Science.gov

Sample records for cosmic body tcb

  1. Nature and destruction of the Tunguska cosmical body

    NASA Astrophysics Data System (ADS)

    Bronshten, V. A.

    2000-08-01

    The problem of the nature of the Tunguska Cosmical Body (TCB) is closely related to the mechanism of its disintegration which ended with an explosive disburse. The only hypothesis capable of explaining such a process is the idea that TCB was a fragment of a comet. Three alternative hypotheses are considered here. They assume the TCB to be: (i) a fragment of a stony asteroid; (ii) a porous snowball; and (iii) a plasmoid. It is shown that the first of them is not plausible because the fragmentation and explosion of an asteroid should result in the scattering of numerous fragments over the ground. They, however, have not been found on the terrain for many years by many tens of explorers who have carried out a careful analysis of the soil and peat. Bodies like a porous snowball or a plasmoid cannot exist in the Solar system (they should be unstable). The history of the cometary hypothesis is followed in the article, starting from its original formulation in a book by the well-known astrophysicist H. Shapley (1930. Flights from Chaos. A Survey of Material Systems from Atoms to Galaxies. N.Y.: McGraw-Hill, p. 57-58. Russian translation: From Atoms to Milky Ways. Moscow: ONTI, 1934), who has priority over F. J. W. Whipple [the latter having put this hypothesis 4 years later ( Whipple, 1934. On phenomena related to the Great Siberian meteor. Quart. Journ. of the Roy. Meteorol. Soc. 60, 505-513)]. Simultaneously with the evolution of this hypothesis our ideas of the structure of cometary nuclei have also varied. Estimates of the main parameters of the TCB - its initial mass m, initial velocity v and energy of explosion Ee - are examined. The following quantities are assured to be the most probable: m=2×10 6 t, v=31 km/s, Ee=5×10 23 erg. The mentioned value of v corresponds to the Zotkin-Kresak hypothesis that the TCB was a fragment of the Encke comet. Sekanina's criticism against this hypothesis is examined. During recent years, three analytical theories of the sequential

  2. Search for microremnants of the Tunguska Cosmic Body

    NASA Astrophysics Data System (ADS)

    Longo, G.; Serra, R.; Cecchini, S.; Galli, M.

    1994-02-01

    A new method is used here to obtain experimental data on the nature and composition of the Tunguska Cosmic Body. The leading hypothesis of the method is that in the forest conifers which have survived the Tunguska catastrophe, the fluid resin present at the moment of the event could have acted as a trap for airborne particles, as happens in amber. The growth rings of trees can give information on the age of the resin and therefore on the time when the particulate was trapped in it. With a scanning electron microscope, a total of 7163 particles were found in resin samples from Tunguska branches and from two control trees. The time distributions of the particles in the years 1885-1930 show clear abundance peaks centered on 1908. This makes it possible to conclude that the presence of Fe, Ca, Al, Si, Au, Cu, S, Zn, Cr, Ba, Ti, Ni, C and O in the particles observed is related to the Tunguska event and that these elements are probable constituents of the Tunguska Cosmic Body. This result is compatible with recent calculations showing that the Tunguska body can be a normal density meteorite.

  3. The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark

    The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the

  4. Nuclear Effects of Supernova-Accelerated Cosmic Rays on Early Solar System Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Johnson, J.

    2008-03-01

    The solar system apparently formed in the neighborhood of massive stars. Supernova explosions of these stars accelerate cosmic rays to 100s of TeVs. These cosmic rays could accelerate the beta decay of certain radioactive species in meteorite parent bodies.

  5. Shock-Generated Cosmic Rays in AMR Hydro/N-body Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Skillman, Samuel W.; O'Shea, B. W.; Hallman, E. J.; Burns, J. O.; Norman, M. L.

    2007-12-01

    Shock waves in cosmological simulations arise due to supersonic accretion onto large scale structures such as filaments and galaxy clusters as well as from complex flows within the clusters themselves. Along with thermal dissipation due to shock heating, cosmic rays can be generated through diffusive shock acceleration (DSA). By using the results from one-dimensional DSA simulations, we compute the energy dissipation into non-thermal cosmic ray particles from shocks. This cosmic ray pressure is found to be a significant fraction of the total thermal pressure, suggesting that in order to perform precision cosmological studies with galaxy clusters, this additional non-thermal physics must be included. Here we present new numerical simulations using a Hydro/N-body Adaptive Mesh Refinement (AMR) code, ENZO, to analyze cosmic ray generation. Whereas previous analyses have been performed on a fixed grid or within individual galaxy clusters, we are able for the first time to study cosmic ray generation over a spatial dynamic range of up to 2^8. In addition, a shock-finding algorithm has been developed that does not rely on studying shock waves in each of the three coordinate directions separately. Instead, our algorithm casts a ray in the direction of the shock propagation and then determines the Mach number using Rankine-Hyugenot jump conditions for the adiabatic gas.

  6. Two Means by which Magnetized Cosmic Bodies can Seed the Universe with Life

    NASA Astrophysics Data System (ADS)

    Belian, R. D.

    2013-01-01

    There is currently much interest in the source of life on Earth and whether other objects in the Solar System or other planetary systems contain life. In my view, there are two dominant themes. First and maybe the oldest is that life developed in the seas of the Earth itself and developed out of a random conglomeration of chemicals, conditions and events. The second view is that life developed somewhere in the universe and somehow migrated to the Earth. Indeed, a good deal of effort goes into looking for "Earth" like (habitable) planets around other stars. One prevalent idea is that in environments that are similar to what we have on the Earth, life could develop spontaneously anywhere in the universe - maybe even life that is similar to that on Earth. In this paper, I suggest that magnetized cosmic bodies can seed the universe with life, in the form of spores or viruses (and likely other microorganisms). Firstly, life can be transported from any life bearing planet to other cosmic bodies by the actions of what are called magnetic substorms. Secondly, I suggest that life can 'leak' from near Earth, or other magnetized cosmic bodies, environments onto the Interplanetary Magnetic Field to be swept away by that field.

  7. Cosmic-Ray-Exposure Ages of Diogenites and the Collisional History of the HED Parent Body or Bodies

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Lindner, L.; vanderBorg, K.; Loeken, T.; Scherer, P.; Schultz, L.

    1996-01-01

    Cosmic-ray-exposure ages of meteorites provide information on the collisional history of their parent bodies and the delivery mechanism of meteorites to Earth. The exposure-age distributions of ordinary chondrites show distinct patterns for H, L, and LL types, consistent with their origin on different parent bodies. The exposure-age distributions of howardites, eucrites. and diogenites (HEDS) show a common pattern with major peaks at 22 Ma and 38 Ma This provides additional evidence for a common origin of the HED meteorites, possibly 4 Vesta, although orbital dynamics calculations showed that the delivery of meteorites from Vesta to Earth is difficult. However, the discovery of several kilometer-sized Vesta-like asteroids in the region between Vesta and the 3:1 resonance suggested that these seem more likely parent bodies of the HEDs than Vesta itself. This implies that the exposure-age clusters may represent samples of several parent bodies. Therefore, the near-absence of diogenites with ages <20 Ma might be of interest for the composition of these kilometer-sized fragments of Vesta. Here we present cosmic-ray-exposure ages of 20 diogenites, including 9 new meteorites. In addition, we calculate the probability for each peak to occur by chance, assuming a constant production rate of HED fragments.

  8. Test bodies and naked singularities: is the self-force the cosmic censor?

    PubMed

    Barausse, Enrico; Cardoso, Vitor; Khanna, Gaurav

    2010-12-31

    Jacobson and Sotiriou showed that rotating black holes could be spun up past the extremal limit by the capture of nonspinning test bodies, if one neglects radiative and self-force effects. This would represent a violation of the cosmic censorship conjecture in four-dimensional, asymptotically flat spacetimes. We show that for some of the trajectories giving rise to naked singularities, radiative effects can be neglected. However, for these orbits the conservative self-force is important, and seems to have the right sign to prevent the formation of naked singularities. PMID:21231640

  9. Formation of oligopeptides on the surface of small bodies in solar system by cosmic radiation

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.; Kuzicheva, E. A.; Dodonova, N. Ya.; Antropov, A. E.

    1997-05-01

    The present experiment indicates that oligopeptides are easily produced in solid state from mixtures of simple amino acids by irradiating with high energy charged particles. We investigated such amino acids and their mixtures as tryptophan, tyrosine and glycine. The thin films was irradiated with protons (6.6 MeV). Such dipeptides as Trp-Trp, Gly-Tyr, Tyr-Gly, and Tyr-Tyr have been detected as products of irradiation. Cosmic rays might be an effective energy source for abiotic formation of bioorganic compounds on the surface of small bodies in the solar system on early stage of formation of planets as well as at present day.

  10. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. ); Aycinena, S.; Martinelli, L. ); Castaneda, O.; Revolorio, M.; Roldan, A. . Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  11. CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors.

    PubMed

    Bacac, Marina; Klein, Christian; Umana, Pablo

    2016-08-01

    Carcinoembryonic antigen T cell bispecific antibody (CEA TCB) is a bispecific antibody used to recognize CEA and CD3e via a novel molecular format (2:1) that induces T cell-mediated killing of CEA over-expressing tumors while sparing primary cells with low CEA expression. CEA TCB treatment inhibits tumor growth and generates a highly inflamed tumor microenvironment. PMID:27622073

  12. N-body simulations with a cosmic vector for dark energy

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2012-07-01

    We present the results of a series of cosmological N-body simulations of a vector dark energy (VDE) model, performed using a suitably modified version of the publicly available GADGET-2 code. The set-ups of our simulations were calibrated pursuing a twofold aim: (1) to analyse the large-scale distribution of massive objects and (2) to determine the properties of halo structure in this different framework. We observe that structure formation is enhanced in VDE, since the mass function at high redshift is boosted up to a factor of 10 with respect to Λ cold dark matter (ΛCDM), possibly alleviating tensions with the observations of massive clusters at high redshifts and early reionization epoch. Significant differences can also be found for the value of the growth factor, which in VDE shows a completely different behaviour, and in the distribution of voids, which in this cosmology are on average smaller and less abundant. We further studied the structure of dark matter haloes more massive than 5 × 1013 h-1 M⊙, finding that no substantial difference emerges when comparing spin parameter, shape, triaxiality and profiles of structures evolved under different cosmological pictures. Nevertheless, minor differences can be found in the concentration-mass relation and the two-point correlation function, both showing different amplitudes and steeper slopes. Using an additional series of simulations of a ΛCDM scenario with the same ? and σ8 used in the VDE cosmology, we have been able to establish whether the modifications induced in the new cosmological picture were due to the particular nature of the dynamical dark energy or a straightforward consequence of the cosmological parameters. On large scales, the dynamical effects of the cosmic vector field can be seen in the peculiar evolution of the cluster number density function with redshift, in the shape of the mass function, in the distribution of voids and on the characteristic form of the growth index γ(z). On

  13. Chromosomal Integration of tcb Chlorocatechol Degradation Pathway Genes as a Means of Expanding the Growth Substrate Range of Bacteria To Include Haloaromatics

    PubMed Central

    Klemba, Michael; Jakobs, Barbara; Wittich, Rolf-Michael; Pieper, Dietmar

    2000-01-01

    The tcbR-tcbCDEF gene cluster, coding for the chlorocatechol ortho-cleavage pathway in Pseudomonas sp. strain P51, has been cloned into a Tn5-based minitransposon. The minitransposon carrying the tcb gene cluster and a kanamycin resistance gene was transferred to Pseudomonas putida KT2442, and chromosomal integration was monitored by selection either for growth on 3-chlorobenzoate or for kanamycin resistance. Transconjugants able to utilize 3-chlorobenzoate as a sole carbon source were obtained, although at a >100-fold lower frequency than kanamycin-resistant transconjugants. The vast majority of kanamycin-resistant transconjugants were not capable of growth on 3-chlorobenzoate. Southern blot analysis revealed that many transconjugants selected directly on 3-chlorobenzoate contained multiple chromosomal copies of the tcb gene cluster, whereas those selected for kanamycin resistance possessed a single copy. Subsequent selection of kanamycin resistance-selected single-copy transconjugants for growth on 3-chlorobenzoate yielded colonies capable of utilizing this carbon source, but no amplification of the tcb gene cluster was apparent. Introduction of two copies of the tcb gene cluster without prior 3-chlorobenzoate selection resulted in transconjugants able to grow on this carbon source. Expression of the tcb chlorocatechol catabolic operon in P. putida thus represents a useful model system for analysis of the relationship among gene dosage, enzyme expression level, and growth on chloroaromatic substrates. PMID:10919778

  14. Removal of organic pollutants from 2,2',5,5'-tetrachlorobenzidine (TCB) industrial wastewater by micro-electrochemical oxidation and air-stripping.

    PubMed

    Shibin, Xia; Shuichun, Xia; Changqing, Zhu

    2007-06-01

    A feasible method for treatment of the wastewater from the two-staged neutralization in 2,2',5,5'-tetrachlorobenzidine (TCB) manufacturing processes, a refractory dye intermediate effluents, based on combined micro-electrochemical oxidation or iron-chipping filtration (ICF) and air-stripping reactor (ASR), was developed. On conditions of HRT 1h, pH 3.0 in ICF and HRT 38 h, gas-liquid ratio 15, pH 6.0-8.65, temperature 26 degrees C in ASR, the overall COD, color, TCB and NH(4)(+)-N removal were 96.8%, 91%, 87.61% and 62%, respectively, during the treatment of TCB wastewater from the two-staged neutralization dissolved by methanol. The averaged 18.3%, 81.7% of the total degraded COD, 35.2%, 64.8% of TCB were carried out in ICF and ASR, respectively. NH(4)(+)-N removal was finished mainly in ASR. The experimental results indicated that the combined micro-electrochemical oxidation and air-stripping process performed good treatment of COD, color, TCB and NH(4)(+)-N removal in TCB wastewater from the two-staged neutralization dissolved by ethanol or acetone, came up the discharge standard in China. But the TCB wastewater from the two-staged neutralization dissolved by methanol should be deeply treated before discharged.

  15. Removal of organic pollutants from 2,2',5,5'-tetrachlorobenzidine (TCB) industrial wastewater by micro-electrochemical oxidation and air-stripping.

    PubMed

    Shibin, Xia; Shuichun, Xia; Changqing, Zhu

    2007-06-01

    A feasible method for treatment of the wastewater from the two-staged neutralization in 2,2',5,5'-tetrachlorobenzidine (TCB) manufacturing processes, a refractory dye intermediate effluents, based on combined micro-electrochemical oxidation or iron-chipping filtration (ICF) and air-stripping reactor (ASR), was developed. On conditions of HRT 1h, pH 3.0 in ICF and HRT 38 h, gas-liquid ratio 15, pH 6.0-8.65, temperature 26 degrees C in ASR, the overall COD, color, TCB and NH(4)(+)-N removal were 96.8%, 91%, 87.61% and 62%, respectively, during the treatment of TCB wastewater from the two-staged neutralization dissolved by methanol. The averaged 18.3%, 81.7% of the total degraded COD, 35.2%, 64.8% of TCB were carried out in ICF and ASR, respectively. NH(4)(+)-N removal was finished mainly in ASR. The experimental results indicated that the combined micro-electrochemical oxidation and air-stripping process performed good treatment of COD, color, TCB and NH(4)(+)-N removal in TCB wastewater from the two-staged neutralization dissolved by ethanol or acetone, came up the discharge standard in China. But the TCB wastewater from the two-staged neutralization dissolved by methanol should be deeply treated before discharged. PMID:17118553

  16. CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors

    PubMed Central

    Bacac, Marina; Klein, Christian; Umana, Pablo

    2016-01-01

    ABSTRACT Carcinoembryonic antigen T cell bispecific antibody (CEA TCB) is a bispecific antibody used to recognize CEA and CD3e via a novel molecular format (2:1) that induces T cell-mediated killing of CEA over-expressing tumors while sparing primary cells with low CEA expression. CEA TCB treatment inhibits tumor growth and generates a highly inflamed tumor microenvironment. PMID:27622073

  17. On the Production of Cosmogenic Nuclides in Extraterrestrial Bodies by Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Chochula, P.; Masarik, J.; Povinec, P.

    1993-07-01

    In the interplanetary space, meteoroids are continuously irradiated by high-energy ray particles. These particles have enough energy to penetrate into and interact with matter in the solar system. Some of these interactions leave reaction products that persist for long period of time. These reaction products can be used both to determine the nature and behavior of cosmic rays in the past and to study the history of the target. The accurate modeling of the reaction products is necessary for the interpretation of measured values. In this paper we present the results of the simulation of production rates of cosmogenic nuclides in lunar and meteoritic samples. The presented calculations use the system of coupled Monte Carlo codes KASKADA [1]. These treat different physical phenomena that have to be considered in the accurate computer simulation of radiation transport and interaction. The simulation of the interaction of an incoming high-energy particle is started by a choice of primary particle coordinates and direction relative to the target. The incident particle is followed to its first collision with a target nucleus, in which the production of secondaries is performed using the intranuclear cascade- evaporation model. Then the histories of individual secondary particles are followed one after the other until the predefined cut-off energies are reached or the geometry is left. Production rate P(sub)j of cosmogenic nuclide j at depth d in an irradiated body was calculated with the equation, which appears below in the hard copy. Where N is the number of atoms for target element i per kg material in the sample, sigma is the cross section for the production of nuclide j from target element i by particle k, and J is flux of primary and secondary particles of type k with energy E(sub)k. In the case of meteoroids the irradiated body was divided into concentric shells. The lunar surface was simulated with a large cylinder, which was also divided into smaller cylindrical

  18. Blood plasma levels of sex steroid hormones and vitellogenin in striped bass (morone saxatilis) exposed to 3,3{prime}, 4,4{prime}-Tetrachlorobiphenyl (TCB)

    SciTech Connect

    Monosson, E.; Fleming, W.J.; Sullivan, C.V.

    1996-05-01

    Exposure to polychlorinated biphenyls (PCB) can impair reproductive processes in fish. Laboratory studies have demonstrated adverse effects in several different fish species. Evidence also exits for an association between exposure to PCBs and related compounds and impaired reproduction in wild fish. Although the mechanism of reproductive toxicity of PCBs is unclear, it appears that PCBs act of several different levels of the hypothalamus-pituitary-gonadal axis (HPG). Because of their structural similarity to 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), planar PCB congengers (e.g. 3,3`,4,4`-tetrachlorobiphenyl (TCB)) are among the most toxic PCBs. Both TCB and dioxon are reproductive toxicants in fish. TCB exposure (via intraperitoneal injections) impaired maturation in adult female white perch (Monroe americana) and reduced egg deposition in killifish (Fundulus heteroclitus). Larval or fry survival was also reduced following either maternal exposure to TCB for white perch or injections of TCB into fertilized eggs of rainbow trout. This study investigate the effects of exposure to TCB on reproductive processes in female striped bass. 12 refs., 2 tabs.

  19. ESTIMATING SMALL ANGULAR SCALE COSMIC MICROWAVE BACKGROUND ANISOTROPY WITH HIGH-RESOLUTION N-BODY SIMULATIONS: WEAK LENSING

    SciTech Connect

    Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Saez, D.

    2010-03-20

    We estimate the impact of weak lensing by strongly nonlinear cosmological structures on the cosmic microwave background. Accurate calculation of large l multipoles requires N-body simulations and ray-tracing schemes with both high spatial and temporal resolution. To this end, we have developed a new code that combines a gravitational Adaptive Particle-Particle, Particle-Mesh solver with a weak-lensing evaluation routine. The lensing deviations are evaluated while structure evolves during the simulation so that all evolution steps-rather than just a few outputs-are used in the lensing computations. The new code also includes a ray-tracing procedure that avoids periodicity effects in a universe that is modeled as a three-dimensional torus in the standard way. Results from our new simulations are compared with previous ones based on Particle-Mesh simulations. We also systematically investigate the impact of box volume, resolution, and ray-tracing directions on the variance of the computed power spectra. We find that a box size of 512 h {sup -1} Mpc is sufficient to provide a robust estimate of the weak-lensing angular power spectrum in the l-interval (2000-7000). For a reaslistic cosmological model, the power [l(l + 1)C{sub l}/2pi]{sup 1/2} takes on values of a few muK in this interval, which suggests that a future detection is feasible and may explain the excess power at high l in the Berkeley-Illinois-Maryland Association and Cosmic Background Imager observations.

  20. Structural optimization and physical properties of TcB3 and MoB3 at high-pressure: First-principles

    NASA Astrophysics Data System (ADS)

    Ying, Chun; Bai, Xiaowan; Du, Yungang; Zhao, Erjun; Lin, Lin; Hou, Qingyu

    2016-06-01

    The thermodynamic, mechanical and dynamic properties of TcB3 and MoB3 are systematically investigated at high-pressure by first-principles within density functional theory (DFT). The calculated formation enthalpies are negative for TcB3 with considered structures under the pressure range from 0 to 100 GPa. Triboride hP4-TcB3 (i.e., TcB3 in hP4-OsB3 type structure) has the lowest formation enthalpy of -1.44 eV under ambient condition. The largest shear modulus of 240 GPa and smallest Poisson’s ratio of 0.20 for oP16-TcB3 are comparable to those of 267 GPa and 0.15 for ReB2. The calculated elastic constants show that MB3 (M=Tc and Mo) are mechanically stable at ambient conditions, except for mP8-MoB3. The estimated high hardness of 33.4 and 33.1 GPa for oP16-TcB3 and hP4-TcB3, respectively, are reported for the first time. The calculated lattice parameters for MoB3 are in good agreement with the previously theoretical and experimental studies. Below 13 GPa, hP16-MoB3 and hR24-MoB3 are thermodynamically more favorable than MoB3 in other structures. A pressure-induced phase transition is predicted at 13 GPa from hP16-MoB3 and hR24-MoB3 to hP4-MoB3. Above 13 GPa, hP4-MoB3 becomes the thermodynamically most stable phase among MoB3 in considered structures. All compounds with considered structures are metallic, and the electronic structures of MB3 are governed by a strong hybridization between M-4d and B-2p states. The strong and directional covalent bonding between M-4d and B-2p as well as the strong interlayer interactions of boron layers are correlated to the high hardness of 38.0 and 38.4 GPa for hP16-MoB3 and hR24-MoB3, respectively.

  1. Backbone and side-chain chemical shift assignments for the C-terminal domain of Tcb2, a cytoskeletal calcium-binding protein from Tetrahymena thermophila.

    PubMed

    Kilpatrick, Adina M; Gurrola, Theodore E; Sterner, Robert C; Sleister, Heidi M; Honts, Jerry E; Fowler, C Andrew

    2016-10-01

    Tcb2 is a putative calcium-binding protein from the membrane-associated cytoskeleton of the ciliated protozoan Tetrahymena thermophila. It has been hypothesized to participate in several calcium-mediated processes in Tetrahymena, including ciliary movement, cell cortex signaling, and pronuclear exchange. Sequence analysis suggests that the protein belongs to the calmodulin family, with N- and C-terminal domains connected by a central linker, and two helix-loop-helix motifs in each domain. However, its calcium-binding properties, structure and precise biological function remain unknown. Interestingly, Tcb2 is a major component of unique contractile fibers isolated from the Tetrahymena cytoskeleton; in these fibers, addition of calcium triggers an ATP-independent type of contraction. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the C-terminal domain of the protein (Tcb2-C) in the absence and presence of calcium ions. (1)H-(15)N HSQC spectra show that the domain is well folded both in the absence and presence of calcium, and undergoes a dramatic conformational change upon calcium addition. Secondary structure prediction from chemical shifts reveals an architecture encountered in other calcium-binding proteins, with paired EF-hand motifs connected by a flexible linker. These studies represent a starting point for the determination of the high-resolution solution structure of Tcb2-C at both low and high calcium levels, and, together with additional structural studies on the full-length protein, will help establish the molecular basis of Tcb2 function and unique contractile properties.

  2. Cis-Chlorobenzene dihydrodiol dehydrogenase (TcbB) from Pseudomonas sp. strain P51, expressed in Escherichia coli DH5{alpha}(pTCB149), catalyzes enantioselective dehydrogenase reactions

    SciTech Connect

    Raschke, H.; Fleischmann, T.; Meer, J.R. van der; Kohler, H.P.E.

    1999-12-01

    cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5{alpha}(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged, CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enatiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.

  3. Does a cosmic censor exist?

    NASA Astrophysics Data System (ADS)

    Israel, W.

    1984-11-01

    A distinction is drawn between the event horizon conjecture (EHC), the conjecture that an event horizon forms in a gravitational collapse, and cosmic censorship, the idea that every singularity which develops in the course of collapse must be enclosed within a horizon. It is argued that a body of circumstantial evidence seems to favor EHC, but cosmic censorship seems contraindicated.

  4. Does a cosmic censor exist

    SciTech Connect

    Israel, W.

    1984-11-01

    A distinction is drawn between the event horizon conjecture (EHC), the conjecture that an event horizon forms in a gravitational collapse, and cosmic censorship, the idea that every singularity which develops in the course of collapse must be enclosed within a horizon. It is argued that a body of circumstantial evidence seems to favor EHC, but cosmic censorship seems contraindicated.

  5. A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic ray spectrum

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.; Michelson, Peter F.; Ormes, Jonathan F.

    2007-12-17

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.

  6. A New High-precision Relativistic Many-body Method For Predicting Dielectronic Recombination Resonances In Low-energy Cosmic Plasmas

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Dzuba, V. A.; Kozlov, M. G.

    2011-05-01

    Reliable ionization balance calculations are central for analyzing cosmic spectra, in particular in deriving elemental abundances. One of the important atomic processes governing ionic charge abundances in plasmas is dielectronic recombination (DR). The DR process is a resonant process: cross-section spikes at electron kinetic energies that are resonant with internal transitions between bound ionic states. As a result, the DR rate coefficients, entering, e.g., plasma ionization stage calculations, are exponentially sensitive to uncertainties in energies of resonances. Because of this exponential sensitivity, there is an outstanding and astrophysically-relevant problem: a reliable description of the DR at low temperatures. A high-precision description of low-energy resonances is particularly challenging as it is sensitive to atomic correlations. All the existing approaches have difficulties in reliably describing the low-temperature DR. Here we build on modern advances in atomic many body theory and present a new approach to low-temperature DR: relativistic configuration-interaction method coupled with many-body perturbation theory (CI+MBPT). We further combine the CI+MBPT approach with the complex rotation method (CRM). We demonstrate the utility of the CI+MBPT+CRM and evaluate the accuracy of this newly-developed approach by comparing our results with those from the previous high-precision study for Li-like carbon recombining into Be-like carbon. We find excellent agreement with that work. While our first application of the CI+MBPT+CRM code targeted divalent ion, our developed methodology and computational toolbox is well suited for exploring resonances in more complicated systems with several valence electrons outside closed-shell core. Details may be found in Phys. Rev. A 82, 022720 (2010).

  7. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.

  8. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe. PMID:18534932

  9. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  10. Cosmic strings

    SciTech Connect

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs.

  11. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  12. Cosmic Flows

    NASA Astrophysics Data System (ADS)

    Tully, Brent; Courtois, Helene; Freedman, Wendy; Jarrett, Tom; Madore, Barry; Persson, Eric; Seibert, Mark; Shaya, Ed

    2011-05-01

    It is astonishing that only 30% of the motion of our Galaxy is understood, a fact that highlights a fundamental deficiency in our understanding of the composition of the Universe. Spitzer Cosmic Flows is the photometric component of a program to map the peculiar motions and large-scale flows of galaxies out to 200 Mpc in order to constrain the distribution of mass. This task requires measuring the peculiar velocity of galaxies, a response to the distribution of both baryonic and dark matter, densely sampled over the full sky. With an independent distance measurement, an observed galaxy redshift can be separated into cosmic expansion and peculiar velocity components. Spitzer Cosmic Flows will use IRAC 3.6 micron imaging to obtain independent distances using the correlation between galaxy luminosity and rotation rate (the mid-IR Tully-Fisher relation). The rotational velocity data is being acquired through the Cosmic Flows Large Program on the NRAO Green Bank Telescope and a complementary program of southern targets with the Parkes Telescope. Spitzer Cosmic Flows consists of five distinct samples totaling 4642 galaxies. New observations are required for 3531 galaxies and archival data exists for 1111 galaxies. Each of the samples serves a distinct purpose and/or domain while overlapping to assure a connectivity over a wide range of distances. The photometry of galaxies directly drives the peculiar velocity accuracy of this program. Spitzer IRAC 3.6 micron imaging provides the ability of a single instrument to perform the required imaging over the full sky with exquisite quality. The mid-IR traces the dominant stellar population with negligible extinction. Most importantly, the backgrounds are low from space enabling surface photometry to be extended to many exponential scale-lengths, capturing essentially all the light from the target.

  13. Modeling cosmic void statistics

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2016-10-01

    Understanding the internal structure and spatial distribution of cosmic voids is crucial when considering them as probes of cosmology. We present recent advances in modeling void density- and velocity-profiles in real space, as well as void two-point statistics in redshift space, by examining voids identified via the watershed transform in state-of-the-art ΛCDM n-body simulations and mock galaxy catalogs. The simple and universal characteristics that emerge from these statistics indicate the self-similarity of large-scale structure and suggest cosmic voids to be among the most pristine objects to consider for future studies on the nature of dark energy, dark matter and modified gravity.

  14. Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions

    SciTech Connect

    Kunze, Kerstin E.

    2014-01-01

    Primordial magnetic fields that exist before the photon-baryon decoupling epoch are damped on length scales below the photon diffusion and free-streaming scales. The energy injected into the plasma by dissipation of magnetosonic and Alfv and apos;en waves heats photons, creating a y-type distortion of the black-body spectrum of the cosmic microwave background. This y-type distortion is converted into a μ-type distortion when elastic Compton scattering is efficient. Therefore, we can use observational limits on y- and μ-type distortions to constrain properties of magnetic fields in the early universe. Assuming a Gaussian, random, and non-helical field, we calculate μ and y as a function of the present-day strength of the field, B{sub 0}, smoothed over a certain Gaussian width, k{sub c}{sup −1}, as well as of the spectral index of the power spectrum of fields, n{sub B}, defined by P{sub B}(k)∝k{sup n{sub B}}. For a nearly scale-invariant spectrum with n{sub B} = −2.9 and a Gaussian smoothing width of k{sub c}{sup −1} = 1Mpc, the existing COBE/FIRAS limit on μ yields B{sub 0} < 40 nG, whereas the projected PIXIE limit on μ would yield B{sub 0} < 0.8 nG. For non-scale-invariant spectra, constraints can be stronger. For example, for B{sub 0} = 1 nG with k{sub c}{sup −1} = 1Mpc, the COBE/FIRAS limit on μ excludes a wide range of spectral indices given by n{sub B} > −2.6. After decoupling, energy dissipation is due to ambipolar diffusion and decaying MHD turbulence, creating a y-type distortion. The distortion is completely dominated by decaying MHD turbulence, and is of order y ≈ 10{sup −7} for a few nG field smoothed over the damping scale at the decoupling epoch, k{sub d,} {sub dec} ≈ 290(B{sub 0}/1nG){sup −1}Mpc{sup −1}. The projected PIXIE limit on y would exclude B{sub 0} > 1.0 and 0.6 nG for n{sub B} = −2.9 and -2.3, respectively, and B{sub 0} > 0.6 nG for n{sub B} ≥ 2. Finally, we find that the current limits on the optical depth to

  15. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  16. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  17. Cosmic clocks

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Schmidt, Fabian

    2014-02-01

    In a perturbed universe, comoving tracers on a two-dimensional surface of constant observed redshift are at different proper times since the big bang. For tracers whose age is known independently, one can measure these perturbations of the proper time. Examples of such sources include cosmic events which only happen during a short period of cosmic history, as well as evolving standard candles and standard rulers. In this paper, we derive a general gauge-invariant linear expression for this perturbation in terms of spacetime perturbations. We show that this perturbation in general contributes a previously overlooked leading order term to observables such as the magnification (although this contribution is generally small). Further, as an illustrative example, we show that the observed temperature perturbations of the cosmic microwave background on large scales (ℓ≪100) are exactly given by these proper-time perturbations. Together with the six ruler perturbations derived in [F. Schmidt and D. Jeong, Phys. Rev. D 86, 083527 (2012)], this completes the set of independent observables which can be measured with standard rulers and candles.

  18. Cosmic impacts, cosmic catastrophes. II

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.; Morrison, D.

    1990-02-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  19. Cosmic radioactivities

    NASA Astrophysics Data System (ADS)

    Arnould, Marcel; Prantzos, Nikos

    1999-07-01

    Radionuclides with half-lives ranging from some years to billions of years presumably synthesized outside of the solar system are now recorded in "live" or "fossil" form in various types of materials, like meteorites or the galactic cosmic rays. They bring specific astrophysical messages, the deciphering of which is briefly reviewed here, with special emphasis on the contribution of Dave Schramm and his collaborators to this exciting field of research. Short-lived radionuclides are also present in the Universe today, as directly testified by the γ-ray lines emitted by the de-excitation of their daughter products. A short review of recent developments in this field is also presented.

  20. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2000-07-01

    In this tour de force of the ultimate and extreme in astrophysics, renowned astrophysicist and author J. Craig Wheeler takes us on a breathtaking journey to supernovae, black holes, gamma-ray bursts and adventures in hyperspace. This is no far-fetched science fiction tale, but an enthusiastic exploration of ideas at the cutting edge of current astrophysics. Wheeler follows the tortuous life of a star from birth to evolution and death, and goes on to consider the complete collapse of a star into a black hole, worm-hole time machines, the possible birth of baby bubble universes, and the prospect of a revolutionary view of space and time in a ten-dimensional string theory. Along the way he offers evidence that suggests the Universe is accelerating and describes recent developments in understanding gamma-ray bursts--perhaps the most catastrophic cosmic events of all. With the use of lucid analogies, simple language and crystal-clear cartoons, Cosmic Catastrophes makes accessible some of the most exciting and mind-bending objects and ideas in the Universe. J. Craig Wheeler is currently Samuel T. and Fern Yanagisawa Regents Professor of Astronomy at the University of Texas at Austin and Vice President of the American Astronomical Society as of 1999.

  1. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  2. Synthesis and characterization of technetium(V) complexes with N-(thiocarbamoyl)benzamidines. X-ray crystal structure of bis(N-(N,N-diethylthiocarbamoyl)benzamidinato)oxotechnetium(V) chloride, (TcO(Et sub 2 tcb) sub 2 )Cl

    SciTech Connect

    Abram, U.; Muenze, R. ); Hartung, J.; Beyer, L. ); Kirmse, R.; Koehler, K.; Stach, J. ); Behm, H.; Beurskens, P.T. )

    1989-03-08

    Technetium(V) complexes of the forms TcNL{sub 2} and (TcOL{sub 2})Cl (L = Et{sub 2}tcb{sup {minus}}, morphtcb{sup {minus}}, piptcb{sup {minus}}) with N-(thiocarbamoyl)-benzamidinato (tcb{sup {minus}}) ligands have been synthesized and characterized by elemental analysis and IR, {sup 1}H NMR, and uv/vis spectrocsopy. Selected compounds have been studied by EI and FAB mass spectrometry, including the MIKE technique. A single-crystal x-ray structure determination shows that the cation of bis(N-(N,N-diethylthiocarbamoyl)benzamidinato)oxo-technetium(V) chloride, formula weight 618.5, has a square-pyramidal structure with cis-coordinated ligands. This complex crystallizes in the triclinic space group P{bar 1} with a = 10.87 (2) {angstrom}, b = 11.587 (2) {angstrom}, c = 12.374 (2) {angstrom}, {alpha} = 91.94 (2){degree}, {beta} = 106.04 (2){degree}, {gamma} = 112.18 (2){degree}, and V = 1370.4 (4) {angstrom}{sup 3} with Z = 2 for 4723 independent observed reflections. 50 refs., 4 figs., 4 tabs.

  3. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  4. Smooth halos in the cosmic web

    SciTech Connect

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  5. Cosmic Discovery

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    1984-04-01

    In the remarkable opening section of this book, a well-known Cornell astronomer gives precise thumbnail histories of the 43 basic cosmic discoveries - stars, planets, novae, pulsars, comets, gamma-ray bursts, and the like - that form the core of our knowledge of the universe. Many of them, he points out, were made accidentally and outside the mainstream of astronomical research and funding. This observation leads him to speculate on how many more major phenomena there might be and how they might be most effectively sought out in afield now dominated by large instruments and complex investigative modes and observational conditions. The book also examines discovery in terms of its political, financial, and sociological context - the role of new technologies and of industry and the military in revealing new knowledge; and methods of funding, of peer review, and of allotting time on our largest telescopes. It concludes with specific recommendations for organizing astronomy in ways that will best lead to the discovery of the many - at least sixty - phenomena that Harwit estimates are still waiting to be found.

  6. Cosmic Interactions

    NASA Astrophysics Data System (ADS)

    2008-01-01

    An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members

  7. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  8. Cosmic electrons. [literature review

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1974-01-01

    The published literature on cosmic electrons is summarized. The primary and secondary sources of cosmic electrons are discussed, and the propagation of the electrons in the interstellar medium is studied with respect to energy loss mechanisms, age distributions, and spectral modifications during flight. Various portions of the electron and positron spectra are then considered in relation to problems of astrophysics. New information is presented on such topics as the origin of low-energy positrons, the decay kinematics of the pi-mu-e process, the application of age distributions for nuclear cosmic rays to cosmic electrons, and the possibility of nonidentical sources for cosmic electrons and protons.

  9. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  10. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  11. Testing Gravity using Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Falck, Bridget

    2016-01-01

    Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.

  12. Cosmic Superstrings Revisited

    SciTech Connect

    Polchinski, Joseph

    2004-12-10

    It is possible that superstrings, as well as other one-dimensional branes, could have been produced in the early universe and then expanded to cosmic size today. I discuss the conditions under which this will occur, and the signatures of these strings. Such cosmic superstrings could be the brightest objects visible in gravitational wave astronomy, and might be distinguishable from gauge theory cosmic strings by their network properties.

  13. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  14. Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Camillo

    2013-01-01

    This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…

  15. Interactions of cosmic superstrings

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2007-06-01

    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.

  16. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  17. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  18. Our Cosmic Insignificance

    PubMed Central

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  19. Light from cosmic strings

    SciTech Connect

    Steer, Daniele A.; Vachaspati, Tanmay

    2011-02-15

    The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

  20. THE SPINE OF THE COSMIC WEB

    SciTech Connect

    Aragon-Calvo, Miguel A.; Szalay, Alexander S.; Platen, Erwin; Van de Weygaert, Rien

    2010-11-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between the watershed basins to trace the critical points in the density field and the separatrices defined by them. The separatrices are classified into walls and the spine, the network of filaments and nodes in the matter distribution. Testing the method with a heuristic Voronoi model yields outstanding results. Following the discussion of the test results, we apply the SpineWeb method to a set of cosmological N-body simulations. The latter illustrates the potential for studying the structure and dynamics of the Cosmic Web.

  1. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  2. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry.

  3. Supermassive cosmic string compactifications

    SciTech Connect

    Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon E-mail: borja.reina@ehu.es E-mail: jon.urrestilla@ehu.es

    2014-06-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  4. Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

    NASA Astrophysics Data System (ADS)

    Patrick Bos, E. G.; van de Weygaert, Rien; Kitaura, Francisco; Cautun, Marius

    2016-10-01

    We describe the Bayesian \\barcode\\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.

  5. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  6. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  7. A COSMIC VARIANCE COOKBOOK

    SciTech Connect

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A. E-mail: rix@mpia.de E-mail: janewman@pitt.edu

    2011-04-20

    Deep pencil beam surveys (<1 deg{sup 2}) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size {Delta}z. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , {Delta}z, and stellar mass m{sub *}. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates ({delta}{sigma}{sub v}/{sigma}{sub v}) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with {Delta}z = 0.5, the relative cosmic variance of galaxies with m{sub *}>10{sup 11} M{sub sun} is {approx}38%, while it is {approx}27% for GEMS and {approx}12% for COSMOS. For galaxies of m{sub *} {approx} 10{sup 10} M{sub sun}, the relative cosmic variance is {approx}19% for GOODS, {approx}13% for GEMS, and {approx}6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z

  8. A Cosmic Variance Cookbook

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Somerville, Rachel S.; Newman, Jeffrey A.; Rix, Hans-Walter

    2011-04-01

    Deep pencil beam surveys (<1 deg2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by "cosmic variance." This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift \\bar{z} and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, \\bar{z}, Δz, and stellar mass m *. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at \\bar{z}=2 and with Δz = 0.5, the relative cosmic variance of galaxies with m *>1011 M sun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For galaxies of m * ~ 1010 M sun, the relative cosmic variance is ~19% for GOODS, ~13% for GEMS, and ~6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at \\bar{z}=2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic variance is

  9. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  10. Cosmic radiation in commercial aviation.

    PubMed

    Bagshaw, Michael

    2008-05-01

    This paper reviews the current knowledge of cosmic radiation and its applicability to commercial aviation. Galactic cosmic radiation emanates from outside the solar system, while occasionally a disturbance in the suns' atmosphere leads to a surge in radiation particles. Protection is provided by the suns' magnetic field, the earths' magnetic field, and the earths' atmosphere. Dose rates are dependent on the altitude, the geomagnetic latitude and the solar cycle. For occupational exposure to ionising radiation, which includes aircrew, the International Commission on Radiological Protection recommends maximum mean body effective dose limits of 20mSv/yr (averaged over 5 years, with a maximum in any 1 year of 50mSv). Radiation doses can be measured during flight or may be calculated using a computer-modelling program such as CARI, EPCARD, SIEVERT or PCAIRE. Mean ambient equivalent dose rates are consistently reported in the region of 4-5microSv/h for long-haul pilots and 1-3microSv/h for short-haul, giving an annual mean effective exposure of the order 2-3mSv for long-haul and 1-2mSv for short-haul pilots. Epidemiological studies of flight crew have not shown conclusive evidence for any increase in cancer mortality or cancer incidence directly attributable to ionising radiation exposure. Whilst there is no level of radiation exposure below which effects do not occur, current evidence indicates that the probability of airline crew or passengers suffering adverse health effects as a result of exposure to cosmic radiation is very low. PMID:18486066

  11. Cosmic radiation in commercial aviation.

    PubMed

    Bagshaw, Michael

    2008-05-01

    This paper reviews the current knowledge of cosmic radiation and its applicability to commercial aviation. Galactic cosmic radiation emanates from outside the solar system, while occasionally a disturbance in the suns' atmosphere leads to a surge in radiation particles. Protection is provided by the suns' magnetic field, the earths' magnetic field, and the earths' atmosphere. Dose rates are dependent on the altitude, the geomagnetic latitude and the solar cycle. For occupational exposure to ionising radiation, which includes aircrew, the International Commission on Radiological Protection recommends maximum mean body effective dose limits of 20mSv/yr (averaged over 5 years, with a maximum in any 1 year of 50mSv). Radiation doses can be measured during flight or may be calculated using a computer-modelling program such as CARI, EPCARD, SIEVERT or PCAIRE. Mean ambient equivalent dose rates are consistently reported in the region of 4-5microSv/h for long-haul pilots and 1-3microSv/h for short-haul, giving an annual mean effective exposure of the order 2-3mSv for long-haul and 1-2mSv for short-haul pilots. Epidemiological studies of flight crew have not shown conclusive evidence for any increase in cancer mortality or cancer incidence directly attributable to ionising radiation exposure. Whilst there is no level of radiation exposure below which effects do not occur, current evidence indicates that the probability of airline crew or passengers suffering adverse health effects as a result of exposure to cosmic radiation is very low.

  12. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  13. Cosmic questions: an introduction.

    PubMed

    Primack, J R; Abrams, N E

    2001-12-01

    This introductory talk at the Cosmic Questions conference sponsored by the AAAS summarizes some earlier pictures of the universe and some pictures based on modern physics and cosmology. The uroboros (snake swallowing its tail) is an example of a traditional picture. The Biblical flat-earth picture was very different from the Greek spherical earth-centered picture, which was the standard view until the end of the Middle Ages. Many people incorrectly assume that the Newtonian picture of stars scattered through otherwise empty space is still the prevailing view. Seeing Earth from space shows the power of a new picture. The Hubble Space Telescope can see all the bright galaxies, all the way to the cosmic Dark Ages. We are at the center of cosmic spheres of time: looking outward is looking backward in time. All the matter and energy in the universe can be represented as a cosmic density pyramid. The laws of physics only allow the material objects in the universe to occupy a wedge-shaped region on a diagram of mass versus size. All sizes--from the smallest size scale, the Planck scale, to the entire visible universe--can be represented on the Cosmic Uroboros. There are interesting connections across this diagram, and the human scale lies in the middle. PMID:11797741

  14. Cosmic questions: an introduction.

    PubMed

    Primack, J R; Abrams, N E

    2001-12-01

    This introductory talk at the Cosmic Questions conference sponsored by the AAAS summarizes some earlier pictures of the universe and some pictures based on modern physics and cosmology. The uroboros (snake swallowing its tail) is an example of a traditional picture. The Biblical flat-earth picture was very different from the Greek spherical earth-centered picture, which was the standard view until the end of the Middle Ages. Many people incorrectly assume that the Newtonian picture of stars scattered through otherwise empty space is still the prevailing view. Seeing Earth from space shows the power of a new picture. The Hubble Space Telescope can see all the bright galaxies, all the way to the cosmic Dark Ages. We are at the center of cosmic spheres of time: looking outward is looking backward in time. All the matter and energy in the universe can be represented as a cosmic density pyramid. The laws of physics only allow the material objects in the universe to occupy a wedge-shaped region on a diagram of mass versus size. All sizes--from the smallest size scale, the Planck scale, to the entire visible universe--can be represented on the Cosmic Uroboros. There are interesting connections across this diagram, and the human scale lies in the middle.

  15. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  16. Semilocal cosmic string networks

    SciTech Connect

    Achucarro, Ana; Salmi, Petja; Urrestilla, Jon

    2007-06-15

    We report on a large-scale numerical study of networks of semilocal cosmic strings in flat space in the parameter regime in which they are perturbatively stable. We find a population of segments with an exponential length distribution and indications of a scaling network without significant loop formation. Very deep in the stability regime strings of superhorizon size grow rapidly and ''percolate'' through the box. We believe these should lead at late times to a population of infinite strings similar to topologically stable strings. However, the strings are very light; scalar gradients dominate the energy density, and the network has thus a global texturelike signature. As a result, the observational constraints, at least from the temperature power spectrum of the cosmic microwave background, on models predicting semilocal strings should be closer to those on global textures or monopoles, rather than on topologically stable gauged cosmic strings.

  17. FORCE: FORtran for Cosmic Errors

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Szapudi, István

    We review the theory of cosmic errors we have recently developed for count-in-cells statistics. The corresponding FORCE package provides a simple and useful way to compute cosmic covariance on factorial moments and cumulants measured in galaxy catalogs.

  18. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  19. Heterotic cosmic strings

    SciTech Connect

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-08-15

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion.

  20. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  1. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  2. Heavy cosmic strings

    SciTech Connect

    Donaire, M.; Rajantie, A.

    2006-03-15

    We argue that cosmic strings with high winding numbers generally form in first-order gauge symmetry breaking phase transitions, and we demonstrate this using computer simulations. These strings are heavier than single-winding strings and therefore more easily observable. Their cosmological evolution may also be very different.

  3. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  4. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  5. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  6. Search for the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Faessler, A.; Hodak, R.; Kovalenko, S.; Simkovic, F.

    2015-02-01

    One expects three Cosmic Backgrounds: (1) The Cosmic Microwave Background (CMB) originated 380000 years after the Big Bang (BB). (2) The Neutrino Background decoupled about one second after the BB, while (3) the Cosmic Gravitational Wave Background created by the inflationary expansion decoupled directly after the BB. Only the Cosmic Microwave Background (CMB) has been detected and is well studied. Its spectrum follows Planck's black body radiation formula and shows a remarkable constant temperature of T0γ ≈ 2.7 K independent of the direction. The present photon density is about 370 photons per cm3. The size of the hot spots, which deviates only in the fifth decimal of the temperature from the average value, tells us, that the universe is flat. About 380 000 years after the Big Bang at a temperature of T0γ = 3000 K already in the matter dominated era the electrons combine with the protons and 4He and the photons move freely in the neutral universe and form the CMB. So the temperature and distribution of the photons give us information of the universe 380 000 years after the Big Bang. The Cosmic Neutrino Background (CνB) decoupled from matter already one second after the BB at a temperature of about 1010 K. Today their temperature is ~ 1.95 K and the average density is 56 electron-neutrinos and the total density of all neutrinos about 336 per cm3. Measurement of these neutrinos is an extremely challenging experimental problem which can hardly be solved with the present technologies. On the other hand it represents a tempting opportunity to check one of the key elements of the Big Bang Cosmology and to probe the early stages of the universe. The search for the CνB with the induced beta decay νe+3H → 3He + e- using KATRIN (KArlsruhe TRItium Neutrino experiment) is the topic of this contribution.

  7. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of April 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Five articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: GAP 1.0 - Groove Analysis Program, Version 1.0; SUBTRANS - Subband/Transform MATLAB Functions for Image Processing; CSDM - COLD-SAT Dynamic Model; CASRE - Computer Aided Software Reliability Estimation; and XOPPS - OEL Project Planner/Scheduler Tool. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and disseminations are also described along with a budget summary.

  8. Stable Charged Cosmic Strings

    SciTech Connect

    Weigel, H.; Quandt, M.; Graham, N.

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius {approx_equal}10{sup -18} m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

  9. Stable charged cosmic strings.

    PubMed

    Weigel, H; Quandt, M; Graham, N

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18)  m. The vacuum remains stable in our model, because neutral strings are not energetically favored. PMID:21469786

  10. Cosmic microwave background theory.

    PubMed

    Bond, J R

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  11. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1989-01-01

    Recent observational and theoretical investigations of the cosmic microwave background radiation (CMBR) are reviewed. Particular attention is given to spectral distortions and CMBR temperature anisotropies at large, intermediate, and small angular scales. The implications of the observations for inflationary cosmological models with curvature fluctuation are explored, and it is shown that the limits determined for intermediate-scale CMBR anisotropy almost rule out a baryon-dominated cosmology.

  12. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  13. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  14. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  15. Web life: Cosmic Diary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    What is it? Cosmic Diary brings together a smorgasbord of blogging astronomers from around the world, with more than 50 contributors commenting on new discoveries and long-standing questions in astronomy - as well as offering insights into their ordinary working lives and outside interests. The site is sponsored by the International Astronomical Union and UNESCO, and it is one of 11 "cornerstone projects" of the International Year of Astronomy 2009 (IYA2009).

  16. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  17. The cosmic background explorer

    SciTech Connect

    Gulkis, G. ); Lubin, P.M. ); Meyer, S.S. ); Silverberg, R.F.

    1990-01-01

    Late last year the National Aeronautics and Space Administration launched its first satellite dedicated to the study of phenomena related to the origins of the universe. The satellite, called the Cosmic Background Explorer (COBE), carries three complementary detectors that will make fundamental measurements of the celestial radiation. Part of that radiation is believed to have originated in processes that occurred at the very dawn of the universe. By measuring the remnant radiation at wavelengths from one micrometer to one centimeter across the entire sky, scientists hope to be able to solve many mysteries regarding the origin and evolution of the early universe. Unfortunately, these radiative relics of the early universe are weak and veiled by local astrophysical and terrestrial sources of radiation. The wavelengths of the various cosmic components may also overlap, thereby making the understanding of the diffuse celestial radiation a challenge. Nevertheless, the COBE instruments, with their full-sky coverage, high sensitivity to a wide range of wavelengths and freedom from interference from the earth's atmosphere, will constitute for astrophysicists an observatory of unprecedented sensitivity and scope. The interesting cosmic signals will then be separated from one another and from noncosmic radiation sources by a comprehensive analysis of the data.

  18. Searching for Cosmic Strings in the Cosmic Microwave Background:

    NASA Astrophysics Data System (ADS)

    Wu, Jiun-Huei Proty

    The role of cosmic defects in cosmology is entering its new phase—as a test for several fundamental physics, including unification theories and inflation. We discuss how to use the Cosmic Microwave Background (CMB) to detect cosmic strings, a type of cosmic defects, and how to use this result to constrain the underlying physics. In particular, we use the simulations for the Array for Microwave Background Anisotropy (AMiBA) to demonstrate the power of this approach. The required resolution and sensitivity in such a method are discussed, and so is the possible scientific impact.

  19. Effects of anisotropic dynamics on cosmic strings

    SciTech Connect

    Kunze, Kerstin E.

    2011-08-01

    The dynamics of cosmic strings is considered in anisotropic backgrounds. In particular, the behaviour of infinitely long straight cosmic strings and of cosmic string loops is determined. Small perturbations of a straight cosmic string are calculated. The relevance of these results is discussed with respect to the possible observational imprints of an anisotropic phase on the behaviour of a cosmic string network.

  20. Cosmic-ray induced radiation in low-orbit space objects

    SciTech Connect

    Sandmeier, H.A.

    1980-09-01

    The induced radiation whole body dose received by astronauts in earth orbit is calculated. The induced radiation results from the interaction of primary cosmic rays with the mass of the satellite or space station. (ACR)

  1. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  2. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-11-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determines the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here, we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  3. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2016-07-12

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  4. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  5. Statistics and geometry of cosmic voids

    SciTech Connect

    Gaite, José

    2009-11-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.

  6. How to disentangle the Cosmic Web?

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei; Medvedev, Mikhail

    2015-04-01

    The Cosmic Web is a complicated highly-entangled geometrical object formed from remarkably simple - Gaussian - initial conditions. The full complexity of the Web can be fully appreciated in the six-dimensional phase space only, which study is, however, impractical due to numerous reasons. Instead, we suggest to use Lagrangian submanifold, i.e., the mapping x = x(q) , where x and q are three dimensional vectors representing Eulerian and Lagrangian coordinates. Being fully equivalent in dynamical sense to the phase space, it has the advantage of being a single valued and also metric space. In addition, we propose a new computational paradigm for the analysis of substructure of the Cosmic Web in cosmological cold dark matter (CDM) simulations. We introduce a new data-field - the flip-flop field - which carries wealth of information about the history and dynamics of the structure formation in the universe. The flip-flop (FF) field is an ordered data set in Lagrangian space representing the number of sign reversals of an elementary volume of each collisionless fluid element represented by a computational particle in a N-body simulation. This FF-field is effectively a multi-stream counter of each substructure element of the Cosmic Web. We demonstrate that the very rich subst Partially supported by DOE Grant DE-FG02-07ER54940 and NSF Grant AST-1209665.

  7. CosmicSIG science and plans

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2014-03-01

    Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.

  8. Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization

  9. Cosmic bubble collisions

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew

    2011-10-01

    I briefly review the physics of cosmic bubble collisions in false-vacuum eternal inflation. My purpose is to provide an introduction to the subject for readers unfamiliar with it, focussing on recent work related to the prospects for observing the effects of bubble collisions in cosmology. I will attempt to explain the essential physical points as simply and concisely as possible, leaving most technical details to the references. I make no attempt to be comprehensive or complete. I also present a new solution to Einstein's equations that represents a bubble universe after a collision, containing vacuum energy and ingoing null radiation with an arbitrary density profile.

  10. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  11. The Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  12. Wormhole cosmic censorship

    NASA Astrophysics Data System (ADS)

    Matos, Tonatiuh; Ureña-López, L. Arturo; Miranda, Galaxia

    2016-05-01

    We analyze the properties of a Kerr-like wormhole supported by phantom matter, which is an exact solution of the Einstein-phantom field equations. It is shown that the solution has a naked ring singularity which is unreachable to null geodesics falling freely from the outside. Similarly to Roger Penrose's cosmic censorship, that states that all naked singularities in the Universe must be protected by event horizons, here we conjecture from our results that a naked singularity can also be fully protected by the intrinsic properties of a wormhole's throat.

  13. Characteristics of cosmic time

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.

    1995-11-01

    The nature of cosmic time is illuminated using Hamilton-Jacobi theory for general relativity. For problems of interest to cosmology, one may solve for the phase of the wave functional by using a line integral in superspace. Each contour of integration corresponds to a particular choice of time hypersurface, and each yields the same answer. In this way, one can construct a covariant formalism where all time hypersurfaces are treated on an equal footing. Using the method of characteristics, explicit solutions for an inflationary epoch with several scalar fields are given. The theoretical predictions of double inflation are compared with recent galaxy data and large angle microwave background anistropies.

  14. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.

  15. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  16. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  17. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  18. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  19. Flat wormholes from cosmic strings.

    NASA Astrophysics Data System (ADS)

    Clement, G.

    1997-11-01

    The author describes the analytical extension of certain cylindrical multi-cosmic string metrics to wormhole spacetimes with only one region at spatial infinity, and investigates in detail the geometry of asymptotically Minkowskian wormhole spacetimes generated by one or two cosmic strings. It is found that such wormholes tend to lengthen rather than shorten space travel. Possible signatures of these wormholes are briefly discussed.

  20. The Resurgence of Cosmic Storytellers.

    ERIC Educational Resources Information Center

    Swimme, Brian T.

    1998-01-01

    Argues that children and society as a whole have an inherent need for a cosmic story whose purpose is to provide insight into people's place in the universe. Describes the importance, role, and place for a cosmic storyteller in modern society. (SD)

  1. Monopole annihilation in cosmic necklaces

    SciTech Connect

    Blanco-Pillado, Jose J.; Olum, Ken D. E-mail: kdo@cosmos.phy.tufts.edu

    2010-05-01

    A sequence of two symmetry breaking transitions in the early universe may produce monopoles whose flux is confined into two strings each, which thus assemble into ''necklaces'' with monopoles as beads. Such ''cosmic necklaces'' have been proposed as a source of ultra-high-energy cosmic rays. We analyze the evolution of these systems and show that essentially all monopoles annihilate or leave the string at early times, after which cosmic necklaces evolve in a similar way to a network of ordinary cosmic strings. We investigate several modifications to the basic picture, but in nearly all cases we find that too few monopoles remain on the necklaces to produce any observable cosmic rays. There may be a small window for superconducting condensates to prevent annihilations, but only if both the string and the condensate scale are very high.

  2. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of August, 1993. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Ten articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) MOM3D - A Method of Moments Code for Electromagnetic Scattering (UNIX Version); (2) EM-Animate - Computer Program for Displaying and Animating the Steady-State Time-Harmonic Electromagnetic Near Field and Surface-Current Solutions; (3) MOM3D - A Method of Moments Code for Electromagnetic Scattering (IBM PC Version); (4) M414 - MIL-STD-414 Variable Sampling Procedures Computer Program; (5) MEDOF - Minimum Euclidean Distance Optimal Filter; (6) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (Macintosh Version); (7) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (IBM PC Version); (8) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (UNIX Version); (9) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (DEC VAX VMS Version); and (10) TFSSRA - Thick Frequency Selective Surface with Rectangular Apertures. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  3. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  4. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  5. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  6. Cosmic statistics of statistics

    NASA Astrophysics Data System (ADS)

    Szapudi, István; Colombi, Stéphane; Bernardeau, Francis

    1999-12-01

    The errors on statistics measured in finite galaxy catalogues are exhaustively investigated. The theory of errors on factorial moments by Szapudi & Colombi is applied to cumulants via a series expansion method. All results are subsequently extended to the weakly non-linear regime. Together with previous investigations this yields an analytic theory of the errors for moments and connected moments of counts in cells from highly non-linear to weakly non-linear scales. For non-linear functions of unbiased estimators, such as the cumulants, the phenomenon of cosmic bias is identified and computed. Since it is subdued by the cosmic errors in the range of applicability of the theory, correction for it is inconsequential. In addition, the method of Colombi, Szapudi & Szalay concerning sampling effects is generalized, adapting the theory for inhomogeneous galaxy catalogues. While previous work focused on the variance only, the present article calculates the cross-correlations between moments and connected moments as well for a statistically complete description. The final analytic formulae representing the full theory are explicit but somewhat complicated. Therefore we have made available a fortran program capable of calculating the described quantities numerically (for further details e-mail SC at colombi@iap.fr). An important special case is the evaluation of the errors on the two-point correlation function, for which this should be more accurate than any method put forward previously. This tool will be immensely useful in the future for assessing the precision of measurements from existing catalogues, as well as aiding the design of new galaxy surveys. To illustrate the applicability of the results and to explore the numerical aspects of the theory qualitatively and quantitatively, the errors and cross-correlations are predicted under a wide range of assumptions for the future Sloan Digital Sky Survey. The principal results concerning the cumulants ξ, Q3 and Q4 is that

  7. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  9. Collision of cosmic superstrings

    SciTech Connect

    Copeland, E. J.; Firouzjahi, H.; Kibble, T. W. B.; Steer, D. A.

    2008-03-15

    We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.

  10. Cosmic Light EDU kit

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    2015-08-01

    In 2015 we celebrate the International Year of Light, a great opportunity to promote awareness about the importance of light coming from the Cosmos and what messages it is bringing to mankind. In parallel a unique moment to attract the attention of stakeholders on the dangers of light pollution and its impact in our lives and our pursuit of more knowledge. In this presentation I want to present one of the conrnerstones of IYL2015, a partnership between the Galileo Teacher Training Program, Universe Awareness and Globe at Night, the Cosmic Light EDU kit. The aim of this project is to assemble a core set of tools and resources representing our basic knowledge pilars about the Universe and simple means to preserve our night sky.

  11. The Cosmic Origins Spectrograph

    NASA Technical Reports Server (NTRS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V; Andrews, John; Morse, Jon

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  12. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John; Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Sembach, Kenneth; Linsky, Jeffrey L.; Savage, Blair D.; Siegmund, Oswald H. W.; Spencer, John; Alan Stern, S.; Welsh, Barry; and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  13. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  14. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  15. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  16. Cosmic instability from radiation pressure

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1990-01-01

    The Cosmic Background Explorer has recently confirmed the blackbody character of the microwave background to high accuracy (Mather et al., 1990), and will have the capability to detect other cosmic backgrounds throughout the infrared. A detection of cosmic background radiation dating from the pregalactic era would have important consequences for theories of cosmic structure. During the creation of such a background the pressure of the radiation itself causes an instability which leads inevitably to the growth of large-scale structure in the matter distribution. In contrast to conventional gravitational-instability models, the statistical properties of this structure are determined primarily by the self-organizing dynamics of the instability rather than details of cosmological initial conditions. The behavior of the instability is described here.

  17. Cosmic rays, clouds, and climate.

    PubMed

    Carslaw, K S; Harrison, R G; Kirkby, J

    2002-11-29

    It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.

  18. Cosmic ray studies at CERN

    SciTech Connect

    Fernandez T, Arturo

    2006-09-25

    The use of the sophisticated and large underground detectors at CERN for cosmic ray studies has been considered by several groups, e.g. UA1, LEP and LHC detectors. They offer the opportunity to provide large sensitivity area with magnetic analysis which allow a precise determination of the direction of cosmic ray muons as well as their momentum up to the order of some TeV. The aim of this article is to review the observation of high energy cosmic ray muons using precise spectrometers at CERN, mainly LEP detectors as well as the possibility of improve those measurements with LHC apparatus, giving special emphasis to the ACORDE-ALICE cosmic ray physics program.

  19. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  20. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  1. Blast waves with cosmic rays

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2015-04-01

    Blast waves appear in many astrophysical phenomena, such as supernovae. In this paper we discuss blast waves with cosmic rays, i.e., with a component with a power-law number density distribution function N( p) ∝ p -Γ that may be particulary important in describing the evolution of supernova remnants. We confirm some previous findings that a significant amount of cosmic ray energy is deposited towards the center of a remnant.

  2. Cosmic string induced CMB maps

    SciTech Connect

    Landriau, M.; Shellard, E. P. S.

    2011-02-15

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  3. Revisit of cosmic age problem

    SciTech Connect

    Wang Shuang; Li Xiaodong; Li Miao

    2010-11-15

    We investigate the cosmic age problem associated with 9 extremely old globular clusters in M31 galaxy and 1 very old high-z quasar automatic plate-measuring machine 08279+5255 at z=3.91. These 9 globular clusters have not been used to study the cosmic age problem in the previous literature. By evaluating the age of the Universe in the {Lambda} cold dark matter model with the observational constraints from the Type Ia supernovae, the baryon acoustic oscillations, the cosmic microwave background, and the independent H{sub 0} measurements, we find that the existence of 5 globular clusters and 1 high-z quasar are in tension (over 2{sigma} confidence level) with the current cosmological observations. So if the age estimates of these objects are correct, the cosmic age puzzle still remains in the standard cosmology. Moreover, we extend our investigations to the cases of the interacting dark energy models. It is found that although the introduction of the interaction between dark sectors can give a larger cosmic age, the interacting dark energy models still have difficulty to pass the cosmic age test.

  4. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  5. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  6. Revealing cosmic rotation

    NASA Astrophysics Data System (ADS)

    Yadav, Amit P. S.; Shimon, Meir; Keating, Brian G.

    2012-10-01

    Cosmological Birefringence, a rotation of the polarization plane of radiation coming to us from distant astrophysical sources, may reveal parity violation in either the electromagnetic or gravitational sectors of the fundamental interactions in nature. Until only recently this phenomenon could be probed with only radio observations or observations at UV wavelengths. Recently, there is a substantial effort to constrain such nonstandard models using observations of the rotation of the polarization plane of cosmic microwave background (CMB) radiation. This can be done via measurements of the B-modes of the CMB or by measuring its TB and EB correlations which vanish in the standard model. In this paper we show that EB correlations-based estimator is the best for upcoming polarization experiments. The EB-based estimator surpasses other estimators because it has the smallest noise and of all the estimators is least affected by systematics. Current polarimeters are optimized for the detection of B-mode polarization from either primordial gravitational waves or by large-scale structures via gravitational lensing. In the paper we also study the optimization of CMB experiments for the detection of cosmological birefringence, in the presence of instrumental systematics, which by themselves are capable of producing EB correlations, potentially mimicking cosmological birefringence.

  7. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2006-06-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  8. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  9. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  10. Microanalytical study of some cosmic dust discovered in sea-floor sediments in China

    NASA Technical Reports Server (NTRS)

    Shijie, Z.; Hanchang, P.; Zhong, Y.

    1984-01-01

    The study of cosmic dust can provide useful data in the investigation of the origin of the Earth and the evolution of celestial bodies. Three types of cosmic dust (ferriginous, siliceous, and glassy) were discovered in the seafloor sediments near China. Their chemical composition and microstructure were examined by X-ray diffraction, fractography, and electron microscopy. The major mineral in an iron-containing cosmic dust is magnetite. The silicate spheres contain sundry metals and metal oxides. Glassy microtektites are similar in composition to tektites, and are found in all the major meteorite areas worldwide.

  11. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  12. Massive gravity wrapped in the cosmic web

    SciTech Connect

    Shim, Junsup; Lee, Jounghun; Li, Baojiu E-mail: jounghun@astro.snu.ac.kr

    2014-03-20

    We study how the filamentary pattern of the cosmic web changes if the true gravity deviates from general relativity (GR) on a large scale. The f(R) gravity, whose strength is controlled to satisfy the current observational constraints on the cluster scale, is adopted as our fiducial model and a large, high-resolution N-body simulation is utilized for this study. By applying the minimal spanning tree algorithm to the halo catalogs from the simulation at various epochs, we identify the main stems of the rich superclusters located in the most prominent filamentary section of the cosmic web and determine their spatial extents per member cluster to be the degree of their straightness. It is found that the f(R) gravity has the effect of significantly bending the superclusters and that the effect becomes stronger as the universe evolves. Even in the case where the deviation from GR is too small to be detectable by any other observables, the degree of the supercluster straightness exhibits a conspicuous difference between the f(R) and the GR models. Our results also imply that the supercluster straightness could be a useful discriminator of f(R) gravity from the coupled dark energy since it is shown to evolve differently between the two models. As a final conclusion, the degree of the straightness of the rich superclusters should provide a powerful cosmological test of large scale gravity.

  13. Disentangling the Cosmic Web with Lagrangian Submanifold

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Medvedev, Mikhail V.

    2016-10-01

    The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.

  14. The Vainshtein mechanism in the cosmic web

    SciTech Connect

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk E-mail: baojiu.li@durham.ac.uk

    2014-07-01

    We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particles are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.

  15. Cosmic ray Implications for Human Health

    NASA Astrophysics Data System (ADS)

    Shea, M. A.; Smart, D. F.

    2000-07-01

    There appears to be concern among some people about the possible effects of cosmic radiation on everyday life. The amount of cosmic radiation that reaches the Earth and its environment is a function of solar cycle, altitude and latitude. The possible effect of naturally occurring cosmic radiation on airplane crews and space flight personal is a subject of current study. This paper discusses the variables controlling the cosmic ray flux in the atmosphere and describes models and software that have been developed that provide quantitative information about the cosmic radiation exposure at flight altitudes. The discussion is extended to include the cosmic radiation exposure to manned spacecraft.

  16. Cosmic Microwave Background spectral distortions from cosmic string loops

    NASA Astrophysics Data System (ADS)

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex; Morrison, Ian A.; Xia, Daixi

    2016-02-01

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between G μ ~ 10-15 and G μ ~ 10-12, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.

  17. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant). PMID:18232848

  18. One dark matter mystery: halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  19. A Cosmic Searchlight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A Cosmic Searchlight Streaming out from the center of the galaxy M87 like a cosmic searchlight is one of nature's most amazing phenomena, a black-hole- powered jet of electrons and other sub-atomic particles traveling at nearly the speed of light. In this NASA Hubble Space Telescope image, the blue of the jet contrasts with the yellow glow from the combined light of billions of unseen stars and the yellow, point-like globular clusters that make up this galaxy. At first glance, M87 (also known as NGC 4486) appears to be an ordinary giant elliptical galaxy; one of many ellipticals in the nearby Virgo cluster of galaxies. However, as early as 1918, astronomer H.D. Curtis noted a 'curious straight ray' protruding from M87. In the 1950s when the field of radio was blossoming, one of the brightest radio sources in the sky, Virgo A, was discovered to be associated with M87 and its jet. After decades of study, prompted by these discoveries, the source of this incredible amount of energy powering the jet has become clear. Lying at the center of M87 is a supermassive black hole, which has swallowed up a mass equivalent to 2 billion times the mass of our Sun. The jet originates in the disk of superheated gas swirling around this black hole and is propelled and concentrated by the intense, twisted magnetic fields trapped within this plasma. The light that we see (and the radio emission) is produced by electrons twisting along magnetic field lines in the jet, a process known as synchrotron radiation, which gives the jet its bluish tint. M87 is one of the nearest and is the most well-studied extragalactic jet, but many others exist. Wherever a massive black hole is feeding on a particularly rich diet of disrupted stars, gas, and dust, the conditions are right for the formation of a jet. Interestingly, a similar phenomenon occurs around young stars, though at much smaller scales and energies. At a distance of 50 million light-years, M87 is too distant for Hubble to discern

  20. Nearest Cosmic Mirage

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Discovery of quadruply lensed quasar with Einstein ring Summary Using the ESO 3.6-m telescope at La Silla (Chile), an international team of astronomers [1] has discovered a complex cosmic mirage in the southern constellation Crater (The Cup). This "gravitational lens" system consists of (at least) four images of the same quasar as well as a ring-shaped image of the galaxy in which the quasar resides - known as an "Einstein ring". The more nearby lensing galaxy that causes this intriguing optical illusion is also well visible. The team obtained spectra of these objects with the new EMMI camera mounted on the ESO 3.5-m New Technology Telescope (NTT), also at the La Silla observatory. They find that the lensed quasar [2] is located at a distance of 6,300 million light-years (its "redshift" is z = 0.66 [3]) while the lensing elliptical galaxy is rougly halfway between the quasar and us, at a distance of 3,500 million light-years (z = 0.3). The system has been designated RXS J1131-1231 - it is the closest gravitationally lensed quasar discovered so far . PR Photo 20a/03 : Image of the gravitational lens system RXS J1131-1231 (ESO 3.6m Telescope). PR Photo 20b/03 : Spectra of two lensed images of the source quasar and the lensing galaxy. Cosmic mirages The physical principle behind a "gravitational lens" (also known as a "cosmic mirage") has been known since 1916 as a consequence of Albert Einstein's Theory of General Relativity . The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are bent (like a "straight line" on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an apparent displacement in the direction opposite to the Sun, about as much as predicted by Einstein

  1. A Cosmic Magnifying Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Scanning the heavens for the first time since the successful December 1999 servicing mission, NASA's Hubble Space Telescope imaged a giant, cosmic magnifying glass, a massive cluster of galaxies called Abell 2218. This 'hefty' cluster resides in the constellation Draco, some 2 billion light-years from Earth. The cluster is so massive that its enormous gravitational field deflects light rays passing through it, much as an optical lens bends light to form an image. This phenomenon, called gravitational lensing, magnifies, brightens, and distorts images from faraway objects. The cluster's magnifying powers provides a powerful 'zoom lens' for viewing distant galaxies that could not normally be observed with the largest telescopes. The picture is dominated by spiral and elliptical galaxies. Resembling a string of tree lights, the biggest and brightest galaxies are members of the foreground cluster. Researchers are intrigued by a tiny red dot just left of top center. This dot may be an extremely remote object made visible by the cluster's magnifying powers. Further investigation is needed to confirm the object's identity. The color picture already reveals several arc-shaped features that are embedded in the cluster and cannot be easily seen in the black-and- white image. The colors in this picture yield clues to the ages, distances, and temperatures of stars, the stuff of galaxies. Blue pinpoints hot young stars. The yellow-white color of several of the galaxies represents the combined light of many stars. Red identifies cool stars, old stars, and the glow of stars in distant galaxies. This view is only possible by combining Hubble's unique image quality with the rare lensing effect provided by the magnifying cluster.

  2. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  3. Cosmic logic: a computational model

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  4. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  5. Universal density profile for cosmic voids.

    PubMed

    Hamaus, Nico; Sutter, P M; Wandelt, Benjamin D

    2014-06-27

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  6. Universal Density Profile for Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2014-06-01

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  7. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  8. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  9. Is cosmic acceleration slowing down?

    SciTech Connect

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)

  10. Cosmic Ray Origins: An Introduction

    NASA Astrophysics Data System (ADS)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  11. Number of cosmic string loops

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Olum, Ken D.; Shlaer, Benjamin

    2014-01-01

    Using recent simulation results, we provide the mass and speed spectrum of cosmic string loops. This is the quantity of primary interest for many phenomenological signatures of cosmic strings, and it can be accurately predicted using recently acquired detailed knowledge of the loop production function. We emphasize that gravitational smoothing of long strings plays a negligible role in determining the total number of existing loops. We derive a bound on the string tension imposed by recent constraints on the stochastic gravitational wave background from pulsar timing arrays, finding Gμ ≤2.8×10-9. We also provide a derivation of the Boltzmann equation for cosmic string loops in the language of differential forms.

  12. Cosmic necklaces from string theory

    SciTech Connect

    Leblond, Louis; Wyman, Mark

    2007-06-15

    We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations.

  13. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  14. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  15. The Cosmic Shoreline

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Catling, D. C.

    2013-01-01

    in 2004 when there were just two transiting exoplanets to consider. The trend was well-defined by late 2007. Figure 1 shows how matters stood in Dec 2012 with approx.240 exoplanets. The figure shows that the boundary between planets with and without active volatiles - the cosmic shoreline, as it were - is both well-defined and follows a power law.

  16. Cosmic microwave background images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Vielva, P.

    2010-01-01

    Cosmology concerns itself with the fundamental questions about the formation, structure, and evolution of the Universe as a whole. Cosmic microwave background (CMB) radiation is one of the foremost pillars of physical cosmology. Joint analyses of CMB and other astronomical observations are able to determine with ever increasing precision the value of the fundamental cosmological parameters and to provide us with valuable insight about the dynamics of the Universe in evolution. The CMB radiation is a relic of the hot and dense first moments of the Universe: a extraordinarily homogeneous and isotropic blackbody radiation, which shows small temperature anisotropies that are the key for understanding the conditions of the primitive Universe, testing cosmological models and probing fundamental physics at the very dawn of time. CMB observations are obtained by imaging of the sky at microwave wavelengths. However, the CMB signal is mixed with other astrophysical signals of both Galactic and extragalactic origin. To properly exploit the cosmological information contained in CMB images, they must be cleansed of these other astrophysical emissions first. Blind source separation (BSS) has been a very active field in the last few years. Conversely, the term "compact sources" is often used in the CMB literature referring to spatially bounded, small features in the images, such as galaxies and galaxy clusters. Compact sources and diffuse sources are usually treated separately in CMB image processing. We devote this tutorial to the case of compact sources. Many of the compact source-detection techniques that are widespread inmost fields of astronomy are not easily applicable to CMB images. In this tutorial, we present an overview of the fundamentals of compact object detection theory keeping in mind at every moment these particularities. Throughout the article, we briefly consider Bayesian object detection, model selection, optimal linear filtering, nonlinear filtering, and

  17. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110.

  18. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110. PMID:23089013

  19. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  20. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  1. The Cosmic Web: Geometric Analysis

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; Schaap, W.

    The spatial cosmic matter distribution on scales of a few up to more than a hundred megaparsec displays a salient and pervasive foam-like pattern. Revealed through the painstaking efforts of redshift survey campaigns, it has completely revised our view of the matter distribution on these cosmological scales. The web-like spatial arrangement of galaxies and mass into elongated filaments, sheet-like walls and dense compact clusters, the existence of large near-empty void regions and the hierarchical nature of this mass distribution - marked by substructure over a wide range of scales and densities - are three major characteristics we have come to know as the cosmic web.

  2. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  3. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  4. Evolution of cosmic string networks

    SciTech Connect

    Albrecht, A.; Turok, N.

    1989-06-01

    We summarize our new results on cosmic strings. These results include: the application of non-equilibrium statistical mechanics to cosmic string evolution, a simple ''one scale'' model for the long strings which has a great deal of predictive power, results from large scale numerical simulations, and a discussion of the observational consequences of our results. An upper bond on G/mu/ of approximately 10/sup /minus/7/ emerges from the millisecond pulsar gravity wave bound. We discuss how numerical uncertainties affect this. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences. 22 refs.

  5. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  6. Cosmic Ray elimination using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Orozco-Aguilera, M. T.; Cruz, J.; Altamirano, L.; Serrano, A.

    2009-11-01

    In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  7. 47 CFR 2.962 - Requirements for Telecommunication Certification Bodies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) The certification system shall be based on type testing as identified in sub-clause 1.2(a) of ISO/IEC... regulations for product evaluation. (2) The TCB shall demonstrate expert knowledge of the regulations for...

  8. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  9. Cosmology: The oldest cosmic light

    NASA Astrophysics Data System (ADS)

    Spergel, David; Keating, Brian

    2015-02-01

    The cosmic microwave background is a faint glow of light left over from the Big Bang. It fills the entire sky and records the Universe's early history. Two independent experts outline what we know about this ancient light, both theoretically and observationally.

  10. The Resurgence of Cosmic Storytellers

    ERIC Educational Resources Information Center

    Swimme, Brian

    2013-01-01

    Brian Swimme's insights about the Story of the Universe look to the unifying impact of a "cosmic story" that speaks to all cultures and nations. Swimme suggests that humans are now able, through science and narrative, to present a story which will make us all a "cohesive tribe" while answering the universal questions of…

  11. Art and the Cosmic Connection

    ERIC Educational Resources Information Center

    Cobb, Whitney H.; Aiello, Monica Petty; Macdonald, Reeves; Asplund, Shari

    2014-01-01

    The interdisciplinary unit described in this article utilizes "Art and the Cosmic Connection," a free program conceived of by artists Monica and Tyler Aiello and developed by the artists, scientists, and educators through NASA's Discovery and New Frontiers Programs, to inspire learners to explore mysterious worlds in our solar…

  12. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  13. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  14. Cosmic censorship and the dilaton

    SciTech Connect

    Horne, J.H. ); Horowitz, G.T. )

    1993-12-15

    We investigate extremal electrically charged black holes in Einstein-Maxwell-dilaton theory with a cosmological constant inspired by string theory. These solutions are not static, and a timelike singularity eventually appears which is not surrounded by an event horizon. This suggests that cosmic censorship may be violated in this theory.

  15. Cosmic censorship and test particles

    SciTech Connect

    Needham, T.

    1980-08-15

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it.

  16. Delayed recombination and cosmic parameters

    NASA Astrophysics Data System (ADS)

    Galli, Silvia; Bean, Rachel; Melchiorri, Alessandro; Silk, Joseph

    2008-09-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, ns, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z*=1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: γα<0.39 and γi<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  17. Cosmic Censorship for Gowdy Spacetimes

    NASA Astrophysics Data System (ADS)

    Ringström, Hans

    2010-04-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  18. Re-evaluation of the Cosmic Microwave Background (CMB)

    NASA Astrophysics Data System (ADS)

    Haynes, R.

    2009-12-01

    The cosmic microwave background (CMB) has an almost perfect black-body spectrum, with polarization. These characteristics are inconsistent with the Standard Big Bang (SBB) model. An almost perfect spectrum can arise only from a surface of last scattering which is an almost perfect black-body. Thermodynamically, this is matter in thermal equilibrium, absorbing almost 100% of incident radiation and re-emitting it as black-body radiation. By definition, a perfect black-body is matter at zero kelvin, and cold matter better approaches this perfection. SBB theory describes the CMB as originating from a hydrogen-helium plasma, condensing at a temperature of about 3,000 K. Such a surface would exhibit a continuous radiation spectrum, not unlike that of the sun, which is shown to have a spectrum similar, but not identical to, a black-body spectrum. An imperfect spectrum, even stretched 1100 fold as in the SBB model, remains an imperfect spectrum. Also, a plasma would not support the orientation required to impart polarization to the CMB. A better explanation of the observational evidence is possible if one views the observable universe as part of, and originating from, a much larger structure. Here we propose a defined physical description for such a model. It is shown how a "cosmic fabric" of spin-oriented atomic hydrogen, at zero kelvin, surrounding a matter-depletion zone and the observable universe, would produce the CMB observations. The cosmic fabric would be a perfect black-body and subsequently re-emit an almost perfect black-body spectrum. The radiation would be almost perfectly isotropic, imposed by the spherical distribution of the surface of last scattering, and spin-oriented hydrogen would impart the observed polarization. This geometry also obviates the so-called "horizon problem" of the SBB, why the CMB radiation is essentially isotropic when coming from points of origin with no apparent causal contact. This problem was supposedly "solved" with the

  19. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  20. Cosmic-ray Exposure Ages of Meteorites

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.

    2003-12-01

    The classic idea of a cosmic-ray exposure (CRE) age for a meteorite is based on a simple but useful picture of meteorite evolution, the one-stage irradiation model. The precursor rock starts out on a parent body, buried under a mantle of material many meters thick that screens out cosmic rays. At a time ti, a collision excavates a precursor rock - a "meteoroid." The newly liberated meteoroid, now fully exposed to cosmic rays, orbits the Sun until a time tf, when it strikes the Earth, where the overlying blanket of air (and possibly of water or ice) again shuts out almost all cosmic rays (cf. Masarik and Reedy, 1995). The quantity tf-ti is called the CRE age, t. To obtain the CRE age of a meteorite, we measure the concentrations in it of one or more cosmogenic nuclides (Table 1), which are nuclides that cosmic rays produce by inducing nuclear reactions. Many shorter-lived radionuclides excluded from Table 1 such as 22Na (t1/2=2.6 yr) and 60Co (t1/2=5.27 yr) can also furnish valuable information, but can be measured only in meteorites that fell within the last few half-lives of those nuclides (see, e.g., Leya et al. (2001) and references therein). Table 1. Cosmogenic nuclides used for calculating exposure ages NuclideHalf-lifea (Myr) Radionuclides 14C0.005730 59Ni0.076 41Ca0.1034 81Kr0.229 36Cl0.301 26Al0.717 10Be1.51 53Mn3.74 129I15.7 Stable nuclides 3He 21Ne 38Ar 83Kr 126Xe a http://www2.bnl.gov/ton. CRE ages have implications for several interrelated questions. From how many different parent bodies do meteorites come? How well do meteorites represent the population of the asteroid belt? How many distinct collisions on each parent body have created the known meteorites of each type? How often do asteroids collide? How big and how energetic were the collisions that produced meteoroids? What factors control the CRE age of a meteorite and how do meteoroid orbits evolve through time? We will touch on these questions below as we examine the data.By 1975, the CRE ages of

  1. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  2. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  3. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  4. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  5. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    PubMed

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  6. Mathematical model of formation of Kordylewski cosmic dust clouds

    NASA Astrophysics Data System (ADS)

    Sal'nikova, T. V.; Stepanov, S. Ya.

    2015-07-01

    The question of occurrence of cosmic dust clouds, which were found by Kordylewski in 1961 in the vicinity of libration point L 5 of the Earth-Moon system, still causes debates and concern. We explain theoretically the phenomenon of the apparent vanishing and appearance of the Kordylewski cosmic dust clouds in the vicinity of triangular libration points L 4 and L 5 of the Earth-Moon system. The possibility of occurrence of two such clouds rotating around libration points L 4 and two clouds rotating around point L 5 is shown and optimal times for their observation from the Earth are determined. The investigation is performed based on analysis of a stable periodic motion in a planar restricted circular problem of three bodies, Earth-Moon—Particle, allowing for perturbations from the Sun under the assumption that the orbits of the Earth and Moon are circular and lie in one plane.

  7. DNA Sequencing and Predictions of the Cosmic Theory of Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  8. DNA sequencing and predictions of the cosmic theory of life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2013-01-01

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  9. New evidence of meteoritic origin of the Tunguska cosmic body

    NASA Astrophysics Data System (ADS)

    Kvasnytsya, Victor; Wirth, Richard; Dobrzhinetskaya, Larissa; Matzel, Jennifer; Jacobsen, Benjamin; Hutcheon, Ian; Tappero, Ryan; Kovalyukh, Mykola

    2013-08-01

    Diamond-lonsdaleite-graphite micro-samples collected from peat after the 1908 catastrophic blast in the Tunguska area were studied with scanning (SEM) and transmission electron (TEM) microscopy, NanoSecondary Ion Mass Spectrometry (NanoSIMS) and Х-ray synchrotron technique. The high-pressure carbon allotropes in the Tunguska samples are being described for the first time and contain inclusions of FeS (troilite), Fe-Ni (taenite), γ-Fe and (FeNi)3P (schreibersite). The samples are nodule-like in shape and consist of 99.5% carbon minerals, e.g. diamond>lonsdaleite>graphite. Micro- and nanoinclusions of troilite (up to 0.5 vol%), taenite, γ-iron and schreibersite fill cracks, cleavages and pores in the carbon matrix. Carbon isotope studies from the two analyses of the Tunguska foil showed δ13C=-16.0±1.9‰ and δ13C=-15.2±2.1‰, suggesting δ13C=-15.6±2‰ as an average characteristic of the carbon reservoir. That value is close to δ13C of some extraterrestrial samples. A negligible concentration of Ir and Os in the carbonaceous matrix promotes some controversial interpretation of the origin of the studied materials. Attributing this fact to the primary inhomogeneity, and considering the micro-structural features such as cracks, deformation of the crystal lattices, etc. coupled with high-pressure carbon allotropes association with metals, sulfides and phosphides, and the high ratio of Fe:Ni=22:1 suggest that the studied samples are meteorite micro-remnants.

  10. Cosmic physics data analysis program

    NASA Technical Reports Server (NTRS)

    Wilkes, R. Jeffrey

    1993-01-01

    A data analysis program was carried out to investigate the intensity, propagation, and origin of primary Cosmic Ray Galactic electrons. Scanning was carried out on two new balloon flight experiments as well as the border area of previous experiments. The identification and evaluation of the energies of the primary electrons were carried out. A new analysis of these data were incorporated into an overall evaluation of the roll of electrons in the problem of the origin of cosmic rays. Recent measurements indicate that the earth may be within the expanding Geminga supernova shock wave which is expected to have a major effect upon the propagation and the energy spectrum of galactic electrons. Calculations with the Geminga model indicate that the cut-off energy may be very close to the observed highest energy electrons in our analysis.

  11. Antiprotons in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1983-01-01

    Cosmic ray antiprotons were first detected three years ago by Golden et al. (1979) and Bogomolov et al. (1979). The measured flux at about 10 GeV was found to be a factor of 5 to 10 higher than expected in the leaky box model. More recently, an unexpected high antiproton flux has been measured by Buffington et al. (1981) at about 200 MeV, well below a low energy cut-off in the spectrum expected if the antiprotons are secondary. This paper briefly reviews calculations of the flux of secondary antiprotons expected for different models of cosmic ray propagation and discusses some of the primary origin hypotheses which have been proposed to account for the data.

  12. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  13. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  14. COSMIC/NASTRAN-PATRAN Interface

    NASA Technical Reports Server (NTRS)

    Libby, D. H.

    1985-01-01

    A three dimensional solid modeling and finite element pre and postprocessing program, PATRAN, uses the latest interactive computer graphics technology, provides a visual means to define a finite element model and its environment, and reviews its resultant model behavior. The capabilities provided by the PATRAN-COSMIC/NASTRAN interface are discussed. While the translator capabilities give some indication of the interface quality between the two programs, there are other attributes to be considered. The ideal interface would be a user transparent union of the two programs so that the engineer could move from one program to the other fluently and naturally. Hence, a valid assessment of the interface completeness must consider how close the current capabilities are to the idealized case. An example problem is presented to demonstrate how COSMIC/NASTRAN and PATRAN can be used together to meet the requirements of an actual engineering application.

  15. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  16. Antiprotons in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1999-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration flew in May 1999 a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton/proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates. A description of the instrument, details of the flight and instrument performance, and status of the data analysis will be given.

  17. Cosmic microwave background theory

    PubMed Central

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  18. Diffuse Cosmic Infrared Background Radiation

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  19. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  20. CosmicEmu: Cosmic Emulator for the Dark Matter Power Spectrum

    NASA Astrophysics Data System (ADS)

    Lawrence, Earl; Heitmann, Katrin; White, Martin; Higdon, David; Wagner, Christian; Habib, Salman; Williams, Brian

    2010-10-01

    Many of the most exciting questions in astrophysics and cosmology, including the majority of observational probes of dark energy, rely on an understanding of the nonlinear regime of structure formation. In order to fully exploit the information available from this regime and to extract cosmological constraints, accurate theoretical predictions are needed. Currently such predictions can only be obtained from costly, precision numerical simulations. The "Coyote Universe'' simulation suite comprises nearly 1,000 N-body simulations at different force and mass resolutions, spanning 38 wCDM cosmologies. This large simulation suite enabled construct of a prediction scheme, or emulator, for the nonlinear matter power spectrum accurate at the percent level out to k~1 h/Mpc. This is the first cosmic emulator for the dark matter power spectrum.

  1. Neutrino mass without cosmic variance

    NASA Astrophysics Data System (ADS)

    LoVerde, Marilena

    2016-05-01

    Measuring the absolute scale of the neutrino masses is one of the most exciting opportunities available with near-term cosmological data sets. Two quantities that are sensitive to neutrino mass, scale-dependent halo bias b (k ) and the linear growth parameter f (k ) inferred from redshift-space distortions, can be measured without cosmic variance. Unlike the amplitude of the matter power spectrum, which always has a finite error, the error on b (k ) and f (k ) continues to decrease as the number density of tracers increases. This paper presents forecasts for statistics of galaxy and lensing fields that are sensitive to neutrino mass via b (k ) and f (k ). The constraints on neutrino mass from the auto- and cross-power spectra of spectroscopic and photometric galaxy samples are weakened by scale-dependent bias unless a very high density of tracers is available. In the high-density limit, using multiple tracers allows cosmic variance to be beaten, and the forecasted errors on neutrino mass shrink dramatically. In practice, beating the cosmic-variance errors on neutrino mass with b (k ) will be a challenge, but this signal is nevertheless a new probe of neutrino effects on structure formation that is interesting in its own right.

  2. Body Hair

    MedlinePlus

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  3. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  4. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  5. Cosmic rays: the highest-energy messengers.

    PubMed

    Olinto, Angela V

    2007-01-01

    The origin of the most energetic particles ever observed, cosmic rays, will begin to be revealed in the next few years. Newly constructed ultrahigh-energy cosmic ray observatories together with high-energy gamma-ray and neutrino observatories are well positioned to unveil this mystery before the centenary of their discovery in 2012. Cosmic ray sources are likely to involve the most energetic phenomena ever witnessed in the universe.

  6. The pregalactic cosmic gravitational wave background

    NASA Technical Reports Server (NTRS)

    Matzner, Richard A.

    1989-01-01

    An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).

  7. Cosmic Rays, UV Photons, and Haze Formation in the Upper Atmospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul B.; Walsh, Catherine; Helling, Christiane

    2014-01-01

    Cosmic ray ionization has been found to be a dominant mechanism for the formation of ions in dense interstellar environments. Cosmic rays are further known to initiate the highly efficient ion-neutral chemistry within star forming regions. In this talk we explore the effect of both cosmic rays and UV photons on a model hot Jupiter atmosphere using a non-equlibrium chemical network that combines reactions from the UMIST Database for Astrochemistry, the KIDA database for interstellar and protoplanetary environments and three-body and combustion reactions from the NIST database and from various irradiated gas planet networks. The physical parameters for our model atmosphere are based on HD 189733 b (Effective Temperature of 1000 K, log g = 3.3, solar metallicity, at a distance 0.03 AU from a K dwarf). The active UV photochemistry high in our model hot Jupiter atmosphere tends to destroy these hydrocarbons, but on a time-scale sufficiently slow that PAH formation could already have taken place. In most cases, carbon-bearing species formed by cosmic rays are destroyed by UV photons (e.g. C2H2, C2H4, HC3N). Conversely, carbon-bearing species enhanced by an active photochemistry are depleted when cosmic ray ionization is significant (e.g. CN, HCN and CH4). Ammonia is an interesting exception to this trend, enhanced both by an active photochemistry and a high cosmic ray ionization rate.

  8. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  9. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  10. Are cosmic strings gravitationally stable topological defects?

    NASA Astrophysics Data System (ADS)

    Gleiser, Reinaldo; Pullin, Jorge

    1989-08-01

    A possible mechanism for the dissapearance of an open cosmic string into gravitational radiation is described. This involves the splitting of an infinite straight cosmic string into two pieces whose ends are traveling outward at the speed of light with the associated emission of a gravitational shock wave. This model can also be used to describe the following situations: (1) the development of a growing region of different string tension within a cosmic string, and (2) the creation of a cosmic string in an otherwise flat background.

  11. Topics in Cosmic Acceleration and Braneworlds

    NASA Astrophysics Data System (ADS)

    West, Eric J.

    Cosmic acceleration has come to be a standard, and perhaps required, ingredient in our current understanding of the universe. In the early universe, under the name of inflation, a phase of accelerated expansion is used to solve many problems with the standard Hot Big Bang cosmology. In the late universe, cosmic acceleration seems to best explain a wide variety of observations. In both cases, we lack a complete theory of what drives cosmic acceleration. In this thesis I discuss some open issues in our understanding of cosmic acceleration, both in the early and late universe.

  12. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  13. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  14. Transmission of galactic cosmic rays through Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; PourArsalan, M.; Cucinotta, F. A.; Kim, M. Y.; Schwadron, N. A.

    2011-06-01

    For human operations on the surface of Mars, methods of estimating radiation exposures from galactic cosmic rays (GCRs) are needed. To facilitate making estimates of human radiation exposures for crew operations in the Martian atmosphere, lookup tables have been generated that provide doses for critical body organs and effective doses for exposures from galactic cosmic rays anywhere on the surface of Mars. The organ doses and effective doses are tabulated for carbon dioxide atmospheric shielding areal densities ranging from 0 to 300 g cm-2 followed by aluminum spacecraft or habitat shield areal densities ranging from 0 to 100 g cm-2. The Badhwar-O'Neill GCR model for interplanetary magnetic field potentials, ranging from the most probable solar minimum (currently 417 MV) to solar maximum conditions (1800 MV) in the solar cycle, is used as input into the calculations. This model is the standard one used for space operations at the Space Radiation Analysis Group at NASA Johnson Space Center. Use of the tables is illustrated for an environment consisting of the current galactic cosmic radiation spectrum impinging on an aluminum habitat on the surface of Mars.

  15. Evolution of the cosmic web

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.

    2014-07-01

    The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components. Our analysis involves the application of the NEXUS Multiscale Morphology Filter technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies clusters and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present-day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100 h-1 Mpc. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.

  16. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  17. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  18. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1992-01-01

    A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.

  19. The life and death of cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Elahi, Pascal; Falck, Bridget; Onions, Julian; Hamaus, Nico; Knebe, Alexander; Srisawat, Chaichalit; Schneider, Aurel

    2014-12-01

    We investigate the formation, growth, merger history, movement, and destruction of cosmic voids detected via the watershed transform code VIDE in a cosmological N-body dark matter Λ cold dark matter simulation. By adapting a method used to construct halo merger trees, we are able to trace individual voids back to their initial appearance and record the merging and evolution of their progenitors at high redshift. For the scales of void sizes captured in our simulation, we find that the void formation rate peaks at scale factor 0.3, which coincides with a growth in the void hierarchy and the emergence of dark energy. Voids of all sizes appear at all scale factors, though the median initial void size decreases with time. When voids become detectable they have nearly their present-day volumes. Almost all voids have relatively stable growth rates and suffer only infrequent minor mergers. Dissolution of a void via merging is very rare. Instead, most voids maintain their distinct identity as annexed subvoids of a larger parent. The smallest voids are collapsing at the present epoch, but void destruction ceases after scale factor 0.3. In addition, voids centres tend to move very little, less than 10-2 of their effective radii per ln a, over their lifetimes. Overall, most voids exhibit little radical dynamical evolution; their quiet lives make them pristine probes of cosmological initial conditions and the imprint of dark energy.

  20. Exploring the Cosmic Context of Earth

    NASA Astrophysics Data System (ADS)

    Dominik, Martin

    2014-04-01

    Studying the amazingly diverse planet zoo provides us with unprecedented opportunities for understanding planet Earth and ultimately ourselves. An assessment of a planet's ``habitability'' reflects our Earth-centric prejudice and can serve to prioritise targets to actually search for signatures of life similar to ours. The probability for life beyond Earth to exist however remains unknown, and studies on habitability or statistics of planetary systems do not change this. But we can leave speculation behind, and embark on a journey of exploration. A sample of detected cosmic habitats would provide us with insight on the conditions for life to emerge, develop, and sustain, but disentangling the biota fraction from the duration of the biotic era would depend particularly on our knowledge about the dynamics of planetary systems. Apart from the fact that planets usually do not come alone, we also must not forget that the minor bodies in the Solar system vastly outnumber the planets. A focus on just what we might consider ``habitable'' planets is too narrow to understand their formation and evolution. While uniqueness prevents understanding, we need to investigate the context and embrace diversity. A comprehensive picture of planet populations can only arise by exploiting a variety of different detection techniques, where not only Kepler but also gravitational microlensing can now enter hitherto uncharted territory below the mass or size of the Earth. There is actually no shortage of planets, the Milky Way alone may host hundreds of billions, and so far we have found only about 1000.

  1. General relativity and cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Adamek, Julian; Daverio, David; Durrer, Ruth; Kunz, Martin

    2016-04-01

    Numerical simulations are a versatile tool for providing insight into the complicated process of structure formation in cosmology. This process is mainly governed by gravity, which is the dominant force on large scales. At present, a century after the formulation of general relativity, numerical codes for structure formation still employ Newton’s law of gravitation. This approximation relies on the two assumptions that gravitational fields are weak and that they originate from non-relativistic matter. Whereas the former seems well justified on cosmological scales, the latter imposes restrictions on the nature of the `dark’ components of the Universe (dark matter and dark energy), which are, however, poorly understood. Here we present the first simulations of cosmic structure formation using equations consistently derived from general relativity. We study in detail the small relativistic effects for a standard lambda cold dark matter cosmology that cannot be obtained within a purely Newtonian framework. Our particle-mesh N-body code computes all six degrees of freedom of the metric and consistently solves the geodesic equation for particles, taking into account the relativistic potentials and the frame-dragging force. This conceptually clean approach is very general and can be applied to various settings where the Newtonian approximation fails or becomes inaccurate, ranging from simulations of models with dynamical dark energy or warm/hot dark matter to core collapse supernova explosions.

  2. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  3. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  4. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  5. Nano-Particles in Cosmic Plasma Environments

    SciTech Connect

    Mann, Ingrid

    2008-09-07

    Astronomical observations and in-situ measurements point to the existence of cosmic nano-particles, but in most cases their material composition and structure are not known. Nano-dust interacts differently than larger dust with the cosmic radiation and plasma environment. Its dynamics and behavior upon collision is not well studied.

  6. Cosmic strings from supersymmetric flat directions

    SciTech Connect

    Cui Yanou; Morrissey, David E.; Martin, Stephen P.; Wells, James D.

    2008-02-15

    Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra Abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost-flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the Abelian Higgs model, these flat-direction cosmic strings have the extreme type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding-mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multitension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultrahigh-energy cosmic rays or nonthermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.

  7. Ultra heavy nuclei in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Binns, W. Robert

    1988-01-01

    This paper describes the measurements of the ultraheavy cosmic ray abundances obtained by the Heavy Nuclei Experiment aboard the NASA High Energy Astronomy Observatory-3. It is found that the cosmic ray abundances are in broad agreement with solar system abundances with a step-FIP fractionation model applied although in detail there are some differences. In particular, Ge and Pb appear to be underabundant in the cosmic radiation. Although the platinum/lead ratio and the actinides are consistent with some r-process enhancement, the cosmic ray source is not dominated by the r-process up through the 50s as evidenced by the Sr/Rb ratio and by the abundance of Sn and Ba. The actinides are not greatly enhanced, ruling out freshly synthesized r-process production as the primary source of the heavy cosmic rays.

  8. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  9. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  10. Cosmic vacuum and galaxy formation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2006-04-01

    It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.

  11. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  12. Cosmic radioactivity and INTEGRAL results

    SciTech Connect

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ∼My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  13. Improving cosmic string network simulations

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Rummukainen, Kari; Tenkanen, Tuomas V. I.; Weir, David J.

    2014-08-01

    In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational invariance introduces lattice artifacts; relativistic strings therefore decelerate and radiate. We introduce two different methods to construct a moving string on the lattice, and study in detail the lattice effects on moving strings. We find that there are two types of lattice artifact: there is an effective maximum speed with which a moving string can be placed on the lattice, and a moving string also slows down, with the deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce and study an improved discretization, based on the tree-level Lüscher-Weisz action, which is found to reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D simulations of cosmic strings in the early Universe, where one wishes to simulate as large a volume as possible.

  14. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  15. Nexus of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.

    2015-01-01

    One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.

  16. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what

  17. Search for Cosmic Strings in Cosmic Microwave BackgroundAnisotropies

    SciTech Connect

    Jeong, E.; Smoot, GF

    2004-06-01

    We have searched the 1st-year WMAP W-Band CMB anisotropy map for evidence of cosmic strings. We have set a limit of delta = 8 pi G mu/ c2 < 8.2 times 10-6 at 95 percent CL for statistical search for a significant number of strings in the map. We also have set a limit using the uniform distribution of strings model in the WMAP data with delta = 8pi G mu/c2 < 7.34 times 10-5 at 95 percent CL. And the pattern search technique we developed here set a limit delta = 8 pi G mu/c2 < 1.54 times 10-5 at 95 percent CL.

  18. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2

    PubMed Central

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-01-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4–6 times (10–15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters. PMID:26213514

  19. Halo mass distribution reconstruction across the cosmic web

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Prada, Francisco; Yepes, Gustavo; Tao, Charling

    2015-08-01

    We study the relation between halo mass and its environment from a probabilistic perspective. We find that halo mass depends not only on local dark matter density, but also on non-local quantities such as the cosmic web environment and the halo-exclusion effect. Given these accurate relations, we have developed the HADRON-code (Halo mAss Distribution ReconstructiON), a technique which permits us to assign halo masses to a distribution of haloes in three-dimensional space. This can be applied to the fast production of mock galaxy catalogues, by assigning halo masses, and reproducing accurately the bias for different mass cuts. The resulting clustering of the halo populations agree well with that drawn from the BigMultiDark N-body simulation: the power spectra are within 1σ up to scales of k = 0.2 h Mpc-1, when using augmented Lagrangian perturbation theory based mock catalogues. Only the most massive haloes show a larger deviation. For these, we find evidence of the halo-exclusion effect. A clear improvement is achieved when assigning the highest masses to haloes with a minimum distance separation. We also compute the two- and three-point correlation functions, and find an excellent agreement with N-body results. Our work represents a quantitative application of the cosmic web classification. It can have further interesting applications in the multitracer analysis of the large-scale structure for future galaxy surveys.

  20. CT -- Body

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special x-ray ... Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT or CAT ...

  1. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  2. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.

    PubMed

    Bottollier-Depois, J F; Beck, P; Bennett, B; Bennett, L; Bütikofer, R; Clairand, I; Desorgher, L; Dyer, C; Felsberger, E; Flückiger, E; Hands, A; Kindl, P; Latocha, M; Lewis, B; Leuthold, G; Maczka, T; Mares, V; McCall, M J; O'Brien, K; Rollet, S; Rühm, W; Wissmann, F

    2009-10-01

    The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than +/-20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purposes.

  3. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  4. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1981-01-01

    Because angular anisotropies and spectral distortions of the cosmic microwave background radiation are judged to be inevitable at some level, in a realistic cosmological model, the evidence for spectral distortions and its theoretical implications are described. The evidence for anisotropy is then discussed, and theoretical predictions of radiation anisotropy are summarized and compared with the data available. It is found that spectral distortions at the 3-sigma level near the peak of the blackbody spectrum, although inconsistent with the predicted distortions due to Compton scattering in the early universe, are elegantly interpreted in terms of radiation from an early, pregalactic generation of massive stars which had been thermalized by a modest amount of dust at high redshift. The quadrupole anisotropy at the 4-sigma level is most simply interpreted in terms of the large-scale structure of the universe.

  5. Quantum bounce and cosmic recall.

    PubMed

    Corichi, Alejandro; Singh, Parampreet

    2008-04-25

    Loop quantum cosmology predicts that, in simple models, the big bang is replaced by a quantum bounce. A natural question is whether the universe retains, after the bounce, its memory about the previous epoch. More precisely, does the Universe retain various properties of the state after evolving unitarily through the bounce, or does it suffer from recently suggested cosmic amnesia? We show that this issue can be answered unambiguously at least within an exactly solvable model. A semiclassical state at late times on one side of the bounce, peaked on a pair of canonically conjugate variables, strongly bounds the fluctuations on the other side, implying semiclassicality. For a model universe growing to 1 megaparsec, the change in relative fluctuation across the bounce is less than 10(-56) (becoming smaller for larger universes). The universe maintains (an almost) total recall. PMID:18518182

  6. Electric currents in cosmic plasmas

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1977-01-01

    It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.

  7. Quantum Bounce and Cosmic Recall

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2008-04-01

    Loop quantum cosmology predicts that, in simple models, the big bang is replaced by a quantum bounce. A natural question is whether the universe retains, after the bounce, its memory about the previous epoch. More precisely, does the Universe retain various properties of the state after evolving unitarily through the bounce, or does it suffer from recently suggested cosmic amnesia? We show that this issue can be answered unambiguously at least within an exactly solvable model. A semiclassical state at late times on one side of the bounce, peaked on a pair of canonically conjugate variables, strongly bounds the fluctuations on the other side, implying semiclassicality. For a model universe growing to 1 megaparsec, the change in relative fluctuation across the bounce is less than 10-56 (becoming smaller for larger universes). The universe maintains (an almost) total recall.

  8. Shielding against galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  9. Cosmic Ultraviolet Polarimetric Imaging Device

    NASA Astrophysics Data System (ADS)

    Burgh, Eric B.; Nordsieck, Kenneth H.; Jaehnig, Kurt P.; Harris, Walter M.; Bershady, Matthew A.

    The Cosmic Ultraviolet Polarimetric Imaging Device (CUPID) is a suborbital sounding rocket payload designed to perform wide-field, polarimetric imaging of the extragalactic ultraviolet background. In doing so, it will also measure the contribution to the UV background from the diffuse Galactic light (DGL), starlight from the Milky Way scattered off of dust. Current uncertanties in the contribution of the DGL to the UV background are due almost entirely to a poor knowledge of the optical properties of the dust in the diffuse ISM at ultraviolet wavelengths. The polarization of the scattered light is sensitive to scattering angle and thus CUPID imaging may help to constrain the spatial distribution and scattering properties of Galactic dust.

  10. Cosmic string induced peculiar velocities

    NASA Technical Reports Server (NTRS)

    Van Dalen, Anthony; Schramm, David N.

    1988-01-01

    This paper considers the scenario of a flat universe with a network of heavy cosmic strings as the primordial fluctuation spectrum. The joint probability of finding streaming velocities of at least 600 km/s on large scales and local peculiar velocities of less than 800 km/s is calculated. It is shown how the effects of loops breaking up and being born with a spectrum of sizes can be estimated. It is found that to obtain large-scale streaming velocities of at least 600 km/s, it is necessary that either a large value for beta G mu exist or the effect of loop fissioning and production details be considerable.

  11. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  12. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  13. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  14. Symbols of a cosmic order

    NASA Astrophysics Data System (ADS)

    Madjid, F. Hadi; Myers, John M.

    2016-10-01

    The world runs on networks over which signals communicate sequences of symbols, e.g. numerals. Examining both engineered and natural communications networks reveals an unsuspected order that depends on contact with an unpredictable entity. This order has three roots. The first is a proof within quantum theory that no evidence can ever determine its explanation, so that an agent choosing an explanation must do so unpredictably. The second root is the showing that clocks that step computers do not "tell time" but serve as self-adjusting symbol-handling agents that regulate "logically synchronized" motion in response to unpredictable disturbances. Such a clock-agent has a certain independence as well as the capacity to communicate via unpredictable symbols with other clock-agents and to adjust its own tick rate in response to that communication. The third root is the noticing of unpredictable symbol exchange in natural systems, including the transmission of symbols found in molecular biology. We introduce a symbol-handling agent as a role played in some cases by a person, for example a physicist who chooses an explanation of given experimental outcomes, and in other cases by some other biological entity, and in still other cases by an inanimate device, such as a computer-based detector used in physical measurements. While we forbear to try to explain the propensity of agents at all levels from cells to civilizations to form and operate networks of logically synchronized symbol-handling agents, we point to this propensity as an overlooked cosmic order, an order structured by the unpredictability ensuing from the proof. Appreciating the cosmic order leads to a conception of agency that replaces volition by unpredictability and reconceives the notion of objectivity in a way that makes a place for agency in the world as described by physics. Some specific implications for physics are outlined.

  15. Hot atoms in cosmic chemistry.

    PubMed

    Rossler, K; Jung, H J; Nebeling, B

    1984-01-01

    High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.

  16. Cosmic Convergence: Art and Science

    NASA Astrophysics Data System (ADS)

    Mayo, Elizabeth A.; Zisholtz, E.; Hilton, H.

    2010-01-01

    The I.P. Stanback Museum and Planetarium is a major educational and teaching resource for South Carolina State University, K-12 schools, other universities and the community of Orangeburg and well beyond. The concept of creating a museum with a planetarium on the campus of SC State was ahead of its time. Today scholars are writing about the unity of creative disciplines. Through its integration of the arts, humanities and sciences, the Stanback, the only art museum with a planetarium at any of the Historically Black Colleges and Universities and one of the few in the nation, stands in the forefront of modern thinking. Cosmic Convergence: Art and Science, opening at the I.P. Stanback Museum and Planetarium in February 2010, will feature the works of Mildred Thompson (1936-2003), a prominent African American artist who worked in the media of painting, drawing, print making, sculpture, and photography. Thompson’s artwork shows the strong influences of her interest in physics, astronomy, and metaphysics as well as music and spiritualism. “My work in the visual arts is, and has always been, a continuous search for understanding. It is an expression of purpose and reflects a personal interpretation of the Universe.” Cosmic Convergence will explore the meeting of Art and Science through Mildred Thompson's work and the scientific basis of that work. The paintings and sculptures of the exhibit will be combined with astronomical images showing both the reality and interpretation of the surrounding Universe. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  17. Major and trace element geochemistry of S-type cosmic spherules

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Babu, E. V. S. S. K.; Vijaya Kumar, T.

    2016-04-01

    Micrometeorites that pass through the Earth's atmosphere undergo changes in their chemical compositions, thereby making it difficult to understand if they are sourced from the matrix, chondrules, or calcium-aluminum-rich inclusions (CAIs). These components have the potential to provide evidence toward the understanding of the early solar nebular evolution. The variations in the major element and trace element compositions of 155 different type (scoriaceous, relict bearing, porphyritic, barred, cryptocrystalline, and glass) of S-type cosmic spherules are investigated with the intent to decipher the parent sources using electron microprobe and laser ablation inductively coupled plasma-mass spectrometry. The S-type cosmic spherules appear to show a systematic depletion in volatile element contents, but have preserved their refractory trace elements. The trends in their chemical compositions suggest that the S-type spherules comprise of components from similar parent bodies, that is, carbonaceous chondrites. Large fosteritic relict grains observed in this investigation appear to be related to the fragments of chondrules from carbonaceous chondrites. Furthermore, four spherules (two of these spherules enclose spinels and one comprised entirely of a Ca-Al-rich plagioclase) show enhanced trace element enrichment patterns that are drastically different from all the other 151 cosmic spherules. The information on the chemical composition and rare earth elements (REEs) on cosmic spherules suggest that the partially to fully melted ones can preserve evidences related to their parent bodies. The Ce, Eu, and Tm anomalies found in the cosmic spherules have similar behavior as that of chondrites. Distinct correlations observed between different REEs and types of cosmic spherules reflect the inherited properties of the precursors.

  18. Radiation from cosmic string standing waves

    PubMed

    Olum; Blanco-Pillado

    2000-05-01

    We have simulated large-amplitude standing waves on an Abelian-Higgs cosmic string in classical lattice field theory. The radiation rate falls exponentially with wavelength, as one would expect from the field profile around a gauge string. Our results agree with those of Moore and Shellard, but not with those of Vincent, Antunes, and Hindmarsh. The radiation rate falls too rapidly to sustain a scaling solution via direct radiation of particles from string length. There is thus reason to doubt claims of strong constraints on cosmic string theories from cosmic ray observations.

  19. Spectral distortions of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Mcdowell, Jonathan C.; Freese, Katherine; Levin, Janna

    1989-01-01

    Recent experiments indicate that the spectrum of the cosmic microwave background deviates from a pure blackbody; here, spectral distortions produced by cosmic dust are considered. The main result is that cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very massive stars) can explain the observed spectral distortions without violating existing cosmological constraints. In addition, it is shown that Compton y-distortions can also explain the observed spectral shape, but the energetic requirements are more severe.

  20. Antiparticles in the extragalactic cosmic radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Wolfendale, A. W.

    1985-01-01

    It may be possible to account for a previously puzzling feature - a bump in the energy range 10 to the 14th power eV to 10 to the 15th power - of the cosmic ray spectrum by hypothesizing a primary extragalactic origin for the bulk of the observed cosmic ray antiprotons, although such an explanation is not unique. In this model, most of the cosmic rays above 10 to the 15th power eV are extragalactic. A method is described of testing this hypothesis experimentally.

  1. The isotopic composition of cosmic ray chlorine

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1985-01-01

    The isotopic composition of galactic cosmic ray chlorine (approx. = 225 MeV/amu) has been studied using the high energy cosmic ray experiment on the International Sun Earth Explorer 3 (ISEE-3) spacecraft. The abundances of 35C1 and 37C1 are found to be consistent with the secondary production expected from a propagation model developed to account for both light and subiron secondaries. An upper limit on the abundance of the radioactive isotope 36C1 (halflife approx. = 0.3 Myr) is used to set a lower limit on the confinement time of cosmic rays of approximately 1 Myr.

  2. Cosmic Rays Variations and Human Physiological State

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2009-12-01

    It was obtained in our previous investigations that geomagnetic activity as an indirect indicator of solar activity correlates with some human physiological and psycho-physiological parameters. A lot of studies indicate that other parameters of space weather like cosmic rays Forbush decreases affect myocardial infarction, brain stroke, car accidents, etc. The purpose of that work was to study the effect of cosmic rays variations on human physiological status. It was established that the decrease in cosmic rays intensity was related to an increase in systolic and diastolic blood pressure and reported subjective psycho-physiological complaints in healthy volunteers.

  3. D-term inflation without cosmic strings.

    PubMed

    Urrestilla, J; Achúcarro, A; Davis, A C

    2004-06-25

    We present a superstring-inspired version of D-term inflation that does not lead to cosmic string formation and appears to satisfy the current cosmic microwave background constraints. It differs from minimal D-term inflation by a second pair of charged superfields that makes the strings nontopological (semilocal). The strings are also Bogomol'nyi-Prasad-Sommerfield strings, so the scenario is expected to survive supergravity corrections. The second pair of charged superfields arises naturally in several brane and conifold scenarios, but its effect on cosmic string formation had not been noticed so far. PMID:15244993

  4. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  5. Model structure of a cosmic-ray mediated stellar or solar wind

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Axford, W. I.

    1988-01-01

    An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.

  6. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    PubMed

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained. PMID:15698061

  7. Halo abundances within the cosmic web

    NASA Astrophysics Data System (ADS)

    Alonso, D.; Eardley, E.; Peacock, J. A.

    2015-03-01

    We investigate the dependence of the mass function of dark-matter haloes on their environment within the cosmic web of large-scale structure. A dependence of the halo mass function on large-scale mean density is a standard element of cosmological theory, allowing mass-dependent biasing to be understood via the peak-background split. On the assumption of a Gaussian density field, this analysis can be extended to ask how the mass function depends on the geometrical environment: clusters, filaments, sheets and voids, as classified via the tidal tensor (the Hessian matrix of the gravitational potential). In linear theory, the problem can be solved exactly, and the result is attractively simple: the conditional mass function has no explicit dependence on the local tidal field, and is a function only of the local density on the filtering scale used to define the tidal tensor. There is nevertheless a strong implicit predicted dependence on geometrical environment, because the local density couples statistically to the derivatives of the potential. We compute the predictions of this model and study the limits of their validity by comparing them to results deduced empirically from N-body simulations. We have verified that, to a good approximation, the abundance of haloes in different environments depends only on their densities, and not on their tidal structure. In this sense we find relative differences between halo abundances in different environments with the same density which are smaller than ˜13 per cent. Furthermore, for sufficiently large filtering scales, the agreement with the theoretical prediction is good, although there are important deviations from the Gaussian prediction at small, non-linear scales. We discuss how to obtain improved predictions in this regime, using the `effective-universe' approach.

  8. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  9. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  10. Development of the cosmic ray techniques

    SciTech Connect

    Rossi, B.

    1982-12-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray telescope. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers. 34 references.

  11. Heliosphere Changes Affect Cosmic Ray Penetration

    NASA Video Gallery

    The changes in the size of our solar system’s boundaries also cause changes to the galactic cosmic rays that enter the solar system. Although these boundaries do a good job of deflecting the majo...

  12. Yakov Zeldovich and the Cosmic Web Paradigm

    NASA Astrophysics Data System (ADS)

    Einasto, Jaan

    2016-10-01

    I discuss the formation of the modern cosmological paradigm. In more detail I describe the early study of dark matter and cosmic web and the role of Yakov Zeldovich in the formation of the present concepts on these subjects.

  13. Does cosmic weather affect infant mortality rate?

    PubMed

    Shamir, Lior

    2010-01-01

    In this article, the author proposes to consider a link between infant mortality rate (IMR) and galactic cosmic radiation (CR) density. The periodical increase in solar activity increases the effect of the magnetic field of the sun, and therefore weakens galactic cosmic rays hitting the Earth's surface. As a result, embryos in their early stages of development may be less exposed to high-energy ionizing cosmic rays when the solar activity peaks. In the study discussed here, cosmic ray density data were correlated with the U.S. infant mortality rate in the following year. Statistical analysis shows that in the past 30 years, Pearson correlation between the change in galactic CR flux and IMR decrease in the following year was -0.36 (p < .05). PMID:20687328

  14. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  15. Comparing cosmic web classifiers using information theory

    NASA Astrophysics Data System (ADS)

    Leclercq, Florent; Lavaux, Guilhem; Jasche, Jens; Wandelt, Benjamin

    2016-08-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  16. Effects of cosmic strings on free streaming

    SciTech Connect

    Takahashi, Tomo; Yamaguchi, Masahide

    2006-09-15

    We study the effect of free streaming in a universe with cosmic strings with time-varying tension as well as with constant tension. Although current cosmological observations suggest that fluctuation seeded by cosmic strings cannot be the primary source of cosmic density fluctuation, some contributions from them are still allowed. Since cosmic strings actively produce isocurvature fluctuation, the damping of small scale structure via free streaming by dark matter particles with large velocity dispersion at the epoch of radiation-matter equality is less efficient than that in models with conventional adiabatic fluctuation. We discuss its implications to the constraints on the properties of particles such as massive neutrinos and warm dark matter.

  17. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  18. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  19. Geometry and groups for cosmic topology

    SciTech Connect

    Kramer, Peter

    2011-03-21

    The Cosmic Microwave Background is measured by satellite observation with great precision. It offers insight into its origin in early states of the universe. Unexpected low multipole amplitudes of the incoming CMB radiation may be due to a multiply connected topology of cosmic 3-space. We present and analyze the geometry and homotopy for the family of Platonic spherical 3-manifolds, provide their harmonic analysis, and formulate topological selection rules.

  20. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  1. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  2. MCNP6 Cosmic-Source Option

    SciTech Connect

    McKinney, Gregg W; Armstrong, Hirotatsu; James, Michael R; Clem, John; Goldhagen, Paul

    2012-06-19

    MCNP is a Monte Carlo radiation transport code that has been under development for over half a century. Over the last decade, the development team of a high-energy offshoot of MCNP, called MCNPX, has implemented several physics and algorithm improvements important for modeling galactic cosmic-ray (GCR) interactions with matter. In this presentation, we discuss the latest of these improvements, a new Cosmic-Source option, that has been implemented in MCNP6.

  3. Low cloud properties influenced by cosmic rays

    PubMed

    Marsh; Svensmark

    2000-12-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.

  4. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  5. Tracks of cosmic rays in plastics.

    PubMed

    Fleischer, R L; Price, P B; Walker, R M; Filz, R C; Fukui, K; Friedlander, M W; Holeman, E; Rajan, R S; Tamhane, A S

    1967-01-13

    Cosmic ray nuclei have been observed with the use of plastic trackdetecting solids in satellites and high-altitude balloon flights. Nuclear emulsions in the stacks of plastic sheets allowed the positive identification of cosmic raynuclei as light as nitrogen. The most striking new information was the failure to observe relativistic iron nuclei, a result which has led to an advance in the understanding of track registration criteria.

  6. Cosmic strings - A problem or a solution?

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Bouchet, Francois R.

    1988-01-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.

  7. Cosmic Background Explorer (COBE) press kit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).

  8. Apollo 17 lunar surface cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The objectives and selected data are presented for the Apollo 17 Lunar Surface Cosmic Ray Experiment (LSCRE) for the purpose of introducing an analysis of three of the separate detectors contained within in LSCRE package. The mica detector for measuring heavy solar wind, and the lexan stack and glass detectors for measuring energetic particles in space are discussed in terms of their deployment, exposure time, calibration, and data yield. Relevant articles on solar particles, interplanetary ions, and cosmic ray nuclei are also included.

  9. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  10. Cosmic Ray Interaction Models: an Overview

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey

    2016-07-01

    I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  11. Critical decisions on Cosmic Vision

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Eddington had two aims, both remarkable and very pertinent to front-line astronomical interests. The first was to look for Earth-like planets outside our solar system - one of the key goals in the search to understand how life came to be, how it is that we live where we do in the universe and whether there are other potential life-supporting environments 'out there'. At the same time it was going to follow the path that the ESA-NASA mission SOHO had taken with the Sun of using astroseismology to look 'inside' stars. In the longer term, the loss of this one mission will not stop ESA and the scientific community pursuing the grand quests to which it would have contributed. The loss of the BepiColombo lander is also hard to take scientifically. ESA, in conjunction with the Japanese space agency, JAXA, will still put two orbiters around Mercury but the ‘ground truth’ provided by the lander is a big loss. However, to land on a planet so near the Sun is no small matter and was a bridge too far in present circumstances, and this chance for Europe to be first has probably been lost. The origins of the problems were recognised at the ESA Council meeting held in June. Several sudden demands on finance occurred in the spring, the most obvious and public being the unforeseen Ariane 5 grounding in January, delaying the launches of Rosetta and Smart-1. A temporary loan of EUR 100 million was granted, but must be paid back out of present resources by the end of 2006. ESA's SPC was therefore caught in a vice. Immediate mission starts had to be severely limited and the overall envelope of the programme contained. With this week’s decisions, the SPC has brought the scope of the Cosmic Vision programme down to a level that necessarily reflects the financial conditions rather than the ambitions of the scientific community. A long and painful discussion during the SPC meeting resulted in the conclusion that only one new mission can be started at this time, namely LISA Pathfinder

  12. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  13. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  14. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  15. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  16. Reminiscences of cosmic ray research in Mexico

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge

    2009-11-01

    Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north-south and west-east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.

  17. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations. PMID:26181770

  18. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  19. Research Concerning Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell; Cunningham, John; Kuhlmann, Steve; Spinka, Hal; Underwood, Dave; Hammergren, Mark

    2010-02-01

    Throughout my academic career at Loyola I have carried out research with the Loyola University Cosmic Event Detection System concerning the possibility of detection of ultra high energy cosmic rays (UHECRs) based on radio meteor scattering methods. This research was furthered through summer internships and research fellowships at Adler Planetarium Chicago and Stony Brook University in New York. At Adler Planetarium we used a helium balloon carrying a Geiger counter and other equipment to record the cosmic ray flux at various points in the atmosphere. The results clearly show the flux depends on the atmospheric density. At Stony Brook University I studied their advanced system for detecting cosmic rays in similar manner to radio meteor scattering principles. Research there focused on detection algorithms and also on the possibility of utilizing Digital Tv (DTv) signals for further research. Through the research a solid understanding of cosmic rays was formed including topics such as origins and energy scales of cosmic rays, both of which pose unanswered questions. )

  20. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  1. Equivalence principles, spacetime structure and the cosmic connection

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2016-03-01

    After reviewing the meaning of various equivalence principles and the structure of electrodynamics, we give a fairly detailed account of the construction of the light cone and a core metric from the equivalence principle for photons (no birefringence, no polarization rotation and no amplification/attenuation in propagation) in the framework of linear electrodynamics using cosmic connections/observations as empirical support. The cosmic nonbirefringent propagation of photons independent of energy and polarization verifies the Galileo Equivalence Principle (Universality of Propagation) for photons/electromagnetic wave packets in spacetime. This nonbirefringence constrains the spacetime constitutive tensor to high precision to a core metric form with an axion degree and a dilaton degree of freedom. Thus comes the metric with axion and dilation. Constraints on axion and dilaton from astrophysical/cosmic propagation are reviewed. Eötvös-type experiments, Hughes-Drever-type experiments, redshift experiments then constrain and tie this core metric to agree with the matter metric, and hence a unique physical metric and universality of metrology. We summarize these experiments and review how the Galileo equivalence principle constrains the Einstein Equivalence Principle (EEP) theoretically. In local physics this physical metric gives the Lorentz/Poincaré covariance. Understanding that the metric and EEP come from the vacuum as a medium of electrodynamics in the linear regime, efforts to actively look for potential effects beyond this linear scheme are warranted. We emphasize the importance of doing Eötvös-type experiments or other type experiments using polarized bodies/polarized particles. We review the theoretical progress on the issue of gyrogravitational ratio for fundamental particles and update the experimental progress on the measurements of possible long range/intermediate range spin-spin, spin-monopole and spin-cosmos interactions.

  2. The Cosmic Background Explorer /COBE/

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1982-01-01

    The Cosmic Background Explorer (COBE) satellite, under study by NASA since 1976, will map the spectrum and the angular distribution of diffuse radiation from the universe over the entire wavelength range from 1 micron to 1.3 cm. It carries three instruments: a set of differential microwave radiometers (DMR) at 23.5, 31.4, 53, and 90GHz, a far infrared absolute spectrophotometer (FIRAS) covering 1 to 100 per cm, and a diffuse infrared background experiment (DIRBE) covering 1 to 300 microns. They will use the ideal space environment, a one year lifetime, and standard instrument techniques to achieve orders of magnitude improvements in sensitivity and accuracy, providing a fundamental data base for cosmology. The instruments are united by common purpose as well as similar environmental and orbital requirements. The data from all three experiments will be analyzed together, to distinguish nearby sources of radiation from the cosmologically interesting diffuse background radiations. Construction is planned to begin in 1982 for a launch in 1988.

  3. Basic Cosmic Knowledge, Circa 2010

    NASA Astrophysics Data System (ADS)

    Mimouni, J.

    2010-10-01

    What is the minimum knowledge an educated scientist should fathom about the modern Universe, so as to be the ``l'honnête homme'' of this early 21st century? Thanks on the one hand to great theoretical strides, and on the other hand to a wide array of telescopes and detectors on the ground, as well as a flotilla of space borne like means, a new picture of the Universe have emerged: From a violent one in X and Gamma rays for highly energetic processes, to a warmer one in IR able to penetrate planetary cocoons, to a lukewarm one in microwave to go back to the earliest instants of the Universe, all the way to a quiet radio one (In fact misleadingly calm...) for extragalactic astronomy, each telling its own dedicated account. This exciting story which is unfolding in front of our very eyes is multi-band, multi scales, multi carriers, and there is even large shadowy areas going by the name of Dark Matter and Dark Energy which might constitute 21st century physics! Well, what is thus the knowledge of the cosmos we feel confident about today, and what are its various grey areas? That's `Basic Cosmic Knowledge 2010'' or BCK-2010!.

  4. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  5. Coupled currents in cosmic strings

    SciTech Connect

    Lilley, Marc; Peter, Patrick; Martin, Xavier

    2009-05-15

    We examine the structure of a cosmic string endowed with two Abelian neutral currents, associated with two global U(1) symmetries. We first resolve the microstructure and show that it depends on two state parameters, namely, the squares of the phase gradients of the current carriers. We then provide a macroscopic description for such a string and show that it depends on an additional Lorentz-invariant state parameter that relates the two currents. We find that in most of the parameter space, the two-current string is essentially equivalent to the single-current-carrying string; i.e., only one field condenses onto the defect. In the regions where two currents are present, we find that as far as stability is concerned, one can approximate the dynamics with good accuracy using an analytic model based on either a logarithmic (on the electric side, i.e., for timelike currents) or a rational (on the magnetic side, i.e., for spacelike currents) world sheet Lagrangian. We end up by generalizing to the N current case.

  6. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  7. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  8. Cosmic strings and chronology protection

    NASA Astrophysics Data System (ADS)

    Grant, James D. E.

    1993-03-01

    A space consisting of two rapidly moving cosmic strings has recently been constructed by Gott that contains closed timelike curves. The global structure of this space is analyzed and it is found that, away from the strings, the space is identical to a generalized Misner space. The vacuum expectation value of the energy-momentum tensor for a conformally coupled scalar field is calculated on this generalized Misner space. It is found to diverge very weakly on the chronology horizon, but more strongly on the polarized hypersurfaces. The divergence on the polarized hypersurfaces is strong enough that when the proper geodesic interval around any polarized hypersurface is of the order of the Planck length squared, the perturbation to the metric caused by the back reaction will be of the order one. Thus we expect the structure of the space will be radically altered by the back reaction before quantum gravitational effects become important. This suggests that Hawking's ``chronology protection conjecture'' holds for spaces with a noncompactly generated chronology horizon.

  9. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  10. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  11. Cosmic Education: The Child's Discovery of a Global Vision and a Cosmic Task

    ERIC Educational Resources Information Center

    Stephenson, Susan Mayclin

    2015-01-01

    Susan Mayclin Stephenson tackles a large subject, Cosmic Education, which Montessori defined as a "unifying global and universal view[s] of the past, present and future." Stephenson takes the reader from birth to the end of the elementary age with examples of how the child grows into an understanding of Cosmic Education through their…

  12. Space Weathering of Small Bodies

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.

    2002-12-01

    Space weathering is defined as any process that wears away and alters surfaces, here confined to small bodies in the Solar System. Mechanisms which possibly alter asteroid and comet surfaces include solar wind bombardment, UV radiation, cosmic ray bombardment, micrometeorite bombardment. These processes are likely to contribute to surface processes differently. For example, solar wind bombardment would be more important on a body closer to the Sun compared to a comet where cosmic ray bombardment might be a more significant weathering mechanism. How can we measure the effects of space weathering? A big problem is that we don't know the nature of the surface before it was weathered. We are in a new era in the study of surface processes on small bodies brought about by the availability of spatially resolved, color and spectral measurements of asteroids from Galileo and NEAR. What processes are active on which bodies? What physics controls surface processes in different regions of the solar system? How do processes differ on different bodies of different physical and chemical properties? What combinations of observable parameters best address the nature of surface processes? Are there alternative explanations for the observed parameters that have been attributed to space weathering? Should we retain the term, space weathering? How can our understanding of space weathering on the Moon help us understand it on asteroids and comets? Finally, we have to leave behind some presuppositions, one being that there is evidence of space weathering based on the fact that the optical properties of S-type asteroids differs from those of ordinary chondrites.

  13. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  14. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  15. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    PubMed

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist. PMID:26967406

  16. Cosmic microwave background and first molecules in the early universe

    NASA Astrophysics Data System (ADS)

    Signore, Monique; Puy, Denis

    2009-01-01

    Besides the Hubble expansion of the universe, the main evidence in favor of the big-bang theory was the discovery, by Penzias and Wilson, of the cosmic microwave background (hereafter CMB) radiation. In 1990, the COBE satellite (Cosmic Background Explorer) revealed an accurate black-body behavior with a temperature around 2.7 K. Although the microwave background is very smooth, the COBE satellite did detect small variations—at the level of one part in 100 000—in the temperature of the CMB from place to place in the sky. These ripples are caused by acoustic oscillations in the primordial plasma. While COBE was only sensitive to long-wavelength waves, the Wilkinson Microwave Anisotropy Probe (WMAP)—with its much higher resolution—reveals that the CMB temperature variations follow the distinctive pattern predicted by cosmological theory. Moreover, the existence of the microwave background allows cosmologists to deduce the conditions present in the early stages of the big bang and, in particular, helps to account for the chemistry of the universe. This report summarizes the latest measurements and studies of the CMB with the new calculations about the formation of primordial molecules. The PLANCK mission—planned to be launched in 2009—is also presented.

  17. Alignments of galaxies within cosmic filaments from SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  18. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  19. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  20. Simplified model for solar cosmic ray exposure in manned Earth orbital flights

    SciTech Connect

    Wilson, J.W.; Khandelwal, G.S.; Shinn, J.L.; Nealy, J.E.; Townsend, L.W.; Cucinotta, F.A.

    1990-05-01

    A simple calculational model is derived for use in estimating solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field, including storm conditions and the astronauts' self-shielding, are evaluated explicitly. The magnetic storm model is keyed to the planetary index K(sub p).

  1. Simplified model for solar cosmic ray exposure in manned Earth orbital flights

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Khandelwal, Govind S.; Shinn, Judy L.; Nealy, John E.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1990-01-01

    A simple calculational model is derived for use in estimating solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field, including storm conditions and the astronauts' self-shielding, are evaluated explicitly. The magnetic storm model is keyed to the planetary index K(sub p).

  2. Ready for the Cosmic Ball

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Something appears to be peering through a shiny red mask, in this new false-colored image from NASA's Spitzer Space Telescope. The mysterious blue eyes are actually starlight from the cores of two merging galaxies, called NGC 2207 and IC 2163. The mask is the galaxies' dusty spiral arms.

    NGC 2207 and IC 2163 recently met and began a sort of gravitational tango about 40 million years ago. The two galaxies are tugging at each other, stimulating new stars to form. Eventually, this cosmic ball will come to an end, when the galaxies meld into one. The dancing duo is located 140 million light-years away in the Canis Major constellation.

    The Spitzer image reveals that the galactic mask is adorned with strings of pearl-like beads. These dusty clusters of newborn stars, called 'beads on a string' by astronomers, appear as white balls throughout the arms of both galaxies. They were formed when the galaxies first interacted, forcing dust and gas to clump together into colonies of stars.

    This type of beading has been seen before in other galaxies, but it took Spitzer's infrared eyes to identify them in NGC 2207 and IC 2163. Spitzer was able to see the beads because the stars inside heat up surrounding dust, which then radiates with infrared light.

    The biggest bead lighting up the left side of the mask is also the densest. In fact, some of its central stars might have merged to form a black hole. (Now, that would be quite the Mardi Gras mask!)

    This picture, taken by Spitzer's infrared array camera, is a four-channel composite. It shows light with wavelengths of 3.6 microns (blue); 4.5 microns (green); and 5.8 and 8.0 microns (red). The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8- and 8-micron channels to enhance the visibility of the dust features.

  3. Cosmic Disasters, Real and Imagined

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.

    2010-05-01

    Since ancient times, humans have looked to the skies for explanations of past tragedies and predictions of the future. Indeed the very word "disaster” means "bad star". Although most such myths and forecasts are purely imaginary, we have, in more recent times, identified real cosmic impact events in the past and we have developed the necessary tools to discover and predict them in the near-term future. We dynamical astronomers, the direct descendants of ancient astrologers, have at last gained the tools to actually deliver on at least some of the promises of ancient astrologers, to predict "Armageddon” before it arrives. Nevertheless, we still carry some baggage of mythos, ancient disasters blamed on impacts that never happened, and obsessions over impacts of such incredible improbability that we would better worry about other things. In this talk I will review our present state of knowledge of what is out there that might hit us and with what frequency, the estimated consequences of impacts of all sizes, and from these derive an "actuarial” impact risk assessment. I will present the "intrinsic risk", before any Earth-approaching asteroids were discovered; where we are now with the present level of survey completeness; and where future surveys should take us. I will put this in the context of risk levels from other natural, and un-natural, hazards. I will close with a brief discussion of a claimed impact that almost certainly did not happen, relating to the extinction of megafauna in North America 12,900 years ago. The mythos underlying this claim may provide an object lesson on the present day "street fight” over the reality of global warming.

  4. The Cosmic Infrared Background Experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  5. Dynamical evolution of cosmic strings

    SciTech Connect

    Bouchet, F.R.

    1988-05-11

    The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t/sup -2/. This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok.

  6. HERA: Chasing Our Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    DeBoer, David; Bowman, J. D.; Jacobs, D.; Parsons, A.; Liu, A.; Werthimer, D.; Ali, Z.; Carilli, C. L.; Chiang, C.; Sievers, J. L.; Furlanetto, S. R.; Hewitt, J. N.; Tegmark, M.; Dillon, J. S.; Bradley, R. F.; Moore, D.; Aguirre, J. E.; Bernardi, G.; Walbrugh, W.; Morales, M. F.; Pober, J.

    2014-04-01

    The Hydrogen Epoch of Reionization Arrays (HERA) roadmap is a staged program that uses the unique properties of the 21-cm line from neutral hydrogen to probe the Epoch of Reionization (EoR) and the preceding Dark Ages. During these epochs, roughly 0.3-1 Gyr after the Big Bang, the first stars and black holes heated and reionized the Universe following cosmic recombination. Direct observation of the large scale structure of reionization and its evolution with time will have a profound impact on our understanding of the birth of the first galaxies and black holes, their influence on the intergalactic medium (IGM), and cosmology. Detecting, characterizing and ultimately imaging this epoch is a key goal for the community and was the top priority in the Radio, Millimeter, and Sub-millimeter category of recommended new facilities for mid-scale funding in the most recent decadal survey. Current projects (PAPER, MWA, LOFAR, GMRT) are striving to make the first detection of the statistical power spectrum of the signal, but current best limits still fall above even optimistic predictions of its intrinsic strength. While these projects are still taking data, it is recognized that an optimized array based on our new understanding of the signal characteristics is needed to make a strong detection and begin to characterize this signal over multiple scales and redshifts. The HERA collaboration is chasing this signal by selectively expanding the sensitivity at these frequencies with a new array to be constructed in South Africa, at the current location of PAPER. As the area increases, so do the data and pipeline needs. This paper will outline the telescope and discuss its processing needs.

  7. Body Piercing

    PubMed Central

    Koenig, Laura M; Carnes, Molly

    1999-01-01

    OBJECTIVE To review the current information on medical complications, psychological implications, and legislative issues related to body piercing, a largely unregulated industry in the United States. METHODS We conducted a MEDLINE search of English language articles from 1966 until May 1998 using the search terms “body piercing” and “ear piercing.” Bibliographies of these references were reviewed for additional citations. We also conducted an Internet search for “body piercing” on the World Wide Web. MAIN RESULTS: In this manuscript, we review the available body piercing literature. We conclude that body piercing is an increasingly common practice in the United States, that this practice carries substantial risk of morbidity, and that most body piercing in the United States is being performed by unlicensed, unregulated individuals. Primary care physicians are seeing growing numbers of patients with body pierces. Practitioners must be able to recognize, treat, and counsel patients on body piercing complications and be alert to associated psychological conditions in patients who undergo body piercing. PMID:10354260

  8. CMB constraints on cosmic strings and superstrings

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam

    2016-06-01

    We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.

  9. Cosmic rays, geomagnetic field and climate changes

    NASA Astrophysics Data System (ADS)

    Shea, M.; Smart, D.

    The possibility of a connection between cosmic radiation and climate has intrigued scientists for the past several decades. The recent studies of Friis -Christensen and Svensmark has shown an observed variation of 3-4% of the global cloud cover between 1980 and 1995 that appeared to be directly correlated with the change in galactic cosmic radiation flux over the solar cycle. However, in studies of this type, not only the solar cycle modulation of cosmic radiation must be considered, but also the changes in the cosmic radiation impinging at the top of the atmosphere as a result of the long term evolution of the geomagnetic field. We present preliminary results of an on-going study of geomagnetic cutoff rigidities over a 400-year interval. These results show (1) the change in cutoff rigidity is sufficient large so that the change in cosmic radiation flux impacting the earth is approximately equal to the relative change in flux over a solar cycle, and (2) the changes in cutoff rigidity are non- uniform over the globe with both significant increases and decreases at mid-latitude locations.

  10. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  11. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  12. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  13. Space weather prediction by cosmic rays

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Souvatzoglou, G.; Sarlanis, C.; Mariatos, G.; Plainaki, C.; Gerontidou, M.; Belov, A.; Eroshenko, E.; Yanke, V.

    Relativistic (galactic and solar) cosmic rays (CR) registered by neutron monitors can play a useful key-role in space weather storms forecasting and in the specification of magnetic properties of coronal mass ejections (CMEs), shocks and ground level enhancements (GLEs). In order to produce a real-time prediction of space weather phenomena, only real-time data from a neutron monitor network should be employed. Recently in Athens cosmic-ray station a real-time data collection and acquisition system has been created in collaboration with the cosmic ray group of IZMIRAN. This system collects data in real-time mode from about 15 real-time cosmic ray stations by using the internet. The main server in Athens station collects 5-min and hourly cosmic ray data. The measurements of all stations are being processed automatically while converted into a suitable form, so as to be serviceably for forecasting purposes. All programs have been written in an expandable form, in order to upgrade the network of real-time neutron monitors with the biggest possible number of stations, easily. Programs which make use of these data for forecasting studies are already running in experimental mode. The increased number of NM stations operating in real time provides a good basis for using Neutron Monitor network as a tool of forecasting the arrival of the interplanetary disturbances at the Earth.

  14. Heliocentric radius of the cosmic ray modulation boundary

    NASA Technical Reports Server (NTRS)

    Randall, B. A.; Van Allen, J. A.

    1986-01-01

    A semiempirical analysis is made of an extensive body of observed cosmic ray intensity data from Pioneers 10 and 11, and related spectral information from other authors, in order to infer the radius R of the modulation region surrounding the sun. During the period 1972-1985, the inferred values of R vary with time systematically and in a manner generally similar to that of sunspot numbers. The range of values of R is from 42 AU at the time of minimum solar activity (circa 1976) to 88 AU about 1.5 yr following the time of maximum solar activity (circa 1980). A specific, testable prediction is that Pioneer 10 will reach the modulation boundary in 1988, and will remain in its vicinity for several years thereafter.

  15. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  16. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    SciTech Connect

    Movahed, M. Sadegh; Khosravi, Shahram E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated pure Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.

  17. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  18. Bruno Rossi: Cosmic Ray Research 1929 - 1953

    NASA Astrophysics Data System (ADS)

    Cronin, Jim

    2012-03-01

    Bruno Rossi, a fresh PhD from the University of Bologna, arrived in Florence in 1928. He was appointed assistant to Antonio Garbasso, professor of experimental physics. Garbosso at that time was Mayor of Florence. His days of physics were over which gave the young Rossi a freedom to follow any line of research. After some agonizing he came upon research in cosmic rays following the discovery that a large part of the cosmic rays were charged particles. Thus began a long period of creative research. Rossi had all the talents needed, a powerful intellect and the natural ability to construct apparatus that gave clear results for his experiments. I will give some examples of his many discoveries concerning the nature of cosmic rays.

  19. Detecting EHE Cosmic Rays Using Cherenkov Light

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas

    2011-04-01

    Cherenkov light has been used to detect gamma rays in the TeV energy range using an imaging technique and cosmic rays in the PeV energy range using a non-imaging technique. We would like to extend the use of the non-imaging technique up to nearly 1 EeV. At these energies the technique can be used in conjunction with fluorescence detection of cosmic rays, allowing for hybrid reconstruction of shower geometries and cross calibration of energy scales. We envision using an array of Cherenkov detectors as part of the Telescope Array (TA) Low Energy extension (TALE), extending the energy range of the detector down to the Knee of the cosmic ray energy spectrum.

  20. Capabilities of the cosmic background explorer

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1987-01-01

    The cosmic background explorer, now being redesigned for a launch on a Delta rocket in 1989, will carry three instruments to measure the cosmic infrared and microwave background radiation and other diffuse sources from 1 micron to 1 cm wavelength. These instruments will be orders of magnitude more sensitive and accurate than previous equipment and will help determine the structure of the early universe. The instruments are (1) an absolute spectrophotometer, covering 100 microns to 1 cm, (2) an absolute infrared radiometer covering 1 to 300 microns, and (3) differential microwave radiometers at 32, 53, and 90 GHz. They will measure the large scale anisotropy and the spectrum of the 3 K cosmic background, and search for the extragalactic infrared background, to a sensitivity limited by the astrophysical environment. The first two instruments require liquid helium cooling, limiting their lifetime to about 14 months.

  1. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  2. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  3. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  4. The Astrobiological Case for Our Cosmic Ancestry

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems most likely that interstellar organics in large measure also derive from biology. As we enter a new decade -- the year 2010 -- a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

  5. The astrobiological case for our cosmic ancestry

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    2010-04-01

    With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems likely that interstellar organics in large measure also derive from biology. As we enter a new decade - the year 2010 - a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

  6. Lepton asymmetry and the cosmic QCD transition

    SciTech Connect

    Schwarz, Dominik J.; Stuke, Maik E-mail: mstuke@physik.uni-bielefeld.de

    2009-11-01

    We study the influence of lepton asymmetries on the evolution of the early Universe. The lepton asymmetry l is poorly constrained by observations and might be orders of magnitudes larger than the observed baryon asymmetry b ≅ 10{sup −10}, |l|/b ≤ 2 × 10{sup 8}. We find that lepton asymmetries that are large compared to the tiny baryon asymmetry, can influence the dynamics of the QCD phase transition significantly. The cosmic trajectory in the μ{sub B}−T phase diagram of strongly interacting matter becomes a function of lepton (flavour) asymmetry. For tiny or vanishing baryon and lepton asymmetries lattice QCD simulations show that the cosmic QCD transition is a rapid crossover. However, for large lepton asymmetry, the order of the cosmic transition remains unknown.

  7. Consistency relation for cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev Kumar; Sloth, Martin S.

    2012-12-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  8. Cosmic Background Explorer (COBE): Emergency support

    NASA Technical Reports Server (NTRS)

    Stanford, R.; Mattson, R.

    1991-01-01

    The Cosmic Background Explorer (COBE) Mission will measure the diffuse radiation from the universe in the wavelength band 1 micron to 9.6 mm. The band includes the 3 K cosmic background radiation, the known relic of the primeval cosmic explosion. The COBE satellite will be launched from the Western Space and Missile Center (EWSMC) via a Delta launch vehicle into a circular parking orbit of about 300 km. COBE will be placed into a 900-km altitude circular orbit. Coverage will be provided by the Deep Space Network (DSN) for COBE emergencies that would prevent communications via the normal channels of the Tracking and Data Relay Satellite System (TDRSS). Emergency support will be provided by the DSN 26-m subnetwork. Information is given in tabular form for DSN network support, frequency assignments, telemetry, and command.

  9. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  10. Cosmic ray acceleration by binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kundt, W.

    Young binary neutron stars, the elder brothers of pulsars, are proposed as the boosters of the ionic component of cosmic rays. Their rotational energy can be converted into beams of cosmic rays if there is enough coupling between the corotating magnetosphere and the impinging plasma, in a manner similar to the sparking of a grindstone. Power-law spectra in energy are obtained from a power-law dependence of the accelerating fields. The upper cutoff energy should not greatly exceed 10 to the 20th eV. The observed ionic cosmic-ray spectrum would result from a superposition of the injection by no more than about one million young binary neutron stars.

  11. Cosmic-Ray Observations with HAWC30

    NASA Astrophysics Data System (ADS)

    Fiorino, Daniel

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 meters on the slope of Volc'an Sierra Negra near Puebla, Mexico. HAWC is an extensive air-shower array comprising 300 optically-isolated water Cherenkov detectors. Each detector contains 200,000 liters of filtered water and four upward-facing photomultiplier tubes. Since September 2012, 30 water Cherenkov detectors have been instrumented and operated in data acquisition. With 10 percent of the detector complete and six months of operation, the event statistics are already sufficient to perform detailed studies of cosmic rays observed at the site. We will report on cosmic-ray observations with HAWC30, in particular the detection and study of the shadow of the moon. From these observations, we infer the pointing accuracy of the detector and our angular resolution of the detector reconstruction.

  12. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  13. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  14. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  15. Yakutsk Institute's cosmic ray research facility

    NASA Astrophysics Data System (ADS)

    Konovalov, B.

    1984-11-01

    Progress in cosmic physics research and aeronomy is reported. Geophysical observatories and stations, test ranges and other facilities spread over a vast territory of the Yakutsk Autonomous Republic and instruments onboard satellites are outlined. The ionosphere, magnetic fields and earth currents, cosmic rays and radio emissions, polar aurora and meteorological phenomena are studied. A large installation of the SHALL which investigates cosmic-ray showers is discussed. The creation of a unique complex for study of the ionosphere which will interconnect existing ionosphere stations near Yakutsk and in Zhigansk, a geospace-physics observatory in Tiksi, and a station which is to be created on Kotel'nyy Island is reported. It will be possible to discern from data received at central post how the solar wind is flowing around the Earth and what changes are produced in the ionosphere. The SHALL will be able to assess the radiation situation around the planet and to give accurate forecasts of shortwave radio conditions.

  16. The cosmic mult-messenger background field

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter

    2016-04-01

    The cosmic star formation history associated with baryon flows within the large scale structure of the expanding Universe has many important consequences, such as cosmic chemical- and galaxy evolution. Stars and accreting compact objects subsequently produce light, from the radio band to the highest photon energies, and dust within galaxies reprocesses a significant fraction of this light into the IR region. The Universe creates a radiation background that adds to the relic field from the big bang, the CMB. In addition, Cosmic Rays are created on variouys scales, and interact with this diffuse radiation field, and neutrinos are added as well. A multi-messenger field is created whose evolution with redshift contains a tremendous amount of cosmological information. We discuss several aspects of this story, emphasizing the background in the HE regime and the neutrino sector, and disccus the use of gamma-ray sources as probes.

  17. Weak cosmic censorship: as strong as ever.

    PubMed

    Hod, Shahar

    2008-03-28

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.

  18. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  19. Weak cosmic censorship: as strong as ever.

    PubMed

    Hod, Shahar

    2008-03-28

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments. PMID:18517851

  20. The Cosmic Origins Program Analysis Group (COPAG)

    NASA Astrophysics Data System (ADS)

    Sembach, Kenneth

    2014-01-01

    The Cosmic Origins Program Analysis Group (COPAG) is tasked by the NASA Advisory Council's Astrophysics Subcommittee to support community coordination and analysis of scientific and technological issues impacting NASA's Cosmic Origins Program. NASA's Cosmic Origins theme encompasses a diversity of astrophysical phenomena ranging from the formation of stars to the development and evolution of the largest assemblages of matter in the universe. The principal tasks of the COPAG in 2013-2014 will be to assess and provide input on technological needs for future space missions, and to form several new study analysis groups with the community on science related to Hubble, JWST, and WFIRST-AFTA. This talk will summarize the status of ongoing analyses and briefly describe these new initiatives, some of which will involve coordination with other Program Analysis Groups.

  1. Cosmic evolution in a cyclic universe

    NASA Astrophysics Data System (ADS)

    Steinhardt, Paul J.; Turok, Neil

    2002-06-01

    Based on concepts drawn from the ekpyrotic scenario and M theory, we elaborate our recent proposal of a cyclic model of the universe. In this model, the universe undergoes an endless sequence of cosmic epochs which begin with the universe expanding from a ``big bang'' and end with the universe contracting to a ``big crunch.'' Matching from ``big crunch'' to ``big bang'' is performed according to the prescription recently proposed with Khoury, Ovrut and Seiberg. The expansion part of the cycle includes a period of radiation and matter domination followed by an extended period of cosmic acceleration at low energies. The cosmic acceleration is crucial in establishing the flat and vacuous initial conditions required for ekpyrosis and for removing the entropy, black holes, and other debris produced in the preceding cycle. By restoring the universe to the same vacuum state before each big crunch, the acceleration ensures that the cycle can repeat and that the cyclic solution is an attractor.

  2. Cusps on cosmic superstrings with junctions

    SciTech Connect

    Davis, Anne-Christine; Rajamanoharan, Senthooran; Nelson, William; Sakellariadou, Mairi E-mail: william.nelson@kcl.ac.uk E-mail: mairi.sakellariadou@kcl.ac.uk

    2008-11-15

    The existence of cusps on non-periodic strings ending on D-branes is demonstrated and the conditions for which such cusps are generic are derived. The dynamics of F-strings, D-strings and FD-string junctions are investigated. It is shown that pairs of FD-string junctions, such as would form after intercommutations of F-strings and D-strings, generically contain cusps. This new feature of cosmic superstrings opens up the possibility of extra channels of energy loss from a string network. The phenomenology of cusps on such cosmic superstring networks is compared to that of cusps formed on networks of their field theory analogues, the standard cosmic strings.

  3. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  4. Weak Cosmic Censorship: As Strong as Ever

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2008-03-01

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.

  5. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  6. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  7. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  8. A Cosmic Baby-Boom

    NASA Astrophysics Data System (ADS)

    2005-09-01

    Large Population of Galaxies Found in the Young Universe with ESO's VLT The Universe was a more fertile place soon after it was formed than has previously been suspected. A team of French and Italian astronomers [1] made indeed the surprising discovery of a large and unknown population of distant galaxies observed when the Universe was only 10 to 30% its present age. ESO PR Photo 29a/05 ESO PR Photo 29a/05 New Population of Distant Galaxies [Preview - JPEG: 400 x 424 pix - 191k] [Normal - JPEG: 800 x 847 pix - 449k] [HiRes - JPEG: 2269 x 2402 pix - 2.0M] ESO PR Photo 29b/05 ESO PR Photo 29b/05 Average Spectra of Distant Galaxies [Preview - JPEG: 400 x 506 pix - 141k] [Normal - JPEG: 800 x 1012 pix - 320k] This breakthrough is based on observations made with the Visible Multi-Object Spectrograph (VIMOS) as part of the VIMOS VLT Deep Survey (VVDS). The VVDS started early 2002 on Melipal, one of the 8.2-m telescopes of ESO's Very Large Telescope Array [2]. In a total sample of about 8,000 galaxies selected only on the basis of their observed brightness in red light, almost 1,000 bright and vigorously star forming galaxies were discovered that were formed between 9 and 12 billion years ago (i.e. about 1,500 to 4,500 million years after the Big Bang). "To our surprise, says Olivier Le Fèvre, from the Laboratoire d'Astrophysique de Marseille (France) and co-leader of the VVDS project, "this is two to six times higher than had been found previously. These galaxies had been missed because previous surveys had selected objects in a much more restrictive manner than we did. And they did so to accommodate the much lower efficiency of the previous generation of instruments." While observations and models have consistently indicated that the Universe had not yet formed many stars in the first billion years of cosmic time, the discovery announced today by scientists calls for a significant change in this picture. The astronomers indeed find that stars formed two to three times

  9. Kriging interpolating cosmic velocity field

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  10. Cosmic microwave background anisotropy induced by a moving straight cosmic string

    SciTech Connect

    Sazhina, O. S. Sazhin, M. V. Sementsov, V. N.

    2008-05-15

    A method of searching for cosmic strings based on an analysis of the cosmic microwave background (CMB) anisotropy is presented. A moving straight cosmic string is shown to generate structures of enhanced and reduced brightness with a distinctive shape. The conditions under which a string can be detected by both CMB anisotropy and gravitational lensing in optical surveys are analyzed. For a relativistic string with a deficit angle of {approx}1''-2'', the amplitude of the generated anisotropy is shown to be {approx}15-30 {mu}K.

  11. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  12. Separation of Gravitational-Wave and Cosmic-Shear Contributions to Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(sup 15) GeV .

  13. The current status of observational constraints on cosmic strings

    SciTech Connect

    Caldwell, R.R.

    1993-10-01

    The observational restrictions on the cosmic string scenario for the formation of large scale structure are evaluated. this restrictions are due to the spectrum of gravitational radiation emitted by oscillating string loops, anisotropies in the cosmic microwave background caused by the strings, and evaporating black holes formed from collapsed cosmic string loops. It is shown that the only free parameter of the scenario, the cosmic string mass-per-unit-length, {mu}, is severely restricted.

  14. What is your Cosmic Connection to the Elements?

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim

    2003-01-01

    This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.

  15. Cosmic string structure at the gravitational radiation scale

    SciTech Connect

    Polchinski, Joseph; Rocha, Jorge V.

    2007-06-15

    We use our model of the small scale structure on cosmic strings to develop further the result of Siemens, Olum, and Vilenkin that the gravitational radiation length scale on cosmic strings is smaller than the previously assumed {gamma}G{mu}t. We discuss some of the properties of cosmic string loops at this cutoff scale, and we argue that recent network simulations point to two populations of cosmic string loops, one near the horizon scale and one near the gravitational radiation cutoff.

  16. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  17. Thin shells joining local cosmic string geometries

    NASA Astrophysics Data System (ADS)

    Eiroa, Ernesto F.; Rubín de Celis, Emilio; Simeone, Claudio

    2016-10-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  18. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  19. Cosmic censorship in higher dimensions. II

    SciTech Connect

    Mahajan, Ashutosh; Goswami, Rituparno; Joshi, Pankaj S.

    2005-07-15

    Generalizing earlier results on dust collapse in higher dimensions, we show here that cosmic censorship can be restored in some classes of gravitational collapse models with tangential pressure present, if we take the spacetime dimension to be N{>=}6. This is under conditions to be motivated physically, such as smoothness of initial data from which the collapse develops. The models considered here with nonzero pressure include the Einstein cluster spacetimes which have been earlier studied extensively. Our work provides a step towards an understanding of the cosmic censorship conjecture and the necessary conditions for its validity.

  20. Cosmic Origins Program Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Pham, Bruce Thai; Neff, Susan Gale

    2016-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time.

  1. Wave diffraction by a cosmic string

    NASA Astrophysics Data System (ADS)

    Fernández-Núñez, Isabel; Bulashenko, Oleg

    2016-08-01

    We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.

  2. The Cosmic Web in Our Own Backyard

    NASA Astrophysics Data System (ADS)

    Ibata, Rodrigo A.; Lewis, Geraint F.

    2008-01-01

    On the largest scales, matter is strung out on an intricate pattern known as the cosmic web. The tendrils of this web should reach right into our own cosmic backyard, lacing the Galactic halo with lumps of dark matter. The search for these lumps, lit up by stars that formed within them, is a major astronomical endeavor, although it has failed to find the huge expected population. Is this a dark matter crisis, or does it provide clues to the complexities of gas physics in the early universe? New technologies in the coming decade will reveal the answer.

  3. The cosmic web in our own backyard.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F

    2008-01-01

    On the largest scales, matter is strung out on an intricate pattern known as the cosmic web. The tendrils of this web should reach right into our own cosmic backyard, lacing the Galactic halo with lumps of dark matter. The search for these lumps, lit up by stars that formed within them, is a major astronomical endeavor, although it has failed to find the huge expected population. Is this a dark matter crisis, or does it provide clues to the complexities of gas physics in the early universe? New technologies in the coming decade will reveal the answer. PMID:18174430

  4. Cosmic Rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  5. The cosmic web in our own backyard.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F

    2008-01-01

    On the largest scales, matter is strung out on an intricate pattern known as the cosmic web. The tendrils of this web should reach right into our own cosmic backyard, lacing the Galactic halo with lumps of dark matter. The search for these lumps, lit up by stars that formed within them, is a major astronomical endeavor, although it has failed to find the huge expected population. Is this a dark matter crisis, or does it provide clues to the complexities of gas physics in the early universe? New technologies in the coming decade will reveal the answer.

  6. COSMIC/NASTRAN Free-field Input

    NASA Technical Reports Server (NTRS)

    Chan, G. C.

    1984-01-01

    A user's guide to the COSMIC/NASTRAN free field input for the Bulk Data section of the NASTRAN program is proposed. The free field input is designed to be user friendly and the user is not forced out of the computer system due to input errors. It is easy to use, with only a few simple rules to follow. A stand alone version of the COSMIC/NASTRAN free field input is also available. The use of free field input is illustrated by a number of examples.

  7. The cosmic history of star formation.

    PubMed

    Dunlop, James S

    2011-07-01

    Major advances in observational astronomy over the past 20 years have revolutionized our view of cosmic history, transforming our understanding of how the hot, smooth, early universe evolved into the complex and beautiful universe of stars and galaxies in which we now live. I describe how astronomers have used a range of complementary techniques to map out the rise and fall of star formation over 95% of cosmic time, back to the current observational frontier only ~500 million years after the Big Bang. PMID:21737733

  8. Black hole production by cosmic rays.

    PubMed

    Feng, Jonathan L; Shapere, Alfred D

    2002-01-14

    Ultrahigh energy cosmic rays create black holes in scenarios with extra dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce black holes deep in the atmosphere, initiating quasihorizontal showers far above the standard model rate. At the Auger Observatory, hundreds of black hole events may be observed, providing evidence for extra dimensions and the first opportunity for experimental study of microscopic black holes. If no black holes are found, the fundamental Planck scale must be above 2 TeV for any number of extra dimensions.

  9. Cosmic strings: A problem or a solution

    SciTech Connect

    Bennett, D.P.; Bouchet, F.R.

    1987-10-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis. 6 refs., 2 figs.

  10. Structure Formation Cosmic Rays: Identifying Observational Constraints

    NASA Astrophysics Data System (ADS)

    Prodanovic, T.; Fields, B. D.

    2005-06-01

    Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs) would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be 6Li. The rare isotope 6Li is produced only by cosmic rays, dominantly in alpha alpha rightarrow 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is 6Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metal-poor halo stars. Given the already existing problem of establishing the concordance between 7Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model- independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1) we establish the connection between gamma-ray and 6Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB); 2) we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs), which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using

  11. Cosmic microwave background probes models of inflation

    NASA Technical Reports Server (NTRS)

    Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.

    1992-01-01

    Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.

  12. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  13. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  14. Cosmic Ballet or Devil's Mask?

    NASA Astrophysics Data System (ADS)

    2004-04-01

    Stars like our Sun are members of galaxies, and most galaxies are themselves members of clusters of galaxies. In these, they move around among each other in a mostly slow and graceful ballet. But every now and then, two or more of the members may get too close for comfort - the movements become hectic, sometimes indeed dramatic, as when galaxies end up colliding. ESO PR Photo 12/04 shows an example of such a cosmic tango. This is the superb triple system NGC 6769-71, located in the southern Pavo constellation (the Peacock) at a distance of 190 million light-years. This composite image was obtained on April 1, 2004, the day of the Fifth Anniversary of ESO's Very Large Telescope (VLT). It was taken in the imaging mode of the VIsible Multi-Object Spectrograph (VIMOS) on Melipal, one of the four 8.2-m Unit Telescopes of the VLT at the Paranal Observatory (Chile). The two upper galaxies, NGC 6769 (upper right) and NGC 6770 (upper left), are of equal brightness and size, while NGC 6771 (below) is about half as bright and slightly smaller. All three galaxies possess a central bulge of similar brightness. They consist of elderly, reddish stars and that of NGC 6771 is remarkable for its "boxy" shape, a rare occurrence among galaxies. Gravitational interaction in a small galaxy group NGC 6769 is a spiral galaxy with very tightly wound spiral arms, while NGC 6770 has two major spiral arms, one of which is rather straight and points towards the outer disc of NGC 6769. NGC 6770 is also peculiar in that it presents two comparatively straight dark lanes and a fainter arc that curves towards the third galaxy, NGC 6771 (below). It is also obvious from this new VLT photo that stars and gas have been stripped off NGC 6769 and NGC 6770, starting to form a common envelope around them, in the shape of a Devil's Mask. There is also a weak hint of a tenuous bridge between NGC 6769 and NGC 6771. All of these features testify to strong gravitational interaction between the three galaxies

  15. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  16. Body lice

    MedlinePlus

    ... off the body. Your provider may prescribe a skin cream or a wash that contains permethrin, malathione, or benzyl alcohol. If your case is severe, the provider may prescribe medicine that you take by mouth.

  17. Body Image

    MedlinePlus

    ... spider veins Body dysmorphic disorder (BDD) Eating disorders Anorexia nervosa Binge eating disorder Bulimia nervosa Over-exercising ... conditions? Visit our Mental health section. Fact sheets Anorexia nervosa Binge eating disorder Bulimia nervosa Cosmetics and ...

  18. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  19. Inflation Fossils in Cosmic Structure

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc

    The agreement of the predictions of inflation with increasingly precise cosmic microwave background (CMB) and large-scale-structure (LSS) data is remarkable. The notion that such a simple early-Universe scenario, based on still-mysterious ultra-high-energy physics, can explain such a wealth of precise data is simply amazing. An active ongoing program of research is afoot to seek the CMB polarization signatures of inflationary gravitational waves and measure the primordial bispectrum in order to learn about inflation. Still, there is far more that can be done to probe inflationary physics, and no stone should be left unturned in this quest. Here we propose a multi-component program of theoretical research that includes model building, new CMB/LSS tests, a potentially powerful new survey strategy, and the investigation of a new observational avenue for large-scale structure. We propose to broaden the circle of ideas to empirically probe inflation. To begin, the hemispherical power asymmetry seen in WMAP and Planck is truly striking. While it may simply be an unusual statistical fluke, a more tantalizing possibility is that it is a remnant of the pre-inflationary Universe. We propose to develop and study several physical models for this asymmetry and work out other testable predictions of these models. Only by pursuing other signatures of whatever new physics may be responsible for this asymmetry will we be able to infer if it is truly a window to new physics. We also plan to develop departures from statistical isotropy (SI) as a test of inflationary models. We have recently shown that single-field slow-roll inflation generically predicts a quadrupolar departure from SI in primordial perturbations, albeit a very small one. The power quadrupole is expected, however, to be significantly larger in more general inflationary models. We propose to calculate these power quadrupoles so that new constraints to the power quadrupole from CMB and LSS data can be applied to test

  20. Cosmic Explosions in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig

    2004-12-01

    . X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.

  1. Cosmic Explosions in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig

    2011-08-01

    . X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.

  2. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  3. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  4. Study of cosmic ray motion in cosmic space near the earth

    NASA Technical Reports Server (NTRS)

    Budilov, V. K.; Ivanov, V. I.; Kozak, L. V.; Mirkin, L. A.; Tsukerman, I. G.

    1975-01-01

    Data are presented on experimental installations developed in the cosmic ray variations laboratory in Kazgu (Alma-Ata). Various experiments on modelling the interaction of plasma with the geomagnetic field as well as the plasma distribution in quiet and disturbed fields are described. The characteristics of the meson supertelescope using scintillators (effective area, 10 sq m) for vertical alignments designed to study microvariations of the cosmic rays and their interrelation with magnetospheric fluctuations and the study of solar wind parameters are given.

  5. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    NASA Astrophysics Data System (ADS)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL <> and links on that page to CRIS and to Science News.

  6. Bog bodies.

    PubMed

    Lynnerup, Niels

    2015-06-01

    In northern Europe during the Iron Age, many corpses were deposited in bogs. The cold, wet and anaerobic environment leads in many cases to the preservation of soft tissues, so that the bodies, when found and excavated several thousand years later, are remarkably intact. Since the 19th century the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma. Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp and shrink, leading to potential pitfalls in paleopathological diagnostics. Bog bodies have in several instances been crucial in determining the last meal, as gut contents may be preserved, and thus augment our knowledge on pre-historic diet by adding to, for example, stable isotope analyses. This article presents an overview of our knowledge about the taphomic processes as well as the methods used in bog body research. PMID:25998635

  7. Cosmic strings in axionic-dilatonic gravity

    NASA Astrophysics Data System (ADS)

    Santos, Caroline

    2001-05-01

    We first consider local cosmic strings in dilaton-axion gravity and show that they are singular solutions. Then we take a supermassive Higgs limit and present expressions for the fields at far distances from the core by applying a Pecci-Quinn and a duality transformation to the dilatonic Melvin's magnetic universe.

  8. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Fixsen, D. J.

    2009-12-20

    The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 +- 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 +- 0.00057 K.

  9. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  10. Current Status of Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2016-03-01

    I will review the current instrumentation and recent results. I will discuss which measurements have to be done in the near future to significantly advance our knowledge about the phenomenon of cosmic rays, their sources, and their interactions with the interstellar medium. A support from NASA APRA Grant No. NNX13AC47G is greatly acknowledged.

  11. Experiences with active cosmic background suppression

    SciTech Connect

    Lindstrom, R.M.; Lamaze, G.P.

    1994-12-31

    The dominant source of background in a bare germanium gamma-ray detector is natural radiation originating from potassium, uranium, and thorium decay in the laboratory environment and from cosmic rays. Most of the background is removed by surrounding the detector with lead shielding, which is commonly 20 cm thick. In a well-shielded detector, the largest contributor to the integral counting rate is cosmic rays, and to a lesser extent beta particles from {sup 210}Pb. Most of the counting rate in the continuum is due to highly penetrating muons. Many of the characteristic peaks in the background also originate from fast tertiary neutrons of cosmic-ray origin, which generate neutron activation products or create gamma rays from inelastic scattering in materials of the detector and shield. Very massive shielding is required to remove this penetrating component of background; we have found a fivefold reduction in the cosmic components by moving the detector into a laboratory 20 m underground. However, lacking an underground lab, we have attempted to use active shielding to reduce the background of a Ge detector located above ground. The guard detector is a proportional counter forming a roof 23 cm above the detector. The counter is placed inside the lead shielding to reduce it`s background counting rate.

  12. Goldstone bosons as fractional cosmic neutrinos.

    PubMed

    Weinberg, Steven

    2013-06-14

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter. PMID:25165907

  13. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  14. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  15. Cosmic microwave anisotropies from BPS semilocal strings

    SciTech Connect

    Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch

    2008-07-15

    We present the first ever calculation of cosmic microwave background (CMB) anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter {mu}, from fits to cosmological data, and find that in this regard Bogomol'nyi-Prasad-Sommerfield (BPS) semilocal strings resemble global textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if G{mu} = 5.3 Multiplication-Sign 10{sup -6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is G{mu}<2.0 Multiplication-Sign 10{sup -6} when CMB, Hubble key project and big bang nucleosynthesis data are used (cf G{mu}<0.9 Multiplication-Sign 10{sup -6} for cosmic strings). We additionally carry out a Bayesian model comparison of several models with and without defects, showing that models with defects are neither conclusively favoured nor disfavoured at present.

  16. Ritz Procedure for COSMIC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Citerley, R. L.; Woytowitz, P. J.

    1985-01-01

    An analysis procedure has been developed and incorporated into COSMIC/NASTRAN that permits large dynamic degree of freedom models to be processed accurately with little or no extra effort required by the user. The method employs existing capabilities without the need for approximate Guyan reduction techniques. Comparisons to existing solution procedures presently within NASTRAN are discussed.

  17. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  18. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  19. Observing the multiverse with cosmic wakes

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew; Levi, Thomas S.; Sigurdson, Kris

    2013-02-01

    Current theories of the origin of the Universe, including string theory, predict the existence of a multiverse with many bubble universes. These bubble universes may collide, and collisions with ours produce cosmic wakes that enter our Hubble volume, appear as unusually symmetric disks in the cosmic microwave background, and disturb large scale structure. There is preliminary evidence consistent with one or more of these disturbances on our sky. However, other sources can produce similar features in the cosmic microwave background, and so additional signals are needed to verify their extra-universal origin. Here we find, for the first time, the detailed three-dimensional shape, temperature, and polarization signals of the cosmic wake of a bubble collision consistent with current observations. The polarization pattern has distinct features that when correlated with the corresponding temperature pattern are a unique and striking signal of a bubble collision. These features represent a verifiable prediction of the multiverse paradigm and might be detected by current or future experiments. A detection of a bubble collision would confirm the existence of the multiverse, provide compelling evidence for the string theory landscape, and sharpen our picture of the Universe and its origins.

  20. The Temperature of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Fixsen, D. J.

    2009-12-01

    The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 ± 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 ± 0.00057 K.

  1. Vacuum counterexamples to the cosmic censorship hypothesis

    SciTech Connect

    Miller, B.D.

    1981-07-01

    In cylindrically symmetric vacuum spacetimes it is possible to specify nonsingular initial conditions such that timelike singularities will (necessarily) evolve from these conditions. Examples are given; the spacetimes are somewhat analogous to one of the spherically symmetric counterexamples to the cosmic censorship hypothesis.

  2. Cosmic emergy based ecological systems modelling

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chen, G. Q.; Ji, X.

    2010-09-01

    Ecological systems modelling based on the unified biophysical measure of cosmic emergy in terms of embodied cosmic exergy is illustrated in this paper with ecological accounting, simulation and scenario analysis, by a case study for the regional socio-economic ecosystem associated with the municipality of Beijing. An urbanized regional ecosystem model with eight subsystems of natural support, agriculture, urban production, population, finance, land area, potential environmental impact, and culture is representatively presented in exergy circuit language with 12 state variables governing by corresponding ecodynamic equations, and 60 flows and auxiliary variables. To characterize the regional socio-economy as an ecosystem, a series of ecological indicators based on cosmic emergy are devised. For a systematic ecological account, cosmic exergy transformities are provided for various dimensions including climate flows, natural resources, industrial products, cultural products, population with educational hierarchy, and environmental emissions. For the urban ecosystem of Beijing in the period from 1990 to 2005, ecological accounting is carried out and characterized in full details. Taking 2000 as the starting point, systems modelling is realized to predict the urban evolution in a one hundred time horizon. For systems regulation, scenario analyses with essential policy-making implications are made to illustrate the long term systems effects of the expected water diversion and rise in energy price.

  3. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  4. Thermodynamics of generalized cosmic Chaplygin gas model

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sarwar, Ayesha

    2016-03-01

    In this paper, we study thermal stability of an exotic fluid known as generalized cosmic Chaplygin gas (GCCG). We evaluate different physical parameters and examine how this fluid describes accelerated expansion of the universe. The stability conditions are formulated from thermodynamics which indicate that the respective fluid is stable adiabatically but it cannot be checked under isothermal condition.

  5. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  6. Getting It Organized. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Turner, Joy

    2002-01-01

    Discusses a technique for organizing the Montessori Cosmic Education curriculum for children younger than 7-years-old that explores the possibilities of the curriculum by examining the characteristics of the learners, defining ideas and content, defining objectives, developing activities, arranging the sequence, and keeping records. Provides…

  7. The hunt for cosmic accelerators: neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, Elisa

    2016-08-01

    The recent discovery of high energy cosmic neutrinos from the IceCube Neutrino Observatory opens new opportunities for particle and astrophysics. We report here the IceCube observation of a diffuse neutrino background and the on-going searches for counterparts.

  8. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  9. B-modes from cosmic strings

    SciTech Connect

    Pogosian, Levon; Wyman, Mark

    2008-04-15

    Detecting the parity-odd, or B-mode, polarization pattern in the cosmic microwave background radiation due to primordial gravity waves is considered to be the final observational key to confirming the inflationary paradigm. The search for viable models of inflation from particle physics and string theory has (re)discovered another source for B-modes: cosmic strings. Strings naturally generate as much vector-mode perturbation as they do scalar, producing B-mode polarization with a spectrum distinct from that expected from inflation itself. In a large set of models, B-modes arising from cosmic strings are more prominent than those expected from primordial gravity waves. In light of this, we study the physical underpinnings of string-sourced B-modes and the model dependence of the amplitude and shape of the C{sub l}{sup BB} power spectrum. Observational detection of a string-sourced B-mode spectrum would be a direct probe of post-inflationary physics near the grand unified theory (GUT) scale. Conversely, nondetection would put an upper limit on a possible cosmic string tension of G{mu} < or approx. 10{sup -7} within the next three years.

  10. Nonthermal dark matter from cosmic strings

    SciTech Connect

    Cui Yanou; Morrissey, David E.

    2009-04-15

    Cosmic strings can be created in the early universe during symmetry-breaking phase transitions, such as might arise if the gauge structure of the standard model is extended by additional U(1) factors at high energies. Cosmic strings presented in the early universe form a network of long horizon-length segments, as well as a population of closed string loops. The closed loops are unstable against decay, and can be a source of nonthermal particle production. In this work we compute the density of weakly-interacting massive particle dark matter formed by the decay of gauge theory cosmic string loops derived from a network of long strings in the scaling regime or under the influence of frictional forces. We find that for symmetry-breaking scales larger than 10{sup 10} GeV, this mechanism has the potential to account for the observed relic density of dark matter. For symmetry-breaking scales lower than this, the density of dark matter created by loop decays from a scaling string network lies below the observed value. In particular, the cosmic strings originating from a U(1) gauge symmetry broken near the electroweak scale, that could lead to a massive Z{sup '} gauge boson observable at the LHC, produces a negligibly small dark matter relic density by this mechanism.

  11. Cosmic Ray Diffusion Tensor Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, C.; Bieber, J. W.; Breech, B.; Burger, R. A.; Clem, J.; Matthaeus, W. H.

    2008-12-01

    We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind [Breech et al., 2008.]. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic ray following the method presented in Bieber et al. [1995]. We use the nonlinear guiding center (NLGC) theory to obtain the perpendicular diffusion coefficient of the cosmic ray [Matthaeus et al. 2003]. We find that (1) the radial mean free path decreases from 1 AU to 20 AU for both turbulence scenarios; (2) after 40 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 20 AU, after which the perpendicular component becomes important; (4) the rigidity P dependence of the parallel component of the diffusion tensor is proportional to P.404 for one turbulence scenario and P.374 for the other at 1 AU from 0.1 GVto 10 GV, but in the outer heliosphere its dependence becomes stronger above 4 GV; (5) the rigidity P dependence of the perpendicular component of the diffusion tensor is very weak. Supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G.

  12. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  13. Astronomers Unveiling Life's Cosmic Origins

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  14. Cosmic-ray ionisation in collapsing clouds

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Hennebelle, P.; Galli, D.

    2013-12-01

    Context. Cosmic rays play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampered by the braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas. Aims: In this paper we examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can produce a significant reduction of the ionisation fraction. Methods: To check whether the cosmic-ray ionisation rate can fall below the critical value required to maintain good coupling, we first study the propagation of cosmic rays in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal components and the mass-to-flux ratio. We then follow the path of cosmic rays using realistic magnetic field configurations generated by numerical simulations of a rotating collapsing core with different initial conditions. Results: We find that an increment of the toroidal component of the magnetic field, or, in general, a more twisted configuration of the field lines, results in a decrease in the cosmic-ray flux. This is mainly due to the magnetic mirroring effect that is stronger where larger variations in the field direction are present. In particular, we find a decrease of the cosmic-ray ionisation rate below 10-18 s-1 in the central 300-400 AU, where density is higher than about 109 cm-3. This very low value of the ionisation rate is attained in the cases of intermediate and low magnetisation (mass-to-flux ratio λ = 5 and 17, respectively) and for toroidal fields larger than about 40% of the total field. Conclusions: Magnetic field effects can significantly reduce the ionisation fraction in collapsing clouds. We provide a handy fitting formula to compute approximately the attenuation of the cosmic-ray ionisation rate

  15. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  16. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  17. Zipping and unzipping of cosmic string loops in collision

    SciTech Connect

    Firouzjahi, H.; Karouby, J.; Khosravi, S.; Brandenberger, R.

    2009-10-15

    In this paper the collision of two cosmic string loops is studied. After collision junctions are formed and the loops are entangled. We show that after their formation the junctions start to unzip and the loops disentangle. This analysis provides a theoretical understanding of the unzipping effect observed in numerical simulations of a network of cosmic strings with more than one type of cosmic strings. The unzipping phenomena have important effects in the evolution of cosmic string networks when junctions are formed upon collision, such as in a network of cosmic superstrings.

  18. Pulsars, supernovae, and ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Fang, K.; Olinto, A. V.; Phinney, E. S.

    2012-12-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10^{19} eV as indicated by air shower studies reported by the Auger Observatory. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10^{16} and 10^{18} eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, differing considerably between the energy scale used by Auger and that used by the Telescope Array. Depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy, the contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum below the ankle. Fast spinning newborn pulsars that could produce UHECRs would be born in supernovae that could present interesting specific radiative features, due to the interaction of the pulsar wind with the surrounding ejecta. The resulting supernova lightcurves could present a high luminosity plateau over a few years, and a bright X-ray and gamma-ray peak around one or two years after the onset of the explosion. If such signatures were observed, they could have important implications both for UHECR astrophysics and for the understanding of core-collapse supernovae.

  19. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  20. Ultrahigh-energy particles from cosmic strings

    SciTech Connect

    Bhattacharjee, P. . Astronomy and Astrophysics Center Fermi National Accelerator Lab., Batavia, IL )

    1991-02-01

    The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as {alpha}'s or Fe's are in the spectrum. 43 refs., 3 figs.

  1. Observing air showers from cosmic superluminal particles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    1998-06-01

    The Poincaré relativity principle has been tested at low energy with great accuracy, but its extrapolation to very high-energy phenomena is much less well established. Lorentz symmetry can be broken at Planck scale due to the renormalization of gravity or to some deeper structure of matter: we expect such a breaking to be a very high energy and very short distance phenomenon. If textbook special relativity is only an approximate property of the equations describing a sector of matter above some critical distance scale, an absolute local frame (the ``vacuum rest frame,'' VRF) can possibly be found and superluminal sectors of matter may exist related to new degrees of freedom not yet discovered experimentally. The new superluminal particles (``superbradyons,'' i.e. bradyons with superluminal critical speed) would have positive mass and energy, and behave kinematically like ``ordinary'' particles (those with critical speed in vacuum equal to c, the speed of light) apart from the difference in critical speed (we expect ci>>c, where ci is the critical speed of a superluminal sector). They may be the ultimate building blocks of matter. At speed v>c, they are expected to release ``Cherenkov'' radiation (``ordinary'' particles) in vacuum. Superluminal particles could provide most of the cosmic (dark) matter and produce very high-energy cosmic rays. We discuss: a) the possible relevance of superluminal matter to the composition, sources and spectra of high-energy cosmic rays; b) signatures and experiments allowing to possibly explore such effects. Very large volume and unprecedented background rejection ability are crucial requirements for any detector devoted to the search for cosmic superbradyons. Future cosmic-ray experiments using air-shower detectors (especially from space) naturally fulfil both requirements.

  2. Observing air showers from cosmic superluminal particles

    SciTech Connect

    Gonzalez-Mestres, Luis

    1998-06-15

    The Poincare relativity principle has been tested at low energy with great accuracy, but its extrapolation to very high-energy phenomena is much less well established. Lorentz symmetry can be broken at Planck scale due to the renormalization of gravity or to some deeper structure of matter: we expect such a breaking to be a very high energy and very short distance phenomenon. If textbook special relativity is only an approximate property of the equations describing a sector of matter above some critical distance scale, an absolute local frame (the 'vacuum rest frame', VRF) can possibly be found and superluminal sectors of matter may exist related to new degrees of freedom not yet discovered experimentally. The new superluminal particles ('superbradyons', i.e. bradyons with superluminal critical speed) would have positive mass and energy, and behave kinematically like 'ordinary' particles (those with critical speed in vacuum equal to c, the speed of light) apart from the difference in critical speed (we expect c{sub i}>>c, where c{sub i} is the critical speed of a superluminal sector). They may be the ultimate building blocks of matter. At speed v>c, they are expected to release ''Cherenkov'' radiation ('ordinary' particles) in vacuum. Superluminal particles could provide most of the cosmic (dark) matter and produce very high-energy cosmic rays. We discuss: a) the possible relevance of superluminal matter to the composition, sources and spectra of high-energy cosmic rays; b) signatures and experiments allowing to possibly explore such effects. Very large volume and unprecedented background rejection ability are crucial requirements for any detector devoted to the search for cosmic superbradyons. Future cosmic-ray experiments using air-shower detectors (especially from space) naturally fulfil both requirements.

  3. Cosmic ray modulation over a solar cycle.

    NASA Astrophysics Data System (ADS)

    Ferreira, Stefan; Manuel, Rex; Potgieter, Marius

    2016-07-01

    The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulationmodel. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulation of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solarminimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays.

  4. CMB temperature bispectrum induced by cosmic strings

    SciTech Connect

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  5. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  6. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  7. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  8. Bioeffectiveness of Cosmic Rays Near the Earth Surface

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.

    2014-10-01

    Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the

  9. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  10. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  11. Cosmic Spider is Good Mother

    NASA Astrophysics Data System (ADS)

    2006-04-01

    supernovae, blasting material away at tremendous speed and creating a web of entangled filaments. More explosions will come soon - in astronomical terms - as three red supergiants are indeed present in Hodge 301 that will end their life in the gigantic firework of a supernova within the next million years. ESO PR Photo 13d/06 ESO PR Photo 13d/06 Gas Pillars in Tarantula Nebula While some stars are dying in this spidery cosmic inferno, others are yet to be born. Some structures, seen in the lower part of the image, have the appearance of elephant trunks, not unlike the famous and fertile "Pillars of Creation" at the top of which stars are forming. In fact, it seems that stars form all over the place in this gigantic stellar nursery and in all possible masses, at least down to the mass of our Sun. In some places, in a marvellous recycling process, it is the extreme radiation from the hot and massive stars and the shocks created by the supernova explosions that has compressed the gas to such extent to allow stars to form. To the right and slightly below the central cluster, a red bubble is visible. The star that blows the material making this bubble is thought to be 20 times more massive, 130 000 times more luminous, 10 times larger and 6 times hotter than our Sun. A possible fainter example of such a bubble is also visible just above the large red bubble in the image. ESO PR Photo 13e/06 ESO PR Photo 13e/06 Red Bubbles in Tarantula Nebula Earlier colour composite images of the Tarantula nebula have been made with other instruments and/or filters at ESO's telescopes, e.g. PR Photo 05a/00 in visual light with FORS2 at the VLT at Paranal, and PR Photos 14a-g/02 and 34a-h/04 with the Wide-Field Imager at the ESO/MPG 2.2-m telescope at La Silla.

  12. Photon damping in cosmic-ray acceleration in active galactic nuclei

    SciTech Connect

    Colgate, S.A.

    1983-04-07

    The usual assumption of the acceleration of ultra high energy cosmic rays, greater than or equal to 10/sup 18/ eV in quasars, Seyfert galaxies and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10/sup 20/ eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10/sup 15/. Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultra high energy. Hence, it is unlikely that any reasonable configuration of acceleration can void disastrous photon energy loss. A different site for ultra high energy cosmic ray acceleration must be found.

  13. Body Imaging

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Magnetic Resonance Imaging (MRI) and Computer-aided Tomography (CT) images are often complementary. In most cases, MRI is good for viewing soft tissue but not bone, while CT images are good for bone but not always good for soft tissue discrimination. Physicians and engineers in the Department of Radiology at the University of Michigan Hospitals are developing a technique for combining the best features of MRI and CT scans to increase the accuracy of discriminating one type of body tissue from another. One of their research tools is a computer program called HICAP. The program can be used to distinguish between healthy and diseased tissue in body images.

  14. Conditions of the cosmic ray exposure of the Jilin chondrite

    NASA Astrophysics Data System (ADS)

    Heusser, G.; Ouyang, Z.; Kirsten, T.; Herpers, U.; Englert, P.

    1985-02-01

    Nine documented samples from the main mass, Jilin 1, and three samples from different locations of the strewn field have been analyzed for cosmogenic Al-29 (T-1/2 = 0.716 Myr), Co-60 (T-1/2 = 5.27 yr) and Na-22 = 2.6 yr). Mn-53 (T-1/2 = 3.7 Myr) has been determined in seven of the same documented samples and in two further documented samples. The preatmospheric size of Jilin was reconstructed from the documented sample positions and from the measured Co-60 activites. Jilin was almost spherical and had a preatmospheric radius of about 85 cm. The cosmogenic nuclides in Jilin can be explained by a two-stage exposure history. The first stage occurred near the surface of the parent body in 2-Pi geometry and lasted about 10 Myr. Jilin was then expelled from its parent body and exposed to cosmic rays in a second (4-Pi) stage lasting approximately 0.4 Myr. The measured concentration profiles of spallogenic nuclides are compared to calculated production rates.

  15. The effect of exposure to 1,2,4,5-tetrachlorobenzene and the relationship between toxicant and oxygen uptake in rainbow trout (Oncorhynchus mykiss) during exercise

    SciTech Connect

    Brauner, C.J.; Randall, D.J. . Dept. of Zoology); Neuman, J.F.; Thurston, R.V. . Fisheries Bioassay Lab.)

    1994-11-01

    These studies were designed to investigate the relationship between the initial uptake of a model toxicant, 1,2,4,5-tetrachlorobenzene (TCB), and the rate of oxygen consumption (MO[sub 2]) in trout during exercise. There was no effect of environmental TCB concentrations ([TCB]) on the MO[sub 2] of resting or exercising adult rainbow trout, and body accumulations of the toxicant did not affect the maximal aerobic swimming velocity attained by juvenile rainbow trout. Rainbow trout were exposed to TCB for 1 h while swimming at different velocities and the [TCB] was measured in plasma and 11 other tissues. Tissue TCB concentrations were found to be extremely variable despite similar exposure conditions, likely due to differences in tissue lipid content. No one tissue was representative of body burden, but tissue TCB delivery appears to be directly related to the [TCB] in the plasma because at different swimming velocities the plasma:tissue TCB ratios remained constant despite regional changes in blood flow. After 2 h of TCB exposure, [TCB] in the plasma was equal to whole-body [TCB]; however, this relationship broke down after 6 h. Thus, whole-body TCB concentrations can only be obtained through direct measurement. There was a highly significant relationship between MO[sub 2] and TCB uptake rate during initial toxicant exposure in adult rainbow trout forced to swim over a large proportion of its aerobic potential. Thus, toxicant uptake in fish may be estimated based upon MO[sub 2], which can be measured or can be obtained from the literature.

  16. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the

  17. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  18. Mock gravity and the cosmic structure

    SciTech Connect

    Hogan, C.J.

    1989-05-01

    The process of generating large-scale cosmic structure from the radiation-pressure or 'mock gravity' instability is studied with particular emphasis on the implications of the Berkeley-Nagoya rocket data for the submillimeter background. The linear theory of perturbations in an absorbing medium embedded in an expanding universe of radiation sources is presented. The instability sets up collapse velocities in linear perturbation theory which far exceed those from gravitational instability, so growth continues even after the instability switches off. Perturbation due to this effect is analyzed and related to the growth of large-scale cosmic structures at recent times; large-scale structure is shown to evolve very little from 1 + z about 5 to the present. Nonlinear small-scale effects of the instability are analyzed; it is shown that radiation pressure would compress gas into small, dense pressure-confined clouds with tau much greater than one. 32 refs.

  19. Can Cosmic Structure form without Dark Matter?

    SciTech Connect

    Dodelson, Scott; Liguori, Michele; /Fermilab /Padua U. /INFN, Padua

    2006-08-01

    One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the universe. Since we know from the cosmic microwave background that the regions that contained the most baryons when the universe was {approx} 400, 000 years old were overdense by only one part in ten thousand, perturbations had to have grown since then by a factor greater than (1 + z{sub *}) {approx_equal} 1180 where z{sub *} is the epoch of recombination. This enhanced growth does not happen in general relativity, so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular in Bekenstein's relativistic version of Modified Newtonian Dynamics (MOND). The vector field introduced in that theory for a completely different reason plays a key role in generating the instability that produces large cosmic structures today.

  20. Cosmic Ray Electron Science with GLAST

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Moiseev, Alexander

    2007-01-01

    Cosmic ray electrons at high energy carry information about their sources, their definition in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from approx. 20 to approx. 700 GeV that will allow us to search for anisotropies in anival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  1. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    SciTech Connect

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.

  2. Detection Prospects of the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review.

  3. Detection prospects of the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  4. Cosmic string evolution with a conserved charge

    NASA Astrophysics Data System (ADS)

    Oliveira, M. F.; Avgoustidis, A.; Martins, C. J. A. P.

    2012-04-01

    Cosmic strings with degrees of freedom beyond the standard Abrikosov-Nielsen-Olesen or Nambu-Goto strings are ubiquitous in field theory as well as in models with extra dimensions, such as string theoretic brane inflation scenarios. Here, we carry out an analytic study of a simplified version of one such cosmic string model. Specifically, we extend the velocity-dependent one-scale string evolution model to the case where there is a conserved microscopic charge on the string world sheet. We find that whether the standard scale-invariant evolution of the network is preserved or destroyed due to the presence of the charge will crucially depend on the amount of damping and energy losses experienced by the network. This suggests, among other things, that results derived in Minkowski space (field theory) simulations may not extend to the case of an expanding Universe.

  5. Galactic cosmic radiation model and its applications

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; O'Neill, P. M.

    1996-01-01

    A model for the differential energy spectra of galactic cosmic radiation as a function of solar activity is described. It is based on the standard diffusion-convection theory of solar modulation. Estimates of the modulation potential based on fitting this theory to observed spectral measurements from 1954 to 1989 are correlated to the Climax neutron counting rates and to the sunspot numbers at earlier times taking into account the polarity of the interplanetary magnetic field at the time of observations. These regression lines then provide a method for predicting the modulation at later times. The results of this model are quantitatively compared to a similar Moscow State University (MSU) model. These model cosmic ray spectra are used to predict the linear energy transfer spectra, differential energy spectra of light (charge less than or = 2) ions, and single event upsets rates in memeory devices. These calculations are compared to observations made aboard the Space Shuttle.

  6. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

  7. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  8. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  9. Astroparticle Physics: Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  10. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  11. New ways to look for cosmic strings

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey

    2015-08-01

    Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have been relying on the string's lensing of background galaxies or CMB. However, the interaction of the string with ordinary gas will produce several detectable signatures. I will explain how to obtain the solution for the supersonic flow of the collisional gas past the cosmic string. This solution has two planar shocks with shock compression ratio that depend on the angle defect of the string and its speed. These shocks compress and heat the gas, which should be detectable in high-z HI emission. Furthermore, in the present Universe, colliding with ionized rarefied HII gas, the string should produce particle acceleration at the shock and corresponding radio emission. The consequences of such collision will persist for cosmological timescales, so we should look for several unusual large-scale radio sources, typically a cluster radio halo size, situated on a single spatial plane.

  12. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  13. Paradigm transition in cosmic plasma physics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1982-01-01

    New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.

  14. Report of the cosmic and heliospheric panel

    NASA Technical Reports Server (NTRS)

    Mewaldt, Richard A.; Mason, Glenn M.; Barnes, Aaron; Binns, W. Robert; Burlaga, Leonard F.; Cherry, Michael L.; Holzer, Thomas E.; Jokipii, J. R.; Jones, Vernon; Ling, James C.

    1991-01-01

    The Cosmic and Heliospheric Branch proposes a bold new program for the years 1995 to 2010 that is centered on the following two themes: (1) the global heliosphere and interstellar space; and (2) cosmic particle acceleration and the evolution of matter. Within these major themes are more specific goals that have been studied and continue to be examined for a better understanding of their processes. These include: origin, structure, and evolution of the solar wind; interaction of the heliosphere, the solar wind, and the interstellar medium; fundamental microscopic and macroscopic plasma processes; acceleration and transport of energetic particles; and the origin and evolution of matter. Finally, the report summarizes a wide variety of proposed small and large space missions.

  15. Can quantum mechanics fool the cosmic censor?

    SciTech Connect

    Matsas, G. E. A.; Silva, A. R. R. da; Richartz, M.; Saa, A.; Vanzella, D. A. T.

    2009-05-15

    We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a backreaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the 'cosmic censor' may be oblivious to processes involving quantum effects.

  16. Cosmic Origins Program Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Pham, Bruce Thai; Neff, Susan Gale

    2015-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present.

  17. Cosmic muons, as messengers from the Universe

    SciTech Connect

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the “penetrating” component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  18. Cosmic rays and the Monogem supernova remnant

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    2004-10-01

    Recent findings indicate that the Monogem Ring and the associated pulsar PSR B0656 + 14 may be the `Single Source' responsible for the formation of the sharp knee in the cosmic ray energy spectrum at ˜3 PeV. The energy spectrum of cosmic rays expected for the Monogem Ring supernova remnant (SNR) from our SNR acceleration model [J. Phys. G: Nucl. Part. Phys. 27 (2001) 941] has been published by us elsewhere [J. Phys. G: Nucl. Part. Phys. 29 (2003) 709] . In this paper we go on to estimate the contribution of the pulsar B0656 + 14 to the cosmic rays in the PeV region. We conclude that although the pulsar can contribute to the formation of the knee, it cannot be the dominant source of it and an SNR is still needed. We also examine the possibility of the pulsar giving the peak of the extensive air shower (EAS) intensity observed from the region inside the Monogem Ring [ApJ Lett. 597 (2003) L129]. The estimates of the gamma-ray flux produced by cosmic ray particles from this pulsar indicate that it can be the source of the observed peak, if the particles were confined within the SNR during a considerable fraction of its total age. The flux of gamma quanta at PeV energies has a high sensitivity to the duration of the confinement. The estimates of this time and of the following diffusion of cosmic rays from the confinement volume turn out to be in remarkable agreement with the time needed for these cosmic rays to propagate to the solar system and to form the observed knee in the cosmic ray energy spectrum. Other possible mechanisms for the production of particles which could give rise to the observed narrow peak in the EAS intensity were also examined. Electrons scattered on the microwave background or on X-rays, emitted by SNR, cannot be responsible for the gamma-quanta in the peak. Neutrons produced in PP-collisions or released from the disintegration of accelerated nuclei seem to be also unable to create the peak since they cannot give the observed flux. If the

  19. The Pierre Auger Cosmic Ray Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  20. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge. PMID:12804279