Science.gov

Sample records for cosmic muon system

  1. Overview of the GEM muon system cosmic ray test program at the SSCL

    SciTech Connect

    Milner, E.C.

    1993-04-01

    Muon track resolution exceeding 75-{mu}m per plane is one of the main strengths of the GEM detector design, and will be crucial in searches for Higgs Bosons, heavy Z-Bosons, technicolor, and supersymmetry. Achieving this resolution coal requires improved precision in muon chambers and their alignment. A cosmic ray test stand known as the Texas Test Rio, (TTR) has been created at the SSCL for studying candidate GEM muon chamber technologies. Test results led to selecting Cathode Strip Chambers (CSC) as the GEM muon system baseline chamber technology.

  2. A propose for a counting and recording system for cosmic ray (muon) telescopes

    NASA Astrophysics Data System (ADS)

    Braga, Carlos Roberto; Schuch, Nelson Jorge; Dal Lago, Alisson; Campos, Alexandre

    2012-07-01

    A multidirecional high energy cosmic ray (muon) telescope is operational at the Southern Space Observatory, in Sao Martinho da Serra, RS, Brazil. This telescope is part of the Global Muon Detector Network (GMDN) and aims to study and forecast Space Weather. This paper proposes a new counting, correlation and recording solution based on an embedded system able to interface observational data by internet for remote monitoring. It is built around a Rabbit 3000 microcontroller with TCP/IP Ethernet 10Base-T connectivity. It is able to detect and count the 200ns pulses generated by the sensor system (scintillator plastics coupled with photomultipliers) during a specified period of time (generally one second). A preliminary version of a monitoring web page was developed and it is able to show the cosmic ray (muon) data of one detector in real time. The current system is an attempt to improve the reliability of the telescope when comparing to the recording system based on a personal computer, currently under operation. One advantage is the easy maintenance, since all the counting and correlation boards currently under operation can be replaced by an embedded system. Besides, as the hardware is of-the-shelf, it is only necessary to develop software routines, which is based on royalty-free libraries.

  3. A proposal of a counting and recording system for cosmic ray muon detectors

    NASA Astrophysics Data System (ADS)

    Braga, C. R.; Campos, A.; Schuch, N. J.; Dal Lago, A.

    2013-02-01

    A multidirecional high energy cosmic ray (muon) telescope is operational at the Southern Space Observatory, in Sao Martinho da Serra, RS, Brazil. This telescope is part of the Global Muon Detector Network (GMDN) and aims to study and forecast Space Weather. This paper proposes a new counting, correlation and recording solution based on an embedded system able to interface observational data by internet for remote monitoring. It is built around a Rabbit 3000 microcontroller with TCP/IP Ethernet 10Base-T connectivity. It is able to detect and count 200 ns pulses generated by the sensor system (scintillator plastics coupled with photomultipliers) during a specified period of time (generally one second). A preliminary version of a monitoring web page was developed and it is able to show the cosmic ray (muon) data of one detector in real time. The current system is an attempt to improve the reliability of the telescope when comparing to the recording system based on a personal computer, currently under operation. One advantage is the easy maintenance, since all the counting and correlation boards currently under operation can be replaced by an embedded system. Besides, as the hardware is off-the-shelf, it is only necessary to develop software routines, which is based on royalty-free libraries.

  4. A high resolution resistive plate chamber tracking system developed for cosmic ray muon tomography

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J. J.; Burns, J.; Steer, C.; Quillin, S.

    2013-08-01

    This work describes the performance of a muon tracker built with high resolution glass resistive plate chambers. The tracker is the result of a collaboration between University of Bristol and the Atomic Weapon Establishment to develop a reliable and cost effective system to scan shipping containers in search of special nuclear materials. The current setup consists of 12 detection layers, each comprised of a resistive plate chamber read out by 1.5 mm pitch strips. For most of the layers we achieved an efficiency better than 95%, a purity above 95% and a signal-to-noise ratio better than 300. A spatial resolution better than 500μm was obtained for most layers, thus satisfying the main requirements to apply resistive plate chambers to cosmic ray tomography.

  5. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  6. Cosmic muons, as messengers from the Universe

    SciTech Connect

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the “penetrating” component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  7. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  8. Noninvasive Reactor Imaging Using Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.

    2015-10-01

    Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.

  9. Cosmic ray sun shadow in Soudan 2 underground muon flux.

    SciTech Connect

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Fields, T. H.; Goodman, M. C.; Joffe-Minor, T.; Price, L. E.; Seidlein, R.; Soudan 2 Collaboration; Thron, J. L.

    1999-06-23

    The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. The authors report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a 3.3{sigma} shadow observed during the years 1995 to 1998.

  10. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  11. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  12. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  13. Development of a Portable Muon Witness System

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with

  14. Muon Production in Relativistic Cosmic-Ray Interactions

    SciTech Connect

    Klein, Spencer

    2009-07-27

    Cosmic-rays with energies up to 3x1020 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is sqrt snn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders.This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (pT) spectra in cosmic-ray air showers fromMACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher pT region where perturbative QCD should apply. With a 1 km2 surface area, the full IceCube detector should observe hundreds of muons/year with pT in the pQCD regime.

  15. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  16. Muon multiplicities measured using an underground cosmic-ray array

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Enqvist, T.; Bezrukov, L.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Loo, K.; Lubsandorzhiev, B.; Petkov, V.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2016-05-01

    EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or ~ 1 — 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations ~ 15 m2 each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.

  17. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    NASA Astrophysics Data System (ADS)

    Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Yang, G.; Zimmerman, C.

    2015-03-01

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the U.K. Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  18. A Low-cost, Portable, Ruggedized Cosmic Muon Detector Prototype for Geological Applications

    NASA Astrophysics Data System (ADS)

    Aguayo Navarrete, E.; Bonneville, A.

    2012-12-01

    Muons, neutrons and protons observed at the Earth's surface are generated by cosmic ray primaries causing cascades in the atmosphere. Cosmic muon tomography is a cost effective real time monitoring technique that can be applied to determine large scale displacement of reservoir fluids induced by injection of liquid or gas. Such technique would need a detector array with an overall sensitivity tailored to the monitored volume and the expected density change in the target geological formation over the projected injection time. A scalable detector system, able to withstand the harsh conditions of underground deployment is a must for the evaluation of this promising technique. This paper presents the design and construction of a portable muon flux monitor, known as the μ-Witness. The detector is based on coincidence counts between two scintillator panels to be used as an indicator of density-dependent attenuation of cosmic muon flux. The Muon Witness detector (μ-Witness) has been designed to be able to measure cosmic muon flux for periods of time of up to 40 days, using battery power. The prototype has been mounted in a ruggedized case to enable measurements in underground environments. The purpose of this prototype is to evaluate the feasibility of using 3D density tomography in geological applications. The efficiency of the detector has been experimentally determined to be 57±3%. This measurement was performed by comparing the detector response to the response of a larger and more efficient muon counter in the same location. Using Monte Carlo simulations of the cosmic muon flux, and the measured efficiency, the projected sensitivities for density changes in large underground monitored volumes are presented as well as the results of a test run in a shallow underground facility. Along with a detector prototype, a model of the muon attenuation inversion must be developed in order to take into account the different energy and angular distribution of the cosmic muons

  19. The fraction of muon tracks in cosmic neutrinos

    SciTech Connect

    Vissani, Francesco; Pagliaroli, Giulia; Villante, Francesco L. E-mail: giulia.pagliaroli@lngs.infn.it

    2013-09-01

    The study of the distintive signatures of the ultra high energy events recently seen by IceCube [1-4] can allow to single the neutrino origin out. The detection of tau neutrinos would be a clear way to prove that they come from cosmic distances, but at the highest energies currently seen, about 1 PeV, an experimental characterization of tau events is difficult. The study of the fraction of the muon tracks seems more promising. In fact, for any initial composition, because of the occurrence of flavor oscillations and despite their uncertainties, the fraction of muon tracks in the cosmic neutrinos is smaller than the one of atmospheric neutrinos, even hypothesizing an arbitrarily large contribution from charmed mesons. A good understanding of the detection efficiencies and the optimization of the analysis cuts, along with a reasonable increase in the statistics, should provide us with a significant test of the cosmic origin of these events.

  20. Radiographic Images Produced by Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Alfaro, Rubén

    2006-09-01

    An application of high energy physics instrumentation is to look for structure or different densities (materials) hidden in a matrix (tons) of material. By tracing muons produced by primary Cosmic Rays, it has been possible to generate a kind of radiographs which shows the inner structure of dense containers, monuments or mountains. In this paper I review the basics principles of such techniques with emphasis in the Sun Pyramid project, carried out by IFUNAM in collaboration with Instituto Nacioanal de Antropologia e Historia.

  1. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  2. Investigation of cosmic-ray muon induced processes by the MIREDO facility.

    PubMed

    Bikit, K; Mrdja, D; Bikit, I; Veskovic, M

    2014-05-01

    The MIREDO (Muon Induced Rare Event Dynamic Observatory) spectrometer system is primarily developed for the study of cosmic muon induced processes in different materials. Exploration of such interactions can be important for ultra-low background experiments. The system is based on the 100% relative efficiency ultra-low-background HPGe spectrometer. With the addition of two plastic scintillators and a fast-slow coincidence circuit, the coincidence events between the plastic detectors and the HPGe spectrometer have been investigated. First results derived for a CaO powder sample, placed in a Marinelli beaker, are presented and discussed.

  3. Cosmic ray muon charge ratio in the MINOS far detector

    SciTech Connect

    Beall, Erik B.

    2005-12-01

    The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub μ+/Nμ-) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is Reff = 1.346 ± 0.002 (stat) ± 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 ± 0.008 (stat) ± 0.016 (syst) + (1.8 ± 0.3) x 10-5 x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

  4. High-energy cosmic ray muons in the Earth's atmosphere

    SciTech Connect

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-15

    We present the calculations of the atmospheric muon fluxes at energies 10-10{sup 7} GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  5. High-energy cosmic ray muons in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2013-03-01

    We present the calculations of the atmospheric muon fluxes at energies 10-107 GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.

  6. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show

  7. Inspection of Alpine glaciers with cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Lechmann, Alessandro; Mair, David; Scampoli, Paola; Schlunegger, Fritz; Vladymyrov, Mykhailo

    2016-04-01

    Radiography using cosmic-ray muons represents a challenging method for probing the bedrock topography beneath Alpine glaciers. We present the current status of our feasibility study at Eiger glacier, situated on the western flank of the Eiger in the Jungfrau region, Central Swiss Alps. The muon radiography is a technique that has been recently developed to investigate the internal density profiles of geoscientific targets. It is based on the measurement of the absorption of the cosmic-ray muons inside a material. Because the energy spectrum of cosmic-ray muons and the energy dependence of muon range have been studied well during the past years, the attenuation of the muon flux can be used to derive the column density, i.e. the density integrated along the muon trajectories, of geoscientific targets. This technique has recently been applied for non-invasive inspection of volcanoes, nuclear reactors, seismic faults, caves and etc. The greatest advantage of the method in the field of glacier studies is that it yields a unique solution of the density underneath a glacier without any assumption of physical properties inside the target. Large density contrasts, as expected between glacier ice (˜ 1.0g/cm3) and bedrock (˜ 2.5g/cm3), would allow us to elucidate the shape of the bedrock in high resolution. Accordingly, this technology will provide for the first time information on the bedrock surface beneath a steep and non-accessible Alpine glacier, in a complementary way with respect to other exploration methods (drilling, ground penetrating radar, seismic survey, gravity explorations and etc.). Our first aim is to demonstrate the feasibility of the method through a case study at the Eiger glacier, situated in the Central Swiss Alps. The Eiger glacier straddles the western flank of the Eiger between 3700 and 2300 m above sea level (a.s.l.). The glacier has shortened by about 150 m during the past 30 years in response to the ongoing global warming, causing a concern for

  8. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of {approx}1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 {plus_minus} 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  9. The Nagoya cosmic-ray muon spectrometer 3, part 1: Preliminary observations

    NASA Technical Reports Server (NTRS)

    Kamiya, Y.; Shibata, S.; Iijima, K.; Iida, S.

    1985-01-01

    There are some discrepancies among the data of absolute muon intensities at large zenth angles. Through the analysis of the data obtained in the previous measurement by Nagoya Cosmic Ray Spectrometer, one of the sources of these discrepancies has been found to be the ambiguity induced by the selection criteria with which genuine muons are distinguished from the backgrounds. To remove the ambiguity of this kind, it is necessary to know the amount of the backgrounds and their characteristics in detail. Some features of the background events were reported from the observations by using this triggering system of Nagoya Cosmic Ray Spectrometer. In this paper, the results of extended observations using track detector together with this system are reported.

  10. SurveillanceRadiographic imaging with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Borozdin, Konstantin N.; Hogan, Gary E.; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2003-03-01

    Despite its enormous success, X-ray radiography has its limitations: an inability to penetrate dense objects, the need for multiple projections to resolve three-dimensional structure, and health risks from radiation. Here we show that natural background muons, which are generated by cosmic rays and are highly penetrating, can be used for radiographic imaging of medium-to-large, dense objects, without these limitations and with a reasonably short exposure time. This inexpensive and harmless technique may offer a useful alternative for detecting dense materials - for example, a block of uranium concealed inside a truck full of sheep.

  11. Cosmic-Ray Muon Intensity Deep Underground versus Depth

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; Sellschop, J. P. F.; Crouch, M. F.; Kropp, W. R.; Sobel, H. W.; Gurr, H. S.; Lathrop, J.; Reines, F.

    Cosmic-ray muons produced in the earth's atmosphere were measured at a depth of 8.71×104 g cm-2 with a large-area (170 m2) liquid-scintillation-detector hodoscope. These data taken together with those of other workers lead to an improved muon vertical-depth intensity curve, Iv(h)=aμe-h/λ, where Iv(h)= vertical intensity, aμ=(1.04-0.12+0.21)×10-6 cm-2 sec-1 sr-1, λ=(8.04-0.20+0.36)×104 g cm-2, and h = depth in g cm-2. A comparison of these results with those expected from the sea-level muon spectra via an improved calculation may indicate the need for an increased energy loss, probably via the photonuclear interaction as suggested by Keuffel el al. The results are not inconsistent with the presence of the X process of Keuffel et al.

  12. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Blyth, S. C.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Yeh, M.; Zhang, B. J.; Aberdeen Tunnel Experiment Collaboration

    2016-04-01

    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7 ±0.6 )×10-6 cm-2 s-1 sr-1 . The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19 ±0.08 (stat)±0.21 (syst))×10-4 neutrons /(μ .g .cm-2 ) . A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩ 0.76 ±0.03 for liquid-scintillator targets.

  13. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGESBeta

    Yeh, M.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; et al

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  14. Detection of high-Z objects using multiple scattering of cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Priedhorsky, William C.; Borozdin, Konstantin N.; Hogan, Gary E.; Morris, Christopher; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2003-10-01

    We demonstrate that high-Z material can be detected and located in three dimensions using radiographs formed by cosmic-ray muons. Detection of high-Z material hidden inside large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons [K. N. Borozdin et al., Nature (London) 422, 277 (2003)]. Here, we show that compact, high-Z objects can be detected and located in three dimensions with muon radiography. The natural flux of cosmic-ray muons [P. K. F. Grieder, Cosmic Rays at Earth (Elsevier, New York, 2001)], approximately 10 000 m-2 min-1, can form useful images in ˜1 min, using large-area muon detectors like those used in high-energy physics.

  15. The Nagoya cosmic-ray muon spectrometer 3, part 4: Track reconstruction method

    NASA Technical Reports Server (NTRS)

    Shibata, S.; Kamiya, Y.; Iijima, K.; Iida, S.

    1985-01-01

    One of the greatest problems in measuring particle trajectories with an optical or visual detector system, is the reconstruction of trajectories in real space from their recorded images. In the Nagoya cosmic-ray muon spectrometer, muon tracks are detected by wide gap spark chambers and their images are recorded on the photographic film through an optical system of 10 mirrors and two cameras. For the spatial reconstruction, 42 parameters of the optical system should be known to determine the configuration of this system. It is almost impossible to measure this many parameters directly with usual techniques. In order to solve this problem, the inverse transformation method was applied. In this method, all the optical parameters are determined from the locations of fiducial marks in real space and the locations of their images on the photographic film by the non-linear least square fitting.

  16. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek J.; Green, Jesse Andrew; McDuff, George G.; Lukic, Zarija; Milner, Edward C.

    2013-08-29

    Muon tomography is a technique that uses cosmic ray muons to generate three-dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study beyond the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Furthermore, we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  17. Scintillation light from cosmic-ray muons in liquid argon

    NASA Astrophysics Data System (ADS)

    Whittington, D.; Mufson, S.; Howard, B.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a composite model. Both models find τT = 1.52 μs for the decay time constant of the Ar2* triplet state. These models also show that the identification of the ``early'' light fraction in the phenomenological model, FE ≈ 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS ≈ 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value ~0.3 found by dark matter and double β-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  18. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    NASA Astrophysics Data System (ADS)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  19. Momentum Spectrum of Cosmic Muons at a Depth of 320 Mwe

    SciTech Connect

    Hashim, N.-O.; Grupen, C.; Luitz, S.; Mailov, A.; Maciuc, F.; Muller, A.-S.; Putzer, A.; Sander, H.-G.; Schmeling, S.; Schmeling, M.; Tcaciuc, R. Wachsmuth, H.; Ziegler, Th.; Ziegler, Th.; Zuber, K.; /Sussex U.

    2011-09-13

    Since their discovery, great progress has been achieved in the field of cosmic ray physics particularly towards the understanding of the origin, transport and acceleration mechanisms of the high energy particles that constitute primary cosmic rays, their interaction processes in the galactic and extra galactic media, and also in the Earth's atmosphere. The interaction of primary cosmic ray particles in the Earth's atmosphere leads to the production of a cascade of secondary particles or Extensive Air Showers (EAS) with various components - electromagnetic, hadronic, muon and neutrino components. There is a large number of models to describe these interactions. Many cosmic ray experiments have used a variety of observables in EAS that provide an understanding of the hadronic interactions and also shed some light on the chemical composition of the primary particles. The muon flux at the surface provides a useful tool for the calculations of neutrino fluxes, the reconstruction of EAS and it can serve as a test of various interaction models. The CosmoALEPH detector, whichwas one of the experiments in CosmoLEP used the ALEPH detector at the European Laboratory for Particle Physics, CERN, to measure the muonic component of EAS. Preliminary results have recently shown that the momentum spectrum and charge ratio for cosmic muons measured by CosmoALEPH are well within the world average. This work reports on further improvements in the reconstruction of the cosmic muon events and data analysis. Cosmic muons are produced through interactions of primary cosmic radiation in the atmosphere. They are a component of extensive air showers which can also be measured underground. The CosmoALEPH experiment used the ALEPH detector at the European Laboratory for Particle Physics, CERN, to measure cosmic muon events at a depth of 320 mwe underground. The momentum spectrum and charge ratio of the cosmic muons are measured. The results are compared with the expectations from MC simulations

  20. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  1. A New Approach in Coal Mine Exploration Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Darijani, Reza; Negarestani, Ali; Rezaie, Mohammad Reza; Fatemi, Syed Jalil; Akhond, Ahmad

    2016-08-01

    Muon radiography is a technique that uses cosmic ray muons to image the interior of large scale geological structures. The muon absorption in matter is the most important parameter in cosmic ray muon radiography. Cosmic ray muon radiography is similar to X-ray radiography. The main aim in this survey is the simulation of the muon radiography for exploration of mines. So, the production source, tracking, and detection of cosmic ray muons were simulated by MCNPX code. For this purpose, the input data of the source card in MCNPX code were extracted from the muon energy spectrum at sea level. In addition, the other input data such as average density and thickness of layers that were used in this code are the measured data from Pabdana (Kerman, Iran) coal mines. The average thickness and density of these layers in the coal mines are from 2 to 4 m and 1.3 gr/cm3, respectively. To increase the spatial resolution, a detector was placed inside the mountain. The results indicated that using this approach, the layers with minimum thickness about 2.5 m can be identified.

  2. Using Horizontal Cosmic Muons to Investigate the Density Distribution of the Popocatepetl Volcano Lava Dome

    NASA Astrophysics Data System (ADS)

    Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.

    2013-05-01

    Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.

  3. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  4. The spectrum of cosmic ray muons obtained with 100-ton scintillation detector underground and the analysis of recent experimental data

    NASA Technical Reports Server (NTRS)

    Khalchukov, F. F.; Korolkova, E. V.; Kudryavtsev, V. A.; Malgin, A. S.; Ryazhskaya, O. G.; Zatsepin, G. T.

    1985-01-01

    The vertical muon spectrum up to 15 TeV obtained with the underground installation is presented. Recent experimental data dealing with horizontal and vertical cosmic ray muon spectra are analyzed and discussed.

  5. The tracker systems for the muon ionization cooling experiment

    NASA Astrophysics Data System (ADS)

    Heidt, C.

    2013-08-01

    The Muon Ionization Cooling Experiment (MICE) will be the first experiment to demonstrate muon ionization cooling in the momentum range of 140-240 MeV/c. The experiment is a single-particle experiment where the input and output beam emittances are constructed from an ensemble of selected single-muon candidates. The fiber trackers are placed in a solenoidal field of 4 T (one before and one after the cooling channel) to measure the muon 4-momentum and provide the basic information for determining the emittances. This paper gives a brief overview of MICE and then describes the details of the fiber tracker assemblies, the unique construction technique used (which for the first time used 350 μm diameter scintillating fiber), the readout electronics and performance with respect to light yield, hit resolution and tracking efficiency as measured in a recent cosmic-ray test of the two final tracker systems.

  6. Measurements of cosmic ray muons with multi-wire proportional chambers with a prototype setup for KASCADE

    NASA Astrophysics Data System (ADS)

    Mathes, Hermann-Josef

    1993-03-01

    The cosmic ray experiment KASCADE (German acronym for Karlsruhe Shower Core and Array Detector) designed for measuring simultaneously the electromagnetic, muonic, and hadronic components of extensive air showers to determine the primary cosmic ray mass composition in the energy range 300 Tev to 100 Btu is described. Beneath the central hadron calorimeter of this experiment, measurements of muons with an energy threshold of 2 GeV are planned. Four large position sensitive multi-wire proportional chambers were brought into operation after the required supply units were installed. This test setup was extended with a trigger system for cosmic ray muons. The trigger allows muon detection efficiencies and the spatial resolution of the chambers to be measured. To enhance the content of multiple track events in the data a trigger system for air showers was required. A small detector array was installed with the possibility to determine roughly the arrival direction of the shower. For that configuration of chambers an algorithm for track reconstruction was developed. It led to satisfying results for single and double track events. It is demonstrated that the determination of hits with only one chamber is influenced by the ambiguities resulting from the chamber layout. In addition this effect is shown to be enhanced by electronic noise and electromagnetic background. An extension with a time measuring system of an accuracy better than 2 ns allowed the arrival times of the muons to be measured for some events. The resulting arrival time distribution could be qualitatively understood.

  7. MLSD-OSEM reconstruction algorithm for cosmic ray muon radiography

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Zhao, Ziran; Chen, Zhiqiang; Zhang, Li; Xing, Yuxiang

    2008-03-01

    Cosmic ray muon radiography which has a good penetrability and sensitivity to high-Z materials is an effective way for detecting shielded nuclear materials. Reconstruction algorithm is the key point of this technique. Currently, there are two main algorithms about this technique. One is the Point of Closest Approach (POCA) reconstruction algorithm which uses the track information to reconstruct; the other is the Maximum Likelihood estimation, such as the Maximum Likelihood Scattering (MLS) and the Maximum Likelihood Scattering and Displacement (MLSD) reconstruction algorithms which are proposed by the Los Alamos National Laboratory (LANL). The performance of MLSD is better than MLS. Since MLSD reconstruction algorithm includes scattering and displacement information while MLS reconstruction algorithm only includes scattering information. In order to get this Maximum Likelihood estimation, in this paper, we propose to use EM method to get the estimation (MLS-EM and MLSD-EM). Then, in order to saving reconstruction time we use the OS technique to accelerate MLS and MLSD reconstruction algorithm with the initial value set to be the result of the POCA reconstruction algorithm. That is, the Maximum Likelihood Scattering-OSEM (MLS-OSEM) and the Maximum Likelihood Scattering and Displacement-OSEM (MLSD-OSEM). Numerical simulations show that the MLSD-OSEM is an effective algorithm and the performance of MLSD-OSEM is better than MLS-OSEM.

  8. Large-scale anisotropy of the cosmic-ray muon flux in Kamiokande

    NASA Astrophysics Data System (ADS)

    Munakata, K.; Kiuchi, T.; Yasue, S.; Kato, C.; Mori, S.; Hirata, K. S.; Kihara, K.; Oyama, Y.; Mori, M.; Fujita, K.; Hatakeyama, S.; Koga, M.; Maruyama, T.; Suzuki, A.; Ishizuka, T.; Miyano, K.; Okazawa, H.; Fukuda, Y.; Hayakawa, T.; Inoue, K.; Ishihara, K.; Ishino, H.; Joukou, S.; Kajita, T.; Kasuga, S.; Koshio, Y.; Kumita, T.; Matsumoto, K.; Nakahata, M.; Nakamura, K.; Okumura, K.; Sakai, A.; Shiozawa, M.; Suzuki, J.; Suzuki, Y.; Tomoeda, T.; Totsuka, Y.; Horiuchi, T.; Nishijima, K.; Koshiba, M.; Suda, T.; Suzuki, A. T.; Hara, T.; Nagashima, Y.; Takita, M.; Yamaguchi, T.; Hayato, Y.; Kaneyuki, K.; Suzuki, T.; Takeuchi, Y.; Tanimori, T.; Tasaka, S.; Ichihara, E.; Miyamoto, S.; Nishikawa, K.

    1997-07-01

    The large-scale anisotropy of cosmic-ray primaries in the celestial coordinate was studied using cosmic-ray muons recorded in a large water Cherenkov detector, Kamiokande. The right-ascension distribution of the muon arrival directions deviated from an isotropic distribution with a 2.8 standard deviation, and agreed well with the first harmonics with an amplitude of (5.6+/-1.9)×10-4 and a phase of 8.0°+/-19.1°. This is the deepest underground observation of the large-scale anisotropy of cosmic rays, and agrees with observations with other underground experiments and extensive air-shower array experiments.

  9. The stopping rate of negative cosmic-ray muons near sea level

    NASA Technical Reports Server (NTRS)

    Spannagel, G.; Fireman, E. L.

    1971-01-01

    A production rate of 0.065 + or - 0.003 Ar-37 atom/kg min of K-39 at 2-mwe depth below sea level was measured by sweeping argon from potassium solutions. This rate is unaffected by surrounding the solution by paraffin and is attributed to negative muon captures and the electromagnetic interaction of fast muons, and not to nucleonic cosmic ray component. The Ar-37 yield from K-39 by the stopping of negative muons in a muon beam of a synchrocyclotron was measured to be 8.5 + or - 1.7%. The stopping rate of negative cosmic ray muons at 2-mwe depth below sea level from these measurements and an estimated 17% electromagnetic production is 0.63 + or - 0.13 muon(-)/kg min. Previous measurements on the muon stopping rate vary by a factor of 5. Our value is slightly higher but is consistent with two previous high values. The sensitivity of the Ar-37 radiochemical method for the detection of muons is considerably higher than that of the previous radiochemical methods and could be used to measure the negative muon capture rates at greater depths.

  10. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  11. A drift chamber tracking system for muon scattering tomography applications

    NASA Astrophysics Data System (ADS)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  12. Seasonal modulations of the underground cosmic-ray muon energy

    SciTech Connect

    Malgin, A. S.

    2015-08-15

    The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than their intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.

  13. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  14. A large area cosmic muon detector located at Ohya stone mine

    NASA Technical Reports Server (NTRS)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  15. Measurement Over Large Solid Angle of Low Energy Cosmic Ray Muon Flux

    NASA Astrophysics Data System (ADS)

    Schreiner, H. F., III; Schwitters, R. F.

    2015-12-01

    Recent advancements in portable muon detectors have made cosmic ray imaging practical for many diverse applications. Working muon attenuation detectors have been built at the University of Texas and are already successfully being used to image tunnels, structures, and Mayan pyramids. Most previous studies have focused on energy measurements of the cosmic ray spectrum from of 1 GeV or higher. We have performed an accurate measurement of the ultra-low energy (<2 GeV in E cos θ) muon spectrum down to the acceptance level of our detector, around one hundred MeV. Measurements include angular dependence, with acceptance approaching horizontal. Measurements were made underwater using a custom enclosure in Lake Travis, Austin, TX. This measurement will allow more accurate predictions and simulations of attenuation for small (<5 m) targets for muon tomography.

  16. Detection of High-Z Objects using Multiple Scattering of Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Hogan, Gary E.; Borozdin, Konstantin N.; Gomez, John; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2004-02-01

    Detection of high-Z material hidden inside a large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons. Here, we show that compact, high-Z objects can be detected and located in 3 dimensions with muon radiography. The natural flux of cosmic-ray muons, approximately 10,000 m-2min-1, can generate a reliable detection signal in a fraction of a minute, using large-area muon detectors as used in particle and nuclear physics.

  17. A transition radiation detector prototype to measure the energy of muons in cosmic ray laboratories

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Enriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Mongelli, M.; Nappi, E.; Perchiazzi, M.; Sacchetti, A.; Spinelli, P.

    1991-07-01

    We have developed and tested a transition radiation detector prototype suitable to measure the energy of muons in cosmic ray laboratories. The technical solutions adopted, based on extruded tubes as detectors and foam or fiber mats as radiators, allow to cover very large areas with a low number of channels and ensure stability of operation. Using an argon-carbon dioxide gas mixture it is possible to explore the muon energy range up to 1 TeV.

  18. Angular distribution of muons produced by cosmic ray neutrinos in rock

    NASA Technical Reports Server (NTRS)

    Boliev, M. M.; Buckevich, A. V.; Chudakov, A. E.; Leonov-Vendrovsky, A. V.; Mikheyev, S. P.; Zakidyshev, V. N.

    1985-01-01

    Measurement of the upgoing muons flux, produced by cosmic ray neutrinos is aiming at: (1) search for neutrino oscillation; (2); search for extraterrestrial neutrinos from local sources; and (3); search for any hypothetical neutral penetrating radiation different from neutrinos. Experimental data of the Baksan underground telescope on intensity of upward muons for three years of living time, was analyzed having in mind mainly neutrino oscillation.

  19. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  20. Assessing the feasibility of interrogating nuclear waste storage silos using cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Ambrosino, F.; Bonechi, L.; Cimmino, L.; D'Alessandro, R.; Ireland, D. G.; Kaiser, R.; Mahon, D. F.; Mori, N.; Noli, P.; Saracino, G.; Shearer, C.; Viliani, L.; Yang, G.

    2015-06-01

    Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muon radiography to interrogate waste silos within the U.K. Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detection systems used are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these proven technologies and image reconstruction techniques are presented for an intermediate-sized legacy nuclear waste storage facility filled with concrete and an array of uranium samples. Both results highlight the potential to identify uranium objects of varying thicknesses greater than 5 cm within real-time durations of several weeks. Increased contributions from Coulomb scattering within the concrete matrix of the structure hinder the ability of both approaches to resolve similar objects of 2 cm dimensions even with increased statistics. These results are all dependent on both the position of the objects within the facility and the locations of the detectors. Results for differing thicknesses of concrete, which reflect the non-standard composition of these complex, legacy structures under interrogation, are also presented alongside studies performed for a series of data collection durations. It is anticipated that with further research and optimisation of detector technologies and geometries, muon radiography in one, or both of these forms, will play a key role in future

  1. Non-Invasive Imaging of Reactor Cores Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Milner, Edward

    2011-10-01

    Cosmic ray muons penetrate deeply in material, with some passing completely through very thick objects. This penetrating quality is the basis of two distinct, but related imaging techniques. The first measures the number of cosmic ray muons transmitted through parts of an object. Relatively fewer muons are absorbed along paths in which they encounter less material, compared to higher density paths, so the relative density of material is measured. This technique is called muon transmission imaging, and has been used to infer the density and structure of a variety of large masses, including mine overburden, volcanoes, pyramids, and buildings. In a second, more recently developed technique, the angular deflection of muons is measured by trajectory-tracking detectors placed on two opposing sides of an object. Muons are deflected more strongly by heavy nuclei, since multiple Coulomb scattering angle is approximately proportional to the nuclear charge. Therefore, a map showing regions of large deflection will identify the location of uranium in contrast to lighter nuclei. This technique is termed muon scattering tomography (MST) and has been developed to screen shipping containers for the presence of concealed nuclear material. Both techniques are a good way of non-invasively inspecting objects. A previously unexplored topic was applying MST to imaging large objects. Here we demonstrate extending the MST technique to the task of identifying relatively thick objects inside very thick shielding. We measured cosmic ray muons passing through a physical arrangement of material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core. Newly developed algorithms were used to reconstruct an image of the ``mock reactor core,'' with resolution of approximately 30 cm.

  2. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-08-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.

  3. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-04-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

  4. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, P. A.; Tanaka, H.; Miyamoto, S.; Perez, N.; Barrancos, J.; Padron, E.; Hernandez, I.

    2012-12-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great

  5. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Hernández, Iñigo; Hernández, Pedro; Pérez, Nemesio; Tanaka, Hiroyuki; Miyamoto, Seygo; Barrancos, José; Padrón, Eleazar

    2013-04-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great

  6. Lifetime of Cosmic-Ray Muons and the Standard Model of Fundamental Particles

    NASA Astrophysics Data System (ADS)

    Mukherji, Sahansha; Shevde, Yash; Majewski, Walerian

    2015-04-01

    Muon is one of the twelve fundamental particles of matter, having the longest free-particle lifetime. It decays into three other leptons through an exchange of the weak vector bosons W+/W-. Muons are present in the secondary cosmic ray showers in the atmosphere, reaching the sea level. By detecting time delay between arrival of the muon and an appearance of the decay electron in our single scintillation detector (donated by the Thomas Jefferson National Accelerator Facility, Newport News, VA), we measured muon's lifetime at rest. It compares well with the value predicted by the Standard Model of Particles. From the lifetime we were able to calculate the ratio gw /MW of the weak coupling constant gw (an analog of the electric charge) to the mass of the W-boson MW. Using further Standard Model relations and an experimental value for MW, we calculated the weak coupling constant, the electric charge of the muon, and the vacuum expectation value of the Higgs field. We determined the sea-level flux of cosmic muons.

  7. Muon Reconstruction and Identification in CMS

    SciTech Connect

    Everett, A.

    2010-02-10

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  8. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments Database

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  9. Special Relativity in the School Laboratory: A Simple Apparatus for Cosmic-Ray Muon Detection

    ERIC Educational Resources Information Center

    Singh, P.; Hedgeland, H.

    2015-01-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth's surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity…

  10. The Nagoya cosmic-ray muon spectrometer 3, part 3: Automatic film scanning equipment

    NASA Technical Reports Server (NTRS)

    Shibata, S.; Kamiya, Y.; Iijima, K.; Iida, S.

    1985-01-01

    In the regular operation of the Nagoya cosmic-ray muon spectrometer, about 2000 events per day will be recorded on the photographic film. To derive the track locations from such a huge number of photographs with high accuracy in a short time, an automatic film scanning device has been developed.

  11. High-energy multiple muons and heavy primary cosmic-rays

    NASA Technical Reports Server (NTRS)

    Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.

  12. The Nagoya cosmic-ray muon spectrometer 3, part 2: Track detector

    NASA Technical Reports Server (NTRS)

    Shibata, S.; Iijima, K.; Kamiya, Y.; Iida, S.

    1985-01-01

    The twelve wide gap spark chambers were utilized as the track detectors of the Nagoya cosmic-ray muon spectrometer not only to obtain the precise locations of particles, but also to get some information about the correspondences between segments of trajectories. The area of each chamber is 150 x 70 sq cm and the width of a gap is 5 cm. The gas used is He at the atmospheric pressure. Each three pairs of them are placed on both sides of the deflection magnet. All images of sparks for each event are projected through the mirror system and recorded by two cameras stereoscopically. The mean detection efficiency of each chamber is 95 + or - 2% and the spacial resolution (jitter and drift) obtained from the prototype-experiment is 0.12 mm. Maximum detectable momentum of the spectrometer is estimated at about 10 TeV/c taking into account these characteristics together with the effects of the energy loss and multiple Coulomb scattering of muons in the iron magnet.

  13. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  14. Generation of Runaway Electrons Induced by Cosmic-Ray Muons in Thunderstorm Electric Fields

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishijima, T.; Sugita, T.; Kawasaki, Z.

    2004-05-01

    Gamma ray dose-rate increases associated with winter thunderstorm activities have been observed in the coastal areas facing the Sea of Japan [1]. In order to investigate the generation of energetic photons which originate in thunderstorm electric fields, we have calculated the behavior of secondary cosmic ray electrons and photons in electric fields with Monte Carlo method. In the calculation, the electron and photon fluxes have increased greatly in the region where the field strength exceeds about 280 P(z) kV/m-atm, and these energy spectra show a large increase in the energy region up to several MeV [2]. In addition to the analysis of the electromagnetic component of cosmic rays, we have carried out the Monte Carlo transport calculations of the cosmic-ray muons and associated particles (e.g. knock-on electrons and bremsstrahlung photons) in thunderstorm electric fields, using GEANT4 code [3]. Muons form a large part of the secondary cosmic-rays and directly reach the regions of strong electric fields owing to their high penetrability in the atmosphere. Therefore, they can serve as the source of a considerable amount of runaway electrons, through their ionization process with air molecules, and their decay into energetic electrons. The electron and photon fluxes show notable increases in the strong electric field, while the muon flux does not fluctuate significantly. These results indicate that the production of energetic electrons by cosmic ray muons plays an important role in the enhancement of electron and photon fluxes in thunderstorm electric fields. Finally, we discuss a feasibility of muon-triggered lightning deduced from the muon transport calculation inside thunderstorm electric fields. From the calculation results, we estimate that the irradiation of muon beams rapidly increases energy deposition in the region of strong electric fields, and produce numerous electron - ion pairs. These productions may induce the lightning discharge by the runaway

  15. Subsurface density mapping of the earth with cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki K. M.

    2013-10-01

    Since its original discovery by Wilhelm Conrad Rontgen in 1895, one of the directions of researchers pursued was an application of x-ray radiography to larger objects, while the advent of high voltage x-ray tubes allowed radiographs of industrial objects to be produced in a reasonable amount of time. In spite of the great motivation we have to survey the earth's interior, we now know that x rays are not sufficiently penetrative to successfully target geophysical objects. Our current knowledge about the cross sections of the muon with matter solves the problem about this x-ray's inspectable size limit. These particles do not interact strongly with matter, and those with relativistic momentum travel long distances penetrating deep into rock. By tracking the ray paths of the muon after passing through the object, the method gives researchers the ability to study the earth in new ways. The purpose of this article is to review recent progress in probing the earth's interior with muons.

  16. Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c

    SciTech Connect

    Schmelling, M.; Hashim, N.O.; Grupen, C.; Luitz, S.; Maciuc, F.; Mailov, A.; Muller, A.-S.; Sander, H.-G.; Schmeling, S.; Tcaciuc, R.; Wachsmuth, H.; Zuber, K.; /Dresden, Tech. U.

    2012-09-14

    The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

  17. Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki

    2016-08-01

    Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.

  18. The cosmic ray muon tomography facility based on large scale MRPC detectors

    NASA Astrophysics Data System (ADS)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  19. Special relativity in the school laboratory: a simple apparatus for cosmic-ray muon detection

    NASA Astrophysics Data System (ADS)

    Singh, P.; Hedgeland, H.

    2015-05-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth’s surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity and to extended investigations for more inquisitive students.

  20. Upper limit to antiproton flux in cosmic radiation above 100 GeV using muon charge ratio

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1983-01-01

    Upper limits to the fraction of antiprotons in cosmic radiation have been estimated from the observed charge ratio of muons at sea-level. Using these values, it is shown that constraints can be set on the extragalactic hypothesis of the observed antiprotons in the framework of energy-dependent confinement of cosmic rays in the galaxy.

  1. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  2. Imaging the density profile of a volcano interior with cosmic-ray muon radiography combined with classical gravimetry

    NASA Astrophysics Data System (ADS)

    Okubo, S.; Tanaka, H. K. M.

    2012-04-01

    Cosmic-ray muon radiography has the potential to reveal the density structure of gigantic objects. It utilizes the strong penetration ability of high-energy muons. By measuring the number of muons that travel through a target object, the average density can be calculated along the muon path. Since muons travel in straight paths through matter, specially designed detectors can generate density maps with higher spatial resolution than those obtained with conventional geophysical methods. However, this technique has a few notable limitations in that it can only be applied to near-surface structures above the muon sensor and strongly depends on the characteristics of the local topography. This is due to the fact that almost all cosmic-ray muons arrive only from the upper hemisphere. Geological structures, e.g. volcanoes, that allow for muon detectors to be placed on a slope directly below the point of interest are thus the best candidates for this technique. The drawback of muon radiography that only the horizontally integrated density above the sensor is measured with a time resolution larger than several weeks may be partly remedied by combining its results with gravity data, as they are both sensitive to target density while complementary to each other in several aspects. An example of such a combination is presented: real-time monitoring of magma head height in a volcano conduit.

  3. Neutron production by cosmic-ray muons in various materials

    NASA Astrophysics Data System (ADS)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  4. GEANT4 Simulation for the Zenith Angle Dependence of Cosmic Muon Intensities at Two Different Geomagnetic Locations

    NASA Astrophysics Data System (ADS)

    Arslan, Halil; Bektasoglu, Mehmet

    2013-06-01

    The zenith angle dependence of cosmic muon flux at sea level in the western, eastern, southern and northern azimuths have been investigated separately for Calcutta, India and Melbourne, Australia for muon momenta up to 500 GeV/c using Geant4 simulation package. These two locations were selected due to the fact that they significantly differ in geomagnetic cutoff rigidity. The exponent n, which is defined by the relation I(θ) = I(0°)cosnθ, was obtained for each azimuth in Calcutta and Melbourne. By acquiring an agreement between the simulation results and the experimental ones, the simulation study was extended for different azimuth angles and higher muon momenta. It was shown that the angular dependence of the cosmic muon intensity decreases with the increase of muon momentum at both locations. Moreover, the exponent becomes independent of both geomagnetic location and the azimuth angle for muons with momentum above 10 GeV/c, and it is nearly zero above 50 GeV/c. Therefore, it can be concluded that the cosmic muons with momenta between 50 GeV/c and 500 GeV/c reach the sea level almost isotropically.

  5. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  6. Studies on Cosmic Ray Sidereal Anisotropy with the Multidirectional Muon Telescope at Ooty

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Fujimoto, K.; Gupta, S. K.; Hayashi, Y.; Ishida, Y.; Ito, N.; Jain, A.; Kawakami, S.; Nonaka, T.; Oshima, A.; Sivaprasad, K.; Tamaki, S.; Tanaka, H.; Tonwar, S. C.; Yoshikoshi, T.

    2003-07-01

    We have developed a multidirectional telescope capable of recording individual muons with angular accuracy of about 5 degrees. This muon telescope consists of ˜ 3000 proportional counters with total area of ˜ 420 m2 with threshold energy > 1 GeV. The telescope is a component of the GRAPES-3 experiment at Ooty in southern India (N 11.4, E 76.7 and 2200m altitude). The very large muon counting rate ˜ 1.8 × 108 per hour, achieved due to the very large area of the telescope, gives us great advantage for cosmic ray modulation studies. The analysis of data with such high statistics enables us to have a sensitive measurement of sidereal variation within a single year of observation. Further, since our telescope is located near the Equator, we are able to observe both the Northern and the Southern hemispheres simultaneously. We present here the results on the sidereal variation obtained with this multidirectional muon telescope for the observational period, 2000-2001. We report here on Tail-in and Loss-corn anisotropies through detailed analysis. We also discuss other possible explanations for the present observations.

  7. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  8. A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Mahon, D. F.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2013-12-01

    Cosmic-ray muons are highly penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. A prototype scintillating-fibre detector has been developed for this application, consisting of two tracking modules above and below the volume to be assayed. Each module comprises two orthogonal planes of 2 mm fibres. The modular configuration allows the reconstruction of the initial and scattered muon trajectories which enable the container content, with respect to atomic number Z, to be determined. Fibre signals are read out by Hamamatsu H8500 MAPMTs with two fibres coupled to each pixel via dedicated pairing schemes developed to avoid space point ambiguities and retain the high spatial resolution of the fibres. A likelihood-based image reconstruction algorithm was developed and tested using a GEANT4 simulation of the prototype system. Images reconstructed from this simulation are presented in comparison with experimental results taken with test objects. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  9. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  10. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    NASA Astrophysics Data System (ADS)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  11. Alignment of the Near Detector scintillator modules using cosmic ray muons

    SciTech Connect

    Ospanov, Rustem; Lang, Karol; /Texas U.

    2008-05-01

    The authors describe the procedures and the results of the first alignment of the Near Detector. Using 15.5 million cosmic ray muon tracks, collected from October, 2004 through early january, 2005, they derive the effective transverse positions of the calorimeter scintillator modules. The residuals from straight line fits indicate that the current alignment has achieved better than 1 mm precision. They estimate the size of the remaining misalignment and using tracks recorded with a magnetic field test the effect of the magnetic field on the alignment.

  12. Wavelet and Multitaper spectral analysis of cosmic ray muon and neutron data

    NASA Astrophysics Data System (ADS)

    da Silva, M. R.; Gonzalez, W. D.; Echer, E.; Guarnieri, F. L.; Vieira, L. E. A.; de Lucas, A.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Schuch, N. J.

    Many times series in geophysics may contain dominant periodic signals These signals can vary in both amplitude and frequency over long periods of time The wavelet analysis is a powerful toll to spectral analyses of time series because this analysis decomposes a time series into time frequency space simultaneously One gets information on both the amplitude of the interest periodic signal within the series and how this amplitude varies with time In this work we will make a spectral wavelet and multitaper analysis of muon and neutron cosmic ray and compare these two kinds of spectral analysis and particles with each other and will find the mainly periodicities in these time series

  13. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  14. Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.

    1985-01-01

    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.

  15. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  16. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  17. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    NASA Astrophysics Data System (ADS)

    Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.; KamLAND Collaboration

    2010-02-01

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in ν detectors, double-β-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of C11. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Yn=(2.8±0.3)×10-4μ-1g-1cm2. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  18. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGESBeta

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  19. The muon system of the Daya Bay Reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. E.; Butorov, I.; Cao, G. F.; Cao, J.; Carr, R.; Chan, Y. L.; Chang, J. F.; Chang, L.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, Y.; Chen, Y. X.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Dale, E.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; He, Q.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. J.; Hu, L. M.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, H. Z.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kebwaro, J. M.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Pearson, C. E.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wilhelmi, J.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, G. H.; Xu, J.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. M.; Zhang, S. H.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.

    2015-02-01

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  20. Development of low noise cosmic ray muon detector for imaging density structure of Usu Volcano, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Kusagaya, T.; Tanaka, H.; Taketa, A.; Oshima, H.; Maekawa, T.

    2012-12-01

    We are developing low noise cosmic ray muon detector to image a density structure of Usu Volcano, Hokkaido, Japan by muon radiography. Intensity of cosmic ray muon penetrating through the object is expressed as a function of the product of muon path length and density along muon path. And, the intensity of penetrating muon steeply decreases if muon path length becomes longer or density along muon path becomes larger. The detector that we are developing is called hodoscope that consists of multiple Position Sensitive Detectors (PSDs). A PSD has NxM grids consisting of N vertically aligned Scintillation Counters (SC: a plastic scintillator attached to a photo multiplier tube) and M horizontally aligned SCs. We can identify a muon path direction with two or more PSDs by connecting muon-detecting points in each PSD. But, Usu Volcano is so large that the intensity of penetrating muon becomes lower, and then noise rate becomes higher: the count of penetrating cosmic ray muon is estimated to be a few counts per month with the detector of which has the cross-section area of one square meter and the solid angle of 0.01 steradian. The noise is defined as a particle other than the muon penetrating the observed object such as electrons, photons, vertically arriving muons and so on. If noise rate becomes higher, the measured intensity of penetrating muon becomes higher than the theoretical intensity of that. Then we get a wrong result as if there were matter of lower density relative to real. So we need to develop a low noise detector. The ElectroMagnetic (EM) shower that consists of many electrons and photons is thought to be one of noise. When EM shower reaches the detector, each PSD detects arriving particles and detecting points are sometimes connected by a straight line. In that case, we cannot discriminate the penetrating muon from EM shower, and we count it as a muon event. This results noise. In order to discriminate the noise event, the use of more PSDs for our

  1. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  2. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    The ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρμ > 5.9 m-2. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  3. Installation for the study of the angular distribution of cosmic muons with super-high energies at large zenith angles

    NASA Technical Reports Server (NTRS)

    Borog, V. V.; Kirillov-Ugryumov, V. G.; Petrukhin, A. A.; Shestakov, V. V.

    1975-01-01

    An installation consisting of an ionization calorimeter and a counter hodoscope can be used to record cascade showers caused by the electromagnetic interactions of muons with superhigh energies in the cosmic ray horizontal flux. The direction of the muons is determined by a hodoscope consisting of 2196 counters. The information obtained makes it possible to restore the angular and energy distribution of the cosmic muons, which, in turn, makes it possible to determine the mechanism of their generation. The accuracy with which the angle of the passing particle is determined is discussed in detail in addition to the causes which can introduce distortions, such as shower accompaniment of neutrons, escape of shower electrons from the calorimeter, random coincidences, etc.

  4. A comprehensive comparison for simulations of cosmic-ray muons underground

    SciTech Connect

    Villano, A. N.; Cushman, P.; Kennedy, A.; Empl, A.; Lindsay, S.

    2013-08-08

    The two leading simulation frameworks used for the simulation of cosmic-ray muons underground are FLUKA and Geant4. There have been in the past various questions raised as to the equivalence of these codes regarding cosmogenically produced neutrons and radioactivity in an underground environment. Many experiments choose one of these frameworks, and because they typically have different geometries or locations, the issues relating to code comparison are compounded. We report on an effort to compare the results of each of these codes in simulations which have simple geometry that is consistent between the two codes. It is seen that in terms of integrated neutron flux and neturon capture statistics the codes agree well in a broad sense. There are, however, differences that will be subject of further study. Comparisons of the simulations to available data are considered and the difficulties of such comparisons are pointed out.

  5. Visualization of the Internal Structure of Volcanoes with Cosmic-ray Muons

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki K. M.

    2016-09-01

    High-energy muons that are produced via the reaction between primary cosmic rays and the Earth's atmosphere can be used as a radiographic probe to explore the density distribution in gigantic objects including shallow parts of a volcano's interior. This new subterranean imaging technique is called muography. So far, muographic results have been acquired from eight volcanoes around the world as well as various targets including limestone caves, fault zones, industrial plants, and historical ruins. Taking all of the observational data together, it appears that muography can serve as a new and alternative high-resolution imaging technique, providing a fresh approach to Earth studies. This review describes observational studies in which muography has been used to explore the Earth's interior. Particular attention is paid to muography of magma convection and pathways in volcanoes around the world. The results are summarized here, and an outlook regarding anticipated future observations is briefly discussed.

  6. The muon system of the Run II DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Acharya, B. S.; Alexeev, G. D.; Alkhazov, G.; Anosov, V. A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J. F.; Baturitsky, M. A.; Beutel, D.; Bezzubov, V. A.; Bodyagin, V.; Butler, J. M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Doulas, S.; Dugad, S. R.; Dvornikov, O. V.; Dyshkant, A.; Eads, M.; Evdokimov, A.; Evdokimov, V. N.; Fitzpatrick, T.; Fortner, M.; Gavrilov, V.; Gershtein, Y.; Golovtsov, V.; Gómez, B.; Goodwin, R.; Gornushkin, Yu. A.; Green, D. R.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Haggerty, H.; Hanlet, P.; Hansen, S.; Hazen, E.; Hedin, D.; Hoeneisen, B.; Ito, A. S.; Jayanti, R.; Johns, K.; Jouravlev, N.; Kalinin, A. M.; Kalmani, S. D.; Kharzheev, Y. N.; Kirsch, N.; Komissarov, E. V.; Korablev, V. M.; Kostritsky, A.; Kozelov, A. V.; Kozlovsky, M.; Kravchuk, N. P.; Krishnaswamy, M. R.; Kuchinsky, N. A.; Kuleshov, S.; Kupco, A.; Larwill, M.; Leitner, R.; Lipaev, V. V.; Lobodenko, A.; Lokajicek, M.; Lubatti, H. J.; Machado, E.; Maity, M.; Malyshev, V. L.; Mao, H. S.; Marcus, M.; Marshall, T.; Mayorov, A. A.; McCroskey, R.; Merekov, Y. P.; Mikhailov, V. A.; Mokhov, N.; Mondal, N. K.; Nagaraj, P.; Narasimham, V. S.; Narayanan, A.; Negret, J. P.; Neustroev, P.; Nozdrin, A. A.; Oshinowo, B.; Parashar, N.; Parua, N.; Podstavkov, V. M.; Polozov, P.; Porokhovoi, S. Y.; Prokhorov, I. K.; Rao, M. V. S.; Raskowski, J.; Reddy, L. V.; Regan, T.; Rotolo, C.; Russakovich, N. A.; Sabirov, B. M.; Satyanarayana, B.; Scheglov, Y.; Schukin, A. A.; Shankar, H. C.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Simak, V.; Sirotenko, V.; Smith, G.; Smolek, K.; Soustruznik, K.; Stefanik, A.; Steinberg, J.; Stolin, V.; Stoyanova, D. A.; Stutte, L.; Temple, J.; Terentyev, N.; Teterin, V. V.; Tokmenin, V. V.; Tompkins, D.; Uvarov, L.; Uvarov, S.; Vasilyev, I. A.; Vertogradov, L. S.; Vishwanath, P. R.; Vorobyov, A.; Vysotsky, V. B.; Willutzki, H.; Wobisch, M.; Wood, D. R.; Yamada, R.; Yatsunenko, Y. A.; Yoffe, F.; Zanabria, M.; Zhao, T.; Zieminska, D.; Zieminski, A.; Zvyagintsev, S. A.

    2005-11-01

    We describe the design, construction, and performance of the upgraded DØ muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the DØ muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  7. The Muon system of the run II D0 detector

    SciTech Connect

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  8. A Prototype Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-03-01

    Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  9. Observation of Periodic and Transient Cosmic Ray Flux Variations by the Daejeon Neutron Monitor and the Seoul muon Detector

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon; Kang, Jeongsoo

    2013-09-01

    Recently, two instruments of cosmic ray are operating in South Korea. One is Seoul muon detector after October 1999 and the other is Daejeon neutron monitor (Kang et al. 2012) after October 2011. The former consists of four small plastic scintillators and the latter is the standard 18 NM 64 type. In this report, we introduce the characteristics of both instruments. We also analyze the flux variations of cosmic ray such as diurnal variation and Forbush decrease. As the result, the muon flux shows the typical seasonal and diurnal variations. The neutron flux also shows the diurnal variation. The phase which shows the maximum flux in the diurnal variation is around 13-14 local time. We found a Forbush decrease on 7 March 2012 by both instruments. It is also identified by Nagoya multi-direction muon telescope and Oulu neutron monitor. The observation of cosmic ray at Jangbogo station as well as in Korean peninsula can support the important information on space weather in local area. It can also enhance the status of Korea in the international community of cosmic ray experiments.

  10. Energy spectrum of cascade showers induced by cosmic ray muons in the range from 50 GeV to 5 TeV

    NASA Technical Reports Server (NTRS)

    Ashitkov, V. D.; Kirina, T. M.; Klimakov, A. P.; Kokoulin, R. P.; Petrukhin, A. A.; Yumatov, V. I.

    1985-01-01

    The energy spectrum of cascade showers induced by electromagnetic interactions of high energy muons of horizontal cosmic ray flux in iron absorber was measured. The total observation time exceeded 22,000 hours. Both the energy spectrum and angular distributions of cascade showers are fairly described in terms of the usual muon generation processes, with a single power index of the parent meson spectrum over the muon energy range from 150 GeV to 5 TeV.

  11. An Educational MONTE CARLO Simulation/Animation Program for the Cosmic Rays Muons and a Prototype Computer-Driven Hardware Display.

    ERIC Educational Resources Information Center

    Kalkanis, G.; Sarris, M. M.

    1999-01-01

    Describes an educational software program for the study of and detection methods for the cosmic ray muons passing through several light transparent materials (i.e., water, air, etc.). Simulates muons and Cherenkov photons' paths and interactions and visualizes/animates them on the computer screen using Monte Carlo methods/techniques which employ…

  12. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    SciTech Connect

    Collaboration: ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  13. The knee in the cosmic ray energy spectrum from the simultaneous EAS charged particles and muon density spectra

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Banik, Prabir; Bhadra, Arunava

    2016-09-01

    In this work we examine with the help of Monte Carlo simulation whether a consistent primary energy spectrum of cosmic rays emerges from both the experimentally observed total charged particles and muon size spectra of cosmic ray extensive air showers considering primary composition may or may not change beyond the knee of the energy spectrum. It is found that EAS-TOP observations consistently infer a knee in the primary energy spectrum provided the primary is pure unchanging iron whereas no consistent primary spectrum emerges from simultaneous use of the KASCADE observed total charged particle and muon spectra. However, it is also found that when primary composition changes across the knee the estimation of spectral index of total charged particle spectrum is quite tricky, depends on the choice of selection of points near the knee in the size spectrum.

  14. Feasibility of Sea-level Cosmic-Ray Muon-Capture SNM Detection

    SciTech Connect

    Rosenberg, L; Bernstein, A

    2005-03-11

    The first part of this report argues the average time between signal events for X-rays from negative muon capture on SNM is from a few to a few 10's of minutes, depending on how sophisticated one care's to make the detector. The second part of this report argues that the recoil proton background in the energy resolution window can be orders of magnitude larger than the expected signal. How could one evade this result? Firstly, one could conceive of a very highly segmented muon counter (or electromagnetic calorimeter) system to actually detect a stopping muon. This would be extraordinarily expensive for a large area and volume of a cargo container. There are also quite a few assumptions we applied to make the calculations tractable. For instance, we assumed the detector was fully efficient for a neutron recoil. probably something like 25% or 50% is more appropriate. However, probably the biggest uncertainty is the neutron energy spectrum. The Boehm et al. paper discusses the range of spectrum parameterizations, some of which are considerably softer and will lower the high-energy proton yield. This outcome is certainly possible. However, given the difference between signal and background rates, it would take a considerable change in detector parameters and particle yields to change the basic conclusion that this technique does not appear promising.

  15. The MANX Muon Cooling Experiment Detection System

    NASA Astrophysics Data System (ADS)

    Kahn, S. A.; Abrams, R. J.; Ankenbrandt, C.; Cummings, M. A. C.; Johnson, R. P.; Robertsa, T. J.; Yoneharab, K.

    2010-03-01

    The MANX experiment is being proposed to demonstrate the reduction of 6D muon phase space emittance, using a continuous liquid absorber to provide ionization cooling in a helical solenoid magnetic channel. The experiment involves the construction of a two-period-long helical cooling channel (HCC) to reduce the muon invariant emittance by a factor of two. The HCC would replace the current cooling section of the MICE experiment now being set up at the Rutherford Appleton Laboratory. The MANX experiment would use the existing MICE spectrometers and muon beam line. We discuss the placement of detection planes to optimize the muon track resolution.

  16. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  17. Muon tracking system with Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D`Incecco, M.; Sablone, D.; Franchi, G.

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  18. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.

    2016-08-01

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  19. An underground cosmic ray muon telescope for observation of cosmic ray anisotropy

    NASA Technical Reports Server (NTRS)

    Lee, Y. W.; Ng, L. K.

    1985-01-01

    A telescope housed in a tunnel laboratory has an overburden of 573 hg cm(-2) and is located under the center of a saddle-shaped landscape. It is composed of triple layers of proportional counters, each layer of area approx. 4m x 2m and their separation 0.5m. Events are selected by triple coincidence and software track identification. The telescope is in operation for over a year and the overall count rate is 1280 hr(-1). The structure and operation of the system is reported.

  20. Investigation of the solar influence on the cosmic muon flux using WILLI detector

    SciTech Connect

    Saftoiu, A.; Brancus, I. M.; Duma, M.; Mitrica, B.; Petcu, M.; Toma, G.; Bercuci, A.; Haungs, A.; Rebel, H.; Sima, O.

    2010-11-24

    A fesibility study to explore the capability of the WILLI detector to observe the solar events/activity by recording the muon intensity at ground level is presented.The WILLI detector, set up in National Institute of Physics and Nuclear Engineering, Bucharest, is a 1 m{sup 2} incident area sampling calorimeter. It can measure simultaneously muon events with the muon energy {>=}0.4 GeV and, if the muons are stopped in the detector, and muon energy between 0.4muons pass the minimum of 2 plates of the detector stack.Taking into account muon events with energy {>=}0.4 GeV, a modulation of the muon intensity as a diurnal variation is observed. Muon events for a smaller energy range (0.4-0.6 GeV) seem to exhibit an aperiodic variation of the muon intensity, which could be correlated with magnetic activity indicated by the planetary K{sub p} index.

  1. Investigation of the solar influence on the cosmic muon flux using WILLI detector

    NASA Astrophysics Data System (ADS)

    Saftoiu, A.; Bercuci, A.; Brancus, I. M.; Duma, M.; Haungs, A.; Mitrica, B.; Petcu, M.; Rebel, H.; Sima, O.; Toma, G.

    2010-11-01

    A fesibility study to explore the capability of the WILLI detector to observe the solar events/activity by recording the muon intensity at ground level is presented. The WILLI detector, set up in National Institute of Physics and Nuclear Engineering, Bucharest, is a 1 m2 incident area sampling calorimeter. It can measure simultaneously muon events with the muon energy >=0.4 GeV and, if the muons are stopped in the detector, and muon energy between 0.4muons pass the minimum of 2 plates of the detector stack. Taking into account muon events with energy >=0.4 GeV, a modulation of the muon intensity as a diurnal variation is observed. Muon events for a smaller energy range (0.4-0.6 GeV) seem to exhibit an aperiodic variation of the muon intensity, which could be correlated with magnetic activity indicated by the planetary Kp index.

  2. CMS muon detector and trigger performance

    NASA Astrophysics Data System (ADS)

    Park, Sung Keun; CMS Collaboration

    2011-06-01

    The CMS muon system has been in full operation since its commissioning with several million events of cosmic ray data. The muon system of the CMS experiment consists of three independent detectors: Resistive Plate Chambers (RPCs) both in the barrel and the endcap, Drift Tubes (DTs) in the barrel, and Cathode Strip Chambers (CSCs) in the endcap region. In this report, the performance of each of these muon detectors and their trigger response are presented.

  3. The design and performance of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-05-01

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons are increasingly being exploited for the non-destructive assay of shielded containers in a wide range of applications. One such application is the characterisation of legacy nuclear waste materials stored within industrial containers. The design, assembly and performance of a prototype muon tomography system developed for this purpose are detailed in this work. This muon tracker comprises four detection modules, each containing orthogonal layers of Saint-Gobain BCF-10 2 mm-pitch plastic scintillating fibres. Identification of the two struck fibres per module allows the reconstruction of a space point, and subsequently, the incoming and Coulomb-scattered muon trajectories. These allow the container content, with respect to the atomic number Z of the scattering material, to be determined through reconstruction of the scattering location and magnitude. On each detection layer, the light emitted by the fibre is detected by a single Hamamatsu H8500 MAPMT with two fibres coupled to each pixel via dedicated pairing schemes developed to ensure the identification of the struck fibre. The PMT signals are read out to standard charge-to-digital converters and interpreted via custom data acquisition and analysis software. The design and assembly of the detector system are detailed and presented alongside results from performance studies with data collected after construction. These results reveal high stability during extended collection periods with detection efficiencies in the region of 80% per layer. Minor misalignments of millimetre order have been identified and corrected in software. A first image reconstructed from a test configuration of materials has been obtained using software based on the Maximum Likelihood Expectation Maximisation algorithm. The results highlight the high spatial resolution provided by the detector system. Clear discrimination between the low, medium and high

  4. Multiple muons in MACRO

    NASA Technical Reports Server (NTRS)

    Heinz, R.

    1985-01-01

    An analysis of the multiple muon events in the Monopole Astrophysics and Cosmic Ray Observatory detector was conducted to determine the cosmic ray composition. Particular emphasis is placed on the interesting primary cosmic ray energy region above 2000 TeV/nucleus. An extensive study of muon production in cosmic ray showers has been done. Results were used to parameterize the characteristics of muon penetration into the Earth to the location of a detector.

  5. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    SciTech Connect

    Pal, S.; Acharya, B.S.; Majumder, G.; Mondal, N.K.; Samuel, D.; Satyanarayana, B. E-mail: acharya@tifr.res.in E-mail: nkm@tifr.res.in E-mail: bsn@tifr.res.in

    2012-07-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R and D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  6. Measurement of 56Fe activity produced in inelastic scattering of neutrons created by cosmic muons in an iron shield.

    PubMed

    Krmar, M; Jovančević, N; Nikolić, D

    2012-01-01

    We report on the study of the intensities of several gamma lines emitted after the inelastic scattering of neutrons in (56)Fe. Neutrons were produced via nuclear processes induced by cosmic muons in the 20tons massive iron cube placed at the Earth's surface and used as a passive shield for the HPGe detector. Relative intensities of detected gamma lines are compared with the results collected in the same iron shield by the use of the (252)Cf neutrons. Assessment against the published data from neutron scattering experiments at energies up to 14MeV is also provided. It allowed us to infer the qualitative information about the average energy of muon-created neutrons in the iron shield.

  7. Average Spatial Distribution of Cosmic Rays behind the Interplanetary Shock—Global Muon Detector Network Observations

    NASA Astrophysics Data System (ADS)

    Kozai, M.; Munakata, K.; Kato, C.; Kuwabara, T.; Rockenbach, M.; Dal Lago, A.; Schuch, N. J.; Braga, C. R.; Mendonça, R. R. S.; Jassar, H. K. Al; Sharma, M. M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.; Tokumaru, M.

    2016-07-01

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east-west asymmetry is more prominent in GMDN data responding to ˜60 GV GCRs than in NM data responding to ˜10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic-y component of the density gradient, G y , shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G z shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G z changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  8. Cosmic ray modulation and noise level on the extended multidirectional muons detector telescope installed in south of Brazil: preliminary analysis

    NASA Astrophysics Data System (ADS)

    Braga, C. R.; Savian, J. F.; da Silva, M. R.; da Silva, S. M.; da Silva, C. W.; Dal Lago, A.; Kuwabara, T.; Munakata, K.; Bieber, J. W.; Schuch, N. J.; All

    Because of the large detector mass required to detect high-energy cosmic rays ground-based instruments remain the state-of-the-art method for studying these particles At energies up to 100 GeV primary galactic cosmic rays experience significant variation in response to solar wind disturbances such as interplanetary coronal mass ejections ICMEs In this way ground-based detectors can provide unique information on conditions in the near-earth interplanetary medium Since 2001 a prototype multidirectional high energy 50 GeV cosmic-ray muons detector telescope was operating in the Southern Space Observatory SSO CRSPE INPE - MCT Brazil geomagnetic coordinates 19o 13 S and 16o 30 E In December 2005 an upgrade increased the collection area in 600 becoming two layers of 28 m2 each The objective of this work is to analyze cosmic ray count rates observed by ground-based detector in order to find both variations not associated with interplanetary structures possible associated with the noise from the instrument and decrease rates caused by cosmic ray modulation due to interplanetary structures near Earth We use 1 minute resolution data from the extended telescope collected since January 2006 which is the first data since the update of the instrument on December 2005 We also use the disturbance storm time Dst index from Kyoto plasma and interplanetary magnetic field from the ACE satellite In the future this study will help to separate cosmic ray modulation caused by interplanetary structures from those variations in short periods less than 1 month

  9. Observation of cosmic ray sidereal time variation by Grapes III muon telescope at Ooty

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Fujimoto, K.; Gupta, S. K.; Hayashi, Y.; Ito, N.; Jain, Kawakami S.; Mohanty, D. K.; Nonaka, T.; Noto, S.; Ravindran, K. C.; Satomi, K.; Sivaprasad, K.; Tanaka, H.; Tonwar, S. C.; Toyofuku, T.; Viswanathan, K.; Yoshikoshi, T.

    2001-08-01

    We analyzed the sidereal time variation on the data of muons counting rate observed by the large muon telescope of GRAPES III ( total area 560 m2 , muon's energy > 1GeV) over 3 years at Ooty ( 11.4deg latitude, 76.7deg longitude). Their counting rate is around 53,000 counts /sec and this high counting rate is great advantage for modulation measurement. The analysis based on the data of such high-statistics enable us to compare the sidereal diurnal variation even with each single year's result. We observed the Tail-in and Loss corn anisotropies through detailed analysis. We newly started the measurement of direction of individual muons with accuracy of about 8 degrees from 1999. We present some results on the siderealdailyvariation obtained by this systemtoo.

  10. GEANT4 simulation of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-05-01

    Cosmic-ray muons are highly penetrative charged particles that are observed at the sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the scattering density λ, a parameter which is related to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.

  11. Performance of the Majorana Demonstrator Muon Veto System

    NASA Astrophysics Data System (ADS)

    Wiseman, Clinton; Majorana Collaboration

    2015-10-01

    The Majorana Demonstrator is a neutrinoless double beta decay experiment operating at the 4850-ft. level of the Sanford Underground Research Facility in Lead, SD. The low-background goals of this Ge-based experiment require a muon veto system. The operation of the partial veto panel array (2/3 coverage) provides the first opportunity to study muon events during the commissioning of the Ge detectors. The Prototype Ge detector module operated in the Demonstrator shield for a total exposure of over 600 kg*day with the partial veto system. The operation of Module 1, consisting of 22.5 kg of Ge mass, in the shield with full veto panel coverage will provide a complete array to study muon-induced events in the experiment. The veto panels are synchronized with Ge detectors using a common 100MHz clock, presenting a unique opportunity to 1) study the flux and angular distribution of muons incident on the Demonstrator using the experiment's modular veto panel design, and 2) examine the effect of muon-related events on the Ge detectors. In this talk the performance of the muon veto system, including an analysis of the coincidence patterns of the incident muons and the corresponding spectra produced in the Ge detectors, is presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  12. Relevance of multiple muons detected underground to the mass composition of primary cosmic rays

    NASA Technical Reports Server (NTRS)

    Szabelski, J.; Wdowczyk, J.; Wolfendale, A. W.

    1985-01-01

    Calculations have been made of the expected frequencies of multiple muons in the Soudan underground proton decay detector. It is concluded that the flux of heavy nuclei (z 10) in the range 10 to the 15th power to 10 to the 16th power eV/nucleus is at most 25% of the total particle flux in the same range.

  13. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Griskevich, N. J.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Weatherly, P.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Himmel, A.; Li, Z.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Chen, S.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-01-01

    Cosmic-ray-muon spallation-induced radioactive isotopes with β decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande IV in order to determine the production rates of 12B, 12N, 16N, 11Be, 9Li, 8He, 9C, 8Li, 8B, and 15C. These rates were extracted from fits to time differences between parent muons and subsequent daughter β 's by fixing the known isotope lifetimes. Since >9Li can fake an inverse-beta-decay reaction chain via a β +n cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measurements; the application of a neutron tagging technique using correlated triggers was found to improve this 9Li measurement. The measured yields were generally found to be comparable with theoretical calculations, except the cases of the isotopes 9Li / 8B and 9Li.

  14. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    NASA Astrophysics Data System (ADS)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-12-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Because each subsystem has to be far away from each other and be placed in the distant location, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  15. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  16. The composition of cosmic rays near the Bend (10 to the 15th power eV) from a study of muons in air showers at sea level

    NASA Technical Reports Server (NTRS)

    Goodman, J. A.; Gupta, S. C.; Freudenreich, H. T.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, M. C.; Burnstein, R.

    1985-01-01

    The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV.

  17. The EEE Project: An extended network of muon telescopes for the study of cosmic rays

    NASA Astrophysics Data System (ADS)

    Panetta, M. P.

    2016-07-01

    The EEE (Extreme Energy Event) Project's goal is the study of high energy Extensive Air Showers (EAS) over a very large area, using an array of muon telescopes, based on position-sensitive Multigap Resistive Plate Chambers (MRPCs). Young students are directly involved in assembling and monitoring the telescopes, with the aim to introduce them to advanced physics research. At present the array is composed of more than 40 stations, distributed on a total area of 3 ×105km2. Most of them are independently taking data since several years. A new combined run (RUN-1) has started in February 2015, with 35 telescopes taking data simultaneously for a collected statistics larger than 4 ×109 reconstructed events. An overview of the experiment and some results from studies on correlated muons from the same EAS, and on solar events as Forbush decreases, will be shown.

  18. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  19. A new muon-pion collection and transport system design using superconducting solenoids based on CSNS

    NASA Astrophysics Data System (ADS)

    Xiao, Ran; Liu, Yan-Fen; Xu, Wen-Zhen; Ni, Xiao-Jie; Pan, Zi-Wen; Ye, Bang-Jiao

    2016-05-01

    A new muon and pion capture system is proposed for the China Spallation Neutron Source (CSNS), currently under construction. Using about 4% of the pulsed proton beam (1.6 GeV, 4 kW and 1 Hz) of CSNS to bombard a cylindrical graphite target inside a superconducting solenoid, both surface muons and pions can be acquired. The acceptance of this novel capture system - a graphite target wrapped up by a superconducting solenoid - is larger than the normal muon beam lines using quadrupoles at one side of the separated muon target. The muon and pion production at different capture magnetic fields was calculated using Geant4. The bending angle of the capture solenoid with respect to the proton beam was also optimized in simulation to achieve more muons and pions. Based on the layout of the muon experimental area reserved at the CSNS project, a preliminary muon beam line was designed with multi-purpose muon spin rotation areas (surface, decay and low-energy muons). Finally, high-flux surface muons (108/s) and decay muons (109/s) simulated by G4beamline will be available at the end of the decay solenoid based on the first phase of CSNS. This collection and transport system will be a very effective beam line at a proton current of 2.5 μA. Supported by National Natural Science Foundation of China (11527811)

  20. Development of a novel micro pattern gaseous detector for cosmic ray muon tomography

    NASA Astrophysics Data System (ADS)

    Biglietti, M.; Canale, V.; Franchino, S.; Iengo, P.; Iodice, M.; Petrucci, F.

    2016-07-01

    We propose a novel detector (Thick Groove Detector, TGD) designed for cosmic ray tomography with a spatial resolution of ~500 μm, trying to keep the construction procedure as simple as possible and to reduce the operating costs. The TGD belongs to the category of MPGDs with an amplification region less than 1 mm wide formed by alternate anode/cathode microstrips layers at different heights. A first 10×10 cm2 prototype has been built, divided in four sections with different test geometries. We present the construction procedure and the first results in terms of gain and stability. Preliminary studies with cosmic rays are also reported.

  1. Automated wire tension measurement system for LHCb muon chambers

    NASA Astrophysics Data System (ADS)

    Ciambrone, P.; Dané, E.; Dumps, R.; Dwuznik, M.; Felici, G.; Forti, C.; Frenkel, A.; Graulich, J.-S.; Kachtchouk, A.; Kulikov, V. V.; Martellotti, G.; Medvedkov, A.; Nedosekin, A. A.; Penso, G.; Pinci, D.; Pirozzi, G.; Schmidt, B.; Shubin, V.

    2005-06-01

    A wire tension meter has been developed for the multi-wire proportional chambers of the LHCb muon detector. The wire tension is deduced from its mechanical resonance frequency. In the LHCb muon chambers, the wires are 2 mm apart and electrically connected in groups of 3-32, so that the wire excitation system must be precisely positioned with respect to the wire to be tested. This wire is forced to oscillate by a periodic high voltage applied between that wire and a non-oscillating "sense wire" placed parallel and close to it. This oscillation produces a variation of the capacitance between these two wires which is measured by a high precision digital electronic circuit. At the resonance frequency this capacitance variation is maximum. The system has been systematically investigated and its parameters were optimized. In the range 0.4-1 N a good agreement is found between the mechanical tension measured by this system and by a dynamometer.

  2. Design of a muon tomography system with a plastic scintillator and wavelength-shifting fiber arrays

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Baek, Cheol-Ha; Chung, Yong Hyun

    2013-12-01

    Recently, monitoring nuclear materials to avoid nuclear terrorism has become an important area of national security. It can be difficult to detect gamma rays from nuclear material because they are easily shielded by shielding material. Muon tomography using multiple -Coulomb scattering derived from muons can be utilized to detect special nuclear materials (SNMs) such as uranium-235 and plutonium-239. We designed a muon tomography system composed of four detector modules. The incident and scattered muon tracks can be calculated by two top and two bottom detectors, respectively. 3D tomographic images are obtained by extracting the crossing points of muon tracks with a point-of-closest-approach algorithm. The purpose of this study was to optimize the muon tomography system using Monte Carlo simulation code. The effects of the geometric parameters of the muon tomography system on material Z-discrimination capability were simulated and evaluated.

  3. Development of high-resolution muon tracking systems based on micro-pattern detectors

    SciTech Connect

    Bortfeldt, J.; Biebel, O.; Heereman, D.; Hertenberger, R.

    2011-07-01

    A muon tracking system consisting of four 9 cm x 10 cm sized bulk Micromegas detectors with 128 {mu}m amplification-gap and two 10 cm x 10 cm triple GEM detectors is foreseen for high-precision tracking of 140 GeV muons at the H8 beamline at CERN with a rate of up to 10 kHz and an overall resolution below 40 {mu}m. Larger detectors with an active area of 0.5 m{sup 2} and more are under development for detector studies in high neutron or gamma ray background environments at the Gamma Irradiation Facility at CERN and the Munich tandem accelerator. Signal studies of both detector types have been performed by recording cosmic muon and 5.9 keV X-ray signals with a single charge-sensitive preamplifier using several gas-mixtures of Ar:CO{sub 2}. The signals were digitized using 1 GHz VME based flashADCs with 2520 sampling points. The analysis of the complete signal-cycles allows for the determination of rise times, pulse heights, timing fluctuations and discrimination of background, resulting in a FWHM energy resolution of about 20% and detection efficiencies of 99% and more. Models for signal formation in both detector types will be presented. The single detector spatial resolution of 80 {mu}m was measured using a fast Gassiplex based strip readout with readout strips of 150 {mu}m width and a pitch of 250 {mu}m. The Gassiplex readout, formerly used at the HERMES experiment, had to be substantially adapted. No more crosstalk or non-linearities were observed after reconfiguration of the multiplexing amplifier on the front-end boards. The observed spatial resolution is limited by multiple scattering of the cosmic muons used in the laboratory. We also report on the sensitivity to gamma- and neutron background and on the behaviour of spatial resolution as a function of background rates. (authors)

  4. First demonstration of imaging cosmic muons in a two-phase Liquid Argon TPC using an EMCCD camera and a THGEM

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Carroll, J.; McCormick, K. J.; Paudyal, P.; Roberts, A.; Smith, N. A.; Touramanis, C.

    2015-10-01

    Colossal two-phase Liquid Argon Time Projection Chambers (LAr TPCs) are a proposed option for future long-baseline neutrino experiments. This study illustrates the feasibility of using an EMCCD camera to capture light induced by single cosmic events in a two-phase LAr TPC employing a THGEM. An Andor iXon Ultra 897 EMCCD camera was externally mounted via a borosilicate glass viewport on the Liverpool two-phase LAr TPC. The camera successfully captured the secondary scintillation light produced at the THGEM holes that had been induced by cosmic events. The light collection capability of the camera for various EMCCD gains was assessed. For a THGEM gain of 64 and an EMCCD gain of 1000, clear images were captured with an average signal-to-noise ratio of 6. Preliminary 3D reconstruction of straight cosmic muon tracks has been performed by combining the camera images, PMT signals and THGEM charge data. Reconstructed cosmic muon tracks were used to determine THGEM gain and to calibrate the intensity levels of the EMCCD image.

  5. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  6. The spatial density gradient of galactic cosmic rays and its solar cycle variation observed with the Global Muon Detector Network

    NASA Astrophysics Data System (ADS)

    Kozai, Masayoshi; Munakata, Kazuoki; Kato, Chihiro; Kuwabara, Takao; Bieber, John W.; Evenson, Paul; Rockenbach, Marlos; Lago, Alisson Dal; Schuch, Nelson J.; Tokumaru, Munetoshi; Duldig, Marcus L.; Humble, John E.; Sabbah, Ismail; Al Jassar, Hala K.; Sharma, Madan M.; Kóta, Jozsef

    2014-12-01

    We derive the long-term variation of the three-dimensional (3D) anisotropy of approximately 60 GV galactic cosmic rays (GCRs) from the data observed with the Global Muon Detector Network (GMDN) on an hourly basis and compare it with the variation deduced from a conventional analysis of the data recorded by a single muon detector at Nagoya in Japan. The conventional analysis uses a north-south (NS) component responsive to slightly higher rigidity (approximately 80 GV) GCRs and an ecliptic component responsive to the same rigidity as the GMDN. In contrast, the GMDN provides all components at the same rigidity simultaneously. It is confirmed that the temporal variations of the 3D anisotropy vectors including the NS component derived from two analyses are fairly consistent with each other as far as the yearly mean value is concerned. We particularly compare the NS anisotropies deduced from two analyses statistically by analyzing the distributions of the NS anisotropy on hourly and daily bases. It is found that the hourly mean NS anisotropy observed by Nagoya shows a larger spread than the daily mean due to the local time-dependent contribution from the ecliptic anisotropy. The NS anisotropy derived from the GMDN, on the other hand, shows similar distribution on both the daily and hourly bases, indicating that the NS anisotropy is successfully observed by the GMDN, free from the contribution of the ecliptic anisotropy. By analyzing the NS anisotropy deduced from neutron monitor (NM) data responding to lower rigidity (approximately 17 GV) GCRs, we qualitatively confirm the rigidity dependence of the NS anisotropy in which the GMDN has an intermediate rigidity response between NMs and Nagoya. From the 3D anisotropy vector (corrected for the solar wind convection and the Compton-Getting effect arising from the Earth's orbital motion around the Sun), we deduce the variation of each modulation parameter, i.e., the radial and latitudinal density gradients and the parallel

  7. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  8. Cosmic emergy based ecological systems modelling

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chen, G. Q.; Ji, X.

    2010-09-01

    Ecological systems modelling based on the unified biophysical measure of cosmic emergy in terms of embodied cosmic exergy is illustrated in this paper with ecological accounting, simulation and scenario analysis, by a case study for the regional socio-economic ecosystem associated with the municipality of Beijing. An urbanized regional ecosystem model with eight subsystems of natural support, agriculture, urban production, population, finance, land area, potential environmental impact, and culture is representatively presented in exergy circuit language with 12 state variables governing by corresponding ecodynamic equations, and 60 flows and auxiliary variables. To characterize the regional socio-economy as an ecosystem, a series of ecological indicators based on cosmic emergy are devised. For a systematic ecological account, cosmic exergy transformities are provided for various dimensions including climate flows, natural resources, industrial products, cultural products, population with educational hierarchy, and environmental emissions. For the urban ecosystem of Beijing in the period from 1990 to 2005, ecological accounting is carried out and characterized in full details. Taking 2000 as the starting point, systems modelling is realized to predict the urban evolution in a one hundred time horizon. For systems regulation, scenario analyses with essential policy-making implications are made to illustrate the long term systems effects of the expected water diversion and rise in energy price.

  9. Measurement of muon intensity by Cerenkov method

    NASA Technical Reports Server (NTRS)

    Liu, Z. H.; Li, G. J.; Bai, G. Z.; Liu, J. G.; Geng, Q. X.; Ling, J.

    1985-01-01

    Optical detection is an important technique in studies and observations of air showers, muons and relevant phenomena. The muon intensity is measured in a proper energy range and to study some problems about Cerenkov radiation of cosmic rays are studied, by a muon-telescope operated with Cerenkov detector. It is found that the measured muon intensity agrees with the integral energy spectrum of cosmic ray muons.

  10. CMS muon detector and trigger performance

    NASA Astrophysics Data System (ADS)

    Piccolo, Davide; CMS Collaboration

    2011-02-01

    In the CMS experiment at the LHC proton-proton collider, a key role will be played by the muon system that is embedded inside the iron yoke used to close the magnetic flux of the CMS solenoid. The muon system of the CMS experiment performs three main tasks: triggering of muons, identifying muons, and assisting the central tracker in order to measure the momentum and charge of high-pt muons in the pseudorapidity region |η|≤2.4. The system is composed by a central barrel and two closing endcaps. Three independent technologies are used to reconstruct and trigger muons: Drift Tubes (DT) in the barrel, Cathode Strips Chambers (CSC) in the endcaps and Resistive Plate Chambers (RPC) in both barrel and endcap regions. All the detectors will contribute to the tracking and triggering of muons. Towards the end of 2008 and in 2009 the CMS experiment was commissioned with many millions of cosmic rays. These data have been fundamental to check the performance of the three sub-detectors and of the trigger response. In this paper the results in terms of the detection and trigger performance at the level of each sub-detector and at the level of the full muon system will be reported.

  11. Underwater measurements of muon intensity

    NASA Technical Reports Server (NTRS)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  12. Survey of the A, B and C layers of the Fermilab D0 muon detector system

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2000-06-13

    The Fermilab D0 detector is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. One of the essential elements of this upgrade is the upgrade of the Muon detector system. The Muon detector system consists of the Central Muon Detector and the Forward Muon Detector. The Central Muon Detector consists of three detector systems: the Proportional Drift Tube (PDT) chambers which were used in Run I, the B- and C-layer Scintillation Counters, and new the A-layer Scintillation Counters. The Forward Muon Detector consists of the Mini-Drift Tubes (MDTs) and the Scintillation Pixel Counters. There are three layers, designated A, B, C, of the Muon detector system. The A-layer is closest to the interaction region and a toroid magnet is located between the A- and B-layers. This paper discusses the methods currently employed to survey and align these PDTs, MDTs, and the scintillation pixel counters in the three layers of the Muon detector system within the specified accuracy. The accuracy for the MDTs and PDTs is {+-}0.5 mm, and {+-}2.0 mm for the scintillation pixel counters. The Laser Tracker, the BETS, and the V-STARS systems are the major instruments used for the survey.

  13. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    SciTech Connect

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  14. Mercury Handling for the Target System for a Muon Collider

    SciTech Connect

    Graves, Van B; Mcdonald, K; Kirk, H.; Weggel, Robert; Souchlas, Nicholas; Sayed, H; Ding, X

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

  15. Quantum Indeterminacy of Cosmic Systems

    SciTech Connect

    Hogan, Craig J.

    2013-12-30

    It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.

  16. Recent Advances and Field Trial Results Integrating Cosmic Ray Muon Tomography with Other Data Sources for Mineral Exploration

    NASA Astrophysics Data System (ADS)

    Schouten, D.

    2015-12-01

    CRM GeoTomography Technologies, Inc. is leading the way in applying muon tomography to discovery and definition of dense ore bodies for mineral exploration and resource estimation. We have successfully imaged volcanogenic massive sulfide (VMS) deposits at mines in North America using our suite of field-proven muon tracking detectors, and are at various stages of development for other applications. Recently we developed in-house inversion software that integrates data from assays, surface and borehole gravity, and underground muon flux measurements. We have found that the differing geophysical data sources provide complementary information and that dramatic improvements in inversion results are attained using various inversion performance metrics related to the excess tonnage of the mineral deposits, as well as their spatial extents and locations. This presentation will outline field tests of muon tomography performed by CRM Geotomography in some real world examples, and will demonstrate the effectiveness of joint muon tomography, assay and gravity inversion techniques in field tests (where data are available) and in simulations.

  17. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  18. The OPERA muon spectrometers

    NASA Astrophysics Data System (ADS)

    Garfagnini, A.; Bergnoli, A.; Brugnera, R.; Carrara, E.; Ciesielski, R.; Dal Corso, F.; Dusini, S.; Fanin, C.; Longhin, A.; Stanco, L.; Cazes, A.; Cecchetti, A.; Di Troia, C.; Dulach, B.; Felici, G.; Mengucci, A.; Orecchini, D.; Paoloni, A.; Spinetti, M.; Terranova, F.; Ventura, M.; Votano, L.; Candela, A.; D'Incecco, M.; Gustavino, C.; Lindozzi, M.

    2007-03-01

    The OPERA experiment will study νμ to ντ oscillations through τ appearance on the 732 km long CERN to Gran Sasso baseline. The magnet yokes of the two muon spectrometers are instrumented with 48 planes of high resistivity bakelite Resistive Plate Chambers (RPC) operated in streamer mode. Each plane covers about 70 m2. A general introduction to the system installation and commissioning will be given. Four RPC planes were instrumented and the first tests were performed confirming a good behavior of the installed RPCs in terms of intrinsic noise and operating currents. The measured noise maps agree with those obtained in the extensive quality test performed at surface. Counting rates are below 20 Hz/m2. Single and multiple cosmic muon tracks were also reconstructed. The estimated efficiency is close to the geometrical limit and the very first measurements of the absolute and differential muon flux are in agreement with the expectations. Finally, a description of the readout electronics and of the slow control system is given.

  19. LED Monitoring System of the Phenix Muon Piston Calorimeter

    NASA Astrophysics Data System (ADS)

    Motschwiller, Steven

    2010-11-01

    The Muon Piston Calorimeter in the PHENIX experiment at RHIC has a monitoring system consisting of LEDs and PIN diodes to calibrate out the time dependent changes to the detector. The LEDs track the temperature and radiation-damage changes to the response of the MPC, while the absolute calibration can be done using 0̂ decays. To execute this, LEDs flash light through the PbWO4 crystal to the Avalanche Photo Diodes The MPC is made up of 416 independent electromagnetic calorimeter towers. By using the LEDs we can correct for changes in the gains of each tower in the MPC, on a run by run basis. Because the LED value only gives a relative measurement of the gain over time, this method of calibration can only be used in conjunction with absolute calibrations provided by 0̂ decays or by minimum ionizing peaks . This work will be used to make a final measurement on Transverse energy at √sNN = 200 GV in Au+Au collisions.

  20. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE PAGESBeta

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  1. Radiation tests of real-sized prototype RPCs for the Phase-2 Upgrade of the CMS Muon System

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Cho, S. W.; Choi, S. Y.; Hong, B.; Go, Y.; Kang, M. H.; Lim, J. H.; Park, S. K.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumarl, R.; Metha, A.; Singh, J.; Ahmad, A.; Ahmad, M.; Ahmed, W.; Asghar, M. I.; Awan, I. M.; Hassan, Q.; Hoorani, H.; Khan, W. A.; Khurshid, T.; Muhammad, S.; Shah, M. A.; Shahzad, H.; Kim, M. S.; Goutzvitz, M.; Grenier, G.; Lagarde, F.; Laktineh, I. B.; Carpinteyro Bernardino, S.; Uribe Estrada, C.; Pedraza, I.; Severiano, C. B.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Orso, I.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-08-01

    We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with 137Cs sources providing maximum gamma rates of about 1.5 kHz cm-2. For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).

  2. Radiation tests of real-sized prototype RPCs for the Phase-2 Upgrade of the CMS Muon System

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Cho, S. W.; Choi, S. Y.; Hong, B.; Go, Y.; Kang, M. H.; Lim, J. H.; Park, S. K.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumarl, R.; Metha, A.; Singh, J.; Ahmad, A.; Ahmad, M.; Ahmed, W.; Asghar, M. I.; Awan, I. M.; Hassan, Q.; Hoorani, H.; Khan, W. A.; Khurshid, T.; Muhammad, S.; Shah, M. A.; Shahzad, H.; Kim, M. S.; Goutzvitz, M.; Grenier, G.; Lagarde, F.; Laktineh, I. B.; Carpinteyro Bernardino, S.; Uribe Estrada, C.; Pedraza, I.; Severiano, C. B.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Orso, I.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-08-01

    We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with 137Cs sources providing maximum gamma rates of about 1.5 kHz cm‑2. For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).

  3. Cosmic-ray record in solar system matter

    SciTech Connect

    Reedy, R.C.; Arnold, J.R.; Lal, D.

    1983-01-14

    The energetic nuclei in cosmic rays interact with meteoroids, the moon, planets, and other solar system matter. The nucleides and heavy nuclei tracks produced by the cosmic-ray particles in these targets contain a wealth of information about the history of the objects and temporal ans spatial variations in the particle fluxes. Most lunar samples and many meteorites ahve complex histories of cosmic-ray exposure from erosion, gardening, fragmentation, orbital changes, and other processes. There appear to be variations in the past fluxes of solar particles, and possibly also galactic cosmic rays, on time scales of 10/sup 4/ to 10/sup 7/ years.

  4. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  5. Status report of the upgrade of the CMS muon system with Triple-GEM detectors

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abdelalim, A. A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-07-01

    For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5 < | η | < 2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.

  6. SOLAR CYCLE DEPENDENCE OF THE DIURNAL ANISOTROPY OF 0.6 TeV COSMIC-RAY INTENSITY OBSERVED WITH THE MATSUSHIRO UNDERGROUND MUON DETECTOR

    SciTech Connect

    Munakata, K.; Mizoguchi, Y.; Kato, C.; Yasue, S.; Mori, S.; Takita, M.; Kota, J.

    2010-04-01

    We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at {approx}15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% +- 0.002%) and minimum ({approx}0.008% +- 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% +- 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeV GCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the 'active' solar activity epoch is about twice the amplitude in the 'quiet' solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the 'single-band valley depth' (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro

  7. Muon-pair production by atmospheric muons in CosmoALEPH.

    PubMed

    Maciuc, F; Grupen, C; Hashim, N-O; Luitz, S; Mailov, A; Müller, A-S; Putzer, A; Sander, H-G; Schmeling, S; Schmelling, M; Tcaciuc, R; Wachsmuth, H; Ziegler, Th; Zuber, K

    2006-01-20

    Data from a dedicated cosmic ray run of the ALEPH detector were used in a study of muon trident production, i.e., muon pairs produced by muons. Here the overburden and the calorimeters are the target materials while the ALEPH time projection chamber provides the momentum measurements. A theoretical estimate of the muon trident cross section is obtained by developing a Monte Carlo simulation for muon propagation in the overburden and the detector. Two muon trident candidates were found to match the expected theoretical pattern. The observed production rate implies that the nuclear form factor cannot be neglected for muon tridents.

  8. D0 Silicon Upgrade: Measurements for Space in the A-Stub Muon System

    SciTech Connect

    Cease, H.; /Fermilab

    1995-09-25

    Measurements are given for the A layer Stub counters of the D-Zero Muon system. The purpose of the measurements is to determine the amount of space available for the A-stub muon counters. The counters will be positioned in between the central A layer PDTs and the cryostats. The given measurements are taken from the A layer PDTs towards the cryostat around the central portion of the detector. Drawings of the position and depth of the obstructions in a 5 inch clear zone are given.

  9. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  10. The Slow Controls System of the New Muon g-2 Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Eads, Michael; New Muon g-2 Collaboration

    2015-04-01

    The goal of the new muon g-2 experiment (E-989), currently under construction at Fermi National Accelerator Laboratory, is to measure the anomalous gyromagnetic ratio of the muon with unprecedented precision. The uncertainty goal of the experiment, 0.14ppm, represents a four-fold improvement over the current best measurement of this value and has the potential to increase the current three standard deviation disagreement with the predicted standard model value to five standard deviations. Measuring the operating conditions of the experiment will be essential to achieving these uncertainty goals. This talk will describe the design and the current status of E-989's slow controls system. This system, based on the MIDAS Slow Control Bus, will be used to measure and record currents, voltages, temperatures, humidities, pressures, flows, and other data which is collected asynchronously with the injection of the muon beam. The system consists of a variety of sensors and front-end electronics which interface to back-end data acquisition, data storage, and data monitoring systems. Parts of the system are all already operational and the full system will be completed before beam commissioning begins in 2017.

  11. Stability of a Cosmic-Ray-Magnetohydrodynamic System

    NASA Astrophysics Data System (ADS)

    Ko, Chung-Ming; Lo, Ying-Yi

    2009-02-01

    We study the stability of a four-fluid cosmic-ray-MHD system which comprises magnetized thermal plasma, cosmic rays, forward and backward propagating Alfvén waves. The coupling between the plasma, cosmic rays, and waves depends on the energy density of the waves. Local short-wavelength small perturbation analysis is performed on a background steady state. The magnetoacoustic modes of the plasma are modified and intertwined with cosmic ray and wave modes, while the plasma Alfvén mode is unaffected. The parameter space is large and the stable/unstable regions of the system are complicated. We discuss some special cases analytically and work out some general cases numerically. Roughly speaking, the system is more likely to be stable if the perturbations have very short wavelength, not propagating at large angle with background magnetic field, large cosmic ray energy density, not too small energy density for both waves and large thermal energy density (and no self-gravity).

  12. Violation of cosmic censorship in dynamical p -brane systems

    NASA Astrophysics Data System (ADS)

    Maeda, Kengo; Uzawa, Kunihito

    2016-02-01

    We study the cosmic censorship of dynamical p -brane systems in a D -dimensional background. This is the generalization of the analysis in the Einstein-Maxwell-dilaton theory, which was discussed by Horne and Horowitz [Phys. Rev. D 48, R5457 (1993)]. We show that a timelike curvature singularity generically appears from an asymptotic region in the time evolution of the p -brane solution. Since we can set regular and smooth initial data in a dynamical M5-brane system in 11-dimensional supergravity, this implies a violation of cosmic censorship.

  13. The calorimeter system of the new muon g-2 experiment at Fermilab

    DOE PAGESBeta

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; et al

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  14. The calorimeter system of the new muon g-2 experiment at Fermilab

    SciTech Connect

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Pocanic, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  15. The calorimeter system of the new muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2016-07-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0-4.5 GeV electrons with a 28-element prototype array.

  16. Subglacial bedrock topography of an active mountain glacier in a high Alpine setting - insights from high resolution 3D cosmic-muon radiography of the Eiger glacier (Bern, Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Mair, David; Lechmann, Alessandro; Nishiyama, Ryuichi; Schlunegger, Fritz; Ariga, Akitaka; Ariga, Tomoko; Scampoli, Paola; Vladymyrov, Mykhailo; Ereditato, Antonio

    2016-04-01

    Bedrock topography and therefore the spatial-altitudinal distribution of ice thickness constrain the ice flow as well as the erosional mechanisms of glaciers. Although the processes by which glaciers have shaped modern and past landscapes have been well investigated, little information is still available about the shape of the bedrock beneath active glaciers in steep Alpine cirques. Here, we we apply the cosmic-muon radiography technology, which uses nuclear emulsion detectors for imaging the bedrock surface. This method should provide information on the bedrock topography beneath a glacier and related ice thicknesses and subglacial meltwater pathways. We apply this technology to the cirque of the Eiger glacier, situated on the western flank of Eiger mountain, Central Swiss Alps. The Eiger glacier originates on the western flank of the Eiger at 3700 m a.s.l., from where it stretches along 2.6 km to the current elevation at 2300 m a.s.l.. The glacier consists of a concave cirque bordered by >40° steep flanks, thereby utilizing weaknesses within the fabric of the bedrock such as folds, joints and foliations. The middle reach hosts a bedrock ridge where glacier diffluence occurs. The lower reaches of the glacier are characterized by several transverse crevasses, while the terminal lobe hosts multiple longitudinal crevasses. A basal till and lateral margins border the ice flow along the lowermost reach. While subglacial erosion in the cirque has probably been accomplished by plucking and abrasion where the glacier might be cold-based, sub glacial melt water might have contributed to bedrock sculpting farther downslope where the ice flow is constrained by bedrock. Overdeepening of some tens of meters is expected in the upper reach of the glacier, which is quite common in cirques (Cook & Swift, 2012). Contrariwise, we expect several tens of meters-deep bedrock excavations (characterized by concave curvatures of bedrock surface) at the site of ice diffluence. The next

  17. Tracing high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret

    2016-10-01

    We study the cosmic web at redshifts 1.0 <= <= 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l <= 30 h -1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

  18. The Gran Sasso muon puzzle

    SciTech Connect

    Fernandez-Martinez, Enrique; Mahbubani, Rakhi E-mail: rakhi@cern.ch

    2012-07-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2σ. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a surprising observation for such high energy muons. We do not see this same period in the stratospheric temperature data.

  19. The longitudinal development of muons in cosmic ray air showers at energies 10(15) - 10(17) eV

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relationship between longitudinal development of muons and conventional equi-intensity cuts is carefully investigated. The development of muons in Extensive Air Showers (EAS) has been calculated using simulation with a scaling violation model at the highest energies and mixed primary composition. Profiles of equi-intensity cuts expected at observation altitudes of 550, 690 and 930/sq cm can fit the observed data very well.

  20. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Claus, R.

    2016-07-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  1. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGESBeta

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  2. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    SciTech Connect

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  3. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  4. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGESBeta

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; et al

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  5. The digital data acquisition chain and the cosmic ray trigger system for the SLD Warm Iron Calorimeter

    SciTech Connect

    Benvenuti, A.; Piemontese, L.; Calcaterra, A.; De Sangro, R.; De Simone, P.; Burrows, P.N.; Cartwright, S.L.; Gonzales, S.; Lath, A.; Schneekloth, U.; Williams, D.C.; Yamartino, J.M.; Bacchetta, N.; Bisello, D.; Castro, A.; Galvagni, S.; Loreti, M.; Pescara, L.; Wyss, J.; Alpat, B.; Bilei, G.M.; Checcucci, B.; Dell'Orso, R.; Pauluzzi, M.; Servoli, L.; Carpinelli, M.; Castaldi, R.; Cazzola, U.; Vannini, C.; Verdini, P.G.; Messn

    1989-08-01

    The entire data-acquisition chain, from the custom-made front-end electronics to the Fastbus readout and data-reduction module, for the digital readout of the SLD limited streamer tube Warm Iron Calorimeter and Muon Identifier is described. Also described is a Fastbus Cosmic Logic Unit being developed to achieve the capability of reading cosmic ray events, also during the inter-crossing time, for apparatus monitoring and calibration purposes. 9 refs., 9 figs.

  6. Design and testing of the New Muon Lab cryogenic system at Fermilab

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

    2009-11-01

    Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

  7. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  8. Performance of the ALICE muon trigger system in pp and Pb-Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Fronzé, G. G.

    2016-06-01

    The ALICE muon spectrometer studies the production of quarkonia and open heavy-flavour particles. It is equipped with a trigger system composed of Resistive Plate Chambers which, by applying a transverse-momentum-based muon selection, minimises the background from light-hadron decays. The system has been continuously taking data throughout the LHC Run I; it has undergone maintenance and consolidation operations during the LHC shutdown period 1. In the first year of the LHC Run II, the system, fully recommissioned, has participated in data taking in pp and Pb-Pb collisions. The performance of the system throughout the last data-taking period is presented.

  9. COSMIC - The SLAC Control System Migration Challenge

    SciTech Connect

    MacKenzie, Ronald R.

    2002-01-18

    The current SLC control system was designed and constructed over 20 years ago. Many of the technologies on which it was based are obsolete and difficult to maintain. The VMS system that forms the core of the Control System is still robust but third party applications are almost non-existent and its long-term future is in doubt. The need for a Control System at SLAC that can support experiments for the foreseeable future is not in doubt. The present B-Factory or PEPII experiment is projected to run at least 10 years. An FEL laser of unprecedented intensity plus an ongoing series of fixed target experiments is also in our future. The Next Linear Collider or NLC may also be in our future although somewhat farther distant in time. The NLC has performance requirements an order of magnitude greater than anything we have built to date. In addition to large numbers of IOCs and process variables, Physicists would like to archive everything all the time. This makes the NLC Control System a bit like a detector system as well. The NLC Control System will also need the rich suite of accelerator applications that are available with the current SLC Control System plus many more that are now only a glimmer in the eyes of Accelerator Physicists. How can we migrate gradually away from the current SLC Control System towards a design that will scale to the NLC while keeping everything operating smoothly for the ongoing experiments?

  10. Design and performance of the alignment system for the CMS muon endcaps

    SciTech Connect

    Hohlmann, Marcus; Baksay, Gyongyi; Browngold, Max; Dehmelt, Klaus; Guragain, Samir; Andreev, Valery; Yang, Xiaofeng; Bellinger, James; Carlsmith, Duncan; Feyzi, Farshid; Loveless, Richard J.; /Florida Inst. Tech. /UCLA /Wisconsin U., Madison /UC, Davis /Fermilab /St. Petersburg, INP /UC, Riverside

    2006-12-01

    The alignment system for the CMS Muon Endcap detector employs several hundred sensors such as optical 1-D CCD sensors illuminated by lasers and analog distance- and tilt-sensors to monitor the positions of one sixth of 468 large Cathode Strip Chambers. The chambers mounted on the endcap yoke disks undergo substantial deformation on the order of centimeters when the 4T field is switched on and off. The Muon Endcap alignment system is required to monitor chamber positions with 75-200 {micro}m accuracy in the R? plane, {approx}400 {micro}m in the radial direction, and {approx}1 mm in the z-direction along the beam axis. The complete alignment hardware for one of the two endcaps has been installed at CERN. A major system test was performed when the 4T solenoid magnet was ramped up to full field for the first time in August 2006. We present the overall system design and first results on disk deformations, which indicate that the measurements agree with expectations.

  11. Observation of an excess of cosmic ray muons of energies 2 TeV from the direction of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.

    1985-01-01

    A high flux of muons from the Cygnus X-3 direction has been observed in NUSEX experiment at depths greater than 4600 hg/sq cm s.r. The excess muons show the 4.8 hour modulation in arrival time typical of this source. A study of this modulation was done in order to find the best value of the period and of the period derivative. The muon flux underground from NUSEX and SOUDAN (1800 hg/sq cm) experiments are used to determine the energy spectrum at sea level. The shape and the absolute intensities are found similar to those attributed to gamma rays responsible for production of air showers detected in direction of Cygnus X-3 in the energy range 10 to the 12th power to 10 to the 15th power eV.

  12. Joint Tomographic Imaging of 3-­-D Density Structure Using Cosmic Ray Muons and High-­-Precision Gravity Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Guardincerri, E.; Roy, M.; Dichter, M.

    2015-12-01

    As part of the CO2 reservoir muon imaging project headed by the Pacific Northwest National Laboraory (PNNL) under the U.S. Department of Energy Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) iniative, Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) plan to leverage the recently decommissioned and easily accessible Tunnel Vault on LANL property to test the complementary modeling strengths of muon radiography and high-precision gravity surveys. This tunnel extends roughly 300 feet into the hillside, with a maximum depth below the surface of approximately 300 feet. We will deploy LANL's Mini Muon Tracker (MMT), a detector consisting of 576 drift tubes arranged in alternating parallel planes of orthogonally oriented tubes. This detector is capable of precise determination of trajectories for incoming muons with angular resolution of a few milliradians. We will deploy the MMT at several locations within the tunnel, to obtain numerous crossing muon trajectories and permit a 3D tomographic image of the overburden to be built. In the same project, UNM will use a Scintrex digital gravimeter to collect high-precision gravity data from a dense grid on the hill slope above the tunnel as well as within the tunnel itself. This will provide both direct and differential gravity readings for density modeling of the overburden. By leveraging detailed geologic knowledge of the canyon and the lithology overlying the tunnel, as well as the structural elements, elevations and blueprints of the tunnel itself, we will evaluate the muon and gravity data both independently and in a simultaneous, joint inversion to build a combined 3D density model of the overburden.

  13. Muon front end for the neutrino factory

    NASA Astrophysics Data System (ADS)

    Rogers, C. T.; Stratakis, D.; Prior, G.; Gilardoni, S.; Neuffer, D.; Snopok, P.; Alekou, A.; Pasternak, J.

    2013-04-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  14. MAPMT H7546B anode current response study for ILC SiD muon system prototype

    SciTech Connect

    Dyshkant, A.; Blazey, G.; Francis, K.; Hedin, D.; Zutshi, V.; Fisk, H.; Milstene, C.; Abrams, R.; /Indiana U.

    2007-10-01

    The proposed Silicon Detector (SiD) concept for the ILC has barrel and end cap muon systems. An SiD scintillator based muon system prototype has 256 strips and was constructed from extruded strips, WLS fibers, clear fibers, and multianode photo multiplier tubes (MAPMT) Hamamatsu H7546B. Six MAPMTs were used. As a first step to understand strip output, the response of every anode to a given brightness of light and applied voltage must be measured. For the test, a custom made light source was used. Each MAPMT output was measured independently. The anode currents were measured at constant (green) input light brightness and the same photocathode to anode voltage (800V). The anode currents have a wide spread; for all tubes the maximum value is 5.23 times larger than the minimum value. The MAPMT cross talk was measured for one of the central inputs. The maximum cross talk value is about 4.9%. The average cross talk for the nearest four neighboring channels is 3.9%, for the farthest four is 1%. To assure the reproducibility and repeatability of the measurements, the double reference method was used.

  15. Algorithm and implementation of muon trigger and data transmission system for barrel-endcap overlap region of the CMS detector

    NASA Astrophysics Data System (ADS)

    Zabolotny, W. M.; Byszuk, A.

    2016-03-01

    The CMS experiment Level-1 trigger system is undergoing an upgrade. In the barrel-endcap transition region, it is necessary to merge data from 3 types of muon detectors—RPC, DT and CSC. The Overlap Muon Track Finder (OMTF) uses the novel approach to concentrate and process those data in a uniform manner to identify muons and their transversal momentum. The paper presents the algorithm and FPGA firmware implementation of the OMTF and its data transmission system in CMS. It is foreseen that the OMTF will be subject to significant changes resulting from optimization which will be done with the aid of physics simulations. Therefore, a special, high-level, parameterized HDL implementation is necessary.

  16. Cosmic rays and other space phenomena dangerous for the Earth's civilization: Foundation of cosmic ray warning system and beginning steps

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    difference between consequences Alerts became much smaller than errors. In our report "Cosmic Rays and other Space Weather Effects Influenced on Satellites Operation, Technologies, Biosphere and People Health" it was shown that very important element of Space Weather, influenced on satellites operation, technologies, and people health are strong magnetic storms, accompanied usually by CR Forbush effects. We discuss here on the possibility to include in the "Cosmic Ray Warning System" possibility to forecast this phenomenon, also dangerous for the Earth's Civilization. In the report "Cosmic Rays and other Space Phenomena Influenced on the Earth's Climate" on this Conference it was shown that very big changes in climate, dangerous for the Earth's Civilization, are caused by interactions of Solar system with molecular-dust clouds (caused the Great Ice Periods during many thousand years). Very dangerous for the Earth's Civilization are also nearby supernova explosions with great influence on biosphere and climate. We show that by CR data in the frame of "Cosmic Ray Warning System" is possible to forecast for many years before starting these dangerous phenomena, so the Earth's Civilization will have enough time for preparing to the new type of life. For this forecasting we need to add to the "Cosmic Ray Warning System" in near future several CR stations for continue measuring CR with much higher energies (1013 - 1014 eV). We hope to organize the mostly automatic working "Cosmic Ray Warning System" in cooperation with Azerbaijan, Israel, and many CR stations in the World. The Project will be open for any country and organizations (ESA, NASA and so on) and will be start as soon as possible. In the first 3 - 5 years we hope that forecasting of radiation hazards will be made fully automatically as it was described in this report. In the next 5-10 years the Project will be expanded for forecasting dangerous magnetic storms (in this case we need to use also muon telescopes data), and

  17. Front-end electronics for the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.

    2016-10-01

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  18. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  19. Tracing a high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret; Tago, Erik; Lietzen, Heidi; Park, Changbom; Heinämäki, Pekka; Saar, Enn; Song, Hyunmi; Liivamägi, Lauri Juhan; Einasto, Jaan

    2014-08-01

    Context. To understand the formation, evolution, and present-day properties of the cosmic web we need to study it at low and high redshifts. Aims: We trace the cosmic web at redshifts that range from 1.0 ≤ z ≤ 1.8 by using the quasar (QSO) data from the SDSS DR7 QSO catalogue. Methods: We apply a friend-of-friend algorithm to the quasar and random catalogues to determine systems at a series of linking length and analyse richness and sizes of these systems. Results: At the linking lengths l ≤ 30 h-1 Mpc, the number of quasar systems is larger than the number of systems detected in random catalogues, and the systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe. The richest quasar systems have four members. The mean space density of quasar systems, ≈ 10-7 (h-1 Mpc)-3, is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 ≤ l ≤ 70 h-1 Mpc), the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. The percolating system, which penetrate the whole sample volume appears in a quasar sample at a smaller linking length than in random samples (85 h-1 Mpc). At the linking length 70 h-1 Mpc, the richest systems of quasars have diameters exceeding 500 h-1 Mpc. Quasar luminosities in systems are not correlated with the system richness. Conclusions: Quasar system catalogues in our web pages and at the Strasbourg Astronomical Data Center (CDS) serve as a database for searching superclusters of galaxies and for tracing the cosmic web at high redshifts. Appendix A is available in electronic form at http://www.aanda.orgThe catalogues are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  20. First measurements of muon production rate using a novel pion capture system at MuSIC

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Nam, T. H.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Truong, N. M.; Yamamoto, A.; Yoshida, M.; Wing, M.

    2013-02-01

    The MuSIC (Muon Science Innovative Channel) beam line at RCNP (Research Centre for Nuclear Physics), Osaka will be the most intense source of muons in the world. A proton beam is incident on a target and, by using a novel capture solenoid, guides the produced pions into the beam line where they subsequently decay to muons. This increased muon flux will allow more precise measurements of cLFV (charged Lepton Flavour Violation) as well as making muon beams more economically feasible. Currently the first 36° of solenoid beam pipe have been completed and installed for testing with low proton current of 1 nA. Measurements of the total particle flux and the muon life time were made. The measurements were taken using thin plastic scintillators coupled to MPPCs (Multi-Pixel Photon Counter) that surrounded a magnesium or copper stopping target. The scintillators were used to record which particles stopped and their subsequent decay times giving a muon yield of 8.5 × 105 muons W-1proton beam or 3 × 108 muons s-1 when using the RCNP's full power (400 W).

  1. Gas gain uniformity tests performed on multiwire proportional chambers for the LHCb muon system

    NASA Astrophysics Data System (ADS)

    Alves, A.; de Andrade Filho, L. M.; Barbosa, A. F.; Graulich, J. S.; Guerrer, G.; Lima, H. P.; Mair, K.; Polycarpo, E.; Reis, A.; Rodrigues, F.; Schmidt, B.; Schneider, T.; Schoch Vianna, C.

    2008-06-01

    We present the experimental setup and the results of the gas gain uniformity tests performed as part of the quality control of the multiwire proportional chambers produced at CERN for the LHCb muon system. The test provides a relative gas gain measurement over the whole chamber sensitive area. It is based on the analysis of the pulse height spectrum obtained when the chamber is exposed to a 241Am radioactive source. Since the measurement is normalized to the peak of a precise pulse generator, the gain uniformity can also be evaluated among different gas gaps and different chambers. In order to cope with the specific requirements related to the relatively high number of chambers and to their varying geometry, a standalone and compact data acquisition system has been developed which is programmable at the hardware level and may be applied to many other applications requiring precise time-to-digital and analog-to-digital conversion, in correlated or non-correlated mode.

  2. Information extraction from muon radiography data

    SciTech Connect

    Borozdin, K. N.; Asaki, T. J.; Chartrand, R.; Hengartner, N. W.; Hogan, G. E.; Morris, C. L.; Priedhorsky, W. C.; Schirato, R.C.; Schultz, L. J.; Sottile, M. J.; Vixie, K. R.; Wohlberg, B. E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  3. Muon Collider

    SciTech Connect

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  4. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  5. Atmospheric muons and neutrinos, and the neutrino-induced muon flux underground

    NASA Technical Reports Server (NTRS)

    Liland, A.

    1985-01-01

    The diffusion equation for neutrino-induced cosmic ray muons underground was solved. The neutrino-induced muon flux and charge ratio underground have been calculated. The calculated horizontal neutrino-induced muon flux in the energy range 0.1 - 10000 GeV is in agreement with the measured horizontal flux. The calculated vertical flux above 2 GeV is in agreement with the measured vertical flux. The average charge ratio of neutrino-induced muons underground was found to be mu+/mu- = 0.40.

  6. Muon muon collider: Feasibility study

    SciTech Connect

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  7. Cosmic Ray Inspection and Passive Tomography for SNM Detection

    SciTech Connect

    Armitage, John; Oakham, Gerald; Bryman, Douglas; Cousins, Thomas; Noeel, Scott; Gallant, Grant; Jason, Andrew; Jonkmans, Guy; Stocki, Trevor J.; Waller, David

    2009-12-02

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or a subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.

  8. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    SciTech Connect

    Collica, Laura

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  9. Quasi-isochronous muon collection channels

    SciTech Connect

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  10. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  12. The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Castagnoli, C.; Castellina, A.; Chiavassa, A.; Cini, G.; D'Ettorre Piazzoli, B.; Di Sciascio, G.; Fulgione, W.; Galeotti, P.; Ghia, P. L.; Iacovacci, M.; Mannocchi, G.; Morello, C.; Navarra, G.; Saavedra, O.; Stamerra, A.; Trinchero, G. C.; Valchierotti, S.; Vallania, P.; Vernetto, S.; Vigorito, C.; Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlé, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.; EAS-TOP Collaboration

    2004-06-01

    The primary cosmic ray (CR) proton, helium and CNO fluxes in the energy range 80-300 TeV are studied at the National Gran Sasso Laboratories by means of EAS-TOP (Campo Imperatore, 2005 m a.s.l.) and MACRO (deep underground, 3100 m w.e., the surface energy threshold for a muon reaching the detector being Eμth≈1.3 TeV). The measurement is based on: (a) the selection of primaries based on their energy/nucleon (i.e., with energy/nucleon sufficient to produce a muon with energy larger than 1.3 TeV) and the reconstruction of the shower geometry by means of the muons recorded by MACRO in the deep underground laboratories; (b) the detection of the associated atmospheric Cherenkov light (C.l.) signals by means of the C.l. detector of EAS-TOP. The C.l. density at core distance r>100 m is directly related to the total primary energy E0. Proton and helium ("p + He") and proton, helium and CNO ("p + He + CNO") primaries are thus selected at E0≃80 TeV, and at E0≃250 TeV, respectively. Their flux is measured: J p+ He(80 TeV)=(1.8±0.4)×10 -6 m -2 s -1 sr -1 TeV -1, and J p+ He+ CNO(250 TeV)=(1.1±0.3)×10 -7 m -2 s -1 sr -1 TeV -1, their relative weights being: J p+ He/J p+ He+ CNO(250 TeV)=0.78±0.17 . By using the measurements of the proton spectrum obtained from the direct experiments and hadron flux data in the atmosphere, we obtain for the relative weights of the three components at 250 TeV: Jp: JHe: JCNO=(0.20±0.08):(0.58±0.19):(0.22±0.17). This corresponds to the dominance of helium over proton primaries at 100-1000 TeV, and a possible non-negligible contribution from CNO. The lateral distribution of Cherenkov light in Extensive Air Showers (EASs), which is related to the rate of energy deposit of the primary in the atmosphere, is measured for a selected proton and helium primary beam, and good agreement is found when compared with the one calculated with the CORSIKA/QGSJET simulation model.

  13. Front-end readout electronics considerations for Silicon Tracking System and Muon Chamber

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Kleczek, R.; Szczygiel, R.

    2016-02-01

    Silicon Tracking System (STS) and Muon Chamber (MUCH) are components of the Compressed Baryonic Matter (CBM) experiment at FAIR, Germany. STS will be built from 8 detector stations located in the aperture of the magnet. Each station will be built from double-sided silicon strip detectors and connected via kapton microcables to the readout electronics at the perimeter of each station. The challenging physics program of the CBM experiment requires from the detector systems very high performance. Design of the readout ASIC requires finding an optimal solution for interaction time and input charge measurements in the presence of: tight area (channel pitch: 58 μ m), noise (< 1000 e- rms), power (< 10 mW/channel), radiation hardness and speed requirements (average hit rate: 250 khit/s/channel). This paper presents the front-end electronics' analysis towards prototype STS and MUCH readout ASIC implementation in the UMC 180 nm CMOS process and in-system performance with the emphasis on preferable detector and kapton microcable parameters and input amplifiers' architecture and design.

  14. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  15. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  16. Electron-muon ranger: performance in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bene, P.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Bradshaw, T. W.; Bravar, U.; Bross, A. D.; Cadoux, F.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; Debieux, S.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Graulich, J. S.; Greis, J.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Husi, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Masciocchi, F.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nicola, L.; Noah Messomo, E.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rothenfusser, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Sandström, R.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Wisting, H.; Yang, X.; Young, A.; Zisman, M.

    2015-12-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/c.

  17. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE PAGESBeta

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  18. Electron-Muon Ranger: Performance in the MICE muon beam

    SciTech Connect

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c.

  19. Nuclear Effects of Supernova-Accelerated Cosmic Rays on Early Solar System Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Johnson, J.

    2008-03-01

    The solar system apparently formed in the neighborhood of massive stars. Supernova explosions of these stars accelerate cosmic rays to 100s of TeVs. These cosmic rays could accelerate the beta decay of certain radioactive species in meteorite parent bodies.

  20. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  1. Imaging Fukushima Daiichi reactors with muons

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.

    2013-05-01

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  2. Seeking the Limits of Low-Temperature Nuclear Fusion: Sticking in Muon-Catalyzed Fusion, and Piezonuclear Fusion in Deuterium/condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    Studies seeking an upper limit of two types of low temperature nuclear fusion is presented. The upper limit for muon catalyzed fusion is generally considered to be the number of fusions per muon obtainable. The limiting factor has been found to be how often the muon remains bound to the alpha produced by the fusion, known as the "sticking fraction." Experiments directly measuring the sticking and determining the sticking using high tritium fractions are presented. In deuterium/condensed matter systems the question is nearly whether nuclear fusion proceeds at all. Experiments where neutrons around deuterided titanium and palladium are measured are presented.

  3. The response of the EAS muon component in the GAMMA installation

    NASA Astrophysics Data System (ADS)

    Zazyan, M. Z.; Garyaka, A. P.; Martirosov, R. M.; Procureur, J.

    2001-04-01

    The response of the EAS muon component is studied by the detector simulation program ARES developed for the GAMMA experiment on Mt. Aragats (ANI Cosmic Ray Observatory, Armenia). Comparisons of experimental data with predictions of detector response simulations on the muon lateral distribution and the distribution of the muon size are presented.

  4. Performance of a superconducting magnet system operated in the Super Omega Muon beam line at J-PARC

    SciTech Connect

    Makida, Yasuhiro; Ikedo, Yutaka; Ogitsu, Toru; Shimomura, Koichiro; Miyake, Yasuhiro; Yoshida, Makoto; Adachi, Taihei; Kadono, Ryosuke; Kawamura, Naritoshi; Strasser, Patric; Koda, Akihiro; Fujimori, Hiroshi; Nishiyama, Kusuo; Ohhata, Hirokatsu; Okamura, Takahiro; Okada, Ryutaro; Orikasa, Tomofumi

    2014-01-29

    A superconducting magnet system, which is composed of an 8 m long solenoid for transportation and 12 short solenoids for focusing, has been developed for Muon Science Establishment facility of J-PARC. The transport solenoid is composed of a 6 m straight section connected to a 45 degree curved section at each end. Muons of various momenta and of both electric charges are transported through the solenoid inner bore with an effective diameter of 0.3 m, where 2 T magnetic field is induced. There are 12 focusing solenoids with an effective bore diameter of 0.6 m and a length of 0.35 m arranged on a straight line at suitable intervals. The maximum central field of each focusing solenoid is 0.66 T. All solenoid coils are cooled by GM cryocoolers through their own conductions. The magnet system has been installed into the beam line in the summer of 2012, and its performance has been checked. Beam commissioning has been carried out since October 2012. During beam operation, temperature rise over 6 K in the transport solenoid due to a nuclear heating from the muon production target is observed at beam intensity of about 300 kW.

  5. Electron and muon parameters of EAS and the composition of primary cosmic rays in 10(15) to approximately 10(16) eV

    NASA Technical Reports Server (NTRS)

    Cheung, T.; Mackeown, P. K.

    1985-01-01

    Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.

  6. Radiometer system to map the cosmic background radiation.

    PubMed

    Gorenstein, M V; Muller, R A; Smoot, G F; Tyson, J A

    1978-04-01

    We have developed a 33-GHz airborne radiometer system to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 degrees apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of +/-1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 degrees , reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, CA.

  7. Radiometer system to map the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Gorenstein, M. V.; Muller, R. A.; Smoot, G. F.; Tyson, J. A.

    1978-01-01

    A 33-GHz airborne radiometer system has been developed to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 deg apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of plus or minus 1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 deg, reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, Calif.

  8. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  9. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  10. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  11. Diffuse fluxes of cosmic high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND (deep underwater muon and neutrino detector) type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought.

  12. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  13. The first muon beam from a new highly-intense DC muon source, MuSIC

    NASA Astrophysics Data System (ADS)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  14. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  15. Noise reduction in muon tomography for detecting high density objects

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  16. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  17. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  18. Local anisotropy of muon flux - The basis of the method of muon diagnostics of extra-terrestrial space

    NASA Astrophysics Data System (ADS)

    Astapov, I. I.; Barbashina, N. S.; Dmitrieva, A. N.; Kokoulin, R. P.; Petrukhin, A. A.; Shutenko, V. V.; Yakovleva, E. I.; Yashin, I. I.

    2015-12-01

    A new method for the analysis of spatial and angular characteristics of the cosmic ray muon flux registered in the hodoscopic mode using a single setup - the muon hodoscope - is presented. Various parameters of the muon flux anisotropy and methods of calculation of these parameters are discussed. It is shown that the horizontal projection of the muon flux relative anisotropy vector which characterizes lateral (horizontal) displacement of the muon flux angular distribution is the sensitive parameter to a variety of nonstationary processes in the heliosphere. The experimental data on the variation of the muon flux anisotropy during the passage of various irregularities in the solar wind and interplanetary magnetic field in the Earth's vicinity are presented.

  19. Simulation of large acceptance LINAC for muons

    SciTech Connect

    Miyadera, H; Kurennoy, S; Jason, A J

    2010-01-01

    There has been a recent need for muon accelerators not only for future Neutrino Factories and Muon Colliders but also for other applications in industry and medical use. We carried out simulations on a large-acceptance muon linac with a new concept 'mixed buncher/acceleration'. The linac can accept pions/muons from a production target with large acceptance and accelerate muon without any beam cooling which makes the initial section of muon-linac system very compact. The linac has a high impact on Neutrino Factory and Muon Collider (NF/MC) scenario since the 300-m injector section can be replaced by the muon linac of only 10-m length. The current design of the linac consists of the following components: independent 805-MHz cavity structure with 6- or 8-cm-radius aperture window; injection of a broad range of pion/muon energies, 10-100 MeV, and acceleration to 150 - 200 MeV. Further acceleration of the muon beam are relatively easy since the beam is already bunched.

  20. Cosmic ray studies at CERN

    SciTech Connect

    Fernandez T, Arturo

    2006-09-25

    The use of the sophisticated and large underground detectors at CERN for cosmic ray studies has been considered by several groups, e.g. UA1, LEP and LHC detectors. They offer the opportunity to provide large sensitivity area with magnetic analysis which allow a precise determination of the direction of cosmic ray muons as well as their momentum up to the order of some TeV. The aim of this article is to review the observation of high energy cosmic ray muons using precise spectrometers at CERN, mainly LEP detectors as well as the possibility of improve those measurements with LHC apparatus, giving special emphasis to the ACORDE-ALICE cosmic ray physics program.

  1. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  2. Imaging a vertical shaft from a tunnel using muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Dorsey, D. J.; Schwellenbach, D.; Green, A.; Smalley, D.

    2015-12-01

    We use muon technology to image a vertical shaft from a tunnel. The density of the materials through which cosmic ray muons pass influences the flux of muons because muons are more attenuated by higher density material. Additionally, muons can travel several kilometers allowing measurements through deep rock. Density maps are generated from muon flux measurements to locate subsurface features like tunnel structures and ore bodies. Additionally, muon data can be jointly inverted with other data such as gravity and seismic to produce higher quality earth models than produced from a single method. We collected several weeks of data in a tunnel to image a vertical shaft. The minimum length of rock between the vertical shaft and the detector is 120 meters and the diameter of the vertical shaft is 4.6 meters. The rock the muons traveled through consists of Tertiary age volcanic tuff and steeply dipping, small-displacement faults. Results will be presented for muon flux in the tunnel and Monte-Carlo simulations of this experiment. Simulations from both GEANT4 (Geometry And Tracking version 4) and MCNP6 (Monte-Carlo N-Particle version 6) models will be compared. The tunnel overburden from muon measurements is also estimated and compared with actual the overburden. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Possible complementary cosmic-ray systems: Nuclei and antinuclei

    NASA Technical Reports Server (NTRS)

    Buck, Warren W.; Wilson, John W.; Townsend, Lawrence W.; Norbury, John W.

    1987-01-01

    Arguments are presented for the possible existence of antinuclei of charge Absolute Value of Z greater than 2 and particularly galactic cosmic antinuclei. Theoretical antinucleus-nucleus optical model cross sections are calculated and presented for the first time. A brief review of the nucleon-antinucleon interaction is also presented and its connection with the antinucleus-nucleus interaction is made. The predicted cross sections are smooth and show no structure. Finally, the findings are tied together with the formation of microlesions in living tissue.

  4. Cosmic ray intensity gradients in the solar system

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1975-01-01

    Recent progress in the determination of cosmic-ray intensity gradients is reviewed. Direct satellite measurements of the integral gradient are described together with various types of indirect measurements, including measurements of the Ar-37/Ar-39 ratio in samples from the Lost City meteorite, studies of anisotropies in neutron-monitor counting rates, and analysis of the sidereal diurnal anisotropy observed at a single point on earth. Nucleonic radial gradients and electron gradients measured by satellites in differential energy windows are discussed, and theoretical studies of the physical processes involved in these gradients are summarized. Observations of intensity gradients in heliographic latitude are reported.

  5. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  6. Astroparticle Physics: Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  7. The CMS RPC project, results from 2009 cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Carrillo, Camilo; CMS Collaboration

    2012-01-01

    The Resistive Plate Chambers (RPCs) are used in the CMS experiment as dedicated muon triggers both in the barrel and the endcap system. About 3000 square meters of double-gap RPCs were produced and have been installed in the experiment since 2007. The full barrel system and part of the endcaps have been extensively commissioned with millions of cosmic rays collected by CMS. Making use of the redundant muon system composed by drift tubes in the barrel and cathode strip chambers (CSC) in the endcaps which provide independent tracking and trigger information, the performance of the RPCs has been studied in terms of efficiency, cluster size multiplicity, spatial resolution and trigger response. Moreover during this long period of detector operations the stability of the system has been monitored to study the dark current and noise behavior as a function of time. First results obtained using the cosmic ray data taken during 2009 will be reported.

  8. UH cosmic rays and solar system material - The elements just beyond iron

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.

    1977-01-01

    The nucleosynthesis of cosmic-ray elements between the iron peak and the rare-earth region is examined, and compositional changes introduced by propagation in interstellar space are calculated. Theories on the origin of elements heavier than iron are reviewed, a supernova model of explosive nucleosynthesis is adopted for the ultraheavy (UH) cosmic rays, and computational results for different source distributions are compared with experimental data. It is shown that both the cosmic-ray data and the nucleosynthesis calculations are not yet of sufficient precision to pinpoint the processes occurring in cosmic-ray source regions, that the available data do provide boundary conditions for cosmic-ray nucleosynthesis, and that these limits may apply to the origin of elements in the solar system. Specifically, it is concluded that solar-system abundances appear to be consistent with a superposition of the massive-star core-helium-burning s-process plus explosive-carbon-burning synthesis for the elements from Cu to As and are explained adequately by the s- and r-processes for heavier elements.

  9. Magnets for Muon 6D Cooling Channels

    SciTech Connect

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  10. Performance study of the CMS barrel resistive plate chambers with cosmic rays

    NASA Astrophysics Data System (ADS)

    CMS Collaboration

    2010-03-01

    In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.

  11. Equivalent dose rate by muons to the human body.

    PubMed

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  12. Search for hidden high-Z materials inside containers with the Muon Portal Project

    NASA Astrophysics Data System (ADS)

    La Rocca, P.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A. A.; Bonanno, D.; Bonanno, G.; Costa, A.; Fallica, G.; Garozzo, S.; Indelicato, V.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Massimino, P.; Petta, C.; Pistagna, C.; Pugliatti, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Valvo, G.; Vitello, F.; Zaia, A.; Zappalà, G.

    2014-01-01

    The Muon Portal is a recently born project that plans to build a large area muon detector for a noninvasive inspection of shipping containers in the ports, searching for the presence of potential fissile (U, Pu) threats. The technique employed by the project is the well-known muon tomography, based on cosmic muon scattering from high-Z materials. The design and operational parameters of the muon portal under construction will be described in this paper, together with preliminary simulation and test results.

  13. Measuring and Modeling Cosmic Ray Showers with an MBL System: An Undergraduate Project.

    ERIC Educational Resources Information Center

    Jackson, David P.; Welker, Matthew T.

    2001-01-01

    Describes a novel method for inducing and measuring cosmic ray showers using a low-cost, microcomputer-based laboratory system. Uses low counting-rate radiation monitors in the reproduction of Bruno Rossi's classic experiment. (Contains 16 references.) (Author/YDS)

  14. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  15. Study of characteristics of Forbush decreases detected in 2006 - 2011 by means of muon hodoscope URAGAN

    NASA Astrophysics Data System (ADS)

    Barbashina, N. S.; Astapov, I. I.; Borog, V. V.; Dmitrieva, A. N.; Kokoulin, R. P.; Kompaniets, K. G.; Mishutina, Yu N.; Petrukhin, A. A.; Shutenko, V. V.; Sit'ko, O. A.; Yakovleva, E. I.; Yashin, I. I.

    2013-02-01

    Results of the study of variations of cosmic ray muon flux at the Earth surface during Forbush decreases (FD) registered in 2006 - 2011 by means of muon hodoscope URAGAN both for the integral counting rate and for different angular intervals are presented. Dependences of the amplitude of the decrease of cosmic ray muon intensity on the energy of primary particles in the energy region above 10 GeV during different phases of the FD were obtained. On the basis of the analysis of spatial-angular distribution of muon flux, values of the horizontal projections of the local anisotropy vector were calculated and their dynamics was studied. Energy, angular and temporal characteristics of Forbush decreases determined from cosmic ray muon data are compared with basic parameters characterizing conditions of near-Earth space before and during FD.

  16. Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype

    NASA Astrophysics Data System (ADS)

    Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.

    2011-08-01

    The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.

  17. Prototype Performance of Novel Muon Telescope Detector at STAR.

    SciTech Connect

    Ruan,L.

    2008-04-05

    Research on a large-area, cost-effective Muon Telescope Detector (MTD) has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution.

  18. Prototype performance of novel muon telescope detector at STAR

    SciTech Connect

    Ruan,L.; Ames, V.

    2008-02-04

    Research on a large-area, cost-effective Muon Telescope Detector has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design [l]. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRF'C. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution.

  19. Ionization cooling and muon dynamics

    SciTech Connect

    Parsa, Z.

    1998-01-01

    Muon colliders potential to provide a probe for fundamental particle physics is very interesting. To obtain the needed collider luminosity, the phase space volume must be greatly reduced within the muon life time. The Ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. The authors note that, the ionization losses results not only in damping, but also heating. They discuss methods used including moments methods, Focker Plank Equation, and Multi Particle Codes. In addition they show how a simple analysis permits us to estimate the most part of the optimal system parameters, such as optimal damping rates, length of the system and energy.

  20. Status of the MACRO experiment at Gran Sasso. [Monopole Astrophysics and Cosmic Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ahlen, Steve

    1990-01-01

    The design of the MACRO (Monopole Astrophysics and Cosmic Ray Observatory) experiment is described, and the results achieved by the running of its first supermodule are summarized. Searches for magnetic monopoles and point sources of downward muons resulted in no detections. One upward moving muon was seen along with abundant data on muon bundles.

  1. Energy spectrum of cascades generated by muons in Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    Spectrum of cascades generated by cosmic ray muons underground is presented. The mean zenith angle of the muon arrival is theta=35 deg the depth approx. 1000 hg/sq cm. In cascades energy range 700 GeV the measured spectrum is in agreement with the sea-level integral muon spectrum index gamma=3.0. Some decrease of this exponent has been found in the range 4000 Gev.

  2. The ATLAS trigger - commissioning with cosmic rays

    NASA Astrophysics Data System (ADS)

    Boyd, J.

    2008-07-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity there are roughly 23 collisions per bunch crossing. ATLAS has designed a three-level trigger system to select potentially interesting events. The first-level trigger, implemented in custom-built electronics, reduces the incoming rate to less than 100 kHz with a total latency of less than 2.5μs. The next two trigger levels run in software on commercial PC farms. They reduce the output rate to 100-200 Hz. In preparation for collision data-taking which is scheduled to commence in May 2008, several cosmic-ray commissioning runs have been performed. Among the first sub-detectors available for commissioning runs are parts of the barrel muon detector including the RPC detectors that are used in the first-level trigger. Data have been taken with a full slice of the muon trigger and readout chain, from the detectors in one sector of the RPC system, to the second-level trigger algorithms and the data-acquisition system. The system is being prepared to include the inner-tracking detector in the readout and second-level trigger. We will present the status and results of these cosmic-ray based commissioning activities. This work will prove to be invaluable not only during the commissioning phase but also for cosmic-ray data-taking during the normal running for detector performance studies.

  3. Flux modulations seen by the muon veto of the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Collaboration, Gerda; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicsk'o Cs'athy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Ritter, F.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-11-01

    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0 =(3.477 ± 0 .002stat ± 0 .067sys) ×10-4 /(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT , Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.

  4. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  5. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  6. Characterization of the atmospheric muon flux in IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  7. Investigation of the energy characteristics of EAS muon component with the NEVOD-DECOR setup

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Barbashina, N. S.; Dushkin, L. I.; Kindin, V. V.; Kokoulin, R. P.; Kompaniets, K. G.; Mannocchi, G.; Petrukhin, A. A.; Romanenkova, E. V.; Saavedra, O.; Trinchero, G.; Khomyakov, V. A.; Khokhlov, S. S.; Chernov, D. V.; Shutenko, V. V.; Yurina, E. A.; Yashin, I. I.

    2016-02-01

    Investigations of the energy characteristics of muon component with the increase of the primary cosmic rays energy can be a key to solving ‘muon puzzle’ - the problem of excess of EAS muons (observed in several experiments at high - ALEPH, DELPHI - and ultrahigh energies - DECOR, Pierre Auger Observatory) in comparison with the expected flux. The measurements results of the energy deposit of inclined muon bundles in water depending on the zenith angle and the local density of muons are presented. As a measure of the energy deposit, the total number of photoelectrons registered by PMTs of the Cherenkov water calorimeter NEVOD was used. The local density of muons, which gives an estimate of the energy of primary particles was obtained from the data of coordinate-tracking detector DECOR. The experimental data are compared with the results of calculations based on simulations of the muon component of EAS by means of the CORSIKA code.

  8. Absolute spectrum and charge ratio of cosmic ray muons in the energy region from 0.2 GeV to 100 GeV at 600 m above sea level

    NASA Technical Reports Server (NTRS)

    De Pascale, M. P.; Morselli, A.; Picozza, P.; Golden, R. L.; Grimani, C.; Kimbell, B. L.; Stephens, S. A.; Stochaj, S. J.; Webber, W. R.; Basini, G.

    1993-01-01

    We have determined the momentum spectrum and charge ratio of muons in the region from 250 MeV/c to 100 GeV/c using a superconducting magnetic spectrometer. The absolute differential spectrum of muons obtained in this experiment at 600 m above sea level is in good agreement with the previous measurements at sea level. The differential spectrum can be represented by a power law with a varying index, which is consistent with zero below 450 MeV/c and steepens to a value of -2.7 +/- 0.1 between 20 and 100 GeV/c. The integral f1ux of muons measured in this experiment span a very large range of momentum and is in excellent agreement with the earlier results. The positive to negative muon ratio appears to be constant in the entire momentum range covered in this experiment within the errors and the mean value is 1.220 +/- 0.044. The absolute momentum spectrum and the charge ratio measured in this experiment are also consistent with the theoretical expectations. This is the only experiment which covers a wide range of nearly three decades in momentum from a very low momentum.

  9. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  10. The Chicagoland Observatory Underground for Particle Physics cosmic ray veto system

    SciTech Connect

    Crisler, M.; Hall, J.; Ramberg, E.; Kiper, T.; /Fermilab

    2010-11-01

    A photomultiplier (PMT) readout system has been designed for use by the cosmic ray veto systems of two warm liquid bubble chambers built at Fermilab by the Chicagoland Observatory Underground for Particle Physics (COUPP) collaboration. The systems are designed to minimize the infrastructure necessary for installation. Up to five PMTs can be daisy-chained on a single data link using standard Category 5 network cable. The cables is also serve distribute to low voltage power. High voltage is generated locally on each PMT base. Analog and digital signal processing is also performed locally. The PMT base and system controller design and performance measurements are presented.

  11. Muon radiography in Russia with emulsion technique. First experiments future perspectives

    SciTech Connect

    Aleksandrov, A. B.; Bagulya, A. V.; Chernyavsky, M. M.; Konovalova, N. S.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymyrov, M. S.; Managadze, A. K.; Roganova, T. M.; Orurk, O. I.; Zemskova, S. G.

    2015-12-31

    Cosmic ray muon radiography is a novel technique for imaging the internal structures of massive objects. It exploits the capability of high energy muons from cosmic-rays in order to obtain a density map of investigated object and trying to guess information on the variation in the density distribution. Nuclear emulsions are tracking detectors well suited to be employed in this context since they have an excellent angular resolution (few mrad), they are cheap, compact and robust, easily transportable, able to work in harsh environments, and do not require power supply. This work presents the first successful results in the field of muon radiography in Russia with nuclear emulsions.

  12. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  13. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  14. Muon cooling: longitudinal compression.

    PubMed

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  15. Muon Cooling: Longitudinal Compression

    NASA Astrophysics Data System (ADS)

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M.; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10 MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 107. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 104.

  16. Practical applications of cosmic ray science: Spacecraft, aircraft, ground based computation and control systems, and human health and safety

    NASA Astrophysics Data System (ADS)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2013-02-01

    In this paper we review cosmic ray effects on the performance and reliability of microelectronic systems and human health as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based, atmospheric flight, and space flight environments. Ground based test methods applied to microelectronic components and systems are used in combination with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport codes are an important tool for evaluating possible human health effects of cosmic ray. Finally, the limitations on human space operations beyond low-Earth orbit imposed by long term exposure to galactic cosmic rays are discussed.

  17. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  18. Pion contamination in the MICE muon beam

    DOE PAGESBeta

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; et al

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  19. SNM detection by active muon interrogation

    SciTech Connect

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  20. Gauge-invariant cosmic structures---A dynamic systems approach

    SciTech Connect

    Woszczyna, A. )

    1992-03-15

    Gravitational instability is expressed in terms of the dynamic systems theory. The gauge-invariant Ellis-Bruni equation and Bardeen's equation are discussed in detail. It is shown that in an open universe filled with matter of constant sound velocity the Jeans criterion does not adequately define the length scale of the gravitational structure.

  1. Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    NASA Astrophysics Data System (ADS)

    Adamczak, A.; Baccolo, G.; Bakalov, D.; Baldazzi, G.; Bertoni, R.; Bonesini, M.; Bonvicini, V.; Campana, R.; Carbone, R.; Cervi, T.; Chignoli, F.; Clemenza, M.; Colace, L.; Curioni, A.; Danailov, M.; Danev, P.; D'Antone, I.; De Bari, A.; De Vecchi, C.; De Vincenzi, M.; Furini, M.; Fuschino, F.; Gadedjisso-Tossou, K. S.; Guffanti, D.; Iaciofano, A.; Ishida, K.; Iugovaz, D.; Labanti, C.; Maggi, V.; Margotti, A.; Marisaldi, M.; Mazza, R.; Meneghini, S.; Menegolli, A.; Mocchiutti, E.; Moretti, M.; Morgante, G.; Nardò, R.; Nastasi, M.; Niemela, J.; Previtali, E.; Ramponi, R.; Rachevski, A.; Rignanese, L. P.; Rossella, M.; Rossi, P. L.; Somma, F.; Stoilov, M.; Stoychev, L.; Tomaselli, A.; Tortora, L.; Vacchi, A.; Vallazza, E.; Zampa, G.; Zuffa, M.

    2016-05-01

    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.

  2. Study of High pT Muons in IceCube

    SciTech Connect

    IceCube Collaboration; Gerhardt, Lisa; Klein, Spencer

    2009-06-01

    Muons with a high transverse momentum (p{sub T}) are produced in cosmic ray air showers via semileptonic decay of heavy quarks and the decay of high p{sub T} kaons and pions. These high p{sub T} muons have a large lateral separation from the shower core muon bundle. IceCube is well suited for the detection of high p{sub T} muons. The surface shower array can determine the energy, core location and direction of the cosmic ray air shower while the in-ice array can reconstruct the energy and direction of the high p{sub T} muon. This makes it possible to measure the decoherence function (lateral separation spectrum) at distances greater than 150 meters. The muon p{sub T} can be determined from the muon energy (measured by dE/dx) and the lateral separation. The high p{sub T} muon spectrum may also be calculated in a perturbative QCD framework; this spectrum is sensitive to the cosmic-ray composition.

  3. Distribution of Sea Level Muons at Zenith Angles below 10 TeV Energy

    NASA Astrophysics Data System (ADS)

    Mitra, M.

    The moderate energy primary cosmic ray nucleon spectrum has been constructed fro the direct measurements of Webber et al., Seo et al., Menn et al. along with the other results surveyed by Swordy. The sea leve muon energy spectra at different zenith angles have been derived from the decay of non-prompt mesons by adopting standard diffusion equation of hadronic cascades. The contribution of charmed mesons to muon spectrum has also been accounted following standard procedure. Our estimated tota muon energy spectra have been found comparable with the global spectrograph muon flux results of MARS, DEIS, MSU and other groups.

  4. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    SciTech Connect

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  5. Study of the muon-induced neutron background with the LVD detector

    SciTech Connect

    Menghetti, H.; Selvi, M.

    2005-09-08

    High energy neutrons, generated as a product of cosmic muon interaction in the rock or in the detector passive material, represent the most dangerous background for a large list of topics like reactor neutrino studies, the search for SN relic neutrinos, solar antineutrinos, etc.Up to now there are few measurements of the muon-produced neutron flux at large depth underground. Moreover it is difficult to reproduce the measured data with Monte Carlo simulation because of the large uncertainties in the neutron production and propagation models.We present here the results of such a measurement with the LVD detector, which is well suited for the detection of neutrons produced by cosmic-ray muons, reporting the neutron flux at various distances from the muon track, for different neutron energies (E > 20 MeV) and as a function of the muon track length in scintillator.

  6. Cosmic Ray Monitoring and Space Dangerous Phenomena, 2. Methods of Cosmic Ray Using For Forecasting of Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Dorman, L. I.; Eroshenko, E. A.; Iucci, N.; Mavromichalaki, H.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Yanke, V. G.; Zukerman, I. G.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon tele- scopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for peo- ple technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geo- magnetic storms can be used global-spectrographic method if on-line will be avail- able 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of ge- omagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre- decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major ge- omagnetic storms. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting fea- tures for big Forbush-decreases". Nuclear Physics B, Vol. 49A, pp. 136-144. (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, Vol. 6, p. 476-479, (1999).

  7. Analysis of cosmic-ray events with ALICE at LHC

    NASA Astrophysics Data System (ADS)

    Rodríguez Cahuantzi, M.

    2015-08-01

    ALICE is one of the four main experiments of the LHC at CERN. Located 40 meters underground, with 30 m of overburden rock, it can also operate to detect muons produced by cosmic-ray interactions in the atmosphere. An analysis of the data collected with cosmic-ray triggers from 2010 to 2013, corresponding to about 31 days of live time, is presented. Making use of the ability of the Time Projection Chamber (TPC) to track large numbers of charged particles, a special emphasis is given to the study of muon bundles, and in particular to events with high-muon density.

  8. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  9. Telecommunication using muon beams

    DOEpatents

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  10. The MEGA (Muon decays into an Electron and a GAmma ray) hardware trigger system

    SciTech Connect

    Szymanski, J.J.; Amann, J.F.; Black, J.K.; Cooper, M.D.; Wright, S.C.; Crocker, J.; Sanders, H.

    1988-01-01

    The MEGA experiment is designed to search for the rare decay ..mu.. ..-->.. e ..gamma.. with a branching ratio sensitivity of /approximately/10/sup -13/. As is typical of rare-decay experiments, extensive, online filtering of the data is required for MEGA. The MEGA experiment uses a hardware pattern-recognition system based on Programmable Array Logic (PAL) devices. Additional events are eliminated in an online ACP system before data are written to tape. The MEGA trigger system is generally applicable where high-rate, short-propagation-delay trigger systems are required. This report contains an introduction to the MEGA experiment, a discussion of the MEGA hardware trigger system and a discussion of the system's measured performance. 4 refs., 3 figs.

  11. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  12. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  13. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  14. First Results from the DUNE 35-ton Prototype using Cosmics

    NASA Astrophysics Data System (ADS)

    Insler, Jonathan; DUNE Collaboration

    2016-03-01

    The 35-ton prototype for the Deep Underground Neutrino Experiment (DUNE) Far Detector is a single-phase liquid argon time projection chamber (LAr-TPC) integrated detector that will take cosmics data for a two month run beginning in February 2016. The 35-ton prototype will characterize DUNE's Far Detector technology performance and provide a sample of real data for DUNE reconstruction algorithms. The 35-ton prototype has two drift volumes of lengths 2.23 m and 0.23 m on either side of its anode plane assembly (APA) and makes use of wire planes with wrapped wires and a photon detection system (PDS) utilizing photon detection panels read out by silicon photomultipliers (SiPMs). Data from the 35-ton LAr detector are expected to provide rich information on scintillation light and charged particle tracks. We present a preliminary analysis of cosmics data taken with the 35-ton detector with a focus on stopping muons.

  15. Design and implementation of the detector control system for the BESIII drift chamber cosmic ray test

    NASA Astrophysics Data System (ADS)

    Chen, Xi-Hui; Xie, Xiao-Xi; Li, Xiao-Nan; Gao, Cui-Shan; Zhang, Yin-Hong; Nie, Zhen-Dong; Min, Jian; Xie, Yi-GANG

    2008-08-01

    After the construction of the BESIII drift chamber, a long period of cosmic rays test is necessary to verify its performance. This also provides a good opportunity to integrate the detector readout electronics and Detector Control System (DCS) into a unified working system. The goal of the DCS is to guarantee reliable physics data quality and the safe operation of the detector. It monitors and controls the HV, gas, VME crates and the environmental variables. The upper-level system is mainly developed from LabVIEW and the lower-level system mainly uses MCU and PLC technology. The system is designed to be highly flexible and scalable so that it can be applied to other detectors with little or no change. In the immediate future, it will be integrated into the entire BESIII Slow Control System.

  16. Upper limit on the prompt muon flux derived from the LVD underground experiment

    SciTech Connect

    Aglietta, M.; Alpat, B.; Alyea, E. D.; Antonioli, P.; Badino, G.; Bari, G.; Basile, M.; Berezinsky, V. S.; Bersani, F.; Bertaina, M.

    1999-12-01

    We present the analysis of the muon events with all muon multiplicities collected during 21804 h of operation of the first LVD tower. The measured depth-angular distribution of muon intensities has been used to obtain the normalization factor A the power index {gamma} of the primary all-nucleon spectrum, and the ratio R{sub c} of the prompt muon flux to that of {pi} mesons--the main parameters which determine the spectrum of cosmic ray muons at the sea level. The values of {gamma}=2.77{+-}0.05 (68% C.L.) and R{sub c}<2.0x10{sup -3} (95% C.L.) have been obtained. The upper limit to the prompt muon flux favors the models of charm production based on QGSM and the dual parton model. (c) 1999 The American Physical Society.

  17. Formation of oligopeptides on the surface of small bodies in solar system by cosmic radiation

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.; Kuzicheva, E. A.; Dodonova, N. Ya.; Antropov, A. E.

    1997-05-01

    The present experiment indicates that oligopeptides are easily produced in solid state from mixtures of simple amino acids by irradiating with high energy charged particles. We investigated such amino acids and their mixtures as tryptophan, tyrosine and glycine. The thin films was irradiated with protons (6.6 MeV). Such dipeptides as Trp-Trp, Gly-Tyr, Tyr-Gly, and Tyr-Tyr have been detected as products of irradiation. Cosmic rays might be an effective energy source for abiotic formation of bioorganic compounds on the surface of small bodies in the solar system on early stage of formation of planets as well as at present day.

  18. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.

    PubMed

    Sato, Tatsuhiko

    2016-01-01

    A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).

  19. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes

    PubMed Central

    Sato, Tatsuhiko

    2016-01-01

    A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175

  20. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.

    PubMed

    Sato, Tatsuhiko

    2016-01-01

    A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175

  1. Using Stars to Align a Steered Laser System for Cosmic Ray Simulation

    NASA Astrophysics Data System (ADS)

    Krantz, Harry; Wiencke, Lawrence

    2016-03-01

    Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above 1018eV . UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission.

  2. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    NASA Astrophysics Data System (ADS)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  3. The Muon Collider

    SciTech Connect

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  4. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  5. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  6. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  7. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    SciTech Connect

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting

  8. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Frohne, M. V.; Gallagher, H. R.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tognini, S. C.; Toner, R.; Torretta, D.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2015-06-01

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5-8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  9. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    SciTech Connect

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  10. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    DOE PAGESBeta

    Adamson, P.; Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation thatmore » peaks in the winter.« less

  11. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS near and far detectors

    SciTech Connect

    Adamson, P.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. Thus, at the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  12. The MICE spectrometers for the measurement of muon beam emittance

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hideyuki

    2010-11-01

    Tracking detectors based on 350-μm scintillating fibers have been developed to measure muon-beam emittance at the Muon Ionization Cooling Experiment (MICE), the goal of which is to demonstrate ionization cooling by constructing and testing part of a cooling channel designed for a Neutrino Factory. The upstream and downstream trackers were assembled at the Rutherford Appleton Laboratory (RAL) in 2008 and 2009. The mechanical design and construction (including quality assurance) procedures used for the trackers are described in this paper. Results from the cosmic-ray test performed for the upstream tracker at RAL in 2008 are also presented.

  13. Cosmic ray hit frequencies in critical sites in the central nervous system

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Atwell, W.; Kim, M.; Capala, J.

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many ``hits'' might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the ``target site'' within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the ``critical sites'' of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 mum^2 or 471 mum^2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells and 55

  14. Cosmic ray hit frequencies in critical sites in the central nervous system.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M; Capala, J

    1998-01-01

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many "hits" might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the "target site" within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the "critical sites" of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 micrometers2 or 471 micrometers2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells

  15. Cosmic ray hit frequencies in critical sites in the central nervous system.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M; Capala, J

    1998-01-01

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many "hits" might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the "target site" within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the "critical sites" of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 micrometers2 or 471 micrometers2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells

  16. Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors.

    PubMed

    Hasegawa, M; Tajima, O; Chinone, Y; Hazumi, M; Ishidoshiro, K; Nagai, M

    2011-05-01

    We present a novel system to calibrate millimeter-wave polarimeters for cosmic microwave background (CMB) polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however, it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼10 K sky. It is important to reproduce the observing condition in the laboratory for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.

  17. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    NASA Technical Reports Server (NTRS)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  18. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  19. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    NASA Technical Reports Server (NTRS)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  20. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  1. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  2. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  3. Lateral distribution of high energy muons in EAS of sizes Ne approximately equals 10(5) and Ne approximately equals 10(6)

    NASA Technical Reports Server (NTRS)

    Bazhutov, Y. N.; Ermakov, G. G.; Fomin, G. G.; Isaev, V. I.; Jarochkina, Z. V.; Kalmykov, N. N.; Khrenov, B. A.; Khristiansen, G. B.; Kulikov, G. V.; Motova, M. V.

    1985-01-01

    Muon energy spectra and muon lateral distribution in EAS were investigated with the underground magnetic spectrometer working as a part of the extensive air showers (EAS) array. For every registered muon the data on EAS are analyzed and the following EAS parameters are obtained, size N sub e, distance r from the shower axis to muon, age parameter s. The number of muons with energy over some threshold E associated to EAS of fixed parameters are measured, I sub reg. To obtain traditional characteristics, muon flux densities as a function of the distance r and muon energy E, muon lateral distribution and energy spectra are discussed for hadron-nucleus interaction model and composition of primary cosmic rays.

  4. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  5. Cosmic radioactivities

    NASA Astrophysics Data System (ADS)

    Arnould, Marcel; Prantzos, Nikos

    1999-07-01

    Radionuclides with half-lives ranging from some years to billions of years presumably synthesized outside of the solar system are now recorded in "live" or "fossil" form in various types of materials, like meteorites or the galactic cosmic rays. They bring specific astrophysical messages, the deciphering of which is briefly reviewed here, with special emphasis on the contribution of Dave Schramm and his collaborators to this exciting field of research. Short-lived radionuclides are also present in the Universe today, as directly testified by the γ-ray lines emitted by the de-excitation of their daughter products. A short review of recent developments in this field is also presented.

  6. LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Programme

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Alibert, Yann; André, Nicolas; Atreya, Sushil; Beebe, Reta; Benz, Willy; Bolton, Scott J.; Coradini, Angioletta; Coustenis, Athena; Dehant, Véronique; Dougherty, Michele; Drossart, Pierre; Fujimoto, Masaki; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Kasaba, Yasumasa; Kivelson, Margaret; Khurana, Krishan; Krupp, Norbert; Louarn, Philippe; Lunine, Jonathan; McGrath, Melissa; Mimoun, David; Mousis, Olivier; Oberst, Juergen; Okada, Tatsuaki; Pappalardo, Robert; Prieto-Ballesteros, Olga; Prieur, Daniel; Regnier, Pascal; Roos-Serote, Maarten; Sasaki, Sho; Schubert, Gerald; Sotin, Christophe; Spilker, Tom; Takahashi, Yukihiro; Takashima, Takeshi; Tosi, Federico; Turrini, Diego; van Hoolst, Tim; Zelenyi, Lev

    2009-03-01

    The exploration of the Jovian System and its fascinating satellite Europa is one of the priorities presented in ESA’s “Cosmic Vision” strategic document. The Jovian System indeed displays many facets. It is a small planetary system in its own right, built-up out of the mixture of gas and icy material that was present in the external region of the solar nebula. Through a complex history of accretion, internal differentiation and dynamic interaction, a very unique satellite system formed, in which three of the four Galilean satellites are locked in the so-called Laplace resonance. The energy and angular momentum they exchange among themselves and with Jupiter contribute to various degrees to the internal heating sources of the satellites. Unique among these satellites, Europa is believed to shelter an ocean between its geodynamically active icy crust and its silicate mantle, one where the main conditions for habitability may be fulfilled. For this very reason, Europa is one of the best candidates for the search for life in our Solar System. So, is Europa really habitable, representing a “habitable zone” in the Jupiter system? To answer this specific question, we need a dedicated mission to Europa. But to understand in a more generic way the habitability conditions around giant planets, we need to go beyond Europa itself and address two more general questions at the scale of the Jupiter system: to what extent is its possible habitability related to the initial conditions and formation scenario of the Jovian satellites? To what extent is it due to the way the Jupiter system works? ESA’s Cosmic Vision programme offers an ideal and timely framework to address these three key questions. Building on the in-depth reconnaissance of the Jupiter System by Galileo (and the Voyager, Ulysses, Cassini and New Horizons fly-by’s) and on the anticipated accomplishments of NASA’s JUNO mission, it is now time to design and fly a new mission which will focus on these

  7. Calculation of intensity of high energy muon groups observed deep underground

    NASA Technical Reports Server (NTRS)

    Vavilov, Y. N.; Dedenko, L. G.

    1985-01-01

    The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.

  8. A determination of the sea level muon spectrum using accelerator data and some implications

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Golden, R. L.; Stephens, S. A.

    1975-01-01

    The differential sea-level muon spectrum is calculated from first principle for a pure beam of cosmic-ray protons cascading in the atmosphere by using a representation of the invariant cross section that describes the observed data from 6 GeV to 1500 GeV. This spectrum is compared with the observed muon spectrum to deduce information on the interaction characteristics of nuclei-nuclei collisions.

  9. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  10. Large-scale traces of Solar system cold dust on cosmic microwave background anisotropies

    NASA Astrophysics Data System (ADS)

    Maris, M.; Burigana, C.; Gruppuso, A.; Finelli, F.; Diego, J. M.

    2011-08-01

    We explore the microwave anisotropies on large angular scales produced by the emission from cold and large dust grains, expected to exist in the outer parts of the Solar system, using a simple toy model for this diffuse emission. Its amplitude is constrained in the far-IR by the COBE data and is compatible with simulations found in the literature. We analyse the templates derived after subtracting our model from the WMAP ILC 7-yr maps and investigate on the cosmological implications of such a possible foreground. The anomalies related to the low quadrupole of the angular power spectrum, the two-point correlation function, the parity and the excess of signal found in the ecliptic plane are significantly alleviated. An impact of this foreground on some cosmological parameters characterizing the spectrum of primordial density perturbations, relevant for on-going and future cosmic microwave background anisotropy experiments, is found.

  11. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  12. Cosmic rays and other space phenomena dangerous for the Earth's civilization: Foundation of cosmic ray warning system and beginning steps

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    This report is an example how fundamental research in Cosmic Ray (CR) Astrophysics and Geophysics can be applied to very important modern practical problem: monitoring by CR space weather and prediction by using on-line CR data space phenomena dangerous for satellites electronics and astronauts health in the space, for crew and passengers health on commercial jets in atmosphere (altitude about 10 km and higher), and in some rare cases for technology and people health on the ground, prediction on the role of CR and other space weather factors in climate change and influence on agriculture production. It is well known that in periods of great SEP (Solar Energetic Particle) events, the fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spaceships became dead (each year Insurance Companies paid billions dollars for these failures (if will be event as February 23, 1956, will be destroyed about all satellites in few hours, the price of this will be more than 10-20 billion dollars, will be total destroying satellite communications and a rose a lot of other problems). In periods of great SEP events is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and International Space Station (ISS), passengers and crew in commercial jets (especially during S5-S7 radiation storms). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 2-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 60

  13. A bridge between unified cosmic history by f( R)-gravity and BIonic system

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza

    2016-04-01

    Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.

  14. The Atmospheric Muon Charge Ratio at the MINOS Near Detector

    SciTech Connect

    de Jong, J.K.; /IIT, Chicago /Oxford U.

    2011-11-01

    The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 {+-} 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}({theta}) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.

  15. Characterization of muon and gamma radiations at the PTOLEMY site

    NASA Astrophysics Data System (ADS)

    Betts, Susannah; Gentile, Charles; Tully, Chris; Zapata, Sandra; Chris Tully Collaboration

    2013-10-01

    PTOLEMY is an experimental project at Princeton Plasma Physics Laboratory designed to determine the present day number density of relic neutrinos through measurement of electrons produced from neutrino capture on tritium. The weak interaction cross section for relic neutrino interactions necessitates high sensitivity measurements that could be influenced by high energy particles, like muons and gamma ray photons, which induce nuclear transitions and secondary electrons. Muons produced from the collision of cosmic rays with atmospheric nuclei are a significant source of background radiation at and below Earth's surface. The muon flux is measured by the coincidence of minimum ionization radiation loss in two plastic scintillator paddles. The spectrum of gamma ray photons is measured using sodium iodide based scintillators. These measurements will provide a characterization of the background and rates at the PTOLEMY site.

  16. Fukushima Daiichi Muon Imaging

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo

    2015-10-01

    Japanese government announced cold-shutdown condition of the reactors at Fukushima Daiichi by the end of 2011, and mid- and long-term roadmap towards decommissioning has been drawn. However, little is known for the conditions of the cores because access to the reactors has been limited by the high radiation environment. The debris removal from the Unit 1 - 3 is planned to start as early as 2020, but the dismantlement is not easy without any realistic information of the damage to the cores, and the locations and amounts of the fuel debris. Soon after the disaster of Fukushima Daiichi, several teams in the US and Japan proposed to apply muon transmission or scattering imagings to provide information of the Fukushima Daiichi reactors without accessing inside the reactor building. GEANT4 modeling studies of Fukushima Daiichi Unit 1 and 2 showed clear superiority of the muon scattering method over conventional transmission method. The scattering method was demonstrated with a research reactor, Toshiba Nuclear Critical Assembly (NCA), where a fuel assembly was imaged with 3-cm resolution. The muon scattering imaging of Fukushima Daiichi was approved as a national project and is aiming at installing muon trackers to Unit 2. A proposed plan includes installation of muon trackers on the 2nd floor (operation floor) of turbine building, and in front of the reactor building. Two 7mx7m detectors were assembled at Toshiba and tested.

  17. Comments on the measurements of multiple muon phenomena

    NASA Technical Reports Server (NTRS)

    Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    The extensive air showers in the energy around 10 to the 15th power eV include those initiated by astrophysical primary gamma-rays. The observations need a precise measurement on the directions of primary particles. It is one of the methods to measure the directions of high-energy muons in air showers. The accuracy in measuring the direction, by calculating the cosmic-ray phenomena in the atmosphere at very high energy was investgated. The results calculated by Monte Carlo method suggest that one may determine the direction of primary cosmic-rays within errors of 10/3 rad in observing muons of above 100 GeV at sea level.

  18. Measurement of the TeV atmospheric muon charge ratio with the complete OPERA data set

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Göllnitz, C.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Rokujo, H.; Roganova, T.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Zghiche, A.

    2014-07-01

    The OPERA detector, designed to search for oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected charge-separated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowed minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1-20 TeV investigated by OPERA, is well described by a parametric model including only pion and kaon contributions to the muon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to TeV/nucleon primary energy.

  19. Concept and Layout of the EAS muon arrival time distribution measurements on Mt. Aragats Observatory

    NASA Astrophysics Data System (ADS)

    Mathes, Hermann Josef

    1999-08-01

    The lateral and longitudinal profiles of the EAS development show specific features depending on the primary mass due to various particle interaction parameters influencing the development of the particle cascade in the atmosphere. The large muon detector of the ANI Cosmic Ray Observatory on Mt. Aragats gives a good opportunity to measure muon arrival times. In view of a possible extension of the muon underground installation EAS simulations have been performed. They consider various detector configurations with respect to the EAS core position. The observed muon time dispersion show specific trends with increasing radial distance and primary mass. Particularly, simulations based on the GEANT package had been done to study the faked detector signals due to secondaries generated in the surrounding material. A design for upgrading the muon detector array is presented which implies additional fast timing photomultipliers attached to the existing scintillation detectors.

  20. Measurement of the multiple-muon charge ratio in the MINOS Far Detector

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Chen, R.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; de Rijck, S.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2016-03-01

    The charge ratio, Rμ=Nμ+/Nμ- , for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be Rμ=1.104 ±0.006 (stat)-0.010+0.009(syst) . This measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions at TeV energies.

  1. Measurement of the multiple-muon charge ratio in the MINOS Far Detector

    DOE PAGESBeta

    Adamson, P.

    2016-03-30

    The charge ratio, Rμ = Nμ+/Nμ-, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be Rμ = 1.104±0.006(stat)-0.010+0.009(syst). As a result, this measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions atmore » TeV energies.« less

  2. Development of Nuclear Emulsion Detector for Muon Radiography

    NASA Astrophysics Data System (ADS)

    Nishio, A.; Morishima, K.; Kuwabara, K.; Nakamura, M.

    Muon radiography is the non-destructive testing technique of large-scale constructions with cosmic ray muon. Cosmic ray muon has high penetrating power and it always comes from the whole sky. In the same way of taking a X-ray photograph, we can obtain integrated density of constructions which thickness are several tens to several hundreds. We had ever applied this technique to nuclear reactors, volcanos, and so on. Nuclear emulsion is three dimensional track detector with micrometric position accuracy. Thanks to high position resolution, Nuclear emulsion has mrad angular resolution. In addition, the features which require no power supply and can observe in a large area suitable for muon radiography. In Nagoya University, we launched emulsion manufacturing equipment at 2010. It has become possible to flexible development of our detector and succeeded to development of high sensitive nuclear emulsion film (Nagoya emulsion). An important factor is the temperature characteristic to withstand the outdoor observation as a detector to be used in the muon radiography. There is a phenomenon of a latent image fading, whichit is well known in the photographic industry, and this phenomenon is known that temperature and water are involved. So we examined temperature and humidity characteristic of latent image fading about Nagoya emulsion. As a result, we found latent image fading is strongly depends on both temperature and humidity. By dehydrating emulsion film in RH8%, over 95% (Grain Density>40) detection efficiency of muon track keeps over 3months in 25degree, for 2months in 35degree. Additionally it was showed in this test that increasing back ground noise "fog", which may have occurred by sealing emulsion film in a narrow space, is reduced by buffer space in the bag.

  3. Atmospheric effects in the intensity of muon bundles and geometrical mechanism of their formation

    NASA Astrophysics Data System (ADS)

    Kokoulin, R. P.; Bogdanov, A. G.; Dmitrieva, A. N.; Romanenkova, E. V.; Shutenko, V. V.; Yurina, E. A.

    2016-02-01

    Temporal changes in the intensity of muon bundles produced as a result of interactions of primary cosmic ray particles with energies of the order of 1015 eV and detected at the ground level are analyzed. Seasonal variations, barometric and temperature effects, and correlations with the altitudes of various levels of residual pressure are considered. It is shown that muon bundle intensity variations are well explained in frame of a simple mechanism related with changes of the muon lateral distribution function at the observation level caused by geometrical changes of the effective altitude of the formation of the bundles.

  4. Explanation for the low flux of high-energy astrophysical muon neutrinos.

    PubMed

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2013-04-26

    There has been some concern about the unexpected paucity of cosmic high-energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider (i) neutrino decay and (ii) neutrinos being pseudo-Dirac-particles. This would provide a mechanism for the reduction of high-energy muon events in the IceCube detector, for example.

  5. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Ayres, D. S. E.

    1986-01-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.

  6. Proportional drift tubes for large area muon detectors

    NASA Technical Reports Server (NTRS)

    Cho, C.; Higashi, S.; Hiraoka, N.; Maruyama, A.; Okusawa, T.; Sato, T.; Suwada, T.; Takahashi, T.; Umeda, H.

    1985-01-01

    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire.

  7. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John; Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki; Miyadera, Haruo; Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi; Sugita, Tsukasa; Yoshioka, Kenichi

    2014-01-13

    A 1.2 × 1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ∼4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  8. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  9. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    SciTech Connect

    Reichhart, L.; Ghag, C.; Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N.; Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N.; Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M.; and others

    2013-08-08

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub −0.28}{sup +0.21})×10{sup −3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  10. First-principles investigation of electronic structures and properties of impurities in molecular solids and semiconductors: I. Muon and muonium in organic ferromagnets. II. Erbium in silicon-optoelectronic system

    NASA Astrophysics Data System (ADS)

    Jeong, Junho

    The first-principles Hartree-Fock theory is used to obtain the electronic structures and properties of three different systems. For the TEMPO system, the trapping sites were obtained near NO group site for muonium singlet and near chlorine and bridge nitrogen for muon. The calculated hyperfine interactions including relaxation and vibrational effect were used to compare the observed zero field muSR frequency 3.2 MHz. It has been concluded that the two trapping centers that can best explain the observed muSR frequency is trapped singlet muonium near the radical oxygen and a trapped muon site near the chlorine. The direction for the easy axis is determined to be the b-axis of the monoclinic lattice and also is obtained using the magnetic moment distributions in the ferromagnetic state in the absence of muon and muonium. The nuclear quadrupole coupling constants and asymmetry parameters (eta) have studied for the 35Cl, 17O, and 14N nuclei in the TEMPO system for the bare system and systems with trapped muon and muonium. Substantial influence of the muon and muonium on the coupling constants and eta for the nuclei close to the trapping sites have been observed for the systems with trapped muon and muonium. For the beta-NPNN, the observed muSR signal at zero field with frequency 2.1 MHz is assigned to the singlet muonium sites near the two oxygens of the two NO groups and the high frequency signal ascribed to an isotropic hyperfine constant of 400MHz is assigned to the trapped muon sites near the oxygen atoms of the NO groups. Er3+-Si material which emits 1.54 mum wavelength has led to interest in optoelectronic system. Using first-principles HF procedure, the locations of Er3+ in silicon cluster without codopant were determined. Since covalent radius of Er3+ is bigger than that of silicon, the first nearest and second nearest silicon of Er3+ for Hi (Er3+Si14H18), Ti (Er3+ Si10H16, Er3+Si26H 48), and Substitutional site (Er3+Si18H 36) applied relaxation effect. The

  11. First Results From GLAST-LAT Integrated Towers Cosmic Ray Data Taking And Monte Carlo Comparison

    SciTech Connect

    Brigida, M.; Caliandro, A.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giordano, F.; Giglietto, N.; Loparco, F.; Marangelli, B.; Mazziotta, M.N.; Mirizzi, N.; Raino, S.; Spinelli, P.; /Bari U. /INFN, Bari

    2007-02-15

    GLAST Large Area Telescope (LAT) is a gamma ray telescope instrumented with silicon-strip detector planes and sheets of converter, followed by a calorimeter (CAL) and surrounded by an anticoincidence system (ACD). This instrument is sensitive to gamma rays in the energy range between 20 MeV and 300 GeV. At present, the first towers have been integrated and pre-launch data taking with cosmic ray muons is being performed. The results from the data analysis carried out during LAT integration will be discussed and a comparison with the predictions from the Monte Carlo simulation will be shown.

  12. Ultra Slow Muon Project at J-PARC, MUSE

    SciTech Connect

    Miyake, Y.; Nakahara, K.; Shimomura, K.; Strasser, P.; Kawamura, N.; Koda, A.; Makimura, S.; Fujimori, H.; Nishiyama, K.; Matsuda, Y.; Bakule, P.; Adachi, T.; Ogitsu, T.

    2009-03-17

    The muon science facility (MUSE), along with the neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC project, which was approved for construction at the Tokai JAEA site. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started in the beginning of 2004, and first muon beam is expected in the autumn of 2008.As a next step, we are planning to install, a Super Omega muon channel with a large acceptance of 400 msr, to extract the world strongest pulsed surface muon beam. Its goal is to extract 4x10{sup 8} surface muons/s for the generation of the intense ultra slow muons, utilizing laser resonant ionization of Mu by applying an intense pulsed VUV laser system. As maximum 1x10{sup 6} ultra slow muons/s will be expected, which will allow for the extension of {mu}SR into the field of thin film and surface science.

  13. Global Navigation Satellite System Radio Occultation: Processing Algorithms, Science Applications, and COSMIC-2 Mission Status

    NASA Astrophysics Data System (ADS)

    Schreiner, W. S.; Sokolovskiy, S. V.; Kuo, Y. H.; Weiss, J.; Braun, J.; Hunt, D.; Pedatella, N. M.; Yue, X.; Ho, S. P.; Zeng, Z.; Wee, T. K.; Vanhove, T.

    2015-12-01

    Global Navigation Satellite System (GNSS) Radio Occultation (RO) data are becoming a benchmark dataset of the international global observing system. The high vertical resolution, precision, and accuracy of retrieved atmospheric profiles makes GNSS RO ideal for weather and space weather specification and forecasting, climate change research and detection, and ground-based and satellite instrument validation. With a GNSS receiver on board a low-Earth orbiting (LEO) satellite, the amplitude and phase of the radio frequency (RF) signals transmitted from GNSS satellites can be measured very precisely as the ray tangent point descends from ~100 km altitude to the surface. With proper algorithms and observational modeling, vertical profiles of bending angle are derived. Profiles of refractivity, and subsequently pressure, temperature and humidity can be derived with additional a priori information. This presentation will first provide an overview of GNSS RO data processing algorithms and then present recent research results from challenging regions such as the upper stratosphere and the lower troposphere. Additional research results from science application studies using RO data will also be discussed. Finally, a status update of the COSMIC-2 mission due to launch in Sept 2016 will be presented.

  14. Solar System Science in the FUSE Band with the Cosmic Origins Spectrograph on HST

    NASA Astrophysics Data System (ADS)

    Osterman, S. N.; Penton, S. V.; Oliveira, C. M.; Cheng, A. F.; Green, J. C.

    2014-12-01

    The Cosmic Origins Spectrograph is a high sensitivity, medium resolution FUV/NUV point source spectrograph currently operating onboard the Hubble Space Telescope that is ideally suited for observing dim, compact objects. By taking advantage of the wide range of grating positions possible and the windowless detector we have developed new observing modes that extend COS sensitivity to 90nm at throughputs comparable to the Far Ultraviolet Spectroscopic Explorer. To date multiple compact solar system objects have been observed using COS, including Galilean moons, the Pluto-Charon system. By extending the wavelength coverage to below the MgF2 window cutoff we enable observations of a wide range of atomic and molecular emissions that have not been accessible since the end of the FUSE mission. These include, for example, S II, III and IV and Cl II and III emissions from the Io plasma torus, Ar I, N I, O I and IV, H2, and CO emissions from comets, and H2 emissions from giant planet atmospheres.

  15. First Results from the Brookhaven Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis

    1998-04-01

    The Brookhaven muon g-2 experiment had its first run with pion injection during the months of May, June, and July of 1997. The major components of the experiment, the superferric storage ring, superconducting inflector magnet, pion/muon beam line, pulsed electrostatic quadrupoles, magnetic field measuring system, detector calorimeters, data acquisition system, and the traceback system were commissioned. The expected relative accuracy in the (g - 2)_μ of the 1997 data is of the order of the CERN experiment running with positive muons of ± 10ppm. The analysis is in progress and the first results will be presented.

  16. Studies of gravitational lens systems discovered in the Cosmic Lens All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Rusin, David Joseph

    2001-11-01

    This thesis describes research conducted on and inspired by the Cosmic Lens All-Sky Survey (CLASS), which searches for new cases of gravitational lensing among compact radio sources. CLASS aims to provide the largest and best-studied sample of lens systems for use in constraining the properties of galaxy mass distributions, determining the Hubble parameter and placing limits on the cosmological constant. The goal of this thesis was to complete observations of the CLASS sample, discover and thoroughly investigate new lenses, and apply them to interesting astrophysical problems. We begin with a detailed overview of the CLASS project, including scientific goals, the radio source sample, survey observations, candidate selection and follow-ups. Results are then presented from the third phase of the CLASS survey (CLASS-3), which yielded three new gravitational lens systems. 130850+054 and 131152+199 both consist of a pair of lensed images. 131359+154 features six images of a single source, and is the first arcsecond-scale system in which a source is lensed into more than four images. We also present observations and modeling of the CLASS-2 gravitational lens B2319+051. We use the absence of detectable central images in deep radio maps of CLASS lens systems to place powerful constraints on the inner mass profiles of leasing galaxies. These analyses imply that the profile slopes cannot be much shallower than isothermal. Finally, we consider the relative frequency of two and four-image lens systems, and demonstrate that there is a statistically significant overdensity of quads in the CLASS sample. We investigate a range of factors that may be increasing the frequency of radio quads, including external shear fields, mass distributions flatter than the light, shallow leasing mass profiles, finite core radii, satellite galaxies, and alterations to the luminosity function for faint flat-spectrum radio sources. Surprisingly, none of these mechanisms provide a particularly

  17. ICOOL: A TOOL FOR MUON COLLIDER SIMULATIONS.

    SciTech Connect

    FERNOW,R.C.

    2001-09-28

    Current ideas for designing neutrino factories [ 1,2] and muon colliders [3] require unique configurations of fields and materials to prepare the muon beam for acceleration. This so-called front end system must accomplish the goals of phase rotation, bunching and cooling. We have continued the development of a 3-D tracking code, ICOOL [4], for examining possible muon collider front end configurations. A system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary codes can be used for pre-processing, post-processing and optimization.

  18. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  19. On muon energy spectrum in muon groups underground

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Stenkin, Y. V.

    1985-01-01

    A method is described which was used to measure muon energy spectrum characteristics in muon groups underground using mu-e decays recording. The Baksan Telescope's experimental data on mu-e decays intensity in muon groups of various multiplicities are analyzed. The experimental data indicating very flat spectrum does not however represent the total spectrum in muon groups. Obviously the muon energy spectrum depends strongly on a distance from the group axis. The core attraction effect makes a significant distortion, making the spectrum flatter. After taking this into account and making corrections for this effect the integral total spectrum index in groups has a very small depencence on muon multiplicity and agrees well with expected one: beta=beta (sub expected) = 1.75.

  20. MUON POLARIZATION IN A FRONT-END CHANNEL OF A NEUTRINO FACTORY.

    SciTech Connect

    FUKUI, Y.; FERNOW, R.C.; GALLARDO, J.C.

    2001-06-18

    As one of the figures of merit, muon polarization and its correlation to the particle arrival time was studied for the high intensity muon beam source of a Neutrino Factory. Muon polarization, 100% polarized in the parent pion rest system, was tracked down the pion capture, phase rotation, and ionization cooling channels, using the BMT equation. A study was done of the dependence of the muon polarization and its correlation on the configuration of induction linac channels in the phase rotation channel. Depolarization effects of the muon polarization through absorbers in the ionization cooling channel was simulated.

  1. Effects of Cutoffs on Galactic Cosmic-Ray Interactions in Solar-System Matter

    NASA Technical Reports Server (NTRS)

    Kim, K. J.; Reedy, R. C.; Masarik, J.

    2005-01-01

    The energetic particles in the galactic cosmic rays (GCR) induce many interactions in a variety of solar-system matter. Cosmogenic nuclides are used to study the histories of meteorites and lunar samples. Gamma rays and neutrons are used to map the compositions of planetary surfaces, such as Mars, the Moon, and asteroids. In almost all of these cases, the spectra of incident GCR particles are fairly similar, with only some modulation by the Sun over an 11-year cycle. Strong magnetic fields can seriously affect the energy spectrum of GCR particles hitting the surface of objects inside the magnetic fields. The Earth s geomagnetic field is strong enough that only GCR particles with magnetic rigidities above approx. 17 GV (a proton energy of approx. 17 GeV) reach the atmosphere over certain regions near the equator. This effect of removing lower-energy GCR particles is called a cutoff. The jovian magnetic fields are so strong that the fluxes of GCR particles hitting the 4 large Galilean satellites are similarly affected. The cutoff at Europa is estimated to be similar to or a little higher than at the Earth s equator.

  2. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read

  3. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.

  4. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  5. Cosmic ray radiography of the damaged cores of the Fukushima reactors

    DOE PAGESBeta

    Borozdin, Konstantin; Greene, Steven; Lukić, Zarija; Milner, Edward; Miyadera, Haruo; Morris, Christopher; Perry, John

    2012-10-11

    The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei. The interaction with the electrons leads to continuous energy loss and stopping of the muons. The interaction with nuclei leads to angle “diffusion.” Two muon-imaging methods that use flux attenuation and multiple Coulomb scattering of cosmic-ray muons are being studied as tools for diagnosing the damaged cores of the Fukushima reactors. Here, we compare these two methods. We conclude that the scattering method can provide detailed information about the core. Lastly, attenuation has low contrast and little sensitivity to the core.

  6. The effect of cosmic rays on biological systems - an investigation during GLE events

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Vashenuyk, E. V.

    2012-01-01

    In this study, first direct and circumstantial evidences of the effects of cosmic rays (CR) on biological systems are presented. A direct evidence of biological effects of CR is demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA). A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. The circumstantial evidence was obtained by statistical analysis of cases of congenital malformations (CM) at two sites in the Murmansk region. The number of cases of all classes of CM reveals a significant correlation with the number of GLE events. The number of cases of CM with pronounced chromosomal abnormalities clearly correlates with the GLE events that occurred a year before the birth of a child. We have found a significant correlation between modulations of the water properties and daily background variations of CR intensity. We believe that the effects of CR on biological systems can be also mediated by fluctuations in water properties, considered as one of possible mechanisms controlling the effects of CRs on biological systems.

  7. Muon capture for the front end of a muon collider

    SciTech Connect

    Neuffer, D.; Yoshikawa, C.; /MUONS Inc., Batavia

    2011-03-01

    We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.

  8. Muon identification with Muon Telescope Detector at the STAR experiment

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  9. Muon Collider design status

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2010-09-01

    Muon Collider (MC) - proposed by G.I. Budker and A.N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the USA with the ultimate goal of building a MC at the Fermilab site with c.o.m. energy in the range 1.5-3 TeV and luminosity of {approx} 1.5 {center_dot} 10{sup 34} cm{sup -2} s{sup -1}. As the first step on the way to MC it envisages construction of a Neutrino Factory (NF) for high-precision neutrino experiments. The baseline scheme of the NF-MC complex is presented and possible options for its main components are discussed.

  10. NK Muon Beam

    SciTech Connect

    Koizumi, G.

    1988-09-28

    The NK Muon Beam will be a modified version of the existing NT beam line. The decision to employ a modified version of the NT beam line was made based on considerations of cost and availability of the beam line. Preliminary studies considered use of other beam lines, e.g., the NW beam line, and even of moving the bubble chamber with its superconducting coils but were rejected for reasons such as cost, personnel limitations, and potential conflicts with other users.

  11. Muon Colliders and Neutrino Factories *

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate O(1021) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  12. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  13. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  14. Observation of muon intensity variations by season with the MINOS far detector

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Andreopoulos, C.; Arms, K. E.; Armstrong, R.; Auty, D. J.; Ayres, D. S.; Backhouse, C.; Barnett, J.; Barr, G.; Barrett, W. L.; Becker, B. R.; Bishai, M.; Blake, A.; Bock, B.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bower, C.; Cavanaugh, S.; Chapman, J. D.; Cherdack, D.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Coleman, S. J.; Cronin-Hennessy, D.; Culling, A. J.; Danko, I. Z.; de Jong, J. K.; Devenish, N. E.; Diwan, M. V.; Dorman, M.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Frohne, M. V.; Gallagher, H. R.; Godley, A.; Goodman, M. C.; Gouffon, P.; Gran, R.; Grashorn, E. W.; Grzelak, K.; Habig, A.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Heller, K.; Himmel, A.; Holin, A.; Hylen, J.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Korman, K.; Koskinen, D. J.; Krahn, Z.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Ma, J.; Mann, W. A.; Marshak, M. L.; Marshall, J. S.; Mayer, N.; McGowan, A. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Metelko, C. J.; Michael, D. G.; Miller, W. H.; Mishra, S. R.; Mitchell, J.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, W. P.; Osiecki, T.; Ospanov, R.; Osprey, S.; Paley, J.; Patterson, R. B.; Patzak, T.; Pawloski, G.; Pearce, G. F.; Peterson, E. A.; Pittam, R.; Plunkett, R. K.; Rahaman, A.; Rameika, R. A.; Raufer, T. M.; Rebel, B.; Reichenbacher, J.; Rodrigues, P. A.; Rosenfeld, C.; Rubin, H. A.; Ryabov, V. A.; Sanchez, M. C.; Saoulidou, N.; Schneps, J.; Schreiner, P.; Shanahan, P.; Smart, W.; Smith, C.; Sousa, A.; Speakman, B.; Stamoulis, P.; Strait, M.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Thron, J. L.; Tinti, G.; Toner, R.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Watabe, M.; Weber, A.; Webb, R. C.; West, N.; White, C.; Whitehead, L.; Wojcicki, S. G.; Wright, D. M.; Yang, T.; Zois, M.; Zhang, K.; Zwaska, R.; MINOS Collaboration

    2010-01-01

    The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67×106 cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, αT, relating changes in the muon rate to changes in atmospheric temperature was found to be αT=0.873±0.009(stat)±0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to αT due to the different masses and lifetimes. This allows the measured value of αT to be interpreted as a measurement of the K/π ratio for Ep≳7TeV of 0.12-0.05+0.07, consistent with the expectation from collider experiments.

  15. Observation of muon intensity variations by season with the MINOS far detector

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnett, J.; Barr, G.; Barrett, W.L.; Becker, B.R.; /Minnesota U. /Brookhaven

    2009-09-01

    The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan MN, USA, has collected over 67 million cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, {alpha}{sub T}, relating changes in the muon rate to changes in atmospheric temperature was found to be: {alpha}{sub T} = 0.874 {+-} 0.009 (stat.) {+-} 0.010$ (syst.). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to {alpha}{sub T} due to the different masses and lifetimes. This allows the measured value of {alpha}{sub T} to be interpreted as a measurement of the K{pi} ratio for E{sub p}/unit[7](TeV) of $0.13 {+-} 0.08, consistent with the expectation from collider experiments.

  16. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect

    Khachatryan, Vardan; et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  17. DETECTORS AND EXPERIMENTAL METHODS: Study of BESIII MUC offline software with cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Tie; Mao, Ya-Jun; You, Zheng-Yun; Li, Wei-Dong; Bian, Jian-Ming; Cao, Guo-Fu; Cao, Xue-Xiang; Chen, Shen-Jian; Deng, Zi-Yan; Fu, Cheng-Dong; Gao, Yuan-Ning; Han, Lei; Han, Shao-Qing; He, Kang-Lin; He, Miao; Hu, Ji-Feng; Hu, Xiao-Wei; Huang, Bin; Huang, Xing-Tao; Jia, Lu-Kui; Ji, Xiao-Bin; Li, Hai-Bo; Liu, Bei-Jiang; Liu, Chun-Xiu; Liu, Huai-Min; Liu, Ying; Liu, Yong; Luo, Tao; Lu, Qi-Wen; Ma, Qiu-Mei; Ma, Xiang; Mao, Ze-Pu; Mo, Xiao-Hu; Ning, Fei-Peng; Ping, Rong-Gang; Qiu, Jin-Fa; Song, Wen-Bo; Sun, Sheng-Sen; Sun, Xiao-Dong; Sun, Yong-Zhao; Tian, Hao-Lai; Wang, Ji-Ke; Wang, Liang-Liang; Wen, Shuo-Pin; Wu, Ling-Hui; Wu, Zhi; Xie, Yu-Guang; Xu, Min; Yan, Jie; Yan, Liang; Yao, Jian; Yuan, Chang-Zheng; Yuan, Ye; Zhang, Chang-Chun; Zhang, Jian-Yong; Zhang, Lei; Zhang, Xue-Yao; Zhang, Yao; Zheng, Yang-Heng; Zhu, Yong-Sheng; Zou, Jia-Heng

    2009-07-01

    Cosmic-ray data of 90 M events have been collected and used for calibration, alignment as well as detector tuning. A special tracking algorithm for the BESIII muon counter is developed and verified with Monte-Carlo simulation and then further confirmed with the cosmic-ray data. The obtained strip resolutions are in good agreement with the design values. A new alignment approach for the BESIII muon counter is confirmed with the cosmic-ray data and proposed to be used in future analysis of experimental data.

  18. An update of the generator of atmospheric muons from parametric formulas (MUPAGE)

    NASA Astrophysics Data System (ADS)

    Bazzotti, M.; Carminati, G.; Margiotta, A.; Spurio, M.

    2010-04-01

    We present a new version of the fast generator of atmospheric muons based on parametric formulas (MUPAGE). The parameterization of the deep sea muon flux relies on a primary Cosmic Ray flux and interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment [1]. MUPAGE produces the event kinematics of the muon bundle on the surface of a user-defined cylinder, surrounding the virtual detector. The new version improves the possibility to select the total energy of the muons bundle, and the choice of a virtual cylinder of any dimensions. New version program summaryProgram title: MUPAGE Catalogue identifier: AEBT_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBT_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3421 No. of bytes in distributed program, including test data, etc.: 59 308 Distribution format: tar.gz Programming language: C++ Computer: The code has been developed and tested on Pentium M, 2.0 GHz; 2x Intel Xeon Quad Core, 2.33 GHz. Operating system: Scientific Linux 3.x; 4.x; 5.x; Slackware 12.0.0. RAM: 50 MB Supplementary material: The table mentioned in the "Summary of revisions" section, can be obtained here. Classification: 1.1, 11.3 External routines: ROOT ( http://root.cern.ch) Catalogue identifier of previous version: AEBT_v1_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 915 Does the new version supersede the previous version?: Yes Nature of problem: Fast simulation of atmospheric muon bundles for underwater/ice neutrino telescopes. Solution method: Atmospheric muon events are generated according to parametric formulas [2] giving the flux, the multiplicity, the radial distribution and the energy spectrum

  19. From Neutrino Factory to Muon Collider

    SciTech Connect

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  20. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  1. Muonic alchemy: Transmuting elements with the inclusion of negative muons

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Cruz, Daniel; Reyes, Andrés

    2012-06-01

    In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.

  2. High Rate Proton Irradiation of 15mm Muon Drifttubes

    NASA Astrophysics Data System (ADS)

    Zibell, A.; Biebel, O.; Hertenberger, R.; Ruschke, A.; Schmitt, Ch.; Kroha, H.; Bittner, B.; Schwegler, P.; Dubbert, J.; Ott, S.

    2012-08-01

    Future LHC luminosity upgrades will significantly increase the amount of background hits from photons, neutrons 11.11d protons in the detectors of the ATLAS muon spectrometer. At the proposed LHC peak luminosity of 5\\cdot 1034(1)/(cm2s), background hit rates of more than 10(kHz)/(cm2) are expected in the innermost forward region, leading to a loss of performance of the current tracking chambers. Based on the ATLAS Monitored Drift Tube chambers, a new high rate capable drift tube detecor using tubes with a reduced diameter of 15mm was developed. To test the response to highly ionizing particles, a prototype chamber of 46 15mm drift tubes was irradiated with a 20 MeV proton beam at the tandem accelerator at the Maier-Leibnitz Laboratory, Munich. Three tubes in a planar layer were irradiated while all other tubes were used for reconstruction of cosmic muon tracks through irradiated and nonirradiated parts of the chamber. To determine the rate capability of the 15mm drifttubes we investigated the effect of the proton hit rate on pulse height, efficiency and spatial resolution of the cosmic muon signals.

  3. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  4. Physical applications of muon catalysis: Muon capture in hydrogen

    NASA Astrophysics Data System (ADS)

    Filchenkov, V. V.

    2016-07-01

    Results of theoretical and experimental research on capture of negative muons in hydrogen are reported with an emphasis on the accompanying phenomenon of muon catalysis in hydrogen and subtleties of the experimental method. A conclusion is drawn that precise determination of the capture rate is important for refining the standard model.

  5. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    SciTech Connect

    Stacey, W.M. Jr. . Fusion Research Center )

    1989-09-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D/sub 2/O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed.

  6. A projective reconstruction method of underground or hidden structures using atmospheric muon absorption data

    NASA Astrophysics Data System (ADS)

    Bonechi, L.; D'Alessandro, R.; Mori, N.; Viliani, L.

    2015-02-01

    Muon absorption radiography is an imaging technique based on the analysis of the attenuation of the cosmic-ray muon flux after traversing an object under examination. While this technique is now reaching maturity in the field of volcanology for the imaging of the innermost parts of the volcanic cones, its applicability to other fields of research has not yet been proved. In this paper we present a study concerning the application of the muon absorption radiography technique to the field of archaeology, and we propose a method for the search of underground cavities and structures hidden a few metres deep in the soil (patent [1]). An original geometric treatment of the reconstructed muon tracks, based on the comparison of the measured flux with a reference simulated flux, and the preliminary results of specific simulations are discussed in details.

  7. Observation of muon intensity variations by season with the MINOS Near Detector

    SciTech Connect

    Adamson, P.; et al.

    2014-07-22

    A sample of 1.53$\\times$10$^{9}$ cosmic-ray-induced single muon events has been recorded at 225 meters-water-equivalent using the MINOS Near Detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient $\\alpha_{T}$, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428$\\pm$0.003(stat.)$\\pm$0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352$\\pm$0.003(stat.)$\\pm$0.046(syst.).

  8. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2016-07-12

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  9. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  10. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  11. Low Cost, Low Power, Passive Muon Telescope For Interrogating Martian Sub-Surface

    NASA Astrophysics Data System (ADS)

    Naudet, C. J.; Tanaka, H.; Kedar, S.; Plaut, J. J.; Webb, F.

    2012-12-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of geological structures in much the same way as standard X-ray radiography. Unlike gamma rays and neutrons that penetrate only a few meters of rock, muons can traverse through up to several kilometers of a geological target. Recent development and application of the technique to terrestrial volcanoes, caves, and mines have demonstrated that a low-power, passive muon detector can image deep into kilometer-scale geological structures and provide unprecedentedly crisp density profile images of their interior. Preliminary estimates of muon production on Mars indicate that the near-horizontal Martian mu-on flux, which is used for muon radiography of surface features, is at least as strong as that on Earth, making the technique suitable for geological exploration of Mars. The muon telescope represents an entirely new class of instruments for planetary exploration, providing a wholly new type of measurement for delineation of potentially habitable subsurface environments through detection of caves, sub-surface ice, and water, and for the interpretation of composition and evolutionary state of the Martian surface. Muon radiography is a proven, sim-ple, low cost, and efficient technology that could detect subsurface radiation-shielded habitable environments that would not be detectable by any other technique available today. Thanks to its low power and low data rate demands, it could be integrated as a secondary instrument on future missions with minimal impact on primary mission operations. A mission that includes a muon detector could set the stage for a future mission to directly explore subsurface habitable envi-ronments on Mars. Developing the technology now would position it favorably for a surface mission in the 2018-2024 time period to explore Martian regions with previously-identified po-tential trace gas sources

  12. Muon Bunching and Phase-Energy Rotation for a Neutrino Factory and Muon Collider

    NASA Astrophysics Data System (ADS)

    Neuffer, David; Yoshikawa, Cary

    2008-04-01

    We have developed scenarios for capture, bunching and phase-energy rotation of muons from a proton source, using high-frequency rf systems. The method captures a maximal number of muons into a string of rf bunches with initial application in the neutrino factory design studies. For a muon collider, these bunches must be recombined for maximal luminosity, and our initial design produced a relatively long bunch train. In this paper we present more compact scenarios that obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both neutrino-factory and collider scenarios. We also consider further modification by incorporating hydrogen gas-filled rf cavities for bunching and cooling. We describe these examples and consider variations toward an optimal factory + collider scenario.

  13. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 8

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. The present volume contains papers addressing high energy interactions and related phenomena. Specific topic areas include muons, neutrinos, magnetic monopoles, nucleon decay, searches for new particles, and acoustic and thermoluminescence detection techniques.

  14. A Novel Technique for the Production of Large Area Z-coordinate Readout Planes for the BaBar Muon System

    SciTech Connect

    Convery, M.R.; Kim, P.C.; Paar, H.P.; Rogers, C.H.; Schindler, R.H.; Swain, S.K.; Young, C.C.; /SLAC

    2005-09-30

    The BABAR detector, at the Stanford Linear Accelerator Center is a general purpose detector for the study of e{sup +}e{sup -} interactions at the {Upsilon}(4S) resonance. BABAR's muon detection system consists of two parts: a hexagonal barrel region and two planar endcap regions each containing 18 layers of iron ({approx} 3.6{lambda}), with resistive plate chambers within the inter-iron gaps. These chambers have suffered deterioration in performance over the past few years and are being replaced by limited streamer tube chambers in the barrel. Each layer of the system consists of a set of up to 10 streamer tube modules oriented parallel to the beamline providing the azimuthal coordinate ({Phi}) and a single ''Z-plane'' with strips oriented perpendicular the streamer tubes providing the coordinate (Z) along the beamline. The large area Z-planes (up to 12 m{sup 2}) are 1 mm thick and contain 96 strips that detect the induced charge from avalanches on the streamer tube wires. This paper reports on the novel construction technique of the Z-planes.

  15. The Auger Engineering Radio Array and multi-hybrid cosmic ray detection

    NASA Astrophysics Data System (ADS)

    Holt, E. M.; Pierre Auger Collaboration

    2016-05-01

    The Auger Engineering Radio Array (AERA) aims at the detection of air showers induced by high-energy cosmic rays. As an extension of the Pierre Auger Observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the Auger Muons and Infill for the Ground Array (AMIGA). AERA is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. Since the radio emission is induced purely by the electromagnetic component of the shower, in combination with the AMIGA muon counters, AERA is perfect for separate measurements of the electrons and muons in the shower, if combined with a muon counting detector like AMIGA. In addition to the depth of the shower maximum, the ratio of the electron and muon number serves as a measure of the primary particle mass.

  16. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe. PMID:18534932

  17. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  18. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  19. Ionization Cooling for Muon Experiments

    SciTech Connect

    Alexahin, Y.; Neuffer, D.; Prebys, E.

    2014-09-18

    Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.

  20. Results from the STAR TPC system test

    SciTech Connect

    Betts, W.; Bieser, F.; Bossingham, R.

    1996-12-31

    A system test of various components of the Solenoidal Tracker at RHIC (STAR) detector, operating in concern, has recently come on-line. Communication between a major sub-detector, a sector of the Time Projection Chamber (TPC), and the trigger, data acquisition and slow controls systems has been established, enabling data from cosmic ray muons to be collected. First results from an analysis of the TPC data are presented. These include measurements of system noise, electronic parameters such as amplifier gains and pedestal values, and tracking resolution for cosmic ray muons and laser induced ionization tracks. A discussion on the experience gained in integrating the different components for the system test is also given.

  1. Muon collider design

    SciTech Connect

    Palmer, R. |; Sessler, A.; Skrinsky, A.

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  2. Muon Energy Calibration of the MINOS Detectors

    SciTech Connect

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  3. NM-MT network and space dangerous phenomena, 2. Examples of cosmic ray using for forecasting of major geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Belov, A.; Dorman, L.; Eroshenko, E.; Iucci, N.; Parisi, M.; Pustil Nik, L.; Sternlieb, A.; Villoresi, G.; Yanke, V.; Zukerman, I.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon telescopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geomagnetic storms can be used global-spectrographic method if on-line will be available 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of geomagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre-decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major geomagnetic storms. This research is partly supported by the INTAS grant 00-0810. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting features for big Forbush-decreases". Nuclear Physics B, 49A, 136-144 (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, 6, 476-479 (1999).

  4. MUON STORAGE RINGS - NEUTRINO FACTORIES

    SciTech Connect

    PARSA,Z.

    2000-05-30

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8{degree} angle for BNL-Soudan, and 3{degree} angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design.

  5. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    PubMed

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.

  6. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS

    PubMed Central

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0,” which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth’s atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research. PMID:26674183

  7. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    PubMed

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research. PMID:26674183

  8. A potential space- and power-effective muon sensor module for imaging a volcano

    NASA Astrophysics Data System (ADS)

    Taira, H.; Tanaka, H. K. M.

    2010-02-01

    The application of muon radiography will be greatly enhanced by the use of two muon sensor modules that save electric power consumption and are easily transportable. Muon sensor modules used for a volcano observation must have a low electric power consumption requirement and be both waterproof and portable. In this article, we discuss two candidate sensor modules: (1) a portable muon sensor module with wavelength-shifting (WLS) fibers and a multi-anode photomultiplier tube (MAPMT), and (2) a regular scintillator telescope with PMT complemented by a low-power Cockcroft-Walton circuit (CWPMT). A realistic telescope system consisting of a muon sensor module with MAPMT has been tested and found to consume 76 W, most of which (72 W) is used by the redundant electronic circuit required for pulse shaping; this could be modified to drastically improve the power consumption. In comparison, a muon telescope system with a CWPMT was found to consume 7.57 W. We also calculated the muon stopping length in SiO2 by means of a Monte-Carlo simulation. This calculation provided the average density structure along the muon path in rock, where the muon path length was shorter than 1.5 km, with an accuracy of about 5% during a 90-day measurement period by assuming a 1-m2 muon detector with an angular resolution of 25 mrad.

  9. Optimizing Muon Storage for the Fermilab g - 2 Experiment

    NASA Astrophysics Data System (ADS)

    Froemming, Nathan

    2016-03-01

    The 140-ppb-precision goal of the new muon g - 2 experiment at Fermilab will require a 20-fold statistical improvement compared to the entire data set collected by the BNL E821 experiment. This will be achieved via efficient muon production and transport to the storage ring, and via a series of key improvements to storage-ring elements responsible for muon capture. A complete end-to-end simulation is being developed to optimize beamline elements, to tune injection beam parameters, and to improve key elements related to muon storage efficiency. These elements include the superconducting inflector, the electrostatic quadrupoles, the beam collimator system, and the fast storage-ring kicker magnet. I will discuss some aspects of the simulation program, which predict a greater storage efficiency compared to BNL.

  10. COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States

    NASA Astrophysics Data System (ADS)

    Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.

    2008-12-01

    Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.

  11. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  12. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  13. Probing beyond the Standard Model with Muons

    SciTech Connect

    Hisano, Junji

    2008-02-21

    Muon's Properties are the most precisely studied among unstable particles. After discovery of muons in 40's, the studies of muons contributed to construction and establishment of the standard model in the particle physics. Now we are going to LHC era, however, precision frontier is still important in the particle physics. In this article, we review roles of muon physics in the particle physics. Muon g-2, lepton flavor violation (LFV) in muon decay, and electric dipole moment (EDM) of muon are mainly discussed.

  14. Quasi-isochronous Muon Collection Channels

    SciTech Connect

    Yoshikawa, C.; Ankenbrandt, C.; Neuffer, D.; /Fermilab

    2010-05-01

    Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced as tertiary beams, resulting in diffuse phase space distributions. To make useful beams, the muons must be rapidly cooled before they decay. An idea conceived recently for the collection and cooling of muon beams, namely, the use of a Quasi-Isochronous Helical Channel (QIHC) to facilitate capture of muons into RF buckets, has been developed further. The resulting distribution could be cooled quickly and coalesced into a single bunch to optimize the luminosity of a muon collider. After a brief elaboration of the QIHC concept, recent developments are described.

  15. Muon Simulation at the Daya Bay SIte

    SciTech Connect

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  16. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  17. Cosmic strings

    SciTech Connect

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs.

  18. Systems for detecting charged particles in object inspection

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  19. Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

    NASA Astrophysics Data System (ADS)

    Shtejer, K.

    2016-05-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic-ray interactions in the upper atmosphere. The large size and excellent tracking capability of the ALICE Time Projection Chamber are exploited to study the muonic component of extensive air showers. We present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. The latest version of the QGSJET hadronic interaction model was used to simulate the development of the resulting air showers. High multiplicity events containing more than 100 reconstructed muons were also studied. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP without satisfactory explanations for the frequency of the highest multiplicity events. We demonstrate that the high muon-multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range.

  20. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  1. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  2. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  3. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. Sudden stratospheric warmings seen in MINOS deep underground muon data

    SciTech Connect

    Osprey, S.; Barnett, J.; Smith, J.; Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Baller, B.; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

    2009-01-01

    The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

  5. Muon ID - taking care of lower momenta muons

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2005-12-01

    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta for low momenta single muons particles is described.

  6. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  7. Portable cosmic particle detectors for subsurface density mapping

    NASA Astrophysics Data System (ADS)

    Oláh, László; Gábor Barnaföldi, Gergely; Hamar, Gergö; Surányi, Gergely; Varga, Dezsö

    2016-04-01

    Muography deduces the density length in the interior of the investigated geological object, such as a mountain or volcano by the measurement of the cosmic muon absorption along different paths through the object. If path lengths (average densities) are measured, the average density (path length) can be deduced along the muon paths. A portable, low power consumption cosmic particle tracking detector based on Close Cathode multi-wire proportional chambers [1,2] has been developed for muography based on our earlier developments and experiences at the Wigner RCP of the HAS in Budapest [3,4,5]. The newly developed tracking system consists of six layers with the sensitive area of 0.25 m2 [6]. The spatial resolution of 2 mm provides an angular resolution of 15 mrad. This instrument has been optimized for underground and outdoor measurements: it has a Raspberry pi controlled data acquisition system which includes a custom designed board with a coincidence unit and allows high level remote control, data management and analysis. The individual trigger signals, number of missed triggers, analogue signals from chambers and the temperature are recorded. The duration of data readout (dead time) is 100 microsec. The DAQ software runs on the Raspberry Pi. For standard operation, a graphical user interface has been developed, running on any remote computer with Internet connection (both of wired and wireless) to the Raspberry Pi. A temperature-controlled high-voltage power supply provides a stable and reasonable (> 95 %) tracking performance for the measurements. With total power consumption of 5W, a portable tracking detector can operate for 5 days with a standard 50 Ah battery and with gas (non flammable Ar-CO2 mixture) consumption of 0.5 liter per hour, a 10 l bottle at pressure of 150 bar is enough for four month. The portability (total weight of less than 30 kg) allowed that our tracking detectors have been applied in underground caverns for subsurface density mapping. The

  8. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  9. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  10. The Brookhaven muon storage ring magnet

    NASA Astrophysics Data System (ADS)

    Danby, G. T.; Addessi, L.; Armoza, Z.; Benante, J.; Brown, H. N.; Bunce, G.; Cottingham, J. C.; Cullen, J.; Geller, J.; Hseuh, H.; Jackson, J. W.; Jia, L.; Kochis, S.; Koniczny, D.; Larsen, R.; Lee, Y. Y.; Mapes, M.; Meier, R. E.; Meng, W.; Morse, W. M.; O'Toole, M.; Pai, C.; Polk, I.; Prigl, R.; Semertzidis, Y. K.; Shutt, R.; Snydstrup, L.; Soukas, A.; Tallerico, T.; Toldo, F.; Von Lintig, D.; Woodle, K.; Carey, R. M.; Earle, W.; Hazen, E. S.; Krienen, F.; Miller, J. P.; Ouyang, J.; Roberts, B. L.; Sulak, L. R.; Worstell, W. A.; Orlov, Y.; Winn, D.; Grossmann, A.; Jungmann, K.; zu Putlitz, G.; von Walter, P.; Debevec, P. T.; Deninger, W. J.; Hertzog, D. W.; Sedykh, S.; Urner, D.; Green, M. A.; Haeberlen, U.; Cushman, P.; Giron, S.; Kindem, J.; Miller, D.; Timmermans, C.; Zimmerman, D.; Druzhinin, V. P.; Fedotovich, G. V.; Grigorev, D. N.; Khazin, B. I.; Ryskulov, N. M.; Serednyakov, S.; Shatunov, Yu. M.; Solodov, E.; Endo, K.; Hirabayashi, H.; Mizumachi, Y.; Yamamoto, A.; Dhawan, S. K.; Disco, A.; Farley, F. J. M.; Fei, X.; Grosse-Perdekamp, M.; Hughes, V. W.; Kawall, D.; Redin, S. I.

    2001-01-01

    The muon g-2 experiment at Brookhaven National Laboratory has the goal of determining the muon anomalous g-value a μ (=(g-2)/2) to the very high precision of 0.35 parts per million and thus requires a storage ring magnet with great stability and homogeniety. A superferric storage ring with a radius of 7.11 m and a magnetic field of 1.45 T has been constructed in which the field quality is largely determined by the iron, and the excitation is provided by superconducting coils operating at a current of 5200 A. The storage ring has been constructed with maximum attention to azimuthal symmetry and to tight mechanical tolerances and with many features to allow obtaining a homogenous magnetic field. The fabrication of the storage ring, its cryogenics and quench protection systems, and its initial testing and operation are described.

  11. Effects of turbulence on cosmic ray propagation in protostars and young star/disk systems

    SciTech Connect

    Fatuzzo, Marco; Adams, Fred C. E-mail: fca@umich.edu

    2014-05-20

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when δB/B {sub 0} > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

  12. COsmic-ray Soil Moisture Observing System (COSMOS): soil moisture and beyond

    NASA Astrophysics Data System (ADS)

    Zreda, Marek; Shuttleworth, William J.; Zeng, Xubin; Zweck, Chris; Franz, Trenton; Rosolem, Rafael

    2013-04-01

    COSMOS, a project funded by the US National Science Foundation, was designed to measure average soil moisture in the top 10-70 cm of soil over the horizontal footprint of approximately 700 m by measuring cosmic-ray neutrons in air above the ground surface. It is in its fourth, final, year of the feasibility phase in which 60 neutron probes have been installed in the USA to provide continental-scale soil moisture data. The cosmic-ray neutron probe responds to all sources of hydrogen present within the footprint. Therefore, in addition to soil moisture, other pools of hydrogen can be measured; these include atmospheric water vapor, organic matter in soil, water in soil minerals, biomass water (including hydrogen bound in cellulose), and snow on the ground and on the canopy. All these pools of hydrogen form the "total surface moisture" that is measured by COSMOS probes. The first four pools are measured independently (water vapor) or are implicitly included in the probe calibration (water in minerals and organic matter, biomass water). The other two can be separated from one another to produce time series of soil moisture and snow water equivalent. Work is in progress to assimilate neutron data into land-surface models, to produce soil moisture profiles, to validate satellite soil moisture products (the current SMOS mission and the future SMAP mission), to measure temporal variations in biomass, and to measure area-average unsaturated hydraulic properties of soils. Separately, mobile COSMOS probe, called COSMOS rover, is being developed. COSMOS rover can be used to map soil moisture over large areas or along long transects. Cosmic-ray sensing of moisture at the land surface has gained popularity outside of the USA. Approximately 60 probes have been purchased in addition to the 60 probes in the COSMOS project. Funds for additional 80 probes, most of them in Germany, have been secured, and large new proposals will be submitted in the USA and Australia in 2013. These

  13. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  14. Performance of the ATLAS muon trigger in pp collisions at TeV

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Cunha Sargedas De Sousa, M. J. Da; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2015-03-01

    The performance of the ATLAS muon trigger system is evaluated with proton-proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The range for efficiency determination is extended by using muons from decays of mesons, bosons, and top quarks. The muon trigger shows highly uniform and stable performance. The performance is compared to the prediction of a detailed simulation.

  15. LINACS FOR FUTURE MUON FACILITIES

    SciTech Connect

    Slawomir Bogacz, Rolland Johnson

    2008-10-01

    Future Muon Colliders (MC) and Neutrino Factories (NF) based on muon storage rings will require innovative linacs to: produce the muons, cool them, compress longi-tudinally and ‘shape’ them into a beam and finally to rap-idly accelerate them to multi-GeV (NF) and TeV (MC) energies. Each of these four linac applications has new requirements and opportunities that follow from the na-ture of the muon in that it has a short lifetime (τ = 2.2 μsec) in its own rest frame, it is produced in a tertiary process into a large emittance, and its electron, photon, and neutrino decay products can be more than an annoy-ance. As an example, for optimum performance, the linac repetition rates should scale inversely with the laboratory lifetime of the muon in its storage ring, something as high as 1 kHz for a 40 GeV Neutrino Factory or as low as 20 Hz for a 5 TeV Muon Collider. A superconducting 8 GeV Linac capable of CW operation is being studied as a ver-satile option for muon production [1] for colliders, facto-ries, and muon beams for diverse purposes. A linac filled with high pressure hydrogen gas and imbedded in strong magnetic fields has been proposed to rapidly cool muon beams [2]. Recirculating Linear Accelerators (RLA) are possible because muons do not generate significant syn-chrotron radiation even at extremely high energy and in strong magnetic fields. We will describe the present status of linacs for muon applications; in particular the longitu-dinal bunch compression in a single pass linac and multi-pass acceleration in the RLA, especially the optics and technical requirements for RLA designs, using supercon-ducting RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed linac quadrupoles to allow the maximum number of passes. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

  16. Cosmic Flows

    NASA Astrophysics Data System (ADS)

    Tully, Brent; Courtois, Helene; Freedman, Wendy; Jarrett, Tom; Madore, Barry; Persson, Eric; Seibert, Mark; Shaya, Ed

    2011-05-01

    It is astonishing that only 30% of the motion of our Galaxy is understood, a fact that highlights a fundamental deficiency in our understanding of the composition of the Universe. Spitzer Cosmic Flows is the photometric component of a program to map the peculiar motions and large-scale flows of galaxies out to 200 Mpc in order to constrain the distribution of mass. This task requires measuring the peculiar velocity of galaxies, a response to the distribution of both baryonic and dark matter, densely sampled over the full sky. With an independent distance measurement, an observed galaxy redshift can be separated into cosmic expansion and peculiar velocity components. Spitzer Cosmic Flows will use IRAC 3.6 micron imaging to obtain independent distances using the correlation between galaxy luminosity and rotation rate (the mid-IR Tully-Fisher relation). The rotational velocity data is being acquired through the Cosmic Flows Large Program on the NRAO Green Bank Telescope and a complementary program of southern targets with the Parkes Telescope. Spitzer Cosmic Flows consists of five distinct samples totaling 4642 galaxies. New observations are required for 3531 galaxies and archival data exists for 1111 galaxies. Each of the samples serves a distinct purpose and/or domain while overlapping to assure a connectivity over a wide range of distances. The photometry of galaxies directly drives the peculiar velocity accuracy of this program. Spitzer IRAC 3.6 micron imaging provides the ability of a single instrument to perform the required imaging over the full sky with exquisite quality. The mid-IR traces the dominant stellar population with negligible extinction. Most importantly, the backgrounds are low from space enabling surface photometry to be extended to many exponential scale-lengths, capturing essentially all the light from the target.

  17. Muon spin rotation in solids

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  18. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  19. Messengers from the Early Solar System - Comets as Carriers of Cosmic Information

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.

    2011-01-01

    Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth s water? The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth s water, and for assessing the possible existence of exo-planets similar to Earth. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models, imply that comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition. The primary volatiles in comets (ices native to the nucleus) provide the preferred metric, and taxonomies based on them are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3, and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional important tests for the origin of cometary material.

  20. On the cosmic evolution of Fe/Mg in QSO absorption line systems

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Torrey, Paul; Rubin, Kate H. R.; Zhu, Guangtun Ben; Suresh, Joshua

    2015-08-01

    We investigate the variation of the ratio of the equivalent widths of the Fe II λ2600 line to the Mg II λλ2796, 2803 doublet as a function of redshift in a large sample of absorption lines drawn from the Johns Hopkins University - Sloan Digital Sky Survey Absorption Line Catalog. We find that despite large scatter, the observed ratio shows a trend where the equivalent width ratio R≡ W_{Fe II}/W_{Mg II} decreases monotonically with increasing redshift z over the range 0.55 ≤ z ≤ 1.90. Selecting the subset of absorbers where the signal-to-noise ratio of the Mg II equivalent width W_{Mg II} is ≥ 3 and modelling the equivalent width ratio distribution as a Gaussian, we find that the mean of the Gaussian distribution varies as R∝ (-0.045± 0.005)z. We discuss various possible reasons for the trend. A monotonic trend in the Fe/Mg abundance ratio is predicted by a simple model where the abundances of Mg and Fe in the absorbing clouds are assumed to be the result of supernova (SN) ejecta and where the cosmic evolution in the SNIa and core-collapse SN rates is related to the cosmic star formation rate. If the trend in R reflects the evolution in the abundances, then it is consistent with the predictions of the simple model.

  1. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2016-07-12

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  2. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be 'at least 20 years away' for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  3. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  4. Superconducting RF cavities and magnets for a 4-TeV energy muon collider

    SciTech Connect

    Shu, Q.S. |; Green, M.; Neuffer, D.; Summers, D.; Simrock, S.; Willen, E.

    1997-11-01

    The accelerators must take the muon beams from {approximately} 100 MeV to 2 TeV energies within the muon lifetime for a 4 TeV energy muon collider. These constraints plus the muon decay heating seriously challenge the designs of the superconducting RF (SRF) cavities and magnets in the accelerators and collider ring. The multiple superconducting recirculation linac and the very rap8id-cycling superconducting synchrotron approach are both studied. The authors briefly introduce the technical considerations and preliminary designs of the SRF systems and magnets.

  5. Performance of the Muon Identification at LHCb

    NASA Astrophysics Data System (ADS)

    Archilli, F.; Baldini, W.; Bencivenni, G.; Bondar, N.; Bonivento, W.; Cadeddu, S.; Campana, P.; Cardini, A.; Ciambrone, P.; Cid Vidal, X.; Deplano, C.; De Simone, P.; Falabella, A.; Frosini, M.; Furcas, S.; Furfaro, E.; Gandelman, M.; Hernando Morata, J. A.; Graziani, G.; Lai, A.; Lanfranchi, G.; Lopes, J. H.; Maev, O.; Manca, G.; Martellotti, G.; Massafferri, A.; Milanes, D.; Oldeman, R.; Palutan, M.; Passaleva, G.; Pinci, D.; Polycarpo, E.; Santacesaria, R.; Santovetti, E.; Sarti, A.; Satta, A.; Schmidt, B.; Sciascia, B.; Soomro, F.; Sciubba, A.; Vecchi, S.

    2013-10-01

    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/ψ → μ+μ-, Λ0 → pπ- and Dstar+→π+D0(K-π+) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification probabilities are below 0.6%.

  6. Monopole annihilation in cosmic necklaces

    SciTech Connect

    Blanco-Pillado, Jose J.; Olum, Ken D. E-mail: kdo@cosmos.phy.tufts.edu

    2010-05-01

    A sequence of two symmetry breaking transitions in the early universe may produce monopoles whose flux is confined into two strings each, which thus assemble into ''necklaces'' with monopoles as beads. Such ''cosmic necklaces'' have been proposed as a source of ultra-high-energy cosmic rays. We analyze the evolution of these systems and show that essentially all monopoles annihilate or leave the string at early times, after which cosmic necklaces evolve in a similar way to a network of ordinary cosmic strings. We investigate several modifications to the basic picture, but in nearly all cases we find that too few monopoles remain on the necklaces to produce any observable cosmic rays. There may be a small window for superconducting condensates to prevent annihilations, but only if both the string and the condensate scale are very high.

  7. Next Generation Muon g - 2 Experiments

    NASA Astrophysics Data System (ADS)

    Hertzog, David W.

    2016-04-01

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of aμ from Brookhaven E821 by a factor of 4; that is, δaμ ˜ 16 × 10-11, a relative uncertainty of 140 ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase 1 installation.

  8. Muon g-2 Experiment at Fermilab

    SciTech Connect

    Gray, Frederick

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic fi eld; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  9. Next Generation Muon g-2 Experiments

    SciTech Connect

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  10. CuOF: an electrical to optical interface for the upgrade of the CMS muon Drift Tubes system

    NASA Astrophysics Data System (ADS)

    Dattola, D.; De Remigis, P.; Maselli, S.; Mazza, G.; Rotondo, F.; Wheadon, R.

    2013-02-01

    The upgrade of the Drift Tube system of the CMS experiment foresee the relocation of the electronics actually sitting on the racks beside the magnet from the cavern to the counting room. It is thus required to convert the signals from electrical to optical, for a total number of 3500 channels that run at up to 480 Mb/s. A Copper to Optical Fiber board is currently under design. The board is divided into a mother board, which hosts the slow control system based on Field Programmable Gate Array, and four mezzanine cards, each with 8 conversion channels. A prototype of the mezzanine board has been designed and tested under irradiation.

  11. Optimization of a muon collider interaction region with respect to detector backgrounds and the heat load to the cryogenic systems

    SciTech Connect

    Johnstone, C.J.; Mokhov, N.V.

    1996-10-16

    In a 2 X 2 TeV {mu}{sup +}{mu}{sup -} Collider almost 15 MW of power is deposited in the machine and detector components due to the unavoidable {mu}{r_arrow}{ital e{nu}{nu}{anti {nu}}} decays. The resulting heat load to the cryogenic systems and the background levels in the collider detectors significantly exceed those in any existing or designed hadron and {ital e}{sup +}{ital e}{sup -} colliders. This paper shows that by carefully designing the final focus system, by embedding shielding and by taking other protective measures the heat load and backgrounds can be mitigated by several orders of magnitude.

  12. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    SciTech Connect

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-10-15

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10{sup 3} and 10{sup 4} GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π{sup ±} and K{sup ±} mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments.

  13. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.; Nagai, Y.; Hurtado, A.; Musalem, O.; García, R.; Anzorena, M. A.; González, L. X.; Itow, Y.; Sako, T.; Lopez, D.; Sasai, Y.; Munakata, K.; Kato, C.; Kozai, M.; Shibata, S.; Takamaru, H.; Kojima, H.; Watanabe, K.; Tsuchiya, H.; Koi, T.

    2016-11-01

    In this work we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system of the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.

  14. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  15. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  16. A photon detector system for the search for the rare muon decay {mu} {yields} e{gamma}

    SciTech Connect

    Van Ausdeln, L.A.

    1993-11-01

    An innovative and state of the art pair spectrometer system to measure the photon component of {mu}{sup +} decay to obtain an improved branching ratio limit for the decay {mu} {yields} e{gamma} is investigated. Analysis algorithms are developed and an experimental inner bremsstrahlung spectrum is obtained and agrees well with Monte Carlo simulations. Background sources are investigated and found to be highly suppressed at various stages of acquisition and analysis.

  17. The physical theory of one dimensional galactic cosmic-ray propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Obrien, K.

    1972-01-01

    An analytical theory of atmospheric cosmic-ray propagation is developed based on a phenomenological model of hadron-nucleus collisions. This model correctly predicts the sea level cosmic-ray nucleon, pion and muon spectra, the cosmic-ray ionization profile in the atmosphere, and neutron flux and density profiles in the atmosphere. It is concluded that the large scale properties of atmospheric cosmic-rays can be accurately predicted on the basis of a nucleonic cascade with all secondaries mediated by pion production. Implications for energy independence of cross sections, the recent 70 GeV results from Serpukhov, and nucleonic relaxation rates in the atmosphere are discussed.

  18. Cosmic Interactions

    NASA Astrophysics Data System (ADS)

    2008-01-01

    An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members

  19. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  20. Cosmic clocks

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Schmidt, Fabian

    2014-02-01

    In a perturbed universe, comoving tracers on a two-dimensional surface of constant observed redshift are at different proper times since the big bang. For tracers whose age is known independently, one can measure these perturbations of the proper time. Examples of such sources include cosmic events which only happen during a short period of cosmic history, as well as evolving standard candles and standard rulers. In this paper, we derive a general gauge-invariant linear expression for this perturbation in terms of spacetime perturbations. We show that this perturbation in general contributes a previously overlooked leading order term to observables such as the magnification (although this contribution is generally small). Further, as an illustrative example, we show that the observed temperature perturbations of the cosmic microwave background on large scales (ℓ≪100) are exactly given by these proper-time perturbations. Together with the six ruler perturbations derived in [F. Schmidt and D. Jeong, Phys. Rev. D 86, 083527 (2012)], this completes the set of independent observables which can be measured with standard rulers and candles.

  1. Search for cosmic gamma rays with the Carpet-2 extensive air shower array

    NASA Astrophysics Data System (ADS)

    Dzhappuev, D. D.; Petkov, V. B.; Kudzhaev, A. U.; Klimenko, N. F.; Lidvansky, A. S.; Troitsky, S. V.

    2016-06-01

    The present-day status of the problem of searching for primary cosmic gamma rays at energies above 100 TeV is discussed, as well as a proposal for a new experiment in this field. It is shown that an increase of the area of the muon detector of the Carpet-2 air shower array up to 410 square meters, to be realized in 2016, will make this array quite competitive with past and existing experiments, especially at modest energies. Some preliminary results of measurements made with smaller area of the muon detector are presented together with estimates of expected results to be obtained with a coming large-area muon detector.

  2. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    SciTech Connect

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  3. The Performance and Long Term Stability of the D0 Run II Forward Muon Scintillation Counters

    SciTech Connect

    Bezzubov, V.; Denisov, D.; Evdokimov, V.; Lipaev, V.; Shchukin, A.; Vasilyev, I.

    2014-07-21

    The performance of the D0 experiment forward muon scintillation counters system during Run II of the Tevatron from 2001 to 2011 is described. The system consists of 4214 scintillation counters in six layers. The long term stability of the counters amplitude response determined using LED calibration system and muons produced in proton-antiproton collisions is presented. The average signal amplitude for counters of all layers has gradually decreased over ten years by 11%. The reference timing, determined using LED calibration, was stable within 0.26 ns. Average value of muon timing peak position was used for periodic D0 clock signal adjustments to compensate seasonal drift caused by temperature variations. Counters occupancy for different triggers in physics data collection runs and for minimum bias triggers are presented. The single muon yields versus time and the luminosity dependence of yields were stable for the forward muon system within 1% over 10 years.

  4. Muon Acceleration - RLA and FFAG

    SciTech Connect

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  5. Status of the BNL muon (g-2) experiment

    NASA Astrophysics Data System (ADS)

    Miller, J. P.; Barkov, L. M.; Benante, J.; Brown, D. H.; Brown, H. N.; Bunce, G.; Carey, R. M.; Chertovskikh, A.; Cullen, J.; Cushman, P.; Danby, G. T.; Debevec, P. T.; Deng, H.; Deninger, W.; Dhawan, S. K.; Disco, A.; Druzhinin, V. P.; Duong, L.; Earle, W.; Endo, K.; Efstathiadis, E.; Farley, F. J. M.; Fedotovich, G. V.; Fei, X.; Geller, J.; Gerhaeuser, J.; Giron, S.; Grigorev, D. N.; Golubev, V. B.; Grosse Perdekamp, M.; Grossmann, A.; Haeberlen, U.; Hazen, E. S.; Hertzog, D. W.; Hirabayashi, H.; Hseuh, H.; Hughes, B. J.; Hughes, V. W.; Ichii, S.; Ishida, K.; Jackson, J. W.; Jia, L.; Jungmann, K.; Kawall, D.; Khazin, B. I.; Kindem, J.; Kinoshita, T.; Krienen, F.; Kurokawa, S.; Larsen, R.; Lee, Y. Y.; Logashenko, I.; Mapes, M.; McNabb, R.; Meng, W.; Merzliakov, Yu.; Miller, D.; Mizumachi, Y.; Monich, V.; Morse, W. M.; Orlov, Y.; Ouyang, J.; Pai, C.; Pearson, C.; Polk, I.; Polly, C.; Prigl, R.; zu Putlitz, G.; Rankowitz, S.; Redin, S. I.; Rind, O.; Roberts, B. L.; Ryskulov, N.; Sandberg, J.; Sato, T.; Sedykh, S.; Semertzidis, Y. K.; Serednyakov, S.; Shatunov, Yu. M.; Shutt, R.; Snydstrup, L.; Solodov, E.; Soukas, A.; Stillman, A.; Sulak, L. R.; Tallerico, T.; Tanaka, M.; Toldo, F.; Timmermans, C.; Trofimov, A.; Urner, D.; von Walter, P.; Winn, D.; Woodle, K.; Worstell, W. A.; Yamamoto, A.; Zimmerman, D.

    1997-05-01

    The muon (g-2) experiment at Brookhaven has just completed a 3-month run for checkout and initial data-taking. In the first two months beam was taken in a parasitic mode where one out of ten AGS pulses was delivered for commissioning of the beam line, quadrupoles, detectors, and data acquisition system. This was followed by four weeks of dedicated data collection. The main components of the experiment, which include the pion/muon beam line, the superconducting inflector, the superferric storage ring with its pulsed electric quadrupoles and magnetic field measurement system, and the detector system based on lead-scintillating fiber electron calorimeters, have been satisfactorily commissioned. The muon (g-2) precession frequency is clearly seen as a large signal. It is estimaed that over 25×106 decay positrons with energies greater than 1.5 GeV have been detected.

  6. Muon-muon and other high energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  7. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    PubMed Central

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  8. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    PubMed

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  9. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    PubMed

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-15

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  10. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D’Ars, Jean; Komorowski, Jean-Christophe

    2016-09-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [‑0.8‑0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  11. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  12. Muon-induced signals and isotope production in the GERDA experiment

    SciTech Connect

    Pandola, L.

    2007-03-28

    Background induced by the interaction of cosmic ray muons can be important for the new generation of experiments searching for neutrinoless double beta decay. The GERmanium Detector Array (GERDA), located at the Gran Sasso Laboratory, in Italy, uses germanium enriched in 76Ge as source and detector material. It aims at a background level of 10-3 counts/(kg{center_dot}keV{center_dot}y) at the Q{beta}{beta}-value. The prompt background from muon interactions in the setup as well as the delayed background due to the production of radioactive isotopes within the setup have been evaluated by a detailed GEANT4-based Monte Carlo simulation. The results indicate that the background can be reduced to the desired level and that the muon-induced background does not limit the expected GERDA sensitivity.

  13. Correlation of high energy muons with primary composition in extensive air shower

    NASA Technical Reports Server (NTRS)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  14. Air shower simulation for background estimation in muon tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Portal, A.; Vulpescu, B.

    2013-01-01

    One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  15. Muon motion in titanium hydride

    NASA Technical Reports Server (NTRS)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.

    1988-01-01

    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  16. Cosmic impacts, cosmic catastrophes. II

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.; Morrison, D.

    1990-02-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  17. A range muon tomography performance study for the detection of explosives

    SciTech Connect

    Cuellar, Leticia; Borozdin, Konstantin N; Chung, Andrew; Nicolas, Hengartner W; Morris, Christopher; Schultz, Larry J; Reimus, Nathaniel P; Bacon, Jeffrey D; Vogan - Mc Neil, Wendy

    2010-01-01

    Soft cosmic ray tomography has been shown to successfully discriminate materials with various density levels due to their ability to deeply penetrate matter, allowing sensitivity to atomic number, radiation length and density. Because the multiple muon scattering signal from high Z-materials is very strong, the technology is well suited to the detection of the illicit transportation of special and radiological nuclear materials. In addition, a recent detection technique based on measuring the lower energy particles that do not traverse the material (range radiography), allows to discriminate low and medium Z-materials. This is shown in [4] using Monte Carlo simulations. More recently, using a mini muon tracker developed at Los Alamos National Laboratory, we performed various experiments to try out the radiation length technology. This paper presents the results from real experiments and evaluates the likelihood that soft cosmic ray tomography may be applied to detect high-explosives.

  18. Status of neutrino factory and muon collider R and D

    SciTech Connect

    Zisman, M.S.

    2001-06-17

    A significant worldwide R and D effort is presently directed toward solving the technical challenges of producing, cooling, accelerating, storing, and eventually colliding beams of muons. Its primary thrust is toward issues critical to a Neutrino Factory, for which R and D efforts are under way in the U.S., via the Neutrino Factory and Muon Collider Collaboration (MC); in Europe, centered at CERN; and in Japan, at KEK. Under study and experimental development are production targets handling intense proton beams (1-4 MW), phase rotation systems to reduce beam energy spread, cooling channels to reduce transverse beam emittance for the acceleration system, and storage rings where muon decays in a long straight section provide a neutrino beam for a long-baseline (3000 km) experiment. Critical experimental activities include development of very high gradient normal conducting RF (NCRF) and superconducting RF (SCRF) cavities, high-power liquid-hydrogen absorbers, and high-field superconducting solenoids. Components and instrumentation that tolerate the intense decay products of the muon beam are being developed for testing. For a high-luminosity collider, muons must be cooled longitudinally as well as transversely, requiring an emittance exchange scheme. In addition to the experimental R and D effort, sophisticated theoretical and simulation tools are needed for the design. Here, the goals, present status, and future R and D plans in these areas will be described.

  19. Muon-fluorine entanglement in fluoropolymers.

    PubMed

    Lancaster, T; Pratt, F L; Blundell, S J; McKenzie, I; Assender, H E

    2009-08-26

    We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.

  20. Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector

    SciTech Connect

    STAR Collaboration; Ruan, L.; Lin, G.; Xu, Z.; Asselta, K.; Chen, H.F.; Christie, W.; Crawford, H.k.; Engelage, J.; Eppley, G.; Hallman, T.J.; Li, C.; Liu, J.; Llope, W.J.; Majka, R.; Nussbaum, T.; Scheblein, J.; Shao, M.; Soja, R.; Sun, Y.; Tang, Z.; Wang, X.; Wang, Y.

    2009-07-17

    We propose a large-area, cost-effective Muon Telescope Detector (MTD) at mid-rapidity for the Solenoidal Tracker at RHIC (STAR) and for the next generation of detectors at a possible electron-ion collider. We utilize large Multi-gap Resistive Plate Chambers with long readout strips (long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a long-MRPC are 60-70 ps and {approx} 1 cm, respectively. The performance of the prototype muon telescope detector at STAR indicates that muon identification at a transverse momentum of a few GeV/c can be achieved by combining information from track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficiency, the signal-to-background ratio of J/{psi}, the separation of {Upsilon} 1S from 2S+3S states, and the electron-muon correlation from charm pair production in the RHIC environment are presented.

  1. The MICE Muon Beam Line

    NASA Astrophysics Data System (ADS)

    Apollonio, Marco

    2011-10-01

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  2. Law of Conservation of Muons

    DOE R&D Accomplishments Database

    Feinberg, G.; Weinberg, S.

    1961-02-01

    A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

  3. A Highly intense DC muon source, MuSIC and muon CLFV search

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N. H.; Hashim, I. H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-08-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 108 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  4. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Kim, M.-H. Y.

    1997-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of some interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus (100 mm2 area) are that the probability of any given cell nucleus being hit decreases from 10 percent at solar minimum to 6 percent at solar maximum for particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. We conclude that this modest decrease in hit frequency (less than a factor of two) is not a compelling reason to avoid solar minimum for a manned mission to Mars.

  5. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Atwell, W.; Kin, M.-H. Y.

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.

  6. Cosmic ray hits in the central nervous system at solar maximum.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M H

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with 7 greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain. PMID:11542854

  7. Cosmic ray hits in the central nervous system at solar maximum.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M H

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with 7 greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.

  8. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  9. Cosmic rays and the birth of particle physics

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael

    2013-02-01

    Twenty years after the discovery of cosmic rays, the methods of research and resulting discoveries were dramatically changed by the introduction of experimental methods that made visible the passage of individual particles. Between 1932 and 1955, tracks of cosmic rays were found in cloud chambers and special photographic emulsions. From measurements of the ionization produced along these tracks, the mass, charge and energy of a single relativistic particle could be determined. The dynamics of decays and collisions could be analyzed. Positrons and then electron-positron pairs were discovered, followed by muons and pions and then the inhabitants of the 'particle zoo'. Fundamental concepts were challenged. From the mid- 1950s, larger accelerators began to produce many of the 'new' particles, displacing cosmic rays from their prime role in particle studies. But without the initial discoveries in cosmic rays, there might well not be the modern industrial-scale particle physics research.

  10. Early developments: Particle physics aspects of cosmic rays

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2014-01-01

    Cosmic rays is the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. In subsequent cloud chamber investigations Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Measurements with nuclear emulsions by Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. The cloud chamber continued to be a powerful instrument in cosmic ray studies. Rochester and Butler found V's, which turned out to be shortlived neutral kaons decaying into a pair of charged pions. Also Λ's, Σ's, and Ξ's were found in cosmic rays. But after that accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A. Cosmic ray neutrino results were best explained by the assumption of neutrino oscillations opening a view beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of accelerators.

  11. Multichannel readout ASIC design flow for high energy physics and cosmic rays experiments

    NASA Astrophysics Data System (ADS)

    Voronin, A.; Malankin, E.

    2016-02-01

    In the large-scale high energy physics and astrophysics experiments multi-channel readout application specific integrated circuits (ASICs) are widely used. The ASICs for such experiments are complicated systems, which usually include both analog and digital building blocks. The complexity and large number of channels in such ASICs require the proper methodological approach to their design. The paper represents the mixed-signal design flow of the ASICs for high energy physics and cosmic rays experiments. This flow was successfully embedded to the development of the read-out ASIC prototype for the muon chambers of the CBM experiment. The approach was approved in UMC CMOS MMRF 180 nm process. The design flow enable to analyse the mixed-signal system operation on the different levels: functional, behavioural, schematic and post layout including parasitic elements. The proposed design flow allows reducing the simulation period and eliminating the functionality mismatches on the very early stage of the design.

  12. Reconstruction of air shower muon densities using segmented counters with time resolution

    NASA Astrophysics Data System (ADS)

    Ravignani, D.; Supanitsky, A. D.; Melo, D.

    2016-09-01

    Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy cosmic rays is still largely unknown. Key astrophysical information to identify where these energetic particles come from is provided by their chemical composition. It is well known that a very sensitive tracer of the primary particle type is the muon content of the showers generated by the interaction of the cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities using segmented detectors with time resolution. As an example of this general method, we fit the muon distribution at ground level using an array of counters like AMIGA, one of the Pierre Auger Observatory detectors. For this particular case we compare the reconstruction performance against a previous method. With the new technique, more events can be reconstructed than before. In addition the statistical uncertainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic ray primary mass.

  13. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2000-07-01

    In this tour de force of the ultimate and extreme in astrophysics, renowned astrophysicist and author J. Craig Wheeler takes us on a breathtaking journey to supernovae, black holes, gamma-ray bursts and adventures in hyperspace. This is no far-fetched science fiction tale, but an enthusiastic exploration of ideas at the cutting edge of current astrophysics. Wheeler follows the tortuous life of a star from birth to evolution and death, and goes on to consider the complete collapse of a star into a black hole, worm-hole time machines, the possible birth of baby bubble universes, and the prospect of a revolutionary view of space and time in a ten-dimensional string theory. Along the way he offers evidence that suggests the Universe is accelerating and describes recent developments in understanding gamma-ray bursts--perhaps the most catastrophic cosmic events of all. With the use of lucid analogies, simple language and crystal-clear cartoons, Cosmic Catastrophes makes accessible some of the most exciting and mind-bending objects and ideas in the Universe. J. Craig Wheeler is currently Samuel T. and Fern Yanagisawa Regents Professor of Astronomy at the University of Texas at Austin and Vice President of the American Astronomical Society as of 1999.

  14. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  15. Searching for ultra-high energy cosmic rays with smartphones

    NASA Astrophysics Data System (ADS)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  16. Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.

    PubMed

    Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther

    2012-05-01

    In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.

  17. Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission

    PubMed Central

    Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther

    2012-01-01

    Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685

  18. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere. PMID:24143867

  19. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  20. Simulation study on bi-stability of cloud-rain system and cosmic ray influence on climate

    NASA Astrophysics Data System (ADS)

    Kusano, Kanya; Hasegawa, Koichi; Shima, Shin-ichiro

    2012-07-01

    Although it has been pointed out many times that there is the correlation between solar activity, such as the Schwabe (11 year) cycle and the Maunder-type minima, and climate variability, the mechanism whereby the sun may affect climate is not yet well understood. Svensmark and Friis-Christensen (1997) proposed that galactic cosmic ray may control cloud through the ionization of atmosphere and the ion-induced nucleation. Recently, Kirkby et al. (2011) indicated in basis of experiments with artificial cosmic ray that the ion-induced nucleation is possible in the atmosphere if some conditions for chemical compounds and temperature are satisfied. However, although the experimental data show that the ion-induced nucleation rate for 1.7 nm diameter cluster J _{1.7}=10 ^{-2} to 10 ^{1}cm ^{-3}s ^{-1}, it is not yet clear how this rate affects cloud and climate. In this study, aiming at clarifying how the cloud-rain system depends on the change in the formation rate of cloud condensation nuclear, we have performed a systematic simulation study using super-droplet cloud model. The super-droplet cloud model is a novel computational technique to calculate the macro- and micro-physics of clouds (Shima, Kusano et al. 2009). We have implemented the super-droplet method on the cloud resolving model CReSS (Tsuboki & Sakakibara 2006), and developed an add-on function to create aerosols dynamically. Using it, we have surveyed the quasi-equilibrium state of cloud-rain system for different formation rate of 30 nm diameter aerosol J _{30}. The initial and boundary conditions are given by the data-set of RICO (Rain In Cumulus over the Ocean) project. As the results of simulations for J _{30} from 10 ^{-6} to 10 ^{0} cm ^{-3}s ^{-1}, we find that the cloud water path remains about 5 gm ^{-2} when J _{30} is smaller than 10 ^{-3}cm ^{-3}s ^{-1}, but it quickly increases to 20 gm ^{-2} for J _{30}=10 ^{-2}cm ^{-3}s ^{-1} and it keeps the value for higher J _{30}. On the other hand, the