Science.gov

Sample records for cosmic dust impacts

  1. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  2. The cosmic dust analyzer: Experimental evaluation of an impact ionization model. [considering thermal equilibrium plasma

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Roy, N. L.; Becker, D. G.

    1973-01-01

    A thermal equilibrium plasma model is used to process data from an impact ionization time-of-flight mass spectrometer in order to convert the raw ion data to relative abundances of the elemental constituents of cosmic dust particles.

  3. Cosmic Dust VI

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi; Kolokolova, Ludmilla; Li, Aigen; Inoue, Akio K.; Jäger, Cornelia

    2014-10-01

    This special issue is primarily devoted to the 6th meeting on Cosmic Dust (COSMIC DUST VI), which was held at CPS (Center for Planetary Science) in Kobe, Japan, on August 5-9, 2013. This meeting was coordinated in an order where a friendly and welcoming atmosphere persuaded the participants of the meeting to develop human relations and interactions among themselves. This has been our interdisciplinary approach to answering the question of where dust comes from and where dust goes. We briefly review some of the exciting papers presented at the meeting and provide perspectives for the development of cosmic dust research.

  4. A Dust Particle Accelerator for Laboratory Simulations of Cosmic Dust Impacts

    NASA Astrophysics Data System (ADS)

    Manning, H. L. K.

    2001-11-01

    Dusty environments in the solar system such as around comets and interstellar dust are the focus of many current investigations. Instruments performing in-situ measurements of dust particles require laboratory testing and calibrating prior to their launch. This laboratory testing is most often done with a high-speed dust particle accelerator. In addition, studies of physical processing of planetary surfaces and spacecraft materials due to micro-dust particle impacts can also be performed with a dust particle accelerator. In 1975, Concordia College in Moorhead, Minnesota acquired a 2MeV dust particle accelerator from NASA/GSFC which is still fully functioning and currently being updated. Improvements to the electronic detection system have also been undertaken. We have designed a means to detect and record the charge and velocity of the dust particles with a computer system. Prior to these modifications, we had no means of correlating the particle's properties with the time the particles were detected. Other improvements to the vacuum system are slated. Besides improvements to the facilities, we have improved the performance characteristics of the accelerator. Our traditional dust material is 1-5 micron carbonyl iron. With this dust source, particles acquire velocities up to 14 km/sec. We have successfully used 70nm copper dust resulting in particles with speeds of 22km/sec and possibly higher.

  5. Calibration of impact ionization cosmic dust detectors: first tests to investigate how the dust density influences the signal

    NASA Astrophysics Data System (ADS)

    Jasmin Sterken, Veerle; Moragas-Klostermeyer, Georg; Hillier, Jon; Fielding, Lee; Lovett, Joseph; Armes, Steven; Fechler, Nina; Srama, Ralf; Bugiel, Sebastian; Hornung, Klaus

    2016-10-01

    Impact ionization experiments have been performed since more than 40 years for calibrating cosmic dust detectors. A linear Van de Graaff dust accelerator was used to accelerate the cosmic dust analogues of submicron to micron-size to speeds up to 80 km s^-1. Different materials have been used for calibration: iron, carbon, metal-coated minerals and most recently, minerals coated with conductive polymers. While different materials with different densities have been used for instrument calibration, a comparative analysis of dust impacts of equal material but different density is necessary: porous or aggregate-like particles are increasingly found to be present in the solar system: e.g. dust from comet 67P Churyumov-Gerasimenko [Fulle et al 2015], aggregate particles from the plumes of Enceladus [Gao et al 2016], and low-density interstellar dust [Westphal 2014 et al, Sterken et al 2015]. These recalibrations are relevant for measuring the size distributions of interplanetary and interstellar dust and thus mass budgets like the gas-to-dust mass ratio in the local interstellar cloud.We report about the calibrations that have been performed at the Heidelberg dust accelerator facility for investigating the influence of particle density on the impact ionization charge. We used the Cassini Cosmic Dust Analyzer for the target, and compared hollow versus compact silica particles in our study as a first attempt to investigate experimentally the influence of dust density on the signals obtained. Also, preliminary tests with carbon aerogel were performed, and (unsuccessful) attempts to accelerate silica aerogel. In this talk we explain the motivation of the study, the experiment set-up, the preparation of — and the materials used, the results and plans and recommendations for future tests.Fulle, M. et al 2015, The Astrophysical Journal Letters, Volume 802, Issue 1, article id. L12, 5 pp. (2015)Gao, P. et al 2016, Icarus, Volume 264, p. 227-238Westphal, A. et al 2014, Science

  6. The Cosmic DUNE dust astronomy mission

    NASA Astrophysics Data System (ADS)

    Grun, E.; Srama, R.; Cosmic Dune Team

    A dust astronomy mission aims at the simultaneous measurement of the origin and the chemical composition of individual dust grains in space. Interstellar dust traversing the solar system constitutes the galactic solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with Cosmic DUNE (Cosmic Dust Near Earth) will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Cosmic DUNE will prepare the way for effective collection in near-Earth space of interstellar and interplanetary dust for subsequent return to Earth and analysis in laboratories. Cosmic DUNE establishes the next logical step beyond NASA's Stardust mission, with four major advancements in cosmic dust research: (1) Analysis of the elemental and isotopic composition of individual cosmic dust grains, (2) determination of the size distribution of interstellar dust, (3) characterization of the interstellar dust flow through the planetary system, and (4) analysis of interplanetary dust of cometary and asteroidal origin. This mission goal will be reached with novel dust instrumentation. A dust telescope trajectory sensor has been developed which is capable of obtaining precision trajectories of sub-micron sized particles in space. A new high mass resolution dust analyzer of 0.1m2 impact area can cope with the low fluxes expected in interplanetary space. Cosmic DUNE will be proposed to ESA in response to its upcoming call for mission ideas.

  7. Cosmic dust analyzer for Cassini

    NASA Astrophysics Data System (ADS)

    Bradley, James G.; Gruen, Eberhard; Srama, Ralf

    1996-10-01

    The cosmic dust analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the dust analyzer (DA) and the high rate detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the chemical analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(superscript 4) impacts/second. These high impact rates are expected during Saturn ring plane crossings.

  8. Formation of the Dust Cloud Caused by the Impact of Small Cosmic Body on Mars

    NASA Astrophysics Data System (ADS)

    Rybakov, V. A.; Artemiev, V. I.; Nemtchinov, I. V.; Shuvalov, V. V.; Medveduk, S. A.

    1996-03-01

    A hypothesis has been proposed in that the impacts of small cosmic bodies on the planet's; surface may trigger local sand storms due to the formation of a heated layer over the ground under thermal radiation. The interaction of the shock wave with the heated layer leads to initiation of large-scale vortex flow and high-speed jets moving along the surface. This flow may be responsible for the intense dust lifting even in the case when a small cosmic body does not directly hit the ground and creates an explosion above the surface. Several other factors of the impact can also facilitate a dust rising: outgassing of the porous surface layer under heating by the radiation impulse; intrusion of the shock-compressed atmospheric gas into the regolith and subsequent blow-off in the rarefaction wave; steep erosion by blast-generated high-velocity winds. The generation of large-scale vortex flows in interaction of the blast wave with the ballistic wave and the wake behind a falling body may also cause a lifting of dust particles to high altitude and its long-distant transport. All these effects are especially effective for the impact on Mars when the luminous performance and the fireball size highly exceed these for the impacts on the Earth or Venus. A thorough investigation of the possible impact origin of local sand storms on Mars becomes even more interesting if we keep in mind that now there is no well and widely recognized mechanism of dust rising. We have made studies on impact-generated dust lifting and transport in numerical simulations and laboratory experiments.

  9. Hypervelocity Microparticle Impact Studies: Simulating Cosmic Dust Impacts on the Dustbuster

    NASA Technical Reports Server (NTRS)

    Austin, D. E.; Manning, H. L. K.; Bailey, C. L.; Farnsworth, J. T.; Ahrens, T. J.; Beauchamp, J. L.

    2002-01-01

    Iron and copper microparticles accelerated to 2-20 km/s in a 2 MV Van de Graaff accelerator were used to test a recently-developed cosmic dust mass spectrometer, known as the Dustbuster. Additional information is contained in the original extended abstract.

  10. Cosmic Dust Catalog

    NASA Astrophysics Data System (ADS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth, S.; Dodson, A.; Zolensky, Michael E.

    1997-07-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  11. The Cosmic Dust Analyzer for Cassini

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Gruen, Eberhard; Srama, Ralf

    1996-01-01

    The Cosmic Dust Analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the Dust Analyzer (DA) and the High Rate Detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the Chemical Analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(exp 4) impacts/second. These high impact rates are expected during Saturn ring, plane crossings.

  12. Cosmic dust in the earth's atmosphere.

    PubMed

    Plane, John M C

    2012-10-07

    This review discusses the magnitude of the cosmic dust input into the earth's atmosphere, and the resulting impacts from around 100 km to the earth's surface. Zodiacal cloud observations and measurements made with a spaceborne dust detector indicate a daily mass input of interplanetary dust particles ranging from 100 to 300 tonnes, which is in agreement with the accumulation rates of cosmic-enriched elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle atmosphere - by radar, lidar, high-flying aircraft and satellite remote sensing - indicate that the input is between 5 and 50 tonnes per day. There are two reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and undergo significant ablation. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: the formation of layers of metal atoms and ions; the nucleation of noctilucent clouds, which are a sensitive marker of climate change; impacts on stratospheric aerosols and O(3) chemistry, which need to be considered against the background of a cooling stratosphere and geo-engineering plans to increase sulphate aerosol; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  13. Atmospheric entry heating of cosmic dust

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1987-01-01

    A computer simulation of the atmospheric entry deceleration and heating for micrometeorites into a planetary atmosphere was developed. The results of this model were compared to an earlier model. The major difference between the extent of heating experienced in the two models results from an underestimation of the atmospheric density at altitudes above 130 km in the earlier model. Thus the earlier model systematically overestimates the peak temperature reached on atmospheric entry. The discrepancies are small for near vertical entry and/or high density particles, where little deceleration is experienced at high altitudes. For particles entering at grazing incidence and/or of low density the discrepancies are more pronounced. Gravitational enhancement, which is a function of geocentric velocity at the collection opportunity, was found to bias near Earth cosmic dust collections in favor of low velocity particles. The effect is to increase the proportion of low velocity dust, predominately from asteroids, in the stratospheric cosmic dust collections and on Earth orbiting spacecraft impact surfaces over its proportion in the interplanetary dust cloud.

  14. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    SciTech Connect

    Sternovsky, Zoltan; Auer, Siegfried; Drake, Keith; Gruen, Eberhard; Horanyi, Mihaly; Le, Huy; Xie Jianfeng; Srama, Ralf

    2011-11-29

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of {beta}-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  15. Cosmic impacts, cosmic catastrophes. II

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1990-01-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  16. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    SciTech Connect

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.

  17. Cosmic dust or other similar outer-space particles location detector

    NASA Technical Reports Server (NTRS)

    Aver, S.

    1973-01-01

    Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.

  18. Cosmic dust in modern ferromanganese nodules

    NASA Astrophysics Data System (ADS)

    Anufriev, G. S.

    2017-03-01

    This work is about the identification of modern cosmic dust that had survived heating during its high-velocity passage through the Earth's atmosphere from 3He isotope concentrations in marine (Gulf of Finland) ferromanganese nodules (FMNs). The measured bulk composition of helium includes components of various origins, enabling the determination of the age (1800 years) of the shallow-water Baltic FMNs and the average time of exposure (8 × 107 years) of cosmic dust particles during their existence in space. The concentration of cosmic dust per gram of FMN material is found to be 0.036 μg. The contribution of solar-wind helium to the Earth's atmospheric helium is found to be small. The experiments are conducted by the stepheating method in vacuo with the subsequent mass-spectrometric analysis of the helium released from the samples.

  19. Cosmic dust detection by the Cluster spacecraft: First results

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; De Spiegeleer, Alexandre; Hamrin, Maria; Kero, Johan; Mann, Ingrid; Norberg, Carol; Pellinen-Wannberg, Asta; Pitkänen, Timo

    2016-04-01

    There are several different techniques that are used to measure cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical methods. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites with the Wideband Data Plasma Wave Receiver (WBD). We first describe the concept of dust impact ionization and of the impact detection. Based on these considerations the mass and the velocity of the impinging dust grains can be estimated from the amplitude of the Cluster voltage pulses. In the case of the Cluster instrument an automatic gain control adjusts the dynamic range of the recorded signals. Depending on the gain level the impact signal can both be affected by saturation or be too weak for analysis. We describe how this influences the duty cycle of the impact measurements. We finally discuss the suitability of this method for monitoring dust fluxes near Earth and compare it with other methods.

  20. The Cosmic Odyssey of Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    We will present models for the evolution of dust in high redshift galaxies and in galaxies in the local universe. Galaxies at very high redshift, when the universe was less than one billion years old, contain massive quantities of dust that could only have fornedin the explosion of core-collapse supernovae. These same objects are also the main source of grain destruction during the later, remnant phase of their evolution. These galaxies offer therefore a unique opportunity for examining the effect of massive stars on the formation and destruction of interstellar dust, and the lecture will present a model for the evolution of dust in these very young galaxies. Spectral and photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features, attributed to PAH molecules, and their metal abundance, leading to a deficiency of these features in low-metallicity galaxies. We show the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of carbon dust into the ISM by AGB stars in the final post-AGB phase of their evolution. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  1. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  2. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  3. Intact capture of cosmic dust

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1991-01-01

    The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved.

  4. COSMIC DUST IN Mg II ABSORBERS

    SciTech Connect

    Menard, Brice; Fukugita, Masataka

    2012-08-01

    Mg II absorbers induce reddening on background quasars. We measure this effect and infer the cosmic density of dust residing in these systems to be {Omega} Almost-Equal-To 2 Multiplication-Sign 10{sup -6}, in units of the critical density of the universe, which is comparable to the amount of dust found in galactic disks or about half the amount inferred to exist outside galaxies. We also estimate the neutral hydrogen abundance in Mg II clouds to be {Omega} Almost-Equal-To 1.5 Multiplication-Sign 10{sup -4}, which is approximately 5% of hydrogen in stars in galaxies. This implies a dust-to-gas mass ratio for Mg II clouds of about 1/100, which is similar to the value for normal galaxies. This would support the hypothesis of the outflow origin of Mg II clouds, which are intrinsically devoid of stars and hence have no sources of dust. Considerations of the dust abundance imply that the presence of Mg II absorbers around galaxies lasts effectively for a few Gyr. High-redshift absorbers allow us to measure the rest-frame extinction curve to 900 A, at which the absorption by the Lyman edge dominates over scattering by dust in the extinction opacity.

  5. The cosmic dust input to the earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Plane, John

    2013-04-01

    This paper will address a fundamental problem - the size of the cosmic dust input to the earth's atmosphere. Zodiacal cloud observations and spaceborne dust detectors indicate a daily input of 100 - 300 tonnes, in agreement with the accumulation rates of cosmic elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle and upper atmosphere - by radars, lidars, high-flying aircraft and satellite remote sensing - indicate that the input is only 2 - 30 tonnes. There are two major reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust production and evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and in most cases completely ablate. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: formation of layers of metal atoms and ions; nucleation of noctilucent clouds; impacts on stratospheric aerosols and O3 chemistry; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  6. Collection of cosmic dust in earth orbit for exobiological analysis

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy; Huntington, Judith L.; Carle, Glenn C.

    1989-01-01

    Two proposed NASA exobiology flight experiments are described in terms of the approaches to cosmic dust collection and the issues addressed by the analysis of the samples. A passive collector is planned for use with the Cosmic Dust Collection Facility, and an active system is described for attachment to the Space Station Freedom payload. Exobiological study of cosmic dust could provide insights on organic chemistry in the grains and on the relative abundances of biogenic elements in interstellar, cometary, and meteoric samples.

  7. Reanalysis of porous chondritic cosmic dust particles

    NASA Astrophysics Data System (ADS)

    Kapisinsky, I.; Figusch, V.; Ivan, J.; Izdinsky, K.; Zemankova, M.

    2001-10-01

    The particles reanalysed in this study were obtained from the NASA Johnson Space Center (JSC) Cosmic Dust Collection. The reanalysis of the particle L2008 P9 indicates typical assemblage of olivine - pyroxene. This sample can be classified as a chondritic porous IDP with the metallic phase grain containing essential amount of nickel and copper (the latter element is most probably due to instrumental artefact). The chemical composition of the particle L2011 S5 corresponds mostly to an assemblage of pyroxene phase - (Mg,Fe,Ni)SiO_3 roughly 75 wt.% and a sulphide phase - probably pyrrhotite (Fe,Ni)S about 25 wt.%.

  8. Recent results of the Cosmic Dust Analyzer onboard Cassini

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Gruen, Eberhard; Kempf, Sascha; Moragas-Klostermeyer, Georg; Beckmann, Uwe; Postberg, Frank; Hsu, Hsiang-Wen; Burton, Marcia; Spahn, Frank; Economou, Thanasis

    The Cosmic Dust Analyzer (CDA) onboard the Cassini mission measures the properties of micron sized dust particles in the planetary system. Since 2004 CDA performs successfully measurements in the Saturnian system and made several exciting discoveries and measurements: Dust streams from the inner and outer ring system, dust grain potentials, dust grain composition of ring particles, dust size and density distributions in the outer ring system, the G ring detection, the Enceladus dust plumes and significant dust fluxes outside the known E ring. This paper provides an overview about the recent achievement of the CDA instrument and presents the results of the dust composition measurements of the Enceladus flyby on March 12, 2008.

  9. Mining cosmic dust from the blue ice lakes of Greenland

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Brownlee, D. E.; Fehrenback, L.; Hammer, C.; Jehano, C.; Thomsen, H. H.

    1985-01-01

    Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor.

  10. The simulation of cosmic dust collection process with little damage

    NASA Astrophysics Data System (ADS)

    Li, Danming; Li, Yali; Wu, Qingxiao; Dai, Peng

    2016-07-01

    To built a cosmic dust collector according to a predetermined concept, mateirals that can be used to buffer the poential high speed collision of the cosmic dust have been studied. In this study, aerogel was chosen as an ideal buffer material and analyzed with SPH modeling method which is embedded in ABAQUS FE code. This report presents the interactions of cosmic dust, varing composition, shape and velocity, with the buffer material. The results show that cosmic dust that moves at 6 Km/s or less can be captured with minor damage to the buffer material of certain length. The simulation provides favorable technical support for the structural design of the cosmic dust collector.

  11. Formation of Cosmic Carbon Dust Analogues in Plasma Reactors

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.

  12. Cosmic Dust and the Earth's Atmosphere (Vilhelm Bjerknes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.

    2017-04-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s-1), and ablate at heights between 80 and 120 km in the mesosphere/lower thermosphere (MLT). The resulting metallic vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke particles (MSPs)". MSPs are too small to sediment downwards and so are transported by the general circulation of the atmosphere, taking roughly 4 years to reach the surface. Smoke particles play a potentially important role as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere, where they also facilitate freezing of the clouds. There are also potential implications for climate, as the input of bio-available cosmic Fe in the Southern Ocean can increase biological productivity and stimulate CO2 drawdown from the atmosphere. However, current estimates of the magnitude of the cosmic dust mass input rate into the Earth's atmosphere range from 2 to over 200 tonnes per day, depending on whether the measurements are made in space, in the middle atmosphere, or in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there must be serious flaws in the interpretation of observations that have been used to make the estimates. Furthermore, given this degree of uncertainty, the significance of these potential atmospheric impacts remains speculative. In this lecture I will describe the results of a large study designed to determine the size of the cosmic dust input rate using a self-consistent treatment of cosmic dust from the outer solar system to the Earth's surface. An astronomical model which tracks the evolution of dust from various sources into the inner solar system was combined with a

  13. Time of flight mass spectra of ions in plasmas produced by hypervelocity impacts of organic and mineralogical microparticles on a cosmic dust analyser

    NASA Astrophysics Data System (ADS)

    Goldsworthy, B. J.; Burchell, M. J.; Cole, M. J.; Armes, S. P.; Khan, M. A.; Lascelles, S. F.; Green, S. F.; McDonnell, J. A. M.; Srama, R.; Bigger, S. W.

    2003-10-01

    The ionic plasma produced by a hypervelocity particle impact can be analysed to determine compositional information for the original particle by using a time-of-flight mass spectrometer. Such methods have been adopted on interplanetary dust detectors to perform in-situ analyses of encountered grains, for example, the Cassini Cosmic Dust Analyser (CDA). In order to more fully understand the data returned by such instruments, it is necessary to study their response to impacts in the laboratory. Accordingly, data are shown here for the mass spectra of ionic plasmas, produced through the acceleration of microparticles via a 2 MV van de Graaff accelerator and their impact on a dimensionally correct CDA model with a rhodium target. The microparticle dusts examined have three different chemical compositions: metal (iron), organic (polypyrrole and polystyrene latex) and mineral (aluminosilicate clay). These microparticles have mean diameters in the range 0.1 to 1.6 mu m and their velocities range from 1-50 km s-1. They thus cover a wide range of compositions, sizes and speeds expected for dust particles encountered by spacecraft in the Solar System. The advent of new low-density, microparticles with highly controllable attributes (composition, size) has enabled a number of new investigations in this area. The key is the use of a conducting polymer, either as the particle itself or as a thin overlayer on organic (or inorganic) core particles. This conductive coating permits efficient electrostatic charging and acceleration. Here, we examine how the projectile's chemical composition influences the ionic plasma produced after the hypervelocity impact. This study thus extends our understanding of impact plasma formation and detection. The ionization yield normalized to particle mass was found to depend on impact speed to the power (3.4 +/- 0.1) for iron and (2.9 +/- 0.1) for polypyrrole coated polystyrene and aluminosilicate clay. The ioization signal rise time was found to

  14. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  15. In situ dust measurements by the Cassini Cosmic Dust Analyzer in 2014 and beyond

    NASA Astrophysics Data System (ADS)

    Srama, R.

    2015-10-01

    Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 11 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended Ering were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. A special geometry in 2014-065 lead to an occultation of the dust stream by the moon Titan and its atmosphere when Titan crossed the line-of-sight between Saturn and Cassini. Here, CDA pointed towards Saturn for the measurement of stream particles. Around closest approach when Cassini was behind Titan, the flux of stream particles went down to zero (Fig. 1). This "dust occultation" is a new method to analyse the properties of the stream particles (speed, composition, mass) or the properties of Titans atmosphere (density). Furthermore, the particle trajectories can be constrained for a better analysis of their origin. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies

  16. NASA Now: Origins and Evolution of the Universe: Cosmic Dust

    NASA Image and Video Library

    This episode of NASA Now highlights recently discovered wonders of the universe as well as common cosmic dust. Discover how these microscopic particles floating in space could hold the key to the o...

  17. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  18. A New Laboratory For Terahertz Characterization Of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara; Liu, Lunjun; Breyer, Fiona; Schonert, Ryan; O'Shea, Kyle; Roesner, Rebecca

    2016-06-01

    Most studies conducted with observatories such as ALMA, SOFIA, PLANCK, and Herschel will benefit from knowledge of (1) the predominant cosmic dust species in various environments and (2) the mm/sub-mm optical properties of cosmic dusts, including the temperature dependent-emissivity and spectral index. We have undertaken two efforts to enable the laboratory study of cosmic analogs dusts in the frequency range 60-2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  19. An interactive service for cosmic dust catalogs at the IDIS Small Bodies and Dust Node

    NASA Astrophysics Data System (ADS)

    Giardino, M.; Braga, V. F.; De Sanctis, M. C.; Capria, M. T.; De Angelis, S.

    2012-09-01

    We present a web based interactive data service allowing an easy retrieval and analysis of cosmic dust repositories. Our tool allows to search dust particles using several criteria: shape, size interval, luster, transparency or curator classification. For each particle it is possible to show the SEM(Scanning Electron Microscopy) image, the EDS (X-ray Energy-Dispersive Spectrometry) spectra and other descriptive data. This service has been developed as a resource of the Europlanet Small Bodies and Dust Node and is available at this URL: http://www.iasfroma. inaf.it:8080/web/sbdn/cosmic-dust-catalog.

  20. Pristine Stratospheric Collections of Cosmic Dust

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Clemett, S. J.

    2012-01-01

    Since 1981, NASA has routinely collected interplanetary dust particles (IDPs) in the stratosphere by inertial impact onto silicone oil-coated flat plate collectors deployed on the wings of high-altitude aircraft [1]. The highly viscous oil traps and localizes the particles, which can fragment during collection. Particles are removed from the collectors with a micromanipulator and washed of the oil using organic solvents, typically hexane or xylene. While silicone oil is an efficient collection medium, its use is problematic. All IDPs are initially coated with this material (polydimethylsiloxane, n(CH3)2SiO) and traces of oil may remain after cleaning. The solvent rinse itself is also a concern as it likely removes indigenous organics from the particles. To avoid these issues, we used a polyurethane foam substrate for the oil-free stratospheric collection of IDPs.

  1. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d(-1)), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  2. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  3. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  4. Progress toward a cosmic dust collection facility on space station

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R. (Editor); Carey, William C. (Editor)

    1987-01-01

    Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.

  5. Modeling Cosmic Dust: How to Use Optical "Constants"

    NASA Astrophysics Data System (ADS)

    Speck, A.

    In order to determine the precise nature of cosmic dust, we use a combination of multi-wavelength ground- and space-based spectroscopy, imaging, laboratory data and modeling. Dust grains scatter, absorb and re-radiate light according to their optical properties, which are sensitive to e.g. the temperature, chemical composition, size, shape, and lattice structure of the dust grains. For example, graphite and diamond are both polymorphs of carbon, and will form under very similar conditions, but their interactions with light are very different. This work provides a primer on how to apply basic physics concepts to understanding how we measure and use the optical properties of candidate cosmic dust species. We discuss the way in which measurements are made, how simplifying assumptions commonly made in astronomy may cause problems and how measurable and calculable parameters from laboratory experiments can be directly or indirectly compared to parameters derived from astronomical observations. Finally, we examine the simplifying assumptions with the most commonly used “synthetic” optical properties for cosmic dust and highlight forthcoming laboratory data as a potential replacement.

  6. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    NASA Technical Reports Server (NTRS)

    Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.

    1990-01-01

    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.

  7. Cosmic Ornament of Gas and Dust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 4-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Silicon Gas Figure 2 Argon Figure 3 Dust Collection Figure 4

    This beautiful bulb might look like a Christmas ornament but it is the blown-out remains of a stellar explosion, or supernova. Called Cassiopeia A, this supernova remnant is located about 10,000 light-years away in our own Milky Way galaxy. The remains are shown here in an infrared composite from NASA's Spitzer Space Telescope. Silicon gas is blue and argon gas is green, while red represents about 10,000 Earth masses worth of dust. Yellow shows areas where red and green overlap.

    The fact that these two features line up (as seen in yellow in the combined view) tells astronomers that the dust, together with the gas, was created in the explosion. This is the best evidence yet that supernovae are a significant source of dust in the early universe something that was postulated before, but not proven. Dust in our young universe is important because it eventually made its way into future stars, planets and even people.

    In figure 1, the upper left panel is a composite made up of three infrared views shown in the remaining panels. The bottom left view (figure 3) shows argon gas (green) that was synthesized as it was ejected from the star. The upper right panel (figure 2) shows silicon gas (blue) deep in the interior of the remnant. This cooler gas, called the unshocked ejecta, was also synthesized in the supernova blast. The bottom right view (figure 4) shows a collection of dust (red), including proto-silicates, silicate dioxide and iron oxide.

    The data for these images were taken by Spitzer's infrared spectrograph, which splits light apart to reveal the fingerprints of molecules and elements. In total, Spitzer collected separate 'spectra' at more than 1,700 positions across

  8. Cosmic Ornament of Gas and Dust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 4-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Silicon Gas Figure 2 Argon Figure 3 Dust Collection Figure 4

    This beautiful bulb might look like a Christmas ornament but it is the blown-out remains of a stellar explosion, or supernova. Called Cassiopeia A, this supernova remnant is located about 10,000 light-years away in our own Milky Way galaxy. The remains are shown here in an infrared composite from NASA's Spitzer Space Telescope. Silicon gas is blue and argon gas is green, while red represents about 10,000 Earth masses worth of dust. Yellow shows areas where red and green overlap.

    The fact that these two features line up (as seen in yellow in the combined view) tells astronomers that the dust, together with the gas, was created in the explosion. This is the best evidence yet that supernovae are a significant source of dust in the early universe something that was postulated before, but not proven. Dust in our young universe is important because it eventually made its way into future stars, planets and even people.

    In figure 1, the upper left panel is a composite made up of three infrared views shown in the remaining panels. The bottom left view (figure 3) shows argon gas (green) that was synthesized as it was ejected from the star. The upper right panel (figure 2) shows silicon gas (blue) deep in the interior of the remnant. This cooler gas, called the unshocked ejecta, was also synthesized in the supernova blast. The bottom right view (figure 4) shows a collection of dust (red), including proto-silicates, silicate dioxide and iron oxide.

    The data for these images were taken by Spitzer's infrared spectrograph, which splits light apart to reveal the fingerprints of molecules and elements. In total, Spitzer collected separate 'spectra' at more than 1,700 positions across

  9. Recent Direct Measurements by Satellites of Cosmic Dust in the Vicinity of the Earth

    NASA Technical Reports Server (NTRS)

    LaGow, H. E.; Alexander, W. M.

    1960-01-01

    Direct measurements of the space density of cosmic dust particles in the vicinity of the earth have been made from rockets, satellites, and space probes. The largest data samples have been obtained from crystal transducer sensors that detect the impact-impulses occurring from the collision of dust particles on sensitive surfaces of space vehicles. Preliminary results from satellite 1959 Eta show: (1) over 1500 impacts and an area-time product greater than 10(exp 1O) sq cm-sec; and (2) a daily variation in the dust particle density near the earth. The dust particle instrumentation of 1959 Eta and sensor calibration techniques are discussed in this paper. The results of direct measurements from space vehicles prior to 1959 Eta are summarized with respect to 1959 Eta information.

  10. a New Laboratory for Terahertz Characterization of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara

    2016-06-01

    Two efforts have been underway to enable the laboratory study of cosmic analogs dusts in the frequency range 60--2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  11. Mathematical model of formation of Kordylewski cosmic dust clouds

    NASA Astrophysics Data System (ADS)

    Sal'nikova, T. V.; Stepanov, S. Ya.

    2015-07-01

    The question of occurrence of cosmic dust clouds, which were found by Kordylewski in 1961 in the vicinity of libration point L 5 of the Earth-Moon system, still causes debates and concern. We explain theoretically the phenomenon of the apparent vanishing and appearance of the Kordylewski cosmic dust clouds in the vicinity of triangular libration points L 4 and L 5 of the Earth-Moon system. The possibility of occurrence of two such clouds rotating around libration points L 4 and two clouds rotating around point L 5 is shown and optimal times for their observation from the Earth are determined. The investigation is performed based on analysis of a stable periodic motion in a planar restricted circular problem of three bodies, Earth-Moon—Particle, allowing for perturbations from the Sun under the assumption that the orbits of the Earth and Moon are circular and lie in one plane.

  12. DustPedia: A Definitive Study of Cosmic Dust in the Local Universe

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; De Looze, I.; Evans, R.; Fritz, J.; Galametz, M.; Galliano, F.; Lianou, S.; Mosenkov, A. V.; Smith, M.; Verstocken, S.; Viaene, S.; Vika, M.; Wagle, G.; Ysard, N.

    2017-04-01

    The European Space Agency has invested heavily in two cornerstones missions: Herschel and Planck. The legacy data from these missions provides an unprecedented opportunity to study cosmic dust in galaxies so that we can, for example, answer fundamental questions about the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far-infrared background. In this paper we describe the DustPedia project, which enables us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, and temperature), its origins (evolved stars, supernovae, and growth in the ISM), and the processes that destroy it (high-energy collisions and shock heated gas). To carry out this research, we combine the Herschel/Planck data with that from other sources of data, and provide observations at numerous wavelengths (≤slant 41) across the spectral energy distribution, thus creating the DustPedia database. To maximize our spatial resolution and sensitivity to cosmic dust, we limit our analysis to 4231 local galaxies (v< 3000 km s-1) selected via their near-infrared luminosity (stellar mass). To help us interpret this data, we developed a new physical model for dust (THEMIS), a new Bayesian method of fitting and interpreting spectral energy distributions (HerBIE) and a state-of-the-art Monte Carlo photon-tracing radiative transfer model (SKIRT). In this, the first of the DustPedia papers, we describe the project objectives, data sets used, and provide an insight into the new scientific methods we plan to implement.

  13. The spin of cosmic dust: Rotational bursting of circumsolar dust in the F corona

    NASA Astrophysics Data System (ADS)

    Misconi, Nebil Y.

    1993-11-01

    This paper will list, investigate, and evaluate the various spin mechanisms for cosmic dust particles that have been suggested in the literature. This evaluation will concentrate on the possibility of particle fragmentation (rotational bursting) of cosmic dust. The importance of partical fragmentation is manifested by the fact that dust particle size distribution will be changed. More importantly, repeated fragmentation of interplanetary dust particles will give rise to some of the observed 'beta meteoroids.' Some of these particles are driven out of the solar system and into interstellar space by solar radiation pressure. If this mass loss mechanism is taking place in stellar systems, then it becomes a source for interstellar dust. This paper also addresses the possibility that massive rotational bursting by circumsolar dust particles is taking place in the F corona region. This rotational bursting of F coronal dust could be taking place because of the classical 'Paddack effect,' along with a similar spin mechanism suggested by the author, and caused by coronal mass ejections.

  14. Role of Cosmic Dust Analogues in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Strazzulla, G.; Baratta, G. A.; Saladino, R.; di Mauro, E.

    Dust grains could have played an important role in driving the formation of complex molecular compounds relevant for the prebiotic chemistry occurred in the early Earth. Dust and molecular compounds present in space experienced very different environments, with temperatures ranging from few to thousands of Kelvins, and with very harsh conditions due to particle and UV irradiations. Astronomical observations of the interstellar medium, coupled with direct in-situ investigations of solar system bodies performed by space missions and laboratory analyses of extraterrestrial material have shown the presence of large amount of organic molecules. The detection of more than one hundred molecules demonstrates that chemical reactions can proceed successfully in space. However, due to low efficiency, formation of complex molecules in gas phase is not feasible, then an active chemistry has been suggested to take place at cryogenic temperatures (~10 K) on cosmic dust grains acting as catalysts. We will present laboratory results on catalytic effects of Cosmic Dust Analogues (CDAs) with olivine composition, in the synthesis of organic molecules under different physical conditions by using formamide (NH2COH). We will show the important role of CDAs in prebiotic chemistry experiments simulating processes occurring in astronomical environments relevant for the origin of life in the Solar System.

  15. Missing dust signature in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Vavryčuk, Václav

    2017-09-01

    I examine a possible spectral distortion of the cosmic microwave background (CMB) due to its absorption by galactic and intergalactic dust. I show that even subtle intergalactic opacity of 1 × 10-7 mag h Gpc-1 at the CMB wavelengths in the local Universe causes non-negligible CMB absorption and decline of the CMB intensity because the opacity steeply increases with redshift. The CMB should be distorted even during the epoch of the Universe defined by redshifts z < 10. For this epoch, the maximum spectral distortion of the CMB is at least 20 × 10-22 W m-2 Hz-1 sr-1 at 300 GHz, which is well above the sensitivity of the COBE/FIRAS, WMAP or Planck flux measurements. If dust mass is considered to be redshift dependent with noticeable dust abundance at redshifts 2-4, the predicted CMB distortion would be even higher. The CMB would also be distorted in a perfectly transparent universe due to dust in galaxies, but this effect is lower by one order than that due to intergalactic opacity. The fact that the distortion of the CMB by dust is not observed is intriguing and questions either opacity and extinction law measurements or validity of the current model of the Universe.

  16. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  17. Busting Dust: From Cosmic Grains to Terrestrial Microbes

    NASA Astrophysics Data System (ADS)

    Mendis, D. A.

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments.

  18. Reliability of cosmic dust data from Pioneers 8 and 9.

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Berg, O. E.; Dohnanyi, J. S.

    1973-01-01

    A comprehensive study of the characteristics and capabilities of the Pioneer cosmic dust mission is presented to facilitate accurate astronomical adaptations of the data by independent researchers. The characteristics of the sensor and associated electronics as they relate to dynamic range, field of view, and penetration effects in the film are discussed, comparisons are made between flight and simulation data, and statistical analyses are made of the reliability of the flight data. It is shown that the measurements from the Pioneer experiment are highly reliable and provide a valuable contribution to man's knowledge of the meteoroid environment of the solar system.

  19. Reliability of cosmic dust data from Pioneers 8 and 9.

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Berg, O. E.; Dohnanyi, J. S.

    1973-01-01

    A comprehensive study of the characteristics and capabilities of the Pioneer cosmic dust mission is presented to facilitate accurate astronomical adaptations of the data by independent researchers. The characteristics of the sensor and associated electronics as they relate to dynamic range, field of view, and penetration effects in the film are discussed, comparisons are made between flight and simulation data, and statistical analyses are made of the reliability of the flight data. It is shown that the measurements from the Pioneer experiment are highly reliable and provide a valuable contribution to man's knowledge of the meteoroid environment of the solar system.

  20. Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyzer.

    PubMed

    Altobelli, N; Postberg, F; Fiege, K; Trieloff, M; Kimura, H; Sterken, V J; Hsu, H-W; Hillier, J; Khawaja, N; Moragas-Klostermeyer, G; Blum, J; Burton, M; Srama, R; Kempf, S; Gruen, E

    2016-04-15

    Interstellar dust (ISD) is the condensed phase of the interstellar medium. In situ data from the Cosmic Dust Analyzer on board the Cassini spacecraft reveal that the Saturnian system is passed by ISD grains from our immediate interstellar neighborhood, the local interstellar cloud. We determine the mass distribution of 36 interstellar grains, their elemental composition, and a lower limit for the ISD flux at Saturn. Mass spectra and grain dynamics suggest the presence of magnesium-rich grains of silicate and oxide composition, partly with iron inclusions. Major rock-forming elements (magnesium, silicon, iron, and calcium) are present in cosmic abundances, with only small grain-to-grain variations, but sulfur and carbon are depleted. The ISD grains in the solar neighborhood appear to be homogenized, likely by repeated processing in the interstellar medium. Copyright © 2016, American Association for the Advancement of Science.

  1. Superaromatics: The key to a unified cosmic dust theory

    NASA Technical Reports Server (NTRS)

    Manuel, Lawrence R.

    1989-01-01

    The theory of Superaromatics, the key to a unified cosmic dust theory, was constructed by analyzing several thousand astronomical features covering every major aspect of astrophysics and astrochemistry relating to dust. To insure consistency between disciplines, the logical structure of the conclusions in each field was checked rather than accepting the current consensus. No substantial contradictory features are known to the author. The analysis falls into seven major parts: (1) kinetics of grain formation and destruction; (2) optical spectra of the interstellar medium (ISM); (3) meteorite interplanetary dust particle (IPD) chemistry; (4) structure and chemistry of the interstellar medium arising from surface catalysis; (6) dynamics of circumstellar and interstellar dust clouds, including galactic morphology; and (7) the chemistry and physics of previously unidentified compounds. Only tentative conclusions are presented here. The principle conclusion is that quantum mechanics as it is normally formulated is incomplete. The probable cause is that it is formulated with complex numbers rather than the more fundamental quaternion system. The manifestation in astrochemistry is that the most stable compounds are superaromatic and exotic enough to confound most classical analysis.

  2. Cosmic Impacts, Cosmic Catastrophes. Part 2.

    ERIC Educational Resources Information Center

    Chapman, Clark R.; Morrison, David

    1990-01-01

    Examined is the science of catastrophism and its role in planetary and earth science. The effects of impacts on earth with extraterrestrial origins are discussed. Perspectives on the age and dynamics of the earth's crust are presented. (CW)

  3. Cosmic Impacts, Cosmic Catastrophes. Part 2.

    ERIC Educational Resources Information Center

    Chapman, Clark R.; Morrison, David

    1990-01-01

    Examined is the science of catastrophism and its role in planetary and earth science. The effects of impacts on earth with extraterrestrial origins are discussed. Perspectives on the age and dynamics of the earth's crust are presented. (CW)

  4. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Plane, J. M. C.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-08-01

    The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s-1) particles.

  5. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  6. On the size and velocity distribution of cosmic dust particles entering the atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Plane, J M C; Feng, W; Nesvorný, D; Janches, D

    2015-08-16

    The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s(-1)) particles.

  7. Effects of dust enrichment on oxygen fugacity of cosmic gases

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence

    2016-05-01

    The degree to which dust enrichment enhances the oxygen fugacity (fO2) of a system otherwise solar in composition depends on the dust composition. Equilibrium calculations were performed at 10-3 bar in systems enriched by a factor of 104 in two fundamentally different types of dust to investigate the iron oxidation state in both cases. One type of dust, called SC for solar condensate, stopped equilibrating with solar gas at too high a temperature for FeO or condensed water to be stabilized in any form, and thus has the composition expected of a nebular condensate. The other has CI chondrite composition, appropriate for a parent body that accreted from SC dust and low-temperature ice. Upon total vaporization at 2300 K, both systems have high fO2, >IW. In the SC dust-enriched system, FeO of the bulk silicate reaches ~10 wt% at 1970 K but decreases to <1 wt% below 1500 K. The FeO undergoes reduction because consumption of gaseous oxygen by silicate recondensation causes a precipitous drop in fO2. Thus, enrichment in dust having the composition of likely nebular condensates cannot yield a sufficiently oxidizing environment to account for the FeO contents of chondrules. The fO2 of the system enriched in water-rich, CI dust, however, remains high throughout condensation, as gaseous water remains uncondensed until very low temperatures. This allows silicate condensates to achieve and maintain FeO contents of 27-35 wt%. Water-rich parent bodies are thus excellent candidate sources of chondrule precursors. Impacts on such bodies may have created the combination of high dust enrichment, total pressure, and fO2 necessary for chondrule formation.

  8. Effects of Martian dust storms on ionization profiles and surface dose rates from cosmic rays

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.

    2012-12-01

    Global dust storms can engulf Mars and distribute dust throughout the atmosphere. The change in composition and density of the atmosphere due to dust storms affects the ionization rate due to cosmic rays impingent on Mars. To model the effect of dust storms on the Martian ionization profile, the Badhwar-O'Neill cosmic ray spectrum model has been adapted to Mars and used as an input in the NAIRAS model. NAIRAS is a cosmic ray irradiation model adapted for fast computations and has been applied to the Martian atmosphere. Full atmosphere ionization profiles for solar maximum and solar minimum conditions during both dust storms and quiet times are reported. The contribution of heavy ions and secondary particles to the ionization profile are also reported. Dose rates at the surface due to cosmic radiation are shown to not vary significantly due to the dust storms.

  9. Automated classification of interplanetary dust particles: Johnson Space Center Cosmic Dust Catalog Volume 15

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Stepinski, Tomasz; Bell, Samuel W.

    2010-05-01

    The ``Cosmic Dust Catalog,'' published by the NASA Johnson Space Center (JSC), describes thousands of interplanetary dust particles subjected to preliminary analysis and with labels indicating their origin. However, only about 80% of the particles are assigned unambiguous labels, the labels of the remaining 20% being uncertain. In addition, the Stardust mission results opened up the possibility that some particles classified as terrestrial contaminants are instead of cosmic (cometary) origin. In this article, we present a methodology for automatic classification of particles on the basis of similarity of their X-ray energy dispersive spectrometry spectra. The method is applied to the 467 particles constituting Volume 15 of the catalog. A first part of the analysis is to digitize the spectra from their scanned images. The digitized spectra are subjected to agglomerative clustering, which reveals 16 distinct clusters or compositional types of particles. The Sammon's map is used to visualize the relationship between different clusters; 6 clusters corresponding to cosmic particles and 10 clusters corresponding to terrestrial contaminants are clearly separated on the map indicating overall differences between diverse spectra of cosmic and terrestrial particles. By reconciling labels with the clustering structures, we propose the relabeling of 155 particles including the relabeling of 31 terrestrial contaminants into cosmic particles. The proposed relabeling needs to be confirmed by in-depth study of these particles. The paucity of particles with firmly determined cometary or asteroidal origin makes it difficult to establish whether the spectra based autoclassification can be utilized to discriminate between cometary and asteroidal particles. The methodology presented here can be used to classify all particles published in the catalog, as well as different samples for which comparable spectra are available.

  10. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites.

    PubMed

    Fielding, Lee A; Hillier, Jon K; Burchell, Mark J; Armes, Steven P

    2015-12-11

    Over the last decade or so, a range of polypyrrole-based particles have been designed and evaluated for space science applications. This electrically conductive polymer enables such particles to efficiently acquire surface charge, which in turn allows their acceleration up to the hypervelocity regime (>1 km s(-1)) using a Van de Graaff accelerator. Either organic latex (e.g. polystyrene or poly(methyl methacrylate)) or various inorganic materials (such as silica, olivine or pyrrhotite) can be coated with polypyrrole; these core-shell particles are useful mimics for understanding the hypervelocity impact ionisation behaviour of micro-meteorites (a.k.a. cosmic dust). Impacts on metal targets at relatively low hypervelocities (<10 km s(-1)) generate ionic plasma composed mainly of molecular fragments, whereas higher hypervelocities (>10 km s(-1)) generate predominately atomic species, since many more chemical bonds are cleaved if the particles impinge with higher kinetic energy. Such fundamental studies are relevant to the calibration of the cosmic dust analyser (CDA) onboard the Cassini spacecraft, which was designed to determine the chemical composition of Saturn's dust rings. Inspired by volcanism observed for one of the Jupiter's moons (Io), polypyrrole-coated sulfur-rich latexes have also been designed to help space scientists understand ionisation spectra originating from sulfur-rich dust particles. Finally, relatively large (20 μm diameter) polypyrrole-coated polystyrene latexes have proven to be useful for understanding the extent of thermal ablation of organic projectiles when fired at ultralow density aerogel targets at up to 6.1 km s(-1) using a Light Gas Gun. In this case, the sacrificial polypyrrole overlayer simply provides a sensitive spectroscopic signature (rather than a conductive overlayer), and the scientific findings have important implications for the detection of organic dust grains during the Stardust space mission.

  11. Polarization of cosmic dust simulated with the rough spheroid model

    NASA Astrophysics Data System (ADS)

    Kolokolova, Ludmilla; Das, Himadri Sekhar; Dubovik, Oleg; Lapyonok, Tatyana; Yang, Ping

    2015-10-01

    Cosmic dust is a polydisperse mixture of irregular, often aggregated, particles. Previous attempts have tried to simulate polarimetric properties of this dust using aggregate dust models, but it has not been possible to consider particle sizes larger than a couple of microns due to limitations of computer memory and processing power. Attempts have also been made to replace aggregates by polydisperse regular particles (spheres, spheroids, cylinders), but those models could not consistently reproduce the observed photopolarimetric characteristics. In this study, we introduce to the astronomical community the software package developed by Dubovik et al. (2006) for modeling light scattering by a polydisperse mixture of randomly oriented smooth and rough spheroids of a variety of aspect ratios. The roughness of spheroids is defined by a normal distribution of the surface slopes, and its degree depends on the standard deviation of the distribution (which is zero for smooth surface and greater than zero for rough surface). The pre-calculated kernels in the software package allow for fast, accurate, and flexible modeling of different size and shape distributions. We present our results of a systematic investigation of polarization obtained with the rough and smooth spheroid models; we study differences in their phase angle dependence and how those differences change with the particle size distribution. We found that the difference between smooth and rough particles increases with increasing effective size parameter and affects mainly the value and position of the maximum polarization. Negative polarization was found to be typical only for silicate-like refractive indexes and only when the particles have size parameters within 2.5-25. As an example of an application of the rough spheroid model, we made computations for rough spheroids that have a size distribution and composition typical for cometary dust. We found that a mixture of porous rough spheroids made of absorbing

  12. Force limited vibration testing of Cassini spacecraft cosmic dust analyser

    NASA Technical Reports Server (NTRS)

    Jahn, Heiko; Ritzmann, Swen; Chang, Kurng; Scharton, Terry

    1996-01-01

    The testing of the cosmic dust analyzer for the Cassini mission using the force limited method in order to avoid overtesting and to verify the ability of the specimen design to withstand the loads during launch and cruise, is reported on. In order to implement the method, force gages, fixtures and a test controller are required and the test specimen is subjected to sine vibration, random vibration and half sine shock. The practical aspects of the use of the force limited method are described. Due to the high loads and the weak design of the structural element, a notching method is used which provides the possibility of limiting the excitation to flight expected levels.

  13. Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration

    NASA Astrophysics Data System (ADS)

    Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M.

    2014-04-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching

  14. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  15. Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.

    2000-01-01

    Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be

  16. Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.

    2000-01-01

    Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be

  17. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.

    2014-08-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.

  18. Kent in space: Cosmic dust to space debris

    NASA Astrophysics Data System (ADS)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  19. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  20. Direct Dust Impact Detection of the Circumsolar Dust Rings and Gaps of the Earth and Venus by IKAROS-ALADDIN

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Hirai, Takayuki; Okamoto, Chisato; Tanaka, Makoto; Fujii, Masayuki

    Launched in May 2010, the IKAROS (Interplanetary Kite-craft Accelerated by the Radiation of the Sun) spacecraft carried the ALADDIN (Arrayed Large-Area Dust Detectors in INterplanetary Space) PVDF dust detector, which successfully produced cosmic dust impact flux in 16 months between the Earth and Venus orbits. Attached on the anti-Sun face of the IKAROS polyimide sail membrane of 7.5 micron thickness, ALADDIN exposed an effective detection area of 0.54 m2 of 8 channels of 9-20 micron-thick PVDF. The primary objective of ALADDIN was to test the large PVDF array system on thin sail membrane for cosmic dust impact detection in the interplanetary cruising operation, in order to prepare for future larger sail missions to outer planetary region beyond Jupiter. The second objective is to measure heliocentric flux variance of cosmic dust inside the orbit of the Earth (~1.0 AU) down to the vicinity of Venus (~0.7 AU) continuously, and opportunistic detections of possible fine dust structures such as circumsolar dust rings near the Earth and Venus. ALADDIN started its nominal measurement on June 30th of 2010 and the last down linked data so far came in October 2011. During the 16-month cruising between the Earth’s orbit and Venus’ orbit (i.e., 1.0~0.7 AU of heliocentric distance) in 1.5 revolutions, ALADDIN detected >2800 dust impacts, after various screening processes of noise signals. Over 700 signals caused by large (i.e., >10-micron size) dust impacts are also identified and they are statistically reliable to detect local dust distribution variation within the model-predicted circumsolar dust rings, which have never been detected in-situ by previous dust detectors but only reported by infrared space telescopes and optical sensors carried by Helios and Stereo. The ALADDIN dust flux in 2010-2011 clearly shows continuous raising of the number density of >10-micron dust about an order of magnitude between the Earth and Venus orbits, for both inward cruising to its

  1. Investigating Cosmic Analog Dusts in the Lab at MM/Sub-MM Wavelength

    NASA Astrophysics Data System (ADS)

    Liu, Lunjun; O'Shea, Kyle; Breyer, Fiona; Dorsey, Ronan; Chen, Hansheng; Perera, Thushara

    2017-01-01

    Cosmic dust is abundant in many interesting astronomical environments such as active galactic nuclei (AGN) and protosteller systems. It also plays a key role in star formation and galactic evolution. In an effort to understand the thermal emission of dust in various environments, a dedicated instrument for measuring the emissivity of various cosmic analog dusts in the millimeter/sub-millimeter has been assembled and tested. In particular, novel design have adopted for the Fourier Transform Spectrometer (FTS) and the cold sample holder of the apparatus. We report here on the performance of the sample holder, FTS, and other parts of the complete experimental setup as found with our initial tests. Our next step will be to obtain science data on realistic cosmic analog dust samples synthesized by us such as amorphous silicate grains containing Mg/Fe.

  2. LAD-C: A Large Area Cosmic Dust and Orbital Debris Collector on the International Space Station

    NASA Astrophysics Data System (ADS)

    Liou, J.-C.; Giovane, F.; Corsaro, R.; Stansbery, E.

    2007-01-01

    A 10 m^2 aerogel and acoustic sensor system has been under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center. This Large Area Debris Collector (LAD-C) is tentatively scheduled to be deployed by the U.S. Department of Defense Space Test Program (STP) on the International Space Station (ISS) in late 2007. The system will be retrieved, after one to two years of data and sample collection, for post-flight analysis. In addition to cosmic dust and orbital debris sample return, the acoustic sensors will record impact characteristics for potential orbit determination of some of the collected samples. Source identification based on their dynamical signatures may be possible. The LAD-C science return will benefit orbital debris, cosmic dust, and satellite safety communities. This paper presents an overview of the mission objectives, basic configuration, deployment consideration, and science return of the experiment.

  3. Laser microprobe study of cosmic dust (IDPs) and potential source materials

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Sommer, M. S., II

    1986-01-01

    The study of cosmic dust or interplanetary dust particles (IDP) can provide vital information about primitive materials derived primarily from comets and asteroids along with a small unknown fraction from the nearby interstellar medium. The study of these particles can enhance our understanding of comets along with the decoding of the history of the early solar system. In addition the study of the cosmic dust for IDP particles can assist in the elucidation of the cosmic history of the organogenic elements which are vital to life processes. Studies to date on these particles have shown that they are complex, heterogeneous assemblages of both amorphous and crystalline components. In order to understand the nature of these particles, any analytical measurements must be able to distinguish between the possible sources of these particles. A study was undertaken using a laser microprobe interfaced to a quadrupole mass spectrometer for the analysis of the volatile components present in cosmic dust particles, terrestrial contaminants present in the upper atmosphere, and primitive carbonaceous chondrites. From the study of the volatiles released from the carbonaceous materials it is hoped that one could distinguish between components and sources in the IDP particles analyzed. The technique is briefly described and results for the CI, CM, and CV chondrites and cosmic dust particle W7027B8 are presented.

  4. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; hide

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  5. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; Rogers, Fred

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  6. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  7. How large is the cosmic dust flux into the Earth's atmosphere?

    NASA Astrophysics Data System (ADS)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  8. Laboratory investigation of antenna signals from dust impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  9. Do some of the sub-micrometer cosmic dust particles come from the sun.

    NASA Technical Reports Server (NTRS)

    Hemenway, C. L.; Erkes, J. W.; Greenberg, J. M.; Hallgren, D. S.; Schmalberger, D. C.

    1973-01-01

    Studies of cosmic dust particles collected at altitudes of 80 to 120 km over White Sands, New Mexico, and at times of noctilucent clouds over Kiruna, Sweden, indicate that an anomalously high atomic weight contribution is present within those particles collected at Kiruna. The elements observed are inconsistent with an origin due to atomic bomb fallout, meteoroidal crumbling, lunar ejecta, or comets. Many of these heavy elements may be stable in particulate form at the relatively high temperatures found in the coolest regions of the solar atmosphere. Some implications of the sun as the source of a significant component of cosmic dust are discussed.

  10. Do some of the sub-micrometer cosmic dust particles come from the sun.

    NASA Technical Reports Server (NTRS)

    Hemenway, C. L.; Erkes, J. W.; Greenberg, J. M.; Hallgren, D. S.; Schmalberger, D. C.

    1973-01-01

    Studies of cosmic dust particles collected at altitudes of 80 to 120 km over White Sands, New Mexico, and at times of noctilucent clouds over Kiruna, Sweden, indicate that an anomalously high atomic weight contribution is present within those particles collected at Kiruna. The elements observed are inconsistent with an origin due to atomic bomb fallout, meteoroidal crumbling, lunar ejecta, or comets. Many of these heavy elements may be stable in particulate form at the relatively high temperatures found in the coolest regions of the solar atmosphere. Some implications of the sun as the source of a significant component of cosmic dust are discussed.

  11. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    SciTech Connect

    Bekki, Kenji

    2015-02-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H{sub 2}) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H{sub 2} gas fraction (f{sub H{sub 2}}), and gas-phase chemical abundances (e.g., A {sub O} = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f{sub H{sub 2}} can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A {sub O}-D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A {sub O} is smaller. The simulated galaxies with larger total dust masses show larger H{sub 2} and stellar masses and higher f{sub H{sub 2}}. Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z.

  12. Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2

    NASA Technical Reports Server (NTRS)

    Mandeville, J. C.; Borg, Janet

    1992-01-01

    Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.

  13. Violation of cosmic censorship in the gravitational collapse of a dust cloud in five dimensions

    NASA Astrophysics Data System (ADS)

    Mizuno, Ryosuke; Ohashi, Seij; Shiromizu, Tetsuya

    2016-10-01

    We analyze the null geodesic equations in five-dimensional spherically symmetric spacetime with collapsing inhomogeneous dust cloud. By using a new method, we prove the existence and non-existence of solutions to null geodesic equations emanating from the central singularity for smooth initial distribution of dust. Moreover, we also show that the null geodesics can extend to null infinity in a certain case, which implies violation of the cosmic censorship conjecture.

  14. Vertical and horizontal transport of mesospheric Na: Implications for the mass influx of cosmic dust

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Liu, Alan Z.; Guo, Yafang

    2017-09-01

    The mesospheric metal layers are formed by the vaporization of high-speed cosmic dust particles as they enter the Earth's upper atmosphere. We show that the downward fluxes of these metal atoms, induced locally by waves and turbulence, are related in a straightforward way to the meteoric influxes of the metals, their chemical losses and their advective transport by the large-scale vertical and horizontal motions associated with the meridional circulation system. Above the peak of the metal layers where chemical losses and large-scale vertical motions are small, the wave-induced flux is insensitive to changes in local wave activity. If the downward transport velocity increases, because wave activity increases, then in response, the metal densities will decrease to maintain a constant vertical flux. By fitting the theoretical Na flux profile to the annual mean vertical flux profile measured during the night at the Starfire Optical Range, NM, we derive improved estimates for the global influxes of both Na and cosmic dust. The mean Na influx is 22,500±1050 atoms/cm2/s, which equals 389±18 kg/d for the global input of Na vapor. If the Na composition of the dust particles is identical to CI chondritic meteorites (4990 ppm by mass), then the global influx of cosmic dust is 176±38 t/d. If the composition is identical to ordinary chondrites (7680 ppm), the global dust influx is 107±22 t/d.

  15. Electrodynamic Balance for Studies of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Abbas, M. M.; Venturini, C. C.; Comfort, R. H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Knowledge of the formation and distribution of interstellar, interplanetary, and planetary dust grains, and their physical, chemical and optical characteristics provide valuable information about many issues dealing with the origin and formation of the solar system bodies, interplanetary and interstellar environments as well as various industrial processes. Understanding the microphysics of individual grains and their interaction with the surrounding, environment is key to properly model various conditions and interpret existing data. The theory and models of individual dust grains are well developed for environments that vary from dense planetary atmospheres to dusty plasmas to diffuse environments such as interplanetary space. However, experimental investigations of individual dust grains in equilibrium are less common, perhaps due to the difficulty of these experiments. Laboratory measurements of dust grains have primarily measured ensemble properties or transient properties of single grains. A technique developed in the 1950's for ion spectroscopy, generally referred to as a quadrupole trap has recently been employed as an electrodynamic balance to investigate single micron-sized dust grains and for atmospheric aerosol research. A description of the theoretical basis and the experimental setup of the electrodynamic balance being developed in our laboratory are given. This laboratory technique lends itself to many applications that relate to planetary atmospheres, heliospheric environments, pre-stellar and pre-planetary conditions, and industrial settings. We present results from some recent experiments carried out to investigate the equilibrium potential of dust grains exposed to far ultraviolet light or to an electron beam. Some future experiments using an electrodynamic balance to investigate the optical characteristics, and condensation process involving dust grains in various astrophysical environments are discussed.

  16. Electrodynamic Balance for Studies of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Abbas, M. M.; Venturini, C. C.; Comfort, R. H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Knowledge of the formation and distribution of interstellar, interplanetary, and planetary dust grains, and their physical, chemical and optical characteristics provide valuable information about many issues dealing with the origin and formation of the solar system bodies, interplanetary and interstellar environments as well as various industrial processes. Understanding the microphysics of individual grains and their interaction with the surrounding, environment is key to properly model various conditions and interpret existing data. The theory and models of individual dust grains are well developed for environments that vary from dense planetary atmospheres to dusty plasmas to diffuse environments such as interplanetary space. However, experimental investigations of individual dust grains in equilibrium are less common, perhaps due to the difficulty of these experiments. Laboratory measurements of dust grains have primarily measured ensemble properties or transient properties of single grains. A technique developed in the 1950's for ion spectroscopy, generally referred to as a quadrupole trap has recently been employed as an electrodynamic balance to investigate single micron-sized dust grains and for atmospheric aerosol research. A description of the theoretical basis and the experimental setup of the electrodynamic balance being developed in our laboratory are given. This laboratory technique lends itself to many applications that relate to planetary atmospheres, heliospheric environments, pre-stellar and pre-planetary conditions, and industrial settings. We present results from some recent experiments carried out to investigate the equilibrium potential of dust grains exposed to far ultraviolet light or to an electron beam. Some future experiments using an electrodynamic balance to investigate the optical characteristics, and condensation process involving dust grains in various astrophysical environments are discussed.

  17. Reduction and analysis of data from cosmic dust experiments on Mariner 4, OGO 3, and Lunar Explorer 35

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis of data from the cosmic dust experiment on three NASA missions is discussed. These missions were Mariner IV, OGO III, and Lunar Explorer 35. The analysis effort has included some work in the laboratory of the physics of microparticle hypervelocity impact. This laboratory effort was initially aimed at the calibration and measurements of the different sensors being used in the experiment. The latter effort was conducted in order to better understand the velocity and mass distributions of the picogram sized ejecta particles.

  18. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  19. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Vargas-Martín, F.; Guirado, D.; Escobar-Cerezo, J.; Min, M.; Hovenier, J. W.

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  20. Carbon and silicate grains in the laboratory as analogues of cosmic dust.

    PubMed

    Mennella, V; Brucato, J R; Colangeli, L

    2001-03-15

    Carbon and silicate grains are the two main components of cosmic dust. There is increasing spectroscopic evidence that their composition varies according to the cosmic environment and the experienced processing. Irradiation from ultraviolet photons and cosmic rays, as well as chemical interactions with the interstellar gas play a crucial role for grain transformation. The study of 'laboratory analogues' represents a powerful tool to better understand the nature and evolution of cosmic materials. In particular, simulations of grain processing are fundamental to outline an evolutionary pathway for interstellar particles. In the present work, we discuss the ultraviolet and infrared spectral changes induced by thermal annealing, ultraviolet irradiation, ion irradiation and hydrogen atom bombardment in carbon and silicate analogue materials. The laboratory results give the opportunity to shed light on the long-standing problems of the attribution of ultraviolet and infrared interstellar spectral features.

  1. SN Dust Yields: Fallback, Metallicity and Rotation Impact

    NASA Astrophysics Data System (ADS)

    Marassi, Stefania; Schneider, Raffaella; Limongi, Marco; Chieffics, Alessandro

    2016-06-01

    Dust is an important ingredient in astrophysical environments as it regulates the physical and chemical conditions of the interstellar medium (ISM). Sites of dust formation are the expanding ejecta of core-collapse SNe. The amount of dust freshly condensed in SN explosions and surviving the subsequent passage of the reverse shock is a key quantity to assess the role of SNe as cosmic dust factories. Dust production in SNe depends on the SN type and on the physical properties of the stellar progenitor, such as its mass, ejecta temperature profile, metallicity and explosion energy. Using detailed pre-supernova and supernova explosion models for rotating and non-rotating progenitors with masses ranging between 13 to 120 M⊙ and metallicities in the range 0 < Z/Z⊙ < 1 (Limongi & Chieffi 2012, Limongi & Chieffi, in preparation), we investigate dust formation in SN ejecta. We follow nucleation and grain growth, taking into account the evolution of newly condensed grains and their partial destruction through the passage of the reverse shock in the supernova remnant. We assess the impact of stellar rotation and metallicity on the temperature and density profiles of the ejecta, and, as a consequence, on the resulting grain size distribution. Extending the models to the metal-free (Pop III) supernovae, we compute the mass-dependent dust and metal yields and we predict the chemical composition of star forming regions where second generation, low-mass stars form. We then compare the model predictions to the observed surface elemental abundances of carbon-normal and carbon-enhanced metal poor stars, and derive interesting constraints of the mass of Pop III stars and on the properties of the first SNe.

  2. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    NASA Astrophysics Data System (ADS)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F.; Penttilä, A.; Muinonen, K.

    2017-03-01

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.

  3. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    SciTech Connect

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.

  4. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE PAGES

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  5. COSMIC REIONIZATION ON COMPUTERS. ULTRAVIOLET CONTINUUM SLOPES AND DUST OPACITIES IN HIGH REDSHIFT GALAXIES

    SciTech Connect

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y. E-mail: gnedin@fnal.gov

    2016-04-01

    We compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting ultraviolet (UV) and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient. While the discrepancies with the exiting data are marginal, the future James Webb Space Telescope (JWST) data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.

  6. Understanding The Baryonic Cycle: Confronting Galaxy Physics With The Mass; Metallicity Relation And Dust Content Of Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Somerville, Rachel; Galametz, Maud

    2016-09-01

    The mass-metallicity relation combines the star formation, metal enrichment, feedback, and baryon accretion history of galaxies and acts as a superb probe of the cycle of baryons through galaxies. Reproducing its cosmic evolution is a stringent constraint on models of galaxy formation. I will present new cosmological models of galaxy formation that include various ejective and preventive feedback schemes and detailed chemical evolution and dust chemistry models. I will present the impact of the different feedback schemes on the evolution of the mass;metallicity relation, compare my predictions with observations, and discuss how this comparison helps us constrain the galaxy physics acting on the baryonic cycle. I will further show that proper accounting for dust emphasizes a serious caveat in our understanding of galaxy formation. Galaxies are too metal enriched at early times.

  7. Characteristic temperatures of hypervelocity dust impact plasmas

    NASA Astrophysics Data System (ADS)

    Collette, A.; Malaspina, D. M.; Sternovsky, Z.

    2016-09-01

    The effective ion and electron temperatures of dust impact generated plasma clouds are measured experimentally as a function of impact speed in the range of 4-20 km/s. The measurements are performed in an experimental setup that resembles the detection of dust particles by electric field or plasma wave antennas on spacecraft. The spacecraft is modeled as a conductive plate and a cylindrical antenna connected to voltage follower electronics is used to measure the collected charge. The setup is bombarded with dust particles using the University of Colorado IMPACT dust accelerator facility. The effective ion and electron temperatures are determined from the variation of the impact signals with an applied bias voltage. The results show that the temperatures of the electrons remain at around or below 5 eV over the investigated impact speed range. The characteristic ion temperature is about 5 eV at 4 km/s; however, it increases with increasing impact speed to > 10 eV at 20 km/s. Given that the floating potentials of spacecraft and antennas are on the order of a few volts, the findings suggest that any model for the interpretation of dust impact signals should take into account the effects of a finite temperatures.

  8. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  9. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  10. Placers of cosmic dust in the blue ice lakes of Greenland

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Hammer, C.; Reeh, N.; Brownlee, D. E.; Thomsen, H. H.

    1986-01-01

    A concentration process occurring in the melt zone of the Greenland ice cap has produced the richest known deposit of cosmic dust on the surface of the earth. Extraterrestrial particles collected from this region are well preserved and are collectable in large quantities. The collected particles are generally identical to cosmic spheres found on the ocean floor, but a pure glass type was discovered that has not been seen in deep-sea samples. Iron-rich spheres are conspicuously rare in the collected material.

  11. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Soler, J. D.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-01

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  12. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    SciTech Connect

    Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Cardoso, J. -F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J. -M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Ma, Y. -Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J. -L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Soler, J. D.; Spencer, L. D.; Suur-Uski, A. -S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-12

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  13. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DOE PAGES

    Aghanim, N.; Ashdown, M.; Aumont, J.; ...

    2016-12-12

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectralmore » index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.« less

  14. Laboratory investigation of antenna signals from dust impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Collette, A.; Meyer, G.; Malaspina, D.; Sternovsky, Z.

    2015-07-01

    We describe laboratory experiments which reproduce characteristic signals observed on spacecraft, believed to be caused by dust impact. A simulated spacecraft, including an antenna system using a facsimile of the preamplifier electronics from the STEREO/WAVES instrument, was bombarded by 10 km/s submicron-sized dust at the University of Colorado Institute for Modeling Plasma, Atmospheres, and Cosmic Dust accelerator facility. Signal variation was investigated as a function of the DC potentials of both the spacecraft and the antennas. We observed (1) signals corresponding to modification of the spacecraft body potential, an important process believed to be responsible for the so-called "triple hit" antenna signals on STEREO, (2) a few-eV energy distribution for the electrons and ions released in the impact leading to (3) signals corresponding to direct recollection of a substantial fraction of the impact charge by the spacecraft antennas, even at modest antenna bias potentials. We also observe (4) an unexpected class of fast antenna signals, which do not appear to be caused by charge recollection by either the spacecraft or the antennas and may be induced by charge separation in the expanding plasma cloud. Similar signals are also commonly observed by the STEREO/WAVES instrument but have not previously been analyzed.

  15. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  16. Coupling Between Dust Impact Charge Recollection and Spacecraft Potential on STEREO with Application to Solar Probe Plus.

    NASA Astrophysics Data System (ADS)

    Thayer, F.; Collette, A.; Malaspina, D.; Sternovsky, Z.

    2016-12-01

    Interstellar and interplanetary micrometer sized cosmic dust particles can be observed in-situ by spacecraft with electric field antennas through impact-generated charge recollection. When dedicated dust instruments are unavailable, detecting dust with electric field antennas can increase a mission's total scientific return. This study explores the relationship between charge recollection and antenna-to-spacecraft potential determined using data from the STEREO spacecraft in the solar wind. The results of this study can be helpful for predicting the amplitude and shape of dust impacts measured by spacecraft in diverse plasma environments, including the future Solar Probe Plus mission.

  17. Helium-3 from the mantle - Primordial signal or cosmic dust?

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1993-01-01

    Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basalts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.

  18. Helium-3 from the mantle - Primordial signal or cosmic dust?

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1993-01-01

    Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basalts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.

  19. Cosmic impact: What are the odds?

    NASA Astrophysics Data System (ADS)

    Harris, A. W.

    2009-12-01

    Firestone et al. (PNAS 104, 16016-16021, 2007) propose that the impact of a ~4 km diameter comet (or multiple bodies making up a similar mass) led to the Younger Dryas cooling and extinction of megafauna in North America, 12,900 years ago. Even more provocatively, Firestone et al. (Cycle of Cosmic Catastrophes, Bear & Co. Books, 2006, 392pp), suggest that a nearby supernova may have produced a comet shower leading to the impact event, either by disturbing the Oort Cloud or by direct injection of 4-km comet-like bodies to the solar neighborhood. Here we show: (a) A supernova shockwave or mass ejection is not capable of triggering a shower of comets from the Oort Cloud. (b) An Oort Cloud shower from whatever cause would take 100,000 years or more for the perturbed comets to arrive in the inner solar system, and the peak flux would persist for some hundreds of thousands more years. (c) Even if all 20 solar masses or so of ejected matter from a SN were in the form of 4-km diameter balls, the probability of even one such ball hitting the Earth from an event 100 light years away would be about 3e-5. (d) A 4-km diameter ball traveling fast enough to get here from 100 LY away in some tens of thousands of years would deliver the energy of a 50 km diameter impactor traveling at typical Earth-impact velocity (~20 km/sec). We review the current impact flux on the Earth from asteroids and comets, and show that the probability of an impact of a 4-km diameter asteroid in an interval of 13,000 years is about one in a thousand, and the probability of a comet impact of that size is a few in a million. An "impact shower" caused by the injection or breakup of comets or asteroids in the inner solar system by whatever means would take tens to hundreds of thousands of years to clear out, thus the population of NEOs we see now with our telescopic surveys is what we’ve had for the last few tens of thousands of years, at least. Faced with such low odds, the evidence that such a large

  20. Constraining the Origin of Impact Craters on Al Foils from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; hide

    2012-01-01

    Preliminary examination (PE) of the aerogel tiles and Al foils from the Stardust Interstellar Dust Collector has revealed multiple impact features. Some are most likely due to primary impacts of interstellar dust (ISD) grains, and others are associated with secondary impacts of spacecraft debris, and possibly primary impacts of interplanetary dust particles (IDPs) [1, 2]. The current focus of the PE effort is on constraining the origin of the individual impact features so that definitive results from the first direct laboratory analysis of contemporary ISD can be reported. Because crater morphology depends on impacting particle shape and composition, in addition to the angle and direction of impact, unique particle trajectories are not easily determined. However, elemental analysis of the crater residues can distinguish real cosmic dust from the spacecraft debris, due to the low cosmic abundance of many of the elements in the spacecraft materials. We present here results from the elemental analysis of 24 craters and discuss the possible origins of 4 that are identified as candidate ISD impacts

  1. Uptake of acetylene on cosmic dust and production of benzene in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; James, Alexander D.; Sánchez, Juan Diego Carrillo; Mangan, Thomas P.; Willacy, Karen; Poppe, Andrew R.; Plane, John M. C.

    2016-11-01

    A low-temperature flow tube and ultra-high vacuum apparatus were used to explore the uptake and heterogeneous chemistry of acetylene (C2H2) on cosmic dust analogues over the temperature range encountered in Titan's atmosphere below 600 km. The uptake coefficient, γ, was measured at 181 K to be (1.6 ± 0.4) × 10-4, (1.9 ± 0.4) × 10-4 and (1.5 ± 0.4) × 10-4 for the uptake of C2H2 on Mg2SiO4, MgFeSiO4 and Fe2SiO4, respectively, indicating that γ is independent of Mg or Fe active sites. The uptake of C2H2 was also measured on SiO2 and SiC as analogues for meteoric smoke particles in Titan's atmosphere, but was found to be below the detection limit (γ < 6 × 10-8 and < 4 × 10-7, respectively). The rate of cyclo-trimerization of C2H2 to C6H6 was found to be 2.6 × 10-5 exp(-741/T) s-1, with an uncertainty ranging from ± 27 % at 115 K to ± 49 % at 181 K. A chemical ablation model was used to show that the bulk of cosmic dust particles (radius 0.02-10 μm) entering Titan's atmosphere do not ablate (< 1% mass loss through sputtering), thereby providing a significant surface for heterogeneous chemistry. A 1D model of dust sedimentation shows that the production of C6H6via uptake of C2H2 on cosmic dust, followed by cyclo-trimerization and desorption, is probably competitive with gas-phase production of C6H6 between 80 and 120 km.

  2. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  3. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    SciTech Connect

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi; Yin, Jun

    2015-04-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlations with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.

  4. Statistical simulations of the dust foreground to cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Vansyngel, F.; Boulanger, F.; Ghosh, T.; Wandelt, B.; Aumont, J.; Bracco, A.; Levrier, F.; Martin, P. G.; Montier, L.

    2017-07-01

    The characterization of the dust polarization foreground to the cosmic microwave background (CMB) is a necessary step toward the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of polarized dust emission on the sphere that is similar to the approach used for CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modeled as a superposition of a mean uniform field and a Gaussian random (turbulent) component with a power-law power spectrum of exponent αM. The integration along the line of sight carried out to compute Stokes maps is approximated by a sum over a small number of emitting layers with different realizations of the random component of the magnetic field. The model parameters are constrained to fit the power spectra of dust polarization EE, BB, and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for αM = -2.5, an exponent close to that measured for total dust intensity but larger than the Kolmogorov exponent - 11/3. The model allows us to compute multiple realizations of the Stokes Q and U maps for different realizations of the random component of the magnetic field, and to quantify the variance of dust polarization spectra for any given sky area outside of the Galactic plane. The simulations reproduce the scaling relation between the dust polarization power and the mean total dust intensity including the observed dispersion around the mean relation. We also propose a method to carry out multifrequency simulations, including the decorrelation measured recently by Planck, using a given covariance matrix of the polarization maps. These simulations are well suited to optimize

  5. Dust impact signals on the wind spacecraft

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2016-02-01

    We analyze waveforms recorded by the Time Domain Sampler of the WAVES experiment on Wind which are similar to impulsive waveforms observed by the S/WAVES experiment on STEREO. These have been interpreted as dust impacts by Meyer-Vernet et al. and M. L. Kaiser and K. Goetz and extensively analyzed by Zaslavsky et al. The mechanism for coupling the emission to the antennas to produce an electrical signal is still not well understood, however. One suggested mechanism for coupling of the impact to the antenna is that the spacecraft body changes potential with respect to the surrounding plasma but the antennas do not (the body mechanism). Another class of mechanisms, with several forms, is that the charge of the emitted cloud interacts with the antennas. The Wind data show that both are operating. The time domain shapes of the dust pulses are highly variable but we have little understanding of what provides these shapes. One feature of the STEREO data has been interpreted as impacts from high velocity nanoparticles entrained by the solar wind. We have not found evidence for fast nanodust in the Wind data. An appreciable fraction of the impacts observed on Wind is consistent with interstellar dust. The impact rates do not follow a Poisson distribution, expected for random independent events, and this is interpreted as bunching. We have not succeeded in relating this bunching to known meteor showers, and they do not repeat from 1 year to the next. The data suggest bunching by fields in the heliosphere.

  6. Probing the interstellar dust in galaxies over >10 Gyr of cosmic history

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Aller, Monique C.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2016-11-01

    Dust has a profound effect on the physics and chemistry of the interstellar gas in galaxies and on the appearance of galaxies. Understanding the cosmic evolution of dust with time is therefore crucial for understanding the evolution of galaxies. Despite the importance of interstellar dust, very little is known about its nature and composition in distant galaxies. We summarize the results of our ongoing programs using observations of distant quasars to obtain better constraints on dust grains in foreground galaxies that happen to lie along the quasar sightlines. These observations consist of a combination of mid-infrared data obtained with the Spitzer Space Telescope and optical/UV data obtained with ground-based telescopes and/or the Hubble Space Telescope. The mid-IR data target the 10 μm and 18 μm silicate absorption features, while the optical/UV data allow determinations of element depletions, extinction curves, 2175 Å bumps, etc. Measurements of such properties in absorption-selected galaxies with redshifts ranging from z 0 to z > 2 provide constraints on the evolution of interstellar dust over the past > 10 Gyr . The optical depth of the 10 μm silicate absorption feature (τ10) in these galaxies is correlated with the amount of reddening along the sightline. But there are indications (e.g., based on the τ10 / E(B - V) ratio and possible grain crystallinity) that the dust in these distant galaxies differs in structure and composition from the dust in the Milky Way and the Magellanic Clouds. We briefly discuss the implications of these results for the evolution of galaxies and their star formation history.

  7. The episodic influx of tin-rich cosmic dust particles during the last ice age

    NASA Astrophysics Data System (ADS)

    LaViolette, Paul A.

    2015-12-01

    was found to contain tin-rich particles with a similar platy morphology and to have Sn and Pb weight abundances averaging 39% and 7.5% respectively, again approximating the interstellar Sn:Pb ratio. The relative absence of cosmic microspheres and the unmelted appearance of the tin-rich particles in both of these samples suggests that these particles entered the Earth's atmosphere at low velocity, implicating a gradual accumulation of dust from a dispersed state in the near Earth space environment. The unusual enhancement of Sn and Pb could be explained if these dust particles were originally present in the solar system's interstellar environment in a superconducting native metal state and were preferentially concentrated through Meissner effect forces by the passage of cosmic ray driven hydromagnetic shocks which may also have transported them into the solar system. The 49 kyrs BP event is estimated to have lasted over 6 years and to have deposited dust onto the Earth at a rate 104-105 times higher than present rates. This had a significant cooling effect on climate and resulted in a transient 33 fold increase in snow accumulation. Future discovery of these events in ice cores at other locations should void any lingering thoughts that this heavy metal enhancement may be due to sample contamination.

  8. Physics of sub-micron cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  9. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H i 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H i-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H i, free-free, and 12CO emissions, namely (i) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (ii) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  10. Cosmic dust analog simulation in a microgravity environment: The STARDUST program

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dell'aversana, P.; Mele, F.; Mennella, V.

    1995-01-01

    We have undertaken a project called STARDUST which is a collaboration with Italian and American investigators. The goals of this program are to study the condensation and coagulation of refractory materials from the vapor and to study the properties of the resulting grains as analogs to cosmic dust particles. To reduce thermal convective currents and to develop valuable experience in designing an experiment for the Gas-Grain Simulation Facility aboard Space Station, Freedom we have built and flown a new chamber to study these processes under periods of microgravity available on NASA's KC-135 Research Aircraft. Preliminary results from flights with magnesium and zinc are discussed.

  11. Cosmic dust collection with a sub-satellite tethered to a space station

    NASA Technical Reports Server (NTRS)

    Corso, G. J.

    1986-01-01

    The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the Beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the Earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer that 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made Earth orbiting debris in any direction within 100 km or so of the space station.

  12. Cosmic dust collection with a sub satellite tethered to a Space Station

    NASA Technical Reports Server (NTRS)

    Corso, George J.

    1987-01-01

    The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer than 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made earth orbiting debris in any direction within 100 km or so of the space station.

  13. New low-Ni (igneous?) particles among the C and C? types of cosmic dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.

    1993-01-01

    Low-Ni particles with major element abundances, optical properties, and morphologies sufficiently similar to chondritic interplanetery dust particles (IDP's) to receive JSC Cosmic Dust Catalog classifications of C or C?-types were shown to have trace element contents and mineralogies similar to igneous material. Examination of the JSC Catalog EDX spectra by Cooke et al. has shown that 13 percent of the C-type and 38 percent of the C?-type particles are potentially low-Ni particles. Two new low-Ni particles were identified, and it was shown that an additional fragment from the L2002*C cluster has an igneous composition. A newly analyzed fragment of the W7066*A cluster has a chondritic composition. The W7066*A cluster is important because it has yielded a fragment of igneous composition and another fragment having high concentrations of He and Ne suggesting an extraterrestrial origin.

  14. Transmission electron microscope study of carbon soot grains to infer on cosmic dust condensation processes

    NASA Astrophysics Data System (ADS)

    Rotundi, A.; Rietmeijer, F.; Heymann, D.; Colangeli, L.; Mennella, V.

    The laboratory analyses of cosmic dust analogues have a critical role in the understanding of cosmic dust condensation processes. The morphological, structural and chemical characterisation of these analogues are critical for comparisons with astronomical observations data and models. Carbon-rich dust samples are prepared by arc discharge in Ar and H2 atmosphere at pre-selected proportions. To identify their internal textures we used High Resolution Electron Microscopy and chemical analyses was done by HPLC and mass spectrometer. Carbon soot grains, crystallographically amorphous, consist of individual Single-Wall Spheres (SWS - diameters: 0.7 nm to 10nm) forming close-packed arrangements. These spheres are also observed in short and straight, or long and curved, liner arrangement called proto-fringes with a thickness corresponding to the diameters of the SWS. SWS resemble structures in synthetic C60 crystals, including C50, possibly C32, and larger elongated fullerenes. The fringe spacing is consistent with increasing diameters of nested fullerenes. HPLC and mass spectroscopy confirmed that the SWS, 0.7nm diameter, are C60 fullerene. The HRTEM data of SWS with a diameter >0.7nm define a linear correlation that could correspond to an increasing number of carbon atoms in larger SWS. When C60 is a metastable carbon, its fusion into larger SWS might be spontaneous growth process that lead to giant fullerenes. C60 once 'isolated' inside agglomerated soot grains it might survive in condensed circumstellar carbon dust that did not suffer post-condensation thermal annealing.

  15. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  16. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  17. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; Gerakines, P. A.

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  18. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  19. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  20. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  1. The Impact of Mars Atmospheric Dust on Human Health

    NASA Astrophysics Data System (ADS)

    Kamakolanu, U. G.

    2017-06-01

    The martian dust impact can be considered as an exposure to ultra fine particles of martian dust. Direct nose to brain pathway of particulate matter can affect the fine motor skills and gross motor skills, cognition may be affected.

  2. The health impact of demolition dust.

    PubMed

    Holman, Claire

    2012-09-01

    Dr Claire Holman, Principal at ENVIRON, a global consultancy which works with clients 'to manage their most challenging environmental and health and safety issues, and attain their sustainability goals', considers the impacts on health of dust released during demolition work, and the measures that can be taken to mitigate them. Drawing on a recent case study, she explains how ENVIRON prepared a comprehensive site dust management plan (DMP) to minimise fungal spore release during the demolition of a building located adjacent to residential accommodation for child leukaemia patients and their parents. She also considers some of the lessons learned, in terms of actions that 'worked well' and those that could, with hindsight, have been undertaken 'better'.

  3. Cosmic Dust Catalog. Volume 15; Particles from Collectors L2036 and L2021

    NASA Technical Reports Server (NTRS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth , S.; Dodson , A.; Zolensky, Michael E.

    1997-01-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  4. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    NASA Technical Reports Server (NTRS)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; hide

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  5. The IAA cosmic dust laboratory: Experimental scattering matrices of clay particles

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Guirado, D.; Ramos, J. L.; Volten, H.; Hovenier, J. W.

    2011-01-01

    We present the first results of measurements on solid particles performed at the Instituto de Astrofı´sica de Andalucı´a (IAA) cosmic dust laboratory located in Granada, Spain. The laboratory apparatus measures the complete scattering matrix as a function of the scattering angle of aerosol particles. The measurements can be performed at a wavelength ( λ) of 483, 488, 520, 568, or 647 nm in the scattering angle range from 3° to 177°. Results of special test experiments are presented which show that our experimental results for scattering matrices are not significantly contaminated by multiple scattering and that the sizes/shapes of the particles do not change during the measurements. Moreover, the measured scattering matrix for a sample of green clay particles is compared with measurements previously performed in the Amsterdam light scattering setup for the same sample. New measurements on a white clay sample at 488 and 647 nm are also presented. The apparatus is devoted to experimentally studying the angle dependence of scattering matrices of dust samples of astrophysical interest. Moreover, there is a great interest in similar studies of aerosols that can affect the radiative balance of the atmosphere of the Earth and other planets such as silicates, desert dust, volcanic ashes, and carbon soot particles.

  6. Purity and cleanness of aerogel as a cosmic dust capture medium

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Fleming, R. H.; Lindley, P. M.; Craig, A. Y.; Blake, D.

    1994-01-01

    The capability for capturing micrometeoroids intact through laboratory simulations and in space in passive underdense silica aerogel offers a valuable tool for cosmic dust research. The integrity of the sample handling medium can substantially modify the integrity of the sample. Intact capture is a violent hypervelocity event: the integrity of the capturing medium can cause even greater modification of the sample. Doubts of the suitability of silica aerogel as a capture medium were raised at the 20th LPSC, and questions were raised again at the recent workshop on Particle Capture, Recovery, and Velocity Trajectory Measurement Technologies. Assessment of aerogel's volatile components and carbon contents have been made. We report the results of laboratory measurements of the purity and cleanliness of silica aerogel used for several Sample Return Experiments flown on the Get Away Special program.

  7. Cryogenic Synthesis of Molecules of Astrobiological Interest: Catalytic Role of Cosmic Dust Analogues

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Strazzulla, G.; Baratta, G. A.; Rotundi, A.; Colangeli, L.

    2006-12-01

    We have studied the effects of the substrate, namely amorphous olivine (MgFeSiO4) cosmic dust analogues (CDAs), in synthesis of molecules obtained after 200 keV proton irradiation of formamide (NH2COH). Formamide has been deposited on the olivine substrate at 20 K. The abundances of new molecular species formed after an irradiation dose of 12 eV/16 amu in formamide pure (i.e. deposited on an inert silicon substrate) and deposited on CDAs have been compared. Specifically, MgFeSiO4 amorphous olivine is a selective catalyst preventing formation of NH3 and CN- molecules and changing the relative abundances of {text{NH}}^{ + }4 {text{OCN}}^{ - } , CO2, HNCO, CO. We have shown that the role of CDAs has to be taken into account in experiments simulating processes occurring in astronomical environments.

  8. STARDUST: A simulation experiment of cosmic dust analogues production in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank; Lilleleht, Lembit U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dellaversana, P.; Mele, F.; Mennella, V.

    1992-01-01

    The aim, activity, and some preliminary results of the STARDUST program are presented. The condensation of solid materials from the vapor phase is important in several scientific fields such as chemical vapor deposition, air pollution, and the formation of refractory cosmic dust around stars. Conventional studies of refractory grain formation, using high temperature furnace and shock tube techniques, are restricted to short time scales and suffer from buoyancy induced convection that limit their accuracy. In order to simulate more accurately the condensation of refractory grains near stars and to investigate the advantages of performing condensation studies in microgravity conditions, an experimental investigation of vapor phase condensation in microgravity was undertaken. The experimental equipment currently used is reported. The results from the first flight series and particle aggregation modeling efforts are presented.

  9. STARDUST - A simulation experiment of cosmic dust analogues production in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dell'aversana, P.; Mele, F.; Mennella, V.

    1993-01-01

    The condensation of solid materials from the vapor phase is important in several scientific fields such as chemical vapor deposition, air pollution and the formation of refractory cosmic dust around stars. Conventional studies of refractory grain formation, using high temperature furnace and shock tube techniques, are restricted to short time scales and suffer from buoyancy induced convection that limit their accuracy. In order to simulate more accurately the condensation of refractory grains near stars and to investigate the advantages of performing condensation studies in microgravity conditions, an experimental investigation was undertaken. This work reports the experimental equipment currently used. The results from the first flight series and particle aggregation modelling efforts are presented briefly.

  10. Dust impact detection by the Cassini Langmuir probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Wahlund, J. E.; Kempf, S.; Wang, X.; Horanyi, M.; Morooka, M. W.

    2015-12-01

    Individual examination reveals the existence of sharp spikes in the Cassini Radio and Plasma Wave Science / Langmuir probe (RPWS/LP) I-V (current-voltage) sweeps. These spikes are characterized as a sudden increase or decrease in the probe current, with many of them appearing as one-point anomalies lasting less than a millisecond. Their occurrence generally correlates with the E ring dust density - the closer to the ring plane and Enceladus, the more frequent the appearance of spikes. These characteristics suggest that the LP spike signals are caused by dust impacts - most likely the collection of plasma produced from high velocity dust-probe impacts. Because of the low detection rate and the flexibility regarding to the spacecraft attitude, LP spikes provide an alternative way to explore the densest part of the E ring. Here we will present a preliminary statistical analysis of the LP spike appearance as a function of the spacecraft location, the relative dust speed, the spacecraft and probe potentials, and other relevant parameters. Comparison with measurements carried out by the High Rate Detector, a subsystem of the Cassini Cosmic Dust Analyser, will provide constraints on the dust grain size responsible for these detections. We will also examine their spatial distribution to identify features that may associate with ring dynamical effects, such as the seasonal variation or the noon-to-midnight electric field.

  11. Impact-Mobilized Dust in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2002-01-01

    We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.

  12. Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record

    NASA Astrophysics Data System (ADS)

    Suttle, Martin D.; Genge, Matthew J.

    2017-10-01

    We report the discovery of fossil micrometeorites from Late Cretaceous chalk. Seventy-six cosmic spherules were recovered from Coniacian (87 ± 1 Ma) sediments of the White Chalk Supergroup. Particles vary from pristine silicate and iron-type spherules to pseudomorphic spherules consisting of either single-phase recrystallized magnetite or Fe-silicide. Pristine spherules are readily identified as micrometeorites on the basis of their characteristic mineralogies, textures and compositions. Both magnetite and silicide spherules contain dendritic crystals and spherical morphologies, testifying to rapid crystallisation of high temperature iron-rich metallic and oxide liquids. These particles also contain spherical cavities, representing weathering and removal of metal beads and irregular cavities, representing vesicles formed by trapped gas during crystallization; both features commonly found among modern Antarctic Iron-type (I-type) cosmic spherules. On the basis of textural analysis, the magnetite and Fe-silicide spherules are shown to be I-type cosmic spherules that have experienced complete secondary replacement during diagenesis (fossilization). Our results demonstrate that micrometeorites, preserved in sedimentary rocks, are affected by a suite of complex diagenetic processes, which can result in disparate replacement minerals, even within the same sequence of sedimentary beds. As a result, the identification of fossil micrometeorites requires careful observation of particle textures and comparisons with modern Antarctic collections. Replaced micrometeorites imply that geochemical signatures the extraterrestrial dust are subject to diagenetic remobilisation that limits their stratigraphic resolution. However, this study demonstrates that fossil, pseudomorphic micrometeorites can be recognised and are likely common within the geological record.

  13. Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.

    2012-12-01

    Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.

  14. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  15. Separating Continental Mineral Dust from Cosmic Dust using Platinum Group Element Concentrations and Osmium Isotopes in Ancient Polar Ice

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Jackson, B.; Osterberg, E. C.; Sharma, M.

    2015-12-01

    The platinum group element (PGEs: Pt, Pd, Rh, Ir, Os, and Ru) accumulation in ancient polar archives have been argued to trace cosmic dust and "smoke" from larger meteors but the PGE concentration data lack specificity. For example, the extent to which the terrestrial volcanism/dust has contributed to the PGE inventory of polar ice cannot be readily evaluated. Since the Os isotope compositions (187Os/188Os ratio) of the terrestrial and extraterrestrial sources are distinctly different from each other, the PGE concentrations when combined with Os isotope composition have the potential to untangle contributions from these sources. Platinum group element concentration determinations in polar ice cores are highly challenging due to their extremely low concentrations (down to 10-15 g/g or fg/g). Here, a new procedure is presented that allows PGEs and Os isotope compositions to be determined from a ~50 g sample of polar ice. Decontaminated ice-melt is spiked with 101Ru, 106Pd, 190Os, 191Ir, and 198Pt and frozen at -20 °C in quartz-glass ampoules. A mixture of purified HNO3 and H2O2 is then added and the sample is heated to 300 °C at 128bar using a High Pressure Asher. This allows all spikes to be equilibrated with the sample PGEs and all Os species are oxidized to OsO4. The resulting OsO4 is extracted using distillation, purified, and measured using negative thermal ionization mass spectrometry. PGEs are then separated and purified using two stage column chromatography and their concentrations determined by isotope dilution using a triple quadruople inductively coupled plasma mass spectrometer coupled to an Apex de-solvation nebulizer. The developed method was applied to modern Greenland firn and snow. The PGE concentrations of the firn are 4.0 fg/g for Ir, 20 fg/g for Ru, 590 fg/g for Pt, 38 fg/g for Pd, and 1.3 fg/g for Os, while those of the snow are 3.0 fg/g for Ir, 53 fg/g for Ru, 360 fg/g for Pt, 32 fg/g for Pd, and 0.4 fg/g for Os, respectively. A comparison

  16. Interplanetary dust particles and impact erosion

    NASA Astrophysics Data System (ADS)

    Klacka, J.; Saniga, M.

    1992-11-01

    Consideration is given to the motion of interplanetary dust particles under the effect of collisions with much smaller interplanetary dust particles. The equation of motion is derived. Perturbation equations of celestial mechanics are also discussed. The results are compared with the Poynting-Robertson effect and the effect of solar wind on the motion of the interplanetary dust particles.

  17. Impact of Lunar Dust on the Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2005-01-01

    From the Apollo era it is known that dust on the Moon can cause serious problems for exploration activities. Such problems include adhering to clothing and equipment, reducing external visibility on landings, and causing difficulty to breathing and vision within the spacecraft. An important step in dealing with dust-related problems is to understand how dust grains behave in the lunar environment. All astronauts who walked on the Moon reported difficulties with lunar dust. Eugene Cernan, commander of Apollo 17, stated that one of the most aggravating, restricting facets of lunar surface exploration is the dust and its adherence to everything no matter what kind of material, whether it be skin, suit material, metal, no matter what it be and it's restrictive friction-like action to everything it gets on. Dust has also been highlighted as a priority by the Mars Exploration Program Assessment Group (MEPAG): 1A. Characterize both aeolian dust and particulates that would be kicked up from the martian regolith by surface operations of a human mission with fidelity sufficient to establish credible engineering simulation labs and/or software codes on Earth. We shall briefly describe the properties of lunar dust and its impact on the Apollo astronauts, and then summarize three main problems areas for understanding its behavior: Dust Adhesion and Abrasion, Surface Electric Fields and Dust Transport. These issues are all inter-related and must be well understood in order to minimize the impact of dust on lunar surface exploration.

  18. Impacts of fast meteoroids and a plasma-dust cloud over the lunar surface

    NASA Astrophysics Data System (ADS)

    Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.

    2017-05-01

    The possibility of the formation of a plasma-dust cloud in the exosphere of the Moon owing to impacts of meteoroids on the lunar surface is discussed. Attention is focused on dust particles at large altitudes of 10-100 km at which measurements were performed within the NASA LADEE mission. It has been shown that a melted material ejected from the lunar surface owing to the impacts of meteoroids plays an important role in the formation of the plasma-dust cloud. Drops of the melted material acquire velocities in the range between the first and second cosmic velocities for the Moon and can undergo finite motion around it. Rising over the lunar surface, liquid drops are solidified and acquire electric charges, in particular, owing to their interaction with electrons and ions of the solar wind, as well as with solar radiation. It has been shown that the number density of dust particles in the plasma-dust cloud present in the exosphere of the Moon is ≲10-8 cm-3, which is in agreement with the LADEE measurements.

  19. Metamorphism of Cosmic Dust: Processing from Circumstellar Outflows to the Cometary Regolith

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III

    1997-01-01

    Nucleation is a non-equilibrium process: the products of this process are seldom the most thermodynamically stable condensates but are instead those which form fastest. It should therefore not be surprising that grains formed in a circumstellar outflow will undergo some degree of metamorphism if they are annealed or are exposed to a chemically active reagent. Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Various workers have shown that refractory mantles could form on refractory cores by radiation processing of organic ices. A similar process may operate to produce refractory inorganic mantles on grain cores which survived the supernova shocks. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which we hope to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. Some discussion of the physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be attempted based on the limited laboratory data available to date. Suggestions will be made concerning the types of experimental data which are needed in order to better understand the processing history of cosmic dust.

  20. Polarized polymer films as electronic pulse detectors of cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Tuzzolino, A. J.

    1985-01-01

    A new type of dust particle detector has been developed which consists of a polarized film of polyvinylidene fluoride (PVDF) having conducting electrons on its surface and operating with no bias voltage. Here, the response characteristics of PVDF detectors with areas in the range 4-150 sq cm and thickness in the range 2-28 microns to iron particles accelerated to velocities in the range 1-12 km/s are reported. The discussion also covers the mechanism of detection, fast pulse response, noise characteristics, and the dependence of the detector signal amplitude on particle mass and velocity. The detectors exhibit long-term stability and can be operated for extended periods of time over the temperature range -50 to +50 C; their response to dust particle impacts is unaffected by high background fluxes of charged particles.

  1. Cosmic dust flux on Earth inferred from the Concordia micrometeorite collection

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Dartois, Emmanuel; Godard, Marie; Delauche, Lucie

    2017-04-01

    The present extraterrestrial flux incoming to Earth is dominated by cosmic dust, i.e. micrometeorites in the 20-500 microns size range. Prior to atmospheric entry, the flux is estimated to ˜30 000 tons.yr-1 [1]. The proportion of this flux reaching the earth surface as dust particles is debated [e.g. 2]. Since 2000, we recover micrometeorites from ultraclean snow in the vicinity of the Dome C Concordia station in Antarctica. This region has a well-characterized and small precipitation rate (˜ 3.5 g of water per year) that allows collecting micrometeorites from large equivalent surfaces (> 100 m2.yrs) by sampling reasonable volumes of snow. The high efficiency and cleanliness of the collecting process at Dome C has enabled the recovery of several thousands of particles larger than ˜ 20 μm, constituting the Concordia micrometeorite collection [3]. The Concordia micrometeorites have a young terrestrial age of about 50 years. We characterized more than three thousand micrometeorites (both melted and unmelted particles) by secondary electron microscopy and classified them in the textural types defined in [4]. A preliminary flux value of 6,000 tons.yr-1 was given in [5] from the early Concordia collection examination. We now have better statistics to update this value. References: [1] Love S.G. and Brownlee D.E. (1993) Science 262, 550-553. [2] Peucker-Ehrenbrink B., et al. (2016) Elements 12, 191-196. [3] Duprat J., et al. (2007) Adv. Space Res. 39, 605-611. [4] Genge M.J., et al. (2008) Meteorit. Planet. Sci. 43, 497-515. [5] Duprat J., et al. (2006) Meteorit. Planet. Sci. 41 Suppl., A48 (#5239).

  2. Nanoflow Separation of Amino Acids for the Analysis of Cosmic Dust

    NASA Technical Reports Server (NTRS)

    Martin, M. P.; Glavin, D. P.; Dworkin, Jason P.

    2008-01-01

    The delivery of amino acids to the early Earth by interplanetary dust particles, comets, and carbonaceous meteorites could have been a significant source of the early Earth's prebiotic organic inventory. Amino acids are central to modern terrestrial biochemistry as major components of proteins and enzymes and were probably vital in the origin of life. A variety of amino acids have been detected in the CM carbonaceous meteorite Murchison, many of which are exceptionally rare in the terrestrial biosphere including a-aminoisobutyric acid (AIB) and isovaline. AIB has also been detected in a small percentage of Antarctic micrometeorite grains believed to be related to the CM meteorites We report on progress in optimizing a nanoflow liquid chromatography separation system with dual detection via laser-induced-fluorescence time of flight mass spectrometry (nLC-LIF/ToF-MS) for the analysis of o-phthaldialdehydelN-acetyl-L-cysteine (OPA/NAC) labeled amino acids in cosmic dust grains. The very low flow rates (<3 micro-L/min) of nLC over analytical LC (>0.1 ml/min) combined with <2 micron column bead sizes has the potential to produce efficient analyte ionizations andchromatograms with very sharp peaks; both increase sensitivity. The combination of the selectivity (only primary amines are derivatized), sensitivity (>4 orders of magnitude lower than traditional GC-MS techniques), and specificity (compounds identities are determined by both retention time and exact mass) makes this a compelling technique. However, the development of an analytical method to achieve separation of compounds as structurally similar as amino acid monomers and produce the sharp peaks required for maximum sensitivity is challenging.

  3. On the impact of intergalactic dust on cosmology with Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ménard, Brice; Kilbinger, Martin; Scranton, Ryan

    2010-08-01

    Supernova (SN) measurements have become a key ingredient in current determinations of cosmological parameters. These sources can however be used as standard candles only after correcting their apparent brightness for a number of effects. In this paper, we discuss some limitations imposed by the formalism currently used for such corrections and investigate the impact on cosmological constraints. We show that colour corrections are, in general, expected to be biased. In addition, colour excesses which do not add a significant scatter to the observed SN brightnesses affect the value of cosmological parameters but leave the slope of the colour-luminosity relation unchanged. We quantify these biases in the context of the redshift-dependent dust extinction suggested by the recent detection of intergalactic dust by Ménard et al. Using a range of models for the opacity of the Universe as a function of redshift, we find that colour-magnitude-stretch scaling relations are virtually insensitive to the presence of cosmic dust while cosmological parameters such as ΩM and w are biased at the level of a few per cent, i.e. offsets comparable to the current statistical errors. Future surveys will be able to limit the impact of intergalactic extinction by observing at longer wavelengths. In addition, such data sets will provide direct detections of intergalactic dust by cross-correlating SN colours and the density of foreground galaxies, which can be used as a consistency check on the cosmic dust extinction correction. Alternatively, such biases could be avoided by correcting the colours of SNe on an object-by-object basis with accurate photometry.

  4. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    NASA Astrophysics Data System (ADS)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2010-01-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp<1.3 μm) decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp>1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN) modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN). Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  5. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    NASA Astrophysics Data System (ADS)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2009-07-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modelled mass concentrations of fine sulfate (Dp<1.3 μm) decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp<1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations modelled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  6. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect

    Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-15

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. It is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  7. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  8. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  9. Translational anisotropy in the cosmic microwave background radiation and far-infrared emission by galactic dust clouds

    NASA Technical Reports Server (NTRS)

    Forman, M. A.

    1977-01-01

    The predicted emission spectrum of galactic dust at about 10 K is compared with the spectrum of 2.8-K universal blackbody radiation and with the spectrum of the anisotropy expected in the 2.8-K radiation due to motion of earth with respect to the coordinate system in which the radiation was last scattered. The extremely anisotropic galactic-dust emission spectrum may contribute a significant background to anisotropy measurements which scan through the galactic plane. The contamination would appear in an 8-mm scan around the celestial equator, for example, as a spurious 200 km/s velocity toward declination 0 deg, right ascension 19 hr, if predictions are correct. The predicted spectrum of dust emission in the galactic plane at longitudes not exceeding about 30 deg falls below the total 2.8-K cosmic background intensity at wavelengths of at least 1 mm.

  10. Plasma produced by impacts of fast dust particles on a thin film

    NASA Technical Reports Server (NTRS)

    Auer, Siegfried

    1994-01-01

    The thin-film impact plasma detector was pioneered by Berg for detecting small cosmic dust particles and measuring their approximate velocities in a time-of-flight configuration. While Berg's device was highly successful in establishing the flux of interplanetary dust, the accuracy of measuring the velocities of individual particles was a moderate 18 percent in magnitude and 27 degrees in angle. A much greater accuracy of less than or equal to 1 percent in determining the velocity components appears desirable in order to associate a particle with its parent body. In order to meet that need, research was initiated to determine if a thin-film detector can be designed to provide such accurate velocity measurements. Previous laboratory investigations of the impact plasma uncovered two difficulties: (1) solid or liquid spray is ejected from a primary impact crater and strikes neighboring walls where it produces secondary impact craters and plasma clouds; as a result, both quantity and time of detection of the plasma can vary significantly with the experiment configuration. Particles from an accelerator rarely have speeds v greater than or equal to 10-15 km/s, while cosmic dust particles typically impact at v = 10-72 km/s. The purpose of the tests discussed in this paper was to resolve the two difficulties mentioned. That is, the experiment configuration was designed to reduce the contribution of plasma from secondary impacts. In addition, most particles with v less than or equal to 25 km/s and all particles with v less than or equal to 10 km/s were eliminated from the beam.

  11. Plasma produced by impacts of fast dust particles on a thin film

    NASA Astrophysics Data System (ADS)

    Auer, Siegfried

    The thin-film impact plasma detector was pioneered by Berg for detecting small cosmic dust particles and measuring their approximate velocities in a time-of-flight configuration. While Berg's device was highly successful in establishing the flux of interplanetary dust, the accuracy of measuring the velocities of individual particles was a moderate 18 percent in magnitude and 27 degrees in angle. A much greater accuracy of less than or equal to 1 percent in determining the velocity components appears desirable in order to associate a particle with its parent body. In order to meet that need, research was initiated to determine if a thin-film detector can be designed to provide such accurate velocity measurements. Previous laboratory investigations of the impact plasma uncovered two difficulties: (1) solid or liquid spray is ejected from a primary impact crater and strikes neighboring walls where it produces secondary impact craters and plasma clouds; as a result, both quantity and time of detection of the plasma can vary significantly with the experiment configuration. Particles from an accelerator rarely have speeds v greater than or equal to 10-15 km/s, while cosmic dust particles typically impact at v = 10-72 km/s. The purpose of the tests discussed in this paper was to resolve the two difficulties mentioned. That is, the experiment configuration was designed to reduce the contribution of plasma from secondary impacts. In addition, most particles with v less than or equal to 25 km/s and all particles with v less than or equal to 10 km/s were eliminated from the beam.

  12. Extraction and microanalysis of cosmic dust captured during sample return missions: laboratory simulations

    NASA Astrophysics Data System (ADS)

    Graham, G. A.; Kearsley, A. T.; Butterworth, A. L.; Bland, P. A.; Burchell, M. J.; McPhail, D. S.; Chater, R.; Grady, M. M.; Wright, I. P.

    2004-01-01

    Particles of cometary and asteroidal origin collected at source using dedicated capture cell technologies will be returned to Earth within the next 8 years. Furthermore, coincidental capture of interplanetary dust particles will occur on the exposed surfaces of the Genesis spacecraft. Laboratory simulations using both light-gas-gun and Van de Graaff accelerators have impacted dust analogues at velocities ranging from 5 km s -1 to ca. 72 km s -1 into comparable silicon and aerogel targets. Analysis of the impacts on silicon has shown complete spallation of impact residues for silicate projectiles of 38-53 μm in diameter, however craters formed by 1 μm iron projectiles show that near-intact residues can be preserved. An olivine grain embedded in aerogel has been characterized in situ using Raman micro-spectroscopy. Monte Carlo simulations and laboratory experiments have shown that analytical scanning electron microscopy can also be used to characterize embedded grains. Development of a novel particle extraction methodology using a 266 nm UV laser micro-dissection system has resulted in the recovery of an olivine grain. The extracted particle was then "cleaned up" using focused ion beam (FIB) milling to remove excess aerogel that was fused on the grain surface.

  13. Polyvinylidene fluoride dust detector response to particle impacts.

    PubMed

    James, D; Hoxie, V; Horanyi, M

    2010-03-01

    Polyvinylidene fluoride (PVDF) dust detectors have flown on many space missions since their first use on the Vega 1 and 2 spacecraft. The fundamental operating principle of these detectors is the production of a charge upon impact by a hypervelocity dust particle. This measured signal, N, depends on the speed, v, and mass, m, of the particle. The relationship between N, v, and m was first empirically derived by Simpson and Tuzzolino. All of the PVDF dust instruments prior to the Student Dust Counter on the New Horizons mission use their formula for the calibration of the detectors. This paper provides additional dust impact calibration data, proposes a modification in the exponents for m and v, and investigates the relationship between detector temperature and detector signal.

  14. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  15. Hypervelocity Dust Impacts in Space and the Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  16. Far-Reaching Impacts of African Dust- A Calipso Perspective

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Prospero, Joseph; Omar, Ali; Remer, Lorraine; Winker, David; Yang, Yuekui; Zhang, Yan; Zhang, Zhibo

    2014-01-01

    African dust can transport across the tropical Atlantic and reach the Amazon basin, exerting far-reaching impacts on climate in downwind regions. The transported dust influences the surface-atmosphere interactions and cloud and precipitation processes through perturbing the surface radiative budget and atmospheric radiative heating and acting as cloud condensation nuclei and ice nuclei. Dust also influences biogeochemical cycle and climate through providing nutrients vital to the productivity of ocean biomass and Amazon forests. Assessing these climate impacts relies on an accurate quantification of dust transport and deposition. Currently model simulations show extremely large diversity, which calls for a need of observational constraints. Kaufman et al. (2005) estimated from MODIS aerosol measurements that about 144 Tg of dust is deposited into the tropical Atlantic and 50 Tg of dust into the Amazon in 2001. This estimated dust import to Amazon is a factor of 3-4 higher than other observations and models. However, several studies have argued that the oversimplified characterization of dust vertical profile in the study would have introduced large uncertainty and very likely a high bias. In this study we quantify the trans-Atlantic dust transport and deposition by using 7 years (2007-2013) observations from CALIPSO lidar. CALIPSO acquires high-resolution aerosol extinction and depolarization profiles in both cloud-free and above-cloud conditions. The unique CALIPSO capability of profiling aerosols above clouds offers an unprecedented opportunity of examining uncertainties associated with the use of MODIS clear-sky data. Dust is separated from other types of aerosols using the depolarization measurements. We estimated that on the basis of 7-year average, 118142 Tg of dust is deposited into the tropical Atlantic and 3860 Tg of dust into the Amazon basin. Substantial interannual variations are observed during the period, with the maximum to minimum ratio of about 1

  17. Chemical thermodynamics of systemic self-organization towards life by nano-structured cosmic dust particles

    NASA Astrophysics Data System (ADS)

    Krueger, F. R.; Kissel, J.

    2001-08-01

    Self-organization of chemicals to living systems demands for several necessary conditions as derived from far-from-equilibrium thermodynamics. Autopoesis is not just self-replication of systems, but is orbital stability of growth, variability, and self-replication. Physically, this means a reaction-diffusion space-time boundary (in/out) problem. The solutions of such a system of related partial non-linear differential coupled equations exhibit orbital stability as needed only if some other conditions are at hand. Of course, template oriented synthesis is needed, however, onset of the cycle demands for high excess reaction energy. The type of non-linearity demands for chirality. The diffusion behaviour needs a nano-grained structure for onset of self-replication, together with critical spatial dimensions in the μm-regime. To meet all chemical and physical requirements the proticity and polarity of a mobile phase (such as liquid water), together with the right heterocatalytic backbone structure and organic precursors are prerequisites, too. To our knowledge only cosmic (esp. cometary or micrometeoritic) dust particles together with liquid water may cause that onset, as we calculated numerically for RNA and peptide life precursors as well. In order to test the dynamics of such a system model grains will be taylored which meet the requirements mentioned. Simple systems are to be prepared on the basis of nano-structured silica spheres. Loading of catalysts and precursors for autocatalytic (peptide or RNA) templates, and furtheron the onset of reaction by changing the liquid phase parameters, will be studied.

  18. Temperature Spectra of Interstellar Dust Grains Heated by Cosmic Rays. I. Translucent Clouds

    NASA Astrophysics Data System (ADS)

    Kalvāns, Juris

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas-grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f T , s-1, determines how often a certain temperature T CR, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f T and T CR spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μm and such grains covered with ice mantles of thickness 0.1a and 0.3a. Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A V = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T CR spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T CR values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20-30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  19. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s-1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s-1 and zenith angles (ZA) of 30°-90°, which accounts for ˜66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s-1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s-1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s-1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  20. Formation and alteration of complex amino acid precursors in cosmic dusts and their relevance to origins of life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Kawamoto, Yukinori; Kanda, Kazuhiro; Takayama, Ken; Shibata, Hiromi

    A wide variety of organic compounds including many kinds of amino acids have been detected in carbonaceous chondrites. It has been known that comets also bring complex organic compounds. The relevance of extraterrestrial organics to the origin of life is extensively discussed. There have been many scenarios of the origin of amino acids found in meteorites or comets, including the Strecker synthesis in the parent bodies of meteorites, the Fischer-Tropsch type reaction in the solar nebula and reactions in cosmic dusts. We examined possible formation of amino acids or their precursors in interstellar dust environments. When possible interstellar media (a mixture of carbon monoxide, ammonia and water) was irradiated with high energy protons, complex organic compounds whose molecular weights are thousands were formed [1], which gave amino acids after acid hydrolysis: Hereafter we will refer them simulated interstellar organics. It was suggested that complex amino acid precursors could be formed in ice mantles of interstellar dust particles in prior to the formation of the solar system. We are planning to irradiate simulated interstellar ices with high-energy heavy ions from the Digital Accelerator (KEK) to confirm the scenario. The simulated interstellar oraganics were so hydrophilic that they were easy to dissolve in water. Complex organics found in meteorites are generally so hydrophobic and are insoluble to water. Organics found in cometary dusts sampled by the Stardust Mission contains organics with various hydrophobicity. We irradiated the simulated interstellar organics with UV and/or soft X-rays. Soft X-rays irradiation of the simulated interstellar organics resulted in the formation of more hydrophobic compounds as seen in some of cometary dusts. It was suggested that organics of interstellar origin on dusts were altered when the solar system was being formed with soft X-rays from the young Sun in prior to the incorporation to planetesimals or comets. Dusts have

  1. Impact of Asian Dust on Climate and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Tan, Qian; Diehl, Thomas; Yu, Hongbin

    2010-01-01

    Dust generated from Asian permanent desert and desertification areas can be efficiently transported around the globe, making significant radiative impact through their absorbing and scattering solar radiation and through their deposition on snow and ice to modify the surface albedo. Asian dust is also a major concern of surface air quality not only in the source and immediate downwind regions but also areas thousands of miles away across the Pacific. We present here a global model, GOCART, analysis of data from satellite remote sensing instrument (MODIS, MISR, CALIPSO, OMI) and other observations on Asian dust sources, transport, and deposition, and use the model to assess the Asian dust impact on global climate and air quality.

  2. Cosmic dust in the atmosphere and in the interplanetary space at 1 AU today and in the early solar system

    NASA Technical Reports Server (NTRS)

    Fechtig, H.

    1973-01-01

    A description of techniques used in recent experiments to detect and analyze cosmic dust and micrometeorites is given and the results both from the study of lunar crater statistics and from in situ measurements are reviewed. The results from lunar crater statistics show an agreement with the results obtained from in situ measurements in interplanetary space and derived from zodiacal light measurements. The near earth results show an enhancement in the flux numbers. This can be caused either by secondary lunar debris or by disintegration of low density fireballs in the outer atmosphere.

  3. Removing dust impact for visual navigation in Mars landing

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Cao, Yunfeng; Ding, Meng; Zhuang, Likui

    2016-01-01

    Visual navigation has received more and more attention in Mars landing. However, dust devils are active on Mars. The dust will make a great influence on visual navigation during the landing phase. In this paper, a simple but effective approach was proposed to remove the dust impact for visual navigation in Mars landing. This method was based on a model which was widely used to describe the scene radiance that was affected by different weather conditions. First the calculation method of transmission parameter was deduced from this model. Then the value of the global atmospheric light was estimated through the detection of most dust-opaque region. After all unknown variables were determined, the clear image was recovered by the corresponding formula and calculation method. For it is difficult to obtain the decent images that appear while the Mars rover enters the landing phase, a simulated dust environment was created in the lab and some images affected by dust were obtained to check the validity of this method. From the results of the experiments, the proposed approach can effectively eliminate the dust influences and provide clearer pictures. The clear images help to provide more precise data for visual navigation.

  4. Impact of Asia Dust Aerosols on Regional Environment and Climate

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    East Asia is a major dust source in the world and has great impacts on regional climate in Asia, where the large arid and semi-arid regions are. In this study, the typical transport paths of East Asia dust, which affect regional and global climates, are demonstrated and numerous effects of dust aerosols on clouds and precipitation primarily over East Asian arid and semi-arid regions are discussed. Compared with the dust aerosols of Saharan, those of East Asian are more absorptive of solar radiation, and can influence the cloud properties not only by acting as cloud condensation nuclei and ice nuclei but also through changing the relative humidity and stability of the atmosphere (via semi-direct effect). Converting visible light to thermal energy, dust aerosols can burn clouds to produce a warming effect on climate, which is opposite to the first and second indirect effects of aerosols. Over Asia arid and semi-arid regions, the positive feedback in the aerosol-cloud-precipitation interaction may aggravate drought in its inner land. Impact of Asia dust on regional environment, especially on haze weather, are also presented in this talk.

  5. On The Origins Of Cosmic Dust And The Evolution Of Nearby Galaxies With The Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Clark, Christopher Jonathan Redfern

    2015-04-01

    Using multiwavelength observations, centred around the unique far-infrared and submillimetre window provided by the Herschel Space Observatory, this thesis investigates the origins and evolution of cosmic dust in the local Universe – by examining individual sources of dust in our own galaxy, and by studying dust in nearby galaxies. I search Herschel observations of the remnants of Kepler’s (SN1604) and Tycho’s (SN1572) supernovæ, both Type-Ia explosions, for evidence of dust creation by these events. Being the only Type-Ia supernovæ known to have occurred in our Galaxy within the past 1,000 years, these remnants are the only ones both close enough to resolve, and young enough that they are dominated by their ejecta dynamics. There is no indication of any recently manufactured dust associated with either supernova remnant. It therefore appears that Type-Ia supernovæ do not contribute significantly to the dust budgets of galaxies. The Crab Nebula, the result of a Type-II supernova (SN1054), is also investigated using Herschel and multiwavelength data. After accounting for other sources of emission, a temperature of Td = 63.1 K and mass of Md = 0.21 M⊙ is derived for the Crab Nebula’s dust component. I create a map of the distribution of dust in the Crab Nebula, the first of its kind, by means of a resolved component separation, revealing that the dust is located in the dense filamentary ejecta. We can be confident that this dust will survive in the long term, and be injected into the galactic dust budget. This is the first detection of manufactured supernova dust for which this can be said. Next I use the Herschel-ATLAS to assemble HAPLESS: the Herschel- ATLAS Phase-1 Limited Extent Spatial Sample – a blind, volume-limited, dust- selected sample of nearby galaxies. The majority of this sample is made up of curious very blue galaxies. Often irregular and/or flocculent in morphology, with extremely blue UV-NIR colours, these galaxies appear to be

  6. A Novel Dust Telescope

    NASA Astrophysics Data System (ADS)

    Grün, E.; Srama, R.; Krüger, H.; Kempf, S.; Harris, D.; Conlon, T.; Auer, S.

    2001-11-01

    Dust particles in space, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is carried out by means of a dust telescope on a dust observatory in space. A dust telescope is a combination of a dust trajectory sensor together with a chemical composition analyzer for dust particles. A novel dust telescope is described. It consists of a highly sensitive dust trajectory sensor, and a large area chemical dust analyzer. It can provide valuable information about the particles' birthplace which may not be accessible by other techniques. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through an appropriately configured electrode systems. After the successful identification of a few charged micron-sized dust grains in space by the Cassini Cosmic Dust Analyzer, this dust telescope has a ten fold increased sensitivity of charge detection (10-16 Coulombs) and will be able to obtain trajectories for sub-micron sized dust grains. State-of-the art dust chemical analyzers have sufficient mass resolution to resolve ions with atomic mass numbers above 100. However, since their impact areas are small they can analyze statistically meaningful numbers of grains only in the dust-rich environments of comets or ringed planets. Therefore, this dust telescope includes a large area (0.1 m2) chemical dust analyzer of mass resolution > 100 that will allow us to obtain statistically significant measurements of interplanetary and interstellar dust grains in space.

  7. Composition of Plasma Formed from Hypervelocity Dust Impacts

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.

    2012-12-01

    Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment

  8. Capture of cosmic dusts and exposure of organics on the International Space Station: Objectives of the Tanpopo Mission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei

    Finding of a wide variety of organic compounds contained in extraterrestrial bodies such as carbonaceous chondrites and comets suggested that they were important materials for the first life on the Earth. Cosmic dusts (interplanetary dust particles; IDPs) were believed to have been important carriers of extraterrestrial organics, since IDPs could deliver organics to the primitive Earth more safely than asteroids and comets. Since most IDPs have been collected in such terrestrial environments as ocean sediments, Antarctic ices, and air in stratosphere, it is difficult to judge whether biooranics found in IDPs were extraterrestrial origins or not. Thus it would be of importance to collect IDPs out of the terrestrial biosphere. We are planning the Tanpopo Mission by utilizing the Exposed Facility of Japan Experimental Module (JEM/EF) of the International Space Station (ISS). Two types of experiments will be done in the Tanpopo Mission: Capture experiments and exposure experiments. In order to collect cosmic dusts (including IDPs) on the ISS, we are going to use extra-low density aerogel, since both cosmic dusts and ISS are moving at 8 km s-1 or over. We have developed novel aerogel whose density is 0.01 g cm-3. After the return of the aerogel blocks after 1 to a few years’ stay on JEM/EF, organic compounds in the captured dusts will be characterized by a wide variety of analytical techniques including FT-IR, XANES, and MS. Amino acid enantiomers will be determined after HF digestion and acid hydrolysis. A number of amino acids were detected in water extract of carbonaceous chondrites. It is controversial whether meteorites contain free amino acids or amino acid precursors. When dusts are formed from meteorites or comets in interplanetary space, they are exposed to high-energy particles and photons. In order to evaluate stability and possible alteration of amino acid-related compounds, we chose amino acids (glycine and isovaline) and hydantoins (precursors of amino

  9. Global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos

    2017-05-01

    The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet

  10. Does the presence of cosmic dust influence the displacement of the Earth's Magnetopause?

    NASA Astrophysics Data System (ADS)

    Mann, I.; Hamrin, M.

    2012-04-01

    In a recent paper Treumann and Baumjohann propose that dust particles in interplanetary space occasionally cause large compressions of the magnetopause that, in the absence of coronal mass ejections, are difficult to explain by other mechanisms (R.A. Treumann and W. Baumjohann, Ann. Geophys. 30, 119-130, 2012). They suggest that enhanced dust number density raises the contribution of the dust component to the solar wind dynamical pressure and hence to the pressure balance that determines the extension of the magnetopause. They quantify the influence of the dust component in terms of a variation of the magnetopause stagnation point distance. As a possible event to trigger the compressions they propose the encounters with meteoroid dust streams along Earth's orbit. We investigate the conditions under which these compressions may occur. The estimate by Treumann and Baumjohann of the magnetopause variation presupposes that the dust particles have reached solar wind speed. Acceleration by electromagnetic forces is efficient in the solar wind for dust particles that have a sufficiently large ratio of surface charge to mass (Mann et al. Plasma Phys. Contr. Fusion, Vol. 52, 124012, 2010). This applies to small dust particles that contribute little to the total dust mass in meteoroid streams. The major fraction of dust particles that reach high speed in the solar wind are nanometer-sized dust particles that form and are accelerated in the inner solar system (Czechowski and Mann, ApJ, Vol. 714, 89, 2010). Observations suggest that the flux of these nanodust particles near 1 AU is highly time-variable (Meyer-Vernet, et al. Solar Physics, Vol. 256, 463, 2009). We estimate a possible variation of the magnetopause stagnation point distance caused by these nanodust fluxes and by the dust associated to meteoroid streams. We conclude that the Earth's encounters with meteoroid dust streams are not likely to strongly influence the magnetopause according to the proposed effect. We

  11. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully

  12. Impact of Cosmic Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, Ryan; Ruszkowski, Mateusz; Yang, Hsiang-Yi Karen; Gould Zweibel, Ellen

    2017-08-01

    Despite playing a fundamental role in galaxy evolution, the physical mechanisms responsible for driving galactic winds remain unclear. The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic ray transport processes are fundamental for determining the efficiency of cosmic ray wind driving. Previous studies focused on modeling of cosmic ray transport either via constant diffusion coefficient or via streaming proportional to the Alfv{é}n speed. However, in predominantly neutral gas, cosmic rays can propagate faster than in the ionized medium and the effective transport can be substantially larger, i.e., cosmic rays are decoupled from the gas. We perform three-dimensional magneto-hydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the neutral ISM phases. We find that, compared to the ordinary diffusive cosmic ray transport case, accounting for the decoupling leads to significantly different wind properties such as the cosmic ray spatial distribution, wind speed, density, and temperature. These results have implications for the magnetization of the circumgalactic medium and the pollution of the circumgalactic medium with cosmic rays.

  13. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

    NASA Astrophysics Data System (ADS)

    Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc

    1998-06-01

    We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 +/- 13 nW m-2 sr-1 at 140 μm and of 17 +/- 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a

  14. Volatile Acquisition During Early Terrestrial Accretion — Constraints from Implanted Solar Neon in Cosmic Dust

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Gail, H.-P.; Hopp, J.; Ott, U.; Trieloff, M.

    2016-08-01

    Implanted Ne-B in particles with large surface/volume ratio has to be considered as source for terrestrial noble gases. Significant contributions of irradiated dust during Earth's accretion possibly explain the solar Ne signature of Earth's mantle.

  15. Impact of Dust Reduction on the Mid-Holocene Climate

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, M.

    2016-12-01

    The globally averaged annual mean surface temperature during the early to mid-Holocene ( 10-6 kilo-years ago (ka)) has been shown by the latest reconstruction to be 0.57 °C higher than that of the pre-industrial period, and often referred to as the Holocene Thermal Maximum (HTM). However, all climate models simulate a cooler climate than the pre-industrial mainly because of the lower greenhouse gas concentrations during the HTM. This has become a major conundrum of the climate history over the Holocene. Here we show that the much-weakened dust production over the Saharan region during the HTM may be the key to solving this conundrum. It is well known from observations that the Saharan region was greener during HTM than present-day. Therefore, the dust production from that region is expected to have been much less. We use a fully coupled atmosphere-ocean general circulation model (AOGCM) CCSM3.0 to systematically investigate how much the reduced dust production might impact the climate at 6 ka. It is found that the global mean surface temperature can increase by as much as 0.3 °C primarily due to the direct radiative effect of the reduced dust loading in the atmosphere, compared to the case when the present-day dust loading is assumed. The global annual mean precipitation is increased by 0.04 mm/day. The patterns of annual mean surface temperature and precipitation are also more similar to those from reconstructions when the dust reduction is considered. The effect of dust can therefore exlain most part of the discrepancy between previous modeling studies and proxy reconstructions.

  16. The Dust Impact Monitor on board the Rosetta Lander PHILAE

    NASA Astrophysics Data System (ADS)

    Krueger, Harald; Seidensticker, Klaus; Apathy, Istvan; Fischer, Hans-Herbert; Hetzel, Mareike; Hirn, Attila; Loose, Alexander; Peter, Attila; Podolak, Morris

    The Rosetta spacecraft -launched in 2004 -carries the lander spacecraft PHILAE on board which is supposed to land on the nucleus of comet 67P/Churyumov-Gerasimenko in 2014. The instrument package SESAME is one of the scientific instruments on board PHILAE. The main objectives of SESAME are measurements of the mechanical and electrical properties of the cometary surface and sub-surface material as well as measurements of ice and dust particles emitted from the nucleus. The Dust Impact Monitor (DIM) is a subinstrument of SESAME and is mounted on PHILAE's balcony. The DIM sensor consists of three piezoelectric detectors, each one mounted on the outer side of a cube facing in orthogonal directions (the direction normal to the nucleus surface and two horizontal directions) so that information on the impact direction of the particles can be obtained. The total sensor area of all three detectors is approximately 70cm2 . DIM measures impacts of sub-millimeter and millimeter sized particles. Ice and dust particles emitted from the nucleus couple to the cometary gas flow and are accelerated away from the nucleus surface. Depending on particle size, a fraction of the emitted grains falls back to the surface after some time due to gravity while the rest is being ejected into the cometary coma. DIM will be able to detect these backfalling particles (with its sensor pointing normal to the nucleus surface) as well as grains leaving the nucleus on direct trajectories (with the two sensors facing in horizontal directions). The DIM instrument will measure dust fluxes, impact directions as well speed and size of the impacting particles. We are performing a laboratory calibration program by simulating particle impacts on the sensors and we are presenting our preliminary results from these laboratory experiments.

  17. The impacts of mineral dust on organized mesoscale deep convection

    NASA Astrophysics Data System (ADS)

    Seigel, Robert Brian

    The overarching goal of this research is to investigate how mineral dust can impact organized deep moist convection using numerical modeling. This is achieved through four modeling studies that each address a different aspect of organized mesoscale DMC. The first study uses the Regional Atmospheric Modeling System (RAMS) to simulate a supercell storm in order to examine the pathways in which mineral dust is entrained into DMC. This is achieved by simulating a supercell within three commonly observed dust regimes. Results indicate that the supercell in EXP-BACKGROUND ingests large dust concentrations ahead of the rear-flank downdraft (RFD) cold pool. Conversely, dust lofted by the cold pool in EXP-STORM is ingested by the supercell in relatively small amounts via a narrow corridor generated by turbulent mixing between the RFD cold pool and ambient air. The addition of a convergence boundary in EXP-BOUNDARY is found to act as an additional source of dust for the supercell and represents the case between EXP-BACKGROUND and EXP-STORM. Results demonstrate the importance of using an appropriate dust parameterization when modeling DMC, especially within more arid regions. The second study utilizes an idealized simulation of a nocturnal squall line to assess and isolate the individual responses in a squall line that arise (1) from radiation, (2) from dust altering the microphysics, as well as (3) from the synergistic effects between (1) and (2). To accomplish these tasks, we again use RAMS set up as a cloud-resolving model (CRM). Results indicate that RADIATION acts to increase precipitation, intensify the cold pool, and enhance the mesoscale organization of the squall line due to radiation-induced changes in the microphysics that appear to initiate from cloud top cooling. Conversely, DUST MICRO decreases precipitation, weakens the cold pool, and weakens the mesoscale organization of the squall line due to an enhancement of the warm rain process. SYNERGY shows little

  18. Virtual impact: visualizing the potential effects of cosmic impact in human history

    SciTech Connect

    Masse, W Bruce; Janecky, David R; Forte, Maurizio; Barrientos, Gustavo

    2009-01-01

    Current models indicate that catastrophic impacts by asteroids and comets capable of killing more than one quarter of Earth's human population have occurred on average once every million years; smaller impacts, such the 1908 Tunguska impact that leveled more than 2,000 square km of Siberian forest, occur every 200-300 years. Therefore, cosmic impact likely significantly affected hominine evolution and conceivably played a role in Holocene period human culture history. Regrettably, few archaeologists are trained to appreciate the nature and potential effects of cosmic impact. We have developed a conceptual model for an extensible set of educational and research tools based on virtual reality collaborative environments to engage archaeologists and the general public on the topic of the role of cosmic impact in human history. Our initial focus is on two documented asteroid impacts in Argentina during the period of 4000 to 1000 B.C. Campo del Cicio resulted in an energy release of around 2-3 megatons (100-150 times the Hiroshima atomic weapon), and left several craters and a strewn field covering 493 km{sup 2} in northeastern Argentina. Rio Cuarto was likely more than 1000 megatons and may have devastated an area greater than 50,000 km{sup 2} in central Argentina. We are focusing on reconstructions of these events and their potential effects on contemporary hunter and gatherers. Our vinual reality tools also introduce interactive variables (e.g., impactor physical properties, climate, vegetation, topography, and social complexity) to allow researchers and students to better investigate and evaluate the factors that significantly influence cosmic impact effects.

  19. The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model

    NASA Astrophysics Data System (ADS)

    Newman, Claire E.; Richardson, Mark I.

    2015-09-01

    Observations of albedo on Mars suggest a largely invariant long-term mean surface dust distribution, but also reveal variations on shorter (seasonal to annual) timescales, particularly associated with major dust storms. We study the impact of finite surface dust availability on the dust cycle in the MarsWRF General Circulation Model (GCM), which uses radiatively active dust with parameterized 'dust devil' and wind stress dust lifting to enable the spontaneous production of dust storms, and tracks budgets of dust lifting, deposition, and total surface dust inventory. We seek a self-consistent, long-term 'steady state' dust cycle for present day Mars, consisting of (a) a surface dust distribution that varies from year to year but is constant longer-term and in balance with current dust redistribution processes, and (b) a fixed set of dust lifting parameters that continue to produce major storms for this distribution of surface dust. We relax the GCM's surface dust inventory toward this steady state using an iterative process, in which dust lifting rate parameters are increased as progressively more surface sites are exhausted of dust. Late in the equilibration process, the GCM exhibits quasi-steady state behavior in which few new surface grid points are exhausted during a 60 year period with constant dust lifting parameters. Complex regional-scale dust redistribution occurs on time-scales from less than seasonal to decadal, and the GCM generates regional to global dust storms with many realistic features. These include merging regional storms, cross-equatorial storms, and the timing and location of several storm types, though very early major storms and large amounts of late storm activity are not reproduced. Surface dust availability in key onset and growth source regions appears vital for 'early' major storms, with replenishment of these regions required before another large storm can occur, whereas 'late' major storms appear primarily dependent on atmospheric

  20. Impact Produced and Mobilized Dust in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2001-12-01

    The objective of this work is to study possible mechanisms of new dust production and existing dust entrainment after impacts of meteoroids onto Mars and to assess the possible relationship to dust clouds. We use detailed numerical simulations based on the SOVA multi-dimensional multi-material hydrocode [1]. In the first run of simulations, partially described in [2], only the dust ejected from the crater was taken into account. In the process of ejection soil density decreases near the cavity boundary. At the moment when the density falls below some critical value the solid material is replaced by a set of discrete particles (dust, boulders) of equivalent mass [3]. The distribution of particles by sizes was taken according experimental data obtained in the course of large-scale TNT and nuclear explosions on the Earth's ground [4]. The radius of impactor was varied from 1 to 100 m. The lowest value corresponds to high strength meteoroids passing through the rarefied Martian atmosphere without substantial fragmentation and deceleration. The impact velocity was taken to be 11 and 20 km/s. In all the variants the mass of the dust ejected from the forming craters was about 10 M, where M is the impactor mass. It was suggested [5] that the dust may be mobilized even if the impactor does not reach the ground surface. To check this idea the code was modified to take into account blast produced impulsive winds blowing the preexisting dust from the surface by mechanism similarly to that of the stationary winds [6]. Turbulent viscosity and diffusion were taken into acount. Some portions of dust are deposited on the surface due to gravity. The particles striking the surface increase a flux of the suspended dust. The saltation thresholds were taken according [7-8]. For a 1 m radius stony asteroid releasing its energy (0.15 kt TNT) at an altitude of about 100 m above the surface after first two seconds the mass of the dust in the air was 3.5 M, and after 15 s it decreased to 2

  1. EBEX-IDS: A Balloon-Borne Experiment to Observe and Separate Galactic Dust from Cosmic Inflation Signals

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul

    Measurements of the imprint of inflationary gravity waves on the cosmic microwave background radiation are currently limited by uncertainty in the properties of polarized galactic dust. A balloon-borne platform probing frequency bands that are not accessible from the ground is uniquely suited to drastically reduce this uncertainty. We propose to advance the technology readiness level of EBEX-IDS, a long-duration balloon-borne experiment that will measure the polarization of galactic dust at 360 GHz with 36 times lower power spectrum noise, compared to the Planck satellite. EBEX-IDS will have 20,562 detectors, spread over 7 frequency bands between 150 and 360 GHz. Using its high sensitivity and broad-bandwidth EBEX-IDS will determine the spectral index of polarized dust emission and its B-mode power spectrum at 150 GHz with an unprecedented accuracy of 0.04% and signal-to-noise ratio (SNR) of 42, respectively. EBEX-IDS proposes to use three types of sinuous antenna multichroic pixels (SAMPs) that are readout with a frequency domain multiplexed system. To advance the TRL if these technologies, we will fabricate and characterize SAMPs with the appropriate properties for use at the balloon environment. We will investigate low power readout systems that are suitable for use aboard EBEX-IDS. We will implement a prototype end-to-end system in the laboratory consisting of SAMP wafers and the intended readout system, and measure its noise, frequency response, and power consumption properties. The work will be carried out by a postdoctoral fellow and graduate student at the University of Minnesota, and a newly hired person at the University of California, Berkeley.

  2. Trace element content of chondritic cosmic dust: Volatile enrichments, thermal alterations, and the possibility of contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.

    1993-01-01

    Trace element abundances in 51 chondritic Interplanetary Dust Particles (IDP's) were measured by Synchrotron X-Ray Fluorescence (SXRF). The data allow us to determine an average composition of chondritic IDP's and to examine the questions of volatile loss during the heating pulse experienced on atmospheric entry and possible element addition due to contamination during atmospheric entry, stratospheric residence, and curation.

  3. Trace element content of chondritic cosmic dust: Volatile enrichments, thermal alterations, and the possibility of contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.

    1993-01-01

    Trace element abundances in 51 chondritic Interplanetary Dust Particles (IDP's) were measured by Synchrotron X-Ray Fluorescence (SXRF). The data allow us to determine an average composition of chondritic IDP's and to examine the questions of volatile loss during the heating pulse experienced on atmospheric entry and possible element addition due to contamination during atmospheric entry, stratospheric residence, and curation.

  4. Impact of galactic and intergalactic dust on the stellar EBL

    NASA Astrophysics Data System (ADS)

    Vavryčuk, V.

    2016-06-01

    Current theories assume that the low intensity of the stellar extragalactic background light (stellar EBL) is caused by finite age of the Universe because the finite-age factor limits the number of photons that have been pumped into the space by galaxies and thus the sky is dark in the night. We oppose this opinion and show that two main factors are responsible for the extremely low intensity of the observed stellar EBL. The first factor is a low mean surface brightness of galaxies, which causes a low luminosity density in the local Universe. The second factor is light extinction due to absorption by galactic and intergalactic dust. Dust produces a partial opacity of galaxies and of the Universe. The galactic opacity reduces the intensity of light from more distant background galaxies obscured by foreground galaxies. The inclination-averaged values of the effective extinction AV for light passing through a galaxy is about 0.2 mag. This causes that distant background galaxies become apparently faint and do not contribute to the EBL significantly. In addition, light of distant galaxies is dimmed due to absorption by intergalactic dust. Even a minute intergalactic opacity of 1 × 10^{-2} mag per Gpc is high enough to produce significant effects on the EBL. As a consequence, the EBL is comparable with or lower than the mean surface brightness of galaxies. Comparing both extinction effects, the impact of the intergalactic opacity on the EBL is more significant than the obscuration of distant galaxies by partially opaque foreground galaxies by factor of 10 or more. The absorbed starlight heats up the galactic and intergalactic dust and is further re-radiated at IR, FIR and micro-wave spectrum. Assuming static infinite universe with no galactic or intergalactic dust, the stellar EBL should be as high as the surface brightness of stars. However, if dust is considered, the predicted stellar EBL is about 290 nW m^{-2} sr^{-1}, which is only 5 times higher than the observed

  5. Human Mars Mission Overview and Dust Storm Impacts on Site Selection

    NASA Astrophysics Data System (ADS)

    Hoffman, S. J.

    2017-06-01

    This presentation briefly reviews NASA's current approach to human exploration of Mars and key features placed on locations (referred to as Exploration Zones) for these activities. Impacts of dust and dust storms on selecting an EZ are discussed.

  6. Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.

    2015-08-01

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  7. The impact of mineral dust particles on radiation and cloud formation during a Saharan dust event over Western Europe

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Kumar, P.; Blahak, U.; Seifert, A.

    2010-12-01

    Dust, through their action as cloud condensation nuclei (CCN) and ice nuclei (IN), has long been hypothesized to impact clouds and the hydrological cycle. This effect is particularly strong during dust outbreaks. Europe, being adjacent to the Sahara, is susceptible to the effects of dust storms; a quantitative assessment remains elusive and is the subject of this study. This talk focuses on one major dust event that occurred in May 2008. Its origin was in the Sahara and from there mineral dust particles were transported over the western Mediterranean, covering large areas of Western Europe. During the episode, high aerosol concentrations were observed throughout Europe; ice nuclei concentrations significantly increased (compared to pre-event levels) at Kleiner Feldberg, Germany (Bingemer et al. 2009). During this time, traditional weather forecast models (which currently neglect aerosol impacts on atmospheric processes) exhibited poor prediction skill. The impacts of dust on atmospheric state is studied with the regional scale online coupled model system COSMO-ART (Vogel et al., 2009) that accounts for feedbacks between chemistry, aerosols, radiation, and clouds. A two-moment cloud microphysics scheme (Seifert & Beheng 2001) is coupled together with comprehensive parameterisations for aerosol activation (Kumar et al. 2009; Barahona et al. 2010) and ice nucleation (Barahona and Nenes 2009) to simulate the impact of the various aerosol particles on the cloud microphysics and therefore on cloud properties and precipitation. The sensitivity of predicted atmospheric state to the dust amount, properties (hygroscopicity) and parameterization is thoroughly studied.

  8. Cosmic Dust in ~50 KG Blocks of Blue Ice from Cap-Prudhomme and Queen Alexandra Range, Antarctica

    NASA Astrophysics Data System (ADS)

    Maurette, M.; Cragin, J.; Taylor, S.

    1992-07-01

    Favorable Antarctic blue ice fields have produced a large number of meteorite finds because of the ice ablation concentration process (Cassidy et al., 1982). Such ice fields should also concentrate cosmic dust grains including both spherules and unmelted micrometeorites. Here we present preliminary results of concentrations of cosmic dust grains in ice from two very different Antarctic blue ice fields. The first sample (~60 kg) was collected in January 1987 from the surface of the blue ice field at Cap-Prudhomme (CP), near the French station of Dumont d'Urville, by a team from the "Laboratoire de Glaciologie du CNRS" (A. Barnola). The second sample (~50 kg), was retrieved from a meteorite stranding surface near the Queen Alexandra range (QUE) by a team (M. Burger, W. Cassidy, and R.Walker) of the ANSMET 1990 field expedition in Antarctica. Both samples were transported frozen to the laboratory where they were subdivided and processed. The CP sample was cut with a stainless steel saw into 4 pieces while the QUE sample, which had the top surface identified, was cut into three equal (~15 cm) horizontal layers to provide constituent variability with depth. All subsequent work on both samples was performed in a class 100 clean room using procedures developed by M. de Angelis and M. Maurette aimed at minimizing the loss of extraterrestrial particles. Pieces of both samples were cleaned by rinsing thoroughly with ultrapure water (Milli-O) and then melted in polyethylene containers in a microwave oven. Aliquots were decanted for chemical analysis and the remaining meltwater was filtered through stainless steel sieves for collection of large (>30 micrometers) particles. Using a 30X binocular microscope particles were hand picked for subsequent SEM/EDX analyses. Our initial objective was to compare the cosmic dust concentration in ice from the two locations. But this comparison was only partial because in the CP-ice, only magnetic spherules of >50 micrometers were studied

  9. The radiation-induced rotation of cosmic dust particles: A feasibility study

    NASA Technical Reports Server (NTRS)

    Misconi, N. Y.; Ratcliff, K. F.

    1981-01-01

    A crossed beam, horizontal optical trap, used to achieve laser levitation of particles in an effort to determine how solar radiation produces high spin rate in interplanetary dust particles, is described. It is suggested that random variations in albedo and geometry give rise to a nonzero effective torque when the influence of a unidrectional source of radiaton (due to the Sun) over the surface of a interplanetary dust particle is averaged. This resultant nonzero torque is characterized by an asymmetry factor which is the ratio of the effective moment arm to the maximum linear dimension of the body and is estimated to be 5 X 10 to the minus four power. It is hoped that this symmetry factor, which stabilizes the nonstatistical response of the particle, can be measured in a future Spacelab experiment.

  10. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  11. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  12. Impact of long-range desert dust transport on hydrometeor formation over coastal East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Zhou, Wen; Wenig, Mark; Yang, Liangui

    2017-01-01

    Model simulations and hydrological reanalysis data for 2007 are applied to investigate the impact of long-range desert dust transport on hydrometeor formation over coastal East Asia. Results are analyzed from Hong Kong and Shanghai, which are two representative coastal cities of East Asia. Long-range desert dust transport impacts mainly spring and summer clouds and precipitation over coastal East Asia. In spring, clouds and precipitation come mainly from large-scale condensation and are impacted mainly by dust from the Gobi, Sahara, and Thar deserts. These desert dusts can participate in the precipitation within and below the clouds. At lower latitudes, the dust particles act mainly as water nuclei. At higher latitudes, they act as both water nuclei and ice nuclei. The effect of Gobi, Sahara, and Thar dust on large-scale clouds and precipitation becomes stronger at higher latitudes. In summer, clouds and precipitation over coastal East Asia come mainly from convection and are impacted mainly by dust from the Taklamakan, Arabian, and Karakum-Kavir deserts. Most Taklamakan dust particles can participate in precipitation within convective clouds as ice nuclei, while Arabian and Karakum-Kavir dust particles participate only as water nuclei in precipitation below the clouds. The effect of Taklamakan dust on convective clouds and precipitation becomes stronger at lower latitudes. Of all the desert dusts, that from the Gobi and Taklamakan deserts has the relatively largest impact. Gobi dust impacts climate change in coastal East Asia by affecting spring water clouds at higher latitudes.

  13. Adsorption and desorption of mixed molecular ices from a cosmic dust grain analogue surface

    NASA Astrophysics Data System (ADS)

    Wolff, Angela Jean

    Surface science is playing an ever more prominent role in the field of astronomy. More than 220 different molecules have so far been observed in the interstellar medium (ISM), and for several of these molecules, the observed abundance is such that the molecules cannot be formed by gas phase reactions alone. Astronomers have proposed that they are instead formed by heterogeneous reactions that take place on the surface of dust grains. The two alcohols methanol and ethanol are just two of the molecules typically observed in both the gas and solid phase in the ISM. In the solid phase, they are found frozen out with the more abundant water, as molecular ices on the surface of dust grains. Both alcohols can be viewed as evolutionary indicators in the vicinity of hot cores. Hot cores are compact objects found in close to newly formed massive stars they are dense and relatively warm and show atypical gas-phase molecular compositions. The gas-phase composition, and therefore the evolutionary stage of the hot core, can be understood by considering the sublimation behaviour of molecular ices on the dust grains within the molecular cloud. This thesis presents the results of investigations on the adsorption and desorption of methanol and ethanol in both the pure state and in combination with water. In each case the deposition occurs on a highly oriented pyrolytic graphite (HOPG) surface. HOPG is considered to be a suitable interstellar dust grain analogue, as dust grains in the ISM are composed of mainly carbonaceous and silicaceous material. Temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) studies of methanol and ethanol ices, mixed with water, are presented. The adsorption and desorption of each species deposited on a layer of amorphous solid water ice is compared to those of codeposited ice layers. In all systems, there is evidence for molecular adsorption in a physisorbed state and for interactions between the investigated

  14. Impacts of the East Asian Monsoon on springtime dust concentrations over China: IMPACTS OF MONSOON ON DUST

    SciTech Connect

    Lou, Sijia; Russell, Lynn M.; Yang, Yang; Xu, Li; Lamjiri, Maryam A.; DeFlorio, Michael J.; Miller, Arthur J.; Ghan, Steven J.; Liu, Ying; Singh, Balwinder

    2016-07-12

    We use 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of the East Asian Monsoon strength on interannual variations of springtime dust concentrations over China. The simulated interannual variations in March-April-May (MAM) dust column concentrations range between 20–40% and 10–60% over eastern and western China, respectively. The dust concentrations over eastern China correlate negatively with the East Asian Monsoon (EAM) index, which represents the strength of monsoon, with a regionally averaged correlation coefficient of 0.64. Relative to the strongest EAM years, MAMdust concentrations in the weakest EAM years are higher over China, with regional relative differences of 55.6%, 29.6%, and 13.9% in the run with emissions calculated interactively and of 33.8%, 10.3%, and 8.2% over eastern, central, and western China, respectively, in the run with prescribed emissions. Both interactive run and prescribed emission run show the similar pattern of climate change between the weakest and strongest EAM years. Strong anomalous northwesterly and westerly winds over the Gobi and Taklamakan deserts during the weakest EAM years result in larger transport fluxes, and thereby increase the dust concentrations over China. These differences in dust concentrations between the weakest and strongest EAM years (weakest-strongest) lead to the change in the net radiative forcing by up to 8 and 3Wm2 at the surface, compared to 2.4 and +1.2Wm2 at the top of the atmosphere over eastern and western China, respectively.

  15. Runoff quality impacts of dust suppression using saline water

    NASA Astrophysics Data System (ADS)

    Loch, Rob J.; Squires, Helen

    2010-05-01

    In mining and gas operations, dust generation from unsealed roads is a major problem. Commonly, road watering is used to suppress dust, with the lowest water quality available generally being selected for that purpose. Whilst minimising water usage for the site, that practice does create concerns with respect to potential environmental impacts if runoff from the treated roads has significantly elevated salinity. For coal seam gas operations, the water extracted concurrently with the gas contains predominantly sodium bicarbonate. Therefore, where coal seam gas water is sprayed onto roads, there is potential for elevated sodium in runoff to impact on soil adjoining the roads, but there is no information on the rates of dissolution and mobilisation of soluble salt from the surface of roads that have been sprayed with low quality water to reduce dust. Therefore a rainfall simulator study was carried out to investigate rates of mobilisation of sodium bicarbonate from compacted soil surfaces simulating an unsealed road. The study considered effects of the amount of precipitated sodium bicarbonate on the soil surface and variations in rainfall intensity. Because the soil surfaces were compacted, runoff commenced almost immediately following application of rain. For all treatments with applied surface salt, runoff quality data showed a peak in salt concentration in the first flush of runoff, and relatively rapid reduction through time in those initial concentrations. The magnitude and duration of peak concentrations depended on both rainfall rate and the quantity of salt present on the soil surface. The flush of salts in run-off from the roads occurred very early in the run-off event, when none of the surrounding area would have commenced to run off. Consequently, the relatively small volume of run-off produced directly by the road could be expected to predominantly infiltrate in the table drain adjoining the road. The initial flush of saline water would then be leached to

  16. The Late Eocene 187Os / 188Os excursion: Chemostratigraphy, cosmic dust flux and the Early Oligocene glaciation

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Ravizza, Gregory E.; Peucker-Ehrenbrink, B.

    2006-01-01

    High resolution records (ca. 100 kyr) of Os isotope composition ( 187Os / 188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os / 188Os excursion and confirm that the Late Eocene 187Os / 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151-165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os / 188Os minimum can be placed at 34.5 ± 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os / 188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ± 0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO 2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os / 188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os / 188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os / 188Os records with high resolution benthic foraminiferal δ18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os / 188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes

  17. Urban Dust Microbiome: Impact on Later Atopy and Wheezing.

    PubMed

    Tischer, Christina; Weikl, Fabian; Probst, Alexander J; Standl, Marie; Heinrich, Joachim; Pritsch, Karin

    2016-12-01

    Investigations in urban areas have just begun to explore how the indoor dust microbiome may affect the pathogenesis of asthma and allery. We aimed to investigate the early fungal and bacterial microbiome in house dust with allergic sensitization and wheezing later in childhood. Individual dust samples from 189 homes of the LISAplus birth cohort study were collected shortly after birth from living room floors and profiled for fungal and bacterial microbiome. Fungal and bacterial diversity was assessed with terminal restriction fragment length polymorphism (tRFLP) and defined by Simpson's Diversity Index. Information on wheezing outcomes and covariates until the age of 10 years was obtained by parent questionnaires. Information on specific allergic sensitization was available at child's age 6 and 10 years. Logistic regression and general estimation equation (GEE) models were used to examine the relationship between microbial diversity and health outcomes. Adjusted logistic regression analyses revealed a significantly reduced risk of developing sensitization to aero-allergens at 6 years and ever wheezing until the age of 10 years for exposure to higher fungal diversity [adjusted odds ratio (aOR) = 0.26 (95% CI: 0.10, 0.70), and 0.42 (95% CI: 0.18, 0.96), respectively]. The associations were attenuated for the longitudinal analyses (GEE) until the age of 10 years. There was no association between higher exposure to bacterial diversity and the tested health outcomes. Higher early exposure to fungal diversity might help to prevent a child from developing sensitization to aero-allergens in early childhood, but the reasons for attenuated effects in later childhood require further prospective studies. Citation: Tischer C, Weikl F, Probst AJ, Standl M, Heinrich J, Pritsch K. 2016. Urban dust microbiome: impact on later atopy and wheezing. Environ Health Perspect 124:1919-1923; http://dx.doi.org/10.1289/EHP158.

  18. Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.

    2007-01-01

    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.

  19. Experimental simulation of the atmospheric ablation of cosmic dust particles: implications for HPLA radar and lidar observations

    NASA Astrophysics Data System (ADS)

    Gomez Martin, Juan Carlos; Bones, David; Diego Carrillo Sanchez, Juan; James, Alexander; Janches, Diego; Plane, John

    2016-04-01

    The inner solar system is full of interplanetary dust particles (IDPs) originating from cometary trails and collisions between asteroids. The entry and evaporation of IDPs in planetary atmospheres is related to a variety of phenomena including formation of mesospheric metal layers and clouds and stratospheric aerosol chemistry. The estimated mass flux into the Earth's Atmosphere from modelling of Zodiacal Cloud observations combined with results from our chemical ablation model (CABMOD) is consistent with the deposition rate of cosmic spherules on the ice caps. However, the fluxes derived from modelling HPLA radar observations, which also uses CABMOD, are significantly lower. In addition, all models underestimate the observed Na/Fe ratio in metal layers observed by LIDAR, and the radar-based model in particular does not predict differential ablation. In order to address these inconsistencies, we have built a laboratory meteor ablation simulator, which enables us to observe and characterise the ablation of metal atoms from meteoritic IDP analogues. CABMOD can be then benchmarked against the laboratory data. In this presentation, the implications of our experimental results for the interpretation of radar field observations, mass flux estimates and modelling of metal layers will be discussed.

  20. Dust Devil Sediment Transport: From Lab to Field to Global Impact

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Jemmett-Smith, Bradley C.; Kahanpää, Henrik; Kahre, Melinda; Knippertz, Peter; Lemmon, Mark T.; Lewis, Stephen R.; Lorenz, Ralph D.; Neakrase, Lynn D. V.; Newman, Claire; Patel, Manish R.; Reiss, Dennis; Spiga, Aymeric; Whelley, Patrick L.

    2016-11-01

    The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results.

  1. THE EFFECT OF HEAVY COSMIC-RAY IONS ON SILICATE GRAINS IN THE INTERSTELLAR DUST

    SciTech Connect

    Szenes, G.; Kovacs, V. K.; Pecz, B.; Skuratov, V.

    2010-01-01

    Electronmicroscopic samples of crystalline Mg{sub 2}SiO{sub 4} forsterite were irradiated by energetic Ar, Fe, Kr, and Xe ions at room temperature. Tracks with a mean radius R{sub e} = 1.36 nm were observed after irradiation by 56 MeV Fe ions, while no tracks were induced by a 48 MeV Ar beam. Amorphization of forsterite grains by cosmic-ray (CR) Fe ions are discussed, including the effects of low temperature, ion velocity, and ion-induced crystallization. CR Fe ions induce amorphous tracks in crystalline forsterite only in the range 40-140 MeV, and the period of time for complete amorphization is tau{sub cr} approx 13,400 Myr. Our estimate is tau{sub cr} approx 1300 Myr for enstatite. Thus, heavy CR particles do not reduce the crystallinity of silicate grains within a reasonable time, as supposed previously. However, energetic ions can induce crystallization in amorphous solids, and this may be partially or fully responsible for the estimated 0.2% crystallinity of silicates in the interstellar medium.

  2. Metamorphism of cosmic dust: Processing from circumstellar outflows to the cometary regolith

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III

    1989-01-01

    Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons, and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which one hopes to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. The physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be discussed.

  3. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Technical Reports Server (NTRS)

    Rucker, M. A.

    2017-01-01

    Although it is tempting to use dust impacts on Apollo lunar exploration mission equipment and operations as an analog for human Mars exploration, there are a number of important differences to consider. Apollo missions were about a week long; a human Mars mission will start at least two years before crew depart from Earth, when cargo is pre-deployed, and crewed mission duration may be over 800 days. Each Apollo mission landed at a different site; although no decisions have been made, NASA is investigating multiple human missions to a single Mars landing site, building up capability over time and lowering costs by re-using surface infrastructure. Apollo missions used two, single-use spacecraft; a human Mars mission may require as many as six craft for different phases of the mission, most of which would be re-used by subsequent crews. Apollo crews never ventured more than a few kilometers from their lander; Mars crews may take "camping trips" a hundred kilo-meters or more from their landing site, utilizing pressurized rovers to explore far from their base. Apollo mission designers weren't constrained by human for-ward contamination of the Moon; if we plan to search for evidence of life on Mars we'll have to be more careful. These differences all impact how we will mitigate and manage dust on our human Mars mission equipment and operations.

  4. Dust storm impacts on the mars upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Murphy, J.; Haberle, R. M.

    1997-05-01

    Coupling between the Mars lower (<=80 km) and upper atmospheres is a fundamental issue affecting dynamics, tracer distributions, and energy balance. Also, this coupling has significant bearing on future mission planning to the planet (e.g. Mars Global Surveyor aerobraking). Two general circulation models are currently being run in tandem to investigate tides and their generation, propagation, and impact upon the Mars lower thermosphere. The NASA Ames Mars General Circulation Model (MGCM) is first run for Mars near-perihelion (Ls ~ 270) conditions for which a 20-SOL dust-storm is initiated and allowed to self-consistently evolve. Subsequently, selected MGCM upper boundary fields are used to specify the height of the lower boundary and to drive semi-diurnal tides in the NCAR Mars Thermospheric General Circulation Model (MTGCM) for identical Mars parameters. MTGCM key fields are presented to illustrate the profound impact of Mars lower atmosphere heating and tides upon the Mars thermospheric structure and dynamics.

  5. Cosmic dust and micro-debris measurements on the MIR space station

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.; Bariteau, M.

    2001-01-01

    During the last ten years, investigation of impact features found on material retrieved from low earth orbit, after exposure to space for a long period of time, has provided us with a great deal of data on the particulate environment, either natural or man-made. Between 1987 and 1997, several detection devices have been deployed outside the Russian MIR space station. Passive sensors are composed primarily of stacked thin metal foils (gold and aluminum). Depending on the size of the particles, they are either decelerated or fragmented upon high velocity impact. The size of holes or impact craters give information on the size or shape of the impacting particles. Samples have been retrieved for laboratory analysis. In addition, solar cells from a solar array retrieved by a Shuttle-MIR mission have been searched for impact craters. Comparison with data from LDEF, and HST provides insight in the long-term evolution of small particle population and in the debris environment of a permanently manned station. Several samples show evidence of secondary impact cratering: an attempt is made to locate the origin of primary impact sites. Some results about the possible origin of the impactors are provided by the chemical identification of particle remnants inside the craters.

  6. Laboratory far-infrared spectroscopy of terrestrial sulphides to support analysis of cosmic dust spectra

    NASA Astrophysics Data System (ADS)

    Brusentsova, T.; Peale, R. E.; Maukonen, D.; Figueiredo, P.; Harlow, G. E.; Ebel, D. S.; Nissinboim, A.; Sherman, K.; Lisse, C. M.

    2012-03-01

    As an aid in interpreting data from space far-infrared (far-IR) missions, such as the Herschel Space Observatory with its Photodetector Array Camera and Spectrometer, this paper presents spectroscopic studies of selected naturally occurring terrestrial sulphide minerals in the wavelength range 15-250 μm. The data can also be used to support the return from other, both past and planned, IR space missions, such as the Infrared Space Observatory, Spitzer, SOFIA, SPiCA and Millimetron. In this study, we present far-IR spectra for 11 natural sulphide minerals in the form of dispersed powders of micron particle dimensions. Samples of various sulphides from the American Museum of Natural History mineral collection were selected based on criteria of diversity and potential astrophysical relevancy, based on their identification in Stardust, in stratospheric interplanetary dust particle samples, or in meteorites. Mineral species include digenite, galena, alabandite, sphalerite, wurtzite, covellite, pyrrhotite, pyrite, marcasite, chalcopyrite and stibnite. Most of the sulphides examined possess prominent and characteristic features in the far-IR range. Spectra obtained are compared to those available from previous studies. Far-IR peak frequencies and mass absorption coefficient values are tabulated. Effects of particle size distribution, low temperature, and provenance on IR spectra are demonstrated for selected samples.

  7. Galactic Cosmic Rays impact on Saturn innermost radiation belt formation

    NASA Astrophysics Data System (ADS)

    Kotova, A.; Roussos, E.; Krupp, N.; Dandouras, I.

    2014-04-01

    Rely on Cassini observations of ENAs during the orbital insertion in 2004, Krimigis et al. pointed out possible existence of the innermost radiation belt between Saturn 's atmosphere and D-ring (1). In the end of mission in 2017, Cassini is going to come again to this enigmatic and various region and pass directly through this narrow gap between planet and its rings. In our study we would like to simulate possible sources and losses for energetic particles population there and model the environment, which Cassini will meet during these last orbits. As a main possible sources for the innermost radiation belt we assume the interaction of the Galactic Cosmic Rays (GCR) with the Saturn's atmosphere and rings, which due to CRAND process can produce the keV-MeV ions or electrons in the region and the double charge exchange of the ENAs, coming from the middle magnetosphere, what can bring the keV ions to the region of our interest. Both of these possible sources are possible to evaluate using the charged particle tracer, which we developed in our group. It works in different modes (Newton-Lorentz full equation of motion, guiding centre or bounce averaged approximations), and allows use of different magnetic field models (from simple dipole magnetic field till complex realistic magnetic field model like Khurana model of Saturn's magnetosphere) for both forward and backward tracing simulations. This charged particle tracer was validated using the comparison of the simulation results and observations during several flybys of Cassini by icy moons of Saturn. Through the backward-tracing of GCRs around the planet we evaluate how the ring shadow filters the GCR spectrum that hits the Saturn's atmosphere and how non-dipolar effects change the Strömer cutoff rigidities of GCRs, especially for the high-latitude atmosphere that maps magnetically in the outer magnetosphere. Also we estimate the production of secondaries (and from the multiple impacts of these secondaries on the

  8. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.

    PubMed

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 10(8) yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10(7) yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  9. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band

    PubMed Central

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2017-01-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds. PMID:28133388

  10. High-energy Electron Irradiation of Interstellar Carbonaceous Dust Analogs: Cosmic-ray Effects on the Carriers of the 3.4 μm Absorption Band

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  11. Impacts of Asian dust events on atmospheric fungal communities

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Mi; Kim, Yong Pyo; Jeong, Kweon; Kim, Ik Soo; Eom, Suk Won; Choi, Young Zoo; Ka, Jong-Ok

    2013-12-01

    The composition of atmospheric fungi in Seoul during Asian dust events were assessed by culturing and by molecular methods such as mold specific quantitative PCR (MSQPCR) and internal transcribed spacer cloning (ITS cloning). Culturable fungal concentrations in the air were monitored from May 2008 to July 2011 and 3 pairs of ITS clone libraries, one during Asian dust (AD) day and the other during the adjacent non Asian dust (NAD) day for each pair, were constructed after direct DNA extraction from total suspended particles (TSP) samples. In addition, six aeroallergenic fungi in the atmosphere were also assessed by MSQPCR from October, 2009 to November, 2011. The levels of the airborne culturable fungal concentrations during AD days was significantly higher than that of NAD days (P < 0.005). In addition, the correlation of culturable fungal concentrations with particulate matters equal to or less than 10 μm in aerodynamic diameter (PM10) concentrations was observed to be high (0.775) for the AD days while correlation coefficients of PM10 as well as other particulate parameters with airborne fungal concentrations were significantly negative for the NAD days during intensive monitoring periods (May to June, 2008). It was found that during AD days several airborne allergenic fungal levels measured with MSQPCR increased up to 5-12 times depending on the species. Comparison of AD vs. NAD clones showed significant differences (P < 0.05) in all three cases using libshuff. In addition, high proportions of uncultured soil fungus isolated from semi-arid regions were observed only in AD clone libraries. Thus, it was concluded that AD impacts not only airborne fungal concentrations but also fungal communities.

  12. The impact of dust particle morphological details on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, Osku; Nousiainen, Timo; Lindqvist, Hannakaisa; Jeong, Gi Young

    2016-04-01

    We investigate the impact of dust particle surface roughness and internal structure on light scattering. Starting from digital representation of realistically shaped dust particles, we vary the particle morphology, and perform light scattering simulations to both the original and the modified particles. By mapping the changes in morphology to the changes in scattering, we will get information of how strongly and in which way a particular change affects scattering. All investigations have been done with complex, irregular particle shapes. For surface roughness studies we have kept the particle total volume virtually constant during the roughening process, and the roughness element size small enough to keep the overall shape relatively unchanged. For internal structure studies, the size and the external shape are kept constant. These safety measures help ensure that the effects seen are in fact due to the feature studied. The work is notable for model development, because some models can not include surface roughness, for example. In that case, the people who use such models have to adjust for the fact that the results are inaccurate, and by knowing how surface roughness typically changes the scattering results, the adjustment can be made. As a corollary, if it is shown that a particular feature does not change scattering results in any noticeable way, the model developers can confidently ignore or simplify it.

  13. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    NASA Astrophysics Data System (ADS)

    Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.

    2014-09-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program

  14. Characterization of space dust using acoustic impact detection.

    PubMed

    Corsaro, Robert D; Giovane, Frank; Liou, Jer-Chyi; Burchell, Mark J; Cole, Michael J; Williams, Earl G; Lagakos, Nicholas; Sadilek, Albert; Anderson, Christopher R

    2016-08-01

    This paper describes studies leading to the development of an acoustic instrument for measuring properties of micrometeoroids and other dust particles in space. The instrument uses a pair of easily penetrated membranes separated by a known distance. Sensors located on these films detect the transient acoustic signals produced by particle impacts. The arrival times of these signals at the sensor locations are used in a simple multilateration calculation to measure the impact coordinates on each film. Particle direction and speed are found using these impact coordinates and the known membrane separations. This ability to determine particle speed, direction, and time of impact provides the information needed to assign the particle's orbit and identify its likely origin. In many cases additional particle properties can be estimated from the signal amplitudes, including approximate diameter and (for small particles) some indication of composition/morphology. Two versions of this instrument were evaluated in this study. Fiber optic displacement sensors are found advantageous when very thin membranes can be maintained in tension (solar sails, lunar surface). Piezoelectric strain sensors are preferred for thicker films without tension (long duration free flyers). The latter was selected for an upcoming installation on the International Space Station.

  15. POTENTIAL ENVIRONMENTAL IMPACTS OF DUST SUPPRESSANTS: "ADVOIDING ANOTHER TIMES BEACH"

    EPA Science Inventory

    In the past decade, there has been an increased use of chemical dust suppressants such as i water, salts, asphalt emulsion, vegetable oils, molasses, synthetic polymers, mulches, and lignin 1 products. Dust suppressants abate dust by changing the physical properties of the soil s...

  16. POTENTIAL ENVIRONMENTAL IMPACTS OF DUST SUPPRESSANTS: "ADVOIDING ANOTHER TIMES BEACH"

    EPA Science Inventory

    In the past decade, there has been an increased use of chemical dust suppressants such as i water, salts, asphalt emulsion, vegetable oils, molasses, synthetic polymers, mulches, and lignin 1 products. Dust suppressants abate dust by changing the physical properties of the soil s...

  17. Technical Note: Minerals in dust productive soils - impacts and global distribution

    NASA Astrophysics Data System (ADS)

    Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G.

    2011-09-01

    Dust storms and associated mineral aerosol transport are mainly driven by meso and synoptic scale atmospheric processes. It is therefore essential that the dust aerosol process and background atmospheric conditions that drive the dust emission and atmospheric transport be represented with sufficiently well resolved spatial and temporal features. Effects of airborne dust interactions with the environment are determent by the mineral composition of dust particles. Fractions of various minerals in the aerosol are determined by the mineral composition of arid soils, therefore high-resolution specification of mineral and physical properties of dust sources is needed as well. Most current dust atmospheric models simulate/predict the evolution of dust concentration but in most cases they do not consider fractions of minerals in dust. Accumulated knowledge on impacts of mineral composition in dust on weather and climate processes emphasizes the importance of considering minerals in modelling systems. Following such needs, in this study we developed a global dataset on mineral composition of potentially dust productive soils. In our study (a) we mapped mineral data into a high-resolution 30-s grid, (b) we included mineral carrying soil types in dust productive regions that were not considered in previous studies, and (c) included phosphorus having in mind their importance for terrestrial and marine nutrition processes.

  18. THE IMPACT OF THE SPECTRAL RESPONSE OF AN ACHROMATIC HALF-WAVE PLATE ON THE MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION

    SciTech Connect

    Bao, C.; Gold, B.; Hanany, S.; Baccigalupi, C.; Leach, S.; Didier, J.; Johnson, B. R.; Miller, A.; Jaffe, A.; O'Dea, D.; Matsumura, T.

    2012-03-10

    We study the impact of the spectral dependence of the linear polarization rotation induced by an achromatic half-wave plate on measurements of cosmic microwave background polarization in the presence of astrophysical foregrounds. We focus on the systematic effects induced on the measurement of inflationary gravitational waves by uncertainties in the polarization and spectral index of Galactic dust. We find that for the experimental configuration and noise levels of the balloon-borne EBEX experiment, which has three frequency bands centered at 150, 250, and 410 GHz, a crude dust subtraction process mitigates systematic effects to below detectable levels for 10% polarized dust and tensor-to-scalar ratio of as low as r = 0.01. We also study the impact of uncertainties in the spectral response of the instrument. With a top-hat model of the spectral response for each band, characterized by band center and bandwidth, and with the same crude dust subtraction process, we find that these parameters need to be determined to within 1 and 0.8 GHz at 150 GHz; 9 and 2.0 GHz at 250 GHz; and 20 and 14 GHz at 410 GHz, respectively. The approach presented in this paper is applicable to other optical elements that exhibit polarization rotation as a function of frequency.

  19. Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin

    USGS Publications Warehouse

    Skiles, S. McKenzie; Painter, Thomas H.; Belnap, Jayne; Holland, Lacey; Reynolds, Richard; Goldstein, Harland; Lin, J.

    2015-01-01

    Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g−1 to 4.80 mg g−1, and daily mean spring dust radiative forcing ranged from 50–65 W m−2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g−1 less dust per season on average, spring radiative forcings of 32–50 W m−2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region

  20. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  1. Short and Long Wave Radiative Forcing from Desert Dust and Impacts on Weather and Climate

    NASA Astrophysics Data System (ADS)

    Kallos, G.; Spyrou, C.; Mitsakou, C.

    2009-04-01

    The presence of desert dust in the atmosphere has considerable impacts on radiative transfer, clouds and precipitation. Desert dust is a considerable climate modifier. The impacts of desert dust to land and marine ecosystems are considerable as well in humans. Modeling tools have been developed for studying the dust cycle in both global and regional scales. The uncertainties associated with the dust production, transport and deposition processes are still high for various reasons. Most of them are associated with the surface properties and dust production as well as with the radiative forcing parameterization. Modeling the impacts on radiation and cloud is a complicated task that is either oversimplified or absent in most of the dust models. Radiative transfer corrections due to the presence of dust particles for the incoming solar radiation can be applied (shading effects) by utilizing look up tables in the calculation of Aerosol Optical Depth (AOD). The impacts of dust on long wave radiation transfer are more complicated. A new version of the SKIRON/Dust modeling system incorporates the Rapid Radiative Transfer Model - RRTM for both short and long wave radiation. The new radiative transfer scheme has many properties that allow the partitioning of both short and long wave radiation according to the dust concentration and size distribution. In this presentation we discuss the new model characteristics and especially the dust radiative properties as described by both: lookup tables and empirical formulation as well as the new approach by utilizing RRTM. Several cases with dust outbreaks in the Mediterranean and Europe have been analyzed. Heating rates of 2-10 degrees K/day (or even higher in cases of a strong episode) have been calulated within the dust layer. The model results are compared with soundings, lidar and AERONET observations. As it was found, the dust cloud has as a result the surface cooling of 50-80 Wm-2 in remote locations. Near the source areas is

  2. Holocene Indian Ocean Cosmic Impacts: The Megatsunami Chevron Evidence From Madagascar

    NASA Astrophysics Data System (ADS)

    Masse, W.; Bryant, E.; Gusiakov, V.; Abbott, D.; Rambolamana, G.; Raza, H.; Courty, M.; Breger, D.; Gerard-Little, P.; Burckle, L.

    2006-12-01

    The 2.6 million year Quaternary period terrestrial physical record lacks definitive crater evidence for major regional catastrophic impacts by asteroids and comets other than the 10.5-km diameter Botsumtwi structure in Ghana and the 14.0-km diameter Zhamanshin structure in Kazakhstan [1] dating between about 900 and 1100 kya. Current cosmic impact rate models suggest that an average of between 3-6 globally catastrophic impacts should have occurred on the Earth during the Quaternary, along with several additional significant regional impacts in addition to Zhamanshin and Botsumtwi. These models and data indicate that the great majority of the "missing" major impact locations would likely have occurred in poorly studied oceanic settings. Only recently have Late Quaternary and Holocene period coastal paleo-megatsunami chevron deposits been defined in the Caribbean and along the western coasts of Australia, along with the suggestion that some may have been created by oceanic cosmic impacts in distinction to those caused by landslips, eruptions, and seismic events. We investigate the possibility that many or most megatsunami chevrons occurring along the southern coast of Madagascar were caused by two or more major Holocene Indian Ocean cosmic impacts. This hypothesis is based on an initial study of the worldwide archaeological and anthropological record, and the preliminary study of satellite images of the chevrons, selected Indian Ocean deep-sea cores, sea-floor bathymetry, and physical examination of the Madagascar deposits themselves. Candidate Indian Ocean impact structures are identified and correlated with the southern Madagascar megatsunami chevron deposits. [1] Masse, W.B. 2007 The Archaeology and Anthropology of Quaternary Period Cosmic Impact. In Bobrowsky, P.T. & Rickman, H. (eds.)Comets/Asteroid Impacts and Human Society. Springer, Berlin (in press).

  3. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    USGS Publications Warehouse

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  4. The Biogeochemical Impact of Global and Local Dust on Hawaiian Ecosystems

    NASA Astrophysics Data System (ADS)

    Chadwick, O. A.; Kurtz, A. C.; Derry, L. A.; Vitousek, P. M.; Wiegand, B.

    2003-12-01

    Hawaii is distant from continental sources of dust, yet there is abundant evidence that continental dust accumulates in soils on stable land surfaces. The physical evidence for dust accumulation is a dark grayish purple horizon that resides just below the O horizon; it is evident to a trained eye in 20 ky soils but becomes quite obvious in 150 ky soils. The continental dust contains about 20% quartz and a greater amount of mica, minerals that are not found in the local basalt and tephra. Thus presence of quartz and mica in Hawaiian soils identifies present, and in the case of buried horizons, past stable surfaces. In older soils near surface soil horizons can contain up to 30% quartz after 150 ky of accumulation. Soils on older lava flows do not necessarily contain greater amounts of dust because chemical and physical erosion removes variable amounts from different landscape positions. In soils older than 20 ky there is a progressive increase in the quartz to mica ratio suggesting that mica is preferentially weathered in locations where physical erosion is limited. In addition to mineralogy, the isotopes of Sr and Nd provide distinctive indications of dust contribution to soil profiles because the mantle-derived lavas have different isotopic signatures that the more highly evolved continental components. In horizons greatly impacted by dust the basaltic derived Sr and Nd signatures are nearly completely overprinted by continental signatures. Strontium concentrations are highly depleted due to leaching whereas Nd is less labile. Using quartz and Nd as tracers of continental dust we calculate a minimum long-term dust accumulation rate of 125 mg/cm2/ky. Dust has a profound effect on the budgets of elements that are susceptible to leaching losses and becomes the dominant source of labile nutrients, Si and P in the oldest, most intensely weathered soils. We calculate a dust-derived P input flux of 0.8 mg/cm2/ky and a dust-derived Si input flux of 35 mg/cm2/ky. Leaching

  5. Simulation of the Radiative Impact of High Dust Loading during a Dust Storm in March 2012

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Kalenderski, S.; Stenchikov, G. L.

    2013-12-01

    We investigated a severe dust storm that developed over vast areas of the Middle East on 18-19 March 2012 and affected Saudi Arabia, Sudan, Egypt, Jordan, United Arab Emirates, Bahrain, Qatar, Oman, Kuwait, Iraq, Iran, Israel, and Pakistan. The visible aerosol optical depth recorded by the AERONET station on the KAUST campus (22.30o N 39.10o E) during the storm reached 4.5, exceeding the average level by an order of magnitude. To quantify the effects of the dust on atmospheric radiation and dynamics, we analyzed available ground-based and satellite observations and conducted numerical simulations using a fully coupled meteorology-chemistry-aerosol model (WRF-Chem). The model was able to reproduce the spatial and temporal patterns of the aerosol optical depths (AOD) observed by airborne and ground-based instruments. The major dust sources included river valleys of lower Tigris and Euphrates in Iraq, desert areas in Kuwait, Iran, United Arab Emirates, central Arabia including Rub' al Khali, An Nafud, and Ad Dahna, as well as the Red Sea coast of the Arabian Peninsula. The total amount of dust generated across the entire domain during the period of the simulation reached 93.76 Mt; 73.04 Mt of dust was deposited within the domain; 6.56 Mt of dust sunk in the adjacent sea waters, including 1.20 Mt that sedimented into the Red Sea. The model predicted a well-mixed boundary layer expanding up to 3.5 km in the afternoon. Some dust plumes were seen above the Planetary Boundary layer. In our simulations, mineral dust heated the lower atmosphere with a maximum heating rate of 9 K/day. The dust storm reduced the downwelling shortwave radiation at the surface to a maximum daily average value of -134 Wm-2 and the daily averaged long-wave forcing at the surface increased to 43 Wm-2. The combined short-wave cooling and long-wave warming effects of dust aerosols caused significant reduction in the surface air temperature -6.7 K at 1200 UTC on 19 March 2013.

  6. Impact of cosmic neutrinos on the gravitational-wave background

    SciTech Connect

    Mangilli, Anna; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2008-10-15

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultrarelativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  7. Impact of energetic cosmic-ray ions on astrophysical ice grains

    NASA Astrophysics Data System (ADS)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M.

    2017-02-01

    Using molecular-dynamics simulation with REAX potentials, we study the consequences of cosmic-ray ion impact on ice grains. The grains are composed of a mixture of H2O, CO2, NH3, and CH3OH molecules. Due to the high energy deposition of the cosmic-ray ion, 5 keV/nm, a strong pressure wave runs through the grain, while the interior of the ion track gasifies. Abundant molecular dissociations occur; reactions of the fragments form a variety of novel molecular product species.

  8. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    NASA Technical Reports Server (NTRS)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  9. Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Chu, Xinzhao; Gardner, Chester S.; Carrillo-Sánchez, Juan D.; Feng, Wuhu; Plane, John M. C.; Nesvorný, David

    2015-01-01

    downward fluxes of Fe and Na, measured near the mesopause with the University of Colorado lidars near Boulder, and a chemical ablation model developed at the University of Leeds, are used to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 17,200 ± 2800 atoms/cm2/s, which equals 298 ± 47 kg/d for the global input of Na vapor and 150 ± 38 t/d for the global influx of cosmic dust. The global mean Fe influx is 102,000 ± 18,000 atoms/cm2/s, which equals 4.29 ± 0.75 t/d for the global input of Fe vapor.

  10. Dust size parameterization in RegCM4: Impact on aerosol burden and radiative forcing

    NASA Astrophysics Data System (ADS)

    Tsikerdekis, A.; Zanis, P.; Steiner, A. L.; Solmon, F.; Amiridis, V.; Marinou, E.; Katragkou, E.; Karacostas, T.; Foret, G.

    2015-12-01

    We investigate the sensitivity of two dust parameterizations of the regional climate model RegCM4, for the period 2008-2012, over a large domain focused on the Sahara and the Mediterranean. We implement two size bin distributions: 1) a 4-bin approach, where each bin is delimited using an isolog approach and every size group has equal ranges in logarithmic scale according to the diameter of the dust particles, and 2) a 12-bin approach with each bin defined according to an isogradient method, where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of the transported dust size bin improves the representation of the physical properties of dust particles that belong on the same group. Thus, more size bins minimize the error and improve the simulation of atmospheric processes. The emission, deposition and transport of dust are evaluated combined for each experiment to determine the impact of dust size bin partition. The radiative effects of dust over the area are also discussed and evaluated with the CALIPSO Aerosol Optical Depth (AOD) pure dust product. Techniques for the discrimination of the dust component from other aerosol types have been recently developed in the framework of the LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies- http://lidar.space.noa.gr:8080/livas/).

  11. Investigating the Present Day Cosmic Dust Flux at the Earth's Surface: Initial Results from the Kwajalein Micrometeorite Collection

    NASA Technical Reports Server (NTRS)

    Wozniakiewicz, P. J.; Bradley, J. P.; Price, M. C.; Zolensky, M. E.; Ishii, H. A.; Brownlee, D. E.; Russell, S. S.

    2014-01-01

    Examination of impact craters on the Long Duration Exposure Facility satellite indicate a present day micrometeoroid flux of approx. 30,000 tonnes [1 after 2]. But what portion of this material arrives at the Earth's surface as micrometeorites? Studies of available micrometeorite collections from deep sea sediments [e.g. 3], Greenland blue ice [e.g. 4] and the South Pole water well [e.g. 1] may be complicated by terrestrial weathering and, in some cases, collection bias (magnetic separation for deep sea sediments) and poorly constrained ages. We have recently set up a micrometeorite collection station on Kwajalein Island in the Republic of the Marshall Islands in the Pacific Ocean, using high volume air samplers to collect particles directly from the atmosphere. By collecting in this way, the terrestrial age of the particles is known, the weathering they experience is minimal, and we are able to constrain particle arrival times. Collecting at this location also exploits the considerably reduced anthropogenic background [5]. Method: High volume air samplers were installed on top of the two-story airport building on Kwajalein. These were fitted with polycarbonate membrane filters with 5µm diameter perforations. The flow rates were set to 0.5m3/min, and filters were changed once a week. After collection, filters were washed to remove salt and concentrate particles [see 5] in preparation for analysis by SEM. Results and Discussion: A selection of filters have been prepared and surveyed. Due to their ease of identification our initial investigations have focused on particles resembling cosmic spherules. The spheres can be divided into three main groups: 1. Silicate spherules rich in Al, Ca, K and Na (to varying degrees), 2. Silicate spherules rich in Mg and Fe and 3. Fe-rich spherules. Group 1 spherules are often vesiculated and can occur as aggregates. They are similar in appearance and composition to volcanic microspheres [e.g. 6] and are thus likely terrestrial in

  12. Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic Ray Transport

    SciTech Connect

    Ptuskin, V.S.; Moskalenko, Igor V.; Jones, F.C.; Strong, A.W.; Zirakashvili, V.N.; /Troitsk, IZMIRAN /Heidelberg, Max Planck Inst. Astron.

    2006-01-17

    The physical processes involved in diffusion of Galactic cosmic rays in the interstellar medium are addressed. We study the possibility that the nonlinear MHD cascade sets the power-law spectrum of turbulence which scatters charged energetic particles. We find that the dissipation of waves due to the resonant interaction with cosmic ray particles may terminate the Kraichnan-type cascade below wavelengths 10{sup 13} cm. The effect of this wave dissipation has been incorporated in the GALPROP numerical propagation code in order to asses the impact on measurable astrophysical data. The energy-dependence of the cosmic-ray diffusion coefficient found in the resulting self-consistent model may explain the peaks in the secondary to primary nuclei ratios observed at about 1 GeV/nucleon.

  13. Dust on Snow Processes and Impacts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Okin, G. S.

    2015-12-01

    In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.

  14. Sensitivity of dust emissions to aerosol feedback and the impact of dust loading on climate forcing with varied resolutions using FIM-Chem

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Grell, Georg; Henze, Daven; Mckeen, Stuart; Sun, Shan; Li, Haiqin

    2016-04-01

    Meteorological conditions directly impact aerosol loading, especially dust emissions. Variations in dust emissions on the other hand, will also impact meteorology and climate through direct and indirect aerosol forcing. To study these impacts in more detail we use the global Flow-following finite-volume Icosahedra Model (FIM, http://fim.noaa.gov/), a new global weather prediction model currently under development in the Global Systems Division of NOAA/ESRL, as it is coupled online with the aerosol modules from the Goddard Gobal Ozone Chemistry Aerosol Radiation and Transport (GOCART) model (FIM-Chem). FIM-Chem includes direct and semi direct feedback, and uses the dust schemes of GOCART and the Air Force Weather Agency (AFWA). FIM-Chem is able to investigate the contribution of climate feedbacks to simulated hyperspectral data by considering a range of simulations with different dust emissions and different levels of aerosol feedbacks enabled at four different spatial resolutions. The emitted dust flux and total emissions are highly depending on the wind, soil moisture and model resolution. We compare the dust emissions by including and excluding the aerosol radiative feedback in the simulations to quantify the sensitivity of dust emissions to aerosol feedback. The results show that all aerosol-induced dust emissions increase about 10% globally, which is mainly dominated by the contributions of anthropogenic black carbon (EC) aerosol. While the dust-induced percentage changes of dust emissions are about -5.5%, that indicates reduction effect globally. Also, the simulations based on different resolutions of 240x240 km, 120x120 km, 60x60 km and 30x30 km are performed to test the impacts of model resolution on total dust emissions. By comparing the dust emission sensitivity to aerosol feedback and model resolution, we can estimate the uncertainty of model resolution versus aerosol feedback. We also conduct FIM-Chem simulations to investigate the sensitivity of dust

  15. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland

    NASA Astrophysics Data System (ADS)

    Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas

    2017-03-01

    Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of

  16. Measurements of Lunar Dust Charging Properties by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  17. Impacts of fast meteoroids and the separation of dust particles from the surface of the Moon

    NASA Astrophysics Data System (ADS)

    Popel, S. I.; Golub', A. P.; Lisin, E. A.; Izvekova, Yu. N.; Atamaniuk, B.; Dol'nikov, G. G.; Zakharov, A. V.; Zelenyi, L. M.

    2016-05-01

    The possibility of the separation of dust particles owing to impacts of micrometeoroids on the surface of the Moon has been discussed. It has been shown that this effect is significant and should be taken into account when determining the number of particles rising over the surface of the Moon at the formation of a plasma-dust system. The average number of regolith particles leaving the surface of the Moon owing to the impacts of fast meteoroids has been determined for various altitudes over the Moon. The size distribution function of particles leaving the surface of the Moon because of impacts of meteoroids has been determined. It has been shown that impacts of meteoroids constitute an important source of dust microparticles in the plasma-dust system over the surface of the Moon.

  18. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  19. Impact of polarization on the intrinsic cosmic microwave background bispectrum

    NASA Astrophysics Data System (ADS)

    Pettinari, Guido W.; Fidler, Christian; Crittenden, Robert; Koyama, Kazuya; Lewis, Antony; Wands, David

    2014-11-01

    We compute the cosmic microwave background (CMB) bispectrum induced by the evolution of the primordial density perturbations, including for the first time both temperature and polarization using a second-order Boltzmann code. We show that including polarization can increase the signal-to-noise by a factor 4 with respect to temperature alone. We find the expected signal-to-noise for this intrinsic bispectrum of S /N =3.8 ,2.9 ,1.6 and 0.5 for an ideal experiment with an angular resolution of ℓmax=3000 , the proposed CMB surveys PRISM and COrE, and Planck's polarized data, respectively; the bulk of this signal comes from E -mode polarization and from squeezed configurations. We discuss how CMB lensing is expected to reduce these estimates as it suppresses the bispectrum for squeezed configurations and contributes to the noise in the estimator. We find that the presence of the intrinsic bispectrum will bias a measurement of primordial non-Gaussianity of local type by fNLintr=0.66 for an ideal experiment with ℓmax=3000 . Finally, we verify the robustness of our results by recovering the analytic approximation for the squeezed-limit bispectrum in the general polarized case.

  20. Physics of spacecraft-based interplanetary dust collection by impact into low-density media

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, T. J.

    1994-01-01

    A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.

  1. Dust Impact Monitor DIM onboard Rosetta/Philae: Laboratory Calibration with Impact Experiments

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Ossowski, T.; Seidensticker, K.; Apathy, I.; Fischer, H.-H.; Hirn, A.; Jünemann, M.; Loose, A.; Peter, A.; Sperl, M.

    2011-10-01

    The Rosetta lander spacecraft Philae, which will land on the surface of comet 67P/Churyumov- Gerasimenko in late 2014, is equipped with the Dust Impact Monitor instrument (DIM). The DIM sensor, which is part of the SESAME instrument package [Seidensticker et al., 2007], consists of three piezoelectric detectors, each one mounted on the outer side of a cube facing in three orthogonal directions. The total sensor area is approximately 70 cm2. DIM will measure impacts of sub-millimeter and millimeter sized ice and dust particles that are emitted from the nucleus and transported into the cometary coma by the escaping gas flow. A grain-size dependent fraction of the emitted grains is expected to fall back to the nucleus surface due to gravity. DIM will be able to detect both these components, the backfalling particles as well as the grains hitting the detector on direct trajectories from the surface. With DIM we will be able to measure fluxes, impact directions as well as the speed and size of the impacting cometary particles. Two particle acceleration devices for impact calibration experiments are presently available at Max- Planck-Institut für Sonnensystemforschung (MPS), Katlenburg-Lindau: With (a) a dedicated dropping device and (b) a small air gun we can simulate impacts with particles of different materials (steel, glass, ruby, polyethylen, etc.), radii between 0.2 and 1mm and impact speeds up to 2msec-1. We have performed a large number of impact experiments with two flight spare units of the DIM sensor at MPS. We present the results from our impact experiments and discuss their implications for the calibration of the DIM flight instrument.

  2. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Astrophysics Data System (ADS)

    Rucker, M. A.

    2017-06-01

    NASA has accumulated a wealth of experience between the Apollo program and robotic Mars rover programs, but key differences between those missions and a human Mars mission that will require unique approaches to mitigate potential dust storm concerns.

  3. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States

    PubMed Central

    Prospero, Joseph M.

    1999-01-01

    Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics. PMID:10097049

  4. Impact and monitoring of dust storms in Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Feng, G. G.; Li, X.; Zheng, Z.

    2012-12-01

    The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was

  5. Use of elemental materials for the creation of an in-situ space dust impacts detector

    NASA Astrophysics Data System (ADS)

    Faure, P.; Matsumoto, S.; Akahoshi, Y.; Cho, M.; Narumi, T.; Kitazawa, Y.; Sakurai, A.; Koura, T.

    2012-02-01

    This research focuses on space dust ranging from 100μm to 1mm. Space dust is mainly due to secondary space debris, which is called ejecta. The objective was to create an inexpensive space dust impacts detector using elemental materials. The detector is a glass/epoxy laminate printed circuit board with an area of 81cm2 for a weight of 30g. The detector can estimate the number of impacts and can give an approximation of the space dust size. The detector will be mounted on Horyu II that will operate in polar orbit for one year. In this article the authors report: a) the production of ejecta, b) the ejecta experiments on solar array coupon, aluminium honeycomb and CFRP/aluminium honeycomb, c) the detector's working principle and d) the estimations of the minimum detectable size of debris and collision probability. The ejecta experiments demonstrated that the ejecta's mass is 7 to 46 times higher than the projectile's mass. For space dust in the range 100μm - 600μm in diameter, the collision probability was calculated to be 16.5 percent. The detector's capabilities to detect broken lines and to transmit the data to the on-board computer were also demonstrated. This in-situ space dust impacts detector is thus a very promising research area for its lightness, low cost and its ability to provide immediate data on space dust population.

  6. The impact of mineral dust on regional tropical circulation

    NASA Astrophysics Data System (ADS)

    Bangalath, H.; Stenchikov, G. L.

    2012-12-01

    Dust aerosols from the West Asian and African subtropical deserts likely play an important role in regional low-latitude circulation patterns. These aerosols both absorb solar and terrestrial radiation and reflect solar radiation and therefore both cool the surface and warm the lower troposphere. Since the distribution of dust is spatially non-uniform, its cooling/heating effect could significantly disturb regional temperature and pressure fields and affect tropical circulation patterns, including the Hadley and Walker Cells, as well as the Monsoon Circulation. Here, we investigate the direct radiative effect of desert dust on the circulation over the Middle East and North Africa (MENA) and South Asia regions using the high-resolution atmospheric general circulation model (HiRAM) developed at the NOAA Geophysical Fluid Dynamics Laboratory. We conducted simulations with and without dust aerosols with a spatial resolution of 25 km globally, which allowed investigation of the regional features of the tropical circulations and their interactions with global-scale processes. Our analysis of the 200 hPa velocity potential indicated that mineral dust increased the strength of the Hadley Cell. In general, the Hadley, Walker, and Monsoon circulations over the African continent and East Atlantic were intensified by the dust effect, whereas we observed the opposite response over the Pacific. An anomalous strengthening of the wind convergence at the northern border of the Hadley cell over the African continent and in the East Atlantic, especially in the summer, became evident from our simulations. We found that dust aerosols play an important role in the formation of the climate and circulation regimes over MENA and South Asia, suggesting that they should be accounted for in future climate projections.

  7. Dust plumes over the Pacific, Indian, and Atlantic oceans: Climatology and radiative impact

    NASA Astrophysics Data System (ADS)

    Zhu, Aihua; Ramanathan, V.; Li, Fang; Kim, Dohyeong

    2007-08-01

    Multiple satellite data sets in conjunction with the Monte Carlo Aerosol-Cloud-Radiation (MACR) model are employed to determine climatological distributions and radiative impacts of dust plumes over the Pacific, Indian, and Atlantic oceans. Three target regions, namely the Yellow Sea (YS), Arabian Sea (AS), and Saharan Coast (SC), are examined for quantitative comparisons of dust properties and their impacts on climate. Twenty year averaged Advanced Very High Resolution Radiometer (AVHRR) aerosol optical depth (AOD) data clearly show the peak dust season for the three target regions, March-April-May for YS and June-July-August for AS and SC. Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) modeled dust AOD fraction and Moderate Imaging Spectroradiometer (MODIS) large-mode AOD ratio are adopted to evaluate the dust fraction estimate. Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction coefficient data are used to define the vertical distribution of dust. The elevated dust plumes are detected by subtracting the non-dust-season values from dust season values of SAGE II data, showing extinction peak around ˜4 km over AS and SC. Over YS, dust plumes are found presenting multilayered structure. The shortwave (SW) forcing of dust, although moderated by the longwave (LW) effect, dominates the net effects (SW + LW) of dust plumes. Under clear-sky (i.e., cloudless) conditions, dust plumes reduce about 5.9 W m-2, 17.8 W m-2, and 14.2 W m-2 regional and seasonal mean radiative flux reaching the surface over YS, AS, and SC, respectively. Of the three regions, dust plumes over AS have the largest effect on atmospheric heating owing to a lower single-scattering albedo and the relatively large dust loading. The maximum SW heating occurs over AS with the value around +0.5 K/day inside the dust layer at ˜4 km. The LW effect results in strong cooling throughout the dust layer and moderate heating below the

  8. Do we detect dust impacts with BMSW onboard Spektr-R?

    NASA Astrophysics Data System (ADS)

    Kočiščák, Samuel; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2017-04-01

    Dust is an important constituent of the heliosphere capable to transport significant mass, momentum, and energy through the system. Hypervelocity dust impact on a spacecraft produces a transient cloud of impact-generated plasma that could be observed using a proper apparatus. The Spektr-R spacecraft is equipped with the BMSW instrument (Bright Solar Wind Monitor) that consists six Faraday cups measuring the electric current through its base at a frequency as high as 30 Hz. Spektr-R orbits the Earth at a highly elliptical trajectory with the apogee reaching 50 RE, therefore, it moves in the solar wind and magnetosheath where the impact plasma clouds should be possible to detect. Based on statistics provided by several experiments detecting hypervelocity dust impacts that were in operation within the last 30 years (Cassini, Helios, etc.), we predict the frequency of detectable BMSW impacts to about one per day. We compare BMSW detection statistics to the Wind/WAVES measurements to verify a statement whether the BMSW dust impact candidates are real dust impacts or not.

  9. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    PubMed

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM2.5. A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  11. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  12. Lunar Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; LeClair, A. C.; Spann, J. F.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  13. Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia

    NASA Astrophysics Data System (ADS)

    DONG, X.; Fu, J. S.; Huang, K.

    2014-12-01

    Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in

  14. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  15. Radiative impact of mineral dust on monsoon precipitation variability over West Africa

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Hagos, Samson M.

    2011-03-01

    The radiative forcing of dust and its impact on precipitation over the West Africa monsoon (WAM) region is simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem). During the monsoon season, dust is a dominant contributor to AOD over West Africa. In the standard simulation, on 24-hour domain average, dust has a cooling effect (-6.11 W/m2) at the surface, a warming effect (6.94 W/m2) in the atmosphere, and a relatively small TOA forcing (0.83 W/m2). Dust modifies the surface energy budget and atmospheric diabatic heating and hence causes lower atmospheric cooling in the daytime but warming in the nighttime. As a result, atmospheric stability is increased in the daytime and reduced in the nighttime, leading to a reduction of late afternoon precipitation by up to 0.14 mm/hour (30%) and an increase of nocturnal and early morning precipitation by up to 0.04 mm/hour (23%) over the WAM region. Dust-induced reduction of diurnal precipitation variation improves the simulated diurnal cycle of precipitation when compared to measurements. However, daily precipitation is only changed by a relatively small amount (-0.14 mm/day or -4%). On the other hand, sensitivity simulations show that, for weaker-to-stronger absorbing dust, dust longwave warming effect in the nighttime surpasses its shortwave cooling effect in the daytime at the surface, leading to a less stable atmosphere associated with more convective precipitation in the nighttime. As a result, the dust-induced change of daily WAM precipitation varies from a significant reduction of -0.40 mm/day (-12%, weaker absorbing dust) to a small increase of 0.05 mm/day (1%, stronger absorbing dust). This variation originates from the competition between dust impact on daytime and nighttime precipitation, which depends on dust shortwave absorption. Dust reduces the diurnal variation of precipitation regardless of its absorptivity, but more reduction is associated with stronger absorbing dust.

  16. GIADA - Grain Impact Analyzer and Dust Accumulator - Onboard Rosetta spacecraft: Extended calibrations

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Rotundi, A.; Rietmeijer, F. J. M.; Fulle, M.; Mazzotta-Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Cosi, M.

    2016-09-01

    Despite a long tradition of dust instruments flown on-board space mission, the largest number of these can be considered unique as they used different detection techniques. GIADA (Grain Impact Analyzer and Dust Accumulator), is one of the dust instruments on-board the Rosetta spacecraft and is devoted to measure the dust dynamical parameters in the coma of comet 67P/Churyumov-Gerasimenko. It couples two different techniques to measure the mass and speed of individual dust particles. We report here the results of an extended calibration activity carried-out, during the hibernation phase of the Rosetta mission, on the GIADA Proto Flight Model (PFM) operative in a clean room in our laboratory. The main aims of an additional calibration campaign are: to verify the algorithms and procedures for data calibration developed before Rosetta launch; to improve the comprehension of GIADA response after the increased knowledge on cometary dust, e.g. the composition of dust particles after Stardust mission. These calibration improvements implied a final step, which consisted in defining transfer functions to correlate the new calibration curves obtained for the GIADA PFM to those to be used for GIADA onboard the Rosetta spacecraft. The extended calibration activity allowed us to analyze GIADA data acquired in the 67P/C-G coma permitting to infer additional information on cometary dust particles, e.g. density and tensile strength.

  17. Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Wang, S. H.; Hsu, N. C.

    2011-01-01

    Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust

  18. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry.

    PubMed

    Branquinho, Cristina; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Máguas, Cristina; Correia, Otília

    2008-01-01

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation.

  19. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  20. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  1. Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks

    NASA Astrophysics Data System (ADS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Tresseras, Juan-Angel Sans; Schmitz, Sylvia; Schoonjans, Tom; Silversmit, Geert; Simionovici, Alexandre S.; Solé, Vicente A.; Srama, Ralf; Stephan, Thomas; Sterken, Veerle J.; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel

    2014-09-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and β-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  2. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  3. The Impact of Meteoroid Streams on the Lunar Atmosphere and Dust Environment During the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.

    2015-01-01

    The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.

  4. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  5. Impact of GNSS Clock Instability on Radio Occultation Retrievals from the COSMIC-2 Mission

    NASA Astrophysics Data System (ADS)

    Schreiner, W. S.; Vanhove, T.; Braun, J.; Sokolovskiy, S. V.; Hunt, D.

    2014-12-01

    The positive impacts that COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) radio occultation (RO) profiles are having on weather forecasting, climate and space weather applications has prompted U.S. agencies to execute a COSMIC follow-on mission (called COSMIC-2) with Taiwan that will put twelve low Earth orbit satellites with GNSS (Global Navigation Satellite System) RO payloads into orbit on two launches in the 2016-19 time frame. COSMIC-2 will make use of an advanced RO receiver with an innovative beam-steering antenna design, and will produce at least 10,000 high-quality atmospheric profiles per day from GPS and GLONASS signals to support operational and research applications. The raw RO measurements of interest are the tracked high-rate (i.e. 50-100 Hz) carrier phase and amplitude of the L1 and L2 signals transmitted from the GNSS satellites as the ray tangent points descend from ~100 km altitude to the Earth's surface. The fundamental RO observable is the atmospheric excess phase due to the signal's propagation through the atmosphere (in excess to vacuum). The computation of accurate atmospheric excess phase requires geodetic quality knowledge of the orbital motion and clock estimates for both the transmitting and receiving satellite systems. Allan deviations of the GPS and GLONASS clocks were investigated in previous studies from a single ground receiver, and showed the GLONASS clocks are less stable than GPS clocks on time scales critical for RO profiling, i.e., approximately 0.5 to 20 seconds. In this study we estimate GPS and GLONASS Allan deviations from a global network of GNSS receivers tracking at 1 Hz sampling rate and verify the results with the previous studies. We then estimate the expected impact that these clock instabilities will have on future COSMIC-2 RO retrievals. This presentation will give a short overview of the COSMIC-2 mission, and then discuss details of the GNSS clock processing and how transmitter

  6. Dust Impact Detection by the Cassini Langmuir Probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, H.-W.; Wahlund, J.-E.; Morooka, M.; Kempf, S.; Horanyi, M.

    2015-10-01

    In this work, we present preliminary analysis of dust impact detections recorded by the Cassini Langmuir probe (LP) in Saturn's E ring. These signals appear as sharp spikes in the LP current-voltage (I-V) curves and show clear correlation with the E ring dust density. The statistical analysis will help to understand the nature of these detections as well as provide an alternative method to study the densest part of the E ring.

  7. The impact of Saharan dust events on long-term glacier mass balance in the Alps

    NASA Astrophysics Data System (ADS)

    Bauder, A.; Gabbi, J.; Huss, M.; Schwikowski, M.

    2014-12-01

    Saharan dust falls are frequently observed in the Alpine region and are easily recognized by the unique yellowish coloration of the snow surface. Such Saharan dust events contribute to a large part to the total mineral dust deposited in snow and impact the surface energy budget by reducing the snow and ice albedo. In this study we investigate the long-term effect of such Saharan dust events on the surface albedo and the glacier's mass balance. The analysis is performed over the period 1914-2013 for two field sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Based on the detailed knowledge about the mass balance, annual melt and accumulation rates are derived. A firn/ice core drilled at the glacier saddle of Colle Gnifetti (Swiss Alps) provides information on the impurity concentration in precipitation over the last century. A mass balance model combined with a parameterization for snow and ice albedo based on the specific surface area of snow and the snow impurity concentration is employed to assess the dust-albedo feedback. In order to track the position and thickness of snow layers a snow density model is implemented. Atmospheric dust enters the system of snow layers by precipitation and remains in the corresponding layer as long as there is no melt. When melt occurs, the water-insoluble part of the dust of the melted snow is supposed to accumulate in the top surface layer. The upper site has experienced only positive net mass balance and dust layers are continuously buried so that the impact of strong Saharan dust events is mainly restricted to the corresponding year. In the case of the lower site, the surface albedo is more strongly influenced by dust events of previous years due to periods with negative mass balances. Model results suggest that the enhanced melting in the 1940s yield even higher dust concentrations in 1947 compared to years with exceptional high Saharan dust deposition

  8. Impact of Long-Range Dust Transport on Northern California in Spring 2002

    SciTech Connect

    Cameron-Smith, P; Bergmann, D; Chuang, C; Bench, G; Cliff, S; Kelly, P; Perry, K; VanCuren, T

    2005-02-10

    It has been well documented that spectacular dust storms in Asia (e.g. the events in 1998 and 2001) can affect the USA through long-range transport of dust across the Pacific. However, our observations and modeling show that the majority of dust at sites in Lassen National Park and Trinity Alps (Northern California) in spring 2002 (a year with no spectacular Asian dust events) is still from long-range intercontinental transport across the Pacific. We implemented the interactive dust emission algorithm of Ginoux et al. (2004) into the LLNL 3-D global atmospheric chemistry and aerosol transport model (IMPACT), then ran the model using a separate tracer for each dust emission region, using hi-resolution (1 x 1 degree) meteorological data from the NASA GMAO GEOS-3 assimilation system for 2001 and 2002. We also experimentally analyzed size- and time-resolved aerosol samples at Lassen National Park and Trinity Alps in the spring of 2002, which were taken as part of NOAA's ITCT 2k2 measurement campaign. The model-predicted time-series of soil dust over Northern California agrees remarkably well with our measurements, with a strong temporal correlation between the observations and intercontinental transport of dust across the Pacific in the model. Hence, we conclude that the majority of dust we sampled in Northern California in spring 2002, with aerodynamic diameters of 0.56-5 microns, is from long-range intercontinental transport across the Pacific. The strong correlations also strongly validate atmospheric transport in the IMPACT model over the Northern Pacific in spring.

  9. Providing the Caribbean community with VIIRS-derived weather satellite and dust model output in preparation for African dust impacts

    NASA Astrophysics Data System (ADS)

    Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.

    2016-12-01

    The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather

  10. Natural variability versus human impact: Hydroclimate variability and the role of agriculture in changing dust emissions from Australia.

    NASA Astrophysics Data System (ADS)

    Marx, Samuel; Kamber, Balz; McGowan, Hamish; Hooper, James; Zawadzki, Atun

    2016-04-01

    Broad-scale dust emissions play an important role in Earth systems, for example influencing oceanic productivity via phytoplankton fertilisation. Existing palaeo dust records show that dust emissions vary significantly in time, implying its impact is similarly variable. There remains, however, a paucity of records which quantify variability in dust emissions. This study presents continuous, Holocene-aged, records of dust emissions from Australia, an important global dust source. Records demonstrate that rates of dust export have varied by 8-30 times over the mid to late Holocene. This variability is largely attributed to hydroclimate variability and its associated feedbacks within dust source areas. Significantly, however, a major disruption of dust emission rates is recorded in the past 200 years when dust emissions increased by between 2-10 times rates of natural variability in dust export. This change is concomitant with the arrival of Europeans in Australia and is primarily attributed to the development of agriculture which resulted in unprecedented environmental change in Australia's arid interior. This result broadly accords with the few other existing empirical dust records which both pre-date and post-date the onset of agriculture in various arid and semi-arid regions. Collectively, these records imply the impact of dust in Earth systems has changed as a result of agricultural development.

  11. The Impact of African Dust on PM10 Air Quality in the Caribbean Basin

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.

    2015-12-01

    Decades of aerosol measurements on Barbados and Miami have yielded a broad picture of African mineral dust transport to the Caribbean Basin. These measurements show that in summer the aerosol mass is often dominated by dust. At such times over 90% of the dust mass is comprised of particles less than 10 μm aerodynamic diameter and thus fits the EPA criteria for PM10. A number of sites in the Caribbean monitor PM10 using the same instrumentation commonly deployed in European and United States networks. By comparing data from individual islands that have multiple monitoring sites (e.g., Puerto Rico, Martinique, Guadeloupe), it is shown that during dust events PM10 concentrations track very closely and that local sources have a minor impact on PM10 above about 15 to 20 μg m-3. Moreover the PM10 measurements are coherent with the movement of dust clouds over the islands as observed by satellites. In this way dust movement can be tracked at PM10 sites along the Gulf and southeast coasts of the United States. To assess the specific impact of African dust on PM10 in the region, I compare the daily records of dust measurements at Miami and Barbados with concurrent measurements made at proximate PM10 sites. I then use these relationships and the long term dust measurements at Barbados and Miami to assess the long-term variability of PM10 across the region. At Barbados the record goes back 50 years and provides a basis of assessing the effects of climate variability on PM10 transport. This study shows that there is great variability on scales ranging from daily to decadal. The impact of the droughts in the 1970s and 1980s was particularly significant. Across the Caribbean, the rates of exceedances of the WHO PM10 guideline is comparable to those observed in many major urban areas in Europe and the US. The dominance of dust in large PM10 events and the absence of major pollution sources on many islands offers the opportunity to study the health impacts of desert dust in

  12. Exploring Dust Impacts on the First Weakening Phase of Hurricane Nadine during HS-3

    NASA Astrophysics Data System (ADS)

    Nowottnick, E. P.; Colarco, P. R.; Braun, S. A.; Barahona, D.; da Silva, A. M., Jr.; Hlavka, D. L.; McGill, M. J.

    2016-12-01

    During the 2012 deployment of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign, several flights were dedicated to Hurricane Nadine. Hurricane Nadine developed in close proximity to the dust-laden Saharan Air Layer (SAL) and is the fourth longest-lived Atlantic hurricane, experiencing two strengthening and weakening periods during its lifetime. In this study, we use the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system to simulate impacts of dust during the first weakening phase of Hurricane Nadine. Here, we perform a series of GEOS-5 forecasts initialized from Nadine's peak intensity (September 12, 2012) without aerosol interaction, with direct aerosol interaction (absorption and scattering) with the atmosphere, and with both direct and indirect aerosol interactions using a 2 - moment cloud microphysics scheme that has recently been implemented within GEOS-5. As an added perturbation, we also vary our assumed dust optical properties in our simulations that permit aerosol interaction with the atmosphere. We find that when indirect effects are included, the simulated track best matches the observed track and is relatively insensitive to assumed dust optical properties. However, when only aerosol direct interactions are included, the storm track exhibits sensitivity to dust absorption, as a more absorbing dust impacts winds where the storm is adjacent to Saharan dust. Finally, we find that aerosol impacts on Nadine's simulated track occur shortly after initialization in our simulations that permit direct radiative interaction with the atmosphere, as the simulated track showed little sensitivity when dust optical properties were modified at 24 hour increments past initialization.

  13. Defending Cultural Assets Against a Cosmic Impact Risk

    NASA Astrophysics Data System (ADS)

    Burke, James; Camacho, Sergio

    2016-04-01

    Asteroid or comet impacts on Earth have the potential to destroy humanity's cultural heritage, ranging from local regions to total obliteration. Fortunately we now have means to cope with this hazard -- if and only if we devote resources to finding, intercepting and deflecting threatening objects. Early preparations have already begun. Under auspices of the UN's Committee on the Peaceful Uses of Outer Space (COPUOS) an International Asteroid Warning Network (IAWN) and a Space Mission Planning Advisory Group (SMPAG) have been set up. Upon validation of a threat by IAWN and SMPAG, agencies with capacity, funding and authority to launch intercept missions are to act. A model for this is the existing arrangement for organizing and dispatching UN peacekeeping forces. In this paper we describe current technical options and needed policy and legal developments to enable the world to divert threats and, if that fails or is impossible, to save lives through evacuation and civil defense. In parallel with those efforts, we advocate the creation of safe archives as backup for lost cultural treasures.

  14. Modeling Mineral Dust and Accessing Its Impact on Radiative Forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Dong, X.

    2015-12-01

    East Asia dust storm has been investigated with revised WRF/CMAQ modeling system in this study. Taklamkan and Gobi deserts in China and Mongolia are the major contributors for East Asia dust storm, which significantly affect air quality and regional climate over downwind areas in China, Japan and Korea. Understanding the mixing of dust and intensive anthropogenic emissions would require a regional chemistry transport model which can simulate both the emission and transport of the natural and anthropogenic particles, and also their chemical interactions as well as the particles evolutions. In this study, we conducted model development of the WRF/CMAQ modeling system by revising the dust emission scheme and implementing source-dependent speciation profiles of dust aerosol and heterogeneous chemistry. With the revised modeling system, East Asia dust impact on atmospheric chemistry and regional climate has been investigated for the period of March and April from 2006 to 2010. The revised modeling system has been demonstrated to greatly improve model's capability of reproducing dust emission and transport over East Asia by comparing with surface measurements and satellite observations.

  15. Impact of different transport mechanisms of Asian dust and anthropogenic pollutants to Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, C.; Chou, C. C.; Wang, Z.; Lung, S.; Lee, C.; Yuan, C.; Chen, W.; Chang, S.; Hsu, S.; Liu, S. C.

    2012-12-01

    The impacts of long-range transport of Asian dust and anthropogenic air pollutants to Taiwan are strongly associated with the atmospheric conditions and paths of transport. In this study, we identified 16 significant dust events (daily mean mass concentration >= 120 μgm-3) to Taiwan from 2002 to 2008. To investigate transport characteristics associated with long-range transport of Asian dust and anthropogenic air pollutants to Taiwan, significant dust events were further classified into dry (12 cases) and wet (4 cases) types according to atmospheric conditions. We found that the major transport paths for the dry type (DT) dust cases passed through anthropogenic source areas in the low boundary while the major paths for the wet type (WT) dust cases passed over the ocean. After mineral dust, which occupied around 32% of total PM10 mass concentration, anthropogenic ionic pollutants was the second major contributor and occupied 19~ 22% at three sampling stations in Taiwan for DT cases. In the fine particle, the anthropogenic ionic pollutants contributed from 29 to 36% to PM2.5, making it the major contributor. The two most significant cases, one from the DT and one from the WT cases, were selected to study transport mechanisms with the NAQPMS air quality model. Simulation results also suggest that transport paths and boundary atmospheric conditions play important roles in aerosol compositions.;

  16. Automated Classification of Stratospheric Dust

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Lasue, J.; Stepinski, T.

    2010-03-01

    We have applied data mining techniques to the JSC Cosmic Dust Catalog Volume 16 cluster particles. We have demonstrated a technique capable of reproducing the separation between cosmic and contaminant particles.

  17. Meteoroid impacts and dust particles in near-surface lunar exosphere

    NASA Astrophysics Data System (ADS)

    Popel, S. I.; Golub', A. P.; Lisin, E. A.; Izvekova, Yu N.; Atamaniuk, B.; Dolnikov, G. G.; Zakharov, A. V.; Zelenyi, L. M.

    2016-11-01

    It is shown that for consideration of dust particle release from the lunar surface one has to take into account (among other effects) both adhesion and meteoroid impacts. The effect of surface roughness on the adhesion intensity on the Moon is discussed. The rate of meteoroid impacts with the lunar surface per unit area is determined. The strength of the regolith due to the adhesion effect is estimated. The processes occurring when a high-speed meteoroid impacts with the lunar surface are described. In particular, the characteristic parameters of zones of evaporation of the substance, its melting, destruction of particles constituting lunar regolith, their irreversible deformations, and elastic deformation of the regolith substance are found. A possibility of the rise of micrometer-sized dust particles above the lunar surface is shown. It is demonstrated that most of the particles rising over lunar surface due to the meteoroid impact originates from the elastic deformation zone. The number of dust particles raised over the lunar surface as result of meteoroid impacts is calculated. The size-distribution function of particles released from the lunar surface due to meteoroid impacts is determined. It is noted that micrometeoroid impacts can result in rise of dust particles of the size of a few μm up to an altitude of about 30 cm that explains the effect of “horizon glow” observed by Surveyor lunar lander.

  18. Nano-Dust Analyzer

    NASA Astrophysics Data System (ADS)

    Gruen, E.; Horanyi, M.; Moebius, E.; Sternovsky, Z.; Auer, S.; Srama, R.; Juhasz, A.

    2010-12-01

    Recently, the STEREO WAVES instruments recorded a large number of intense electric field signals, which were interpreted as impacts from nanometer sized particles striking the spacecraft with velocities of about the solar wind speed [1]. This high flux and strong spatial and/or temporal variations of nanometer sized dust grains at low latitude appears to be uncorrelated with the solar wind properties. Early dust instruments onboard Pioneer 8 and 9 and Helios spacecraft detected a flow of submicron sized dust particles coming from the direction of the Sun. These particles originate in the inner solar system from mutual collisions among meteoroids and move on hyperbolic orbits that leave the Solar System under the prevailing radiation pressure force [2]. The observed fluxes of inner-source pickup ions also point to the existence of a much enhanced dust population in the nanometer size range [3]. A new highly sensitive instrument is being developed within NASA's Heliophysics Program to confirm the existence of the so-called nano-dust particles, characterize their impact parameters, and measure their chemical composition. The instrument is based on the Cassini Dust Analyzer (CDA) that has analyzed the composition of nanometer sized dust particles emanating from the Jovian and Saturnian systems but could not be pointed towards the Sun. By applying technologies implemented in solar wind instruments and coronagraphs a highly sensitive dust analyzer will be developed and tested in the laboratory. The measurements will enable us to identify the source of the dust by comparing their elemental composition with that of larger micrometeoroid particles of cometary and asteroid origin and will reveal interaction of nano-dust with the interplanetary medium by investigating the relation of the dust flux with solar wind and IMF properties. [1] Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009 [2] Zook, H.A. and Berg, O.E.: A source for hyperbolic cosmic dust particles

  19. Capture of Cometary Dust Grains in Impacts at 6.1 km s-1

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Foster, N.; Kearsley, A.; Wozniakiewicz, P.

    2009-12-01

    The NASA Stardust mission to comet 81P/Wild 2 collected grains of cometary dust freshly ejected from the comet during a fly-by at a speed of 6.1 km s-1. These were captured on aluminum foils and in blocks of silica aerogel. The dust underwent a severe shock during capture. The nature of the shock process depends on the properties of the dust and the collecting media. On the aluminium, the shock process and impact damage is typical of that between high-density (or hard materials) at high velocity, resulting in craters lined with impactor residues. The peak shock pressures are estimated at 60-80 GPa. Two main crater types are seen, simple bowl shaped and multiple pit craters: these reflect the degree of consolidation of the original dust grain. Capture in the low density aerogel was via a more gradual slowing of the dust grains accompanied by a variety of effects on the grains (complete break up of weak grains vs. ablation of well consolidated grains). The relation between the structure of the dust grains and the resulting impact features in both collector materials is discussed.

  20. Impact of traffic intensity and pavement aggregate size on road dust particles loading

    NASA Astrophysics Data System (ADS)

    Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; Contreras González, J.; Querol, X.

    2013-10-01

    Road dust emissions severely hamper PM10 urban air quality and their burden is expected to increase relatively to primary motor exhaust emissions. Beside the large influence of climate and meteorology, the emission potential varies widely also from one road to another due to numerous factors such as traffic conditions, pavement type and external sources. Nevertheless none of these factors is sufficiently known for a reliable description in emission modelling and for decision making in air quality management. In this study we carried out intensive road dust measurement campaigns in South Spain, with the aim of investigating the relationship between emission potential (i.e. road dust load) and traffic intensity, pavement aggregate size and distance from braking zones. Results indicate that, while no impact from braking activity can be drawn on the bulk road dust mass, an increase in traffic intensity or mean pavement aggregate size clearly reduce the single vehicle emission potential.

  1. Investigations of the impact of natural dust aerosol on cold cloud formation

    NASA Astrophysics Data System (ADS)

    Koehler, K. A.; Kreidenweis, S. M.; Demott, P. J.; Petters, M. D.; Prenni, A. J.; Möhler, O.

    2010-08-01

    Dust particles represent a dominant source of particulate matter (by mass) to the atmosphere, and their emission from some source regions has been shown to be transported on regional and hemispherical scales. Dust particles' potential to interact with water vapor in the atmosphere can lead to important radiative impacts on the climate system, both direct and indirect. We have investigated this interaction for several types of dust aerosol, collected from the Southwestern United States and the Saharan region. A continuous flow diffusion chamber was operated to measure the ice nucleation ability of the dust particles in the temperature range of relevance to cirrus and mixed-phase clouds (-65dust nucleated ice heterogeneously in the deposition mode colder than about -40 °C, but required droplet activation in the exclusively heterogeneous ice nucleation regime warmer than -36 °C. Ice nucleated on 1% of dry generated dust particles at a similar relative humidity with respect to ice irrespective of temperature between -60 and -40 °C. The Saharan dust types exhibited a dependency on particle size below 500 nm. Additional data were collected during the International Workshop on Comparing Ice Nucleation Measurement Systems (ICIS, 2007) which indicated that ice nucleation on larger, polydisperse dust particles occurs at warmer temperatures than found for the smaller particles. When particles were coated with secondary organic aerosol (SOA) species, higher relative humidity was required for ice nucleation below -40 °C, similar to that required for homogeneous nucleation of sulfates. However, ice nucleation was still observed on SOA-coated dust at warmer temperatures than are required for homogeneous nucleation of sulfates, indicating that

  2. The use of EAF dust in cement composites: assessment of environmental impact.

    PubMed

    Sturm, Tina; Milacic, Radmila; Murko, Simona; Vahcic, Mitja; Mladenovic, Ana; Suput, Jerneja Strupi; Scancar, Janez

    2009-07-15

    Electric arc filter dust (EAF dust) is a waste by-product which occurs in the production of steel. Instead of being disposed of, it can be used in cement composites for civil engineering, and for balances in washing machines. To estimate the environmental impact of the use of EAF dust in cement composites leachability tests based on diffusion were performed using water and salt water as leaching agents. Compact and ground cement composites, and cement composites with addition of 1.5% of EAF dust by mass were studied. The concentrations of total Cr and Cr(VI) were determined in leachates over a time period of 175 days. At the end of the experiment the concentrations of some other metals were also determined in leachates. The results indicated that Cr in leachates was present almost solely in its hexavalent form. No leaching of Cr(VI) was observed in aqueous leachates from compact cement composites and compact cement composites to which different quantities of EAF dust have been added. In ground cement composites and in ground cement composites with addition of EAF dust, Cr(VI) was leached with water in very low concentrations up to 5 microg L(-1). Cr(VI) concentrations were higher in salt water leachates. In compact and ground cement composites with addition of EAF dust Cr(VI) concentrations were 40 and 100 microg L(-1), respectively. It was experimentally found that addition of EAF dust had almost no influence on leaching of Cr(VI) from cement composites. Leaching of Cr(VI) originated primarily from cement. Leaching of other metals from composites investigated did not represent an environmental burden. From the physico-mechanical and environmental aspects EAF dust can be used as a component in cement mixtures.

  3. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2017-07-01

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. It is shown that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. The dependencies of the dust ablation flux on the dust velocity and of the threshold velocity on the dust size and the ambient plasma temperature are obtained.

  4. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.

    2017-07-05

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  5. The composition and plasma signature of a large dust impact on the Giotto spacecraft

    SciTech Connect

    Goldstein, R.; Goldstein, B.E. ); Balsiger, H. ); Coates, A.J. ); Curdt, W.; Keller, H.U. ); Neubauer, F.M. ); Perry, C. Rutherford Appleton Lab., Chilton ); Zarnecki, J. )

    1991-08-01

    At about 14,800 km from the comet Halley nucleus, on the inbound leg, at least six of the sensors onboard the Giotto spacecraft observed an unusual, brief ({approximately}3 to 500 ms) event: The ion mass spectrometer data show a brief flow of energetic (up to several hundred electron volts) plasma consisting of protons, water group, and heavier ions. The Johnstone plasma analyzer data show a short burst of plasma, while the dust impact detector system data show an impact event in four of its detectors The magnetometer signature of the event shows two brief dips in the field. The sudden change in the spacecraft attitude and spin rate observed by the camera at that same time has been interpreted as the result of a large ({ge} 5 mg) dust particle impact on the front bumper shield of the spacecraft. In addition, at about the same time the spacecraft star-tracker suffered damage. Here the authors give the first report combining direct measurements of the composition and dynamics of a dust impact plasma cloud, the dust particle mass and the location of the impact on the spacecraft. Analysis of the data indicate that the impacting particle was water or ice-bearing, possibly loosely compacted, and was composed of one or more of: carbon, nitrogen, and silicon.

  6. The composition and plasma signature of a large dust impact on the Giotto spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Goldstein, B. E.; Balsiger, H.; Coates, A. J.; Curdt, W.

    1991-01-01

    At about 14,800 km from the Comet Halley nucleus, on the inbound leg, at least six of the sensors onboard the Giotto spacecraft observed an unusual, brief (about 30 to 500 ms) event: the ion-mass spectrometer data show a brief flow of energetic (up to several hundred electron volts) plasma consisting of protons, water group, and heavier ions. The Johnstone plasma analyzer data show a short burst of plasma, while the dust impact detector system data show an impact event in four of its detectors. The magnetometer signature of the event shows two brief dips in the field. The sudden change in the spacecraft attitude and spin rate observed by the camera at that same time has been interpreted as the result of a large (5 mg or more) dust-particle impact on the front bumper shield of the spacecraft. In addition, at about the same time the spacecraft star-tracker suffered damage. The report combines direct measurements of the composition and dynamics of a dust-impact plasma cloud, the dust particle mass, and the location of the impact on the spacecraft. Analysis of the data indicate that the impacting particle was water or ice-bearing, possibly loosely compared, and was composed of one or more of: carbon, nitrogen, and silicon.

  7. The composition and plasma signature of a large dust impact on the Giotto spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Goldstein, B. E.; Balsiger, H.; Coates, A. J.; Curdt, W.

    1991-01-01

    At about 14,800 km from the Comet Halley nucleus, on the inbound leg, at least six of the sensors onboard the Giotto spacecraft observed an unusual, brief (about 30 to 500 ms) event: the ion-mass spectrometer data show a brief flow of energetic (up to several hundred electron volts) plasma consisting of protons, water group, and heavier ions. The Johnstone plasma analyzer data show a short burst of plasma, while the dust impact detector system data show an impact event in four of its detectors. The magnetometer signature of the event shows two brief dips in the field. The sudden change in the spacecraft attitude and spin rate observed by the camera at that same time has been interpreted as the result of a large (5 mg or more) dust-particle impact on the front bumper shield of the spacecraft. In addition, at about the same time the spacecraft star-tracker suffered damage. The report combines direct measurements of the composition and dynamics of a dust-impact plasma cloud, the dust particle mass, and the location of the impact on the spacecraft. Analysis of the data indicate that the impacting particle was water or ice-bearing, possibly loosely compared, and was composed of one or more of: carbon, nitrogen, and silicon.

  8. Dust Telescopes and Active Dust Collectors: Linking Dust to Their Sources

    NASA Astrophysics Data System (ADS)

    Drake, K. J.; Sternovsky, Z.; Gruen, E.; Srama, R.; Auer, S.; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.

    2010-12-01

    Cosmic dust particles from remote sites and times are treasures of information. By determining the dust particles' source and their elemental properties, we can learn about the environments, where they were formed and processed. Born as stardust in the cool atmospheres of giant stars or in novae and supernovae explosions, the particles are subsequently modified in the interstellar medium. Interplanetary dust that originates from comets and asteroids represents even more processed material at different stages of Solar System evolution. Interstellar and interplanetary dust particles from various sources can be detected and analyzed in the near-Earth space environment. The newly developed instruments Dust Telescope and Active Dust Collector are able to determine the origin of dust particles and provide their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS) [1] together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 µm in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 [2]. The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential to

  9. An Experimental Study on the Structure of Cosmic Dust Aggregates and Their Alignment by Motion Relative to Gas.

    PubMed

    Wurm; Blum

    2000-01-20

    We experimentally studied the shape of dust grains grown in a cluster-cluster type of aggregation (CCA) and derived characteristic axial ratios to describe the nonsphericity. CCAs might be described by an axial ratio rhoCCA=rg,max&solm0;rg,min approximately 2.0 in the limit of large aggregates, where rg,min and rg,max describe the minimum and maximum radius of gyration, while small aggregates show a somewhat larger value in their mean axial ratio up to rhoCCA approximately 3.0 but rapidly decrease to the limit rhoCCA approximately 2.0. The axial ratios for large aggregates are in agreement with the general findings of different authors for axial ratios of interstellar dust grains that are generally described by rods or spheroids. Beyond this kind of agreement, our approach does not necessarily require a special shape for individual dust grains but rather offers a physical process to generate nonsphericity. Although the simple shapes might be sufficient for first-order applications and are easier to handle analytically, our results offer a firm ground of special axial ratios for rods or spheroids on a more physical basis apart from any ad hoc assumptions. We also find an alignment of the aggregates during sedimentation in a gas along the drift axis leading to an axial ratio of rhoCCA,align=1.21+/-0.02 with respect to the drift axis and an axis perpendicular to this drift. This result is directly applicable to dust grains in protoplanetary disks and planetary atmospheres.

  10. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    NASA Astrophysics Data System (ADS)

    Stefanski, R.; Sivakumar, M. V. K.

    2009-03-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  11. Dust impact on the geometrical characteristics of an axial compressor

    NASA Astrophysics Data System (ADS)

    Katarína, Ratkovská; Marián, Hocko

    2017-09-01

    This article focuses on the results of the research on the wear of air turbo-compressor engine blades operated in a dusty environment. In detail, the mechanism of the dust influence on the geometric characteristics of the axial compressor blades is discussed. De-pending on the operating time of the engine, basic laws on the dimensions of the wear of the blades in different degrees of the axial compressor are mentioned. Based on the experimental results, the possibilities of modeling the erosive wear of compressor blades are solved.

  12. Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry

    SciTech Connect

    Mahowald, Natalie; Kloster, Silvia; Engelstaedter, S.; Moore, Jefferson Keith; Mukhopadhyay, S.; McConnell, J. R.; Albani, S.; Doney, Scott C.; Bhattacharya, A.; Curran, M. A. J.; Flanner, Mark G.; Hoffman, Forrest M; Lawrence, David M.; Lindsay, Keith; Mayewski, P. A.; Neff, Jason; Rothenberg, D.; Thomas, E.; Thornton, Peter E; Zender, Charlie S.

    2010-01-01

    Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be -0.14 {+-} 0.11 W/m{sup 2} (1990-1999 vs. 1905-1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (-0.57 {+-} 0.46 W/m{sup 2}), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding

  13. Simulating Dust Regional Impact on the Middle East Climate and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-04-01

    Dust is one of the most abundant aerosols, however, currently only a few regional climate downscalings account for dust. This study focuses on the Middle East and the Red Sea regional climate response to the dust aerosol radiative forcing. The Red Sea is located between North Africa and Arabian Peninsula, which are first and third largest source regions of dust, respectively. MODIS and SEVIRI satellite observations show extremely high dust optical depths in the region, especially over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. Modeled atmospheric radiative forcing at the surface, top of the atmosphere and absorption in the atmospheric column indicate that dust significantly perturbs radiative balance. Top of the atmosphere modeled forcing is validated against independently derived GERB satellite product. Due to strong radiative forcing at the sea surface (daily mean forcing during summer reaches -32 Wm-2 and 10 Wm-2 in SW and LW, respectively), using uncoupled ocean model with prescribed atmospheric boundary conditions would result in an unrealistic ocean response. Therefore, here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea thermal regime and circulation. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix, and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.3-0.5 K cooling of the Red Sea surface

  14. Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"

    NASA Technical Reports Server (NTRS)

    Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.

    2013-01-01

    Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).

  15. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago

    USGS Publications Warehouse

    Bunch, Ted E.; Hermes, Robert E.; Moore, Andrew M.T.; Kennett, Douglas J.; Weaver, James C.; Wittke, James H.; DeCarli, Paul S.; Bischoff, James L.; Hillman, Gordon C.; Howard, George A.; Kimbel, David R.; Kletetschka, Gunther; Lipo, Carl P.; Sakai, Sachiko; Revay, Zsolt; West, Allen; Firestone, Richard B.; Kennett, James P.

    2012-01-01

    It has been proposed that fragments of an asteroid or comet impacted Earth, deposited silica-and iron-rich microspherules and other proxies across several continents, and triggered the Younger Dryas cooling episode 12,900 years ago. Although many independent groups have confirmed the impact evidence, the hypothesis remains controversial because some groups have failed to do so. We examined sediment sequences from 18 dated Younger Dryas boundary (YDB) sites across three continents (North America, Europe, and Asia), spanning 12,000 km around nearly one-third of the planet. All sites display abundant microspherules in the YDB with none or few above and below. In addition, three sites (Abu Hureyra, Syria; Melrose, Pennsylvania; and Blackville, South Carolina) display vesicular, high-temperature, siliceous scoria-like objects, or SLOs, that match the spherules geochemically. We compared YDB objects with melt products from a known cosmic impact (Meteor Crater, Arizona) and from the 1945 Trinity nuclear airburst in Socorro, New Mexico, and found that all of these high-energy events produced material that is geochemically and morphologically comparable, including: (i) high-temperature, rapidly quenched microspherules and SLOs; (ii) corundum, mullite, and suessite (Fe3,/sup>Si), a rare meteoritic mineral that forms under high temperatures; (iii) melted SiO2 glass, or lechatelierite, with flow textures (or schlieren) that form at > 2,200 °C; and (iv) particles with features indicative of high-energy interparticle collisions. These results are inconsistent with anthropogenic, volcanic, authigenic, and cosmic materials, yet consistent with cosmic ejecta, supporting the hypothesis of extraterrestrial airbursts/impacts 12,900 years ago. The wide geographic distribution of SLOs is consistent with multiple impactors.

  16. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago.

    PubMed

    Bunch, Ted E; Hermes, Robert E; Moore, Andrew M T; Kennett, Douglas J; Weaver, James C; Wittke, James H; DeCarli, Paul S; Bischoff, James L; Hillman, Gordon C; Howard, George A; Kimbel, David R; Kletetschka, Gunther; Lipo, Carl P; Sakai, Sachiko; Revay, Zsolt; West, Allen; Firestone, Richard B; Kennett, James P

    2012-07-10

    It has been proposed that fragments of an asteroid or comet impacted Earth, deposited silica- and iron-rich microspherules and other proxies across several continents, and triggered the Younger Dryas cooling episode 12,900 years ago. Although many independent groups have confirmed the impact evidence, the hypothesis remains controversial because some groups have failed to do so. We examined sediment sequences from 18 dated Younger Dryas boundary (YDB) sites across three continents (North America, Europe, and Asia), spanning 12,000 km around nearly one-third of the planet. All sites display abundant microspherules in the YDB with none or few above and below. In addition, three sites (Abu Hureyra, Syria; Melrose, Pennsylvania; and Blackville, South Carolina) display vesicular, high-temperature, siliceous scoria-like objects, or SLOs, that match the spherules geochemically. We compared YDB objects with melt products from a known cosmic impact (Meteor Crater, Arizona) and from the 1945 Trinity nuclear airburst in Socorro, New Mexico, and found that all of these high-energy events produced material that is geochemically and morphologically comparable, including: (i) high-temperature, rapidly quenched microspherules and SLOs; (ii) corundum, mullite, and suessite (Fe(3)Si), a rare meteoritic mineral that forms under high temperatures; (iii) melted SiO(2) glass, or lechatelierite, with flow textures (or schlieren) that form at > 2,200 °C; and (iv) particles with features indicative of high-energy interparticle collisions. These results are inconsistent with anthropogenic, volcanic, authigenic, and cosmic materials, yet consistent with cosmic ejecta, supporting the hypothesis of extraterrestrial airbursts/impacts 12,900 years ago. The wide geographic distribution of SLOs is consistent with multiple impactors.

  17. Impacts of long range transported dust and biological particles on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Creamean, J.; Suski, K. J.; Cuadra-Rodriguez, L. A.; Fitzgerald, E.; DeMott, P. J.; Cazorla, A.

    2012-12-01

    Aerosols play a profound role in impacting cloud properties and precipitation processes. Some studies suggest air pollution aerosols suppress orographic precipitation, whereas other studies show a precipitation enhancement during periods with long range dust transport. To gain a more complete understanding of aerosol-cloud-precipitation interactions, we have performed two field studies, CalWater and ICE-T, probing clouds over California and the Caribbean. Ground and aircraft measurements were used to characterize the sources of aerosols seeding clouds and the resulting impact on cloud microphysics. This presentation will focus on how dust and biological aerosols transported from the Sahara, Middle East, and Asia appeared in glaciated high-altitude clouds coincident with elevated ice nuclei (IN) concentrations. Our results suggest that dust and biological IN are persistent components of the upper atmosphere and thus could be playing important roles in affecting orographic precipitation processes over many regions of the world.

  18. Mineral Dust Impact on Short- and Long-Wave Radiation and Comparison with Ceres Measurements

    NASA Astrophysics Data System (ADS)

    Romano, Salvatore; Perrone, Maria Rita

    2016-06-01

    Clear-sky downward and upward radiative flux measurements both in the short- and in the long-wave spectral range have been used to estimate and analyze the radiation changes at the surface due to the mineral dust advection at a Central Mediterranean site. Then, short- and long-wave radiative fluxes retrieved from the CERES (Clouds and the Earth's Radiant Energy System) radiometer sensors operating on board the EOS (Earth Observing System) AQUA and TERRA platforms have been used to evaluate the mineral dust radiative impact at the top of the atmosphere. Satellite-derived radiative fluxes at the surface have been compared with corresponding ground-based flux measurements, collocated in space and time, to better support and understand the desert dust radiative impact. Results referring to the year 2012 are reported.

  19. Dust in the Atmosphere of Mars and Its Impact on Human Exploration: A Review of Earlier Studies

    NASA Astrophysics Data System (ADS)

    Levine, J. S.

    2017-06-01

    The impact of Mars atmospheric dust on human exploration has been a concern for many years, e.g., NRC (2002) and MEPAG (2005). The impact of Mars atmospheric dust on human exploration is a multi-faceted problem and will be reviewed in this paper.

  20. Density, porosity, mineralogy, and internal structure of cosmic dust and alteration of its properties during high-velocity atmospheric entry

    NASA Astrophysics Data System (ADS)

    Kohout, T.; Kallonen, A.; Suuronen, J.-P.; Rochette, P.; Hutzler, A.; Gattacceca, J.; Badjukov, D. D.; SkáLa, R.; BöHmová, V.; ČUda, J.

    2014-07-01

    X-ray microtomography (XMT), X-ray diffraction (XRD), and magnetic hysteresis measurements were used to determine micrometeorite internal structure, mineralogy, crystallography, and physical properties at μm resolution. The study samples include unmelted, partially melted (scoriaceous), and completely melted (cosmic spherules) micrometeorites. This variety not only allows comparison of the mineralogy and porosity of these three micrometeorite types but also reveals changes in meteoroid properties during atmospheric entry at various velocities. At low entry velocities, meteoroids do not melt and their physical properties do not change. The porosity of unmelted micrometeorites varies considerably (0-12%) with one friable example having porosity around 50%. At higher velocities, the range of meteoroid porosity narrows, but average porosity increases (to 16-27%) due to volatile evaporation and partial melting (scoriaceous phase). Metal distribution seems to be mostly unaffected at this stage. At even higher entry velocities, complete melting follows the scoriaceous phase. Complete melting is accompanied by metal oxidation and redistribution, loss of porosity (1 ± 1%), and narrowing of the bulk (3.2 ± 0.5 g cm-3) and grain (3.3 ± 0.5 g cm-3) density range. Melted cosmic spherules with a barred olivine structure show an oriented crystallographic structure, whereas other subtypes do not.

  1. Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds

    NASA Astrophysics Data System (ADS)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew; Fan, Jiwen; Liu, Dong; Zhao, Ming

    2012-09-01

    Dust aerosols have been regarded as effective ice nuclei (IN), but large uncertainties regarding their efficiencies remain. Here, four years of collocated CALIPSO and CloudSat measurements are used to quantify the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds (MSSCs) over the ‘dust belt’. The results show that the dusty MSSCs have an up to 20% higher mixed-phase cloud occurrence, up to 8 dBZ higher mean maximum Ze (Ze_max), and up to 11.5 g/m2 higher ice water path (IWP) than similar MSSCs under background aerosol conditions. Assuming similar ice growth and fallout history in similar MSSCs, the significant differences in Ze_max between dusty and non-dusty MSSCs reflect ice particle number concentration differences. Therefore, observed Ze_max differences indicate that dust could enhance ice particle concentration in MSSCs by a factor of 2 to 6 at temperatures colder than -12°C. The enhancements are strongly dependent on the cloud top temperature, large dust particle concentration and chemical compositions. These results imply an important role of dust particles in modifying mixed-phase cloud properties globally.

  2. Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds

    SciTech Connect

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew; Fan, Jiwen; Liu, Dong; Zhao, Ming

    2012-09-26

    Dust aerosols have been regarded as effective ice nuclei (IN), but large uncertainties regarding their efficiencies remain. Here, four years of collocated CALIPSO and CloudSat measurements are used to quantify the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds (MSSCs) over the ‘dust belt’. The results show that the dusty MSSCs have an up to 20% higher mixed-phase cloud occurrence, up to 8 dBZ higher mean maximum Ze (Ze_max), and up to 11.5 g/m2 higher ice water path (IWP) than similar MSSCs under background aerosol conditions. Assuming similar ice growth and fallout history in similar MSSCs, the significant differences in Ze_max between dusty and non-dusty MSSCs reflect ice particle number concentration differences. Therefore, observed Ze_max differences indicate that dust could enhance ice particle concentration in MSSCs by a factor of 2 to 6 at temperatures colder than -12°C. The enhancements are strongly dependent on the cloud top temperature, large dust particle concentration and chemical compositions. Finally, these results imply an important role of dust particles in modifying mixed-phase cloud properties globally.

  3. Assessment for the impact of dust events on measles incidence in western China

    NASA Astrophysics Data System (ADS)

    Ma, Yuxia; Zhou, Jianding; Yang, Sixu; Zhao, Yuxin; Zheng, Xiaodong

    2017-05-01

    Dust events affect human health in both drylands and downwind environments. In this study, we used county-level data during the period of 1965-2005 to assess the impact of dust events on measles incidence in Gansu province in Western China. We used Fast Fourier Transform (FFT) to set up the cyclical regression model; in particular, we set the model to downwind direction for the typical cities in the Hexi Corridor as well as the capital city Lanzhou. The results showed that Spring measles incidence was the highest in the Hexi Corridor, where dust events occur the most frequently over Gansu province. Measles incidence declined on the pathway of dust storms from west to east due to the weakening of both intensity and duration in dust storms. Measles incidence was positively correlated with monthly wind speed and negatively correlated with rainfall amount, relative humidity, and air pressure. Measles incidence was significantly (p ≤ 0.01) positively correlated with daily coarse particles, e.g., TSP and PM10. According to the cyclical regression model, average monthly excess measles that is related to dust events was 39.1 (ranging from 17.3 to 87.6), 149.9 (ranging from 7.1 to 413.4), and 31.3 (ranging from 20.6 to 63.5) in Zhangye, Lanzhou, and Jiuquan, respectively.

  4. Dust Impact Monitor (SESAME-DIM) measurements at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Seidensticker, Klaus J.; Fischer, Hans-Herbert; Albin, Thomas; Apathy, Istvan; Arnold, Walter; Flandes, Alberto; Hirn, Attila; Kobayashi, Masanori; Loose, Alexander; Péter, Attila; Podolak, Morris

    2015-11-01

    Context. The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae carries the Dust Impact Monitor (DIM) on board, which is part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME). DIM employs piezoelectric PZT sensors to detect impacts by submillimeter- and millimeter-sized ice and dust particles that are emitted from the nucleus and transported into the cometary coma. Aims: The DIM sensor measures dynamical data such as flux and the directionality of the impacting particles. Mass and speed of the particles can be constrained assuming density and elastic particle properties. Methods: DIM was operated during three mission phases of Philae at the comet: (1) before the separation of Philae from Rosetta at distances of about 9.6 km, 11.8 km, and 25.3 km from the nucleus barycenter. In this mission phase particles released from the nucleus on radial trajectories remained undetectable because of significant obscuration by the structures of Rosetta, and no dust particles were indeed detected; (2) during Philae's descent to its nominal landing site Agilkia, DIM detected one approximately millimeter-sized particle at a distance of 5.0 km from the nucleus' barycenter, corresponding to an altitude of 2.4 km from the surface. This is the closest ever dust detection at a cometary nucleus by a dedicated in situ dust detector; and (3) at Philae's final landing site, Abydos, DIM detected no dust impact which may be due to low cometary activity in the vicinity of Philae or due to shading by obstacles close to Philae, or both. Results: Laboratory calibration experiments showed that the material properties of the detected particle are compatible with a porous particle having a bulk density of approximately 250 kg m-3. The particle could have been lifted off the comet's surface by sublimating water ice.

  5. Impact of the Desert Dust on the Summer Monsoon System over Southwestern North America

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.

    2012-04-24

    The radiative forcing of dust emitted from the Southwest United States (US) deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM) region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem) for 15 years (1995-2009). During the monsoon season, dust has a cooling effect (-0.90 W m{sup -2}) at the surface, a warming effect (0.40 W m{sup -2}) in the atmosphere, and a negative top-of-the-atmosphere (TOA) forcing (-0.50 W m{sup -2}) over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day{sup -1} over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August) show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to {approx}40% over the eastern slope of the Mountains (Arizona-New Mexico-Texas regions). This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the megadrought conditions projected for the future.

  6. Impact of the Desert dust on the summer monsoon system over Southwestern North America

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Liu, X.; Leung, L. R.

    2012-04-01

    The radiative forcing of dust emitted from the Southwest United States (US) deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM) region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem) for 15 years (1995-2009). During the monsoon season, dust has a cooling effect (-0.90 W m-2) at the surface, a warming effect (0.40 W m-2) in the atmosphere, and a negative top-of-the-atmosphere (TOA) forcing (-0.50 W m-2) over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day-1 over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August) show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to ~40 % over the eastern slope of the Mountains (Arizona-New~Mexico-Texas regions). This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the mega-drought conditions projected for the future.

  7. The Impact of the Dust-Shortwave Radiation Effect on Atlantic Hurricane Activity in 2007

    NASA Astrophysics Data System (ADS)

    Isik, A. G.; Chen, S. H.

    2016-12-01

    Mineral dust particles play a vital role in climate and the Earth's energy budget and can have impact on weather as well. This research is to investigate the dust-radiation effect on Atlantic tropical cyclone (TC) activities. The first objective of the research is to follow the development of knowledge about the Saharan air layer (SAL). To investigate how the SAL and Saharan dust affect Atlantic tropical activities, tropical cyclone activities in 2005 and 2007 were studied and connected to environmental conditions, such as sea surface temperature (SST) anomaly, vertical wind shear, and aerosol optical depth (AOD). The 2005 hurricane season was very active, while the 2007 was a normal year. Compared to the normal year 2007, the 2005 hurricane season had a lower dust load, weaker deep shear and warm SST anomaly. The second objective of the research is to study the dust-radiation interaction on Atlantic seasonal TC activity in 2007 using a dust numerical model. Two numerical experiments were conducted. The dust short-wave radiation interaction was activated in one simulation (ON) and deactivated in the other one (OFF). Nine TCs formed in the ON experiment, while only two TCs formed in the OFF experiment through July to September. The results show that for a normal year the dust-radiation interaction reduces vertical wind shear over West Atlantic and thus increases the TC development over region, which is more comparable to observations. It is unfortunate that the model did not produce any TC over the main developing region in both experiments, while five TCs formed in reality.

  8. First discovery of the organic materials in deep-sea iron cosmic spherule

    NASA Technical Reports Server (NTRS)

    Hanchang, Peng; Peicang, XU

    1993-01-01

    The dust impact mass analyzer (PUMA) carried by the spacecraft Vega 1, Vega 2 and Giotto has provided the first direct measurements of the physical and chemical properties of cometary dust. The results indicate that most of the cometary dust particles are rich in light elements such as H, C, N, and O, suggesting the validity of models that describe the cometary dust as including organic material. Up to now, there were none found with the organic material from the deep-sea cosmic spherules. We have determined this from the deep-sea iron cosmic spherules collected from the North Pacific. An iron cosmic spherule (382 microns in diameter) was determined by the Laser Raman Microprobe.

  9. Cassini dust measurements at Enceladus and implications for the origin of the E ring.

    PubMed

    Spahn, Frank; Schmidt, Jürgen; Albers, Nicole; Hörning, Marcel; Makuch, Martin; Seiss, Martin; Kempf, Sascha; Srama, Ralf; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg; Krivov, Alexander V; Sremcevic, Miodrag; Tuzzolino, Anthony J; Economou, Thanasis; Grün, Eberhard

    2006-03-10

    During Cassini's close flyby of Enceladus on 14 July 2005, the High Rate Detector of the Cosmic Dust Analyzer registered micron-sized dust particles enveloping this satellite. The dust impact rate peaked about 1 minute before the closest approach of the spacecraft to the moon. This asymmetric signature is consistent with a locally enhanced dust production in the south polar region of Enceladus. Other Cassini experiments revealed evidence for geophysical activities near Enceladus' south pole: a high surface temperature and a release of water gas. Production or release of dust particles related to these processes may provide the dominant source of Saturn's E ring.

  10. Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring

    NASA Astrophysics Data System (ADS)

    Spahn, Frank; Schmidt, Jürgen; Albers, Nicole; Hörning, Marcel; Makuch, Martin; Seiß, Martin; Kempf, Sascha; Srama, Ralf; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg; Krivov, Alexander V.; Sremčević, Miodrag; Tuzzolino, Anthony J.; Economou, Thanasis; Grün, Eberhard

    2006-03-01

    During Cassini's close flyby of Enceladus on 14 July 2005, the High Rate Detector of the Cosmic Dust Analyzer registered micron-sized dust particles enveloping this satellite. The dust impact rate peaked about 1 minute before the closest approach of the spacecraft to the moon. This asymmetric signature is consistent with a locally enhanced dust production in the south polar region of Enceladus. Other Cassini experiments revealed evidence for geophysical activities near Enceladus' south pole: a high surface temperature and a release of water gas. Production or release of dust particles related to these processes may provide the dominant source of Saturn's E ring.

  11. Probing the Peak Epoch of Cosmic Star Formation (1Dust Attenuation

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian D.; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Stark, Daniel; Teplitz, Harry I.

    2016-01-01

    Obtaining a complete census of cosmic star formation requires an understanding of faint star-forming galaxies that are far below the detection limits of current surveys. To search for the faint galaxies, we use the power of strong gravitational lensing from foreground galaxy clusters to boost the detection limits of HST to much fainter luminosities. Using the WFC3/UVIS on board the HST, we obtain deep UV images of 4 lensing clusters with existing deep optical and near-infrared data (three from Frontier Fields survey). Building multiband photometric catalogs and applying a photometric redshift selection, we uncover a large population of dwarf galaxies (-18.5cosmic star formation (150%) at these redshifts. We use this unique sample to investigate further the various properties of dwarf galaxies as it is claimed to deviate from the trends seen for the more massive galaxies. Recent hydro-dynamical simulations and observations of local dwarfs show that these galaxies have episodic bursts of star formation on short time scales (< 10 Myr). We find that the bursty star formation histories (SFHs) cause a large intrinsic scatter in UV colors (β) at MUV > -16, comparing a sample of low mass galaxies from simulations with bursty SFHs with our comprehensive measurements of the observed β values. As this scatter can also be due to the dust extinction, we distinguish these two effects by measuring the dust attenuation using Balmer decrement (Hα/Hβ) ratios from our MOSFIRE/Keck spectroscopy.

  12. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  13. Impact of cement dust pollution on Cedrela fissilis Vell. (Meliaceae): A potential bioindicator species.

    PubMed

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Lemos-Filho, José Pires; Paiva, Elder Antonio Sousa

    2016-09-01

    Considering the impacts caused to vegetation in the vicinity of cement factories, the aim of this study was to evaluate the impacts of cement dust on the structural organization and physiological/biochemical traits of Cedrela fissilis leaflets, a woody species native to tropical America. Plants were exposed to 2.5 or 5 mg cm-2 cement dust applied to the leaf surface, to the soil or simultaneously to the leaf surface and the soil.. Leaves of shoot-treated plants exhibited chlorosis, marginal and inter veins necrosis, diminished thickness, epidermal cells less turgid, cellular collapse, obstructed stomata, senescence, rolling and some abscission. In few cases, individual death was recorded. Cement dust-treated plants also presented decreased amount of photosynthetic pigments and iron (Fe) and increase in calcium (Ca) levels. The cement crust formed in leaves surface blocked from 30 to 50% of the incoming light and reduced the stomatal conductance and the potential quantum yield of photosystem II. Control or soil-treated plants did not exhibit morphophysiological changes throughout the experiment. The activity of superoxide dismutase, catalase and ascorbate peroxidase increased in leaves of plants upon treatment with 2.5 mg cm(-2) cement dust, independent of the site application. Overall, these results indicate that C. fissilis is highly sensitive to cement dust at the initial stage of development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts.

    PubMed

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-10-26

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m(3) on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.

  15. Asian Dust particles impacts on air quality and radiative forcing over Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Noh, Y. M.; Song, C. H.; Yoon, S. C.; Han, J. S.

    2009-03-01

    Asian Dust particles originated from the deserts and loess areas of the Asian continent are often transported over Korea, Japan, and the North Pacific Ocean during spring season. Major air mass pathway of Asian dust storm to Korea is from either north-western Chinese desert regions or north-eastern Chinese sandy areas. The local atmospheric environment condition in Korea is greatly impacted by Asian dust particles transported by prevailing westerly wind. Since these Asian dust particles pass through heavily populated urban and industrial areas in China before it reach Korean peninsular, their physical, chemical and optical properties vary depending on the atmospheric conditions and air mass pathway characteristics. An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosols utilizing various in-situ and optical remote sensing methods, which include a multi-channel Raman LIDAR system, sunphotometer, satellite, and in-situ instruments. Results from recent studies on impacts of Asian dust particles on local air quality and radiative forcing over Korea are summarized here.

  16. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-10-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.

  17. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    PubMed Central

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-01-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166

  18. Assessments for the impact of mineral dust on the meningitis incidence in West Africa

    NASA Astrophysics Data System (ADS)

    Martiny, Nadège; Chiapello, Isabelle

    2013-05-01

    Recently, mineral dust has been suspected to be one of the important environmental risk factor for meningitis epidemics in West Africa. The current study is one of the first which relies on long-term robust aerosol measurements in the Sahel region to investigate the possible impact of mineral dust on meningitis cases (incidence). Sunphotometer measurements, which allow to derive aerosol and humidity parameters, i.e., aerosol optical thickness, Angström coefficient, and precipitable water, are combined with quantitative epidemiological data in Niger and Mali over the 2004-2009 AMMA (African Monsoon Multidisciplinary Analysis) program period. We analyse how the extremely high aerosol loads in this region may influence both the calendar (onset, peaks, end) and the intensity of meningitis. We highlight three distinct periods: (i) from November to December, beginning of the dry season, humidity is weak, there is no dust and no meningitis cases; (ii) from January to April, humidity is still weak, but high dust loads occur in the atmosphere and this is the meningitis season; (iii) from May to October, humidity is high and there is no meningitis anymore, in presence of dust or not, which flow anyway in higher altitudes. More specifically, the onset of the meningitis season is tightly related to mineral dust flowing close to the surface at the very beginning of the year. During the dry, and the most dusty season period, from February to April, each meningitis peak is preceded by a dust peak, with a 0-2 week lead-time. The importance (duration, intensity) of these meningitis peaks seems to be related to that of dust, suggesting that a cumulative effect in dust events may be important for the meningitis incidence. This is not the case for humidity, confirming the special contribution of dust at this period of the year. The end of the meningitis season, in May, coincides with a change in humidity conditions related to the West African Monsoon. These results, which are

  19. Tracking eolian dust with helium and thorium: Impacts of grain size and provenance

    NASA Astrophysics Data System (ADS)

    McGee, David; Winckler, Gisela; Borunda, Alejandra; Serno, Sascha; Anderson, Robert F.; Recasens, Cristina; Bory, Aloys; Gaiero, Diego; Jaccard, Samuel L.; Kaplan, Michael; McManus, Jerry F.; Revel, Marie; Sun, Youbin

    2016-02-01

    Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for

  20. Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, C.; Sorribas, M.; Guerrero-Rascado, J. L.; Adame, J. A.; Hernández, Y.; Lyamani, H.; Cachorro, V.; Gil, M.; Alados-Arboledas, L.; Cuevas, E.; de La Morena, B.

    2010-11-01

    principal dusty episodes. These similar LR values found in all the stations suggest that dust properties were kept unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by ground-level in situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition process observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred in each station.

  1. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    SciTech Connect

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs.

  2. Laboratory investigation of dust impacts on antennas of the Cassini model spacecraft

    NASA Astrophysics Data System (ADS)

    Nouzak, Libor; Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana; Khalili, Aniya; Sternovsky, Zoltan; Malaspina, David; Grun, Eberhard; Hsu, Sean; Ye, Shengyi; Horanyi, Mihaly

    2017-04-01

    We present data and findings from the laboratory investigation of dust impacts detected by antennas on spacecraft, with particular relevance to the RPWS (Radio Plasma Wave Science ) instrument on Cassini. The aim of the laboratory simulation measurement is to clarify the physical processes of signal generation, and to investigate instrumental effects that affect the signals. A 20:1 reduced size model of the Cassini spacecraft has been constructed, including the three antennas of the RPWS instrument, which can be configured either in a dipole or a monopole mode. Small tungsten plates are attached to the antennae and the spacecraft body, and used as impact targets to provide high impact charge yields. The model spacecraft is bombarded with submicron-sized iron grains from the 5-25 km velocity range using the dust accelerator facility operated at the University of Colorado. The experimental results support the recent suggestion that most dust detection events recorded in the dipole mode are due to antenna hits, as opposed to impacts on the spacecraft body. On the other hand, impacts onto the High Gain Antenna generate signals on the monopole antenna only. Further analysis of the data shows that the recollection of the impact charge (by the spacecraft and/or the antenna), the induced charging, and thermionic emission of electrons are the main processes responsible for charge generation. The amplitudes and the polarities of the detected signals depend both on the impact location (antenna vs. spacecraft) and the polarity of the spacecraft potential.

  3. Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.

    2016-12-01

    An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.

  4. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.

    1992-01-01

    Hypervelocity impact features from very small particles (less than 3 microns in diameter) on several of the electro-active dust sensors used in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microscope. The same analytical techniques were applied to impact and containment features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on tray B12. Very little unambiguously identifiable impactor debris was found in the central craters or shatter zones of small impacts in this crystalline surface. The surface contamination, ubiquitous on the surface of the Long Duration Exposure Facility, has greatly complicated data collection and interpretation from microparticle impacts on all surfaces.

  5. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Astrophysics Data System (ADS)

    Simon, Charles G.; Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.

    1992-01-01

    Hypervelocity impact features from very small particles (less than 3 microns in diameter) on several of the electro-active dust sensors used in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microscope. The same analytical techniques were applied to impact and containment features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on tray B12. Very little unambiguously identifiable impactor debris was found in the central craters or shatter zones of small impacts in this crystalline surface. The surface contamination, ubiquitous on the surface of the Long Duration Exposure Facility, has greatly complicated data collection and interpretation from microparticle impacts on all surfaces.

  6. The Impact of the Timing of Precipitation and Vegetation Growth on Potential Dust Emission

    NASA Astrophysics Data System (ADS)

    Okin, G. S.; Pierre, C.; Bergametti, G.; Marticorena, B.; Rajot, J. L.

    2016-12-01

    The potential for a surface to emit dust depends on the coincident timing of strong winds and an erodible, emissive surface. The timing of strong winds is determined by large-scale meteorological conditions, whereas the erodibility of the surface is dependent upon small-scale processes that affect the surface. This study reports on the impact of two factors that exhibit strong controls on soil erodibility and dust emission: soil moisture and dryland farming. Soil moisture increases the threshold friction velocity of the surface and therefore reduces soil erodibility. However, in desert environments with infrequent rains and hot, dry conditions, the top two millimeters of the soil exposed to the wind - the active layer - may or may not be wet during strong winds. Global and station-based analyses were conducted to determine the probability that erosive winds occur during the short period after precipitation when the active layer is wet. The calculated probabilities varied both inter- and intra-regionally, indicating the need for global models to resolve the active layer moisture content. Land use, dryland farming specifically, also impacts dust emission primarily through modulating vegetation cover. A regional analysis was conducted in the Sahel to determine the impact of farming activities on surface exposure. Agriculture was found to impact the surface through two mechanisms: first, the soil is cleared in the spring prior to planting, thus exposing the surface. Second, millet emerges later than native grass even in adjacent plots experiencing identical weather, further prolonging the time that the soil is bare. Global and regional models that do not take these factors into account may tend to underestimate dust and the potential of land use to impact dust emission. Going forward, therefore, models must be produced that can predict these effects and their variability in space and time.

  7. Variation in relative dust impact charge recollection with antenna to spacecraft potential on STEREO

    NASA Astrophysics Data System (ADS)

    Thayer, Frederick M.; Malaspina, David M.; Collette, Andrew; Sternovsky, Zoltan

    2016-06-01

    High-velocity dust that impacts spacecraft releases charged plasma clouds that can create voltage perturbations that are measured by electric field instrumentation. These voltage perturbations are characterized by a relative maximum and minimum, which correspond to body and antenna charge recollection, respectively. The charge recollected by the antenna relative to the total recollected charge is found to correlate with the potential difference between the spacecraft and the antenna. From data analysis that spanned 2007-2013 on the STEREO-A spacecraft, a positive correlation is found. This relationship will support future dust analysis with electric field instrumentation because it defines one spacecraft property that affects relative charge recollection.

  8. What is the impact of Harmattan surges on desert dust emission in North Africa?

    NASA Astrophysics Data System (ADS)

    Fiedler, Stephanie; Kaplan, Michael L.; Knippertz, Peter

    2015-04-01

    Desert dust aerosols have important implications in the Earth system, but their emission amount has a large model uncertainty. Improving the most important meteorological processes for dust-emitting winds helps to reduce this uncertainty. However, the dominant meteorological mechanisms for the large dust emission during spring remain unclear. This time of year is characterized by mobile, long-lived cyclones and Harmattan surges which are capable to uplift dust aerosol for long-range atmospheric transport. Emission near to the centre of mobile, long-lived cyclones are associated with a small mass of dust emission over the northern Sahara in spring, despite their most frequent occurrence in this season. Harmattan surges are proposed to be more efficient in emitting dust aerosol in spring. These events manifest themselves as a postfrontal strengthening of near-surface winds with a continental impact on dust emission. The present study shows the first long-term climatology of dust emission associated with Harmattan surges over North Africa. Using a newly-developed automated identification, Harmattan surges are statistically analysed in 32 years of ERA-Interim re-analysis from the European Centre for Medium-Range Weather Forecasts. The results show 34 events per year in the annual mean. Spring is herein the most active season with the largest mean number and duration of Harmattan surges, in contrast to summer with virtually no activity. The offline dust emission model by Tegen et al (2002) is used to calculate emissions with ERA-Interim data. Combining these results with the Harmattan surges allows a first quantitative estimate of the associated emission mass. The results highlight that a fraction of 32 % of the total emission is associated with these events, annually and spatially averaged across North Africa. This amount exceeds the annual mean contribution of nocturnal low-level jets to dust emission, which is known as one of the most important drivers for North

  9. Impacts of Asian Dust on Cloud Microphysics and Precipitation during an Atmospheric River

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Creamean, J. M.; Williams, C. R.; Gaston, C. J.; Ralph, F. M.; Prather, K. A.

    2009-12-01

    Atmospheric rivers constitute a significant source of precipitation in the mid-latitudes of the northern hemisphere over relatively short time periods, but questions remain about the influence of external factors, such as aerosols, on precipitation locally and regionally. During the CalWater Early Start Campaign (Feb-Mar 2009) sampling aerosol measurements (aerosol time-of-flight mass spectrometry - ATOFMS, aerosol number concentration, CCN concentrations, aerosol size distributions, and PM2.5 mass concentrations) were combined with S-band profiling radar, meteorological, and disdrometer measurements at a remote site in the Central California Sierra Nevada to characterize atmospheric rivers. Aerosol measurements were made of clear air at the site, while rainwater samples were collected. The rainwater samples were then aerosolized and characterized on site using an ATOFMS. S-band radar measured the microphysics of the precipitating cloud and disdrometer measurements characterized the subsequent hydrometeors. During the study an atmospheric river and transported dust interacted, altering cloud properties and shifting the chemical composition of the aerosolized precipitation to markers indicative of transported Asia dust. In contrast, an atmospheric river characterized 8 days earlier was not impacted by Asian dust, leading to different cloud properties and rain water chemical composition. This study examined the impacts of long range transport on precipitation in the Sierras. A greater understanding of the impact of Asian dust on these processes is necessary to properly evaluate long term climate change in the middle latitudes and properly account for transported aerosols in cloud and precipitation models.

  10. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation

    NASA Astrophysics Data System (ADS)

    Koehler, K. A.; Kreidenweis, S. M.; Demott, P. J.; Petters, M. D.; Prenni, A. J.; Möhler, O.

    2010-12-01

    Dust particles represent a dominant source of particulate matter (by mass) to the atmosphere, and their emission from some source regions has been shown to be transported on regional and hemispherical scales. Dust particles' potential to interact with water vapor in the atmosphere can lead to important radiative impacts on the climate system, both direct and indirect. We have investigated this interaction for several types of dust aerosol, collected from the Southwestern United States and the Saharan region. A continuous flow diffusion chamber was operated to measure the ice nucleation ability of the dust particles in the temperature range of relevance to cirrus and mixed-phase clouds (-65dust nucleated ice heterogeneously in the deposition mode colder than about -40 °C, but required droplet activation in the exclusively heterogeneous ice nucleation regime warmer than -36 °C. Ice nucleated on 1% of dry generated dust particles of a given type at a similar relative humidity with respect to ice irrespective of temperature between -60 and -40 °C, however differences in relative humidity for ice nucleation was observed between the different dust types. The Saharan dust types exhibited a dependency on particle size below 500 nm. Additional data were collected during the International Workshop on Comparing Ice Nucleation Measurement Systems (ICIS, 2007) which indicated that ice nucleation on larger, polydisperse dust particles occurs at warmer temperatures than found for the smaller particles. When particles were coated with secondary organic aerosol (SOA) species, higher relative humidity was required for ice nucleation below -40 °C, similar to that required for homogeneous nucleation of sulfates. However, ice nucleation was still

  11. Mars dust-driven tides and their impact on the thermosphere

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen W.; Zurek, Richard W.

    1993-01-01

    It has been known since the early Mariner 6, 7, and 9 missions that dust loading of the lower atmosphere and the subsequent aerosol heating during dusty periods impacts the martian middle and upper atmospheres. A quantitative measure of this lower atmosphere forcing was obtained by the Viking 1 and 2 landers, from which observed amplitudes of semidiurnal surface-pressure oscillations were correlated with normal-incidence dust optical depths. It appears that the dominant semidiurnal mode is a good indicator of global dust content or mean dust optical depth, especially during dust storm events. A classical tidal model that reproduces the surface pressure oscillations measured by these Viking landers in 1977 was used to calculate tidal amplitudes and phases up to approximately 43 km. These tidal characteristics were calculated for various dust optical depth conditions ranging from typical dusty periods to global dust storm times. Reasonable extrapolations can be made to higher altitudes if one assumes that the vertically propagating tidal modes continue to grow without dissipation or breaking. It is very likely that gravity waves also play an important role in the structure and dynamics of the middle atmosphere of Mars, since the large topographical relief should produce vigorous gravity wave fluxes. Semidiurnal tidal modes, significantly enhanced by lower atmosphere dust-induced heating, may indeed propagate to the Mars thermosphere (approximately less than 100 km) before breaking and generating turbulence. The preferential enhancement of the semidiurnal tides during dust storm onset is primarily due to the elevation of the tidal heating source in a very dusty atmosphere. The (2,2) semidiurnal tidal tidal mode was shown to have the largest variation with dust optical depth, as measured by Viking lander instruments. Also, the (2,2) mode has the largest vertical wavelength of all the semidiurnal tidal modes, and thus is most likely to penetrate into the thermosphere

  12. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2012-03-01

    Context. Early B-type stars are ideal indicators for present-day cosmic abundances since they preserve their pristine abundances and typically do not migrate far beyond their birth environments over their short lifetimes, in contrast to older stars like the Sun. They are also unaffected by depletion onto dust grains, unlike the cold/warm interstellar medium (ISM) or H ii regions. Aims: A carefully selected sample of early B-type stars in OB associations and the field within the solar neighbourhood is studied comprehensively. Quantitative spectroscopy is used to characterise their atmospheric properties in a self-consistent way. Present-day abundances for the astrophysically most interesting chemical elements are derived in order to investigate whether a present-day cosmic abundance standard can be established. Methods: High-resolution and high-S/N FOCES, FEROS and ELODIE spectra of well-studied sharp-lined early B-type stars are analysed in non-LTE. Line-profile fits based on extensive model grids and an iterative analysis methodology are used to constrain stellar parameters and elemental abundances at high accuracy and precision. Atmospheric parameters are derived from the simultaneous establishment of independent indicators, from multiple ionization equilibria and the Stark-broadened hydrogen Balmer lines, and they are confirmed by reproduction of the stars' global spectral energy distributions. Results: Effective temperatures are constrained to 1-2% and surface gravities to less than 15% uncertainty, along with accurate rotational, micro- and macroturbulence velocities. Good agreement of the resulting spectroscopic parallaxes with those from the new reduction of the Hipparcos catalogue is obtained. Absolute values for abundances of He, C, N, O, Ne, Mg, Si and Fe are determined to better than 25% uncertainty. The synthetic spectra match the observations reliably over almost the entire visual spectral range. Three sample stars, γ Ori, o Per and θ1 Ori D, are

  13. A Novel Approach to Constrain the Escape Fraction and Dust Content at High Redshift Using the Cosmic Infrared Background Fractional Anisotropy

    NASA Astrophysics Data System (ADS)

    Fernandez, Elizabeth R.; Dole, Herve; Iliev, Ilian T.

    2013-02-01

    The Cosmic Infrared Background (CIB) provides an opportunity to constrain many properties of the high-redshift (z > 6) stellar population as a whole. This background, specifically from 1 to 200 μm, should contain information about the era of reionization and the stars that are responsible for these ionizing photons. In this paper, we look at the fractional anisotropy (δI/I) of this high-redshift population, where δI is the ratio of the magnitude of the fluctuations and I is the mean intensity. We show that this can be used to constrain the escape fraction of the population as a whole, because the magnitude of the fluctuations of the CIB depends on the escape fraction, while the mean intensity does not. This results in lower values of the escape fraction producing higher values of the fractional anisotropy. This difference is predicted to be larger at longer wavelength bands (above 10 μm), albeit it is also much harder to observe in that range. We show that the fractional anisotropy can also be used to separate a dusty from a dust-free population. Finally, we discuss the constraints provided by current observations on the CIB fractional anisotropy.

  14. The impact of intrinsic alignment on current and future cosmic shear surveys

    NASA Astrophysics Data System (ADS)

    Krause, Elisabeth; Eifler, Tim; Blazek, Jonathan

    2016-02-01

    Intrinsic alignment (IA) of source galaxies is one of the major astrophysical systematics for weak lensing surveys. Several IA models have been proposed and their impact on cosmological constraints has been examined using the Fisher information matrix in conjunction with approximate, Gaussian covariances. This paper presents the first forecasts of the impact of IA on cosmic shear measurements for future surveys using simulated likelihood analyses and covariances that include higher order moments of the density field. We consider a range of possible IA scenarios and test mitigation schemes which parametrize IA by the fraction of red galaxies, normalization, luminosity and redshift dependence of the IA signal. Compared to previous studies, we find smaller biases in time-dependent dark energy models if IA is ignored in the analysis. The amplitude and significance of these biases vary as a function of survey properties (depth, statistical uncertainties), luminosity function and IA scenario. Due to its small statistical errors and relatively shallow depth, Euclid is significantly impacted by IA. Large Synoptic Survey Telescope (LSST) and Wide-Field Infrared Survey Telescope (WFIRST) benefit from increased survey depth, while larger statistical errors for Dark Energy Survey (DES) decrease IA's relative impact on cosmological parameters. The proposed IA mitigation scheme removes parameter biases for DES, LSST and WFIRST even if the shape of the IA power spectrum is only poorly known; successful IA mitigation for Euclid requires more prior information. We explore several alternative IA mitigation strategies for Euclid; in the absence of alignment of blue galaxies we recommend the exclusion of red (IA-contaminated) galaxies in cosmic shear analyses.

  15. Deposition of Asian Dust in the Tahoe Basin and the Impact of Climate Patterns on Deposition

    NASA Astrophysics Data System (ADS)

    Snyder, Jason

    Routine monitoring of fine aerosols in the Lake Tahoe basin began with the Tahoe Regional Planning Association (TRPA) in 1988 (Molenar et. al., 1994). During this time two sites of aerosol impact analysis were chosen based on prior work done by the ARB (Cahill et. al., 1997). These sites included Bliss SP, which is located near Emerald Bay at 200 m Lake Tahoe. Aerosols deposited at the Bliss SP site during each spring from 1988 to 2004, were predominately from sources outside of the Lake Tahoe basin and contained signatures from an "unknown north Sacramento Valley source" (Cahill and Cliff, 2002). The aerosols amounted to about ½ of all fine soil seen at South Lake Tahoe. With a better knowledge regarding the efficiency of the transport of fine aerosol plumes across the Pacific Ocean to North American combined with the presence of Asian dust signatures at other sites including Crater Lake and the Yukon, it was now determined that the source of fine particles to the Lake Tahoe basin was possibly Asian in origin. For this study, aerosols were collected during spring 2006, which coincides with the annual peak of Asian dust transport toward North America. Aerosols were collected at the TERC Tahoe Fish Hatchery, a relatively pollution free site northeast of Tahoe City. Aerosol collections at this site were done on an offshore pier, which reduced the amount of contamination for shore sources of aerosols and pollution such as road dust. The result was the identification of Asian dust signatures in aerosol deposition data for the period of April 28 to May 15, 2006. Such dust plumes were identified using HYSPLIT trajectories. Chemical signatures were also used including the Fe/Ca ratio, which is unique in Asian dust plumes. The particulate matter in these dust plumes produce a regional haze across the Lake Tahoe basin, which could impact incoming solar radiation. Furthermore, deposition of particles from the aerosol plume into the lake not only contributed to suspended

  16. Meteoroid impacts and dust particles over the surface of the Moon

    NASA Astrophysics Data System (ADS)

    Popel, Sergey; Zelenyi, Lev; Atamaniuk, Barbara; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Lisin, Evgeny; Golub', Anatoly

    2016-07-01

    It is shown that for consideration of dust particle release from the lunar surface one has to take into account (among other effects) both adhesion and meteoroid impacts. The effect of surface roughness on the adhesion intensity on the Moon is discussed. The rate of meteoroid impacts with the lunar surface per unit area is determined. The strength of the regolith due to the adhesion effect is estimated. The processes occurring when a high-speed meteoroid impacts with the lunar surface are described. In particular, the characteristic parameters of zones of evaporation of the substance, its melting, destruction of particles constituting lunar regolith, their irreversible deformations, and elastic deformation of the regolith substance are found. A possibility of the rise of micrometer-sized dust particles above the lunar surface is shown. It is demonstrated that most of the particles rising over lunar surface due to the meteoroid impact originates from the elastic deformation zone. The number of dust particles raised over the lunar surface as result of meteoroid impacts is calculated. The size-distribution function of particles released from the lunar surface due to meteoroid impacts is determined. It is noted that micrometeoroid impacts can result in rise of dust particles of the size of a few micrometers up to an altitude of about 30 cm that explains the effect of ``horizon glow" observed by Surveyor lunar lander. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, ``Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a). Y.N. Izvekova is supported also within the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  17. Impact experiments of exotic dust grain capture by highly porous primitive bodies

    NASA Astrophysics Data System (ADS)

    Okamoto, Takaya; Nakamura, Akiko M.; Hasegawa, Sunao; Kurosawa, Kosuke; Ikezaki, Katsutoshi; Tsuchiyama, Akira

    2013-05-01

    Small primitive bodies were presumably highly porous when they formed and some still have low densities that are indicative of a high pore content. Therefore, after their formation, interplanetary dust impacting on their surface may have been captured because of their porous structure. The mechanism of dust penetration is thus of importance to understand the evolution of small bodies and the origin of their internal dust particles. Impact experiments of sintered glass-bead targets characterized by 80%, 87%, and 94% bulk porosity were conducted using metal and basalt projectiles at impact velocities ranging from 1.6 to 7.2 km s-1. Track morphology and penetration processes were analyzed using both X-ray tomography and a flash X-ray system. Two types of track were observed, as previously also found in the Stardust aerogel: a thin and long track (carrot-shaped track), and a "bulb" with tails (bulb-shaped track). The track shape changed with initial dynamic pressure. We found that the transition between "carrot" and "bulb" occurred at a pressure of roughly 20 times the projectile's tensile strength. The deceleration process of projectiles without severe deformation and fragmentation was reproduced by a drag equation composed of an inertia drag that was proportional to the square of the projectile's velocity and a constant drag proportional to the target's compressive strength. We applied this deceleration equation to silicate dust penetrating into hypothetical porous icy bodies which were homogeneous on much smaller scales than the impacting dust particles. The penetration depth was approximately 100 times the projectile diameter for the bodies with 90% porosity.

  18. Modeled Dust Distributions and their Impact on Surface Irradiance at Wavelengths Vital to Phytoplankton Growth

    NASA Astrophysics Data System (ADS)

    Colarco, A. M.; Gregg, W. W.; Colarco, P. R.; da Silva, A.

    2010-12-01

    A key component of an atmosphere represented by any radiative transfer model in order to generate realistic surface irradiances is the accurate representation of the absorption and scattering rates of atmospheric aerosols. When looking specifically at the effects of aerosol properties’ impact on ocean systems over time, the distribution and deposition rates of the dust component of aerosols becomes significant. The deposition of dust particles provides a source of iron in nutrient limited regions of the ocean, while the iron in dust attenuates light entering the ocean surface at wavelengths important to marine photosynthesis and other processes important to the ocean system. These processes depend on the input of solar irradiance in select bands primarily in the visible wavelengths. The Ocean-Atmosphere Spectral Irradiance Model (OASIM) has been shown to provide sufficiently accurate surface irradiances within the spectral bands of importance without sacrificing computer time, correlating very well with in situ measurements, resulting in root-mean-square differences of about 11%, and bias below 1%. The results of a study using the Global Earth Observation System (GEOS) version 5 aerosol product to parameterize the OASIM model will be presented. By using the modeled aerosol product, the specific effects of dust are able to be isolated from other aerosol types. This provides a global picture of impacts on irradiance of dust aerosols with high temporal resolution, and in selectable wavelength regions, unavailable from current satellite platform. The GEOS5 aerosol product was used to determine how sensitive surface irradiance is to dust concentrations and spatial distributions. The seasonal variability and spectral dependence of surface irradiance will also be shown.

  19. Identification of Impact Craters in Foils from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Stroud, R. M.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    The Stardust Interstellar Dust Collection tray provides the first opportunity for the direct laboratory-based measurement of contemporary interstellar dust. The total exposed surface of the tray was approximately 0.1 square meters, including 153 square centimeters of Al foil in addition to the silica aerogel tiles that are the primary collection medium. Preliminary examination of aerogel tiles has already revealed 16 tracks from particle impacts with an orientation consistent with an interstellar origin, and to date four of the particles associated with these tracks have a composition consistent with an extraterrestrial origin. Tentative identification of impact craters on three foil samples was also reported previously. Here we present the definitive identification of 20 impact craters on five foils.

  20. Characterization and radiative impact of dust aerosols over northwestern part of India: a case study during a severe dust storm

    NASA Astrophysics Data System (ADS)

    Singh, Atinderpal; Tiwari, Shani; Sharma, Deepti; Singh, Darshan; Tiwari, Suresh; Srivastava, Atul Kumar; Rastogi, Neeraj; Singh, A. K.

    2016-12-01

    The present study focused on examining the impact of a severe dust storm (DS) on aerosol properties over Patiala (30.33°N, 76.4°E), a site located in the northwestern part of India during 20th-23rd March, 2012. On 20th March, average PM10 mass concentration increased abruptly from 182 to 817 µg m-3 along with significant increase in the number density of coarser particles (diameter >0.45 µm). During DS, spectral aerosol optical depth (AOD) increases significantly with more increase at longer wavelengths resulting in weak wavelength dependence (AOD at 380 nm increases by 210 % and at 870 nm by 270 % on 20th March). Significant decrease in Ångström exponent (AE; α 380-870) from 0.56 to 0.11 and fine-mode fraction (FMF; PM2.5/PM10) from 0.49 to 0.25 indicates dominance of coarser particles over the station. Net short wave (SW) radiation flux has been decreased by 20 % and single scattering albedo (SSA675) has been increased from 0.86 (19th March) to 0.90 (20th March). This observation is attributed to additional loading of scattering type aerosols on arrival of DS. Wavelength dependence of SSA reverses during DS and it increases with wavelength due to dominance of coarse-mode particles. Atmospheric aerosol radiative forcing (ATM ARF) during DS ranged from +45 to +77 W m-2, consequently heating the lower atmosphere up to 2.2 K day-1. Significant atmospheric heating rate due to severe dust storm may affect the regional atmospheric dynamics and hence the climate system.

  1. Condensation of cosmic analog material in microgravity conditions - Preliminary analysis of a first set of flights

    NASA Technical Reports Server (NTRS)

    Mancini, D.; Bussoletti, E.; Mennella, V.; Vittone, A. A.; Colangeli, L.; Mirra, C.; Stephens, J.; Nuth, J.; Lilleleht, L.; Furgeson, F.

    1992-01-01

    The first results of the STARDUST project, aimed at producing and analyzing cosmic-dust analog materials in microgravity conditions, are summarized. The discussion covers the purpose of the investigation, cosmic-dust formation and properties, previous simulations of cosmic-dust formation, the current approach, the microgravity experimental apparatus, and potential advantages of studying dust formation under microgravity conditions.

  2. Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, C.; Sorribas, M.; Guerrero-Rascado, J. L.; Adame, J. A.; Hernández, Y.; Lyamani, H.; Cachorro, V.; Gil, M.; Alados-Arboledas, L.; Cuevas, E.; de La Morena, B.

    2011-04-01

    similar LR values found in all the stations suggest that dust properties were kept nearly unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by means of ground-level in-situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition processes observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred over each station. Discrepancies between columnar-integrated and ground-level in-situ measurements show a clear dependence on height of the dust particle size distribution. Then, further vertical size-resolved observations are needed for evaluation of the impact on surface of the Saharan dust arrival to the Iberian Peninsula.

  3. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12-13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6-11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  4. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12–13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6–11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  5. Temperature and pressure retrievals and mitigation of the impact of dust for a high-resolution Fourier transform spectrometer mission to Mars

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin Sutherland

    On the path to sending a Fourier transform spectrometer (FTS) to Mars to measure the trace gas composition of the atmosphere, several critical elements of the analysis routine need to be adapted from Earth to Mars observation. I have developed new algorithms and software for retrieving vertical profiles of temperature and pressure from infrared spectra, and created interferograms simulating observations at Mars in the presence of dust. The temperature and pressure retrieval algorithm exploits the temperature dependence of absorption lines in CO2 vibration rotation bands. It was applied to terrestrial spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple spectral measurements during an occultation, separated in altitude by 1.5-5 km, and ten CO2 bands are analyzed at each altitude, each with a different usable altitude range. I present an inter-comparison of temperature profiles retrieved from ACE-FTS using my algorithm and that of the ACE Science Team, and from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC, coincident within 1.5 hours and 150 km). Compared to the ACE-FTS standard product, my retrievals exhibit mean differences between -5 and +2 K and compared to COSMIC, mean differences are between -4 and +1 K. A solar occultation FTS vertically scans the limb of the atmosphere continuously, and so the optical path for a Mars observation will move through layers of varying dust levels during a single interferogram acquisition, resulting in source intensity variations (SIVs), negatively impacting trace gas retrievals. I have simulated SIV using synthetic spectra for the Martian atmosphere, and investigated high-pass filters in the wavenumber domain, and smoothing methods in the optical path difference (OPD) domain. The use of a convolution operator in the OPD domain can isolate the SIV

  6. The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems.

    PubMed

    Hill, Hugh G M; Nuth, Joseph A

    2003-01-01

    The synthesis of important prebiotic molecules is fundamentally reliant on basic starting ingredients: water, organic species [e.g., methane (CH(4))], and reduced nitrogen compounds [e.g., ammonia (NH(3)), methyl cyanide (CH(3)CN) etc.]. However, modern studies conclude that the primordial Earth's atmosphere was too rich in CO, CO(2), and water to permit efficient synthesis of such reduced molecules as envisioned by the classic Miller-Urey experiment. Other proposed sources of terrestrial nitrogen reduction, like those within submarine vent systems, also seem to be inadequate sources of chemically reduced C-H-O-N compounds. Here, we demonstrate that nebular dust analogs have impressive catalytic properties for synthesizing prebiotic molecules. Using a catalyst analogous to nebular iron silicate condensate, at temperatures ranging from 500K to 900K, we catalyzed both the Fischer-Tropsch conversion of CO and H(2) to methane and water, and the corresponding Haber-Bosch synthesis of ammonia from N(2) and H(2). Remarkably, when CO, N(2), and H(2) were allowed to react simultaneously, these syntheses also yielded nitrogen-containing organics such as methyl amine (CH(3)NH(2)), acetonitrile (CH(3)CN), and N-methyl methylene imine (H(3)CNCH(2)). A fundamental consequence of this work for astrobiology is the potential for a natural chemical pathway to produce complex chemical building blocks of life throughout our own Solar System and beyond.

  7. Dust Impact Monitor DIM Onboard Philae: Measurements at Comet 67P/C-G

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Albin, Thomas; Apathy, Istvan; Arnold, Walter; Flandes, Alberto; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Peter, Attila; Seidensticker, Klaus J.; Sperl, Matthias

    2015-04-01

    The Rosetta lander Philae landed successfully on the nucleus surface of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae is equipped with the Dust Impact Monitor (DIM) which is part of the SESAME experiment package onboard. DIM employs piezoelectric PZT sensors to detect impacts by sub-millimetre and millimetre-sized ice and dust particles that are emitted from the nucleus and transported into the cometary coma. DIM was operated during Philae's descent to its nominal landing site at 4 different altitudes above the comet surface, and at Philae's final landing site. During descent to the nominal landing site, DIM measured the impact of one rather big particle that probably had a size of a few millimeters. No impacts were detected at the final landing site which may be due to low cometary activity or due to shadowing from obstacles close to Philae, or both. We will present the results from our measurements at the comet and compare them with laboratory calibration experiments with ice/dust particles performed with a DIM flight spare sensor.

  8. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.; Simon, Charles G.

    1991-01-01

    Hypervelocity impact features on several of the electro-active dust sensors utilized in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microprobe. The negatively biased dust sensor surfaces acted as ion traps for cations produced in the plasma plumes of impacting particles. Impactor residue surrounds most impact features to two or three feature diameters. After etching away a layer of carbonaceous/silicaceous surface contamination, low mass resolution elemental survey scans are used to tentatively identify the presence of impactor debris. High mass resolution two-dimensional elemental maps and three dimensional depth profiling of the feature and surrounding area show the distribution and relative composition of the debris. The location of these sensors on the six primary Long Duration Exposure Facility (LDEF) sides provides a unique opportunity to further define the debris environment. Researchers applied the same techniques to impact and contaminant features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on row 12 and exposed to the environment during the entire mission.

  9. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.; Simon, Charles G.

    1991-01-01

    Hypervelocity impact features on several of the electro-active dust sensors utilized in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microprobe. The negatively biased dust sensor surfaces acted as ion traps for cations produced in the plasma plumes of impacting particles. Impactor residue surrounds most impact features to two or three feature diameters. After etching away a layer of carbonaceous/silicaceous surface contamination, low mass resolution elemental survey scans are used to tentatively identify the presence of impactor debris. High mass resolution two-dimensional elemental maps and three dimensional depth profiling of the feature and surrounding area show the distribution and relative composition of the debris. The location of these sensors on the six primary Long Duration Exposure Facility (LDEF) sides provides a unique opportunity to further define the debris environment. Researchers applied the same techniques to impact and contaminant features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on row 12 and exposed to the environment during the entire mission.

  10. Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia).

    PubMed

    Zibret, Gorazd

    2012-05-01

    This article presents the impact of the ecological investment in ironworks (dust filter installation) and construction works at a highly contaminated brownfield site on the chemical composition of household dust (HD) and street sediment (SS) in Celje, Slovenia. The evaluation is based on two sampling campaigns: the first was undertaken 1 month before the ecological investment became operational and the second 3 years later. The results show that dust filter installations reduced the content of Co, Cr, Fe, Mn, Mo, W and Zn on average by 58% in HD and by 51% in SS. No reduction was observed at sampling points in the upwind direction from the ironworks. By contrast, the impact of the construction works on the highly contaminated brownfield site was detected by a significant increase (on average by 37%) of elements connected to the brownfield contamination in SS. Such increase was not detected in HD.

  11. NASA Marshall Impact Testing Facility Capabilities Applicable to Lunar Dust Work

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Finchum, Andy; Hubbs, Whitney; Eskridge, Richard; Martin, Jim

    2008-01-01

    The Impact Testing Facility at Marshall Space Flight Center has several guns that would be of use in studying impact phenomena with respect to lunar dust. These include both ballistic guns, using compressed gas and powder charges, and hypervelocity guns, either light gas guns or an exploding wire gun. In addition, a plasma drag accelerator expected to reach 20 km/s for small particles is under development. Velocity determination and impact event recording are done using ultra-high-speed cameras. Simulation analysis is also available using the SPHC hydrocode.

  12. Impact of One Hundred Years of Owens Lake Playa Dust on Nearby Alluvial Soils

    NASA Astrophysics Data System (ADS)

    Quick, D. J.; Reheis, M. C.; Stewart, B. W.; Chadwick, O.

    2009-12-01

    Owens Lake Playa in Owens Valley, California has been one of the largest point sources of PM-10 dust in the United States for about 100 years. Dust composition and deposition rates on the lakebed and downwind of the lakebed have been measured since 1991 by the USGS. These data circumscribe the amount and composition of dust likely to be incorporated into nearby soils. Our research documents the incorporation of playa dust in soils relative to distance from the playa by using strontium isotopes as a provenance tracer. There are distinct contrasts in trace element chemistry, strontium isotopic composition and particle size among the granitic parent material, the playa sediments and the regional dust fall. These contrasts allow us to develop quantitative estimates of the role of salts and fines in the soil profiles and to calculate the proportions derived from different sources. We sampled soils of similar texture (and inferred age) on alluvial fans derived from Sierra Nevada granites along the north-northwest—south-southeast valley axis and performed water and acid leaches on these samples to determine soluble salt concentrations as well as their strontium concentrations and isotope ratios. Early results demonstrate salt concentrations 2-8 X higher in soils adjacent to and immediately north of the playa, as well as a clear strontium isotope signature from the playa. We have thus far quantified playa dust inputs to soils in four locations near the playa and determined, in detail, the input and impact of playa dust to one soil in the Alabama Hills just north of the playa. We used this profile as an example of the possible effect on other surrounding soils over the next 100 years if the playa dust is not significantly mitigated. The Alabama soils have high measures of electrical conductivity (EC; the horizons range from about 250 µS/cm to more than 1100 µS/cm) compared to all other soils sampled, an average pH of 10.0 and a sodium adsorption ratio (SAR) greater than

  13. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5-30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11-68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the differences

  14. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  15. Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance

    SciTech Connect

    Slingo, A.; Ackerman, Thomas P.; Allan, R. P.; Kassianov, Evgueni I.; McFarlane, Sally A.; Robinson, G. J.; Barnard, James C.; Miller, Mark; Harries, J. E.; Russell, J. E.; Dewitte, S.

    2006-12-01

    Saharan dust storms transport large quantities of material across the African continent and beyond, causing widespread disruption and hazards to health. The dust may be deposited into the Atlantic Ocean, where it provides an important source of nutrients1, and may be carried as far as the West Indies. Such events may also influence the growth of Atlantic tropical cyclones. Satellite observations have enabled estimates to be made of the effect of the dust on the radiation budget seen from space, but only limited in situ observations have hitherto been made at the surface. Here we present the first simultaneous and continuous observations of the effect of a major dust storm in March 2006 on the radiation budget both at the top of the atmosphere (TOA) and at the surface. We combine data from the Geostationary Earth Radiation Budget (GERB) broadband radiometer and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat-8 weather satellite with remote sensing and in situ measurements from a new Mobile Facility located in Niamey, Niger (13{sup o} 29'N, 2{sup o} 10'E), operated by the US Atmospheric Radiation Measurement (ARM) program. We show that the dust produced major perturbations to the radiation budget seen from space and from the surface. By combining the two datasets, we estimate the impact on the radiation budget of the atmosphere itself. Using independent data from the Mobile Facility, we derive the optical properties of the dust and input these and other information into radiation codes to simulate the radiative fluxes. Comparisons with the observed fluxes provides a stringent test of the ability of the codes to represent the radiative properties of this important component of the global aerosol burden.

  16. Desert dust impacts on human health: an alarming worldwide reality and a need for studies in West Africa

    NASA Astrophysics Data System (ADS)

    de Longueville, Florence; Ozer, Pierre; Doumbia, Seydou; Henry, Sabine

    2013-01-01

    High desert dust concentrations raise concerns about adverse health effects on human populations. Based on a systematic literature review, this paper aims to learn more about the relationship between desert dust and human health in the world and to analyse the place of West Africa as a study area of interest. Papers focussing on the potential relationship between dust and health and showing quantitative analyses, published between January 1999 and September 2011, were identified using the ISI Web of Knowledge database ( N = 50). A number of adverse health effects, including respiratory, cardiovascular and cardiopulmonary diseases, are associated with dust. This survey highlights obvious dust impacts on human health independently of the study area, health outcomes and method. Moreover, it reveals an imbalance between the areas most exposed to dust and the areas most studied in terms of health effects. None of these studies has been conducted in West Africa, despite the proximity of the Sahara, which produces about half of the yearly global mineral dust. In view of the alarming results in many parts of the world (Asia, Europe, America), this paper concludes by stressing the importance of carrying out impact studies of Saharan dust in West Africa, where dust events are more frequent and intense than anywhere else.

  17. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  18. Calibration of the Dust Impact Monitor DIM onboard Rosetta/Philae

    NASA Astrophysics Data System (ADS)

    Krueger, Harald; Seidensticker, Klaus; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Peter, Attila; Ossowski, Thomas; Flandes, Alberto; Herwig, Alexander; Apathy, Istvan; Arnold, Walter; Sperl, Mathias

    2012-07-01

    The Rosetta lander spacecraft Philae will land on the nucleus surface of comet 67P/Churyumov-Gerasimenko in late 2014. It is equipped with the Dust Impact Monitor instrument (DIM). DIM is part of the SESAME instrument package onboard Philae [Seidensticker et al., 2007] and consists of three piezoelectric PZT sensors. Each sensor is mounted on the outer side of a cube, facing in orthogonal directions, this way allowing for the detection of grains approaching normal to the nucleus surface and from two horizontal directions. DIM's total sensitive area is approximately 70 cm^2. It will measure impacts of sub-millimeter and millimeter sized ice and dust particles that are emitted from the nucleus and transported into the cometary coma by the escaping gas flow. A grain-size dependent fraction of the emitted grains is expected to fall back to the nucleus surface due to gravity.

  19. Impact of improved soil climatology and intialization on WRF-chem dust simulations over West Asia

    NASA Astrophysics Data System (ADS)

    Omid Nabavi, Seyed; Haimberger, Leopold; Samimi, Cyrus

    2016-04-01

    Meteorological forecast models such as WRF-chem are designed to forecast not only standard atmospheric parameters but also aerosol, particularly mineral dust concentrations. It has therefore become an important tool for the prediction of dust storms in West Asia where dust storms have the considerable impact on living conditions. However, verification of forecasts against satellite data indicates only moderate skill in prediction of such events. Earlier studies have already indicated that the erosion factor, land use classification, soil moisture, and temperature initializations play a critical role in the accuracy of WRF-chem dust simulations. In the standard setting the erosion factor and land use classification are based on topographic variations and post-processed images of the advanced very high-resolution radiometer (AVHRR) during the period April 1992-March 1993. Furthermore, WRF-chem is normally initialized by the soil moisture and temperature of Final Analysis (FNL) model on 1.0x1.0 degree grids. In this study, we have changed boundary initial conditions so that they better represent current changing environmental conditions. To do so, land use (only bare soil class) and the erosion factor were both modified using information from MODIS deep blue AOD (Aerosol Optical Depth). In this method, bare soils are where the relative frequency of dust occurrence (deep blue AOD > 0.5) is more than one-third of a given month. Subsequently, the erosion factor, limited within the bare soil class, is determined by the monthly frequency of dust occurrence ranging from 0.3 to 1. It is worth to mention, that 50 percent of calculated erosion factor is afterward assigned to sand class while silt and clay classes each gain 25 percent of it. Soil moisture and temperature from the Global Land Data Assimilation System (GLDAS) were utilized to provide these initializations in higher resolution of 0.25 degree than in the standard setting. Modified and control simulations were

  20. Dust evolution in the transition towards the denser ISM: impact on dust temperature, opacity, and spectral index

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Ysard, N.; Jones, A. P.

    2015-07-01

    Context. Variations in the observed dust emission and extinction indicate a systematic evolution of grain properties in the transition from the diffuse interstellar medium (ISM) to denser molecular clouds. Aims: The differences in the dust spectral energy distribution (SED) observed from the diffuse ISM to denser regions, namely an increase in the spectral index at long wavelengths, an increase in the FIR opacity, and a decrease in temperature, are usually assumed to be the result of changes in dust properties. We investigate if evolutionary processes, such as coagulation and accretion, are able to change the dust properties of grains in a way that is consistent with observations. Methods: We use a core-mantle grain model to describe diffuse ISM-type grains, and using a discrete-dipole approximation, we calculate how the accretion of mantles and coagulation into aggregates vary the grain optical properties. We calculate the dust SED and extinction using DustEM and the radiative transfer code CRT. Results: We show that the accretion of an aliphatic carbon mantle on diffuse ISM-type dust leads to an increase in the FIR opacity by a factor of about 2 and in the FIR/submm spectral index from 1.5 to 1.8, and to a decrease in the temperature by about 2 K. We also show that the coagulation of these grains into aggregates further decreases the temperature by 3 K and increases the spectral index up to a value of ~2. The FIR opacity is increased by a factor of 3 (7) for these aggregates (with an additional ice-mantle) compared to the diffuse ISM-dust. Conclusions: Dust evolution in the ISM resulting from coagulation and accretion, leads to significant changes in the optical properties of the grains that can explain the observed variations in the dust SED in the transition from the diffuse ISM to denser regions.

  1. Studies of Antarctic meteorites: A statistical comparison of Antarctic finds and non-Antarctic falls; and the origin and significance of cosmic dust from the Walcott Neve, Antarctica

    NASA Astrophysics Data System (ADS)

    Harvey, Ralph P.

    The masses and numbers of meteorites in four meteorite samples (the modern falls (MF), Antarctic finds (AF), Yamato fins (YAM), and Allan Hills Main icefield finds (ALH)) are compared. The mass frequency distributions and the proportions of different classes of meteorites differ between AF and MF. Several well known distributions, when compared to the samples, give varying degrees of fit. When Antarctic post-fall processing is empirically corrected for, the proportions of different types converge for the AF and MF samples. There is an excess in numbers of small H chondrites in the AF sample relative to the MF sample which cannot be corrected for in this manner. In four of six sediment samples returned from locations around the Walcott Neve area of Antarctica, a high concentration of ablation spherules was found, averaging roughly 20 spherules per g bulk sediment. These concentrations have an origin similar to that of Antarctic meteorites; strong katabatic winds cause cosmic dust ablating out of blue ice to be transported downwind and downslope to the nearest aeolian sediment trap. In the Walcott Neve, these traps are the crests or moraines, weathering debris around boulders and rough, exposed areas. Their content of ablation spherules is similar to Greenland and Cap Prudhomme sediments, with the exception of a slightly higher proportion of high-Mg glassy spheres, a large number of greater than 500 micron sized spherules, and a few extremely large minimeteorites from a firn sample. Most of the spherules are essentially unweathered; however, a great range in weathering is also observed. Only a small number of unmelted micrometeorites were found by comparison to the Greenland and Cap Prudhomme sediments. They may truly be mission, or may be camouflaged by local terrestrial debris.

  2. Impact of dust deposition on carbon budget: a tentative assessment from a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Ridame, C.; Pulido-Villena, E.; Bressac, M.; Desboeufs, K.; Dulac, F.

    2014-10-01

    By bringing new nutrients and particles to the surface ocean, atmospheric deposition impacts biogeochemical cycles. The extent to which those changes are modifying the carbon balance in oligotrophic environments such as the Mediterranean Sea that receives important Saharan dust fluxes is unknown. The DUNE (DUst experiment in a low Nutrient, low chlorophyll Ecosystem) project provides the first attempt to evaluate the changes induced in the carbon budget of a large body of oligotrophic waters after simulated Saharan dust wet or dry deposition events, allowing us to measure (1) the metabolic fluxes while the particles are sinking and (2) the particulate organic carbon export. Here we report the results for the three distinct artificial dust seeding experiments simulating wet or dry atmospheric deposition onto large mesocosms (52 m3) that were conducted in the oligotrophic waters of the Mediterranean Sea in the summers of 2008 and 2010. Although heterotrophic bacteria were found to be the key players in the response to dust deposition, net primary production increased about twice in case of simulated wet deposition (that includes anthropogenic nitrogen). The dust deposition did not produce a shift in the metabolic balance as the tested waters remained net heterotrophic (i.e., net primary production to bacteria respiration ratio <1) and in some cases the net heterotrophy was even enhanced by the dust deposition. The change induced by the dust addition on the total organic carbon pool inside the mesocosm over the 7 days of the experiments, was a carbon loss dominated by bacteria respiration that was at least 5-10 times higher than any other term involved in the budget. This loss of organic carbon from the system in all the experiments was particularly marked after the simulation of wet deposition. Changes in biomass were mostly due to an increase in phytoplankton biomass but when considering the whole particulate organic carbon pool it was dominated by the organic

  3. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.

    PubMed

    Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina

    2017-05-01

    Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

  4. Potential impact of dust aerosols on the pre-Helene (2006) mesoscale convective vortex

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Sokolik, I. N.; Curry, J. A.

    2011-12-01

    The potential impact of dust aerosols on the early development of Hurricane Helene (2006) was examined using the Weather Research and Forecasting (WRF) and WRF-Chem model. The goal of this study is to examine the extent to which dust aerosols can influence the intensity, track, and structure of a developing TC through the microphysical and radiation processes. Remote sensing observations from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Tropical Rainfall Measuring Mission (TRMM) were utilized to examine the distributions and characteristics of dust particles, hydrometeors, cloud top temperature, latent heat release and precipitation, as well as to constrain and evaluate the model simulations. The WRF simulations were conducted by implementing an ice nucleation parameterization accounting for the deliquescent heterogeneous freezing (DHF) mode. The DHF mode refers to the freezing process for internally mixed aerosols with soluble and insoluble species that can serve as both cloud condensation nuclei (CCN) and ice nuclei (IN), such as dust. Simulations showed the tendency of DHF mode to promote ice formation at lower altitudes in strong updraft cores, increase the local latent heat release, and produce more low clouds and less high clouds. Further more, a series of WRF-Chem simulations were conducted, which includes aerosol emission scheme, a radiative transfer scheme accounting for aerosol optical properties, and a dual moment microphysics scheme that will account for environmental aerosols as nuclei. Differences between the results from WRF and WRF-Chem simulations were examined.

  5. Impact of the spectral hardening of TeV cosmic rays on the prediction of the secondary positron flux

    NASA Astrophysics Data System (ADS)

    Lavalle, J.

    2011-06-01

    The rise in the cosmic-ray positron fraction measured by the PAMELA satellite is likely due to the presence of astrophysical sources of positrons, for example, pulsars, on kpc scales around the Earth. Nevertheless, assessing the properties of these sources from the positron data requires a good knowledge of the secondary positron component generated by the interaction of cosmic rays with the interstellar gas. In this paper, we investigate the impact of the spectral hardening in the cosmic-ray proton and helium fluxes recently reported by the ATIC2 and CREAM balloon experiments on the predictions of the secondary positron flux. We show that the effect is not negligible, leading to an increase in the secondary positron flux by up to ˜60 per cent above ˜100 GeV. We provide fitting formulae that allow a straightforward utilization of our results, which can help in deriving constraints on one's favourite primary positron source, for example, pulsars or dark matter.

  6. Using Dust from Asteroids as Regolith Microsamples

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Chabot, Nancy; Klima, Rachel; Ernst, Carolyn; Rivkin, Andy; Postberg, Frank; Sternovsky, Zoltan

    2015-01-01

    More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution of the asteroids. A major link can be sample analysis of the parent body material and comparison with meteorite data. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size distribution of dust particles can provide insight into the geologic evolution of airless bodies. For example, the Cassini Cosmic Dust Analyzer detected salts and minerals emitted by plumes at Enceladus, evidence for a subsurface ocean with a silicate seafloor. Dust analysis instruments may enable future missions to obtain elemental, isotopic and mineralogical composition of regolith particles without returning the samples to terrestrial laboratories.

  7. Impact of Winds on Circumstellar Dust in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Babina, Elena; Artemenko, Svetlana; Petrov, Peter

    2016-07-01

    The dynamical winds of Classical T Tauri stars (CTTS) are believed to originatefrom the MHD processes at the boundary between the inner disc and the stellar magnetosphere.We explore how the wind affects the circumstellar dusty environment.Long term spectroscopic and photometric monitoring of the CTTS RY Tau in 2013-2015has revealed a tight correlation between the wind radial velocity and the circumstellar extinction. The irregular stellar brightness variations are shown to be causedby extinction in a dusty disk wind at a distance of about 0.2 AU from the star.We suggest that cyclic re-adjustments of the stellar magnetosphere and the subsequentmagnetospheric mass ejections can have an impact on the dusty disk wind flowsnear the inner boundary of the circumstellar disk. A role of dusty winds in the long-lasting dimming events in CTTS is discussed.

  8. Impact of galactic cosmic radiation and CO2 on Phanerozoic climate change

    NASA Astrophysics Data System (ADS)

    Wallmann, Klaus

    The flux of galactic cosmic radiation (GCR) reaching the solar system has been modulated periodically by the passage of the solar system through the spiral arms of our galaxy on long geological time scales (tens of millions of years) while solar irradiance increased continuously due to the aging of the sun. Therefore, the analysis of Phanerozoic time-series data allows for a discrimination between the potential effects of cosmic versus solar radiation on global climate change over the past 540 million years. The d18O record of marine carbonates features secular variations that are suggesting strong effects of GCR on Phanerozoic climate change. Against this background, a model is presented to evaluate the relative climate effects of atmospheric pCO2, GCR and solar irradiance over the Phanerozoic. The model is making use of the avail-able geological time series data (87Sr/86Sr, d13C, and d18O in marine carbonates and other geological archives) to constrain critical model parameter values and to evaluate the model output. The model confirms that the increase in solar radiation had no significant effect on the evolution of global mean surface temperatures over the model period. The climate evolution seems to be controlled by changes in GCR and pCO2. According to the model, the two major Phanerozoic glaciations during the late Carboniferous to early Permian and the late Cenozoic are the result of dense cloud coverage induced by strong GCR fluxes and carbon cycling pro-cesses causing a draw-down of atmospheric pCO2. The two moderately cool periods during the Ordovician -Silurian and late Jurassic -early Cretaceous are characterized by both high pCO2 and GCR levels such that greenhouse warming compensated for the cooling effect of GCR-enhanced cloudiness (Wallmann, 2004). References Wallmann, K., 2004. Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine d18O record. Geochemistry, Geophysics, Geosys-tems, 5(1): doi:10

  9. Measurements at Comet 67P/Churyumov-Gerasimenko with the Dust Impact Monitor (SESAME-DIM)

    NASA Astrophysics Data System (ADS)

    Flandes, A.; Albin, T.; Arnold, W.; Fischer, H. H.; Hirn, A.; Krüger, H.; Podolak, M.; Seidensticker, K. J.; Péter, A.

    2015-12-01

    The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae carries the Dust Impact Monitor (DIM) on board, which is part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME). The DIM sensor -on top of Philae- with its associate electronics consists of a 7 cm wide cube with piezoelectric plates aimed to detect millimetric and submilimetric dust particles. Through DIM we can estimate dynamical data like flux and the directionality of the impacting particles. Mass and speed of the grains can be constrained for pre-defined density and elastic grain properties. DIM was operated during three mission phases of Philae at the comet: (1) Before Philae's separation from Rosetta at distances of about 9.6 km, 11.8 km, and 25.3 km from the nucleus barycenter. In this mission phase particles released from the nucleus on radial trajectories remained undetectable because of significant obscuration by the structures of Rosetta, and no dust particles were indeed detected. (2) During Philae's six hours descent to its nominal landing site Agilkia, DIM detected one approximately millimeter-sized particle at a distance of 4.97 km from the nucleus' barycenter, corresponding to an altitude of 2.4 km from the surface. This is the closest ever dust detection at a cometary nucleus by a dedicated in-situ dust detector. Laboratory calibration experiments showed that the material properties of the detected particle are compatible with a porous grain having a bulk density of approximately 250kg/m3 and a high porosity. Particles leaving the comet on radial trajectories were detectable with only a very small sensitive area of the DIM sensor while backfalling particles or particles in orbit about the nucleus had a more favorable detection geometry. (3) At Philae's final landing site, Abydos, DIM detected no dust impact which may be due to low cometary activity in the vicinity of Philae, or due to shading by

  10. Cosmic rays interaction with comets and its impact on cometary isotopic and chemical composition

    NASA Astrophysics Data System (ADS)

    Gronoff, G.; Maggiolo, R.; Mertens, C. J.; Airapetian, V.; De Keyser, J.; Cessateur, G.; Dhooghe, F.; Gunell, H.

    2015-12-01

    Comets contain the most pristine material in the solar system. However, since their formation ~4.5 Gy ago, they have been altered by cosmic rays. The galactic and solar cosmic rays have a broad spectrum of energies and interact with the cometary surface and subsurface. While low energy cosmic rays interact only with the cometary surface, the most energetic cosmic rays deposit significant amount of energy down to tens of meters. This interaction can modify the isotopic ratio in cometary ices and create secondary compounds through radiolysis. We perform a theoretical analysis of the effect of cosmic rays on cometary material. We modeled the energy deposition of cosmic ray as a function of depth using a Geant4 applicationmodified to take into account the isotope creation process. We analyze the consequences of the energy deposition on the isotopic and chemical composition of cometary ices and discuss their implication on the interpretation of cometary observations.

  11. Space dust in Paris

    NASA Astrophysics Data System (ADS)

    2017-02-01

    Next time you take a stroll in Paris, Oslo or Berlin, you might be breathing in big particles of cosmic dust after a study led by earth scientist Matthew Genge from Imperial College London found tiny specks of space dust on the rooftops of the three European capitals.

  12. Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring

    NASA Astrophysics Data System (ADS)

    Lee, I. T.; Tsai, H. F.; Liu, J. Y.; Lin, C. H.; Matsuo, T.; Chang, L. C.

    2013-10-01

    the past decade, the paucity of ionospheric observations has made it almost impossible to reconstruct the three-dimensional structures of global ionospheric electron density. The Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC, F3/C) constellation has provided ionospheric electron density profiles with high vertical resolution through radio occultation measurements. Slated for deployment starting in 2016, the FORMOSAT-7/COSMIC-2 (F7/C2) constellation will further provide more than 4 times the number of the F3/C occultation soundings. An observing system simulation experiment is conducted to determine the impact of F7/C2 on ionospheric weather monitoring. The results first show that the F7/C2 observations can reconstruct 3-D ionospheric structure with a data accumulation period of 1 h, which can advance studies of small spatial/temporal scale variation/signatures in the ionosphere. Comparing to assimilation results of F3/C, the assimilation system significantly reduces the error arising in the models and observations after assimilating synthetic observations of F7/C2. During this observing system simulation experiment period, the averaged root-mean-square error percentage for the results of F7/C2 is about 4.4%, lower than that of F3/C 7.3%. Furthermore, even with an assimilation window of less than 60 min, the F7/C2 RMS errors still yield reliable values compared to the F3/C results. This paper represents a major advance in ionospheric weather monitoring for the future mission.

  13. Detection of hypervelocity dust impacts on the Earth orbiting Cluster and MMS spacecraft and problems with signal interpretation

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo

    2017-04-01

    Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.

  14. Modeling of a severe dust event and its impacts on ozone photochemistry over the downstream Nanjing megacity of eastern China

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Wang, Tijian; Han, Yong; Xie, Min; Li, Shu; Zhuang, Bingliang; Chen, Pulong

    2017-07-01

    Dust aerosols could affect tropospheric photochemistry by interacting with solar radiation or providing reactive surfaces for heterogeneous reactions. This study examines the effects of a typical springtime dust storm (16-18 March, 2014) on ozone photochemistry over the downstream Nanjing megacity in eastern China. The on-line coupled Weather Research and Forecasting-Chemistry (WRF-Chem) model is used, with the inclusion of eight heterogeneous reactions on dust surfaces. Comparisons with satellite data and visibility record indicate that the model is capable of reproducing the onset time and downstream transport of this dust event. Dust particles act as a sink for all these trace gases examined here. The net decreases of O3, NO2, NO3, N2O5, HNO3, rad OH, HO2rad and H2O2 in the atmosphere are estimated as -6.1%, -16.0%, -37.4%, -13.9%, -47.7%, -6.0%, -9.2% and -29.7%, of which more than 80% can be explained by heterogeneous chemistry on dust surfaces. The decreases in ground photolysis rate and rad OH concentration, along with changes in other weather variables induced by dust aerosols (i.e., radiation and temperature) lead to lower photochemical activity and a small decrease of O3 mixing ratio by roughly 0.5%. This study highlights the importance of dust interaction with ozone photochemistry, and also sets the stage for further investigation of the complicated dust impacts on tropospheric aerosol chemistry.

  15. Investigating playa surface textures: The impact of chemistry and environment on surface morphology and dust

    NASA Astrophysics Data System (ADS)

    Tollerud, H. J.; Fantle, M. S.

    2010-12-01

    Mineral dust is an important component of geochemical cycles, but its impact on those cycles is not thoroughly understood. For instance, dust inputs to the ocean have been suggested to affect the iron cycle by stimulating natural iron fertilization, which then could modify climate. The influence of dust on geochemical cycles is determined by the chemical and mineralogical composition of dust inputs, which is governed in turn by the composition of dust source regions. A loose, unconsolidated surface texture is more easily ablated by wind, and so a location where composition and environmental characteristics encourage this type of surface is more likely to produce dust and influence geochemical cycles. Also, if evaporation concentrates evaporites such as calcite at the surface of a dust producing region, dust Ca concentrations are likely to be higher. Playas can be regionally significant dust source regions, and they are amenable to study as their surface textures often vary significantly across small areas. This study investigates surface processes experimentally, and compares the results to observations of surface texture in a natural playa system (the Black Rock Desert, Nevada). We dry surfaces with 25% to 75% clay and quartz at 40°C for approximately a day, wet the surface to simulate rain, and then repeat the cycle multiple times. We estimate surface roughness, measure surface strength with a penetrometer, and investigate thermal characteristics with an IR camera (wavelength range 8-12μm). We find that textures similar to those in playas can be reproduced with cycles of wetting and drying, such as might occur in an arid environment with intermittent rain. We investigate the addition of calcite and halite, since their precipitation potentially can disrupt the clay surfaces through the formation and expansion of crystals, thereby linking the chemical composition with the disruption of a strong surface texture and an increased chance of dust production. In the

  16. Observation and simulation of dust aerosol cycle and impact on radiative fluxes during the FENNEC campaign in summer 2011

    NASA Astrophysics Data System (ADS)

    Minvielle, Fanny; Derimian, Yevgeny; Pere, Jean-Christophe; Flamant, Cyrille; Brogniez, Gérard

    2013-04-01

    The Sahara desert is one of the principal worldwide sources of dust aerosol emissions that play significant role in the climatic system. In the framework of the FENNEC campaign, conducted during the summer 2011, we focus on dust radiative effect and impact on the atmospheric dynamics and profile structure. We study the variability of the measured radiative parameters and model atmospheric dynamics during dust plume observations at the FENNEC sites, therefore, trying to understand the link between the Saharan heat low system and dust aerosols. Due to its large size the airborne dust can absorb and scatter not only solar, but also thermal infrared radiation, which requires consideration of both spectral ranges. Analysis of AERONET and other optical observations during the period of intensive campaign in summer 2011 provides information on variability of aerosol optical characteristics and perturbation of solar and TIR flux. We use these observations in conjunction with the meso-scale model RAMS to understand the impact of the dust plumes on the atmospheric dynamics. We also simulate the dust cycle in order to find the contribution of the different emission sources and identify structure of transport over an extended domain. Then, coupling the radiative code (GAME) we calculate the radiative forcing of dust and compare it to the radiative flux observed and computed based on the AERONET observations. Validation of simulations is made using measurements from space-borne CALIOP lidar, SEVIRI and OMI satellites, AERONET ground-based stations and observations acquired onboard the SAFIRE Falcon 20 research aircraft.

  17. Laboratory Micrometeroid/Dust Ablation Studies

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Horanyi, M.; Janches, D.; Munsat, T. L.; Plane, J. M. C.; Simolka, J.; Sternovsky, Z.

    2014-12-01

    Each day, somewhere between 5-270 tonnes of meteoric material ablates in Earth's upper atmosphere. Thisenormous range is significant because the Interplanetary Dust Particle (IDP) input has implications in ourunderstanding of meteor transport in the atmosphere, the formation of layers of metal atoms and ions,nucleation of noctilucent clouds, effects on stratospheric aerosols and O3 chemistry, and dust evolution inour solar system. As the dust ablates, it produces light, as well as a plasma trail of ionized atmosphericatoms and electrons. These meteor signatures are detected by photographic means, or by radar, but thereremain uncertainties in the luminous efficiency and ionization coefficient of meteors - two parameters thatare essential to evaluate densities, masses, height distributions and fluxes. Precise measurements of theseparameters would allow for not only an understanding of the layers of metal atoms and ions and meteoricsmoke particles in the mesosphere and lower thermosphere, but also would allow for the Earth's atmosphereto be used as a dust detector to detect and characterize the dust environment in our solar system. This work discusses the preliminary results of the new dust ablation facility at the 3 MV hypervelocity dust accelerator at the Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT) at the University of Colorado, which aims to characterize the ionization coefficient and luminous efficiency of ablating micrometeroids.

  18. Impacts of crystal metal on secondary aliphatic amine aerosol formation during dust storm episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Qingyang; Bei, Yiling

    2016-03-01

    Trimethylamine (TMA) enters the atmosphere from a variety of sources and is a ubiquitous atmospheric organic base. The atmospheric reaction mechanism of TMA with key atmospheric oxidants is important to predict its distribution and environmental behavior in the particle phase. While previous studies have extensively focused on the production of particle amine salts (i.e. trimethylamine-N-oxide (TMAO)) using chamber experiments, the atmospheric behavior of TMAO in the environment is still poorly understood. Ambient fine particulate matter (PM2.5) was collected at two sampling sites in Beijing from March 10 to May 10, 2012. We analyzed the samples for water-soluble ions, crystal metals, TMA, and TMAO. Water-soluble ions (e.g. SO42-, NO3-, NH4+), TMA, and TMAO were measured using ion chromatography, while crystal metal (e.g. Al, Fe, Mn) in PM2.5 was quantified by inductively coupled plasma mass spectrometry (ICP-MS). Two dust storms (DS) occurred during the sampling period on March 28 and April 28. Mineral dust impacted PM2.5 mass and composition greatly during dust storm days, as it contributed approximately 1.2-4.0 times greater on dust storm days versus non-dust storm days. We found TMAO concentrations were highly associated with aluminum in PM2.5. Further, we applied the density functional theory (DFT) method to confirm that aluminum plays a catalytic effect in the reaction of TMA with ozone (O3). Our work improves understanding of the effect of crystal metals on secondary aliphatic amine aerosol formation in the atmosphere.

  19. Dust Impact Monitor (DIM) onboard Rosetta/Philae: Tests with ice particles as comet analog materials

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Krüger, Harald; Loose, Alexander; Albin, Thomas; Arnold, Walter

    2014-09-01

    In 2014 the European Space Agency's spacecraft Rosetta will encounter the short-period comet 67P/Churyumov-Gerasimenko. Rosetta carries the lander spacecraft Philae on board which will attempt to land on the comet's nucleus. Amongst Philae's instruments, the Dust Impact Monitor (DIM) using piezoelectric sensors is aimed at measuring the physical properties (size and impact speed) of the millimetric and submillimetric dust and ice particles that move near the surface of comet 67P. Given that DIM has three orthogonal sensor sides (with about 70 cm2) total area), it will also be able to collect dynamical data, like an estimation of the particle flux in three dimension, that will help to derive daily and secular variations in the surface activity. We show the results of a series of calibration experiments with the goal to extend the performance tests of DIM. We tested DIM under particle impacts of densities similar to and larger than that of water ice (0.92-7.80 g/cm3) and at speeds from 0.3 to 1.9 m/s. Then, we performed experiments with spherical water ice particles between -40 °C and -20 °C. Finally, we measured the coefficient of restitution (COR) of the impacting particles. These data show that there is a loss mechanism in the impact which is caused by plastic deformation in the contact zones of both the impinging particle and the PZT sensor.

  20. Nano-Particles in Cosmic Plasma Environments

    SciTech Connect

    Mann, Ingrid

    2008-09-07

    Astronomical observations and in-situ measurements point to the existence of cosmic nano-particles, but in most cases their material composition and structure are not known. Nano-dust interacts differently than larger dust with the cosmic radiation and plasma environment. Its dynamics and behavior upon collision is not well studied.

  1. Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing

    NASA Astrophysics Data System (ADS)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2017-05-01

    In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species Neff. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O (10-3) . Furthermore, it leads to a shift of the parameter Neff by nearly 2 σ considering the level of accuracy aimed by future S4 surveys.

  2. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  3. Remote sensing of desert dust aerosols over the Sahel : potential use for health impact studies

    NASA Astrophysics Data System (ADS)

    Deroubaix, A. D.; Martiny, N. M.; Chiapello, I. C.; Marticorena, B. M.

    2012-04-01

    Since the end of the 70's, remote sensing monitors the desert dust aerosols due to their absorption and scattering properties and allows to make long time series which are necessary for air quality or health impact studies. In the Sahel, a huge health problem is the Meningitis Meningococcal (MM) epidemics that occur during the dry season : the dust has been suspected to be crucial to understand their onsets and dynamics. The Aerosol absorption Index (AI) is a semi-quantitative index derived from TOMS and OMI observations in the UV available at a spatial resolution of 1° (1979-2005) and 0.25° (2005-today) respectively. The comparison of the OMI-AI and AERONET Aerosol Optical thickness (AOT) shows a good agreement at a daily time-step (correlation ~0.7). The comparison of the OMI-AI with the Particle Matter (PM) measurement of the Sahelian Dust Transect is lower (~0.4) at a daily time-step but it increases at a weekly time-step (~0.6). The OMI-AI reproduces the dust seasonal cycle over the Sahel and we conclude that the OMI-AI product at a 0.25° spatial resolution is suitable for health impact studies, especially at a weekly epidemiological time-step. Despite the AI is sensitive to the aerosol altitude, it provides a daily spatial information on dust. A preliminary investigation analysis of the link between weekly OMI AI and weekly WHO epidemiological data sets is presented in Mali and Niger, showing a good agreement between the AI and the onset of the MM epidemics with a constant lag (between 1 and 2 week). The next of this study is to analyse a deeper AI time series constituted by TOMS and OMI data sets. Based on the weekly ratios PM/AI at 2 stations of the Sahelian Dust Transect, a spatialized proxy for PM from the AI has been developed. The AI as a proxy for PM and other climate variables such as Temperature (T°), Relative Humidity (RH%) and the wind (intensity and direction) could then be used to analyze the link between those variables and the MM epidemics

  4. In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.

    2016-11-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. In this paper, we show RPWS measurements of dust particles in Saturn's dusty rings. The differential size distribution of the dust particles can be characterized as a power law dn/dr∝rμ, where μ ∼ - 4 and r is the particle radius. The observed particle radius ranged from 0.2 to 10 μm. The dust density profiles of the dusty rings are derived from the impact rates measured by the RPWS wideband receiver. The radial density profiles show peaks near Enceladus' orbit and the G ring. The region around the G ring is found to be a very thin layer of dust particles with no observable vertical offset of the peak density from the ring plane. The vertical scale height of the E ring varies with the radial distance from Saturn with a local minimum at Enceladus' orbit. The vertical density profiles of the E ring show dips at the equatorial plane near Enceladus' orbit and vertical offsets of the peak locations away from Enceladus' orbit. These observations are consistent with previous modeling studies and measurements by other instruments onboard Cassini.

  5. Experimental investigations of the optical and physical properties of interstellar and lunar dust grains

    NASA Astrophysics Data System (ADS)

    Tankosic, Dragana

    2010-10-01

    Dust grains constitute a major component of matter in the universe. About half of all elements in the interstellar medium (ISM) heavier than helium are in the form of dust. Dust particles are formed in astrophysical environments by processes such as stellar outflows and supernovae. Ejected into the ISM, they lead to the formation of diffuse and dense molecular clouds of gas and dust. The gas and dust in the interstellar clouds undergo a variety of complex physical and chemical evolutionary processes leading to the formation of stars and planetary systems, forming a cosmic dust cycle. Micron/submicron size cosmic dust grains have a significant role in physical and dynamical processes in the galaxy, the ISM, and the interplanetary and planetary environments. Therefore, the knowledge of the physical, optical, and charging properties of the cosmic dust provides valuable information about many issues related to the role of dust in astrophysical environments. An experimental facility based on an electrodynamic balance (EDB) has been developed at NASA- Marshall Space Flight Center (MSFC) for investigation of several different properties and processes of individual, levitated micron/submicron size dust grains in simulated space environments. This dissertation focuses on experimental investigations in the following areas: (1) Radiation pressure on individual micron-sized dust grains; (2) Rotation and alignment of micron-sized dust grains simulating rotation of dust grains in astrophysical environment; (3) Charging of analogs of individual cosmic dust grains and lunar dust grains by UV radiation; (4) Charging of Apollo 11 & 17 lunar dust grains by electron impact simulating the charging of lunar dust by the solar wind plasma. The experimental results obtained on individual micron/submicron-size dust grains in the EDB facility at NASA/MSFC in each of the above four areas were unique and first to be reported. Experimental studies of the physical and optical properties of

  6. Dust in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Graps, A.

    2007-01-01

    The workshop 'Dust in Planetary Systems' was held in Kauai'i/Hawaii from September 26 to 30, 2005, following the tradition of holding meetings in the field of Interplanetary Dust Research at regular intervals of a few years. The series of meetings started in Honolulu, Hawaii (USA) in 1967, followed by Heidelberg (Germany) in 1975, Ottawa (Canada) in 1979, Marseilles (France) in 1984, Kyoto (Japan) in 1990, Gainesville, Florida (USA) in 1995, with the last being held in Canterbury, (U.K.) in 2000. The Kauai'i workshop in 2005 was attended by 150 scientists from 20 countries who actively discussed recent progress made through remote observations from the ground and from space, in-situ measurements, as well as from theory and laboratory experiments. Since the last meeting in Canterbury, numerous space missions provided significant progress in various fields of cosmic dust research. For studies of comet nuclei, scientists in our field were involved in three space missions. In 2001, the Deep Space 1 spacecraft flew by comet Borelly. In 2004, Stardust flew by comet Wild 2, with many exciting results from the Stardust return capsule still to come. In 2005, the Deep Impact probe collided with comet Tempel 1. In addition, the comet dust community made large strides forward when Rosetta was launched to begin its 10-year voyage towards comet Churyumov-Gerasimenkov. Saturn's environment also provides a natural laboratory for cosmic dust researchers. The Saturn ring system with its spokes has been the prime motivator for dusty plasma studies since the time of the Voyager spacecraft twenty years ago. The Cassini spacecraft in orbit around Saturn since 2004 is well-placed to not only continue those studies, but to start new studies provided by Saturn's enigmatic moon Enceladus. Jupiter's dusty environment has not been neglected by spacecraft in these last five years either. While the Galileo mission was terminated in 2003 after the spacecraft's 7-year orbital tour about Jupiter

  7. The impact of Gobi Desert Dust on the increase of POC at Station PAPA.

    NASA Astrophysics Data System (ADS)

    Saydam, A. C.; Senyuva, H. Z.

    2003-04-01

    It has been suggested that the temporal and spatial variability of bioavailable iron delivered to the ocean may be controlled via in-cloud photochemical reduction of desert dust, assisted by the impact of oxalate released by fungi in the desert soil. The basic process in the photochemical production of bioavailable iron through decarboxylation reaction involves simultaneous action of oxalate released by the fungus encapsulated in a cloud droplet, above some threshold solar radiation. Therefore, diurnal and latitudinal variations in solar irradiation and the sporadic nature of rain along the path of the synoptic-scale atmospheric depressions are the governing factors that determine spatial and temporal distribution of phytoplankton Bishop et al's (2002) report on the biotic response of subarctic North Pacific to a natural iron fertilization following the passage of a cloud of Gobi desert dust through two autonomous robotic floats equipped to measure Particulate Organic Carbon (POC) provided for the first time direct continuous observations of the upper ocean biological response to episodic events such as dust storms. The data provided by these two "Carbon Explorers" also gave us an opportunity to test our hypothesis. The TOMS and SeaWIfS satellite imagery clearly confirms the presence of dust all over the subarctic North Pacific, the NOAA READY meteorological archive confirms the presence of precipitation over the station PAPA while the DMSP/SSMI data further confirm the patchy distribution of wet deposition at around station PAPA for the days concerned. However, we would like to stress that daytime, wet deposition is the crucial factor. Otherwise, during the passage of this dust pulse and subsequent dry deposition over the subartic Pacific Ocean the entire ocean surface should have increased its POC concentrations and should have been recorded by various satellite sensors. Thus following this work the scientific community is getting closer to conduct a large

  8. Investigation on hardness and impact resistance of automotive brake pad composed with rice husk dust

    NASA Astrophysics Data System (ADS)

    Bahari, Shahril Anuar; Isa, Khairul Hafizee; Kassim, Masitah Abu; Mohamed, Zulkifli; Othman, Eliasidi Abu

    2012-06-01

    In this study, hardness and impact resistance properties of automotive brake pad composed with rice husk dust (RHD) were documented. RHD was mixed with other metallic and synthetic ingredients of automotive brake pad. To obtain RHD, rice husk was ground and dried to 1 - 3% moisture content. The RHD was screened to obtain different dust sizes (80 and 100-mesh) before it was mixed with other materials at different percentages of composition (10 and 30%). The mixture was then pressed to produce brake pad. Rockwell hardness testing machine was used in hardness determination, while Izod impact testing machine was used in impact resistance determination. Hardness resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was significantly higher than 100-mesh. Hardness resistance of automotive brake pad mixed with 30% composition and 100-mesh size of RHD was slightly higher than 80 mesh. However, based on analysis, the difference was not significant. According to the result, hardness resistance of automotive brake pad mixed with 30% composition of RHD was higher than 10%. RHD has filled up the space and enhanced the micro structural behaviour of automotive brake pad. Impact resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was insignificantly higher than 100-mesh. Impact resistance of automotive brake pad mixed with 30% composition and 80-mesh size of RHD was significantly higher than 100 mesh. Large RHD size has increased the capability to resist high-rated impact loading. The impact energy was distributed over wider area for larger particle size. This factor has increased the impact resistance of automotive brake pad from large dust size. Impact resistance of automotive brake pad mixed with 80-mesh size and 30% composition of RHD was higher than 10%. In contrast, impact resistance of automotive brake pad mixed with 100-mesh size and 10% composition of RHD was higher than 30%. However, the difference was not

  9. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu

    2017-06-01

    The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and

  10. Impact of Long-Range Transported African Dust Events on Cloud Chemistry at a Caribbean Tropical Montane Cloud Forest

    NASA Astrophysics Data System (ADS)

    Valle-Diaz, C. J.; Torres-Delgado, E.; Lee, T.; Collett, J. L.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Mayol-Bracero, O. L.

    2013-12-01

    We studied the impact of long-range transported African Dust (LRTAD) on cloud composition and properties at the Caribbean tropical montane cloud forest (TMCF) of Pico del Este (PE), as part of the Puerto Rico African Dust and Clouds Study (PRADACS). Here we present results from measurements performed in July 2011. The use of HYSPLIT backward trajectories, satellite images from the Saharan Air Layer (SAL), and dust forecasting models allowed air masses arriving sampled to be classified as marine, dust, or anthropogenic. Measurements of pH and conductivity obtained onsite revealed higher values in the presence of dust and higher for larger cloud droplets (size cut of 17 μm at 50% efficiency), suggesting a higher content of dust in this fraction. The African dust influence was seen by the presence of nss-Ca and Fe in cloud water and by comparing ratios of Ca, K, and Mg to Na observed in our samples with sea water ratios reported in literature. Interstitial single-particle size and chemistry measured using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed mostly sea-salt particles (Na, Cl, Ca) and dust particles (Fe, Ti, Mg, nss-Ca). The detected particles obtained with the ATOFMS confirmed the presence of dust. Anthropogenic influence detected as the presence of elemental carbon, a tracer for combustion processes, was found to be fairly small according to ATOFMS measurements. An increase in the concentrations of total organic carbon, total nitrogen, and dissolved organic carbon was observed during LRTAD events. Additional results on the chemistry of peroxides, formaldehyde and S(IV) occurring in clouds under the influence of different air masses will be presented at the meeting. Results so far show differences in the physicochemical properties of aerosols and clouds during dust and non-dust events, and show that during LRTAD events, aerosol-cloud-precipitation interactions are altered at PE.

  11. Long-term variability of dust optical depths on Mars during MY24-MY32 and their impact on subtropical lower ionosphere: Climatology, modeling, and observations

    NASA Astrophysics Data System (ADS)

    Sheel, Varun; Haider, S. A.

    2016-08-01

    Dust optical depths (τ) for nine Martian years (MY24-MY32) in the subtropical region (25-35°S) have been used to classify distinct dust scenarios. These data are based on observations at 9.3 µm from the Mars Global Surveyor and Mars Odyssey missions and encompass the regional dust storms which occur every year around solar longitude (Ls) ~ 220° and the two major dust storms of MY25 and MY28. Constrained by these observations and the Mars Climate Sounder observations of detached dust layers, we estimate altitude profiles of dust concentrations. We discuss the characteristics of dust aerosol particles of different size between 0.2 and 3.0 µm by assuming a modified gamma distribution. We then use a comprehensive ion-dust model to calculate ion densities and conductivities in the lower ionosphere of Mars in the absence of dust storm at τ = 0.1 and Ls = 150° and for three dust storm periods viz., (1) major dust storm at τ = 1.7 and Ls = 210°, (2) major dust storm at τ = 1.2 and Ls = 280°, and (3) regional dust storm at τ = 0.5 and Ls = 220°. The model with 12 neutral species considers galactic cosmic rays as a source of ionization. Results show that the density of the dominant hydrated cluster ions and the electrical conductivity are reduced by an order of magnitude near the surface for a few months until the dust storm settles down to its normal condition.

  12. Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts.

    PubMed

    Liu, Yanju; Bello, Olanrewaju; Rahman, Mohammad Mahmudur; Dong, Zhaomin; Islam, Shofiqul; Naidu, Ravi

    2017-07-01

    Lead (Pb) bioaccessibility measurements have been the subject of much research in recent years, given the desire to develop a cost-effective and reliable alternative method to estimate its bioavailability from soils and dusts. This study investigates the relationship between Pb bioaccessibility estimated using the Relative Bioavailability Leaching Procedure (RBALP) and solid phase speciation of Pb using mining impacted soils and associated dusts. Solid phase speciation was conducted prior to and after RBALP extractions. The average Pb concentrations were 59, 67, and 385 mg/kg for top soil, sub-soil, and house dust samples, respectively. Lead bioaccessibility in selected top soils and dusts ranged from 16.7 to 57.3% and 8.9 to 98.1%, respectively. Solid phase speciation of Pb in <250 μm residues prior to and after RBALP extraction revealed 83% decrease in Pb bound to carbonate fraction after RBALP extraction. This accounts for 69% of RBALP-extractable Pb. Besides contribution from carbonate bound Pb, 76.6 and 53.2% of Pb bound to Mn oxyhydroxides and amorphous Fe and Al oxyhydroxides contributed to bioaccessible Pb, respectively. However, Pb bound to Mn oxyhydroxides and amorphous Fe and Al oxyhydroxides account for only 13.8 and 20.0% of total RBALP-extractable Pb, respectively. Both non-specifically bound and easily exchangeable fractions and strongly bound inner-sphere complexes were also part of bioaccessible Pb. The present study demonstrates that bioaccessible Pb is released from both soil solution phase Pb as well as that from all soil solid phase with the most contribution being from Pb bound to carbonate mineral phase.

  13. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  14. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  15. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    NASA Astrophysics Data System (ADS)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  16. Impact of intensive dust outbreaks on marine primary production as seen by satellites

    NASA Astrophysics Data System (ADS)

    Papadimas, Christos; Hatzianastassiou, Nikos; Mihalopoulos, Nikos; Kanakidou, Maria

    2016-04-01

    The impact of intensive dust outbreaks from the African continent on the marine primary production of the Mediterranean sea is here investigated using MODIS satellite observations of atmospheric aerosol optical depth and chlorophyll-a in the seawater. Dust outbreak episodes in the area are detected based on aerosol relevant satellite observations over a 12-year period from 2003 to 2014. For a total of 167 identified episodes, correlations between aerosol optical depth and chlorophyll-a are investigated both on regional and on a pixel by pixel basis as well as for simultaneous or time-lagged satellite observations. The identified co-variations are thoroughly discussed in view of the impact of nutrient atmospheric deposition on the marine biology in the Mediterranean Sea ecosystem. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA - PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY) grant.

  17. Evaluating aerosol impacts on Numerical Weather Prediction in two extreme dust and biomass-burning events

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Benedetti, Angela; Jones, Luke; Razinger, Miha; Haiden, Thomas

    2014-05-01

    The WMO-sponsored Working Group on Numerical Experimentation (WGNE) set up a project aimed at understanding the importance of aerosols for numerical weather prediction (NWP). Three cases are being investigated by several NWP centres with aerosol capabilities: a severe dust case that affected Southern Europe in April 2012, a biomass burning case in South America in September 2012, and an extreme pollution event in Beijing (China) which took place in January 2013. At ECMWF these cases are being studied using the MACC-II system with radiatively interactive aerosols. Some preliminary results related to the dust and the fire event will be presented here. A preliminary verification of the impact of the aerosol-radiation direct interaction on surface meteorological parameters such as 2m Temperature and surface winds over the region of interest will be presented. Aerosol optical depth (AOD) verification using AERONET data will also be discussed. For the biomass burning case, the impact of using injection heights estimated by a Plume Rise Model (PRM) for the biomass burning emissions will be presented.

  18. Note on the Pantellini et al. process for dust impact signals on spacecraft

    NASA Astrophysics Data System (ADS)

    Kellogg, Paul J.

    2017-01-01

    In some recent papers it has been proposed that thick antennas are much more sensitive for the detection of dust impacts than thin wire antennas. This proposal attributes a large part of the signal on the antenna to a disruption of the photoelectron cloud around the antenna, and the signal is larger on thick antennas because there are more photoelectrons. However, comparison of thick and thin wire antennas on the Wind spacecraft has shown that thick antennas are somewhat more sensitive than thin wire antennas, but the difference is not as great as first supposed. Here an attempt is made to understand the quantitative difference between the responses of thick and thin antennas. It is found that a recent conjecture by the present author that the necessary increase in angular momentum for photoelectrons to avoid returning to a thick antenna would compensate for the larger number of photoelectrons is not correct. It is shown, however, that there is a significant difference in sensitivity between thin and thick antennas. An accurate calculation of the antenna sensitivities is not done here, as it depends on a number of factors, including a large difference in electric field around the antennas. Nevertheless, the photoelectron disruption mechanism is an important advance in understanding the coupling of dust impacts to antennas.

  19. Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations.

    PubMed

    Degtjarenko, Polina; Marmor, Liis; Tõrra, Tiiu; Lerch, Michèle; Saag, Andres; Randlane, Tiina; Scheidegger, Christoph

    2016-10-01

    Very little is known whether and how air pollution impacts genetic diversity of lichenized fungi that are well-known indicators of environmental quality. We studied the genetic variation of eight Usnea subfloridana populations in Pinus sylvestris-dominated boreal forest stands in southern Estonia, Northern Europe; four of these populations were exposed to long-term dust pollution released from unpaved road. The mean bark pH of lichen phorophyte differed considerably between polluted and unpolluted forest stands. We genotyped 274 Usnea thalli using nine specific fungal microsatellite markers. Genetic variation measures were calculated and compared between populations from different habitats. Allelic richness, Shannon's information index, and genetic diversity of lichen populations were significantly higher in unpolluted forest sites than in polluted forest sites. We conclude that environmental disturbances caused by alkaline dust pollution had negative impact on the genetic variation of U. subfloridana, a common species of lichenized fungi. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Interstellar Dust - A Review

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  1. Low velocity impacts into dust: results from the COLLIDE-2 microgravity experiment

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.

    2003-07-01

    We present the results of the second flight of the Collisions Into Dust Experiment (COLLIDE-2), a space shuttle payload that performs six impact experiments into simulated planetary regolith at speeds between 1 and 100 cm/s. COLLIDE-2 flew on the STS-108 mission in December 2001 following an initial flight in April 1998. The experiment was modified since the first flight to provide higher quality data, and the impact parameters were varied. Spherical quartz projectiles of 1-cm radius were launched into quartz sand and JSC-1 lunar regolith simulant targets 2-cm deep. At impact speeds below ˜20 cm/s the projectile embedded itself in the target material and did not rebound. Some ejecta were produced at ˜10 cm/s. At speeds >25 cm/s the projectile rebounded and significant ejecta was produced. We present coefficients of restitution, ejecta velocities, and limits on ejecta masses. Ejecta velocities are typically less than 10% of the impact velocity, and the fraction of impact kinetic energy partitioned into ejecta kinetic energy is also less than 10%. Taken together with a proposed aerodynamic planetesimal growth mechanism, these results support planetesimal growth at impact speeds above the nominal observed threshold of about 20 cm/s.

  2. Impacts of dust on regional tropospheric chemistry during the ACE-Asia experiment: A model study with observations

    NASA Astrophysics Data System (ADS)

    Tang, Youhua; Carmichael, Gregory R.; Kurata, Gakuji; Uno, Itsushi; Weber, Rodney J.; Song, Chul-Han; Guttikunda, Sarath K.; Woo, Jung-Hun; Streets, David G.; Wei, Cao; Clarke, Antony D.; Huebert, Barry; Anderson, Theodore L.

    2004-10-01

    A comprehensive regional-scale chemical transport model, Sulfur Transport and Emissions Model 2001 (STEM-2K1), is employed to study dust outflows and their influence on regional chemistry in the high-dust Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) period, from 4-14 April 2001. In this period, dust storms are initialized in the Taklamagan and Gobi deserts because of cold air outbreaks, are transported eastward, and are often intensified by dust emitted from exposed soils as the front moves off the continent. Simulated dust agrees well with surface weather observations, satellite images, and the measurements of the C-130 aircraft. The C-130 aircraft observations of chemical constituents of the aerosol are analyzed for dust-rich and low-dust periods. In the submicron aerosol, dust-rich air masses have elevated ratios of ΔCa/ΔMg, ΔNH4+/ΔSO42-, and ΔNO3-/ΔCO (Δ represents the difference between observed and background concentrations). The impacts of heterogeneous reactions on dust involving O3, NO2, SO2, and HNO3 are studied by incorporating these reactions into the analysis. These reactions have significant influence on regional chemistry. For example, the low O3 concentrations in C-130 flight 6 can be explained only by the influence of heterogeneous reactions. In the near-surface layer, the modeled heterogeneous reactions indicated that O3, SO2, NO2, and HNO3 are decreased by up to 20%, 55%, 20%, and 95%, respectively, when averaged over this period. In addition, NO, HONO, and daytime OH can increase by 20%, 30%, and 4%, respectively, over polluted regions. When dust encounters fresh pollutants, these heterogeneous reactions can lead to a series of complex responses of the photochemical system. In addition, these reactions can alter the chemical-size distribution of the aerosol. Under heavy dust loadings, these reactions can lead to >20% of the sulfate and >70% of the nitrate being associated with the coarse fraction. The radiative

  3. Simulating the impact of X-ray heating during the cosmic dawn

    NASA Astrophysics Data System (ADS)

    Ross, Hannah E.; Dixon, Keri L.; Iliev, Ilian T.; Mellema, Garrelt

    2017-07-01

    Upcoming observations of the 21-cm signal from the epoch of reionization will soon provide the first direct detection of this era. This signal is influenced by many astrophysical effects, including long-range X-ray heating of the intergalactic gas. During the preceding cosmic dawn era, the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest volume (349 Mpc comoving = 244 h-1Mpc) full numerical radiative transfer simulations to date of this epoch which include the effects of helium and multifrequency heating, both with and without X-ray sources. We show that X-ray sources contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared to the common assumption of temperature saturation. The 21-cm differential brightness temperature power spectrum is initially boosted on large scales, before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolution around 11 arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.

  4. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    NASA Astrophysics Data System (ADS)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  5. The footprint of cometary dust analogues - I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

    NASA Astrophysics Data System (ADS)

    Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.

    2017-07-01

    Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.

  6. Experimental Hypervelocity Dust Impact in Olivine: FIB/TEM Characterization of Micron-Scale Craters with Comparison to Natural and Laser-Simulated Small-Scale Impact Effects

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team

    2017-01-01

    The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.

  7. Experimental modeling of impact of space dust and debris on flying vehicles and their components

    NASA Astrophysics Data System (ADS)

    Khristoforov, B. D.

    2011-06-01

    For modeling the space dust and debris effect on flying vehicles, an investigation of the low-velocity impact of corundum and tungsten powders, accelerated by explosion, with particle size up to 50 microns on steel and duralumin targets was carried out. Also studied was the impact of sewing needles against metal and dielectric barriers, antimeteor shield models, and duralumin containers with hard materials, gunpowder, and explosives. At impact of powders at velocities of up to 2 km/s and needles at a velocity of up to 0.5 km/s against metals, the channels arose with lengths greater than 100 and 50 diameters of a striker. At impact of needles, the containers with hard explosive materials were destroyed because of ignition of their contents, and containers with plastic explosive were punched through, and no burning occurred. The energy, released at destruction of plexiglas blocks and containers with hard materials, many times exceeded the impact energy due to release of the elastic energy stored in them.

  8. A Numerical Estimate of The Impact of The Saharan Dust On Medityerranean Trophic Web

    NASA Astrophysics Data System (ADS)

    Crise, A.; Crispi, G.

    A first estimate of the importance of Saharan dust as input of macronutrients on the phytoplankton standing crop concentration and primary production at basin scale is here presented using a three-dimensional numerical model of the Mediterranean Sea. The numerical scheme adopted is a 1/4 degree resolution 31 levels MOM-based eco- hydrodynamical model with climatological ('perpetual year') forcings coupled on-line with a structure including multi-nutrient, size-fractionated phytoplankton functional groups, herbivores and a parametrized recycling detritus submodel, so to (explicitely or implicitely) include the major energy pathways of the upper layer mediterranean ecosystem. This model takes into account as potential limiting factors, among others, Nitrogen (in its oxidized and reduced forms) and Phosphorus. A gridded data setof (wet and dry) dust deposition over Mediterranean derived from SKIRON operational model is used to identify statistically the areas and the duration/intensity of the events. Starting from this averaging process, experiments are carried out to study the dust induced episodes of release of bioavailable phosphorus which is supposed to be the limiting factor in the oligotrophic waters of the surface layer in Med Sea. The metrics for the evaluation of the impact of deposition have been identified in phyto standing crop, primary and export production and switching in the food web functioning. These global parameters, even if cannot exaust the whealth of the informations provided by the model, can help discriminate the sensitivity of food web to the nutrient pulses induced by the deposition. First results of a scenario analysis of typical atmospheric input events, provide evidence of the response of the upper layer ecosystem to assess the sensitivity of the model predictions to the variability to integrated intensity of external input.

  9. Impact of Dust Cooling on Direct-collapse Black Hole Formation

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Omukai, K.; Habouzit, M.; Schleicher, D. R. G.; Volonteri, M.

    2016-05-01

    Observations of quasars at z\\gt 6 suggest the presence of black holes with a few times {10}9\\quad {M}⊙ . Numerous models have been proposed to explain their existence, including a direct collapse, which provides massive seeds of {10}5\\quad {M}⊙ . The isothermal direct collapse requires a strong Lyman-Werner (LW) flux to quench {{{H}}}2 formation in massive primordial halos. In this study, we explore the impact of trace amounts of metals and dust enrichment. We perform three-dimensional cosmological simulations for two halos of \\gt {10}7\\quad {M}⊙ with Z/{Z}⊙ ={10}-4{--}{10}-6 illuminated by an intense LW flux of {J}21={10}5. Our results show that initially the collapse proceeds isothermally with T˜ 8000 K, but dust cooling becomes effective at densities of {10}8{--}{10}12 {{cm}}-3 and brings the gas temperature down to a few 100-1000 K for Z/{Z}⊙ ≥slant {10}-6. No gravitationally bound clumps are found in the Z/{Z}⊙ ≤slant {10}-5 cases by the end of our simulations, in contrast to the case with Z/{Z}⊙ ={10}-4. Large inflow rates of ≥slant 0.1\\quad {M}⊙ {{yr}}-1 are observed for Z/{Z}⊙ ≤slant {10}-5, similar to a zero-metallicity case, while for Z/{Z}⊙ ={10}-4 the inflow rate starts to decline earlier because of dust cooling and fragmentation. For given large inflow rates, a central star of ˜ {10}4\\quad {M}⊙ may form for Z/{Z}⊙ ≤slant {10}-5.

  10. Desert dust transported over Europe: Lidar observations and model evaluation of the radiative impact

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; Di Genova, Glauco; Coppari, Eleonora; De Luca, Natalia; Di Carlo, Piero; Iarlori, Marco; Rizi, Vincenzo

    2015-04-01

    Three years of measurements of aerosol vertical profiles (2007-2009) made at the lidar station of L'Aquila, a site in central Italy that is part of the European Aerosol Research Lidar Network, are studied by means of well-tested radiative transfer models to analyze the radiative impact of mineral dust aerosols transported from the Sahara desert. Sixteen major episodes of desert dust transport are considered; the radiative analysis is conducted in terms of diurnal averages of the top-of-atmosphere radiative flux changes (TOARFC) with respect to a reference "clean" aerosol profile not perturbed by long-range transported desert particles. The aerosol size distribution, needed as an input parameter for the Mie scattering program to obtain single-scattering albedo, asymmetry parameter, and extinction scaling over the whole wavelength spectrum, is obtained from simultaneous surface measurements with a multichannel aerosol spectrometer. The calculated average net TOARFC is +2.3 and +3.0 W/m2 in clear- and total-sky conditions, respectively. Solar, planetary components account for -0.42 and +2.7 W/m2 in clear-sky conditions and +0.93 and +2.1 W/m2 in total-sky conditions, respectively. The large effective radius of these coarse mode soil dust particles (reff = 1.5 µm) makes the longwave planetary component of the TOARFC dominant over the solar component, at least for typical continental surface albedo values (0.18 on average, at L'Aquila). The solar component, however, shows a pronounced sensitivity to the surface albedo and becomes dominant over the longwave component for both an ocean albedo (0.07) and a typical surface-snow albedo (0.4), with TOARFC values of -6.3 and +10.6 W/m2, respectively.

  11. Impact of Atmospheric Mineral Dust on the Surface Energy Balance and PAR in the NEESPI Study Domain

    NASA Astrophysics Data System (ADS)

    Sokolik, I. N.; Dickinson, R. E.; Dai, Y.

    2006-12-01

    Large uncertainties in the effects of changing atmospheric aerosols are among the major factors currently limiting our understanding of and ability to predict global climate changes. The Northern Eurasia Earth Science Partnership Initiative (NEESPI) Science Plan identifies atmospheric aerosols and pollutions and their impacts on and interactions with the Earth systems (and terrestrial ecosystem dynamics in particular) as a cross- cutting topic of special interest. Wind-blown mineral dust, being an important atmospheric constituent in the NEESPI drylands, can exert a strong radiative impact as well as trigger a multitude of complex feedbacks that remain poorly defined. Given the intimate coupling between the land processes and wind-blown atmospheric dust and their importance in the climate system, an improved understanding of how land-use/land-cover changes affect Asian dust and associated feedbacks is urgently needed to make assessments of climate change more realistic. The focus of this talk will be on the impact of atmospheric dust on the surface energy balance and photosynthetically active radiation (PAR). Both processes play a key role in the ecosystem functioning as well as overall land-atmosphere interactions, but they are rarely considered in an integrated fashion. Focusing on Central and East Asia, we present the results of extensive radiative transfer modeling in the presence of dust over the different type of land surfaces. The surface albedo and land emissivity retrieved from MODIS and ASTER, respectively, were included in the modeling. The modifications of the radiative fields are quantified and used to estimate changes of surface temperatures, surface fluxes of heat and moisture, boundary layer height, surface winds and other dust induced changes. Formulation of the possible feedbacks in the coupled land- atmospheric dust system and implications for the integrated systems modeling will be addressed.

  12. Model analysis of soil dust impacts on the boundary layer meteorology and air quality over East Asia in April 2015

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Meigen; Zhu, Jia; Skorokhod, Andrei

    2017-05-01

    An online coupled meteorology-chemistry-aerosol model (WRF-Chem) is used to quantify the impact of soil dust on radiative forcing, boundary layer meteorology and air quality over East Asia. The simulation is conducted from 14 to 17 April 2015, when an intense dust storm originated in the Gobi Desert and moved through North China. An integrated comparison analysis using surface observations, satellite, and lidar measurements demonstrates the excellent performance of the WRF-Chem model for meteorological parameters, pollutant concentrations, aerosol optical characteristics, and the spatiotemporal evolution of the dust storm. The maximum aerosol optical depth induced by dust aerosols is simulated to exceed 3.0 over the dust source areas and 1.5 over the downwind regions. Dust has a cooling effect (- 1.19 W m- 2) at the surface, a warming effect (+ 0.90 W m- 2) in the atmosphere and a relatively small forcing (- 0.29 W m- 2) at the top of the atmosphere averaged over East Asia from 14 to 17 April 2015. Due to the impact of dust aerosols, the near-surface air temperature is decreased by 0.01 °C and 0.06 °C in the daytime and increased by 0.13 °C and 0.14 °C at night averaged over the dust sources and the North China Plain (NCP), respectively. The changes in relative humidity are in the range of - 0.38% to + 0.04% for dust sources and - 0.40% to + 0.27% for NCP. The maximum decrease in wind speed of 0.1 m s- 1 is found over NCP. The planetary boundary layer height during the daytime exhibits maximum decreases of 16.34 m and 41.70 m over dust sources and NCP, respectively. The pollutant concentrations are significantly influenced by dust-related heterogeneous chemical reactions, with a maximum decrease of 1.66 ppbV for SO2, 7.15 ppbV for NOy, 35.04 μg m- 3 for NO3-, and a maximum increase of 9.47 μg m- 3 for SO42 - over the downwind areas.

  13. Potential Impacts of Pollution Aerosol and Dust Acting As Cloud-Nucleating Aerosol on Precipitation in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, V.; Cotton, W. R.; Carrio, G. G.

    2014-12-01

    The southwest US has huge demands on water resources. The Colorado River Basin (CRB) is potentially affected by anthropogenic aerosol pollution and dust acting as cloud-nucleating aerosol as well as impacting snowpack albedo.The specific objective of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains for the years 2005-2006. We examine the combined effects of anthropogenic pollution aerosol and dust serving as cloud condensation nuclei (CCN), ice nuclei (IN) and giant CCN(GCCN) on precipitation in the CRB. Anthropogenic pollution can enhance droplet concentrations, and decrease collision and coalescence and ice particle riming largely via the "spillover" effect. Dust can serve as IN and enhance precipitation in wintertime orographic clouds. Dust coated with sulfates or originating over dry lake beds can serve as GCCN which when wetted can result in larger cloud droplets and thereby enhance the warm-rain collision and coalescence process and ice particle riming. But smaller dust particles coated with sulfates, can decrease collision and coalescence and ice particle riming similar to anthropogenic pollution aerosols. The Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) version 6.0 is used for this study. RAMS was modified to ingest GEOS-CHEM output data and periodically update aerosol fields. GEOS-CHEM is a chemical transport model which uses assimilated meteorological data from the NASA Goddard Earth Observation System (GEOS). The aerosol data comprise a sum of hydrophobic and hydrophilic black carbon and organic aerosol, hydrophilic SOAs, hydrocarbon oxidation and inorganic aerosols (nitrate, sulfate and ammonium). In addition, a RAMS-based dust source and transport model is used. Preliminary analysis suggests pollution dominates over dust resulting in a decrease in precipitation via the spillover effect. Dust serving as GCCN and IN tend to enhance ice

  14. Cosmic Rays and the Origin of Volatiles in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Chaparro-Molano, Germán; Kamp, Inga

    2016-01-01

    The origin of water and other volatiles in protoplanetary disks can be either interstellar or due to chemical processing during the protoplanetary disk phase. Depending on the strength of the ionization field present during this stage, an active chemical evolution in the protoplanetary disk midplane can lead to formation of complex volatiles on timescales shorter than the disk dissipation timescale. For this reason, we investigate the effects of cosmic rays and the usually neglected cosmic ray induced UV ionization field in time dependent chemical models of protoplanetary disks. These results are benchmarked against our current knowledge of the chemical composition of cometary ices. We conclude that water and other, more complex volatiles can be preserved in the ice mantles of dust grains. This ice mantle growth can also have a significant impact on the dust opacity and hence on the temperature profile of the disk midplane. This effect will be observable in the near future with ALMA.

  15. Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey.

    PubMed

    Guney, Mert; Onay, Turgut T; Copty, Nadim K

    2010-05-01

    The purpose of this study was to investigate the impact of overland traffic on the spatial distribution of heavy metals in urban soils (Istanbul, Turkey). Road dust, surface, and subsurface soil samples were collected from a total of 41 locations along highways with dense traffic and secondary roads with lower traffic and analyzed for lead (Pb), zinc (Zn), and copper (Cu) concentrations. Statistical evaluation of the heavy metal concentrations observed along highways and along the secondary roads showed that the data were bimodally distributed. The maximum observed Pb, Zn, and Cu concentrations were 1,573, 522 and 136 mg/kg, respectively, in surface soils along highways and 99.3, 156, and 38.1 mg/kg along secondary roads. Correlation analysis of the metal concentrations in road dust, surface and 20-cm depth soils suggests the presence of a common pollution source. However, metal concentrations in the deeper soils were substantially lower than those observed at the surface, indicating low mobility of heavy metals, especially for Pb and Zn. A modified kriging approach that honors the bimodality of the data was used to estimate the spatial distribution of the surface concentrations of metals, and to identify hotspots. Results indicate that despite the presence of some industrial zones within the study area, traffic is the main heavy metal pollution source.

  16. Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1

    NASA Astrophysics Data System (ADS)

    Ansari, A.; ISPE Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector onboard NASA's Stardust Mission - the first to return solid extraterrestrial material to Earth from beyond the Moon - was exposed to the interstellar dust stream for a total of 229 days prior to the spacecraft's return in 2006 [1]. Aluminum foils and aerogel tiles on the collector may have captured the first samples of contemporary interstellar dust. Interstellar Preliminary Examination (ISPE) focuses in part on crater identification and analysis of residue within the craters to determine the nature and origin of the impacting particles. Thus far, ISPE has focused on nine foils and found a total of 20 craters. The number density of impact craters on the foils exceeds by far estimates made from interstellar flux calculations [2]. To identify craters, foil I1033N,1 was scanned with the Field Museum's Evo 60 Scanning Electron Microscope (SEM) at a resolution of 52 nm/pixel with a 15 kV and 170-240 pA beam. Contamination was monitored according to the ISPE protocol: four 4 μm × 3 μm areas of C layers of different thicknesses on a Stardust-type Al foil were irradiated 20 times for 50 s each, while the C and Al signals were recorded with energy-dispersive X-ray spectroscopy (EDS). The C/Al ratio did not increase after 20 repetitions on each of the four areas. The same experiment repeated 7 months later yielded identical results. Thus, analysis with the SEM results in no detectable contamination. Crater candidates were manually selected from SEM images, then reimaged at higher resolution (17 nm/pixel) in order to eliminate false detections. The foil was then sent to Washington University for Auger Nanoprobe elemental analysis of crater 11_175 (diam. 1.1 μm), and to the Naval Resea