, M P; Wang, G; Yefremenko, V; Zahn, O; Zemcov, M

    2013-10-04

    Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.

  7. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  8. Reply to the comment by C. J. Goebel entitled ''Angular momentum of the cosmic background radiation''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal, I.E.

    1983-02-15

    It is argued that the critical discussion by C. J. Goebel of a paper of Jakobsen, Kon, and Segal explaining the Woody-Richards anomaly by an assumption of nontrivial isotropic angular momentum in the cosmic background radiation (in galactic vicinities or otherwise) lacks logical coherence, specific relevance to the cited paper, and is generally without scientific metric.

  9. Can the cosmic x ray and gamma ray background be due to reflection of a steep power law spectrum and Compton scattering by relativistic electrons?

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland

    1991-01-01

    We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.

  10. A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations

    NASA Astrophysics Data System (ADS)

    Reichardt, C. L.; Shaw, L.; Zahn, O.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dudley, J.; George, E. M.; Halverson, N. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Millea, M.; Mohr, J. J.; Montroy, T. E.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Ruhl, J. E.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; Story, K.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2012-08-01

    We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 ± 0.69 μK2, and set an upper limit on the kinetic SZ power to be less than 2.8 μK2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D tSZ 3000 + 0.5D 3000 kSZ = 4.60 ± 0.63 μK2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine σ8 = 0.807 ± 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on σ8. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.

  11. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichardt, C. L.; George, E. M.; Holzapfel, W. L.

    2012-08-10

    We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ resultsmore » using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 {+-} 0.69 {mu}K{sup 2}, and set an upper limit on the kinetic SZ power to be less than 2.8 {mu}K{sup 2} at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D{sup tSZ}{sub 3000} + 0.5D{sub 3000}{sup kSZ} = 4.60 {+-} 0.63 {mu}K{sup 2}, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine {sigma}{sub 8} = 0.807 {+-} 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on {sigma}{sub 8}. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.« less

  12. A search for anisotrophy in the cosmic microwave background on intermediate angular scales

    NASA Technical Reports Server (NTRS)

    Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Fischer, M. L.; Gundersen, J. O.; Kreysa, E.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.

    1992-01-01

    The results of a search for anisotropy in the cosmic microwave background on angular scales near 1 deg are presented. Observations were simultaneously performed in bands centered at frequencies of 6, 9, and 12 per cm with a multifrequency bolometric receiver mounted on a balloon-borne telescope. The statistical sensitivity of the data is the highest reported to date at this angular scale, which is of critical importance for understanding the formation of structure in the universe. Signals in excess of random were observed in the data. The experiment, data analysis, and interpretation are described.

  13. Estimate of the cosmological bispectrum from the MAXIMA-1 cosmic microwave background map.

    PubMed

    Santos, M G; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Magueijo, J; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D; Wu, J H P

    2002-06-17

    We use the measurement of the cosmic microwave background taken during the MAXIMA-1 flight to estimate the bispectrum of cosmological perturbations. We propose an estimator for the bispectrum that is appropriate in the flat sky approximation, apply it to the MAXIMA-1 data, and evaluate errors using bootstrap methods. We compare the estimated value with what would be expected if the sky signal were Gaussian and find that it is indeed consistent, with a chi(2) per degree of freedom of approximately unity. This measurement places constraints on models of inflation.

  14. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    PubMed

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  15. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral

  16. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  17. Could multiple voids explain the cosmic microwave background Cold Spot anomaly?

    DOE PAGES

    Naidoo, Krishna; Benoit-Levy, Aurelien; Lahav, Ofer

    2016-03-20

    Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a ≳ 3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K.more » In this model the central CS temperature lies at ~ 2σ but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. Furthermore, the CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.« less

  18. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  19. Inflation physics from the cosmic microwave background and large scale structure

    DOE PAGES

    Abazajian, K. N.; Arnold, K.; Austermann, J.; ...

    2014-06-26

    Here, fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments—the theory of cosmic inflation—and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to amore » depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B -mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.« less

  20. Testing New Physics with the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera

    2013-01-01

    In my thesis work, I have developed and applied tests of new fundamental physics that utilize high-precision CMB polarization measurements. I especially focused on a wide class of dark energy models that propose existence of new scalar fields to explain accelerated expansion of the Universe. Such fields naturally exhibit a weak interaction with photons, giving rise to "cosmic birefringence"---a rotation of the polarization plane of light traveling cosmological distances, which alters the statistics of the CMB fluctuations in the sky by inducing a characteristic B-mode polarization. A birefringent rotation of the CMB would be smoking-gun evidence that dark energy is a dynamical component rather than a cosmological constant, while its absence gives clues about the allowed regions of the parameter space for new models. I developed a full-sky formalism to search for cosmic birefringence by cross-correlating CMB temperature and polarization maps, after allowing for the rotation angle to vary across the sky. With my collaborators, I also proposed a cross-correlation of the rotation-angle estimator with the CMB temperature as a novel statistical probe which can boost signal-to-noise in the case of marginal detection and help disentangle the underlying physical models. I then investigated the degeneracy between the rotation signal and the signals from other exotic scenarios that induce a similar B-mode polarization signature, such as chiral primordial gravitational waves, and demonstrated that these effects are completely separable. Finally, I applied this formalism to WMAP-7 data and derived the first CMB constraint on the power spectrum of the birefringent-rotation angle and presented forecasts for future experiments. To demonstrate the value of this analysis method beyond the search for direction-dependent cosmic birefringence, I have also used it to probe patchy screening from the epoch of cosmic reionization with WMAP-7 data.

  1. Information gains from cosmic microwave background experiments

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Amara, Adam; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël

    2014-07-01

    To shed light on the fundamental problems posed by dark energy and dark matter, a large number of experiments have been performed and combined to constrain cosmological models. We propose a novel way of quantifying the information gained by updates on the parameter constraints from a series of experiments which can either complement earlier measurements or replace them. For this purpose, we use the Kullback-Leibler divergence or relative entropy from information theory to measure differences in the posterior distributions in model parameter space from a pair of experiments. We apply this formalism to a historical series of cosmic microwave background experiments ranging from Boomerang to WMAP, SPT, and Planck. Considering different combinations of these experiments, we thus estimate the information gain in units of bits and distinguish contributions from the reduction of statistical errors and the "surprise" corresponding to a significant shift of the parameters' central values. For this experiment series, we find individual relative entropy gains ranging from about 1 to 30 bits. In some cases, e.g. when comparing WMAP and Planck results, we find that the gains are dominated by the surprise rather than by improvements in statistical precision. We discuss how this technique provides a useful tool for both quantifying the constraining power of data from cosmological probes and detecting the tensions between experiments.

  2. Component separation for cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.

    2011-11-01

    Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.

  3. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  4. Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models

    NASA Astrophysics Data System (ADS)

    An, Rui; Feng, Chang; Wang, Bin

    2018-02-01

    We constrain interacting dark matter and dark energy (IDMDE) models using a 450-degree-square cosmic shear data from the Kilo Degree Survey (KiDS) and the angular power spectra from Planck's latest cosmic microwave background measurements. We revisit the discordance problem in the standard Lambda cold dark matter (ΛCDM) model between weak lensing and Planck datasets and extend the discussion by introducing interacting dark sectors. The IDMDE models are found to be able to alleviate the discordance between KiDS and Planck as previously inferred from the ΛCDM model, and moderately favored by a combination of the two datasets.

  5. Cosmic microwave background theory

    PubMed Central

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  6. Searching for concentric low variance circles in the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas, E-mail: adeabreu@sfu.ca, E-mail: dagocont@phas.ubc.ca, E-mail: dscott@phas.ubc.ca

    In a recent paper, Gurzadyan and Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies,more » i.e., they are entirely consistent with the predictions of the standard cosmological model.« less

  7. The Cosmic Microwave Background: Detection and Interpretation of the First Light

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2016-01-01

    A host of astrophysical observations suggest the early Universe was incredibly hot, dense, and homogeneous. A powerful and useful probe of this epoch is provided by the relic radiation, which we refer to today as the Cosmic Microwave Background (CMB). Precision maps of this light contain the earliest glimpse of the Universe after the Big Bang and signatures of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, detailed composition, and geometry of the Universe can be made. A brief survey of the evolution of the radiometric and polarimetric imaging systems used in advancing our understanding of the early Universe will be reviewed. A survey of detector technologies, instrumentation techniques, and experimental challenges encountered in these efforts will be presented.

  8. Exploring results of the possibility on detecting cosmic ray particles by acoustic way

    NASA Technical Reports Server (NTRS)

    Jiang, Y.; Yuan, Y.; Li, Y.; Chen, D.; Zheng, R.; Song, J.

    1985-01-01

    It has been demonstrated experimentally and theoretically that high energy particles produce detectable sounds in water. However, no one has been able to detect an acoustic signal generated by a high energy cosmic ray particle in water. Results show that transient ultrasonic signals in a large lake or reservoir are fairly complex and that the transient signals under water may arise mainly from sound radiation from microbubbles. This field is not explored in detail. Perhaps, the sounds created by cosmic ray particles hide in these ultrasonic signals. In order to develop the technique of acoustic detection, it is most important to make a thorough investigation of these ultrasonic signals in water.

  9. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  10. PRIMORDIAL GRAVITATIONAL WAVE DETECTABILITY WITH DEEP SMALL-SKY COSMIC MICROWAVE BACKGROUND EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhang, M.; Bond, J. R.; Netterfield, C. B.

    2013-07-01

    We use the Bayesian estimation on direct T - Q - U cosmic microwave background (CMB) polarization maps to forecast errors on the tensor-to-scalar power ratio r, and hence on primordial gravitational waves, as a function of sky coverage f{sub sky}. This map-based likelihood filters the information in the pixel-pixel space into the optimal combinations needed for r detection for cut skies, providing enhanced information over a first-step linear separation into a combination of E, B, and mixed modes, and ignoring the latter. With current computational power and for typical resolutions appropriate for r detection, the large matrix inversions requiredmore » are accurate and fast. Our simulations explore two classes of experiments, with differing bolometric detector numbers, sensitivities, and observational strategies. One is motivated by a long duration balloon experiment like Spider, with pixel noise {proportional_to}{radical}(f{sub sky}) for a specified observing period. This analysis also applies to ground-based array experiments. We find that, in the absence of systematic effects and foregrounds, an experiment with Spider-like noise concentrating on f{sub sky} {approx} 0.02-0.2 could place a 2{sigma}{sub r} Almost-Equal-To 0.014 boundary ({approx}95% confidence level), which rises to 0.02 with an l-dependent foreground residual left over from an assumed efficient component separation. We contrast this with a Planck-like fixed instrumental noise as f{sub sky} varies, which gives a Galaxy-masked (f{sub sky} = 0.75) 2{sigma}{sub r} Almost-Equal-To 0.015, rising to Almost-Equal-To 0.05 with the foreground residuals. Using as the figure of merit the (marginalized) one-dimensional Shannon entropy of r, taken relative to the first 2003 WMAP CMB-only constraint, gives -2.7 bits from the 2012 WMAP9+ACT+SPT+LSS data, and forecasts of -6 bits from Spider (+ Planck); this compares with up to -11 bits for CMBPol, COrE, and PIXIE post-Planck satellites and -13 bits for a

  11. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelluti, N.; Urry, M.; Arendt, R.

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5more » σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.« less

  12. Recent discoveries from the cosmic microwave background: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Staggs, Suzanne; Dunkley, Jo; Page, Lyman

    2018-04-01

    Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.

  13. Recent discoveries from the cosmic microwave background: a review of recent progress.

    PubMed

    Staggs, Suzanne; Dunkley, Jo; Page, Lyman

    2018-04-01

    Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.

  14. New cosmic microwave background constraint to primordial gravitational waves.

    PubMed

    Smith, Tristan L; Pierpaoli, Elena; Kamionkowski, Marc

    2006-07-14

    Primordial gravitational waves (GWs) with frequencies > or approximately equal to 10(-15) Hz contribute to the radiation density of the Universe at the time of decoupling of the cosmic microwave background (CMB). This affects the CMB and matter power spectra in a manner identical to massless neutrinos, unless the initial density perturbation for the GWs is nonadiabatic, as may occur if such GWs are produced during inflation or some post-inflation phase transition. In either case, current observations provide a constraint to the GW amplitude that competes with that from big-bang nucleosynthesis (BBN), although it extends to much lower frequencies (approximately 10(-15) Hz rather than the approximately 10(-10) Hz from BBN): at 95% confidence level, omega(gw)h(2)

  15. Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

    NASA Astrophysics Data System (ADS)

    Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.

  16. Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.

    PubMed

    Miyatake, Hironao; Madhavacheril, Mathew S; Sehgal, Neelima; Slosar, Anže; Spergel, David N; Sherwin, Blake; van Engelen, Alexander

    2017-04-21

    We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in the ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r=0.390_{-0.062}^{+0.070}, at an effective redshift of z=0.53. This is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r=0.419.

  17. Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions.

    PubMed

    Ali-Haïmoud, Yacine; Chluba, Jens; Kamionkowski, Marc

    2015-08-14

    We propose a new method to constrain elastic scattering between dark matter (DM) and standard model particles in the early Universe. Direct or indirect thermal coupling of nonrelativistic DM with photons leads to a heat sink for the latter. This results in spectral distortions of the cosmic microwave background (CMB), the amplitude of which can be as large as a few times the DM-to-photon-number ratio. We compute CMB spectral distortions due to DM-proton, DM-electron, and DM-photon scattering for generic energy-dependent cross sections and DM mass m_{χ}≳1 keV. Using Far-Infrared Absolute Spectrophotometer measurements, we set constraints on the cross sections for m_{χ}≲0.1 MeV. In particular, for energy-independent scattering we obtain σ_{DM-proton}≲10^{-24} cm^{2} (keV/m_{χ})^{1/2}, σ_{DM-electron}≲10^{-27} cm^{2} (keV/m_{χ})^{1/2}, and σ_{DM-photon}≲10^{-39} cm^{2} (m_{χ}/keV). An experiment with the characteristics of the Primordial Inflation Explorer would extend the regime of sensitivity up to masses m_{χ}~1 GeV.

  18. Induced vacuum energy-momentum tensor in the background of a cosmic string

    NASA Astrophysics Data System (ADS)

    Sitenko, Yu A.; Vlasii, N. D.

    2012-05-01

    A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional spacetime. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the spacetime curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decreasing exponentially with the distance from the brane. The case of the massless quantized scalar field is also considered, and the relevance of Bernoulli’s polynomials of even order for this case is discussed.

  19. CMB temperature trispectrum of cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-01

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.

  20. The information content of cosmic microwave background anisotropies

    NASA Astrophysics Data System (ADS)

    Scott, Douglas; Contreras, Dagoberto; Narimani, Ali; Ma, Yin-Zhe

    2016-06-01

    The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E-mode polarization doubles the number of modes available out to a fixed maximum multipole, provided that all of the TT, TE, and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B-mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck, which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.

  1. The Big Bang left a permanent scare in the cosmic background, 5 billion light-years from Earth

    NASA Image and Video Library

    2017-12-08

    The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos. We can detect these scars today by observing the oldest light in the universe. As it was created nearly 14 billion years ago, this light — which exists now as weak microwave radiation and is thus named the cosmic microwave background (CMB) — permeates the entire cosmos, filling it with detectable photons. The CMB can be used to probe the cosmos via something known as the Sunyaev-Zel’dovich (SZ) effect, which was first observed over 30 years ago. We detect the CMB here on Earth when its constituent microwave photons travel to us through space. On their journey to us, they can pass through galaxy clusters that contain high-energy electrons. These electrons give the photons a tiny boost of energy. Detecting these boosted photons through our telescopes is challenging but important — they can help astronomers to understand some of the fundamental properties of the universe, such as the location and distribution of dense galaxy clusters. The NASA/ESA (European Space Agency) Hubble Space Telescope observed one of most massive known galaxy clusters, RX J1347.5–1145, seen in this Picture of the Week, as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). This observation of the cluster, 5 billion light-years from Earth, helped the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to study the cosmic microwave background using the thermal Sunyaev-Zel’dovich effect. The observations made with ALMA are visible as the blue-purple hues. Image credit: ESA/Hubble & NASA, T. Kitayama (Toho University, Japan)/ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to

  2. Giving cosmic redshift drift a whirl

    NASA Astrophysics Data System (ADS)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  3. The Fabric of the Universe: Exploring the Cosmic Web in 3D Prints and Woven Textiles

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt; Facio, Isaac

    2017-05-01

    We introduce The Fabric of the Universe, an art and science collaboration focused on exploring the cosmic web of dark matter with unconventional techniques and materials. We discuss two of our projects in detail. First, we describe a pipeline for translating three-dimensional (3D) density structures from N-body simulations into solid surfaces suitable for 3D printing, and present prints of a cosmological volume and of the infall region around a massive cluster halo. In these models, we discover wall-like features that are invisible in two-dimensional projections. Going beyond the sheer visualization of simulation data, we undertake an exploration of the cosmic web as a three-dimensional woven textile. To this end, we develop experimental 3D weaving techniques to create sphere-like and filamentary shapes and radically simplify a region of the cosmic web into a set of filaments and halos. We translate the resulting tree structure into a series of commands that can be executed by a digital weaving machine, and present a large-scale textile installation.

  4. Cosmology from Cosmic Microwave Background and large- scale structure

    NASA Astrophysics Data System (ADS)

    Xu, Yongzhong

    2003-10-01

    This dissertation consists of a series of studies, constituting four published papers, involving the Cosmic Microwave Background and the large scale structure, which help constrain Cosmological parameters and potential systematic errors. First, we present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP and COBE/DMR data sets. Although the Saskatoon and QMAP maps detect signal at the 21σ and 40σ, levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka- and Q-bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available at www.hep.upenn.edu/˜xuyz/qmask.html together with its 6495 x 6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees—at the time, the largest degree-scale map available) to allow a statistical comparison with LOBE/DMR, showing good agreement. By band-pass-filtering the QMAP and Saskatoon maps, we are also able to spatially compare them scale-by-scale to check for beam- and pointing-related systematic errors. Using the QMASK map, we then measure the cosmic microwave background (CMB) power spectrum on angular scales ℓ ˜ 30 200 (1° 6°), and we test it for non-Gaussianity using morphological statistics known as Minkowski functionals. We conclude that the QMASK map is neither a very typical nor a very exceptional realization of a Gaussian random field. At least about 20% of the 1000 Gaussian Monte Carlo maps differ more than the QMASK map from the mean morphological parameters of the Gaussian fields. Finally, we compute the real-space power spectrum and the

  5. Measurement of the cosmic optical background using the long range reconnaissance imager on New Horizons

    PubMed Central

    Zemcov, Michael; Immel, Poppy; Nguyen, Chi; Cooray, Asantha; Lisse, Carey M.; Poppe, Andrew R.

    2017-01-01

    The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formation. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earth's atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyse the data from the Long Range Reconnaissance Imager (LORRI) instrument on NASA's New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical background's brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements. PMID:28397781

  6. The Contribution of Galactic Free-Free Emission to Anistropies in the Cosmic Microwave Background Found by the Saskatoon Experiment

    NASA Astrophysics Data System (ADS)

    Simonetti, John H.; Dennison, Brian; Topasna, Gregory A.

    1996-02-01

    We made a sensitive, wide-field H alpha image of the north celestial polar region. Using this image, we constrain the contribution of irregularities in interstellar free-free emission to the degree-scale anisotropies in the cosmic microwave background detected in recent observations at Saskatoon by the Princeton group. The analysis of the H alpha image mimics the Saskatoon data analysis: the resulting signal is the strength of irregularities sampled with the Saskatoon beam (i.e., degree-scale) along the 85 deg declination circle. We found no such irregularities that could be attributed to H alpha emission. The implied upper bound on the rms variation in free-free brightness temperature is less than 4.6 mu K at 27.5 GHz. The observed cosmic microwave background anisotropies are much larger. Therefore, the contribution of irregularities in interstellar free-free emission to the observed anisotropies is negligible.

  7. A map of the cosmic background radiation at 3 millimeters

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.; Epstein, G.; Smoot, G.

    1985-01-01

    Data from a series of balloon flights covering both the Northern and Southern Hemispheres, measuring the large angular scale anisotropy in the cosmic background radiation at 3.3 mm wavelength are presented. The data cover 85 percent of the sky to a limiting sensitivity of 0.7 mK per 7 deg field of view. The data show a 50-sigma (statistical error only) dipole anisotropy with an amplitude of 3.44 + or - 0.17 mK and a direction of alpha = 11.2 h + or - 0.1 h, and delta = -6.0 deg + or - 1.5 deg. A 90 percent confidence level upper limit of 0.00007 is obtained for the rms quadrupole amplitude. Flights separated by 6 months show the motion of earth around the sun. Galactic contamination is very small, with less than 0.1 mK contribution to the dipole quadrupole terms. A map of the sky has been generated from the data.

  8. Patchy screening of the cosmic microwave background by inhomogeneous reionization

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan

    2013-02-01

    We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.

  9. Standard Clock in primordial density perturbations and cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Namjoo, Mohammad Hossein

    2014-12-01

    Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a (t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building.

  10. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  11. Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.

    PubMed

    Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-04-21

    We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.

  12. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    PubMed

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics

  13. Background Light Bluer Than Expected

    NASA Image and Video Library

    2014-11-06

    This plot shows data from the Cosmic Infrared Background Experiment, or CIBER, rockets launched in 2010 and 2012. The experiment measures a diffuse glow of infrared light in the sky, known as the cosmic infrared background.

  14. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de; hide

    2001-01-01

    This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.

  15. Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. R.; Efstathiou, G.

    1984-01-01

    Detailed calculations of the temperature fluctuations in the cosmic background radiation for universes dominated by massive collisionless relics of the big bang are presented. An initially adiabatic constant curvature perturbation spectrum is assumed. In models with cold dark matter, the simplest hypothesis - that galaxies follow the mass distribution leads to small-scale anisotropies which exceed current observational limits if omega is less than 0.2 h to the -4/3. Since low values of omega are indicated by dynamical studies of galaxy clustering, cold particle models in which light traces mass are probably incorrect. Reheating of the pregalactic medium is unlikely to modify this conclusion. In cold particle or neutrino-dominated universes with omega = 1, presented predictions for small-scale and quadrupole anisotropies are below current limits. In all cases, the small-scale fluctuations are predicted to be about 10 percent linearly polarized.

  16. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  17. Cosmic bandits: Exploration versus exploitation in CMB B-mode experiments

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Kamionkowski, Marc

    2016-02-01

    A preferred method to detect the curl-component, or B-mode, signature of inflationary gravitational waves (IGWs) in the cosmic microwave background (CMB) polarization, in the absence of foregrounds and lensing, is a prolonged integration over a single patch of sky of a few square degrees. In practice, however, foregrounds abound and the sensitivity to B modes can be improved considerably by finding the region of sky cleanest of foregrounds. The best strategy to detect B modes thus involves a tradeoff between exploration (to find lower-foreground patches) and exploitation (through prolonged integration). This problem is akin to the multi-armed bandit (MAB) problem in probability theory, wherein a gambler faces a series of slot machines with unknown winning odds and must develop a strategy to maximize his/her winnings with some finite number of pulls. While the optimal MAB strategy remains to be determined, a number of algorithms have been developed in an effort to maximize the winnings. Here, based on this resemblance, we tackle the search for IGW B modes with single frequency experiments in the presence of spatially varying foregrounds by developing adaptive survey strategies to optimize the sensitivity to IGW B modes. We demonstrate, using realistic foreground models and taking lensing-induced B modes into account, that adaptive experiments can substantially improve the upper bound on the tensor-to-scalar ratio (by factors of 2 and 3 in single frequency experiments, and possibly even more). Similar techniques can be applied to other surveys, including 21-cm measurements of signatures of the epoch of reionization, searches for a stochastic primordial gravitational wave background, deep-field imaging by the James Webb Space Telescope or various radio interferometers, and transient follow-up searches.

  18. A measurement of the cosmic microwave background temperature at 7.5 GHz

    NASA Technical Reports Server (NTRS)

    Levin, S.; Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Limon, M.; Smoot, G.

    1992-01-01

    The temperature of the cosmic microwave background (CMB) radiation at a frequency of 7.5 GHz (4 cm wavelength) is measured, obtaining a brightness temperature of T(CMB) = 2.70 +/- 0.08 K (68 percent confidence level). The measurement was made from a site near the geographical South Pole during the austral spring of 1989 and was part of an international collaboration to measure the CMB spectrum at low frequencies with a variety of radiometers from several different sites. This recent result is in agreement with the 1988 measurement at the same frequency, which was made from a different site with significantly different systematic errors. The combined result of the 1988 and 1989 measurements is 2.64 +/- 0.06 K.

  19. Note: innovative demodulation scheme for coherent detectors in cosmic microwave background experiments.

    PubMed

    Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O

    2012-05-01

    We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.

  20. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    PubMed

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  1. CMB temperature trispectrum of cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-15

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less

  2. Measurement of a cosmographic distance ratio with galaxy and cosmic microwave background lensing

    DOE PAGES

    Miyatake, Hironao; Madhavacheril, Mathew S.; Sehgal, Neelima; ...

    2017-04-17

    We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z~1 (background galaxies) and at the surface of last scattering at z~1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in themore » ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r = 0.390 +0.070 –0.062, at an effective redshift of z = 0.53. As a result, this is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r = 0.419.« less

  3. The information content of cosmic microwave background anisotropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Douglas; Contreras, Dagoberto; Narimani, Ali

    The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E -mode polarization doubles the number of modes available out to a fixedmore » maximum multipole, provided that all of the TT , TE , and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B -mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck , which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.« less

  4. Exploring the cosmic evolution of habitability with galaxy merger trees

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Hoskin, M. J.; Lane, M. A.; Brown, G. C.; Childs, H. J. T.; Greis, S. M. L.; Levan, A. J.

    2018-04-01

    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma-ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar-mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar-mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.

  5. Cosmic string detection with tree-based machine learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-07-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9'-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  6. Cosmic String Detection with Tree-Based Machine Learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-05-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  7. Measurements of the cosmic microwave background temperature at 1.47 GHz

    NASA Technical Reports Server (NTRS)

    Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.

    1993-01-01

    We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.

  8. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  9. Ashra Neutrino Telescope Array (NTA): Combined Imaging Observation of Astroparticles — For Clear Identification of Cosmic Accelerators and Fundamental Physics Using Cosmic Beams —

    NASA Astrophysics Data System (ADS)

    Sasaki, Makoto; Kifune, Tadashi

    In VHEPA (very high energy particle astronomy) 2014 workshop, focused on the next generation explorers for the origin of cosmic rays, held in Kashiwa, Japan, reviewing and discussions were presented on the status of the observation of GeV-TeV photons, TeV-PeV neutrinos, EeV-ZeV hadrons, test of interaction models with Large Hadron Collider (LHC), and theoretical aspects of astrophysics. The acceleration sites of hadrons, i.e., sources of PeV-EeV cosmic rays, should exist in the universe within the GZK-horizon even in the remotest case. We also affirmed that the hadron acceleration mechanism correlates with cosmic ray composition so that it is important to investigate the acceleration mechanism in relevance to the composition survey at PeV-EeV energy. We regard that LHC and astrophysics theories are ready to be used to probe into hadron acceleration mechanism in the universe. Recently, IceCube has reported detection of three events of neutrinos with energies around 1 PeV and additional events at lower energies, which significantly deviate from the expected level of background events. It is necessary to observe GeV-TeV photon, EeV-ZeV hadron and TeV-PeV neutrino all together, in order to understand hadronic interactions of cosmic rays in the PeV-EeV energy region. It is required to make a step further toward exploring the PeV-EeV universe with high accuracy and high statistics observations for both neutrinos and gamma rays simultaneously, by using the instrument such as Ashra Neutrino Telescope Array (NTA). Wide and fine survey of gamma-rays and neutrinos with simultaneously detecting Cherenkov and fluorescence light with NTA will guide us to a new intriguing stage of recognizing astronomical objects and non-thermal phenomena in ultra-high energy region, in addition, new aspect about the fundamental concepts of physics beyond our presently limited understanding; the longstanding problem of cosmic ray origin, the radiation mechanism of gamma-rays, neutrino and

  10. Cosmic superstrings: Observable remnants of brane inflation

    NASA Astrophysics Data System (ADS)

    Wyman, Mark Charles

    Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).

  11. Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG.

    PubMed

    Feng, Bo; Li, Mingzhe; Xia, Jun-Qing; Chen, Xuelei; Zhang, Xinmin

    2006-06-09

    We search for signatures of Lorentz and violations in the cosmic microwave background (CMB) temperature and polarization anisotropies by using the Wilkinson Microwave Anisotropy Probe (WMAP) and the 2003 flight of BOOMERANG (B03) data. We note that if the Lorentz and symmetries are broken by a Chern-Simons term in the effective Lagrangian, which couples the dual electromagnetic field strength tensor to an external four-vector, the polarization vectors of propagating CMB photons will get rotated. Using the WMAP data alone, one could put an interesting constraint on the size of such a term. Combined with the B03 data, we found that a nonzero rotation angle of the photons is mildly favored: [Formula: See Text].

  12. An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; hide

    2011-01-01

    Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.

  13. Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.

    PubMed

    Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony

    2003-06-06

    We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today.

  14. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  15. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  16. Reionization and the cosmic microwave background in an open universe

    NASA Technical Reports Server (NTRS)

    Persi, Fred M.

    1995-01-01

    If the universe was reionized at high reshift (z greater than or approximately equal to 30) or never recombined, then photon-electron scattering can erase fluctuations in the cosmic microwave background at scales less than or approximately equal to 1 deg. Peculiar motion at the surface of last scattering will then have given rise to new anisotropy at the 1 min level through the Vishniac effect. Here the observed fluctuations in galaxy counts are extrapolated to high redshifts using linear theory, and the expected anisotropy is computed. The predicted level of anisotropies is a function of Omega(sub 0) and the ratio of the density in ionized baryons to the critical density and is shown to depend strongly on the large- and small-scale power. It is not possible to make general statements about the viability of all reionized models based on current observations, but it is possible to rule out specific models for structure formation, particularly those with high baryonic content or small-scale power. The induced fluctuations are shown to scale with cosmological parameters and optical depth.

  17. Reionization during the dark ages from a cosmic axion background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evoli, Carmelo; Leo, Matteo; Mirizzi, Alessandro

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ N {sub eff} by the Planck experiment we putmore » a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant g {sub a} {sub γ} times the magnetic field strength B down to g {sub a} {sub γ} B ∼> 6 × 10{sup −18} GeV{sup −1} nG for ultralight ALPs.« less

  18. Technology Development for Cosmic Microwave Background Cosmology

    NASA Astrophysics Data System (ADS)

    Munson, Charles D.

    The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.

  19. Technology Development for Cosmic Microwave Background Cosmology

    NASA Astrophysics Data System (ADS)

    Munson, Charles D.

    2017-05-01

    The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.

  20. Cosmic archaeology with gravitational waves from cosmic strings

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.

    2018-06-01

    Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.

  1. The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Il; Clarke, David A.; Norman, Michael L.

    1994-07-01

    We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.

  2. The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach

    NASA Technical Reports Server (NTRS)

    Jun, Byung-Il; Clarke, David A.; Norman, Michael L.

    1994-01-01

    We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.

  3. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    NASA Astrophysics Data System (ADS)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  4. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  5. Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.

    2005-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.

  6. Exploring cosmic origins with CORE: Cosmological parameters

    NASA Astrophysics Data System (ADS)

    Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed

  7. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  8. Neutrino physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.

    2015-03-01

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν) = 16 meV and σ (Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν , whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046 .

  9. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE PAGES

    Abazajian, K. N.; Arnold, K.; Austermann, J.; ...

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σ mv) = 16 meV and σ (Neff)(N eff)more » = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of N eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N eff = 3.046.« less

  10. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    PubMed

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  11. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    DOE R&D Accomplishments Database

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  12. A correlation between the cosmic microwave background and large-scale structure in the Universe.

    PubMed

    Boughn, Stephen; Crittenden, Robert

    2004-01-01

    Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.

  13. The detection of the imprint of filaments on cosmic microwave background lensing

    NASA Astrophysics Data System (ADS)

    He, Siyu; Alam, Shadab; Ferraro, Simone; Chen, Yen-Chi; Ho, Shirley

    2018-05-01

    Galaxy redshift surveys, such as the 2-Degree-Field Survey (2dF)1, Sloan Digital Sky Survey (SDSS)2, 6-Degree-Field Survey (6dF)3, Galaxy And Mass Assembly survey (GAMA)4 and VIMOS Public Extragalactic Redshift Survey (VIPERS)5, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web6. Most galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Because the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the detection of lensing of the cosmic microwave background (CMB) by filaments, and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal, and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas that resides in the intergalactic medium, which has so far evaded most observations.

  14. Spectral measurements of the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperaturemore » of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.« less

  15. Cosmic Ray Induced Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2011-11-01

    After cancer studies performed on flight crews during the 1970s, it was found that cosmic rays produce a signficant flux of thermal neutrons at airplane altitudes. In the case of high energy cosmic rays these biologically threatening neutrons are increased at ground level. Our work models the flux of neutrons produced by high energy cosmic rays, exploring the possibility of biological impact due to extended periods of increase high energy cosmic ray flux.

  16. Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durant, marco

    2006-01-01

    Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.

  17. The intrinsic B-mode polarisation of the Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Pettinari, Guido W.; Crittenden, Robert

    2014-07-01

    We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombination. We also include novel contributions from the redshift part of the Boltzmann equation and from the bolometric definition of the temperature in the presence of polarisation. The remaining line-of-sight terms (lensing and time-delay) have previously been studied and must be calculated non-perturbatively. The intrinsic B-mode polarisation is present independent of the initial conditions and might contaminate the signal from primordial gravitational waves. We find thismore » contamination to be comparable to a primordial tensor-to-scalar ratio of r ≅ 10{sup −7} at the angular scale ℓ ≅ 100, where the primordial signal peaks, and r ≅ 5 × 10{sup −5} at ℓ ≅ 700, where the intrinsic signal peaks. Therefore, we conclude that the intrinsic B-polarisation from second-order effects is not likely to contaminate future searches of primordial gravitational waves.« less

  18. Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    van der Veen, J.

    2010-08-01

    The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.

  19. SPACE: the SPectroscopic, All-Sky Cosmic Explorer

    NASA Technical Reports Server (NTRS)

    Cimatti, A.; Robberto, M.; Baugh, C.; Beckwith, S. W. V.; Content, R.; Daddi, E.; deLucia, G.; Garilli, B.; Guzzo, L.; Kauffmann, G.; hide

    2007-01-01

    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 < z < 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 < z < l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come.

  20. Cosmic Explorers and Star Docent Youth Programs at Henize Observatory

    NASA Astrophysics Data System (ADS)

    Kabbes, J.

    2013-04-01

    The Karl G. Henize Observatory at Harper Community College has long served Harper students and the community. College students fulfill observing requirements for astronomy and physical science classes while the general public views objects through a variety of telescopes. In the spring of 2011, the observatory was in trouble. The long time observatory manager had left, the volunteer staff consisted of two individuals, and the Astronomy Club, which traditionally provided staff to operate the observatory, was moribund. We only drew 20-30 visitors for our bi-weekly public sessions. To face such a challenge, two recent complimentary programs, The Cosmic Explorers for grades 3-6 and the Star Docents for students in grades 7-12 were implemented.

  1. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    NASA Technical Reports Server (NTRS)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  2. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  3. Self-calibration of Cosmic Microwave Background Polarization Experiments

    NASA Astrophysics Data System (ADS)

    Keating, Brian G.; Shimon, Meir; Yadav, Amit P. S.

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes," have far-reaching implications for cosmology. To detect the B-modes generated during inflation, the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement, and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency, and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of 1015 GeV. Both man-made and astrophysical sources require dedicated observations which detract from the amount of integration time usable for detection of the inflationary B-modes. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished for any polarimeter without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes.

  4. SELF-CALIBRATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Brian G.; Yadav, Amit P. S.; Shimon, Meir

    2013-01-10

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity 'B-modes', have far-reaching implications for cosmology. To detect the B-modes generated during inflation, the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement, and may be inherently unstable over the (long) duration these searches require to detectmore » the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency, and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of 10{sup 15} GeV. Both man-made and astrophysical sources require dedicated observations which detract from the amount of integration time usable for detection of the inflationary B-modes. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished for any polarimeter without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes.« less

  5. Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.

  6. Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors.

    PubMed

    Hasegawa, M; Tajima, O; Chinone, Y; Hazumi, M; Ishidoshiro, K; Nagai, M

    2011-05-01

    We present a novel system to calibrate millimeter-wave polarimeters for cosmic microwave background (CMB) polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however, it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼10 K sky. It is important to reproduce the observing condition in the laboratory for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.

  7. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    PubMed

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  8. Anisotropies in the cosmic microwave background: an analytic approach

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Sugiyama, Naoshi

    1995-05-01

    We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.

  9. Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data.

    PubMed

    Crotty, Patrick; García-Bellido, Juan; Lesgourgues, Julien; Riazuelo, Alain

    2003-10-24

    We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger. However, the cross-correlation coefficient is strongly constrained, and maximally correlated/anticorrelated models are disfavored. This puts strong bounds on the curvaton model.

  10. Limits of Gaussian fluctuations in the cosmic microwave background at 19.2 GHz

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.

    1992-01-01

    The Northern Hemisphere data from the 19.2 GHz full sky survey are analyzed to place limits on the magnitude of Gaussian fluctuations in the cosmic microwave background implied by a variety of correlation functions. Included among the models tested are the monochromatic and Gaussian-shaped families, and those with power-law spectra for n values between -2 and 1. An upper bound is placed on the quadrupole anisotropy of Delta T/T less than 3.2 x 10 exp -5 rms, and an upper bound on scale-invariant (n = 1) fluctuations of a2 less than 4.5 x 10 exp -5 (95 percent confidence level). There is significant contamination of these data from Galactic emission, and improvement of the modeling of the Galaxy could yield a significant reduction of these upper bounds.

  11. Limits on Gaussian fluctuations in the cosmic microwave background at 19.2 GHz

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.

    1991-01-01

    The Northern Hemisphere data from the 19.2 GHz full sky survey are analyzed to place limits on the magnitude of Gaussian fluctuations in the cosmic microwave background implied by a variety of correlation functions. Included among the models tested are the monochromatic and Gaussian-shaped families, and those with power law spectra for n from -2 to 1. We place an upper bound on the quadrupole anisotropy of DeltaT/T less than 3.2 x 10 exp -5 rms, and an upper bound on scale-invariant (n = 1) fluctuations of a2 less than 4.5 x 10 exp -5 (95 percent confidence level). There is significant contamination of these data from Galactic emission, and improvement of our modeling of the Galaxy could yield a significant reduction of these upper bounds.

  12. Granularity of the Diffuse Background Observed

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; MacDonald, D.; Rothschild, R. E.; Boldt, E.; Mushotzky, R. F.; Fabian, A. C.

    1995-01-01

    First results are reported from a program for measuring the field-to-field fluctuation level of the cosmic diffuse background by using differences between the two background positions of each deep exposure with the High Energy X-ray Timing Experiment (HEXTE) instrument on the Remote X Ray Timing Explorer (RXTE). With 8 million live seconds accumulated to date a fluctuation level on the 15-25 keV band is observed which is consistent with extrapolations from the High Energy Astrophysical Observatory-1 (HEAO-1) measurements. Positive results are expected eventually at higher energies. Models of (active galactic nuclei) AGN origin will eventually be constrained by this program.

  13. AMS measurements of 26Al in quartz to assess the cosmic ray background for the geochemical solar neutrino experiment LOREX

    NASA Astrophysics Data System (ADS)

    Pavicevic, Miodrag K.; Wild, Eva Maria; Amthauer, Georg; Berger, Michael; Boev, Blazo; Kutschera, Walter; Priller, Alfred; Prohaska, Thomas; Steffan, Ilse

    2004-08-01

    LORandite EXperiment (LOREX) plans to measure the time integrated solar neutrino flux of the last few million years via the product of the reaction 205Tl(υe,e-)205Pb in lorandite of the Allchar mine in Macedonia. Utilizing this reaction is only possible if the background of 205Pb produced by the interaction of secondary cosmic ray particles and particles originating from the natural radioactivity within the rock mineral itself is substantially lower than the expected signal from neutrino interactions. Low abundance of cosmic ray induced 205Pb implies good shielding of the mine by the overlying rock. For the assessment of this background fraction it is necessary to acquire information about the past erosion activity at this site. In the present study the erosion rates have been estimated via cosmogenic 26Al produced in situ in quartz of surface rock materials of the Allchar site. Details of the first determinations of in situ produced 26Al with the AMS method at VERA are described, and a rough estimate of the erosion rates at the Allchar site is given.

  14. Possible connection between the location of the cutoff in the cosmic microwave background spectrum and the equation of state of dark energy.

    PubMed

    Enqvist, Kari; Sloth, Martin S

    2004-11-26

    We investigate a possible connection between the suppression of the power at low multipoles in the cosmic microwave background (CMB) spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.

  15. LIGO GRAVITATIONAL WAVE DETECTION, PRIMORDIAL BLACK HOLES, AND THE NEAR-IR COSMIC INFRARED BACKGROUND ANISOTROPIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashlinsky, A., E-mail: Alexander.Kashlinsky@nasa.gov

    LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high- z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increasedmore » abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μ m can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.« less

  16. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    DOE PAGES

    Hattori, K.; Akiba, Y.; Arnold, K.; ...

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  17. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    PubMed

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  18. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    PubMed

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  19. Using cosmic microwave background radiation analysis tools for flow anisotropies in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ananta P.; Mohapatra, Ranjita K.; Saumia, P. S.

    2010-03-15

    Recently we have shown that there are crucial similarities in the physics of cosmic microwave background radiation (CMBR) anisotropies and the flow anisotropies in relativistic heavy-ion collision experiments (RHICE). We also argued that, following CMBR anisotropy analysis, a plot of root-mean-square values of the flow coefficients, calculated in a laboratory-fixed frame for RHICE, can yield important information about the nature of initial state anisotropies and their evolution. Here we demonstrate the strength of this technique by showing that elliptic flow for noncentral collisions can be directly determined from such a plot without any need for the determination of the eventmore » plane.« less

  20. Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism.

    PubMed

    Bryan, Sean A; Montroy, Thomas E; Ruhl, John E

    2010-11-10

    We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.

  1. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Soler, J. D.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-01

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  2. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DOE PAGES

    Aghanim, N.; Ashdown, M.; Aumont, J.; ...

    2016-12-12

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectralmore » index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.« less

  3. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Ashdown, M.; Aumont, J.

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectralmore » index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.« less

  4. A measurement of the cosmic microwave background from the high Chilean Andes

    NASA Astrophysics Data System (ADS)

    Miller, Amber Dawn

    A measurement of the angular spectrum of the Cosmic Microwave Background (CMB) between l = 50 and l = 400 is described. Data were obtained using HEMT radiometers at 30 and 40 GHz with angular resolutions of ≈1 deg and ≈0.7 deg respectively and with SIS based receivers at 144 GHz with angular resolution of ≈0.2 deg. Observations were made from Cerro Toco in the Chilean altiplano at an altitude of 17,000 feet in the Northern Chilean Andes. We find that the angular spectrum rises from l = 50 to a peak at l ≈ 200 and falls off at higher angular scales. A peak in the angular spectrum with amplitude, deltaTl ≈ 85muK is thus located for the first time with a single instrument at l ≈ 200. In addition, we find that the detected anisotropy has the spectrum of the CMB. Cosmological implications of this result are discussed.

  5. ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements

    NASA Astrophysics Data System (ADS)

    Keihänen, E.; Reinecke, M.

    2012-12-01

    We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/

  6. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    PubMed

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  7. The White Mountain Polarimeter: A telescope to measure polarization of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Levy, Alan Robert

    2006-07-01

    The past two decades have been an exciting time in the field of cosmology and, in particular, studies of the Cosmic Microwave Background (CMB). One of the hot topics in cosmology research today is measuring and mapping CMB polarization. The White Mountain Polarimeter (WMPol) is a dedicated, ground-based microwave telescope and receiver system to measure CMB polarization which was installed in the Barcroft Observatory of the University of California White Mountain Research Station in September 2003. Presented here is a brief review of our current understanding of big bang cosmology and a description of the WMPol instrument, the observing conditions at the 3880-meter altitude Barcroft site, the data acquired during the 2004 observing campaign, and the data analysis.

  8. Low-Resolution Near-infrared Stellar Spectra Observed by the Cosmic Infrared Background Experiment (CIBER)

    NASA Astrophysics Data System (ADS)

    Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael

    2017-02-01

    We present near-infrared (0.8-1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.

  9. Observation of Galactic and Solar Cosmic Rays from October 13, 1959 to February 17, 1961 with Explorer VII (Satellite 1959 Iota)

    NASA Technical Reports Server (NTRS)

    Lin, Wei Ching

    1961-01-01

    This paper gives a comprehensive summary of cosmic-ray intensity observations at high latitudes over North America and over Australia in the altitude range 550 to 1100 km by means of Geiger tubes in Explorer VII (Earth satellite 1959 Iota). The time period covered is October 13, 1959 to February 17, 1961. Of special interest are the observational data on some 20 solar cosmic-ray events including major events of early April 1960, early September 1960, and of mid-November 1960. Detailed study of the latitude dependence of solar cosmic ray intensity will be presented in a later companion paper.

  10. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Mangano, Gianpiero; Mirizzi, Alessandro; Natoli, Paolo; Saviano, Ninetta

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with MX ll MW), and characterized by a gauge coupling gX, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) ms < 0.82 eV or ms < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength GX to be < 2.8 (2.0) × 1010 GF from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with MX ~ 0.1 MeV and relatively large coupling gX~ 10-1, previously indicated as a possible solution to the small scale dark matter problem.

  11. The Implications of Interstellar Dust for the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.; Verschuur, Gerrit

    2018-01-01

    A detailed comparison of the full range of PLANCK and WMAP data for small (2 deg by 2 deg) areas of sky and the Cosmic Microwave Background (CMB) ILC maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ~13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question, “To what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the CMB small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the CMB, or both.

  12. Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope

    DOE PAGES

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; ...

    2016-12-15

    In this study, we describe the optimization of transition-edge-sensor (TES) detector arrays for the thirdgeneration camera for the South PoleTelescope.The camera,which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along

  13. COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION FOR BANDED PROBABILITY DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gjerløw, E.; Mikkelsen, K.; Eriksen, H. K.

    We investigate sets of random variables that can be arranged sequentially such that a given variable only depends conditionally on its immediate predecessor. For such sets, we show that the full joint probability distribution may be expressed exclusively in terms of uni- and bivariate marginals. Under the assumption that the cosmic microwave background (CMB) power spectrum likelihood only exhibits correlations within a banded multipole range, Δl{sub C}, we apply this expression to two outstanding problems in CMB likelihood analysis. First, we derive a statistically well-defined hybrid likelihood estimator, merging two independent (e.g., low- and high-l) likelihoods into a single expressionmore » that properly accounts for correlations between the two. Applying this expression to the Wilkinson Microwave Anisotropy Probe (WMAP) likelihood, we verify that the effect of correlations on cosmological parameters in the transition region is negligible in terms of cosmological parameters for WMAP; the largest relative shift seen for any parameter is 0.06σ. However, because this may not hold for other experimental setups (e.g., for different instrumental noise properties or analysis masks), but must rather be verified on a case-by-case basis, we recommend our new hybridization scheme for future experiments for statistical self-consistency reasons. Second, we use the same expression to improve the convergence rate of the Blackwell-Rao likelihood estimator, reducing the required number of Monte Carlo samples by several orders of magnitude, and thereby extend it to high-l applications.« less

  14. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei

    2017-11-01

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.

  15. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    DOE PAGES

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; ...

    2017-11-14

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less

  16. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less

  17. Black holes as beads on cosmic strings

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Mann, Robert B.

    2014-11-01

    We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.

  18. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  19. Cosmic-ray detectors on the Moon

    NASA Technical Reports Server (NTRS)

    Linsley, John

    1988-01-01

    The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.

  20. CONSTRAINTS ON HYBRID METRIC-PALATINI GRAVITY FROM BACKGROUND EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, N. A.; Barreto, V. S., E-mail: ndal@roe.ac.uk, E-mail: vsm@roe.ac.uk

    2016-02-20

    In this work, we introduce two models of the hybrid metric-Palatini theory of gravitation. We explore their background evolution, showing explicitly that one recovers standard General Relativity with an effective cosmological constant at late times. This happens because the Palatini Ricci scalar evolves toward and asymptotically settles at the minimum of its effective potential during cosmological evolution. We then use a combination of cosmic microwave background, supernovae, and baryonic accoustic oscillations background data to constrain the models’ free parameters. For both models, we are able to constrain the maximum deviation from the gravitational constant G one can have at earlymore » times to be around 1%.« less

  1. Witnessing the reionization history using Cosmic Microwave Background observation from Planck

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Smoot, George F.

    2017-11-01

    We constrain the history of reionization using the data from Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization anisotropy observations. We also use prior constraints on the reionization history at redshifts ~7-8 obtained from Lyman-α emission observations. Using the free electron fractions at different redshifts as free parameters, we construct the complete reionization history using polynomials. Our construction provides an extremely flexible framework to search for the history of reionization as a function of redshifts. We present a conservative and an optimistic constraint on reionization that are categorized by the flexibilities of the models and datasets used to constrain them, and we report that CMB data marginally favors extended reionization histories. In both the cases, we find the mean values of optical depth to be larger (≈0.09 and 0.1) than what we find in standard steplike reionization histories (0.079 ± 0.017). At the same time we also find that the maximum free electron fraction allowed by the data for redshifts more than 15 is ~0.25 at 95.4% confidence limit in the case of optimistic constraint.

  2. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    NASA Technical Reports Server (NTRS)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  3. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds.

    PubMed

    Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L

    2015-12-11

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

  4. Prospects for measuring cosmic microwave background spectral distortions in the presence of foregrounds

    NASA Astrophysics Data System (ADS)

    Abitbol, Maximilian H.; Chluba, Jens; Hill, J. Colin; Johnson, Bradley R.

    2017-10-01

    Measurements of cosmic microwave background (CMB) spectral distortions have profound implications for our understanding of physical processes taking place over a vast window in cosmological history. Foreground contamination is unavoidable in such measurements and detailed signal-foreground separation will be necessary to extract cosmological science. In this paper, we present Markov chain Monte Carlo based spectral distortion detection forecasts in the presence of Galactic and extragalactic foregrounds for a range of possible experimental configurations, focusing on the Primordial Inflation Explorer (PIXIE) as a fiducial concept. We consider modifications to the baseline PIXIE mission (operating ≃ 12 months in distortion mode), searching for optimal configurations using a Fisher approach. Using only spectral information, we forecast an extended PIXIE mission to detect the expected average non-relativistic and relativistic thermal Sunyaev-Zeldovich distortions at high significance (194σ and 11σ, respectively), even in the presence of foregrounds. The ΛCDM Silk damping μ-type distortion is not detected without additional modifications of the instrument or external data. Galactic synchrotron radiation is the most problematic source of contamination in this respect, an issue that could be mitigated by combining PIXIE data with future ground-based observations at low frequencies (ν ≲ 15-30 GHz). Assuming moderate external information on the synchrotron spectrum, we project an upper limit of |μ| < 3.6 × 10-7 (95 per cent c.l.), slightly more than one order of magnitude above the fiducial ΛCDM signal from the damping of small-scale primordial fluctuations, but a factor of ≃250 improvement over the current upper limit from COBE/Far Infrared Absolute Spectrophotometer. This limit could be further reduced to |μ| < 9.4 × 10-8 (95 per cent c.l.) with more optimistic assumptions about extra low-frequency information and would rule out many alternative inflation

  5. Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    NASA Astrophysics Data System (ADS)

    Challinor, A.; Allison, R.; Carron, J.; Errard, J.; Feeney, S.; Kitching, T.; Lesgourgues, J.; Lewis, A.; Zubeldía, Í.; Achucarro, A.; Ade, P.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; d'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Zotti, G.; Delabrouille, J.; Di Valentino, E.; Diego, J.-M.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Liguori, M.; Lindholm, V.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19

  6. The cosmic microwave background and pseudo-Nambu-Goldstone bosons: Searching for Lorentz violations in the cosmos

    NASA Astrophysics Data System (ADS)

    Leon, David; Kaufman, Jonathan; Keating, Brian; Mewes, Matthew

    2017-01-01

    One of the most powerful probes of new physics is the polarized cosmic microwave background (CMB). The detection of a nonzero polarization angle rotation between the CMB surface of last scattering and today could provide evidence of Lorentz-violating physics. The purpose of this paper is two-fold. First, we review one popular mechanism for polarization rotation of CMB photons: the pseudo-Nambu-Goldstone boson (PNGB). Second, we propose a method to use the POLARBEAR experiment to constrain Lorentz-violating physics in the context of the Standard Model Extension (SME), a framework to standardize a large class of potential Lorentz-violating terms in particle physics.

  7. PHYSICS OF OUR DAYS: Cosmic microwave background anisotropy data correlation in WMAP and Relikt-1 experiments

    NASA Astrophysics Data System (ADS)

    Skulachev, Dmitrii P.

    2010-07-01

    A comparison is made of cosmic microwave background anisotropy data obtained from the WMAP satellite in 2001 - 2006 and from the Relikt-1 satellite in 1983 - 1984. It is shown that low-temperature area found by Relikt-1 is the location of the 'coldest spot' of the WMAP radiomap. The mutual correlation of the two datasets is estimated and found to be positive for all sky regions surveyed. The conclusion is made that with the 98% probability, the Relikt-1 experiment had detected the same signal that was later identified by WMAP. A discussion is given of whether the Relikt-1 experiment parameters were chosen correctly.

  8. Reionization and its imprint of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1995-01-01

    Early reionization changes the pattern of anisotropies expected in the cosmic microwave backgrond. To explore these changes, we derive from first principles the equations governing anisotropies, focusing on the interactions of photons with electrons. Vishniac (1987) claimed that second-order terms can be large in a reionized universe, so we derive equations correct to second order in the perturbations. There are many more second-order terms than were considered by Vishniac. To understand the basic physics involved, we present a simple analytic approximation to the first-order equation. Then, turning to the second order equation, we show that the Vishniac term is indeed the only important one. We also present numerical results for a variety of ionization histories (in a standard cold dark matter universe) and show quantitatively how the signal in several experiments depends on the ionization history. The most pronounced indication of a reionized universe would be seen in very small scale experiments; the expected signal in the Owens Valley experiment is smaller by a factor of order 10 if the last scattering surface is at a redshift z approximately = 100 as it would be if the universe were reionized very early. On slightly larger scales, the expected signal in a reionized universe is smaller than it would be with standard recombination, but only a factor of 2 or so. The signal is even smaller in these experiments in the intermediate case where some photons last scattered at the standard recombination epoch.

  9. The advanced cosmic microwave explorer - A millimeter-wave telescope and stabilized platform

    NASA Technical Reports Server (NTRS)

    Meinhold, P. R.; Chingcuanco, A. O.; Gundersen, J. O.; Schuster, J. A.; Seiffert, M. D.; Lubin, P. M.; Morris, D.; Villela, T.

    1993-01-01

    We have developed and flown a 1 m diameter Gregorian telescope system for measurements of anisotropy in the Cosmic Background Radiation (CBR). The telescope is incorporated in a balloon-borne stabilized platform with arcminute stabilization capability. To date, the system has flown four times and observed from the ground at the South Pole twice. The telescope has used both coherent and incoherent detectors. We describe the development of the telescope, pointing platform, and one of the receivers employed in making measurements of the CBR. Performance of the system during the first flight and operation on the ground at the South Pole are described, and the quality of the South Pole as a millimeter wave observing site is discussed.

  10. B2FH, the Cosmic Microwave Background and Cosmology*

    NASA Astrophysics Data System (ADS)

    Burbidge, G.

    In this talk I shall start by describing how we set about and carried out the work that led to the publication of Burbidge et al. (1957, hereafter B2FH). I then shall try and relate this work and the circumstances that surrounded it to the larger problem of the origin and formation of the universe. Here it is necessary to look back at the way that ideas developed and how, in many situations, astronomers went astray. Of course this is a personal view, though I very strongly believe that if he were still here, it is the approach that Fred Hoyle would take. I start by describing the problems originally encountered by Gamow and his associates in trying to decide where the helium was made. This leads me to a modern discussion of the origin of 2D, 3He, 4He and 7Li, originally described by B2FH as due to the x-process. While it is generally argued, following Gamow, Alpher, and Herman, that these isotopes were synthesised in a big bang I shall show that it is equally likely that these isotopes were made in active galactic nuclei, as was the cosmic microwave background (CMB), in a cyclic universe model. The key piece of observational evidence is that the amount of energy released in the conversion of hydrogen to helium in the universe is very close to the energy carried by the CMB, namely ~4.5 × 10-13 erg cm-3.

  11. Imprint of DES superstructures on the cosmic microwave background

    DOE PAGES

    Kovács, A.; Sánchez, C.; García-Bellido, J.; ...

    2016-11-17

    Here, small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshiftsmore » $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $$\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$$ and a hot imprint of superclusters $$\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$$ ; this is $$\\sim1.2\\sigma$$ higher than the expected $$|\\Delta T_{f}| \\approx 0.6~\\mu K$$ imprint of such super-structures in $$\\Lambda$$CDM. If we instead use an a posteriori selected filter size ($$R/R_{v}=0.6$$), we can find a temperature decrement as large as $$\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$$ for voids, which is $$\\sim2\\sigma$$ above $$\\Lambda$$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.« less

  12. Imprint of DES superstructures on the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovács, A.; Sánchez, C.; García-Bellido, J.

    Here, small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshiftsmore » $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $$\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$$ and a hot imprint of superclusters $$\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$$ ; this is $$\\sim1.2\\sigma$$ higher than the expected $$|\\Delta T_{f}| \\approx 0.6~\\mu K$$ imprint of such super-structures in $$\\Lambda$$CDM. If we instead use an a posteriori selected filter size ($$R/R_{v}=0.6$$), we can find a temperature decrement as large as $$\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$$ for voids, which is $$\\sim2\\sigma$$ above $$\\Lambda$$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.« less

  13. Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Myers, Michael James

    We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.

  14. Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Hinshaw, G.; Bennett, C. L.

    1995-01-01

    High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.

  15. Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing.

    PubMed

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2017-05-26

    In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species N_{eff}. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O(10^{-3}). Furthermore, it leads to a shift of the parameter N_{eff} by nearly 2σ considering the level of accuracy aimed by future S4 surveys.

  16. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  17. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M.

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  18. Spectral distortion of the CMB by the cumulative CO emission from galaxies throughout cosmic history

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham; Sternberg, Amiel

    2016-05-01

    We show that the cumulative CO emission from galaxies throughout cosmic history distorts the spectrum of the cosmic microwave background at a level that is well above the detection limit of future instruments, such as the Primordial Inflation Explorer. The modelled CO signal has a prominent bump in the frequency interval 100-200 GHz, with a characteristic peak intensity of ˜2 × 10-23 W m-2 Hz-1 sr-1. Most of the CO foreground originates from modest redshifts, z ˜ 2-5, and needs to be efficiently removed for more subtle distortions from the earlier Universe to be detected.

  19. A new line-of-sight approach to the non-linear Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Koyama, Kazuya; Pettinari, Guido W., E-mail: christian.fidler@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: guido.pettinari@gmail.com

    2015-04-01

    We develop the transport operator formalism, a new line-of-sight integration framework to calculate the anisotropies of the Cosmic Microwave Background (CMB) at the linear and non-linear level. This formalism utilises a transformation operator that removes all inhomogeneous propagation effects acting on the photon distribution function, thus achieving a split between perturbative collisional effects at recombination and non-perturbative line-of-sight effects at later times. The former can be computed in the framework of standard cosmological perturbation theory with a second-order Boltzmann code such as SONG, while the latter can be treated within a separate perturbative scheme allowing the use of non-linear Newtonianmore » potentials. We thus provide a consistent framework to compute all physical effects contained in the Boltzmann equation and to combine the standard remapping approach with Boltzmann codes at any order in perturbation theory, without assuming that all sources are localised at recombination.« less

  20. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic

  1. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  2. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  3. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; Reichardt, C. L.; Aird, K. A.

    2015-01-28

    We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg(2) SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' gsim θ gsim 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg(2) of the SPT-SZ survey. We measure the tSZ power at 143  GHz to bemore » $$D^{\\rm tSZ}_{3000} = 4.08^{+0.58}_{-0.67}\\,\\mu {\\rm K}^2{}$$ and the kSZ power to be $$D^{\\rm kSZ}_{3000} = 2.9 \\pm 1.3\\, \\mu {\\rm K}^2{}$$. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of $$\\xi = 0.113^{+0.057}_{-0.054}$$ between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4  at 95% CL.« less

  4. A measurement of secondary cosmic microwave background anisotropies from the 2500 square-degree SPT-SZ survey

    DOE PAGES

    George, E. M.; Reichardt, C. L.; Aird, K. A.; ...

    2015-01-28

    Here, we present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg2 SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' gsim θ gsim 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg2 of the SPT-SZ survey. We measure the tSZ power at 143 GHz to bemore » $$D^{\\rm tSZ}_{3000} = 4.08^{+0.58}_{-0.67}\\,\\mu {\\rm K}^2{}$$ and the kSZ power to be $$D^{\\rm kSZ}_{3000} = 2.9 \\pm 1.3\\, \\mu {\\rm K}^2{}$$. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of $$\\xi = 0.113^{+0.057}_{-0.054}$$ between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4 at 95% CL.« less

  5. Correlations Between the Cosmic X-Ray and Microwave Backgrounds: Constraints on a Cosmological Constant

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Crittenden, R. G.; Turok, N. G.

    1998-01-01

    In universes with significant curvature or cosmological constant, cosmic microwave background (CMB) anisotropies are created very recently via the Rees-Sciama or integrated Sachs-Wolfe effects. This causes the CMB anisotropies to become partially correlated with the local matter density (z less than 4). We examine the prospects of using the hard (2- 10 keV) X-ray background as a probe of the local density and the measured correlation between the HEAO1 A2 X-ray survey and the 4-year COBE-DMR map to obtain a constraint on the cosmological constant. The 95% confidence level upper limit on the cosmological constant is OMega(sub Lambda) less than or equal to 0.5, assuming that the observed fluctuations in the X-ray map result entirely from large scale structure. (This would also imply that the X-rays trace matter with a bias factor of b(sub x) approx. = 5.6 Omega(sub m, sup 0.53)). This bound is weakened considerably if a large portion of the X-ray fluctuations arise from Poisson noise from unresolved sources. For example, if one assumes that the X-ray bias is b(sub x) = 2, then the 95% confidence level upper limit is weaker, Omega(sub Lambda) less than or equal to 0.7. More stringent limits should be attainable with data from the next generation of CMB and X-ray background maps.

  6. The cosmic web and microwave background fossilize the first turbulent combustion

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2015-09-01

    The weblike structure of the cosmic microwave background CMB temperature fluctuations are interpreted as fossils of the first turbulent combustion that drives the big bang1,2,3. Modern turbulence theory3 requires that inertial vortex forces cause turbulence to always cascade from small scales to large, contrary to the standard turbulence model where the cascade is reversed. Assuming that the universe begins at Planck length 10-35 m and temperature 1032 K, the mechanism of the big bang is a powerful turbulent combustion instability, where turbulence forms at the Kolmogorov scale and mass-energy is extracted by < -10113 Pa negative stresses from big bang turbulence working against gravity. Prograde accretion of a Planck antiparticle on a spinning particle-antiparticle pair releases 42% of a particle rest mass from the Kerr metric, producing a spinning gas of turbulent Planck particles that cascades to larger scales at smaller temperatures (10-27 m, 1027 K) retaining the Planck density 1097 kg m-3, where quarks form and gluon viscosity fossilizes the turbulence. Viscous stress powers inflation to ~ 10 m and ~ 10100 kg. The CMB shows signatures of both plasma and big bang turbulence. Direct numerical simulations support the new turbulence theory6.

  7. SEMI-BLIND EIGEN ANALYSES OF RECOMBINATION HISTORIES USING COSMIC MICROWAVE BACKGROUND DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhang, M.; Bond, J. R.; Chluba, J.

    2012-06-20

    Cosmological parameter measurements from cosmic microwave background (CMB) experiments, such as Planck, ACTPol, SPTPol, and other high-resolution follow-ons, fundamentally rely on the accuracy of the assumed recombination model or one with well-prescribed uncertainties. Deviations from the standard recombination history might suggest new particle physics or modified atomic physics. Here we treat possible perturbative fluctuations in the free electron fraction, X{sub e}(z), by a semi-blind expansion in densely packed modes in redshift. From these we construct parameter eigenmodes, which we rank order so that the lowest modes provide the most power to probe X{sub e}(z) with CMB measurements. Since the eigenmodesmore » are effectively weighed by the fiducial X{sub e} history, they are localized around the differential visibility peak, allowing for an excellent probe of hydrogen recombination but a weaker probe of the higher redshift helium recombination and the lower redshift highly neutral freezeout tail. We use an information-based criterion to truncate the mode hierarchy and show that with even a few modes the method goes a long way from the fiducial recombination model computed with RECFAST, X{sub e,i}(z), toward the precise underlying history given by the new and improved recombination calculations of COSMOREC or HYREC, X{sub e,f}(z), in the hydrogen recombination regime, though not well in the helium regime. Without such a correction, the derived cosmic parameters are biased. We discuss an iterative approach for updating the eigenmodes to further hone in on X{sub e,f}(z) if large deviations are indeed found. We also introduce control parameters that downweight the attention on the visibility peak structure, e.g., focusing the eigenmode probes more strongly on the X{sub e}(z) freezeout tail, as would be appropriate when looking for the X{sub e} signature of annihilating or decaying elementary particles.« less

  8. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  9. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the

  10. Impact of a primordial magnetic field on cosmic microwave background B modes with weak lensing

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai G.

    2018-05-01

    We discuss the manner in which the primordial magnetic field (PMF) suppresses the cosmic microwave background (CMB) B mode due to the weak-lensing (WL) effect. The WL effect depends on the lensing potential (LP) caused by matter perturbations, the distribution of which at cosmological scales is given by the matter power spectrum (MPS). Therefore, the WL effect on the CMB B mode is affected by the MPS. Considering the effect of the ensemble average energy density of the PMF, which we call "the background PMF," on the MPS, the amplitude of MPS is suppressed in the wave number range of k >0.01 h Mpc-1 . The MPS affects the LP and the WL effect in the CMB B mode; however, the PMF can damp this effect. Previous studies of the CMB B mode with the PMF have only considered the vector and tensor modes. These modes boost the CMB B mode in the multipole range of ℓ>1000 , whereas the background PMF damps the CMB B mode owing to the WL effect in the entire multipole range. The matter density in the Universe controls the WL effect. Therefore, when we constrain the PMF and the matter density parameters from cosmological observational data sets, including the CMB B mode, we expect degeneracy between these parameters. The CMB B mode also provides important information on the background gravitational waves, inflation theory, matter density fluctuations, and the structure formations at the cosmological scale through the cosmological parameter search. If we study these topics and correctly constrain the cosmological parameters from cosmological observations, including the CMB B mode, we need to correctly consider the background PMF.

  11. Questions and Answers in Extreme Energy Cosmic Rays - a guide to explore the data set of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Andringa, S.; Diogo, F.; Espírito Santo, M. C.; Pierre Auger Collaboration

    2016-04-01

    The Pierre Auger Observatory is the largest extensive air shower detector, covering 3000 km2 in Argentina. The Observatory makes available, for educational and outreach purposes, 1% of its cosmic ray data set, corresponding after 10 years of running to more than 35 000 cosmic ray events. Several different proposals of educational activities have been developed within the collaboration and are available. We will focus on the activity guide we developed with the aim of exploring the rich education and outreach potential of cosmic rays with Portuguese high school students. In this guide we use the Auger public data set as a starting point to introduce open questions on the origin, nature and spectrum of high energy cosmic rays. To address them, the students learn about the air-shower cascade development, data reconstruction and its statistical analysis. The guide has been used both in the context of student summer internships at research labs and directly in schools, under the supervision of trained teachers and in close collaboration with Auger researchers. It is now available in Portuguese, English and Spanish.

  12. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forastieri, Francesco; Natoli, Paolo; Lattanzi, Massimiliano

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with M {sub X} || M {sub W} ), and characterized by a gauge coupling g {sub X} , have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interactionmore » framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) m {sub s} < 0.82 eV or m {sub s} < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength G {sub X} to be < 2.8 (2.0) × 10{sup 10} G {sub F} from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with M {sub X} ∼ 0.1 MeV and relatively large coupling g {sub X} {sub ∼} 10{sup −1}, previously indicated as a possible solution to the small scale dark matter problem.« less

  13. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  14. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

    PubMed

    Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

  15. The MAT/TOCO Measurement of the Angular Power Spectrum of the Cosmic Microwave Background at 30 and 40 GHz

    NASA Astrophysics Data System (ADS)

    Nolta, M. R.; Devlin, M. J.; Dorwart, W. B.; Miller, A. D.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    2003-11-01

    We present a measurement of the angular spectrum of the cosmic microwave background from l=26 to 225 from the 30 and 40 GHz channels of the MAT/TOCO experiment based on two seasons of observations. At comparable frequencies, the data extend to a lower l than the recent Very Small Array and DASI results. After accounting for known foreground emission in a self-consistent analysis, a rise from the Sachs-Wolfe plateau to a peak of δTl~80 μK near l~200 is observed.

  16. A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from L = 100 to 400

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    1999-10-01

    We report on a measurement of the angular spectrum of the cosmic microwave background (CMB) between l~100 and l~400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz taken with the same instrument observing the same section of sky, we find (1) a rise in the angular spectrum to a maximum with δTl~85 μK at l~200 and a fall at l>300, thereby localizing the peak near l~200, and (2) that the anisotropy at l~200 has the spectrum of the CMB.

  17. Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements.

    PubMed

    Sherwin, Blake D; Dunkley, Joanna; Das, Sudeep; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Menanteau, Felipe; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

  18. Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.; hide

    2011-01-01

    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

  19. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    PubMed

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  20. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  1. Enhancements to the MCNP6 background source

    DOE PAGES

    McMath, Garrett E.; McKinney, Gregg W.

    2015-10-19

    The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less

  2. HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; HerMES

    2013-01-01

    We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.14 and provides important constraints for models of galaxy formation and evolution.

  3. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10' to 5 degrees

    DOE R&D Accomplishments Database

    Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P. G.; Hanany, S.; Hristov, V. V.; Jaffe, A. H.; Lange, A. E.; Lee, A. T.; Mauskopf, P. D.; Netterfield, C. B.; Oh, S.; Pascale, E.; Rabii, B.; Richards, P. L.; Smoot, G. F.; Stompor, R.; Winant,C. D.; Wu, J. H. P.

    2005-06-04

    We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 deg{sup 2} region of the sky with 10' resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions.

  4. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  5. Cosmic microwave background anomalies in an open universe.

    PubMed

    Liddle, Andrew R; Cortês, Marina

    2013-09-13

    We argue that the observed large-scale cosmic microwave anomalies, discovered by WMAP and confirmed by the Planck satellite, are most naturally explained in the context of a marginally open universe. Particular focus is placed on the dipole power asymmetry, via an open universe implementation of the large-scale gradient mechanism of Erickcek et al. Open inflation models, which are motivated by the string landscape and which can excite "supercurvature" perturbation modes, can explain the presence of a very-large-scale perturbation that leads to a dipole modulation of the power spectrum measured by a typical observer. We provide a specific implementation of the scenario which appears compatible with all existing constraints.

  6. Testing theories of gravity and supergravity with inflation and observations of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Chakravarty, G. K.; Mohanty, S.; Lambiase, G.

    Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these

  7. Imprints of cosmic strings on the cosmological gravitational wave background

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Papadopoulos, D. B.; Verdaguer, E.; Vlahos, L.

    2008-07-01

    The equation which governs the temporal evolution of a gravitational wave (GW) in curved space-time can be treated as the Schrödinger equation for a particle moving in the presence of an effective potential. When GWs propagate in an expanding universe with constant effective potential, there is a critical value (kc) of the comoving wave number which discriminates the metric perturbations into oscillating (k>kc) and nonoscillating (kcosmic strings (subdominant). It is known that the cosmological evolution gradually results in the scaling of a cosmic-string network and, therefore, after some time (Δτ) the Universe becomes radiation dominated. The evolution of the nonoscillatory GW modes during Δτ (while they were outside the horizon), results in the distortion of the GW power spectrum from what it is anticipated in a pure radiation model, at present-time frequencies in the range 10-16Hz

  8. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  9. Geodesic curve-of-sight formulae for the cosmic microwave background: a unified treatment of redshift, time delay, and lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ryo; Naruko, Atsushi; Hiramatsu, Takashi

    2014-10-01

    In this paper, we introduce a new approach to a treatment of the gravitational effects (redshift, time delay and lensing) on the observed cosmic microwave background (CMB) anisotropies based on the Boltzmann equation. From the Liouville's theorem in curved spacetime, the intensity of photons is conserved along a photon geodesic when non-gravitational scatterings are absent. Motivated by this fact, we derive a second-order line-of-sight formula by integrating the Boltzmann equation along a perturbed geodesic (curve) instead of a background geodesic (line). In this approach, the separation of the gravitational and intrinsic effects are manifest. This approach can be considered asmore » a generalization of the remapping approach of CMB lensing, where all the gravitational effects can be treated on the same footing.« less

  10. Alternative explanations of the cosmic microwave background: A historical and an epistemological perspective

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Perović, Slobodan

    2018-05-01

    We historically trace various non-conventional explanations for the origin of the cosmic microwave background and discuss their merit, while analyzing the dynamics of their rejection, as well as the relevant physical and methodological reasons for it. It turns out that there have been many such unorthodox interpretations; not only those developed in the context of theories rejecting the relativistic ("Big Bang") paradigm entirely (e.g., by Alfvén, Hoyle and Narlikar) but also those coming from the camp of original thinkers firmly entrenched in the relativistic milieu (e.g., by Rees, Ellis, Rowan-Robinson, Layzer and Hively). In fact, the orthodox interpretation has only incrementally won out against the alternatives over the course of the three decades of its multi-stage development. While on the whole, none of the alternatives to the hot Big Bang scenario is persuasive today, we discuss the epistemic ramifications of establishing orthodoxy and eliminating alternatives in science, an issue recently discussed by philosophers and historians of science for other areas of physics. Finally, we single out some plausible and possibly fruitful ideas offered by the alternatives.

  11. Robust Likelihoods for Inflationary Gravitational Waves from Maps of Cosmic Microwave Background Polarization

    NASA Technical Reports Server (NTRS)

    Switzer, Eric Ryan; Watts, Duncan J.

    2016-01-01

    The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.

  12. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; hide

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  13. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-04-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.

  14. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  15. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.

    PubMed

    Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J

    2014-04-04

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.

  16. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measuresmore » from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.« less

  17. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  18. Effects of a primordial magnetic field with log-normal distribution on the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Takahashi, Keitaro

    2011-12-01

    We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at k≃10-2.5Mpc-1 with the upper limit B≲3nG.

  19. How cosmic microwave background correlations at large angles relate to mass autocorrelations in space

    NASA Technical Reports Server (NTRS)

    Blumenthal, George R.; Johnston, Kathryn V.

    1994-01-01

    The Sachs-Wolfe effect is known to produce large angular scale fluctuations in the cosmic microwave background radiation (CMBR) due to gravitational potential fluctuations. We show how the angular correlation function of the CMBR can be expressed explicitly in terms of the mass autocorrelation function xi(r) in the universe. We derive analytic expressions for the angular correlation function and its multipole moments in terms of integrals over xi(r) or its second moment, J(sub 3)(r), which does not need to satisfy the sort of integral constraint that xi(r) must. We derive similar expressions for bulk flow velocity in terms of xi and J(sub 3). One interesting result that emerges directly from this analysis is that, for all angles theta, there is a substantial contribution to the correlation function from a wide range of distance r and that radial shape of this contribution does not vary greatly with angle.

  20. A spin-modulated telescope for measurement of cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Staren, John William

    The measurement of anisotropy in the Cosmic Microwave Background (CMB) advances our knowledge of the early Universe from which the radiation originated. The angular power spectrum of CMB anisotropy at sub-degree scales depends heavily on comsological parameters such as Ob, O 0 and H0. In pursuit of critical power spectrum measurements over a range of angular scales, a spin-modulated telescope with a single cryogenic amplifier used in a total power radiometer is designed, built and tested. The new technique of spin-modulation with a spinning flat mirror canted 2.5° relative to its spin axis modulates the beam in a 10° oval pattern on the sky at 2.5 Hz. This rapid two-dimensional modulation of the beam is tested at balloon altitudes to minimize the atmospheric offset and determine the efficacy of the scan and telescope design. Maps of over 600 and 400 square degrees are made of regions observed using the spin-modulation and a 20° azimuth scan. These maps yield a 95% confidence level flat band power upper limit of DeltaTℓ = Tcmb(ℓ(ℓ + 1)Cℓ/2pi)0.5 < 77 muK at ℓ = 38 and are free of systematics effects and striping due to long-term drifts in our amplifier to the levels tested here. Planning for the next telescope, with multiple amplifiers, is performed to ensure its success.

  1. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; Reichardt, C. L.; Harrington, N. L.

    2015-02-01

    We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg{sup 2} SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' ≳ θ ≳ 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the powermore » spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg{sup 2} of the SPT-SZ survey. We measure the tSZ power at 143  GHz to be D{sub 3000}{sup tSZ}=4.08{sub −0.67}{sup +0.58} μK{sup 2} and the kSZ power to be D{sub 3000}{sup kSZ}=2.9±1.3 μK{sup 2}. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of ξ=0.113{sub −0.054}{sup +0.057} between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4  at 95% CL.« less

  2. Reconstruction of primordial tensor power spectra from B -mode polarization of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Komatsu, Eiichiro; Hazumi, Masashi; Sasaki, Misao

    2018-06-01

    Given observations of the B -mode polarization power spectrum of the cosmic microwave background (CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without assuming their functional form such as a power-law spectrum. The shape of the reconstructed spectra can then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power spectra are best reconstructed at wave numbers in the vicinity of k ≈6 ×10-4 and 5 ×10-3 Mpc-1 , which correspond to the "reionization bump" at ℓ≲6 and "recombination bump" at ℓ≈80 of the CMB B -mode power spectrum, respectively. The error bar between these two wave numbers is larger because of the lack of the signal between the reionization and recombination bumps. The error bars increase sharply toward smaller (larger) wave numbers because of the cosmic variance (CMB lensing and instrumental noise). To demonstrate the utility of the reconstructed power spectra, we investigate whether we can distinguish between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2) gauge fields during single-field slow-roll inflation, open inflation, and massive gravity inflation. The results depend on the model parameters, but we find that future CMB experiments are sensitive to differences in these models. We make our calculation tool available online.

  3. Mildly obscured active galaxies and the cosmic X-ray background

    NASA Astrophysics Data System (ADS)

    Esposito, V.; Walter, R.

    2016-05-01

    Context. The diffuse cosmic X-ray background (CXB) is the sum of the emission of discrete sources, mostly massive black-holes accreting matter in active galactic nuclei (AGN). The CXB spectrum differs from the integration of the spectra of individual sources, calling for a large population, undetected so far, of strongly obscured Compton-thick AGN. Such objects are predicted by unified models, which attribute most of the AGN diversity to their inclination on the line of sight, and play an important role for the understanding of the growth of black holes in the early Universe. Aims: The percentage of strongly obscured Compton-thick AGN at low redshift can be derived from the observed CXB spectrum, if we assume AGN spectral templates and luminosity functions. Methods: We show that high signal-to-noise stacked hard X-ray spectra, derived from more than a billion seconds of effective exposure time with the Swift/BAT instrument, imply that mildly obscured Compton-thin AGN feature a strong reflection and contribute massively to the CXB. Results: A population of Compton-thick AGN larger than that which is effectively detected is not required to reproduce the CXB spectrum, since no more than 6% of the CXB flux can be attributed to them. The stronger reflection observed in mildly obscured AGN suggests that the covering factor of the gas and dust surrounding their central engines is a key factor in shaping their appearance. These mildly obscured AGN are easier to study at high redshift than Compton-thick sources are.

  4. Exploring the Galactic Cosmic Rays at the lowest energies

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    The solar wind prevents the lowest-energy Galactic cosmic rays (GCR) from entering the Heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a handle on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  5. Cosmic ray transport in astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less

  6. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Kalberla, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, M.; White, S. D. M.; Winkel, B.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log (Meff/M⊙) = 12

  7. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  8. Observations of the anisotropy in the cosmic microwave background by the FIRS, SK93, and MSAM-I experiments

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Cheng, Ed; Silverberg, Bob; Ganga, Ken; Page, Lyman; Jarosik, Norm; Netterfield, Barth; Wilkinson, Dave; Meyer, Stephan; Inman, Casey; hide

    1994-01-01

    The observations and results from the FIRS, SK93, and MSAM-1, experiments are discussed. These experiments search for anisotropy in the cosmic microwave background over a range in angular scale from 180 deg to 0.5 deg and a range in frequency from 26 to 680 GHz. Emphasis is placed on the observing strategy and potential systematic errors. Contamination of the data by galactic sources is addressed. Future directions are indicated. The results for all three experiments, as found by us and others, are given in the context of the standard CDM model, Q(sub CDM), and the model-independent band-power estimates.

  9. The Primordial Inflation Polarization ExploreR (PIPER)

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward

    2018-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity, with mapping speed approximately 10 times faster than a similar instrument with a single ambient-temperature mirror. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. An engineering flight is planned for October 2017 from Fort Sumner, New Mexico, and the first science flight is planned for June 2018 from Palestine, Texas.

  10. Limits on Arcminute-Scale Cosmic Microwave Background Anisotropy at 28.5 GHz

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G.; Joy, M.; Reese, E. D.

    2000-01-01

    We have used the Berkeley-Illinois-Maryland Association (BIMA) millimeter array outfitted with sensitive centimeter-wave receivers to search for cosmic microwave background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration that produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is approximately 6'.6. We have made sensitive images of seven fields, four of which where chosen specifically to have low infrared dust contrast and to be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power of Q(sub flat) = 5.6(sub -5.6)(exp 3.0) microK and Q(sub flat) < 14.1 microK at 68% and 95% confidence, respectively. The sensitivity of this experiment to flat-band power peaks at a multipole of I = 5470, which corresponds to an angular scale of approximately 2'. The most likely value of Q(sub flat) is similar to the level of the expected secondary anisotropies.

  11. Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Joy, M. K.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0, -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.

  12. Measurement of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Miller, A.; Nagai, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We report the results of our continued study of arcminute scale anisotropy in the Cosmic Microwave Background (CMB) with the Berkeley-Illinois-Maryland Association (BIMA) array. The survey consists of ten independent fields selected for low infrared dust emission and lack of bright radio point sources. With observations from the VLA (Very Large Array) at 4.8 GHz, we have identified point sources which could act as contaminants in estimates of the CMB power spectrum and removed them in the analysis. Modeling the observed power spectrum with a single. flat band power with average multipole of l(sub eff) = 6864, we find Delta T = 14.2((sup +4.8)(sub -6.0)) micro K at 68% confidence. The signal in the visibility data exceeds the expected contribution from instrumental noise with 96.5% confidence. We have also divided the data into two bins corresponding to different spatial resolutions in the power spectrum. We find Delta T(sub 1) = 16.6((sup +5.3)(sub -5.9)) micro K at 68% confidence for CMB flat band power described by an average multipole of l(sub eff) = 5237 and Delta T(sub 2) is less than 26.5 micro K at 95% confidence for l(sub eff) = 8748.

  13. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  14. Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual.

    PubMed

    Liu, Guo-Chin; Lee, Seokcheon; Ng, Kin-Wang

    2006-10-20

    We present the full set of power spectra of cosmic microwave background (CMB) temperature and polarization anisotropies due to the coupling between quintessence and pseudoscalar of electromagnetism. This coupling induces a rotation of the polarization plane of the CMB, thus resulting in a nonvanishing B mode and parity-violating TB and EB modes. Using the BOOMERANG data from the flight of 2003, we derive the most stringent constraint on the coupling strength. We find that in some cases the rotation-induced B mode can confuse the hunting for the gravitational lensing-induced B mode.

  15. Development of High Frequency Transition-Edge-Sensor Polarimeters for Next Generation Cosmic Microwave Background Experiments and Galactic Foreground Measurements

    NASA Astrophysics Data System (ADS)

    Walker, Samantha; Sierra, Carlos E.; Austermann, Jason Edward; Beall, James; Becker, Dan; Dober, Bradley; Duff, Shannon; Hilton, Gene; Hubmayr, Johannes; Van Lanen, Jeffrey L.; McMahon, Jeff; Simon, Sara M.; Ullom, Joel; Vissers, Michael R.; NIST Quantum Sensors Group

    2018-06-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the earliest moments of the universe and therefore have the potential to transform our understanding of cosmology. In particular, precision measurements of its polarization can reveal the existence of gravitational waves produced during cosmic inflation. However, these observations are complicated by the presence of astrophysical foregrounds, which may be separated by using broad frequency coverage, as the spectral energy distribution between foregrounds and the CMB is distinct. For this purpose, we are developing large-bandwidth, feedhorn-coupled transition-edge-sensor (TES) arrays that couple polarized light from waveguide to superconducting microstrip by use of a symmetric, planar orthomode transducer (OMT). In this work, we describe two types of pixels, an ultra-high frequency (UHF) design, which operates from 195 GHz-315 GHz, and an extended ultra-high frequency (UHF++) design, which operates from 195 GHz-420 GHz, being developed for next generation CMB experiments that will come online in the next decade, such as CCAT-prime and the Simons Observatory. We present the designs, simulation results, fabrication, and preliminary measurements of these prototype pixels.

  16. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  17. LETTER TO THE EDITOR: A disintegrating cosmic string

    NASA Astrophysics Data System (ADS)

    Griffiths, J. B.; Docherty, P.

    2002-06-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.

  18. Cosmic microwave background reconstruction from WMAP and Planck PR2 data

    NASA Astrophysics Data System (ADS)

    Bobin, J.; Sureau, F.; Starck, J.-L.

    2016-06-01

    We describe a new estimate of the cosmic microwave background (CMB) intensity map reconstructed by a joint analysis of the full Planck 2015 data (PR2) and nine years of WMAP data. The proposed map provides more than a mere update of the CMB map introduced in a previous paper since it benefits from an improvement of the component separation method L-GMCA (Local-Generalized Morphological Component Analysis), which facilitates efficient separation of correlated components. Based on the most recent CMB data, we further confirm previous results showing that the proposed CMB map estimate exhibits appealing characteristics for astrophysical and cosmological applications: I) it is a full-sky map as it did not require any inpainting or interpolation postprocessing; II) foreground contamination is very low even on the galactic center; and III) the map does not exhibit any detectable trace of thermal Sunyaev-Zel'dovich contamination. We show that its power spectrum is in good agreement with the Planck PR2 official theoretical best-fit power spectrum. Finally, following the principle of reproducible research, we provide the codes to reproduce the L-GMCA, which makes it the only reproducible CMB map. The reconstructed CMB map and the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A50

  19. The imprint of proper motion of nonlinear structures on the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Tuluie, Robin; Laguna, Pablo

    1995-01-01

    We investigate the imprint of nonlinear matter condensations on the cosmic microwave background (CMB) in an Omega = 1, cold dark matter (CDM) model universe. Temperature anisotropies are obtained by numerically evolving matter inhomogeneities and CMB photons from the beginning of decoupling until the present epoch. The underlying density field produced by the inhomogeneities is followed from the linear, through the weakly clustered, into the fully nonlinear regime. We concentrate on CMB temperature distortions arising from variations in the gravitational potentials of nonlinear structures. We find two sources of temperature fluctuations produced by time-varying potentials: (1) anisotropies due to intrinsic changes in the gravitational potentials of the inhomogeneities and (2) anisotropies generated by the peculiar, bulk motion of the structures across the microwave sky. Both effects generate CMB anisotropies in the range of 10(exp -7) approximately less than or equal to (Delta T/T) approximately less than or equal to 10(exp -6) on scales of approximately 1 deg. For isolated structures, anisotropies due to proper motion exhibit a dipole-like signature in the CMB sky that in principle could yield information on the transverse velocity of the structures.

  20. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    NASA Astrophysics Data System (ADS)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  1. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  2. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  3. Relic neutrinos, monopoles, and cosmic rays above ~1020 eV

    NASA Astrophysics Data System (ADS)

    Weiler, Thomas J.

    1998-06-01

    The observation of cosmic ray events above the Greisen-Kuzmin-Zatsepin (GZK) cut-off of 5×1019 eV offers an enormous opportunity for the discovery of new physics. We explore two possible origins for these super-GZK events. The first example uses Standard Model (SM) physics augmented only by <~ eV neutrino masses as suggested by solar, atmospheric, and terrestrial neutrino detection, and by the cosmological need for a hot dark matter component. In this example, cosmic ray neutrinos from distant, highest energy sources annihilate relatively nearby on the relic neutrino background to produce ``Z-bursts,'' highly collimated, highly boosted (γZ~1011) hadronic jets. The SM and hot Big Bang cosmology give the probability for each neutrino flavor at its resonant energy to annihilate within the halo of our galactic supercluster as likely within an order of magnitude of 1%. The kinematics are completely determined by the neutrino masses and the properties of the Z boson. The burst energy is ER=4 (eV/mν)×1021 eV, and the burst content includes, on average, thirty photons and 2.7 nucleons with super-GZK energies. The second example goes beyond SM physics to invoke relativistic magnetic monopoles as the cosmic ray primaries. Motivations for this hypothesis are twofold: (i) conventional primaries are problematic, while monopoles are naturally accelerated to E~1020 eV by galactic magnetic fields; (ii) the observed highest energy cosmic ray flux is just a few orders of magnitude below the Parker flux limit for monopoles. By matching the cosmic monopole production mechanism to the observed highest energy cosmic ray flux we estimate the monopole mass to be <~1010 GeV. Several tests of the neutrino annihilation and monopole hypotheses are indicated.

  4. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  5. Probing the largest cosmological scales with the correlation between the cosmic microwave background and peculiar velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fosalba, Pablo; Dore, Olivier

    2007-11-15

    Cross correlation between the cosmic microwave background (CMB) and large-scale structure is a powerful probe of dark energy and gravity on the largest physical scales. We introduce a novel estimator, the CMB-velocity correlation, that has most of its power on large scales and that, at low redshift, delivers up to a factor of 2 higher signal-to-noise ratio than the recently detected CMB-dark matter density correlation expected from the integrated Sachs-Wolfe effect. We propose to use a combination of peculiar velocities measured from supernovae type Ia and kinetic Sunyaev-Zeldovich cluster surveys to reveal this signal and forecast dark energy constraints thatmore » can be achieved with future surveys. We stress that low redshift peculiar velocity measurements should be exploited with complementary deeper large-scale structure surveys for precision cosmology.« less

  6. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    PubMed

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

  7. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  8. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; hide

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  9. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  10. The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  11. The estimation of background production by cosmic rays in high-energy gamma ray telescopes

    NASA Technical Reports Server (NTRS)

    Edwards, H. L.; Nolan, P. L.; Lin, Y. C.; Koch, D. G.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kniffen, D. A.; Hughes, E. B.

    1991-01-01

    A calculational method of estimating instrumental background in high-energy gamma-ray telescopes, using the hadronic Monte Carlo code FLUKA87, is presented. The method is applied to the SAS-2 and EGRET telescope designs and is also used to explore the level of background to be expected for alternative configurations of the proposed GRITS telescope, which adapts the external fuel tank of a Space Shuttle as a gamma-ray telescope with a very large collecting area. The background produced in proton-beam tests of EGRET is much less than the predicted level. This discrepancy appears to be due to the FLUKA87 inability to transport evaporation nucleons. It is predicted that the background in EGRET will be no more than 4-10 percent of the extragalactic diffuse gamma radiation.

  12. Cosmic Infrared Background Sources Clustered Around Quasars

    NASA Astrophysics Data System (ADS)

    Hall, Kirsten R.; Zakamska, Nadia; Marriage, Tobias; Crichton, Devin; Gralla, Megan

    2017-06-01

    Powerful quasars can be seen out to large distances. As they reside in massive dark matter halos, they provide a useful tracer of large scale structure. We stack Herschel-SPIRE images at 250, 350, and 500 microns at the locations of 13,000 quasars in redshift bins spanning 0.5 < z < 3.5. While the detected signal is dominated on instrumental beam scales by the unresolved dust emission of the quasar and its host galaxy, at z 2 the extended emission is clearly spatially resolved on Mpc scales. This emission is due to star-forming galaxies clustered around the dark matter halos hosting quasars. We measure radial surface brightness profiles of the stacked images to compute the angular correlation function of dusty star-forming galaxies correlated with quasars. We generate a halo occupation distribution model in order to determine the masses of the dark matter halos in which dusty star forming galaxies reside. We are probing potential changes in the halo mass most efficient at hosting star forming galaxies, and assessing any evidence that this halo mass evolved with redshift in the context of "cosmic downsizing".

  13. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  14. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Hoon; Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered bymore » a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.« less

  15. CENTAURUS A: THE EXTRAGALACTIC SOURCE OF COSMIC RAYS WITH ENERGIES ABOVE THE KNEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biermann, Peter L.; De Souza, Vitor, E-mail: plbiermann@mpifr-bonn.mpg.de, E-mail: vitor@ifsc.usp.br

    2012-02-10

    The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10{sup 15} to 3 Multiplication-Sign 10{sup 20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data aremore » available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 Multiplication-Sign 10{sup 19} eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.« less

  16. Progress in high-energy cosmic ray physics

    NASA Astrophysics Data System (ADS)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  17. The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light

    NASA Astrophysics Data System (ADS)

    Shirahata, Mai; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Enokuchi, Akito; Hristov, Viktor; Kanai, Yoshikazu; Kim, Min Gyu; Korngut, Phillip; Lanz, Alicia; Lee, Dae-Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Ohnishi, Yosuke; Park, Won-Kee; Sano, Kei; Takeyama, Norihide; Tsumura, Kohji; Wada, Takehiko; Wang, Shiang-Yu; Zemcov, Michael

    2016-07-01

    We present the current status of the Cosmic Infrared Background ExpeRiment-2 (CIBER-2) project, whose goal is to make a rocket-borne measurement of the near-infrared Extragalactic Background Light (EBL), under a collaboration with U.S.A., Japan, South Korea, and Taiwan. The EBL is the integrated light of all extragalactic sources of emission back to the early Universe. At near-infrared wavelengths, measurement of the EBL is a promising way to detect the diffuse light from the first collapsed structures at redshift z˜10, which are impossible to detect as individual sources. However, recently, the intra-halo light (IHL) model is advocated as the main contribution to the EBL, and our new result of the EBL fluctuation from CIBER-1 experiment is also supporting this model. In this model, EBL is contributed by accumulated light from stars in the dark halo regions of low- redshift (z<2) galaxies, those were tidally stripped by the interaction of satellite dwarf galaxies. Thus, in order to understand the origin of the EBL, both the spatial fluctuation observations with multiple wavelength bands and the absolute spectroscopic observations for the EBL are highly required. After the successful initial CIBER- 1 experiment, we are now developing a new instrument CIBER-2, which is comprised of a 28.5-cm aluminum telescope and three broad-band, wide-field imaging cameras. The three wide-field (2.3×2.3 degrees) imaging cameras use the 2K×2K HgCdTe HAWAII-2RG arrays, and cover the optical and near-infrared wavelength range of 0.5-0.9 μm, 1.0-1.4 μm and 1.5-2.0 μm, respectively. Combining a large area telescope with the high sensitivity detectors, CIBER-2 will be able to measure the spatial fluctuations in the EBL at much fainter levels than those detected in previous CIBER-1 experiment. Additionally, we will use a linear variable filter installed just above the detectors so that a measurement of the absolute spectrum of the EBL is also possible. In this paper, the scientific

  18. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    NASA Astrophysics Data System (ADS)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  19. The temperature of the cosmic microwave background radiation at 3.8 GHz - Results of a measurement from the South Pole site

    NASA Technical Reports Server (NTRS)

    De Amici, Giovanni; Limon, Michele; Smoot, George F.; Bersanelli, Marco; Kogut, AL; Levin, Steve

    1991-01-01

    As part of an international collaboration to measure the low-frequency spectrum of the cosmic microwave background (CMB) radiation, its temperature was measured at a frequency of 3.8 GHz, during the austral spring of 1989, obtaining a brightness temperature, T(CMB), of 2.64 +/-0.07 K (68 percent confidence level). The new result is in agreement with previous measurements at the same frequency obtained in 1986-88 from a very different site and has comparable error bars. Combining measurements from all years, T(CMB) = 2.64 +/-0.06 K is obtained.

  20. Future Cosmic Microwave Background Delensing with Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Manzotti, Alessandro

    The cosmic microwave background (CMB) polarization is a promising experimental dataset to test the inflationary paradigm and to probe the physics of the early universe. A particular component, the so-called B-modes, is indeed a direct signature of a prediction of inflation: the presence of gravitational waves in the early universe. However, reducing the instrumental noise in future experiments will not be enough to detect this signal. Secondary effects in the low redshift universe will also produce non-primordial B-modes adding confusion to the inflationary signal. In particular, the gravitational interactions of CMB photons with large scale structures will distort the primordial E-modes adding a lensing B-mode component to the primordial signal. Removing the lensing part ("delensing") from the measurement of CMB B-modes will then be necessary to constrain the amplitude of the primordial gravitational waves. Here we discuss the role of current and future large scale structure surveys in a multi-tracers approach to delensing that will improve the reconstruction of the lensing potential that lenses the CMB photons and, as a consequence, the delensing efficiency. We quantify this by the improvement due to delensing on the constraints on the inflationary tensor perturbations amplitude and shape (r and nt). We find that, in general, galaxy surveys should be split into tomographic bins as this can improve the correlation with CMB lensing by 30%. Among currently available surveys, a DES-like galaxy survey can remove about 14% of the lensing signal. Ongoing CMB experiments (CMB-S2) will particularly benefit from large scale structure tracers that, once properly combined, will have a better performance than a CMB internal reconstruction. With the decrease of instrumental noise, the CMB internal reconstruction will increase its efficiency and the fraction of removed lensing B-modes with CMB alone will rapidly improve from the current level of Planck (8%) and SPTPol (35%) to

  1. Exploring cosmic origins with CORE: B-mode component separation

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Banday, A. J.; Baccigalupi, C.; Basak, S.; Bonaldi, A.; De Zotti, G.; Delabrouille, J.; Dickinson, C.; Eriksen, H. K.; Errard, J.; Fernandez-Cobos, R.; Fuskeland, U.; Hervías-Caimapo, C.; López-Caniego, M.; Martinez-González, E.; Roman, M.; Vielva, P.; Wehus, I.; Achucarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banerji, R.; Bartlett, J.; Bartolo, N.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J.-M.; Di Valentino, E.; Feeney, S.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) B-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of rgtrsim 5× 10‑3. We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with τ=0.055 and tensor-to-scalar values ranging from r=10‑2 to 10‑3, Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial B-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of r=(5 ± 0.4)× 10‑3 after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a 4σ-measurement of r=5× 10‑3 after foreground cleaning and 60% delensing. For lower tensor-to-scalar ratios (r=10‑3) the overall uncertainty on r is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this r level, even on relatively large angular scales, l ~ 50. Finally, we report two sources of potential bias for the detection of the primordial B-modes by future CMB experiments: (i) the use of incorrect foreground models, e.g. a modelling error of Δβs = 0.02 on the synchrotron spectral indices may result in an

  2. Extragalactic background light measurements and applications.

    PubMed

    Cooray, Asantha

    2016-03-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.

  3. Extragalactic background light measurements and applications

    PubMed Central

    Cooray, Asantha

    2016-01-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB. PMID:27069645

  4. Gravitational Lensing Effect on the Two-Point Correlation of Hot Spots in the Cosmic Microwave Background.

    PubMed

    Takada; Komatsu; Futamase

    2000-04-20

    We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.

  5. The effects of Dark Matter annihilation on cosmic reionization

    DOE PAGES

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y.

    2016-12-15

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos atmore » $$z\\sim100-200$$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $$z \\sim 20-100$$, it can leave a significant imprint on the global optical depth, $$\\tau$$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. Here, we show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.« less

  6. A measurement of the medium-scale anisotropy in the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Inman, C. A.; Kowitt, M. S.; Meyer, S. S.; Page, L. A.; Puchalla, J. L.; Silverberg, R. F.

    1994-01-01

    Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the cosmic microwave background radiation (CMBR). This instrument chops a 30 min beam in a three-position pattern with a throw of +/- 40 min; the resulting data is analyzed in statistically independent single- and double-difference sets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5/cm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100 micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of 0.6 x 10(exp -5) is less than Delta (T)/T is less than 2.2 x 10(exp -5) (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0.5 deg, using the single-difference demodulation. Fore the double difference demodulation, the result is 1.1 x 10(exp -5) is less than Delta(T)/T is less than 3.1 x 10(exp -5) (90% CL interval) at a correlation angle of 0.3 deg.

  7. Isotropy-violation diagnostics for B-mode polarization foregrounds to the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Rotti, Aditya; Huffenberger, Kevin

    2016-09-01

    Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B-mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B-modes, particularly in cases of limited frequency coverage.

  8. Cosmic ray-modified stellar winds. I - Solution topologies and singularities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Webb, G. M.

    1987-01-01

    In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P sub c)-space, or a two-dimensional hypersurface of singularities in (r, u, P sub c, dP sub c/dr)-space, where r, u, and P sub c are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points.

  9. Status of the Simbol-X Background Simulation Activities

    NASA Astrophysics Data System (ADS)

    Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.

    2009-05-01

    The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.

  10. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  11. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms

    PubMed Central

    NAGAMINE, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described. PMID:27725469

  12. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms.

    PubMed

    Nagamine, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.

  13. Exploring the potential of the cosmic-ray neutron method to simultaneously predict soil water and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Fuchs, H.; Jakobi, J.; Huisman, J. A.; Diekkrüger, B.; Vereecken, H.

    2016-12-01

    intensity reduced the discrepancy between cosmic-ray-derived and in-situ measured soil moisture. Finally, we investigated the temporal dynamics of the thermal-to-epithermal neutron ratio to explore its potential as a predictor for canopy interception and biomass changes.

  14. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    NASA Astrophysics Data System (ADS)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  15. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  16. Cosmic-Ray Background Flux Model Baed on a Gamma-Ray Large Area Space Telescope Baloon Flight Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4(pi) sr), the sensitive energy range of the instrument ((approx) 10 MeV to 100 GeV) and abundant components (proton, alpha, e(sup -), e(sup +), (mu)(sup -), (mu)(sup +) and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.

  17. First Stars or Stray Stars? A Cosmic Infrared Mystery

    NASA Image and Video Library

    2014-11-06

    Our sky is filled with a diffuse background glow, known as the cosmic infrared background. Much of the light is from galaxies we know about, but previous Spitzer measurements have shown an extra component of unknown origin.

  18. Kinetic Inductance Detectors for Measuring the Polarization of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Flanigan, Daniel

    Kinetic inductance detectors (KIDs) are superconducting thin-film microresonators that are sensitive photon detectors. These detectors are a candidate for the next generation of experiments designed to measure the polarization of the cosmic microwave background (CMB). I discuss the basic theory needed to understand the response of a KID to light, focusing on the dynamics of the quasiparticle system. I derive an equation that describes the dynamics of the quasiparticle number, solve it in a simplified form not previously published, and show that it can describe the dynamic response of a detector. Magnetic flux vortices in a superconducting thin film can be a significant source of dissipation, and I demonstrate some techniques to prevent their formation. Based on the presented theory, I derive a corrected version of a widely-used equation for the quasiparticle recombination noise in a KID. I show that a KID consisting of a lumped-element resonator can be sensitive enough to be limited by photon noise, which is the fundamental limit for photometry, at a level of optical loading below levels in ground-based CMB experiments. Finally, I describe an ongoing project to develop multichroic KID pixels that are each sensitive to two linear polarization states in two spectral bands, intended for the next generation of CMB experiments. I show that a prototype 23-pixel array can detect millimeter-wave light, and present characterization measurements of the detectors.

  19. The Primordial Inflation Explorer (PIXIE) Mission

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer

  20. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  1. Applications of Cosmic Muon Tracking at Shallow Depth Underground

    NASA Astrophysics Data System (ADS)

    Oláh, L.; Barnaföldi, G. G.; Hamar, G.; Melegh, H. G.; Surányi, G.; Varga, D.

    2014-06-01

    A portable cosmic muon telescope has been developed for environmental and geophysical applications, as well as cosmic background measurements for nuclear research in underground labs by the REGARD group (Wigner RCP of the HAS and Eötvös Loránd University collaboration on gaseous detector R&D). The modular, low power consuming (5 W) Close Cathode Chamber-based tracking system has 10 mrad angular resolution with its sensitive area of 0.1 m2. The angular distribution of cosmic muons has been measured at shallow depth underground (< 70 meter-rock-equivalent) in four different remote locations. Application of cosmic muon detection for the reconstruction of underground caverns and building structures are demonstrated by the measurements.

  2. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    DOE PAGES

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δ A(x,t initial) = –δ B(x,t initial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand tomore » create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less

  3. Pre-inflation from the multiverse: can it solve the quadrupole problem in the cosmic microwave background?

    NASA Astrophysics Data System (ADS)

    Morais, João; Bouhmadi-López, Mariam; Krämer, Manuel; Robles-Pérez, Salvador

    2018-03-01

    We analyze a quantized toy model of a universe undergoing eternal inflation using a quantum-field-theoretical formulation of the Wheeler-DeWitt equation. This so-called third quantization method leads to the picture that the eternally inflating universe is converted to a multiverse in which sub-universes are created and exhibit a distinctive phase in their evolution before reaching an asymptotic de Sitter phase. From the perspective of one of these sub-universes, we can thus analyze the pre-inflationary phase that arises naturally. Assuming that our observable universe is represented by one of those sub-universes, we calculate how this pre-inflationary phase influences the power spectrum of the cosmic microwave background (CMB) anisotropies and analyze whether it can explain the observed discrepancy of the power spectrum on large scales, i.e. the quadrupole issue in the CMB. While the answer to this question is negative in the specific model analyzed here, we point out a possible resolution of this issue.

  4. Pre-inflation from the multiverse: can it solve the quadrupole problem in the cosmic microwave background?

    PubMed

    Morais, João; Bouhmadi-López, Mariam; Krämer, Manuel; Robles-Pérez, Salvador

    2018-01-01

    We analyze a quantized toy model of a universe undergoing eternal inflation using a quantum-field-theoretical formulation of the Wheeler-DeWitt equation. This so-called third quantization method leads to the picture that the eternally inflating universe is converted to a multiverse in which sub-universes are created and exhibit a distinctive phase in their evolution before reaching an asymptotic de Sitter phase. From the perspective of one of these sub-universes, we can thus analyze the pre-inflationary phase that arises naturally. Assuming that our observable universe is represented by one of those sub-universes, we calculate how this pre-inflationary phase influences the power spectrum of the cosmic microwave background (CMB) anisotropies and analyze whether it can explain the observed discrepancy of the power spectrum on large scales, i.e. the quadrupole issue in the CMB. While the answer to this question is negative in the specific model analyzed here, we point out a possible resolution of this issue.

  5. Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui

    2018-02-01

    A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein-Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein-Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein-Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.

  6. New probes of Cosmic Microwave Background large-scale anomalies

    NASA Astrophysics Data System (ADS)

    Aiola, Simone

    Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the

  7. Effect of a chameleon scalar field on the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.

    2009-09-15

    We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel'dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling.more » The constrained conversion probability in the cluster is P{sub Coma}(204 GHz)<6.2x10{sup -5} at 95% confidence, corresponding to an upper bound on the coupling strength of g{sub eff}{sup (cell)}<2.2x10{sup -8} GeV{sup -1} or g{sub eff}{sup (Kolmo)}<(7.2-32.5)x10{sup -10} GeV{sup -1}, depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.« less

  8. Heavy weak bosons, cosmic antimatter and DUMAND. 2: Looking for cosmic antimatter with DUMAND

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Brown, R. W.

    1980-01-01

    Discussion of various means for using high energy neutrino astronomy to directly test for the existence of cosmic antimatter on a significant cosmological scale is presented. Studies of the ultrahigh energy diffuse neutrino background using acoustic detector and high mass Glashow resonances are reported. Point source studies are also discussed.

  9. Cosmic Microwave Background Anisotropy Measurement from Python V

    NASA Astrophysics Data System (ADS)

    Coble, K.; Dodelson, S.; Dragovan, M.; Ganga, K.; Knox, L.; Kovac, J.; Ratra, B.; Souradeep, T.

    2003-02-01

    We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (l~40) to small (l~260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to smaller (l~200) scales, consistent with that expected from acoustic oscillations in the early universe. We compare this Python V map to a map made from data taken in the third year of Python. Python III observations were made at a frequency of 90 GHz and covered a subset of the region of the sky covered by Python V observations, which were made at 40 GHz. Good agreement is obtained both visually (with a filtered version of the map) and via a likelihood ratio test.

  10. Stability of an optically contacted etalon to cosmic radiation. [aboard Dynamics Explorer satellite

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Dettman, D. L.; Hays, P. B.

    1980-01-01

    An investigation has been completed to determine the effects of prolonged exposure to cosmic radiation on Zerodur spacing elements used between two dielectric reflectors on silica substrates in the plane Fabry-Perot etalon selected for flight in the Dynamics Explorer satellite. The measured radiation expansion coefficient for Zerodur is approximately -4.0 x 10 to the -12th/rad. In addition to the overall change in gap dimension, test data indicate a degradation in etalon parallelism, which is ascribed to the different doses received by the three spacers due to their differing distances from a Co-60 source. The effect is considered to be of practical use in the tuning and parallelism adjustment of fixed gap etalons. The variation is small enough not to pose a problem for the satellite instrument where expected radiation doses are less than 10,000 rads.

  11. Measurement of the cosmic microwave background using BEAST for the determination of cosmological parameters

    NASA Astrophysics Data System (ADS)

    Childers, Jeffery Dale

    The Background Emission Anisotropy Scanning Telescope (BEAST) is a millimeter wavelength experiment designed to generate maps of fluctuations in the cosmic microwave background (CMB). The telescope is composed of an off-axis Gregorian optical system with a 2.2 meter primary that focuses the collected microwave radiation onto an array of cryogenically cooled high electron mobility transistor (HEMT) receivers. This array is composed of six corrugated scalar feed horns in the Q band (38 to 45 GHz) and two more in the Ka band (26 to 36 GHz) with one of the six Q-band horns connected to an ortho-mode transducer for extraction of both polarizations incident on the single feed. The system has a minimum beam size of 20' with an average sensitivity of 900 m K [Special characters omitted.] per receiver. A map of the CMB centered on the north celestial pole has been generated from the BEAST telescope in a 9 ° wide annulus at declination 37° with a typical pixel error of 57 ± 5 m K when smoothed to 30' resolution. Cosmological parameter estimation of the power spectrum resulting from the map provides a measure of O k == 1- O total = -0.0= 74 ± .070, which is consistent with a flat universe. This paper describes the design and performance of the BEAST instrument and provides the details of subsystems developed and used toward the goal of generating a map of CMB fluctuations on 20' scales with sensitivity in l space between l ~100 and l ~500. A summary of the map and results generated by an observing campaign at the University of California White Mountain Research Station are also included.

  12. Primordial Inflation Polarization Explorer: Status and Plans

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2009-01-01

    The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.

  13. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  14. Cosmic Rays - A Word-Wide Student Laboratory

    NASA Astrophysics Data System (ADS)

    Adams, Mark

    2017-01-01

    The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.

  15. Is cosmic acceleration slowing down?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked andmore » that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)« less

  16. Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUaD polarimeter.

    PubMed

    Wu, E Y S; Ade, P; Bock, J; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Gupta, S; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; O'Sullivan, C; Taylor, A N; Thompson, K L; Turner, A H; Zemcov, M

    2009-04-24

    We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible "cosmological birefringence" to be 0.55 degrees +/-0.82 degrees (random) +/-0.5 degrees (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200

  17. The Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul; Inflation Probe Mission Study Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.

  18. The Dark UNiverse Explorer (DUNE): proposal to ESA's cosmic vision

    NASA Astrophysics Data System (ADS)

    Refregier, A.

    2009-03-01

    The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2 m telescope with a combined visible/NIR field-of-view of 1 deg2. DUNE will carry out an all-sky survey, ranging from 550 to 1600 nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE will yield major advances in a broad range of fields in astrophysics including fundamental cosmology, galaxy evolution, and extrasolar planet search. DUNE was recently selected by ESA as one of the mission concepts to be studied in its Cosmic Vision programme.

  19. Ship Effect Neutron Measurements And Impacts On Low-Background Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Siciliano, Edward R.

    2013-10-01

    The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurementsmore » of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.« less

  20. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  1. Reduction and analysis of data from cosmic dust experiments on Mariner 4, OGO 3, and Lunar Explorer 35

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis of data from the cosmic dust experiment on three NASA missions is discussed. These missions were Mariner IV, OGO III, and Lunar Explorer 35. The analysis effort has included some work in the laboratory of the physics of microparticle hypervelocity impact. This laboratory effort was initially aimed at the calibration and measurements of the different sensors being used in the experiment. The latter effort was conducted in order to better understand the velocity and mass distributions of the picogram sized ejecta particles.

  2. Exploring the Excluded Galactic Cosmic Rays--those at the Lowest Energies.

    NASA Astrophysics Data System (ADS)

    Shapiro, Maurice M.

    2001-04-01

    The solar wind prevents the lowest- energy Galactic cosmic rays (GCR) from entering the heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a ``handle" on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  3. The observable signature of late heating of the Universe during cosmic reionization.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  4. THE FLOW AROUND A COSMIC STRING. I. HYDRODYNAMIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691

    2015-05-10

    Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have relied on the string’s lensing of background galaxies or the cosmic microwave background. In this paper, I obtained a solution for the supersonic flow of collisional gas past the cosmic string which has two planar shocks with a shock compression ratio that depends on the angle defect of the string and its speed. The shocks result in the compression and heating of the gas and, given favorable conditions, particle acceleration. Gas heating and over-density in an unusual wedge shape can bemore » detected by observing the Hi line at high redshifts. Particle acceleration can occur in the present-day universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such a collision persist for cosmological timescales, could be located by looking at unusual large-scale radio sources situated on a single spatial plane.« less

  5. The Contribution of z < or Approx. 6 Sources to the Spatial Coherence in the Unresolved Cosmic Near-Infrared and X-Ray Backgrounds

    NASA Technical Reports Server (NTRS)

    Helgason, K.; Cappelluti, N.; Hasinger, G.; Kashlinsky, A.; Ricotti, M.

    2014-01-01

    A spatial clustering signal has been established in Spitzer/IRAC measurements of the unresolved cosmic near-infrared background (CIB) out to large angular scales, approx. 1deg. This CIB signal, while significantly exceeding the contribution from the remaining known galaxies, was further found to be coherent at a highly statistically significant level with the unresolved soft cosmic X-ray background (CXB). This measurement probes the unresolved CXB to very faint source levels using deep near-IR source subtraction.We study contributions from extragalactic populations at low to intermediate redshifts to the measured positive cross-power signal of the CIB fluctuations with the CXB. We model the X-ray emission from active galactic nuclei (AGNs), normal galaxies, and hot gas residing in virialized structures, calculating their CXB contribution including their spatial coherence with all infrared emitting counterparts. We use a halo model framework to calculate the auto and cross-power spectra of the unresolved fluctuations based on the latest constraints of the halo occupation distribution and the biasing of AGNs, galaxies, and diffuse emission. At small angular scales (1), the 4.5microns versus 0.5-2 keV coherence can be explained by shot noise from galaxies and AGNs. However, at large angular scales (approx.10), we find that the net contribution from the modeled populations is only able to account for approx. 3% of the measured CIB×CXB cross-power. The discrepancy suggests that the CIB×CXB signal originates from the same unknown source population producing the CIB clustering signal out to approx. 1deg.

  6. Multiscale multichroic focal planes for measurements of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-01-01

    We report on the development of multiscale multichroic focal planes for measurements of the cosmic microwave background (CMB). A multichroic focal plane, i.e., one that consists of pixels that are simultaneously sensitive in multiple frequency bands, is an efficient architecture for increasing the sensitivity of an experiment as well as for disentangling the contamination due to galactic foregrounds, which is increasingly becoming the limiting factor in extracting cosmological information from CMB measurements. To achieve these goals, it is necessary to observe across a broad frequency range spanning roughly 30-350 GHz. For this purpose, the Berkeley CMB group has been developing multichroic pixels consisting of planar superconducting sinuous antennas coupled to extended hemispherical lenslets, which operate at sub-Kelvin temperatures. The sinuous antennas, microwave circuitry and the transition-edge-sensor (TES) bolometers to which they are coupled are integrated in a single lithographed wafer.We describe the design, fabrication, testing and performance of multichroic pixels with bandwidths of 3:1 and 4:1 across the entire frequency range of interest. Additionally, we report on a demonstration of multiscale pixels, i.e., pixels whose effective size changes as a function of frequency. This property keeps the beam width approximately constant across all frequencies, which in turn allows the sensitivity of the experiment to be optimal in every frequency band. We achieve this by creating phased arrays from neighboring lenslet-coupled sinuous antennas, where the size of each phased array is chosen independently for each frequency band. We describe the microwave circuitry in detail as well as the benefits of a multiscale architecture, e.g., mitigation of beam non-idealities, reduced readout requirements, etc. Finally, we discuss the design and fabrication of the detector modules and focal-plane structures including cryogenic readout components, which enable the

  7. EBEX: A Balloon-Borne Telescope for Measuring Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel

    2015-05-01

    EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization signals in the cosmic microwave background (CMB). It is designed to measure or place an upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational lensing on the polarization of the CMB, and to characterize polarized Galactic foreground emission. The payload consists of a pointed gondola that houses the optics, polarimetry, detectors and detector readout systems, as well as the pointing sensors, control motors, telemetry sytems, and data acquisition and flight control computers. Polarimetry is achieved with a rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a full system test, and then flown again in December 2012 / January 2013 over Antarctica in a long-duration flight to collect scientific data. In the instrumentation part of this thesis we discuss the pointing sensors and attitude determination algorithms. We also describe the real-time map making software, "QuickLook", that was custom-designed for EBEX. We devote special attention to the design and construction of the primary pointing sensors, the star cameras, and their custom-designed flight software package, "STARS" (the Star Tracking Attitude Reconstruction Software). In the analysis part of this thesis we describe the current status of the post-flight analysis procedure. We discuss the data structures used in analysis and the pipeline stages related to attitude determination and map making. We also discuss a custom-designed software framework called "LEAP" (the LDB EBEX Analysis Pipeline) that supports most of the analysis pipeline stages.

  8. Degree-scale anisotropy in the cosmic microwave background: SP94 results

    NASA Technical Reports Server (NTRS)

    Gundersen, J. O.; Lim, M.; Staren, J.; Wuensche, C. A.; Figueiredo, N.; Gaier, T. C.; Koch, T.; Meinhold, P. R.; Seiffert, M. D.; Cook, G.

    1995-01-01

    We present results from two observations of the cosmic microwave background (CMB) performed from the South Pole during the 1993-1994 austral summer. Each observation employed a 3 deg peak-to-peak sinusoidal, single-difference chop and consisted of a 20 deg x 1 deg strip on the sky. The first observation used a receiver which operates in three channels between 38 and 45 GHz (Q-band) with a full width half maximum (FWHM) beam which varies from 1 deg to 1.15 deg. The second observation overlapped the first observation and used a receiver which operates in four channels between 26 and 36 GHz (Ka-band) with a FWHM beam which varies from 1.5 deg to 1.7 deg. Significant correlated structure is observed in all channels for each observation. The spectrum of the structure is consistent with a CMB spectrum and is formally inconsistent with diffuse synchrotron and free-free emission at the 5 sigma level. The amplitude of the structure is inconsistent with 20 K interstellar dust; however, the data do not discriminate against flat or inverted spectrum point sources. The root mean square amplitude (+/- 1 sigma) of the combined (Ka + Q) data is Delta T(sub rms) = 41.2(sup +15.5, sub -6.7) micro-K for an average window function which has a peak value of 0.97 at l = 68 and drops to e(exp -0.5) of the peak value at l = 36 and l = 106. A band power estimate of the CMB power spectrum, C(sub l), gives average value of (C(sub l)l(l + 1)/(2 pi))(sub B) = 1.77(sup +1.58, sub -0.54) x 10(exp -10).

  9. Cosmic ray astroparticle physics: current status and future perspectives

    NASA Astrophysics Data System (ADS)

    Donato, Fiorenza

    2017-02-01

    The data we are receiving from galactic cosmic rays are reaching an unprecedented precision, over very wide energy ranges. Nevertheless, many problems are still open, while new ones seem to appear when data happen to be redundant. We will discuss some paths to possible progress in the theoretical modeling and experimental exploration of the galactic cosmic radiation.

  10. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  11. Symmetry and the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Wollock, Edward J.

    2012-01-01

    A brief historical introduction to the development of observational astronomy and cosmology will be presented. The close relationship between the properties of light, symmetry, and our understanding the contents of our universe will be explored.

  12. The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Jones, D.; Monnelly, G.; Netterfield, C. B.; Nolta, M.; Page, L. A.; Puchalla, J.; Robertson, T.; Torbet, E.; Tran, H. T.; Vinje, W. E.

    2002-06-01

    We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP used an interlocking scan strategy to directly produce high signal-to-noise ratio CMB maps over a limited region of sky. The QMAP gondola was then refitted for ground-based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time domain beam synthesis. MAT/TOCO measured the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to lpeak=216+/-14. In addition to describing the instruments, we discuss the data selection methods, check for systematic errors, and compare the MAT/TOCO results to those from recent experiments. The previously reported data are updated to account for a small calibration shift and corrected to account for a small contribution from known sources of foreground emission. The resulting amplitude of the first peak for 160

  13. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  14. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    The main long-term goal of the space exploration program is the colonization of the planets of the Solar System The high cosmic radiation equivalent dose rate represents a major problem for a stable and safe colonization of the planets The dose rate on Mars ranges between 60 and 150 mSv year depending on the Solar cycle and altitude and can reach values as high as 360 mSv year on the Moon The average dose rate on the Earth is about 3 mSv year reduced to about 1 mSv year excluding the internal exposure to Rn daughters However some areas of the Earth have anomalously high levels of background radiation Values 200-400 times higher than the world average are found in regions where monazite sand deposits are abundant Population in Tibet experience a high cosmic radiation background Epidemiological studies did not detect any adverse health effects in the populations living in those high-background radiation areas on Earth Chromosomal aberrations in the peripheral blood lymphocytes from the population living in the high-background radiation areas have been measured in several studies because the chromosomal damage represents an early biomarker of cancer risk Similar cytogenetic studies have been recently performed in cohort of astronauts involved in single or repeated space flights over many years A comparison of the cytogenetic findings in populations exposed at high dose rate on Earth or in space will be described

  15. Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, T

    2004-09-03

    Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functionsmore » in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.« less

  16. A review on natural background radiation

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Setayandeh, Samaneh

    2013-01-01

    The world is naturally radioactive and approximately 82% of human-absorbed radiation doses, which are out of control, arise from natural sources such as cosmic, terrestrial, and exposure from inhalation or intake radiation sources. In recent years, several international studies have been carried out, which have reported different values regarding the effect of background radiation on human health. Gamma radiation emitted from natural sources (background radiation) is largely due to primordial radionuclides, mainly 232Th and 238U series, and their decay products, as well as 40K, which exist at trace levels in the earth's crust. Their concentrations in soil, sands, and rocks depend on the local geology of each region in the world. Naturally occurring radioactive materials generally contain terrestrial-origin radionuclides, left over since the creation of the earth. In addition, the existence of some springs and quarries increases the dose rate of background radiation in some regions that are known as high level background radiation regions. The type of building materials used in houses can also affect the dose rate of background radiations. The present review article was carried out to consider all of the natural radiations, including cosmic, terrestrial, and food radiation. PMID:24223380

  17. A measurement of the large-scale cosmic microwave background anisotropy at 1.8 millimeter wavelength

    NASA Technical Reports Server (NTRS)

    Meyer, Stephan S.; Cheng, Edward S.; Page, Lyman A.

    1991-01-01

    This measurement of the large-scale cosmic microwave background radiation (CMBR) anisotropy places the most stringent constraints to date on fluctuations in the CMBR on angular scales greater than about 4 deg. Using a four-channel bolometric radiometer operating at 1.8, 1.1, 0.63, and 0.44 mm, the diffuse sky brightness over half of the northern hemisphere has been mapped with an angular resolution of 3.8 deg. Analysis of the sky map at the longest wavelength for Galactic latitudes of 15 deg or more yields a 95-percent confidence level upper limit on fluctuations of the CMBR at Delta T/T of 1.6 x 10 to the -5th with a statistical power of 92 percent for Gaussian fluctuations at a correlation angle of 13 deg. Between 3 deg and 22 deg, the upper limit of fluctuations is 4.0 x 10 to the -5th . An anisotropy is detected in the map, but it cannot yet be attributed to primordial sources. The ultimate sensitivity for this experiment is 7 x 10 to the -6th over this angular range for Gaussian fluctuations.

  18. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes << 7 × 10(exp -177 erg sq. cm/ s. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  19. The amplitude and spectral index of the large angular scale anisotropy in the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Ganga, Ken; Page, Lyman; Cheng, Edward; Meyer, Stephan

    1994-01-01

    In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.

  20. Cyanogen Excitation Measurements of the Cosmic Microwave Background Temperature at 2.64 mm

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Meyer, D. M.

    1993-01-01

    We have measured CN excitation temperatures in the diffuse lines of sight toward the stars zeta Ophiuchi, zeta Persei, HD 27778, HD 21483 and HD 154368. We find respective 2.64 mm rotational excitation temperatures of 2.737 +/- 0.025, 2.774 +/- 0.086, 2.769 +/- (0.093}_{0.099), 2.771 +/- (0.057}_{0.060) and 2.68 +/- (0.22}_{0.33)K. The fact that these values are all consistent with each other even though the associated CN column densities range over an order of magnitude strongly suggests that local processes contribute little to the excitation. We have corrected our temperatures for the small local collisional effects utilizing millimeter searches for CN line emission. The resulting values give a weighted average temperature for the cosmic microwave background radiation (CMBR) at 2.64 mm of 2.733 +/- (0.023}_{0.031)K. We also find a CMBR temperature at 1.32 mm of 2.657 +/- 0.057 K. Our result is entirely consistent with the CMBR temperature results from COBE (Mather et al. 1990, Ap.J. 354, L37) and the COBRA rocket experiment (Gush, Halpern and Wishnow 1990, Phys. Rev. Lett. 65, 537) of 2.735 +/- 0.06 and 2.736 +/- 0.017 K, respectively. CN excitation determinations are not susceptible to the same systematic errors as are the direct measurement experiments. In addition, our temperatures originate in physically separate Galactic locations far from the near-Earth environment. The excellent agreement among the results from these independent methods attests to the accuracy of each approach and reaffirms the global nature of the background radiation. Our measurements stem from a large set of observations utilizing CCD detectors with various telescope and instrument combinations. The data were analyzed in a consistent manner designed to expose systematic equivalent width measurement errors resulting from the different instrumental configurations. We have found no evidence for such a bias and feel this illustrates the potential for using CCD detectors in sensitive