Science.gov

Sample records for cosmic rays

  1. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  3. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  4. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry.

  5. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  6. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  7. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  8. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  9. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  10. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  11. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  12. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  13. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  14. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  15. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-11-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determines the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here, we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  16. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  17. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2016-07-12

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  18. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  19. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  20. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  1. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  2. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  3. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  4. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  5. Cosmic rays, clouds, and climate.

    PubMed

    Carslaw, K S; Harrison, R G; Kirkby, J

    2002-11-29

    It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.

  6. Cosmic ray studies at CERN

    SciTech Connect

    Fernandez T, Arturo

    2006-09-25

    The use of the sophisticated and large underground detectors at CERN for cosmic ray studies has been considered by several groups, e.g. UA1, LEP and LHC detectors. They offer the opportunity to provide large sensitivity area with magnetic analysis which allow a precise determination of the direction of cosmic ray muons as well as their momentum up to the order of some TeV. The aim of this article is to review the observation of high energy cosmic ray muons using precise spectrometers at CERN, mainly LEP detectors as well as the possibility of improve those measurements with LHC apparatus, giving special emphasis to the ACORDE-ALICE cosmic ray physics program.

  7. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  8. Blast waves with cosmic rays

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2015-04-01

    Blast waves appear in many astrophysical phenomena, such as supernovae. In this paper we discuss blast waves with cosmic rays, i.e., with a component with a power-law number density distribution function N( p) ∝ p -Γ that may be particulary important in describing the evolution of supernova remnants. We confirm some previous findings that a significant amount of cosmic ray energy is deposited towards the center of a remnant.

  9. Cosmic Ray Origins: An Introduction

    NASA Astrophysics Data System (ADS)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  10. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  11. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  12. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  13. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  14. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  15. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  16. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  17. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  18. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  19. Cosmic Ray elimination using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Orozco-Aguilera, M. T.; Cruz, J.; Altamirano, L.; Serrano, A.

    2009-11-01

    In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  20. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  1. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  3. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  4. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  5. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  6. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  7. Antiprotons in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1999-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration flew in May 1999 a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton/proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates. A description of the instrument, details of the flight and instrument performance, and status of the data analysis will be given.

  8. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  9. Cosmic rays: the highest-energy messengers.

    PubMed

    Olinto, Angela V

    2007-01-01

    The origin of the most energetic particles ever observed, cosmic rays, will begin to be revealed in the next few years. Newly constructed ultrahigh-energy cosmic ray observatories together with high-energy gamma-ray and neutrino observatories are well positioned to unveil this mystery before the centenary of their discovery in 2012. Cosmic ray sources are likely to involve the most energetic phenomena ever witnessed in the universe.

  10. Gamma ray bursts and cosmic ray origin

    NASA Astrophysics Data System (ADS)

    Dermer, C. D.

    This paper presents the theoretical basis of the fireball/blast wave model, and some implications of recent results on GRB source models and cosmic-ray production from GRBs. BATSE observations of the prompt γ-ray luminous phase, and Beppo-SAX and long wavelength afterglow observations of GRBs are briefly summarized. Derivation of spectral and temporal indices of an adiabatic blast wave decelerating in a uniform surrounding medium in the limiting case of a nonrelativistic reverse shock, both for spherical and collimated outflows, is presented as an example of the elementary theory. External shock model fits for the afterglow lead to the conclusion that GRB outflows are jetted. The external shock model also explains the temporal duration distribution and clustering of peak energies in prompt spectra of long-duration GRBs, from which the redshift dependence of the GRB source rate density can be derived. Source models are reviewed in light of the constant energy reservoir result of Frail et al. that implies a total GRB energy of a few ×1051 ergs and an average beaming fraction of ≈ 1/500 of full sky. Paczy´nski's isotropic hypernova model is ruled out. The Vietri-Stella model two-step collapse process is preferred over a hypernova/collapsar model in view of the X-ray observations of GRBs and the constant energy reservoir result. Second-order processes in GRB blast waves can accelerate particles to ultra-high energies. GRBs may be the sources of UHECRs and cosmic rays with energies above the knee of the cosmic ray spectrum. High-energy neutrino and γ-ray observations with GLAST and ground-based γ-ray telescopes will be crucial to test GRB source models.

  11. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  12. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  13. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  14. Cosmic ray Implications for Human Health

    NASA Astrophysics Data System (ADS)

    Shea, M. A.; Smart, D. F.

    2000-07-01

    There appears to be concern among some people about the possible effects of cosmic radiation on everyday life. The amount of cosmic radiation that reaches the Earth and its environment is a function of solar cycle, altitude and latitude. The possible effect of naturally occurring cosmic radiation on airplane crews and space flight personal is a subject of current study. This paper discusses the variables controlling the cosmic ray flux in the atmosphere and describes models and software that have been developed that provide quantitative information about the cosmic radiation exposure at flight altitudes. The discussion is extended to include the cosmic radiation exposure to manned spacecraft.

  15. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  16. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what

  17. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  18. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  19. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  20. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  1. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  2. Shielding against galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  3. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  4. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  5. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Recent observations of cosmic gamma radiation are reviewed. It is shown that this radiation consists of an extragalactic background as well as a bright band of galactic radiation lying in the plane of the Milky Way and produced primarily by cosmic-ray collisions with interstellar gas atoms. The galactic gamma radiation is divided into a near component apparently associated with Gould's belt and a far component originating about 15,000 light years away and narrowly confined to the galactic plane. A Great Galactic Ring is identified which is 35,000 light years in diameter and in which most galactic cosmic rays are produced and supernovae and pulsars are concentrated. The physical mechanisms responsible for the production of most of the cosmic gamma rays in the Galaxy are examined, and the origin of galactic cosmic rays is considered. It is concluded that the cosmic rays are produced either in supernova explosions or in the pulsars they leave behind

  6. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  7. The isotopic composition of cosmic ray chlorine

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1985-01-01

    The isotopic composition of galactic cosmic ray chlorine (approx. = 225 MeV/amu) has been studied using the high energy cosmic ray experiment on the International Sun Earth Explorer 3 (ISEE-3) spacecraft. The abundances of 35C1 and 37C1 are found to be consistent with the secondary production expected from a propagation model developed to account for both light and subiron secondaries. An upper limit on the abundance of the radioactive isotope 36C1 (halflife approx. = 0.3 Myr) is used to set a lower limit on the confinement time of cosmic rays of approximately 1 Myr.

  8. Cosmic Rays Variations and Human Physiological State

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2009-12-01

    It was obtained in our previous investigations that geomagnetic activity as an indirect indicator of solar activity correlates with some human physiological and psycho-physiological parameters. A lot of studies indicate that other parameters of space weather like cosmic rays Forbush decreases affect myocardial infarction, brain stroke, car accidents, etc. The purpose of that work was to study the effect of cosmic rays variations on human physiological status. It was established that the decrease in cosmic rays intensity was related to an increase in systolic and diastolic blood pressure and reported subjective psycho-physiological complaints in healthy volunteers.

  9. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  10. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  11. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  12. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  13. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  14. Heliosphere Changes Affect Cosmic Ray Penetration

    NASA Video Gallery

    The changes in the size of our solar system’s boundaries also cause changes to the galactic cosmic rays that enter the solar system. Although these boundaries do a good job of deflecting the majo...

  15. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  16. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  17. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  18. Low cloud properties influenced by cosmic rays

    PubMed

    Marsh; Svensmark

    2000-12-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.

  19. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  20. Apollo 17 lunar surface cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The objectives and selected data are presented for the Apollo 17 Lunar Surface Cosmic Ray Experiment (LSCRE) for the purpose of introducing an analysis of three of the separate detectors contained within in LSCRE package. The mica detector for measuring heavy solar wind, and the lexan stack and glass detectors for measuring energetic particles in space are discussed in terms of their deployment, exposure time, calibration, and data yield. Relevant articles on solar particles, interplanetary ions, and cosmic ray nuclei are also included.

  1. Cosmic Ray Interaction Models: an Overview

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey

    2016-07-01

    I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  2. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  3. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  4. Reminiscences of cosmic ray research in Mexico

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge

    2009-11-01

    Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north-south and west-east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.

  5. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  6. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  7. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  8. Development of the cosmic ray techniques

    SciTech Connect

    Rossi, B.

    1982-12-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray telescope. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers. 34 references.

  9. Research Concerning Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell; Cunningham, John; Kuhlmann, Steve; Spinka, Hal; Underwood, Dave; Hammergren, Mark

    2010-02-01

    Throughout my academic career at Loyola I have carried out research with the Loyola University Cosmic Event Detection System concerning the possibility of detection of ultra high energy cosmic rays (UHECRs) based on radio meteor scattering methods. This research was furthered through summer internships and research fellowships at Adler Planetarium Chicago and Stony Brook University in New York. At Adler Planetarium we used a helium balloon carrying a Geiger counter and other equipment to record the cosmic ray flux at various points in the atmosphere. The results clearly show the flux depends on the atmospheric density. At Stony Brook University I studied their advanced system for detecting cosmic rays in similar manner to radio meteor scattering principles. Research there focused on detection algorithms and also on the possibility of utilizing Digital Tv (DTv) signals for further research. Through the research a solid understanding of cosmic rays was formed including topics such as origins and energy scales of cosmic rays, both of which pose unanswered questions. )

  10. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  11. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  12. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  13. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  14. Detecting EHE Cosmic Rays Using Cherenkov Light

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas

    2011-04-01

    Cherenkov light has been used to detect gamma rays in the TeV energy range using an imaging technique and cosmic rays in the PeV energy range using a non-imaging technique. We would like to extend the use of the non-imaging technique up to nearly 1 EeV. At these energies the technique can be used in conjunction with fluorescence detection of cosmic rays, allowing for hybrid reconstruction of shower geometries and cross calibration of energy scales. We envision using an array of Cherenkov detectors as part of the Telescope Array (TA) Low Energy extension (TALE), extending the energy range of the detector down to the Knee of the cosmic ray energy spectrum.

  15. Cosmic-Ray Observations with HAWC30

    NASA Astrophysics Data System (ADS)

    Fiorino, Daniel

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 meters on the slope of Volc'an Sierra Negra near Puebla, Mexico. HAWC is an extensive air-shower array comprising 300 optically-isolated water Cherenkov detectors. Each detector contains 200,000 liters of filtered water and four upward-facing photomultiplier tubes. Since September 2012, 30 water Cherenkov detectors have been instrumented and operated in data acquisition. With 10 percent of the detector complete and six months of operation, the event statistics are already sufficient to perform detailed studies of cosmic rays observed at the site. We will report on cosmic-ray observations with HAWC30, in particular the detection and study of the shadow of the moon. From these observations, we infer the pointing accuracy of the detector and our angular resolution of the detector reconstruction.

  16. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  17. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  18. Tracks of cosmic rays in plastics.

    PubMed

    Fleischer, R L; Price, P B; Walker, R M; Filz, R C; Fukui, K; Friedlander, M W; Holeman, E; Rajan, R S; Tamhane, A S

    1967-01-13

    Cosmic ray nuclei have been observed with the use of plastic trackdetecting solids in satellites and high-altitude balloon flights. Nuclear emulsions in the stacks of plastic sheets allowed the positive identification of cosmic raynuclei as light as nitrogen. The most striking new information was the failure to observe relativistic iron nuclei, a result which has led to an advance in the understanding of track registration criteria.

  19. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  20. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  1. Space weather prediction by cosmic rays

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Souvatzoglou, G.; Sarlanis, C.; Mariatos, G.; Plainaki, C.; Gerontidou, M.; Belov, A.; Eroshenko, E.; Yanke, V.

    Relativistic (galactic and solar) cosmic rays (CR) registered by neutron monitors can play a useful key-role in space weather storms forecasting and in the specification of magnetic properties of coronal mass ejections (CMEs), shocks and ground level enhancements (GLEs). In order to produce a real-time prediction of space weather phenomena, only real-time data from a neutron monitor network should be employed. Recently in Athens cosmic-ray station a real-time data collection and acquisition system has been created in collaboration with the cosmic ray group of IZMIRAN. This system collects data in real-time mode from about 15 real-time cosmic ray stations by using the internet. The main server in Athens station collects 5-min and hourly cosmic ray data. The measurements of all stations are being processed automatically while converted into a suitable form, so as to be serviceably for forecasting purposes. All programs have been written in an expandable form, in order to upgrade the network of real-time neutron monitors with the biggest possible number of stations, easily. Programs which make use of these data for forecasting studies are already running in experimental mode. The increased number of NM stations operating in real time provides a good basis for using Neutron Monitor network as a tool of forecasting the arrival of the interplanetary disturbances at the Earth.

  2. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  3. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  4. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  5. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  6. Detectors of Cosmic Rays, Gamma Rays, and Neutrinos

    SciTech Connect

    Altamirano, A.; Navarra, G.

    2009-04-30

    We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

  7. Bruno Rossi: Cosmic Ray Research 1929 - 1953

    NASA Astrophysics Data System (ADS)

    Cronin, Jim

    2012-03-01

    Bruno Rossi, a fresh PhD from the University of Bologna, arrived in Florence in 1928. He was appointed assistant to Antonio Garbasso, professor of experimental physics. Garbosso at that time was Mayor of Florence. His days of physics were over which gave the young Rossi a freedom to follow any line of research. After some agonizing he came upon research in cosmic rays following the discovery that a large part of the cosmic rays were charged particles. Thus began a long period of creative research. Rossi had all the talents needed, a powerful intellect and the natural ability to construct apparatus that gave clear results for his experiments. I will give some examples of his many discoveries concerning the nature of cosmic rays.

  8. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  9. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  10. Cosmic ray acceleration by binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kundt, W.

    Young binary neutron stars, the elder brothers of pulsars, are proposed as the boosters of the ionic component of cosmic rays. Their rotational energy can be converted into beams of cosmic rays if there is enough coupling between the corotating magnetosphere and the impinging plasma, in a manner similar to the sparking of a grindstone. Power-law spectra in energy are obtained from a power-law dependence of the accelerating fields. The upper cutoff energy should not greatly exceed 10 to the 20th eV. The observed ionic cosmic-ray spectrum would result from a superposition of the injection by no more than about one million young binary neutron stars.

  11. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  12. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  13. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  14. Structure Formation Cosmic Rays: Identifying Observational Constraints

    NASA Astrophysics Data System (ADS)

    Prodanovic, T.; Fields, B. D.

    2005-06-01

    Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs) would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be 6Li. The rare isotope 6Li is produced only by cosmic rays, dominantly in alpha alpha rightarrow 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is 6Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metal-poor halo stars. Given the already existing problem of establishing the concordance between 7Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model- independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1) we establish the connection between gamma-ray and 6Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB); 2) we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs), which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using

  15. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  16. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  17. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  18. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  19. Cosmic Rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  20. Cosmic Rays, Interstellar Gas and Diffuse Gamma-ray Emission

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle

    2016-07-01

    Cosmic rays smoothly permeate the interstellar medium. The gamma radiation they spawn along their journey has received much attention lately to follow the evolution of the cosmic-ray flux and spectrum in the solar neighbourhood, a few hundred parsecs beyond the Voyager measurements, and further out, on kiloparsec scales across the Galactic disc and above the disc into the halo. Beyond heating the interstellar gas and initiating its chemical enrichment, cosmic rays also serve to trace the total gas in its different forms and to reveal the gas mass in the dark interface between the atomic and molecular phases. Fermi LAT and TeV observations have also enabled the study of the youth of cosmic rays in the turbulent environment of massive star clusters. They have disclosed how little we know about the impact of stellar-wind driven turbulence on the cosmic-ray distribution emerging from the parent region. In this lively context, I will review recent results and discuss open questions on the dynamic interplay between cosmic rays and their interstellar environment.

  1. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  2. Pulsars, supernovae, and ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Fang, K.; Olinto, A. V.; Phinney, E. S.

    2012-12-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10^{19} eV as indicated by air shower studies reported by the Auger Observatory. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10^{16} and 10^{18} eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, differing considerably between the energy scale used by Auger and that used by the Telescope Array. Depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy, the contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum below the ankle. Fast spinning newborn pulsars that could produce UHECRs would be born in supernovae that could present interesting specific radiative features, due to the interaction of the pulsar wind with the surrounding ejecta. The resulting supernova lightcurves could present a high luminosity plateau over a few years, and a bright X-ray and gamma-ray peak around one or two years after the onset of the explosion. If such signatures were observed, they could have important implications both for UHECR astrophysics and for the understanding of core-collapse supernovae.

  3. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  4. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  5. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  6. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  7. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  8. Yakutsk Institute's cosmic ray research facility

    NASA Astrophysics Data System (ADS)

    Konovalov, B.

    1984-11-01

    Progress in cosmic physics research and aeronomy is reported. Geophysical observatories and stations, test ranges and other facilities spread over a vast territory of the Yakutsk Autonomous Republic and instruments onboard satellites are outlined. The ionosphere, magnetic fields and earth currents, cosmic rays and radio emissions, polar aurora and meteorological phenomena are studied. A large installation of the SHALL which investigates cosmic-ray showers is discussed. The creation of a unique complex for study of the ionosphere which will interconnect existing ionosphere stations near Yakutsk and in Zhigansk, a geospace-physics observatory in Tiksi, and a station which is to be created on Kotel'nyy Island is reported. It will be possible to discern from data received at central post how the solar wind is flowing around the Earth and what changes are produced in the ionosphere. The SHALL will be able to assess the radiation situation around the planet and to give accurate forecasts of shortwave radio conditions.

  9. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  10. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  11. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  12. Current Status of Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2016-03-01

    I will review the current instrumentation and recent results. I will discuss which measurements have to be done in the near future to significantly advance our knowledge about the phenomenon of cosmic rays, their sources, and their interactions with the interstellar medium. A support from NASA APRA Grant No. NNX13AC47G is greatly acknowledged.

  13. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  14. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  15. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  16. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  17. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  18. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  19. Cosmic Ray Diffusion Tensor Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, C.; Bieber, J. W.; Breech, B.; Burger, R. A.; Clem, J.; Matthaeus, W. H.

    2008-12-01

    We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind [Breech et al., 2008.]. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic ray following the method presented in Bieber et al. [1995]. We use the nonlinear guiding center (NLGC) theory to obtain the perpendicular diffusion coefficient of the cosmic ray [Matthaeus et al. 2003]. We find that (1) the radial mean free path decreases from 1 AU to 20 AU for both turbulence scenarios; (2) after 40 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 20 AU, after which the perpendicular component becomes important; (4) the rigidity P dependence of the parallel component of the diffusion tensor is proportional to P.404 for one turbulence scenario and P.374 for the other at 1 AU from 0.1 GVto 10 GV, but in the outer heliosphere its dependence becomes stronger above 4 GV; (5) the rigidity P dependence of the perpendicular component of the diffusion tensor is very weak. Supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G.

  20. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  1. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  2. Cosmic-ray ionisation in collapsing clouds

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Hennebelle, P.; Galli, D.

    2013-12-01

    Context. Cosmic rays play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampered by the braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas. Aims: In this paper we examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can produce a significant reduction of the ionisation fraction. Methods: To check whether the cosmic-ray ionisation rate can fall below the critical value required to maintain good coupling, we first study the propagation of cosmic rays in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal components and the mass-to-flux ratio. We then follow the path of cosmic rays using realistic magnetic field configurations generated by numerical simulations of a rotating collapsing core with different initial conditions. Results: We find that an increment of the toroidal component of the magnetic field, or, in general, a more twisted configuration of the field lines, results in a decrease in the cosmic-ray flux. This is mainly due to the magnetic mirroring effect that is stronger where larger variations in the field direction are present. In particular, we find a decrease of the cosmic-ray ionisation rate below 10-18 s-1 in the central 300-400 AU, where density is higher than about 109 cm-3. This very low value of the ionisation rate is attained in the cases of intermediate and low magnetisation (mass-to-flux ratio λ = 5 and 17, respectively) and for toroidal fields larger than about 40% of the total field. Conclusions: Magnetic field effects can significantly reduce the ionisation fraction in collapsing clouds. We provide a handy fitting formula to compute approximately the attenuation of the cosmic-ray ionisation rate

  3. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  4. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  5. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    NASA Astrophysics Data System (ADS)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL <> and links on that page to CRIS and to Science News.

  6. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  7. Cosmic ray modulation over a solar cycle.

    NASA Astrophysics Data System (ADS)

    Ferreira, Stefan; Manuel, Rex; Potgieter, Marius

    2016-07-01

    The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulationmodel. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulation of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solarminimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays.

  8. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  9. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.

  10. Black hole production by cosmic rays.

    PubMed

    Feng, Jonathan L; Shapere, Alfred D

    2002-01-14

    Ultrahigh energy cosmic rays create black holes in scenarios with extra dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce black holes deep in the atmosphere, initiating quasihorizontal showers far above the standard model rate. At the Auger Observatory, hundreds of black hole events may be observed, providing evidence for extra dimensions and the first opportunity for experimental study of microscopic black holes. If no black holes are found, the fundamental Planck scale must be above 2 TeV for any number of extra dimensions.

  11. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  12. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  13. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  14. An Unscheduled Journey: From Cosmic Rays into Cosmic X-Rays

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuo

    2013-08-01

    My research career began with cosmic-ray physics. Invited to the Netherlands, I was engaged in the measurement of cosmic-ray electrons. In parallel, we began balloon observations of the cosmic X-ray background. Coming back to Nagoya, we carried out rocket observations of soft X-rays with a thin polypropylene window. Since moving to the Institute of Space and Aeronautical Science (ISAS: later reorganized to the Institute of Space and Astronautical Science), I have been involved in several astronomical satellite programs, in particular X-ray astronomy missions. The main features and major results of those programs are mentioned. Features characteristic of the Japanese space program and the specific roles of ISAS are explained.

  15. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  16. Cosmic rays and the Monogem supernova remnant

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    2004-10-01

    Recent findings indicate that the Monogem Ring and the associated pulsar PSR B0656 + 14 may be the `Single Source' responsible for the formation of the sharp knee in the cosmic ray energy spectrum at ˜3 PeV. The energy spectrum of cosmic rays expected for the Monogem Ring supernova remnant (SNR) from our SNR acceleration model [J. Phys. G: Nucl. Part. Phys. 27 (2001) 941] has been published by us elsewhere [J. Phys. G: Nucl. Part. Phys. 29 (2003) 709] . In this paper we go on to estimate the contribution of the pulsar B0656 + 14 to the cosmic rays in the PeV region. We conclude that although the pulsar can contribute to the formation of the knee, it cannot be the dominant source of it and an SNR is still needed. We also examine the possibility of the pulsar giving the peak of the extensive air shower (EAS) intensity observed from the region inside the Monogem Ring [ApJ Lett. 597 (2003) L129]. The estimates of the gamma-ray flux produced by cosmic ray particles from this pulsar indicate that it can be the source of the observed peak, if the particles were confined within the SNR during a considerable fraction of its total age. The flux of gamma quanta at PeV energies has a high sensitivity to the duration of the confinement. The estimates of this time and of the following diffusion of cosmic rays from the confinement volume turn out to be in remarkable agreement with the time needed for these cosmic rays to propagate to the solar system and to form the observed knee in the cosmic ray energy spectrum. Other possible mechanisms for the production of particles which could give rise to the observed narrow peak in the EAS intensity were also examined. Electrons scattered on the microwave background or on X-rays, emitted by SNR, cannot be responsible for the gamma-quanta in the peak. Neutrons produced in PP-collisions or released from the disintegration of accelerated nuclei seem to be also unable to create the peak since they cannot give the observed flux. If the

  17. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  18. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 1

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. The topic areas covered in this volume include gamma ray bursts, gamma rays from point sources, and diffuse gamma ray emission.

  19. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  20. Cosmic Ray Electron Science with GLAST

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Moiseev, Alexander

    2007-01-01

    Cosmic ray electrons at high energy carry information about their sources, their definition in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from approx. 20 to approx. 700 GeV that will allow us to search for anisotropies in anival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  1. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  2. Astroparticle Physics: Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  3. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  4. The Pierre Auger Cosmic Ray Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  5. The HEAT Cosmic Ray Antiproton Experiment

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1998-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration is constructing a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton to proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates.

  6. Hydromagnetic waves and cosmic ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch angle diffusion of cosmic rays in hydromagnetic wave fields is considered strictly within the quasilinear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since in this approximation also the Landau resonance does not lead to particle reflections a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well known difficulties of quasilinear scattering theory for cosmic rays near 90 degrees pitch angle.

  7. Diffusion-convection function of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Yang, G.

    1985-01-01

    The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.

  8. Cosmic ray air showers from sphalerons

    NASA Astrophysics Data System (ADS)

    Brooijmans, Gustaaf; Schichtel, Peter; Spannowsky, Michael

    2016-10-01

    The discovery of the Higgs boson marks a key ingredient to establish the electroweak structure of the Standard Model. Its non-abelian gauge structure gives rise to, yet unobserved, non-perturbative baryon and lepton number violating processes. We propose to use cosmic ray air showers, as measured, for example, at the Pierre Auger Observatory, to set a limit on the hadronic production cross section of sphalerons. We identify several observables to discriminate between sphaleron and QCD induced air showers.

  9. Rigidity Dependence of Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2012-07-01

    The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-1990 for Deep River, Goose Bay and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases in 1987 at Deep River and in 1986 at Tokyo during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for these neutron monitoring stations of low and high cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics.

  10. Isotopic stack: measurement of heavy cosmic rays

    SciTech Connect

    Beaujean, R.; Schmidt, M.; Enge, W.; Siegmon, G.; Krause, J.; Fischer, E.

    1984-07-13

    A stack of plastic nuclear track detectors was exposed to heavy cosmic rays on the pallet of Spacelab 1. Some layers of the stack were rotated with respect to the main stack to determine the arrival time of the particles. After return of the stack the latent particle tracks are revealed by chemical etching. Under the optical microscope the charge, mass, energy, and impact direction of the particles can be deduced from the track geometry.

  11. Longevity and Highest-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.; Keszthelyi, Bettina; Ng, Y. Jack

    It is proposed that the highest energy ~1020 eV cosmic ray primaries are protons which are decay products of a superheavy particle, G. The protons may be decay products either directly of a nearby (galactic) G or of a long-lived intermediate particle X which arises from decay of a distant (cosmological) G, then decays in or near our Galaxy. Such scenarios can occur in e.g. SU(15) grand unification and in some preon models.

  12. Active-Pixel Cosmic-Ray Sensor

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Cunningham, Thomas J.; Holtzman, Melinda J.

    1994-01-01

    Cosmic-ray sensor comprises planar rectangular array of lateral bipolar npn floating-base transistors each of which defines pixel. Collector contacts of all transistors in each row connected to same X (column) line conductor; emitter contacts of all transistors in each column connected to same Y (row) line conductor; and current in each row and column line sensed by amplifier, output of which fed to signal-processing circuits.

  13. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Pu, Ge; Callaghan, Ed; Parsons, Matthew; Cribflex Team

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award.

  14. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  15. The Cosmic Ray Experiment Kascade-Grande

    NASA Astrophysics Data System (ADS)

    Brancus, I. M.; Apel, W. D.; Badea, F. A.; Bekk, K.; Bercuci, A.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brüggemann, M.; Buchholz, P.; Chiavassa, A.; Daumiller, K.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Kampert, K.-H.; Klages, H. O.; Kolotaev, Y.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Obenland, R.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Risse, A.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zimmermann, D.

    2006-08-01

    The cosmic ray experiment KASCADE, set up in Forschungszentrurn Karlsruhe, Germany as a multi-detector installation, studying the electromagnetic, the muonic and the hadronic extensive air showers (EAS) component for each observed shower event, has explored the primary energy spectrum and the mass composition of cosmic rays in the energy range of the so called "knee" (around 3 PeV). The multidimensional analyses reveal a distinct knee (change of the spectral index of a power-law description) in the energy spectra of the light primary cosmic rays and the dominance of heavy particles with increasing energy. This result provides some important implications, discriminating various conjectures and astrophysical models of the origin of the knee. The KASCADE-Grande experiment is an upgrade of the KASCADE experiment extending the detection area by a factor of 10. It is motivated by studies of a higher primary energy range, looking for the knee-like features of the heavy components, which are expected to appear in the range of 100 PeV. The lecture describes details of motivation, of experimental lay-out and of first studies with KASCADE-Grande.

  16. Cosmic Ray Energetics and Mass (CREAM)

    NASA Technical Reports Server (NTRS)

    Coutu, Stephane

    2005-01-01

    The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.

  17. Cosmic ray anisotropies near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.

    2014-12-01

    Context. The Voyager 1 spacecraft became the first man-made probe to cross the heliopause into the local interstellar medium and measure the galactic environment, including charged particle intensities, in situ. Aims: We qualitatively explain the observed anisotropies of galactic and anomalous cosmic rays in the interstellar medium. Methods: A pitch-angle-dependent numerical model was constructed and applied to the study of both heliospheric (anomalous cosmic rays and termination shock particles) and galactic cosmic rays near the heliopause region. Results: In accordance with the observations, the model is able to reproduce the observed anisotropic nature of both particle populations. In the interstellar medium, the heliospheric particle distribution shows a peak at pitch angles near 90°, while for galactic particles, their distribution shows a deficiency at these pitch-angle values. Conclusions: The observed anisotropies are related to the pitch-angle dependence of the perpendicular diffusion coefficient, and if this dependence is chosen appropriately, the anisotropies observed by Voyager 1 can be explained naturally.

  18. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  19. Acceleration of cosmic rays in Tycho's SNR.

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Caprioli, D.

    We apply the non-linear diffusive shock acceleration theory in order to describe the properties of SN 1572 (G120.1+1.4, hereafter simply Tycho). By analyzing its multi-wavelength spectrum, we show how Tycho's forward shock (FS) is accelerating protons up to ˜ 500 TeV, channeling into cosmic rays more than 10 per cent of its kinetic energy. We find that the streaming instability induced by cosmic rays is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ˜ 300 mu G), in particular the X-ray morphology of the remnant. We are able to explain the gamma-ray spectrum from the GeV up to the TeV band, recently measured respectively by Fermi-LAT and VERITAS, as due to pion decay produced in nuclear collisions by accelerated nuclei scattering against the background gas. We also show that emission due to the accelerated electrons does not play a relevant role in the observed gamma-ray spectrum.

  20. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  1. Measurements of the cosmic-ray Be/B ratio and the age of cosmic rays

    NASA Technical Reports Server (NTRS)

    Brown, J. W.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    The ratio Be/B depends on whether the confinement time of cosmic rays in the Galaxy is long or short compared to the radioactive half-life of Be-10. We report observations of this ratio which were obtained with a dE/dx-Cerenkov detector launched into a polar orbit on OGO-6 as part of the Caltech Solar and Galactic Cosmic Ray Experiment. Be/B ratios were determined for various rigidity thresholds up to 15 GV. We find no statistically significant rigidity dependence of the ratio, which is 0.41 plus or minus 0.02 when averaged over all observed cutoffs. Additional calculations suggest that if the present fragmentation parameters are correct, then the lifetime of cosmic rays in the Galaxy is less then 10 m.y.

  2. Cosmic-Ray Neon, Wolf-Rayet Stars, and the Superbubble Origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Binns, W. R.; Wiedenbeck, M. E.; Arnould, M.; Cummings, A. C.; George, J. S.; Goriely, S.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Meynet, G.; Scott, L. M.; Stone, E. C.; von Rosenvinge, T. T.

    2005-11-01

    We report the abundances of neon isotopes in the Galactic cosmic rays (GCRs) using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). These abundances have been measured for seven energy intervals over the energy range of 84<=E/M<=273 MeV nucleon-1. We have derived the 22Ne/20Ne ratio at the cosmic-ray source using the measured 21Ne, 19F, and 17O abundances as ``tracers'' of secondary production of the neon isotopes. Using this approach, the 22Ne/20Ne abundance ratio that we obtain for the cosmic-ray source is 0.387+/-0.007(statistical)+/-0.022(systematic). This corresponds to an enhancement by a factor of 5.3+/-0.3 over the 22Ne/20Ne ratio in the solar wind. This cosmic-ray source 22Ne/20Ne ratio is also significantly larger than that found in anomalous cosmic rays, solar energetic particles, most meteoritic samples of matter, and interplanetary dust particles. We compare our ACE CRIS data for neon and refractory isotope ratios, and data from other experiments, with recent results from two-component Wolf-Rayet (W-R) models. The three largest deviations of GCR isotope ratios from solar system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are indeed present in the GCRs. In fact, all of the isotope ratios that we have measured are consistent with a GCR source consisting of about 80% material with solar system composition and about 20% W-R material. Since W-R stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of these data with W-R models suggests that superbubbles are the likely source of at least a substantial fraction of GCRs.

  3. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  4. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  5. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  6. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  7. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  8. Are cosmic rays effective for ionization of the solar nebula?

    NASA Technical Reports Server (NTRS)

    Dolginov, A. Z.; Stepinski, T. F.

    1993-01-01

    In this paper, we argue that the effectiveness of cosmic rays to ionize the bulk of the nebular gas may be further impaired by the influence of the magnetic field on the propagation of cosmic rays. When cosmic rays enter the nebular disk they ionize the gas and make the dynamo generation of magnetic fields possible. However, once magnetic fields are embedded in the nebular gas, the upcoming cosmic rays can no longer penetrate directly into the nebular disk because they start to interact with the magnetic field and lose their energy before propagating significantly toward the midplane. That, in turn, undercuts the ionization source within the bulk of the gas stopping the dynamo action. Nebular dynamo models ignored this back reaction of magnetic fields on cosmic rays. We calculate this back reaction effect, but for the sake of mathematical simplicity, we ignore the effect of magnetic field weakening due to diminishing ionization by cosmic rays.

  9. Cosmic-ray scintillation at the lunar surface

    SciTech Connect

    Benson, R.; Duller, N.M.; Green, P.J.

    1981-02-01

    The theory of cosmic-ray scintillations has developed rapidly over the past few years. Cosmic-ray scintillations arise from various irregularities in the magnetic fields through which cosmic-ray particles must travel before being observed. These scintillations are characterized by broad-band fluctuations in intensity over time. We have undertaken a study of the cosmic-ray background as observed with the Rice University Suprathermal Ion Detector Experimental (SIDE) that was deployed on the lunar surface during the Apollo 14 mission. The energy threshold for cosmic-ray protons was approximately 25 MeV in one sensor and 50 MeV in another. We find that the interplanetary cosmic-ray scintillations are observed with the SIDE and these observations are consistent with current theoretical models and with other experimental results.

  10. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  11. Investigation of primary cosmic rays at the Moon's surface

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Muhamedshin, R. A.; Podorozhniy, D. M.; Sveshnikova, L. G.; Turundaevskiy, A. N.; Tkachev, L. G.; Chubenko, A. P.; Vasilyev, O. A.

    2013-01-15

    The possibility of experimentally studying primary cosmic rays at the Moon's surface is considered. A mathematical simulations of showers initiated in the lunar regolith by high-energy particles of primary cosmic rays is performed. It is shown that such particles can in principle be recorded by simultaneously detecting three components of backscattered radiation (secondary neutrons, gamma rays, and radio emission).

  12. Compact cosmic ray detector for unattended atmospheric ionization monitoring.

    PubMed

    Aplin, K L; Harrison, R G

    2010-12-01

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates. PMID:21198037

  13. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    SciTech Connect

    Aplin, K. L.; Harrison, R. G.

    2010-12-15

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  14. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Rosenvinge, T. T. von

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  15. New approach to cosmic ray investigations above the knee

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Petrukhin, A. A.

    2016-05-01

    It is assumed that at energies around the knee the nucleus-nucleus interaction is drastically changed due to production of blobs of quark-gluon matter with very large orbital momentum. This approach allows explain all so-called unusual events observed in cosmic rays and gives a new connection between results of EAS investigations and energy spectrum and mass composition of primary cosmic rays. To check this approach, the experiments in cosmic rays and at LHC are proposed.

  16. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  17. Radiation Hazard from Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf

    2006-03-01

    Space radiation is a major hazard to astronauts in long-duration human space explosion. Astronauts are exposed to an enormous amount of radiation during their missions away from the Earth in outer space. Deep space is a rich environment of protons, gamma rays and cosmic rays. A healthy 40 years old man staying on Earth away from large doses of radiation stands a 20% chance of dying from cancer. If the same person travels into a 3- year Mars mission, the added risk should increase by 19%. This indicates that there is 39% chance of having cancer after he comes back to Earth. Female astronaut chances to get cancer is even almost double the above percentage. The greatest threat to astronauts en route to the red planet is galactic cosmic rays (GCR). GCRs penetrate through the skin of spaceships and people like tiny firearm bullets, breaking the strands of DNA molecules, damaging genes, and killing cells. Understanding the nature of the GCRs, their effect on biological cells, and their interactions with different shielding materials is the key point to shield against them in long space missions. In this paper we will present a model to evaluate the biological effects of GCRs and suggestion different ways to shield against them.

  18. The ATLAS trigger - commissioning with cosmic rays

    NASA Astrophysics Data System (ADS)

    Boyd, J.

    2008-07-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity there are roughly 23 collisions per bunch crossing. ATLAS has designed a three-level trigger system to select potentially interesting events. The first-level trigger, implemented in custom-built electronics, reduces the incoming rate to less than 100 kHz with a total latency of less than 2.5μs. The next two trigger levels run in software on commercial PC farms. They reduce the output rate to 100-200 Hz. In preparation for collision data-taking which is scheduled to commence in May 2008, several cosmic-ray commissioning runs have been performed. Among the first sub-detectors available for commissioning runs are parts of the barrel muon detector including the RPC detectors that are used in the first-level trigger. Data have been taken with a full slice of the muon trigger and readout chain, from the detectors in one sector of the RPC system, to the second-level trigger algorithms and the data-acquisition system. The system is being prepared to include the inner-tracking detector in the readout and second-level trigger. We will present the status and results of these cosmic-ray based commissioning activities. This work will prove to be invaluable not only during the commissioning phase but also for cosmic-ray data-taking during the normal running for detector performance studies.

  19. Acoustic instability driven by cosmic-ray streaming

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-08-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) Pc. At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta PC/PC approximately (kL) -1 much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are

  20. Variations of the cosmic ray general component in Antarctica

    NASA Technical Reports Server (NTRS)

    Charakhchyan, T. N.; Krasotkin, A. F.; Kurguzova, A. I.; Svirzhevsky, N. S.

    1985-01-01

    A cosmic ray variations, zonal cosmic ray modulation, was found in the lower atmosphere from the sonde measurement results. The variations give rise to anomalies in the latitude distributions of the cosmic ray charged component and the anomalous north-south asymmetry. To find the nature of the variations, the cosmic ray general component was measured with the same detectors as in the sonde measurements gas discharge counters and the counter telescopes with 7-mm Al filters detecting the electrons of energy above 200 keV and 5 MeV. The measurement data obtained in Antarctica in the years 1978 to 1983 are presented and discussed.

  1. Cosmic-ray record in solar system matter

    SciTech Connect

    Reedy, R.C.; Arnold, J.R.; Lal, D.

    1983-01-14

    The energetic nuclei in cosmic rays interact with meteoroids, the moon, planets, and other solar system matter. The nucleides and heavy nuclei tracks produced by the cosmic-ray particles in these targets contain a wealth of information about the history of the objects and temporal ans spatial variations in the particle fluxes. Most lunar samples and many meteorites ahve complex histories of cosmic-ray exposure from erosion, gardening, fragmentation, orbital changes, and other processes. There appear to be variations in the past fluxes of solar particles, and possibly also galactic cosmic rays, on time scales of 10/sup 4/ to 10/sup 7/ years.

  2. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  3. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  4. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  5. The galactic origin of cosmic rays. I

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    The theoretical basis for the supernova envelope shock origin of cosmic rays is reviewed. The theoretical explanation of the SN Type I light curve requires the ejection of a relativistic mass fraction. The criterion of the adiabatic deceleration by Alfven wave trapping neither applies in theory, when beta is greater than 1, or practice, as in the Starfish high-altitude nuclear explosion experiment. Arguments of delayed acceleration due to K-capture are not applicable to SN ejecta because a period of prompt recombination exists before subsequent stripping in propagation.

  6. Acceleration and propagation of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2015-12-01

    Analysis of the solar cosmic ray measurements on the Geostationary Orbital Environmental Satellite (GOES) spacecraft indicated that the duration of solar flare relativistic proton large pulses is comparable with the solar wind propagation duration from the Sun to the Earth. The front of the proton flux from flares on the western solar disk approaches the Earth with a flight time along the Archimedean spiral magnetic field line of 15-20 min. The proton flux from eastern flares is registered in the Earth's orbit 3-5 h after the flare onset. These particles apparently propagate across IMF owing to diffusion.

  7. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle. PMID:19392251

  8. Ultra high energy cosmic ray spectrum

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cady, R.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, P. R.; Loh, E. C.; Mizumoto, Y.; Salamon, M. H.

    1985-01-01

    Ultra-high energy cosmic rays have been observed by means of atmospheric fluorescence with the Fly's Eye since 1981. The differential energy spectrum above 0.1 EeV is well fitted by a power law with slope 2.94 + or - 0.02. Some evidence of flattening of the spectrum is observed or energies greater than 10 EeV, however only one event is observed with energy greater than 50 EeV and a spectral cutoff is indicated above 70 EeV.

  9. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Callaghan, Edward; Parsons, Matthew

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award. Supported by a Society of Physics Students Chapter Research Award.

  10. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  11. Transition from Galactic to extragalactic cosmic rays and cosmic ray anisotropy

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.; Sigl, G.

    2013-06-01

    This talk based on results of ref. [1], where we constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z ≳ 10(16-17) eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. If the primary composition is mostly light or intermediate around E ˜ 1018 eV, the transition at the ankle is ruled out, except in the unlikely case of an extreme Galactic magnetic field with strength >10 μG. Therefore, the fast rising proton contribution suggested by KASCADE-Grande data between 1017 eV and 1018 eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E > 1018 eV, the transition energy can be close to the ankle, if Galactic cosmic rays are produced by sufficiently frequent transients as e.g. magnetars.

  12. EDITORIAL: Focus on High Energy Cosmic Rays FOCUS ON HIGH ENERGY COSMIC RAYS

    NASA Astrophysics Data System (ADS)

    Teshima, Masahiro; Watson, Alan A.

    2009-06-01

    The topic of high-energy cosmic rays has recently attracted significant attention. While the AGASA and HiRes Observatories have closed after many years of successful operation, the Pierre Auger Observatory began taking data in January 2004 and the first results have been reported. Plans for the next generation of instruments are in hand: funding is now being sought for the northern phase of the Auger Observatory and plans for a space detector, JEM-EUSO, to be launched in 2013-14 are well advanced with the long-term target of a dedicated satellite for the 2020s. It therefore seemed an appropriate time to make a collection of outstanding and original research articles from the leading experimental groups and from some of the theorists who seek to interpret the hard-won data and to speculate on the origin of the highest energy cosmic rays. This focus issue in New Journal of Physics on the topic of high energy cosmic rays, contains a comprehensive account of the work of the Yakutsk group (A A Ivanov, S P Knurenko and I Ye Sleptsov) who have used Cerenkov radiation produced by shower particles in the air to provide the basis for energy calibration. This technique contrasts with that of detecting fluorescence radiation from space that is proposed for the JEM-EUSO instrument to be placed on the International Space Station in 2013, described by Y Takahashi. Supplementing this is an article by A Santangelo and A Petrolini describing the scientific goals, requirements and main instrument features of the Super Extreme Universe Space Observatory mission (S-EUSO). The use of fluorescence light to measure energies was the key component of the HiRes instrument and is also used extensively by the Pierre Auger Collaboration so an article, by F Arqueros, F Blanco and J Rosado, summarizing the properties of fluorescence emission, still not fully understood, is timely. M Nagano, one of the architects of the AGASA Observatory, has provided an overview of the experimental situation with

  13. Common solution to the cosmic ray anisotropy and gradient problems.

    PubMed

    Evoli, Carmelo; Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2012-05-25

    Multichannel cosmic ray spectra and the large scale cosmic ray anisotropy can hardly be made compatible in the framework of conventional isotropic and homogeneous propagation models. These models also have problems explaining the longitude distribution and the radial emissivity gradient of the γ-ray Galactic interstellar emission. We argue here that accounting for a physically motivated correlation between the cosmic ray escape time and the spatially dependent magnetic turbulence power can naturally solve both problems. Indeed, by exploiting this correlation we find propagation models that fit a wide set of cosmic ray spectra, and consistently reproduce the cosmic ray anisotropy in the energy range 10(2)-10(4) GeV and the γ-ray longitude distribution recently measured by Fermi-LAT.

  14. Modeling galactic cosmic rays at lunar orbit

    NASA Astrophysics Data System (ADS)

    Huang, Chia-Lin; Spence, Harlan; Kress, Brian; Shepherd, Simon

    High-energy particles such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs) have sufficient kinetic energy to produce undesirable biological effects in astronauts as well as environmental effects on spacecraft electronic systems. In low Earth orbit, such radiation effects are minimized owing to the strong geomagnetic cutoff from Earth's internal magnetic field. However, the risks increase at higher altitudes wherever shielding magnetic fields are weak, including at lunar orbit. In order to prepare for future robotic and human exploration on the Moon, characterizing the lunar radiation environment is essential. Because GCRs and SEPs are charged particles with large gyroradii, their trajectories are governed by magnetic fields present on large size scales. For example, at lunar orbit, both the external interplanetary magnetic field and Earth's internally complex magnetosphere could alter the energetic particle flux. We combine an empirical magnetic field model of Earth's magnetosphere with a fullyrelativistic charged particle trajectory code to model the access of GCRs and SEPs to the lunar surface. We follow ions with energies above 10 MeV/nucleon starting from an isotropic spatial distribution in interplanetary space and calculate particle flux in the different regions of the solar wind-magnetosphere system through which the Moon orbits. Finally, we determine the extent of magnetospheric shielding at the Moon as a function of incident particle energy and lunar position. These simulation results will eventually be compared to data from NASA's Lunar Reconnaissance Orbiter "Cosmic Ray Telescope for the Effects of Radiation" instrument after its launch in late 2008.

  15. Transport of cosmic rays across the heliopause

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Luo, X.; Pogorelov, N.

    2015-12-01

    The heliopause (HP) is a boundary that separates the flow with embedded magnetic field of solar origin in the inner heliosheath from that of the interstellar origin in the outer heliosheath. According to the theory of ideal MHD, it should be a tangential discontinuity, but magnetic reconnection or instability can make it more complicated. Voyager 1 crossed the HP in August 2012 at a radial distance of 122 AU from the Sun. The behaviors of Galactic cosmic rays (GCR) and anomalous cosmic rays (ACR) at the HP crossing are very complex. The intensity of GCR experiences step-like increases to reach a nearly steady interstellar level in the outer heliosheath. Its angular distribution changes from isotropic inside the HP to bidirectional anisotropy that appear on and off for several periods of time in the outer heliosheath. The ACR intensity experiences several episodes of decreases near the HP before it eventually disappears. The anisotropy of ACR in the partial depression regions is pancake-like, indicating there is some temporary trapping of particles of near-90° pitch angles. The information has provided us clues for understanding the properties of particle transport in the turbulence of the interstellar magnetic field. In this paper, we review results of model calculations of GCR and ACR transport across the HP. With the observations and modeling results, we can now establish constraints on the properties of particle scattering, diffusion, and interstellar magnetic field turbulence level.

  16. Optical and Ionization Basic Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  17. Lunar monitoring outpost of cosmic rays

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail; Kalmykov, Nikolai; Turundaevskiy, Andrey; Chubenko, Alexander; Podorozhny, Dmitry; Mukhamedshin, Rauf; Sveshnikova, Lubov; Tkachev, Leonid; Konstantinov, Andrey

    The basic purpose of the planned NEUTRONIUM-100 experiment considers expansion of the direct measurements of cosmic rays spectra and anisotropy to the energy range of ~1017 eV with element-by-element resolution of the nuclear component. These measurements will make it possible to solve the problem of the “knee” of the spectrum and to make choice between the existing models of the cosmic rays origin and propagation. The proposed innovative method of energy measurements is based on the simultaneous detection of different components of back scattered radiation generated by showers produced by the primary particle in the regolyth (neutrons, gamma rays and radio waves). A multi-module system disposed on the Moon's surface is proposed for particles registration. Each module consists of a radio antenna, contiguous to the regolyth, scintillation detectors with gadolinium admixture and silicon charge detectors. Scintillation detectors record electrons and gamma-rays of back scattered radiation and delayed neutrons. The area of the experimental facility will be at least ~100 m2, suitable for upgrading. Average density of the detecting equipment is evaluated as 10-20 g/m2. Taking into account the weight of the equipment delivered from the Earth will be about 10 tons it is possible to compose an eqperimental facility with geometric factor of 150-300 m2sr. The Moon provides unique conditions for this experiment due to presence of the absorbing material and absence of atmosphere. The experiment will allow expansion of the measurements up to ~1017 eV with element-by-element resolution of the nuclear component. Currently direct measurements reach energy range of up to ~1015 eV, and Auger shower method does not provide information about the primary particle's charge. It is expected that ~15 particles with energy >1017 eV will be detected by the proposed experimental equipment per year. It will provide an opportunity to solve the problems of the current high-energy astrophysics.

  18. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  19. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 7

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic ray Conference are compiled. This volume contains papers which address various aspects of extensive air showers (EAS) produced by energetic particles and gamma rays.

  20. Early developments: Particle physics aspects of cosmic rays

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2014-01-01

    Cosmic rays is the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. In subsequent cloud chamber investigations Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Measurements with nuclear emulsions by Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. The cloud chamber continued to be a powerful instrument in cosmic ray studies. Rochester and Butler found V's, which turned out to be shortlived neutral kaons decaying into a pair of charged pions. Also Λ's, Σ's, and Ξ's were found in cosmic rays. But after that accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A. Cosmic ray neutrino results were best explained by the assumption of neutrino oscillations opening a view beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of accelerators.

  1. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  2. Cosmic ray sampling of a clumpy interstellar medium

    SciTech Connect

    Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S. III; Yoast-Hull, Tova M.

    2013-12-10

    How cosmic rays sample the multi-phase interstellar medium (ISM) in starburst galaxies has important implications for many science goals, including evaluating the cosmic ray calorimeter model for these systems, predicting their neutrino fluxes, and modeling their winds. Here, we use Monte Carlo simulations to study cosmic ray sampling of a simple, two-phase ISM under conditions similar to those of the prototypical starburst galaxy M82. The assumption that cosmic rays sample the mean density of the ISM in the starburst region is assessed over a multi-dimensional parameter space where we vary the number of molecular clouds, the galactic wind speed, the extent to which the magnetic field is tangled, and the cosmic ray injection mechanism. We evaluate the ratio of the emissivity from pion production in molecular clouds to the emissivity that would be observed if the cosmic rays sampled the mean density, and seek areas of parameter space where this ratio differs significantly from unity. The assumption that cosmic rays sample the mean density holds over much of parameter space; however, this assumption begins to break down for high cloud density, injection close to the clouds, and a very tangled magnetic field. We conclude by evaluating the extent to which our simulated starburst region behaves as a proton calorimeter and constructing the time-dependent spectrum of a burst of cosmic rays.

  3. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  4. Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.

  5. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.

  6. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  7. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  8. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  9. Using the information of cosmic rays to predict influence epidemic

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  10. Using the information of cosmic rays to predict influence epidemic

    NASA Astrophysics Data System (ADS)

    Yu, Z. D.

    1985-08-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  11. From cosmic ray source to the Galactic pool

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2014-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3 × 1015 eV) or perhaps even the ankle (3 × 1018 eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if non-linear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that makes up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E-2 will result in an E-2 escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with non-linear shock modification.

  12. Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.

  13. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  14. Galactic cosmic rays on extrasolar Earth-like planets. I. Cosmic ray flux

    NASA Astrophysics Data System (ADS)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2015-09-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields, especially in the case of planets more massive than Earth (super-Earths). Planetary magnetic fields, however, constitute one of the shielding layers that protect the planet against cosmic-ray particles. In particular, a weak magnetic field results in a high flux of Galactic cosmic rays that extends to the top of the planetary atmosphere. Aims: We wish to quantify the flux of Galactic cosmic rays to an exoplanetary atmosphere as a function of the particle energy and of the planetary magnetic moment. Methods: We numerically analyzed the propagation of Galactic cosmic-ray particles through planetary magnetospheres. We evaluated the efficiency of magnetospheric shielding as a function of the particle energy (in the range 16 MeV ≤ E ≤ 524 GeV) and as a function of the planetary magnetic field strength (in the range 0 M⊕ ≤ M ≤ 10 M⊕). Combined with the flux outside the planetary magnetosphere, this gives the cosmic-ray energy spectrum at the top of the planetary atmosphere as a function of the planetary magnetic moment. Results: We find that the particle flux to the planetary atmosphere can be increased by more than three orders of magnitude in the absence of a protecting magnetic field. For a weakly magnetized planet (ℳ = 0.05 ℳ⊕), only particles with energies below 512 MeV are at least partially shielded. For a planet with a magnetic moment similar to that of Earth, this limit increases to to 32 GeV, whereas for a strongly magnetized planet (ℳ = 10.0 ℳ⊕), partial shielding extends up to 200 GeV. Over the parameter range we studied, strong shielding does not occur for weakly magnetized planets. For a planet with a magnetic moment similar to that of Earth, particles with energies below 512 MeV are strongly shielded, and for strongly magnetized planets, this limit increases to 10 GeV. Conclusions: We find that magnetic shielding strongly

  15. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  16. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  17. Longitudinal distribution of cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Venkatesan, D.

    1985-01-01

    The longitudinal distribution of cosmic ray intensity was examined during the years 1974-1976 when the persistent high speed solar wind stream structures produced a well ordered inner heliosphere. Solar wind velocity is mapped back to the Sun and compared with cosmic ray intensity which is represented relative to the solar rotation average. Low solar wind velocity is observed to be a necessary, but not sufficient, condition for the occurrence of higher cosmic ray intensities at 1 AU. These relative enhancements cover a restricted range of heliographic longitudes and persist for several solar rotations. The observed solar wind and cosmic ray intensity relationships are consistent with a simple model suggested here in which cosmic ray modulation is very weak in the inner heliosphere, sunward of the first shock crossing on each field line and more intense in the outer heliosphere.

  18. The cosmic ray interplanetary radial gradient from 1972 - 1985

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lockwood, J. A.

    1985-01-01

    It is now established that the solar modulation of cosmic rays is produced by turbulent magnetic fields propagated outward by the solar wind. Changes in cosmic ray intensity are not simultaneous throughout the modulation region, thus requiring time dependent theories for the cosmic ray modulation. Fundamental to an overall understanding of this observed time dependent cosmic ray modulation is the behavior of the radial intensity gradient with time and heliocentric distance over the course of a solar modulation cycle. The period from 1977 to 1985 when data are available from the cosmic ray telescopes on Pioneer (P) 10, Voyager (V) 1 and 2, and IMP 8 spacecraft is studied. Additional data from P10 and other IMP satellites for 1972 to 1977 can be used to determine the gradient at the minimum in the solar modulation cycle and as a function of heliocentric distance. All of these telescopes have thresholds for protons and helium nuclei of E 60 MeV/nucleon.

  19. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Astrophysics Data System (ADS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-10-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  20. Cosmic-Ray Rejection by Linear Filtering of Single Images

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.

    2000-05-01

    We present a convolution-based algorithm for finding cosmic rays in single well-sampled astronomical images. The spatial filter used is the point-spread function (approximated by a Gaussian) minus a scaled delta function, and cosmic rays are identified by thresholding the filtered image. This filter searches for features with significant power at spatial frequencies too high for legitimate objects. Noise properties of the filtered image are readily calculated, which allows us to compute the probability of rejecting a pixel not contaminated by a cosmic ray (the false alarm probability). We demonstrate that the false alarm probability for a pixel containing object flux will never exceed the corresponding probability for a blank-sky pixel, provided we choose the convolution kernel appropriately. This allows confident rejection of cosmic rays superposed on real objects. Identification of multiple-pixel cosmic-ray hits can be enhanced by running the algorithm iteratively, replacing flagged pixels with the background level at each iteration.

  1. Cosmic ray environment model for Earth orbit

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1985-01-01

    A set of computer codes, which include the effects of the Earth's magnetic field, used to predict the cosmic ray environment (atomic numbers 1 through 28) for a spacecraft in a near-Earth orbit is described. A simple transport analysis is used to approximate the environment at the center of a spherical shield of arbitrary thickness. The final output is in a form (a Heinrich Curve) which has immediate applications for single event upset rate predictions. The codes will culate the time average environment for an arbitrary number (fractional or whole) of circular orbits. The computer codes were run for some selected orbits and the results, which can be useful for quick estimates of single event upset rates, are given. The codes were listed in the language HPL, which is appropriate or a Hewlett Packard 9825B desk top computer. Extensive documentation of the codes is available from COSMIC, except where explanations have been deferred to references where extensive documentation can be found. Some qualitative aspects of the effects of mass and magnetic shielding are also discussed.

  2. Tevatron QCD for Cosmic-Rays

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2010-12-01

    The two multi-purpose experiments D0 and CDF are operated at the Tevatron collider, where proton anti-proton collisions take place at a centre of mass energy of 1.96 TeV in Run II. In the kinematic plane of Q{sup 2}-scale and (anti-)proton momentum fraction x, Tevatron jet measurements cover a wide range, with phase space regions in common and beyond the HERA ep-collider reach. The kinematic limit of the Auger experiment is given by a centre of mass energy of 100 TeV. Cosmic rays cover a large region of the kinematic phase space at low momenta x, corresponding to forward proton/diffractive physics and also at low scales, corresponding to the hadronization scale and the underlying event. Therefore of particular interest are exclusive and diffractive measurements as well as underlying event, double parton scattering and minimum bias measurements. The kinematic limit of the Tevatron corresponds to the PeV energy region below the knee of the differential cosmic particle flux energy distribution. The data discussed here are in general corrected for detector effects, such as efficiency and acceptance. Therefore they can be used directly for testing and improving existing event generators and any future calculations/models. Comparisons take place at the hadronic final state (particle level).

  3. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E < 1015 eV) PCR-IIPrimary cosmic rays II (E > 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the

  4. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  5. Directional clustering in highest energy cosmic rays

    SciTech Connect

    Goldberg, Haim; Weiler, Thomas J.

    2001-09-01

    An unexpected degree of small-scale clustering is observed in highest-energy cosmic ray events. Some directional clustering can be expected due to purely statistical fluctuations for sources distributed randomly in the sky. This creates a background for events originating in clustered sources. We derive analytic formulas to estimate the probability of random cluster configurations, and use these formulas to study the strong potential of the HiRes, Auger, Telescope Array and EUSO-OWL-AirWatch facilities for deciding whether any observed clustering is most likely due to nonrandom sources. For a detailed comparison to data, our analytical approach cannot compete with Monte Carlo simulations, including experimental systematics. However, our derived formulas do offer two advantages: (i) easy assessment of the significance of any observed clustering, and most importantly, (ii) an explicit dependence of cluster probabilities on the chosen angular bin size.

  6. The galactic cosmic ray ionization rate.

    PubMed

    Dalgarno, A

    2006-08-15

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H(3)(+) in diffuse clouds and the recognition that dissociative recombination of H(3)(+) is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium.

  7. TIROS-N Cosmic Ray study

    NASA Technical Reports Server (NTRS)

    Blandford, J. T., Jr.; Pickel, J. C.

    1980-01-01

    An experimental and analytical study was performed on the impact of galactic cosmic rays on the TIROS-N satellite memory in orbit. Comparisons were made of systems equipped with the Harris HMI-6508 1 x 1024 CMOS/bulk RAM and the RCA CDP-1821 1 x 1024 bit CMOS/SOS RAM. Based upon the experimental results, estimated bit error rates were determined. These were at least 8.0 bit errors/day for a 300 kilobit memory with the HMI-6508 and .014 bit errors/day with the CDF-1821. It was also estimated that the HMI-6508 latchup rate in orbit is at least two orders of magnitude less than the bit error rates; the CDP-1821 will not latchup.

  8. Propagation and nucleosynthesis of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Giler, M.; Wibig, T.

    1985-01-01

    The observed fluxes of cosmic ray (C.R.) ultraheavy elements depend on their charge and mass spectrum at the sources and on the propagation effects, on the distribution of path lengths traversed by the particles on their way from the sources to the observation point. The effect of different path length distributions (p.l.d.) on the infered source abunances is analyzed. It seems that it is rather difficult to fit a reasonable p.l.d. so that the obtained source spectrum coincides with the Solar System (SS) abundances in more detail. It suggests that the nucleosynthesis conditions for c.r. nuclei may differ from that for SS matter. The nucleosynthesis of ultraheavy elements fitting its parameters to get the c.r. source abundances is calculated. It is shown that it is possible to get a very good agreement between the predicted and the observed source abundance.

  9. 'Excess' of primary cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Shen, Zhao-Qiang; Lu, Bo-Qiang; Dong, Tie-Kuang; Fan, Yi-Zhong; Feng, Lei; Liu, Si-Ming; Chang, Jin

    2015-10-01

    With the accurate cosmic ray (CR) electron and positron spectra (denoted as Φe- and Φe+, respectively) measured by AMS-02 Collaboration, the difference between the electron and positron fluxes (i.e., ΔΦ =Φe- -Φe+), dominated by the propagated primary electrons, can be reliably inferred. In the standard model, the spectrum of propagated primary CR electrons at energies ≥ 30GeV softens with the increase of energy. The absence of any evidence for such a continuous spectral softening in ΔΦ strongly suggests a significant 'excess' of primary CR electrons and at energies of 100- 400GeV the identified excess component has a flux comparable to that of the observed positron excess. Middle-age but 'nearby' supernova remnants (e.g., Monogem and Geminga) are favored sources for such an excess.

  10. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1992-01-01

    Energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds was studied. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the post-shock region although some shocks will be followed by an ejecta with a high field. Each event is different. The lower energy particles can help in identifying the dominant processes in individual events.

  11. Interplanetary diffusion coefficients for cosmic rays

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    Information on the cosmic-ray diffusion coefficient, kappa, derived from near-earth observations of the solar modulation of galactic electron fluxes and from the near-earth power spectra of the interplanetary magnetic field, has been used to study the heliocentric radial dependence of kappa, and to derive limits on the spatial extent of the solar modulation region. Representing kappa, as a separable function of radius r and rigidity, and assumming kappa(r) proportional to r to the n-th power, we can place a limit on the power law exponent, n not greater than 1.2. The distance of the modulation boundary is a function of n, and, e.g., for n = 0, falls into the range of 6-25 AU.

  12. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  13. Estimates of cellular mutagenesis from cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A parametric track structure model is used to estimate the cross section as a function of particle velocity and charge for mutations at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus in human fibroblast cell cultures. Experiments that report the fraction of mutations per surviving cell for human lung and skin fibroblast cells indicate small differences in the mutation cross section for these two cell lines when differences in inactivation rates between these cell lines are considered. Using models of cosmic ray transport, the mutation rate at the HGPRT locus is estimated for cell cultures in space flight and rates of about 2 to 10 x 10(exp -6) per year are found for typical spacecraft shielding. A discussion of how model assumptions may alter the predictions is also presented.

  14. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  15. Extragalactic cosmic rays and their signatures

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2014-01-01

    The signatures of UHE proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible manifestations of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E in integral spectrum. Observed practically in all experiments since 1963, the ankle is usually interpreted as a feature caused by transition from galactic to extragalactic cosmic rays. Using the mass composition measured by HiRes, Telescope Array and Auger detectors at energy (1-3) EeV, calculated anisotropy of galactic cosmic rays at these energies, and the elongation curves we strongly argue against the interpretation of the ankle given above. The transition must occur at lower energy, most probably at the second knee as the dip model predicts. The other prediction of the dip model, the shape of the dip, is well confirmed by HiRes, Telescope Array (TA), AGASA and Yakutsk detectors, and, after recalibration of energies, by Auger detector. Predicted beginning of GZK cutoff and E agree well with HiRes and TA data. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, as required by the dip model, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The Auger-based scenario is consistent with another interpretation of the ankle at energy Ea≈4 EeV as transition from extragalactic protons to extragalactic nuclei. The heavy-nuclei dominance at higher energies may be provided by low-energy of acceleration for protons Epmax∼4 EeV and rigidity-dependent EAmax=ZEpmax for nuclei. The highest energy suppression may be explained as nuclei-photodisintegration cutoff.

  16. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  17. On the level of the cosmic ray sea flux

    SciTech Connect

    Casanova, S.; Aharonian, F. A.; Gabici, S.; Torii, K.; Fukui, Y.; Onishi, T.; Yamamoto, H.; Kawamura, A.

    2009-04-08

    The study of Galactic diffuse {gamma} radiation combined with the knowledge of the distribution of the molecular hydrogen in the Galaxy offers a unique tool to probe the cosmic ray flux in the Galaxy. A methodology to study the level of the cosmic ray 'sea' and to unveil target-accelerator systems in the Galaxy, which makes use of the data from the high resolution survey of the Galactic molecular clouds performed with the NANTEN telescope and of the data from {gamma}-ray instruments, has been developed. Some predictions concerning the level of the cosmic ray 'sea' and the {gamma}-ray emission close to cosmic ray sources for instruments such as Fermi and Cherenkov Telescope Array are presented.

  18. Cosmic-ray Exposure Ages of Meteorites

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.

    2003-12-01

    The classic idea of a cosmic-ray exposure (CRE) age for a meteorite is based on a simple but useful picture of meteorite evolution, the one-stage irradiation model. The precursor rock starts out on a parent body, buried under a mantle of material many meters thick that screens out cosmic rays. At a time ti, a collision excavates a precursor rock - a "meteoroid." The newly liberated meteoroid, now fully exposed to cosmic rays, orbits the Sun until a time tf, when it strikes the Earth, where the overlying blanket of air (and possibly of water or ice) again shuts out almost all cosmic rays (cf. Masarik and Reedy, 1995). The quantity tf-ti is called the CRE age, t. To obtain the CRE age of a meteorite, we measure the concentrations in it of one or more cosmogenic nuclides (Table 1), which are nuclides that cosmic rays produce by inducing nuclear reactions. Many shorter-lived radionuclides excluded from Table 1 such as 22Na (t1/2=2.6 yr) and 60Co (t1/2=5.27 yr) can also furnish valuable information, but can be measured only in meteorites that fell within the last few half-lives of those nuclides (see, e.g., Leya et al. (2001) and references therein). Table 1. Cosmogenic nuclides used for calculating exposure ages NuclideHalf-lifea (Myr) Radionuclides 14C0.005730 59Ni0.076 41Ca0.1034 81Kr0.229 36Cl0.301 26Al0.717 10Be1.51 53Mn3.74 129I15.7 Stable nuclides 3He 21Ne 38Ar 83Kr 126Xe a http://www2.bnl.gov/ton. CRE ages have implications for several interrelated questions. From how many different parent bodies do meteorites come? How well do meteorites represent the population of the asteroid belt? How many distinct collisions on each parent body have created the known meteorites of each type? How often do asteroids collide? How big and how energetic were the collisions that produced meteoroids? What factors control the CRE age of a meteorite and how do meteoroid orbits evolve through time? We will touch on these questions below as we examine the data.By 1975, the CRE ages of

  19. Intensities of high-energy cosmic rays at Mount Kanbala

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The energy spectra of atmospheric cosmic rays at Mt. Kanbala (520 g/sq cm.) are measured with emulsion chambers. The power indexes of the spectra are values of about 2.0 for both gamma-rays and hadrons. Those fluxes are consistent with the ones expected from the model of primary cosmic rays with heavy nuclei of high content in the energy around 10 to the 15th power eV.

  20. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  1. Anisotropy of TeV Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pogorelov, Nikolai; Desiati, Paolo; DuVernois, Michael

    2016-07-01

    TeV cosmic rays are significantly deflected by the magnetic field of the heliosphere, and they gain or lose energies in heliospheric electric field that in the meantime drives the motion of plasma. These propagation mechanisms will cause the map of TeV cosmic rays seen at the Earth to look different from the map seen in the local interstellar medium without the presence of the heliosphere. We have developed a method of using Liouville's theorem to map out particle distribution function to Earth from the local interstellar medium, where we assume that the cosmic rays have small pitch-angle anisotropy harmonics up to the second order and a small uniform spatial density gradient. The amount of heliospheric distortion can be determined by tracing the trajectories of cosmic rays propagating through the heliosphere. In this paper, we apply this method to TeV cosmic ray propagation through a MHD-kinetic model of the heliosphere and try to fit observations from Tibet ASgamma and IceCube experiments. We are able to locate features in the TeV cosmic ray anisotropy that are associated with the interstellar magnetic field, hydrogen deflection plane, heliotail, and solar corona. Some of the features are also slightly affected by the solar cycle and interstellar magnetic turbulence. The results provide us powerful tools to explore large-scale heliospheric structures as well as to determine the cosmic ray distribution in the local interstellar medium.

  2. Cosmic rays IX. Interactions and transport of cosmic rays in the Galaxy

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Langer, N.; Seo, Eun-Suk; Stanev, T.

    2001-04-01

    We propose that cosmic rays interact mostly near their sources of origin. To be specific, we differentiate the various supernovae by their mass of the progenitor star along the zero age main sequence. Stars between about 8 and 15 solar masses explode into the interstellar medium, and accelerate cosmic rays, as discussed by many for some time. From about 15 to 25 solar masses stars explode into their own stellar wind; this wind has built up a thin shell of both wind material and interstellar medium material in the red and blue giant phases preceding the supernova event. The shock accelerating cosmic ray particles races through that wind, gets loaded up with energetic particles, interacts while it goes, and finally smashes into the shell. While the shock goes out, it snowplows the entire wind into the pre-existing shell to form a composite shell. We propose that for the mass range 15 to 25 solar masses this composite shell is immediately broken up so that the time scale for interaction is caused by the breakup and so is convective. We note that the wind material for this range of zero age masses is a approximately half helium, and half hydrogen. The interactions in the composite wind-shell and the immediate environment produce positrons, gamma emission, but only few secondary nuclei, because for this mass range the enrichment in heavier elements is still minor. The energy spectrum of the gamma emission and the positrons produced corresponds then to the source spectrum. In contrast, from about 25 solar masses and up the wind is strongly enriched in heavy elements, and the wind shell is massive, comprising most of the initial zero age star's mass, as well as a good part of the local interstellar medium. We propose that for the interaction of the cosmic ray particles carried out by the shock in the snow-plow through the wind to the shell the interaction is diffusive, and calculate the diffusion coefficient. This leads to a leakage time energy dependence of E-5/9 in the

  3. Testing the Role of Cosmic Ray Reacceleration in the Galaxy

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Simpson, J. A.

    1999-05-01

    Cosmic rays constitute a super-thermal gas of charged particles magnetically confined within the Galaxy. While propagating though the interstellar medium (ISM), cosmic ray nuclei undergo nuclear spallation reactions, producing both stable (i.e., Be and B) and unstable secondary nuclei. Consistent cosmic ray confinement times of ~ 20 Myr have been reported from measurements of the radioactive secondary isotopes (10) Be, (26) Al, (36) Cl and (54) Mn using data from the High Energy Telescope (HET) on the Ulysses spacecraft. It is generally accepted that Galactic cosmic rays of energy less than ~ 10(14) eV are accelerated by supernova shocks in the ISM. Reacceleration of existing cosmic rays in the ISM is implicit in interstellar shock acceleration models, but whether reacceleration plays a significant role in cosmic ray production and interstellar propagation is largely unknown. The abundances of secondary electron-capture isotopes provide a crucial test of cosmic ray reacceleration. Electron-capture is suppressed during interstellar propagation because cosmic ray nuclei are essentially stripped of their electrons. If, however, cosmic rays experience significant reacceleration, nuclei will have spent time at lower energies where electron pick-up, and hence electron capture, is more likely than at higher energies. Thus, electron capture secondary isotopes would be less abundant (and their daughters, more abundant) than otherwise predicted. The abundance ratio of (49) V to (51) V is a particularly sensitive test of this effect. The latest Ulysses HET data is used to address this problem. This research was supported in part by NASA/JPL Contract 955432 and NASA Grant NAG5-5179.

  4. Gamma rays from grazing incidence cosmic rays in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Interactions of grazing incidence, ultra high-energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond timescales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10(exp 20) eV is found to be more than two orders of magnitude higher than Earth-based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic-ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the Earth's atmosphere.

  5. Effect of cosmic ray on global high cloud from MODIS

    NASA Astrophysics Data System (ADS)

    Kim, H.-S.; Choi, Y.-S.

    2012-04-01

    The Earth's climate is affected by not only internal forcings but also external forcings related with solar activities. The energetic particles called "cosmic rays" from outer space have been considered as a potentially important external climate forcing since the first report by Svensemark and Friis-Christensen (1997) which showed a significant correlation between cloudiness and cosmic ray. This correlation is a basis of a couple of hypotheses in microphysical processes: ion-aerosol clear-air mechanism and ion-aerosol near-cloud mechanism. These mechanisms have been either supported or objected by many successive studies, most of which correlated long-term trends of cloud and cosmic ray. However, it is most likely that such methodology is not suitable to find actual connection, because long-term trends of clouds may invite affection by many factors other than cosmic ray. It is therefore necessary to find the relation at shorter time scale, since cosmic ray affect the process of cloud formation in a moment. Here we show spatial distributions of correlation between global high cloud fraction data from MODIS and cosmic ray of neutron monitor data from McMurdo, Antarctic. We removed 3-month running means from the original data in order to get high frequency fluctuations. As results, positive correlations are dominant in the spatial distribution, especially over lands on the northern hemisphere and oceans on the Southern hemisphere. On the other hand, negative correlations exist over limited area including the Indian Ocean. According to the cross-correlation (with time lags), the areas with positive correlation is widely distributed at zero lag. At ±1 month lags, the signs of correlations become the opposite of that at zero lag. Furthermore, the correlation between relative high cloud amount to total cloud and cosmic ray shows similar distribution to the correlation between absolute high cloud amount and cosmic ray, implying stronger high cloud response to cosmic ray

  6. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    SciTech Connect

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  7. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    NASA Astrophysics Data System (ADS)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  8. Global modulation of cosmic rays in the heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius

    2016-07-01

    It is possible, now for the first time, to describe the total, global modulation of cosmic rays in the heliosphere using Voyager observations from the Earth to the heliopause and from the PAMELA space mission at the Earth, in comparison with comprehensive numerical models. The very local interstellar spectra for several cosmic ray species have become much better known so that together with knowledge of where the heliopause is located, comprehensive modelling has taken a huge step forward. New and exciting observations, with ample challenges to theoretical and modelling approaches to the acceleration, transport and modulation of cosmic rays in the heliosphere will be reviewed in this presentation.

  9. Calculations of cosmic-ray helium transport in shielding materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1993-01-01

    The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.

  10. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  11. Observations of cosmic gamma ray bursts with WATCH on EURECA

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Castro-Tirado, A. J.

    19 Cosmic Gamma-Ray Bursts were detected by the Wide Angle Telescope for Cosmic Hard X-rays (WATCH) instruments during the 11 months flight of the European Retrievable Carrier (EURECA). The identification of the bursts was complicated by a high frequency of background of events caused by a high energy cosmic ray interactions in the detector and by low energy, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets. The derived positions of the bursts are reported. Additionally, most of the events have been confirmed by coincident detections with instruments on other spacecraft. The features of two of the bursts and the results of searches for related events in the optical are described.

  12. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  13. Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays?

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia; Eichmann, Björn; Kroll, Mike; Nierstenhöfer, Nils

    2016-08-01

    The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: a generic calculation indicates that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e. they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies and derive cosmic ray spectra under the assumption of hadronic emission. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100-200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for these sources. We conclude that gamma-ray emitting SNRs can be a representative sample of cosmic ray emitting sources. In the future, experiments like CTA and HAWC will help to distinguish hadronic from leptonic sources and to further constrain the maximum energy of the sources and contribute to producing a fully representative sample in order to further investigate the possibility of SNRs being the dominant sources of cosmic rays up to the knee.

  14. Study of cosmic ray motion in cosmic space near the earth

    NASA Technical Reports Server (NTRS)

    Budilov, V. K.; Ivanov, V. I.; Kozak, L. V.; Mirkin, L. A.; Tsukerman, I. G.

    1975-01-01

    Data are presented on experimental installations developed in the cosmic ray variations laboratory in Kazgu (Alma-Ata). Various experiments on modelling the interaction of plasma with the geomagnetic field as well as the plasma distribution in quiet and disturbed fields are described. The characteristics of the meson supertelescope using scintillators (effective area, 10 sq m) for vertical alignments designed to study microvariations of the cosmic rays and their interrelation with magnetospheric fluctuations and the study of solar wind parameters are given.

  15. The Origin of Cosmic Rays: What can GLAST Say?

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F.; Digel, Seith; Moskalenko, Igor V.; Moiseev, Alexander; Williamson, Roger

    2000-01-01

    Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter, It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.

  16. MDAC solar cosmic ray experiment on OGO-6

    NASA Technical Reports Server (NTRS)

    Masley, A. J.

    1973-01-01

    The instrumentation of the OGO-F solar cosmic ray experiment is described and results of data obtained during the satellite lifetime from launch on June 5, 1969, through September, 1970, and discussed.

  17. Fluctuations of cross sections seen in cosmic ray data

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1994-08-01

    We argue that the unexpected nonexponential behavior of some cosmic ray data is just a manifestation of cross section fluctuations discussed recently in the literature and observed in nuclear collisions and in diffraction dissociation experiments on accelerators.

  18. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  19. Galactic cosmic rays and N2 dissociation on Titan

    NASA Technical Reports Server (NTRS)

    Capone, L. A.; Dubach, J.; Prasad, S. S.; Whitten, R. C.

    1983-01-01

    The electromagnetic and particle cascade resulting from the absorption of galactic cosmic rays in the atmosphere of Titan is shown to be an important mechanism for driving the photochemistry at pressures of 1 to 50 mbar in the atmosphere. In particular, the cosmic ray cascade dissociates N2, a process necessary for the synthesis of nitrogen organics such as HCN. The important interactions of the cosmic ray cascade with the atmosphere are discussed. The N2 excitation and dissociation rates and the ionization rates of the principal atmospheric consituents are computed for a Titan model atmosphere that is consistent with Voyager 1 observations. It is suggested that HCN may be formed efficiently in the lower atmosphere through the photodissociation of methylamine. It is also argued that models of nitrogen and hydrocarbon photochemistry in the lower atmosphere of Titan should include the absorption of galactic cosmic rays as an important energy source.

  20. ASPIRE - Cloud Chambers as an Introduction to Cosmic Ray Observation

    NASA Astrophysics Data System (ADS)

    Callahan, Julie; Matthews, John; Jui, Charles

    2012-03-01

    ASPIRE is the K12 - Education & Public Outreach program for the Telescope Array ultra-high energy cosmic ray research project in Utah. The Telescope Array experiment studies ultra-high energy cosmic rays with an array of ˜500 surface scintillator detectors and three fluorescence telescope stations observing over 300 square miles in the West Desert of Utah. Telescope Array is a collaboration of international institutions from the United States, Japan, Korea, Russia and Belgium. Cloud chambers are an inexpensive and easy demonstration to visually observe evidence of charged particles and cosmic ray activity both for informal events as well as for K12 classroom activities. Join us in building a cloud chamber and observe cosmic rays with these table-top demonstrations. A brief overview of the Telescope Array project in Millard County, Utah will also be presented.

  1. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung

    2000-01-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  2. Influence of magnetic clouds on cosmic ray intensity variations

    NASA Technical Reports Server (NTRS)

    BADRUDDIN; Yadav, R. S.; Yadav, N. R.; Agrawal, S. P.

    1985-01-01

    Neutron monitor data has been analyzed to study the nature of galactic cosmic ray transient modulation associated with three types of interplanetary magnetic clouds - clouds associated with shocks, stream interfaces and cold magnetic enhancements.

  3. UNDERSTANDING TeV-BAND COSMIC-RAY ANISOTROPY

    SciTech Connect

    Pohl, Martin; Eichler, David E-mail: eichler@bgu.ac.il

    2013-03-20

    We investigate the temporal and spectral correlations between flux and anisotropy fluctuations of TeV-band cosmic rays in light of recent data taken with IceCube. We find that for a conventional distribution of cosmic-ray sources, the dipole anisotropy is higher than observed, even if source discreteness is taken into account. Moreover, even for a shallow distribution of galactic cosmic-ray sources and a reacceleration model, fluctuations arising from source discreteness provide a probability only of the order of 10% that the cosmic-ray anisotropy limits of the recent IceCube analysis are met. This probability estimate is nearly independent of the exact choice of source rate, but generous for a large halo size. The location of the intensity maximum far from the Galactic Center is naturally reproduced.

  4. Cosmic Rays Variation Before Changes in Sun-Earth Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2011-12-01

    Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.

  5. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  6. Cosmic-ray exposure records and origins of meteorites

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages.

  7. Cosmic rays and the birth of particle physics

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael

    2013-02-01

    Twenty years after the discovery of cosmic rays, the methods of research and resulting discoveries were dramatically changed by the introduction of experimental methods that made visible the passage of individual particles. Between 1932 and 1955, tracks of cosmic rays were found in cloud chambers and special photographic emulsions. From measurements of the ionization produced along these tracks, the mass, charge and energy of a single relativistic particle could be determined. The dynamics of decays and collisions could be analyzed. Positrons and then electron-positron pairs were discovered, followed by muons and pions and then the inhabitants of the 'particle zoo'. Fundamental concepts were challenged. From the mid- 1950s, larger accelerators began to produce many of the 'new' particles, displacing cosmic rays from their prime role in particle studies. But without the initial discoveries in cosmic rays, there might well not be the modern industrial-scale particle physics research.

  8. Cosmic ray synthesis of organic molecules in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Capone, L. A.; Dubach, J.; Whitten, R. C.; Prasad, S. S.; Santhanam, K.

    1980-01-01

    The possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2-CH4-H2 Titan model atmosphere has been studied. The cosmic-ray-induced ionization results in peak electron densities of 2000/cu cm, with NH(+), C3H9(+), and C4H9(+) being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.

  9. Cosmic Rays. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Carrigan, B.

    1980-04-01

    Measurement techniques, isotopic composition, distribution, intensity, anisotropy, and sources of cosmic rays are covered in the citations. This updated bibliography contains 75 abstracts, 22 of which are new entries to the previous edition.

  10. The dynamic heliosphere, solar activity, and cosmic rays

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius S.

    2010-08-01

    This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.

  11. Thunderstorms, cosmic rays, and solar-lunar influences

    SciTech Connect

    Lethbridge, M.D.

    1990-08-20

    A study of cosmic rays and thunderstorm frequency has shown a decrease in thunderstorms at the time of high cosmic rays and an increase in thunderstorms 2-4 days later. This was done by superposed epoch analysis of thunderstorms over the eastern two thirds of the United States for 1957-1976. When data for spring and fall months were used, the minimum deepened. When high cosmic rays near full and new moon for these months were key days, the minimum deepened again and was significant at less than the 0.01% level. It is believed that when the Sun, Earth, and Moon are aligned, particulate matter in the lower stratosphere is modulated and acted upon by cosmic rays, bringing about an immediate decrease in thunderstorms.

  12. Solution to the Cosmic Ray Anisotropy Problem

    NASA Astrophysics Data System (ADS)

    Mertsch, Philipp; Funk, Stefan

    2015-01-01

    In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ˜90 ° , the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources.

  13. Solar Cosmic Ray Acceleration and Propagation

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  14. A Cosmic Ray Telescope For Educational Purposes

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a ``telescope'' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6×1.9×3.7 cm3. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  15. Measurement of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 – 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 – 1018 eV.

  16. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  17. The escape model for Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    The escape model explains the cosmic ray (CR) knee by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this model calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time τesc(E) exhibits a knee-like structure around E/Z = few × 1015 eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs happens in this model at low energies and is terminated below ≈ 3 × 1018 eV. The intermediate energy region up to the ankle is populated by CRs accelerated in starburst galaxies. This model provides a good fit to ln(A) data, while the estimated CR dipole anisotropy is close to, or below, upper limits in the energy range 1017 - 1018 eV. The phase of the dipole is expected to change between 1 × 1017 and 3 × 1018 eV.

  18. Cosmic ray measurements around the knee

    NASA Astrophysics Data System (ADS)

    Chiavassa, Andrea

    2016-07-01

    Primary cosmic rays of energy greater than ˜ 1014 eV must be studied by indirect experiments measuring the particles generated in the EAS (Extensive Air Shower) development in atmosphere. These experiments are mainly limited by the systematic errors due to their energy calibration. I will discuss the main sources of these errors: the choice of the hadronic interaction model and of the mass of the primary particle (that cannot be measured on a event by event basis). I will then summarize some recent measurements of the all particle spectrum, and I will show that, keeping into account the differences due to the energy calibration, they all agree on the spectral shape. Then I will describe the measurements of the light and heavy primaries mass groups spectra, discussing the claimed features. Using a simple calculation of the elemental spectra (based on the hypothesis that the knee energies follow a Peter's cycle) I will try to discuss if all these results can be interpreted in a common picture.

  19. Measurement of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 - 1018 eV.

  20. ROBAST: ROOT-based ray-tracing library for cosmic-ray telescopes

    NASA Astrophysics Data System (ADS)

    Okumura, Akira

    2016-03-01

    ROBAST (ROOT-based simulator for ray tracing) is a non-sequential ray-tracing simulation library developed for wide use in optical simulations of gamma-ray and cosmic-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework, and can build the complex optics geometries typically used in cosmic ray experiments and ground-based gamma-ray telescopes.

  1. Cosmic Ray Anomalies from the MSSM?

    SciTech Connect

    Cotta, R.C.; Conley, J.A.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2011-08-11

    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e{sup +} + e{sup -}) ux and from PAMELA itself on the {anti p}p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional minimal Supergravity (mSUGRA) version of Supersymmetry even if boosts as large as 10{sup 3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the Minimal Supersymmetric Standard Model (MSSM) with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the Lightest Supersymmetric Particle (LSP) is mostly pure bino and annihilates almost exclusively into {tau} pairs comes very close to satisfying these requirements. The lightest in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by {approx}1 unit of {chi}{sup 2}/dof in comparison to the best fit without Supersymmetry while employing boosts in the range {approx}100-200. The implications of these models for future experiments are discussed.

  2. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  3. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  4. Consistency of cosmic-ray source abundances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    Certain results regarding the ratio of cosmic-ray sources (CRS) and Solar System abundances are the same as those obtained from explosive nucleosynthesis. Such a model is consistent with the fact that in the Solar System Mg, Si, and Fe are believed to be produced by explosive nucleosynthesis, whereas C and O are mainly products of other processes. The model considered explains the carbon-to-oxygen ratio in the cosmic rays.

  5. Cosmic Ray removal in single images for LAMOST

    NASA Astrophysics Data System (ADS)

    Bai, Zhongrui; Zhang, Haotong; Zhao, Yongheng; Li, Guangwei

    2015-08-01

    We present a method for detecting and removing cosmic rays in single images for LAMOST. The method is consist of two steps. Firstly, we use Laplacian Egde Detection(van Dokkum 2001, PASP, 113, 1420) to initially detect the cosmic rays. Secondly, we make a final judgement by applying a 2-d profile fitting and give a reasonable value for confirmed ones. The method is tested by both man-made and real data.

  6. Spatial variation of cosmic rays near the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Kota, J.

    1985-01-01

    A quantitative comparison between theoretical predictions and observations of the intensity of galactic cosmic rays near the interplanetary current sheet is reported. Comparison of model calculations is made with a statistical analysis of observations of galactic cosmic rays at Earth and the simultaneous position of the current sheet. An ensemble of different current sheet inclinations is used, in order to make the analysis of the computations approximate the method used to analyses the data.

  7. A benchmark for galactic cosmic ray transport codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.

    1987-01-01

    A nontrivial analytic benchmark solution for galactic cosmic ray transport is presented for use in transport code validation. Computational accuracy for a previously-developed cosmic ray transport code is established to within one percent by comparison with this exact benchmark. Hence, solution accuracy for the transport problem is mainly limited by inaccuracies in the input spectra, input interaction databases, and the use of a straight ahead/velocity-conserving approximation.

  8. Common origin of the high energy astronomical gamma rays, neutrinos and cosmic ray positrons?

    NASA Astrophysics Data System (ADS)

    Dado, Shlomo; Dar, Arnon

    2016-03-01

    We show that the observed fluxes, spectra and sky distributions of the high energy astronomical neutrinos, gamma rays and cosmic ray positrons satisfy the simple relations expected from their common production in hadronic collisions in/near source of high energy cosmic rays with diffuse matter.

  9. A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.

    1986-01-01

    Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.

  10. Ultraheavy cosmic rays - Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1978-01-01

    The recent extreme ultraheavy cosmic-ray observations (Z greater than or equal to 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar-system abundances is also used. There is the continued strong indication of an r-process dominance in the extreme ultraheavy cosmic rays. It is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fitted with the same r-process calculation which also fits the solar-system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. An estimate is also made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  11. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  12. Galactic cosmic-ray modulation near the heliopause

    SciTech Connect

    Guo, X.; Florinski, V.

    2014-09-20

    We investigate the modulation of galactic cosmic rays in the inner and outer heliosheaths using three-dimensional numerical simulations. The model is based on the Parker transport equation integrated using a stochastic phase-space trajectory method. Integration is performed on a plasma background obtained from a global three-dimensional magnetohydrodynamic simulations. Our results predict a negligible amount of modulation in the outer heliosheath because of weak scattering of cosmic ray ions owing to very low levels of magnetic fluctuation power at wavenumbers relevant to the transport of cosmic rays with MeV to GeV energies. This means that the heliopause may be treated as a Dirichlet-type boundary for the purpose of energetic particle modeling. We present models with and without drift velocity to facilitate comparison with papers published earlier. We also attempt to reproduce the sudden step-like increases of cosmic-ray intensity observed by Voyager 1 before its encounter with the heliopause. Our results indicate that very slow cross-field diffusion in the outer heliosheath could produce a large gradient of cosmic rays inside the heliospheric boundary. The resulting large gradient in cosmic-ray intensity near the heliopause qualitatively agrees with recent Voyager 1 observations.

  13. SLOW DIFFUSION OF COSMIC RAYS AROUND A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Takahara, Fumio

    2010-04-01

    We study the escape of cosmic-ray protons accelerated at a supernova remnant (SNR). We are interested in their propagation in the interstellar medium (ISM) after they leave the shock neighborhood where they are accelerated, but when they are still near the SNR with their energy density higher than that in the average ISM. Using Monte Carlo simulations, we found that the cosmic rays with energies of {approx}< TeV excite Alfven waves around the SNR on a scale of the SNR itself if the ISM is highly ionized. Thus, even if the cosmic rays can leave the shock, scattering by the waves prevents them from moving further away from the SNR. The cosmic rays form a slowly expanding cosmic-ray bubble, and they spend a long time around the SNR. This means that the cosmic rays cannot actually escape from the SNR until a fairly late stage of the SNR evolution. This is consistent with some results of Fermi and H.E.S.S. observations.

  14. Effect of re-acceleration on cosmic ray components

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Golden, R. L.

    1989-01-01

    Reacceleration of cosmic rays in interstellar space has been studied in detail in order to examine the behavior of the ratios of secondary to primary nuclei in cosmic radiation. It is found that modest acceleration in a confinement region, where particles escape more freely at high energies, provides a better fit to the observed data. The effect of reacceleration on the spectral shape of proton and helium components of cosmic rays has been studied. The examination of two different models has shown that reacceleration provides a poor fit to the observed proton data.

  15. Testing Cosmic-Ray Acceleration in Young, Embedded Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Nukri, Komin; Marcowith, Alexandre; Lamanna, Giovanni; Maurin, Gilles; Krayzel, Fabien

    2016-07-01

    Most of the massive stars appear grouped in clusters located in giant molecular clouds. Their strong wind activity generates large structures known as stellar wind bubbles and induces collective effects which could accelerate particles up to high energy and produce gamma-rays. The best objects to observe these effects are young massive star clusters in which no supernova explosion has occurred yet. We model these star clusters as a spherical leaky box (the molecular cloud) surrounding a central cosmic ray source (the stellar cluster). We developed a phenomenological model to estimate the cosmic and gamma-ray production for a set of 8 selected clusters. We compare the predicted gamma-ray emission with data obtained with the Fermi-LAT telescope. No significant emission has been detected from any of the selected cluster. Comparing the upper limit on the gamma-ray flux with the prediction from our phenomenological model indicates that not more than 10% of the stellar wind luminosity of the stellar clusters is converted into cosmic rays. If all O-type stars do not contribute more than 10% of their stellar wind luminosity to cosmic-ray acceleration they do not contribute to more than on percent of the total cosmic-ray luminosity.

  16. Ionization and heating by X-rays and cosmic rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2015-09-01

    High-energy radiation from the central T Tauri and protostars plays an important role in shaping protoplanetary disks and influences their evolution. Such radiation, in particular X-rays and extreme-ultraviolet (EUV) radiation, is predominantly generated in unstable stellar magnetic fields (e.g., the stellar corona), but also in accretion hot spots. Even jets may produce X-ray emission. Cosmic rays, i.e., high-energy particles either from the interstellar space or from the star itself, are of crucial importance. Both highenergy photons and particles ionize disk gas and lead to heating. Ionization and heating subsequently drive chemical networks, and the products of these processes are accessible through observations of molecular line emission. Furthermore, ionization supports the magnetorotational instability and therefore drives disk accretion, while heating of the disk surface layers induces photoevaporative flows. Both processes are crucial for the dispersal of protoplanetary disks and therefore critical for the time scales of planet formation. This chapter introduces the basic physics of ionization and heating starting from a quantum mechanical viewpoint, then discusses relevant processes in astrophysical gases and their applications to protoplanetary disks, and finally summarizes some properties of the most important high-energy sources for protoplanetary disks. 14th Lecture from Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  17. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-ray Studies

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.

    2004-01-01

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma-rays and dimsses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near fume. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  18. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-Ray Studies

    SciTech Connect

    Moskalenko, Igor V.; Mashnik, Stepan G.

    2005-05-24

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and {alpha}-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse {gamma}-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near future. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  19. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  20. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  1. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  2. Cosmic-ray positron energy spectrum measured by PAMELA.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Bianco, A; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S A; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S J; Stockton, J C; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2013-08-23

    Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009, approximately 24,500 positrons were observed. The results cannot be easily reconciled with purely secondary production, and additional sources of either astrophysical or exotic origin may be required.

  3. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  4. Galactic Cosmic Rays and the Environment

    NASA Astrophysics Data System (ADS)

    Castagnoli, G. Cini

    SH.3.6.14 Galactic Cosmic Rays and the Environment G. Cini Castagnoli, G. Bonino, P. Della Monica, C. Taricco Istituto di Cosmogeofisica, CNR, Corso Fiume 4, 10133 Torino, Italy and Dipartimento di Fisica Generale, Università di Torino, Via P. Giuria 1, 10125 Torino Recently Svensmark and Friis-Christensen (1997) reported an indication that the Galactic Cosmic Rays (GCR) modulated by the solar wind may contribute to the variations in the formation of clouds, which in turn should follow the 11 y solar cycle. On the other hand experiments, conducted in vitro, on the variations of δ3C in symbiont bearing 1 foraminifera have shown that the carbon isotope fractionation from sea water, of the calcite of their shells, depends mainly on the photosynthetic activity (primary productivity) of the symbionts and therefore from the illumination level of their habitat. We have measured and analyzed (Cini Castagnoli et al., 1999) the δ3C profile of G. ruber in an Ionian sea 1 shallow water core very precisely dated. This allows us to acquire information on the ambient light level (connected to the solar irradiance modulation and to the cloud coverage) of the Gallipoli terrace in the past Millenium. The record (1205-1975 AD) of 200 points with time resolution 3.87 years shows a highly significant 11 y cyclicity covariant with Sunspots of amplitude 0.04 ‰ . A test for determining the δ3C-irradiance relation has been 1 13 performed by studying variations of δ C and the percentage annual number of rainy days during the last century in this region. Our results agree with the expectations on the basis of experiments performed in vitro on G. sacculifer ( on G. ruber is not available). The amplitude of the 11 y δ3C signal turns out to be of the order of 1.5 W/m2. This value seems to be 1 quite high (although of the same order) to be directly induced solely by changes in the solar constant, if in past times they were similar to those measured in space during solar cycles 22-23. The

  5. Assessment of galactic cosmic ray models

    NASA Astrophysics Data System (ADS)

    Mrigakshi, Alankrita Isha; Matthiä, Daniel; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.

    2012-08-01

    Among several factors involved in the development of a manned space mission concept, the astronauts' health is a major concern that needs to be considered carefully. Galactic cosmic rays (GCRs), which mainly consist of high-energetic nuclei ranging from hydrogen to iron and beyond, pose a major radiation health risk in long-term space missions. It is therefore required to assess the radiation exposure of astronauts in order to estimate their radiation risks. This can be done either by performing direct measurements or by making computer based simulations from which the dose can be derived. A necessary prerequisite for an accurate estimation of the exposure using simulations is a reliable description of the GCR spectra. The aim of this work is to compare GCR models and to test their applicability for the exposure assessment of astronauts. To achieve this, commonly used models capable of describing both light and heavy GCR particle spectra were evaluated by investigating the model spectra for various particles over several decades. The updated Badhwar-O'Neill model published in the year 2010, CREME2009 which uses the International Standard model for GCR, CREME96 and the Burger-Usoskin model were examined. Hydrogen, helium, oxygen and iron nuclei spectra calculated by the different models are compared with measurements from various high-altitude balloon and space-borne experiments. During certain epochs in the last decade, there are large discrepancies between the GCR energy spectra described by the models and the measurements. All the models exhibit weaknesses in describing the increased GCR flux that was observed in 2009-2010.

  6. Are cosmic rays modulated beyond the heliopause?

    SciTech Connect

    Kóta, J.; Jokipii, J. R.

    2014-02-10

    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈10{sup 26} cm{sup 2} s{sup –1}, a value that is two orders of magnitude smaller than the value of 10{sup 28} cm{sup 2} s{sup –1} determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈10{sup 22} cm{sup 2} s{sup –1}) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈10{sup 20} cm{sup 2} s{sup –1}; this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  7. Are Cosmic Rays Modulated beyond the Heliopause?

    NASA Astrophysics Data System (ADS)

    Kóta, J.; Jokipii, J. R.

    2014-02-01

    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈1026 cm2 s-1, a value that is two orders of magnitude smaller than the value of 1028 cm2 s-1 determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈1022 cm2 s-1) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈1020 cm2 s-1 this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  8. Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2008-12-24

    An overview is given of multiwavelength observations of young supernova remnants, with a focus on the observational signatures of efficient cosmic ray acceleration. Some of the effects that may be attributed to efficient cosmic ray acceleration are the radial magnetic fields in young supernova remnants, magnetic field amplification as determined with X-ray imaging spectroscopy, evidence for large post-shock compression factors, and low plasma temperatures, as measured with high resolution optical/UV/X-ray spectroscopy. Special emphasis is given to spectroscopy of post-shock plasma's, which offers an opportunity to directly measure the post-shock temperature. In the presence of efficient cosmic ray acceleration the post-shock temperatures are expected to be lower than according to standard equations for a strong shock. For a number of supernova remnants this seems indeed to be the case.

  9. Cosmic-Ray Injection from Star-Forming Regions.

    PubMed

    Carlson, Eric; Profumo, Stefano; Linden, Tim

    2016-09-01

    At present, all physical models of diffuse Galactic γ-ray emission assume that the distribution of cosmic-ray sources traces the observed populations of either OB stars, pulsars, or supernova remnants. However, since H_{2}-rich regions host significant star formation and numerous supernova remnants, the morphology of observed H_{2} gas (as traced by CO line surveys) should also provide a physically motivated, high-resolution tracer for cosmic-ray injection. We assess the impact of utilizing H_{2} as a tracer for cosmic-ray injection on models of diffuse Galactic γ-ray emission. We employ state-of-the-art 3D particle diffusion and gas density models, along with a physical model for the star-formation rate based on global Schmidt laws. Allowing a fraction, f_{H_{2}}, of cosmic-ray sources to trace the observed H_{2} density, we find that a theoretically well-motivated value f_{H_{2}}∼0.20-0.25 (i) provides a significantly better global fit to the diffuse Galactic γ-ray sky and (ii) highly suppresses the intensity of the residual γ-ray emission from the Galactic center region. Specifically, in models utilizing our best global fit values of f_{H_{2}}∼0.20-0.25, the spectrum of the galactic center γ-ray excess is drastically affected, and the morphology of the excess becomes inconsistent with predictions for dark matter annihilation. PMID:27661675

  10. Cosmic-Ray Injection from Star-Forming Regions.

    PubMed

    Carlson, Eric; Profumo, Stefano; Linden, Tim

    2016-09-01

    At present, all physical models of diffuse Galactic γ-ray emission assume that the distribution of cosmic-ray sources traces the observed populations of either OB stars, pulsars, or supernova remnants. However, since H_{2}-rich regions host significant star formation and numerous supernova remnants, the morphology of observed H_{2} gas (as traced by CO line surveys) should also provide a physically motivated, high-resolution tracer for cosmic-ray injection. We assess the impact of utilizing H_{2} as a tracer for cosmic-ray injection on models of diffuse Galactic γ-ray emission. We employ state-of-the-art 3D particle diffusion and gas density models, along with a physical model for the star-formation rate based on global Schmidt laws. Allowing a fraction, f_{H_{2}}, of cosmic-ray sources to trace the observed H_{2} density, we find that a theoretically well-motivated value f_{H_{2}}∼0.20-0.25 (i) provides a significantly better global fit to the diffuse Galactic γ-ray sky and (ii) highly suppresses the intensity of the residual γ-ray emission from the Galactic center region. Specifically, in models utilizing our best global fit values of f_{H_{2}}∼0.20-0.25, the spectrum of the galactic center γ-ray excess is drastically affected, and the morphology of the excess becomes inconsistent with predictions for dark matter annihilation.

  11. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  12. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  13. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  14. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  15. WINDS, CLUMPS, AND INTERACTING COSMIC RAYS IN M82

    SciTech Connect

    Yoast-Hull, Tova M.; Everett, John E.; Zweibel, Ellen G.; Gallagher, J. S. III

    2013-05-01

    We construct a family of models for the evolution of energetic particles in the starburst galaxy M82 and compare them to observations to test the calorimeter assumption that all cosmic ray energy is radiated in the starburst region. Assuming constant cosmic ray acceleration efficiency with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations as a function of energy. Cosmic rays are injected with Galactic energy distributions and electron-to-proton ratio via Type II supernovae at the observed rate of 0.07 yr{sup -1}. From the cosmic ray spectra, we predict the radio synchrotron and {gamma}-ray spectra. To more accurately model the radio spectrum, we incorporate a multiphase interstellar medium in the starburst region of M82. Our model interstellar medium is highly fragmented with compact dense molecular clouds and dense photoionized gas, both embedded in a hot, low density medium in overall pressure equilibrium. The spectra predicted by this one-zone model are compared to the observed radio and {gamma}-ray spectra of M82. {chi}{sup 2} tests are used with radio and {gamma}-ray observations and a range of model predictions to find the best-fit parameters. The best-fit model yields constraints on key parameters in the starburst zone of M82, including a magnetic field strength of {approx}250 {mu}G and a wind advection speed in the range of 300-700 km s{sup -1}. We find that M82 is a good electron calorimeter but not an ideal cosmic-ray proton calorimeter and discuss the implications of our results for the astrophysics of the far-infrared-radio correlation in starburst galaxies.

  16. Dark matter identification with cosmic-ray antideuterons

    NASA Astrophysics Data System (ADS)

    von Doetinchem, Philip

    2016-05-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches with positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This report is a condensed summary of the article “Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron” [1].

  17. Cosmic-ray Propagation and Interactions in the Galaxy

    SciTech Connect

    Strong, Andrew W.; Moskalenko, Igor V.; Ptuskin, Vladimir S.; /Troitsk, IZMIRAN

    2007-01-22

    We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion.

  18. Significance of medium-energy gamma-ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1976-01-01

    The paper examines the medium-energy (about 10-30 MeV) galactic gamma-ray radiation from primary and secondary electrons and calculates the expected gamma-ray distribution for the specific model of Bignami et al. (1975) on the assumption that the cosmic rays are correlated with the matter on the scale of galactic arms. The energy spectrum typical of regions near the galactic center indicates a dramatic shift from a predominantly cosmic-ray nucleonic mechanism at higher energies to a cosmic-ray electron mechanism at the lower energies. This provides a most important and direct means of probing the cosmic-ray electrons as a function of galactic position by making gamma-ray observations in the few to 40 MeV energy range. Medium-energy gamma-ray astronomy is shown to be a valuable tool in galactic research.

  19. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 6

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers contributed to the 19th International Cosmic Ray Conference which address high energy interactions and related phenomena are compiled. Particular topic areas include cross sections; particle production; nuclei and nuclear matter; nucleus-nucleus collisions; gamma ray and hadron spectra; C-jets, a-jets, and super families; and emulsion chamber simulations.

  20. Cosmic rays, geomagnetic field and climate changes

    NASA Astrophysics Data System (ADS)

    Shea, M.; Smart, D.

    The possibility of a connection between cosmic radiation and climate has intrigued scientists for the past several decades. The recent studies of Friis -Christensen and Svensmark has shown an observed variation of 3-4% of the global cloud cover between 1980 and 1995 that appeared to be directly correlated with the change in galactic cosmic radiation flux over the solar cycle. However, in studies of this type, not only the solar cycle modulation of cosmic radiation must be considered, but also the changes in the cosmic radiation impinging at the top of the atmosphere as a result of the long term evolution of the geomagnetic field. We present preliminary results of an on-going study of geomagnetic cutoff rigidities over a 400-year interval. These results show (1) the change in cutoff rigidity is sufficient large so that the change in cosmic radiation flux impacting the earth is approximately equal to the relative change in flux over a solar cycle, and (2) the changes in cutoff rigidity are non- uniform over the globe with both significant increases and decreases at mid-latitude locations.

  1. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  2. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  3. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2014-05-01

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π0→γγ. For a "normal" star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a "thick-target" model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  4. Solar influences on cosmic rays and cloud formation: A reassessment

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Bradley, Raymond S.

    2002-07-01

    Svensmark and Friis-Christensen [1997] proposed a ``cosmic ray-cloud cover'' hypothesis that cosmic ray flux, modulated by solar activity, may modify global cloud cover and thus global surface temperature by increasing the number of ions in the atmosphere, leading to enhanced condensation of water vapor and cloud droplet formation. We evaluate this idea by extending their period of study and examining long-term surface-based cloud data (from national weather services and the Global Telecommunication System) as well as newer satellite data (International Satellite Cloud Climatology Project (ISCCP) D2, 1983-1993). No meaningful relationship is found between cosmic ray intensity and cloud cover over tropical and extratropical land areas back to the 1950s. The high cosmic ray-cloud cover correlation in the period 1983-1991 over the Atlantic Ocean, the only large ocean area over which the correlation is statistically significant, is greatly weakened when the extended satellite data set (1983-1993) is used. Cloud cover data from ship observations over the North Atlantic, where measurements are denser, did not show any relationship with solar activity over the period 1953-1995, though a large discrepancy exists between ISCCP D2 data and surface marine observations. Our analysis also suggests that there is not a solid relationship between cosmic ray flux and low cloudiness as proposed by Marsh and Svensmark [2000].

  5. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; Mewwaldt, R. A.; Mitchell, J. W.; De Nolfo, G. A.; Sasaki, M.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  6. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  7. Cosmic ray anisotropies to 5 PeV

    SciTech Connect

    Erlykin, A. D.; Wolfendale, A. W. E-mail: a.w.wolfendale@durham.ac.uk

    2013-04-01

    Several large cosmic ray (CR) detectors have recently provided data on the arrival directions of CR, which taken together with previous data recorded over many decades allow the amplitude and phase of the first harmonic to be derived with reasonable precision and up to higher energies. We find a high degree of consistency amongst the various measurements. The new data indicate that at an energy above ∼ 0.1 PeV a change of the CR anisotropy sets in. The amplitude of the first harmonic, which rises to 3 TeV, then diminishes and begins to rise again. The direction of the phase also changes to the opposite one. A measure of understanding follows from the use of two-dimensional maps of cosmic ray excesses over the mean background. When the energy of cosmic rays approaches the PeV region, the excess of cosmic rays moves from the Galactic Anti-Centre to the opposite direction of the Galactic Centre. The possible role of such potential cosmic ray sources as the supernovae Monogem Ring and Vela, which could help to explain some of the observed results, is discussed.

  8. Estimates of galactic cosmic ray shielding requirements during solar minimum

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.; Simonsen, Lisa C.

    1990-01-01

    Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed.

  9. Stability of a Cosmic-Ray-Magnetohydrodynamic System

    NASA Astrophysics Data System (ADS)

    Ko, Chung-Ming; Lo, Ying-Yi

    2009-02-01

    We study the stability of a four-fluid cosmic-ray-MHD system which comprises magnetized thermal plasma, cosmic rays, forward and backward propagating Alfvén waves. The coupling between the plasma, cosmic rays, and waves depends on the energy density of the waves. Local short-wavelength small perturbation analysis is performed on a background steady state. The magnetoacoustic modes of the plasma are modified and intertwined with cosmic ray and wave modes, while the plasma Alfvén mode is unaffected. The parameter space is large and the stable/unstable regions of the system are complicated. We discuss some special cases analytically and work out some general cases numerically. Roughly speaking, the system is more likely to be stable if the perturbations have very short wavelength, not propagating at large angle with background magnetic field, large cosmic ray energy density, not too small energy density for both waves and large thermal energy density (and no self-gravity).

  10. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Sauer, H H; Smart, D F

    1996-01-01

    Galactic cosmic rays, which are thought to be produced and accelerated by a variety of mechanisms in the Milky Way galaxy, interact with the solar wind, the earth's magnetic field, and its atmosphere to produce hadron, lepton, and photon fields at aircraft altitudes that are quite unlike anything produced in the laboratory. The energy spectra of these secondary particles extend from the lowest possible energy to energies over an EeV. In addition to cosmic rays, energetic particles, generated on the sun by solar flares or coronal mass ejections, bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as cosmic rays. The authors have calculated atmospheric cosmic-ray angular fluxes, spectra, scalar fluxes, and ionization, and compared them with experimental data. Agreement with these data is seen to be good. These data have been used to calculate equivalent doses in a simplified human phantom at aircraft altitudes and the estimated health risks to aircraft crews. The authors have also calculated the radiation doses from several large solar energetic particle events (known as GLEs, or Ground Level Events), which took place in 1989, including the very large event known as GLE 42, which took place on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory. Unfortunately, there are essentially no experimental data with which to compare these calculations.

  11. A ready-to-use galactic cosmic ray model

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Mrigakshi, Alankrita I.; Reitz, Günther

    2013-02-01

    Galactic cosmic ray nuclei close to Earth are of great importance in different fields of research. By studying their intensity in near-Earth interplanetary space and modeling their modulation in the heliosphere it is possible to gain knowledge both about the structure of the heliosphere and the transport processes within. Additionally, secondary phenomena like cloud formation, ionization processes in the atmosphere, cosmogenic nuclide production and radiation exposure in space and at aviation altitudes are related to the intensity of the galactic cosmic rays and their modulation in the heliosphere. In order to improve the knowledge about these processes and underlying mechanisms it is often beneficial to perform numerical simulations. A necessary prerequisite for such simulations is a model describing the galactic cosmic ray intensities for all particle types and energies of importance. Several of these models exist in the literature. However, many of these do not provide essential characteristics like the description of heavier nuclei or it is difficult to associate them to recent or actual solar modulation conditions. In this work a model is presented which describes the galactic cosmic ray spectra of nuclei based on a single parameter. The values of this parameter for different solar modulation conditions are derived from measurements of the Advanced Composition Explorer (ACE) spacecraft and Oulu neutron monitor count rates. Comparing the galactic cosmic ray spectra predicted by the model to a comprehensive set of experimental data from literature shows very good agreement.

  12. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  13. High Energy Cosmic Rays and Neutrinos from Newborn Pulsars

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela

    2013-04-01

    Newborn pulsars offer favorable sites for cosmic ray acceleration and interaction. Particles could be striped off the star surface and accelerated in the pulsar wind up to PeV-100 EeV energies, depending on the pulsar's birth period and magnetic field strength. Once accelerated, the cosmic rays interact with the surrounding supernova ejecta until they escape the source. By assuming a normal distribution of pulsar birth periods centered at 300,ms, we find the combined contribution of extragalactic pulsars produce ultrahigh energy cosmic rays that agree with both the observed energy spectrum and composition trend reported by the Auger Observatory. Meanwhile, we point out their Galactic counterparts naturally give rise to a cosmic ray flux peaked at very high energies (VHE, between 10^16 and 10^18 ,eV), which can bridge the gap between predictions of cosmic rays produced by supernova remnants and the observed spectrum and composition just below the ankle. Young pulsars in the universe would also contribute to a diffuse neutrino background due to the photomeson interactions, whose detectability and typical neutrino energy are discussed. Lastly, we predict a neutrino emission level for the future birth of a nearby pulsar.

  14. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  15. Cosmic rays flux and geomagnetic field variations at midlatitudes

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Ribeiro, Paulo; Tragaldabas Collaboration Team

    2014-05-01

    It is well known that the cosmic rays flux is modulated by the solar wind and the Earth's magnetic field. The Earth's magnetic field deflects charged particles in accordance with their momentum and the local field strength and direction. The geomagnetic cutoffs depend both on the internal and the external components of the geomagnetic field, therefore reflecting the geodynamo and the solar activity variations. A new generation, high performance, cosmic ray detector Tragaldabas was recently installed at the University of Santiago de Compostela (Spain). The detector has been acquiring test data since September 2013 with a rate of about 80 events/s over a solid angle of ~5 srad. around the vertical direction. To take full advantage of this new facility for the study of cosmic rays arriving to the Earth, an international collaboration has been organized, of about 20 researchers from 10 laboratories of 5 European countries. The Magnetic Observatory of Coimbra (Portugal) has been measuring the geomagnetic field components for almost 150 years since the first measurements in 1866. It is presently equipped with up-to-date instruments. Here we present a preliminary analysis of the global cosmic ray fluxes acquired by the new Tragaldabas detector in relation to the geomagnetic field variations measured by the Coimbra observatory. We also compare the data from the new cosmic rays detector with results obtained by the Castilla-La Mancha Neutron Monitor (CaLMa, Gadalajara, Spain) that is in operation since October 2011.

  16. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  17. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  18. The elemental and isotopic composition of galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1983-01-01

    A directly accessible sample of matter which originates outside the solar system is provided by galactic cosmic rays. The present investigation is primarily concerned with progress related to questions raised regarding the similarity or difference between solar system matter and matter coming from outside the solar system. The investigation takes into account U.S. contributions to this topic over the period from 1979 to 1982. The cosmic ray (CR) abundances of all the elements from H to Ni (atomic number Z=1 to 28) have now been measured. Cosmic ray source (CRS) and solar system (SS) elemental compositions are listed in a table, and the ratio of CRS to SS abundance for 21 elements is shown in a graph. There is now clear evidence from CR isotope studies that the nucleosynthesis of CRS material has differed from that of SS material.

  19. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  20. Drift and observations in cosmic-ray modulation, 2

    NASA Technical Reports Server (NTRS)

    Potgieter, M. S.

    1985-01-01

    The significant effect of drift on the radial and latitudinal dependence of cosmic rays for consecutive solar minimum periods is illustrated. Compared with the integral radial gradient observed in 1976, the calculated value seems too small. A detailed comparison will however have to await the forthcoming solar minimum. The same applies to the latitudinal gradient which is as yet inconclusive about drift effects. Searching the literature for observations related to the IMF polarity reversal, distinct differences were found in neutron monitor response functions for consecutive solar minimum periods, and also in the annual variations of cosmic rays observed before and after polarity reversals. Whether drift is the predominant effect is however not yet clear. Better correlation was found between variations in the cosmic ray intensity and solar activity parameters over a much wider range of heliolatitude during 1970-80 compared to before this period.

  1. Opportunities in cosmic-ray physics and astrophysics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Board on Physics and Astronomy of the National Research Council established the Committee on Cosmic-Ray Physics to prepare a review of the field that addresses both experimental and theoretical aspects of the origin of cosmic radiation from outside the heliosphere. The following recommendations are made: NASA should provide the opportunity to measure cosmic-ray electrons, positrons, ultraheavy nuclei, isotopes, and antiparticles in space; NASA, the National Science Foundation (NSF), and the Department of Energy (DOE) should facilitate direct and indirect measurement of the elemental composition to as high an energy as possible, for which the support of long-duration ballooning and hybrid ground arrays will be needed; NSF and DOE should support the new Fly's Eye and provide for U.S. participation in the big projects on the horizon, which include giant arrays, ground-based gamma-ray astronomy, and neutrino telescopes; and NASA, NSF, and DOE should support a strong program of relevant theoretical investigations.

  2. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    SciTech Connect

    Aloisio, R.; Petrera, S.; Boncioli, D.; Grillo, A.F.; Salamida, F. E-mail: denise.boncioli@lngs.infn.it E-mail: aurelio.grillo@lngs.infn.it E-mail: salamida@ipno.in2p3.fr

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  3. Pinpointing cosmic ray propagation with the AMS-02 experiment

    SciTech Connect

    Pato, Miguel; Hooper, Dan; Simet, Melanie E-mail: dhooper@fnal.gov

    2010-06-01

    The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.

  4. The propagation of solar cosmic-ray bursts.

    NASA Technical Reports Server (NTRS)

    Ng, C. K.; Gleeson, L. J.

    1971-01-01

    Description of a model showing analytically the three phases of anisotropy which occur during solar cosmic-ray events in the 7.5 to 21 MeV kinetic-energy interval and reported by McCracken et al. (1971): (1) a highly anisotropic, near field-aligned, initial phase, (2) a convective phase, and (3) a late-time phase in which the anisotropy is approximately perpendicular to the mean interplanetary magnetic field. The model is based on the cosmic-ray particles being convectively transported out from the sun, undergoing anisotropic diffusion along the interplanetary magnetic-field lines, and losing energy by adiabatic deceleration or by collision processes. The event is seen simply as a pulse moving outward from the sun after a cosmic-ray burst with a negative density-gradient in front of it and a positive gradient behind.

  5. Cosmic-Ray Anisotropy as a Probe of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Giacinti, Gwenael; Kirk, John

    2016-07-01

    IceTop and IceCube have observed a mysterious cold spot in the angular distribution of high energy (≳ 100 TeV) cosmic rays, thereby placing interesting constraints on their transport properties. In this paper we examine these constraints by comparing the observations with the predictions of pitch-angle diffusion in various kinds of turbulence. In the case of incompressible Alfvénic turbulence with a Goldreich-Sridhar power-spectrum, we show that pseudo-Alfvén modes produce a signature that is compatible with the observations, although they fail to provide enough scattering to confine cosmic rays in the galaxy. We confirm that adding fast magnetosonic modes can alleviate this problem, and further show that for physically relevant values of the turbulence parameters, this model can still match the observations. Finally, we study the imprint on the cosmic-ray anistropy of anistropic damping of the fast modes.

  6. Numerical Modeling of Ultra-High Energy Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Kuempel, Daniel; Sigl, Guenter

    Even more than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. A key ingredient to interpret data and to draw conclusions on astrophysical parameters is a detailed knowledge on production and propagation effects of these highest energetic particles in the universe. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large-scale observatories. In this contribution we revisit the most important propagation effects of ultra-high energy cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, possible implications on astrophysical parameters are given.

  7. Study cosmic ray modulation near the heliopause: A numerical approach

    NASA Astrophysics Data System (ADS)

    Luo, X.; Zhang, M.; Potgieter, M. S.; Feng, X.; Pogorelov, N. V.

    2016-03-01

    By incorporating the MagnetoHydroDynamic (MHD) global heliospheric data into the Parker's cosmic-rays (CRs) transport equation, we constructed a hybrid galactic cosmic ray transport model to study the galactic cosmic-rays (GCR) behaviour near the heliopause(HP). Based on this hybrid model, we found that: (1)By increasing the ratio of the parallel diffusion coefficient to the perpendicular diffusion coefficient in the outer heliosheath (the region near HP and beyond), the simulated radial flux gradient near the HP increases as well. As this ratio multiplying factor reaches 1010, the flux experiences a sudden jump near the HP, similar to what Voyager 1 had observed in 2012. (2)After increasing the ratio of the diffusion coefficients beyond the HP, more pseudo- particles in our numerical approach which have been traced from the upwind nose region exit in the downwind tail region. It is thus possible that they diffuse more directly from the tail region to the nose region.

  8. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  9. Precision Cosmic Ray physics with space-born experiment

    NASA Astrophysics Data System (ADS)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.

  10. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  11. Cosmic-ray modulation and the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Burger, R. A.

    The heliospheric magnetic field plays a key role in any model for the modulation of cosmic rays. It enters into all diffusion coefficients, and its magnitude, spatial gradient and direction determine drifts patterns of cosmic rays in the heliosphere. While the first axisymmetric model of E.N. Parker proved quite successful to explain in situ measurements in the ecliptic plane, new insight into the origin and the nature of the field, especially at high heliographic latitudes, has led to the development of complex fully-three-dimensional, time-dependent models. In this review, we discuss a selection of models for the heliospheric magnetic field, and discuss how some of the more recent Fisk-type models affect the modulation of cosmic rays.

  12. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  13. Cosmic Rays from the Knee to the Ankle

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas

    Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeV to EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to extragalactic origin of cosmic rays completes this paper.

  14. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  15. An underground cosmic-ray detector made of RPC

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Wang, Yifang; Zhang, Jiawen; Cao, Jun; Kwok, Talent; Hor, Yuen-Keung; Chen, Jin; Ma, Liehua; Han, Jifeng; Qian, Sen

    2007-12-01

    Owing to its high efficiency, low cost and low sensitivity to environmental gamma-rays, resistive plate chamber (RPC) is a good candidate for large area underground cosmic-ray detectors. We report in this paper such a design for the Daya Bay reactor antineutrino experiment based on calculations and simulations for the efficiency, dead space control, noise and gamma-ray backgrounds. Experimental tests are performed, and good agreements with calculations and simulations are obtained, showing that the design is appropriate.

  16. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  17. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    SciTech Connect

    Moharana, Reetanjali; Razzaque, Soebur E-mail: srazzaque@uj.ac.za

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  18. Observations of cosmic-ray modulations in the fall, 1984

    NASA Technical Reports Server (NTRS)

    Torsti, J. J.; Nieminen, M.; Valtonen, E.; Arvela, H.; Lumme, M.; Peltonen, J.; Vainikka, E.

    1985-01-01

    Modulation of cosmic-ray energy spectrum was studied by using the Turku double neutron monitor. The multiplicity region of detected neutrons produced by cosmic ray hadrons in the monitor was divided into seven categories corresponding to mean energies 0.1, 0.3, 1.0, 3.2, 8.6, 21, and 94 GeV of hadrons at sea level. Based on 24-hour frequencies, a statistical analysis showed that modulation of the intensity in all categories occurred during several periods in the fall 1984. The magnitude of the variation was a few per cent.

  19. Searching for ultra-high energy cosmic rays with smartphones

    NASA Astrophysics Data System (ADS)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  20. Interplanetary crew exposure estimates for galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.

    1992-01-01

    Using the Langley Research Center galactic cosmic-ray transport computer code and the Computerized Anatomical Man model, initial estimates of interplanetary exposure of astronauts to galactic cosmic rays, during periods of solar minimum activity, are made for a realistic human geometry shielded by various thicknesses of spacecraft aluminum shielding. Conventional dose assessment in terms of total absorbed dose and dose equivalent is made for the skin, ocular lens, and bone marrow. Included in the analyses are separate evaluations of the contributions from the incident primary ions, from subsequent-generation fragmentation products, and from target fragments. In all cases considered, the equivalent sphere approximation yielded conservative overestimates for the actual organ exposures.

  1. Search for the end of the cosmic ray energy spectrum

    SciTech Connect

    Linsley, John

    1998-06-15

    The title I was asked to speak about expresses an idea that occurred rather recently in the history of cosmic ray studies. I argue that the idea of a possible end of the cosmic ray energy spectrum came into being after a sequence of three rapid advances in knowledge which I describe, calling them 'breakthroughs'. I suggest that the present workshop be regarded as a step toward a fourth breakthrough. I argue that this may occur through application of the Space Airwatch concept--the earth atmosphere as target and signal generator--as embodied in the NASA OWL project.

  2. IceCube: Neutrinos Associated with Cosmic Rays

    SciTech Connect

    Halzen, Francis

    2009-12-17

    After a brief review of the status of the kilometer-scale neutrino observatory IceCube, we discuss the prospect that such detectors discover the still-enigmatic sources of cosmic rays. After all, this aspiration set the scale of the instrument. While only a 'smoking gun' is missing for the case that the Galactic component of the cosmic-ray spectrum originates in supernova remnants, the origin of the extragalactic component remains as inscrutable as ever. We speculate on the role of the nearby active galaxies Centaurus A and M87.

  3. Cosmic ray sun shadow in Soudan 2 underground muon flux.

    SciTech Connect

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Fields, T. H.; Goodman, M. C.; Joffe-Minor, T.; Price, L. E.; Seidlein, R.; Soudan 2 Collaboration; Thron, J. L.

    1999-06-23

    The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. The authors report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a 3.3{sigma} shadow observed during the years 1995 to 1998.

  4. Analysis of cosmic-ray events with ALICE at LHC

    NASA Astrophysics Data System (ADS)

    Rodríguez Cahuantzi, M.

    2015-08-01

    ALICE is one of the four main experiments of the LHC at CERN. Located 40 meters underground, with 30 m of overburden rock, it can also operate to detect muons produced by cosmic-ray interactions in the atmosphere. An analysis of the data collected with cosmic-ray triggers from 2010 to 2013, corresponding to about 31 days of live time, is presented. Making use of the ability of the Time Projection Chamber (TPC) to track large numbers of charged particles, a special emphasis is given to the study of muon bundles, and in particular to events with high-muon density.

  5. Primary Cosmic-Ray Spectra in the Knee Region

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, Samvel V.; Biermann, P. L.

    2003-07-01

    Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.

  6. Causes of forbush decreases and other cosmic ray variations

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1974-01-01

    The relationship between neutron monitor variations and the intensity variations of the interplanetary magnetic field is studied, using Deep River data and IMP-series satellite data. In over 80% of the cases studied, identifiable depressions of the cosmic ray intensity are associated with magnetic field enhancements of several hours duration and intensity above 10 gamma. Conversely, each magnetic field enhancement has an identifiable effect (though not necessarily a marked depression) on the cosmic ray intensity. Long lasting Forbush decreases are found to be the consequence of the successive action of several such features. An explanation is presented and discussed.

  7. Cosmic-ray shock acceleration in oblique MHD shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  8. Effects of solar magnetic field on cosmic rays

    NASA Technical Reports Server (NTRS)

    Goncher, G. A.; Kolomeets, E. V.; Lyakhova, A. K.; Slyunyaeva, N. V.; Stekolnikov, N. V.

    1985-01-01

    Aspects of the problem of galactic cosmic ray propagation, including inversion of the solar total magnetic field and an analysis of data related to the heliomagnetic cycle are discussed. It is noted that the global structure of the solar magnetic field results in an additional flux of galactic cosmic rays generated by curvature and gradient drifts. An analysis of heliomagnetic cycle data shows that the latitudinal gradient results in a N-S asymmetry, with the amplitude of the effect growing with depth in the atmosphere. The inversion of the solar total magnetic field, drift effects, and other space distributions are found to contribute to a 22-year cycle of solar activity.

  9. Atmospheric ionization and cosmic rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    de Angelis, Alessandro

    2014-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterized by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  10. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts.

    PubMed

    2012-04-19

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted. PMID:22517161

  11. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts.

    PubMed

    2012-04-18

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  12. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  13. Voyager Measurements of the Isotopic Composition of Cosmic-Ray Chlorine and Implications for the Propagation of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Lukasiak, Andrew; McDonald, Frank B.; Webber, William R.

    1996-05-01

    We report a measurement of the cosmic-ray isotopic composition of chlorine in the low-energy range from 87 to 234 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1995 with an average solar modulation level about 500 MV, roughly the same as at Earth near sunspot minimum. Our interpretation of the isotopic composition of cosmic-ray chlorine is based on a standard Leaky-Box model for the interstellar propagation of cosmic ray nuclei with a path length distribution consistent with Voyager measurement of B/C ratio .

  14. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  15. Albedo gamma-rays from cosmic ray interactions on the solar surface

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1991-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. The high energy photon flux should be observable by the GRO, although details of our results are sensitive to assumptions about cosmic ray propagation through the magnetic fields of the inner solar system. We also estimate the neutrino and neutron fluxes resulting from the same process.

  16. Numerical simulations of planetary gamma-ray spectra induced by galactic cosmic rays

    SciTech Connect

    Masarik, J.; Reedy, R.C.

    1994-07-01

    The fluxes of cosmic-ray-produced gamma rays escaping from Mars were calculated using the LAHET Code System and basic nuclear data for {gamma}-ray production. Both surface water content and atmospheric thickness strongly affect the fluxes of {gamma}-ray lines escaping from Mars.

  17. Possible influence of cosmic rays on climate through thunderstorm clouds, 2. Observations in different cosmic ray components

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'eman, Yu.; Parisi, M.; Pustil'nik, L. A.; Signoretti, F.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    We compare observed in many experiments effects of atmospheric electric field in cosmic rays. On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cosmic ray cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m ≥ 1, m ≥ 2, m ≥ 3, m ≥ 4, m ≥ 5, m ≥ 6, m ≥ 7, and m ≥ 8, as well as for m = 1, m = 2, m = 3, m = 4, m = 5, m = 6, and m = 7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM in Rome and other cosmic ray stations. According to the theoretical calculations of Dorman and Dorman (2004) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman and Dorman (2004), the biggest electric field effect is expected in the multiplicity m = 1, much smaller in m = 2 and negligible effect is expected in higher multiplicities. We control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. We consider also the possible influence of CR air ionization (especially by secondary energetic electrons) on thunderstorms and lightnings, and through this -- on climate. References: Dorman L.I. and I.V. Dorman ``Possible influence of cosmic rays on climate through thunderstorm clouds, 1. Theory on cosmic ray connection with atmospheric electric field phenomenon''. Report on the Session D2.1/C2.2/E3.1 of COSPAR-2004.

  18. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the

  19. On the record of galactic cosmic ray flux and traffic break-ups in iron meteorites

    NASA Technical Reports Server (NTRS)

    Regnier, S.; Lavielle, B.; Marti, K.; Simonoff, G. N.

    1984-01-01

    Iron meteorites contain the record of the galactic cosmic ray intensity over a 100 to 1000 Myr time scale. A method was developed to calculate the cosmic ray exposure ages of iron meteorites. Discrepanices between exposure ages are discussed.

  20. PAMELA mission: heralding a new era in cosmic ray physics

    NASA Astrophysics Data System (ADS)

    Ricciarini, S. B.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Pascale, M. P.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Kheymits, M. D.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Yu.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Sarkar, R.; Simon, M.; Scotti, V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2014-04-01

    After seven years of data taking in space, the experiment PAMELA is showing very interesting features in cosmic rays, namely in the fluxes of protons, helium, electrons, that might change our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy. In addition, PAMELA measurements of cosmic antiproton and positron fluxes are setting strong constraints to the nature of Dark Matter. The continuous particle detection is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms. PAMELA is also measuring the radiation environment around the Earth, and has recently discovered an antiproton radiation belt.

  1. Cosmic ray composition investigations using ICE/ISEE-3

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1992-01-01

    The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.

  2. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  3. Cosmic-ray neutron simulations and measurements in Taiwan.

    PubMed

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-10-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 × 10(-3) n cm(-2) s(-1), was suggested. PMID:24573968

  4. Transport of Cosmic Rays in the Heliosphere: Theoretical Issues

    SciTech Connect

    Jokipii, J.R.

    2004-09-15

    Observations of cosmic rays and other energetic charged particles in the heliosphere over the past decade have created new challenges to the standard theoretical paradigms for energetic-particle transport. Certainly, some of these will be resolved using the standard Parker (diffusive) transport equation applied to increasingly sophisticated models of heliospheric phenomena. For example, we can apparently understand the modulation of galactic cosmic rays and the acceleration and transport of galactic cosmic rays in terms of this paradigm. Cosmic-ray reaction back on the plasma can also fit into this paradigm. However, it is also becoming increasingly clear that in some situations the diffusion approximation is not strictly valid. The scattering mean free paths may be large or there are significant anisotropies. For example, observations of solar energetic-particle events show non-diffusive effects, particularly in the early phases. Recently observed enhancements on Voyager 1, attributed to the proximity of the solar-wind termination shock, show large anisotropies. In the inner heliosphere, the transport mean-free paths are comparable to the characteristic macroscopic scales, which again makes diffusion models inaccurate. In this overview, the diffusion approximation and more-general treatments of particle transport are compared. It is concluded that even where the diffusion approximation is not strictly valid, it can be a useful guide to the more complete and complex models.

  5. Early results from the ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1995-01-01

    Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.

  6. Cosmic ray transport - Modulation and the anomalous component

    SciTech Connect

    Evenson, P.; Tuska, E.B. )

    1991-01-01

    Cosmic ray transport research is reviewed for the 1987-1990 time period, focusing on diffusive transport. Problems discussed include the diffusion model, anomalous components, radial gradient and north south anisotropy, short term modulation, long-term solar modulation, and charge sign dependent modulation. 249 refs.

  7. Where does the heliospheric modulation of galactic cosmic rays start?

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Potgieter, M. S.

    2014-04-01

    The long outstanding question of where the heliospheric (solar) modulation of galactic cosmic rays actually begins, in terms of spatial position, as well as at what high kinetic energy, can now be answered. Both answers are possible by using the results of an advanced numerical model, together with appropriate observations. Voyager 1 has been exploring the outskirts of the heliosphere and is presently entering what can be called the very local interstellar medium. It has been generally expected, and accepted, that once the heliopause is crossed, the local interstellar spectrum (LIS) should be measured in situ by the Voyager spacecraft. However, we show that this may not be the case and that modulation effects on galactic cosmic rays can persist well beyond the heliopause. For example, proton observations at 100 MeV close to the heliopause can be lower by ∼25% to 40% than the LIS, depending on solar modulation conditions. It is also illustrated quantitatively that significant solar modulation diminishes above ∼50 GeV at Earth. It is found that cosmic ray observations above this energy contain less that 5% solar modulation effects and should therefore reflect the LIS for galactic cosmic rays. Input spectra, in other words the very LIS, for solar modulation models are now constrained by in situ observations and can therefore not any longer be treated arbitrarily. It is also possible for the first time to determine the lower limit of the very LIS from a few MeV/nuc to very high energies.

  8. Cosmic ray nuclei of energy 50 GeV/NUC

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Streitmatter, R. E.; Ormes, J. F.

    1985-01-01

    Preliminary results from the High Energy Gas Cerenkov Spectrometer indicate that the sub-iron to iron ratio increases beyond 100 GeV/nucleon. This surprising finding is examined in light of various models for the origin and propagation of galactic cosmic rays.

  9. Spatial anisotropies of cosmic rays in the heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius

    2016-07-01

    When galactic cosmic rays enter the heliosphere they become exposed to four basic modulation processes: Convection and adiabatic energy losses caused by the outward expanding solar wind, diffusion caused by irregularities in the solar magnetic field, particle drifts caused by the large scale gradients, curvatures and current sheet in this magnetic field. Together these processes cause the 11-year modulation cycle and since this magnetic field also changes it polarity, the resulting particle drifts lead to a 22-year cycle as observed in solar modulation. Spatial gradients in the intensity of cosmic rays are of course established throughout the heliosphere by these processes so that a clear anisotropy follows which is measurable, especially deep inside the heliosphere e.g. at the Earth by cosmic ray detectors such as neutron monitors at ground level. In this overview these mechanisms are discussed from a theoretical point of view and by using the theory in numerical modeling, it is explained how a cosmic ray anisotropy is set-up over a vast range of energies so that a 22-year cycle is evident.

  10. Gradients of galactic cosmic rays and anomalous components

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1988-01-01

    Measurements of radial and latitudinal gradients of galactic cosmic rays and anomalous components now cover radii from 0.3 to 40 AU from the sun and latitudes up to 30 deg above the ecliptic plane for particle energies from approx. 10 MeV/n up to relativistic energies. The most accurate measurements cover the period 1972 through 1987, which includes more than one full 11 year cycle of solar activity. Radial gradients for glactic cosmic rays of all energies and species are small (similar to less than 10 percent AU), and variable in time, reaching a minimum of near 0 percent AU out to 30 AU for some species at solar maximum. Gradients for anomalous components are larger, of order 15 percent AU, may show similar time variability, and are relatively independent of particle species and energy. For the period 1985 through 1986 the intensity decreased away from the ecliptic for all species and energies. For galactic cosmic rays, the measured gradients are approx. 0.5 percent/degree near 20 AU, while for anomalous components the gradients are larger, ranging from 3 to 6 percent/degree. Comparison with a similar measurement for anomalous helium in 1975 through 1976 suggests that the latitude gradients for anomalous components have changed sign between 1975 and 1985. For galactic cosmic rays, the available evidence suggests no change in sign of the latitudinal gradient for relativistic particles.

  11. Cosmic rays: Physics and astrophysics. A research briefing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Some recent results in cosmic-ray physics are summarized, and how they raise new questions of interest for both physics and astrophysics is described. An important technical advance, the recently demonstrated capability of long-duration balloon flights of heavy payloads, will offer a great advantage for achieving some of these goals.

  12. Heavy cosmic-ray exposure of Apollo astronauts.

    PubMed

    Benton, E V; Henke, R P; Bailey, J V

    1975-01-24

    A comprehensive study of the heavy-particle cosmic-ray exposure received by the individual astronauts during the nine lunar Apollo missions reveals a significant variation in the exposure as a function of shielding and the phase of the solar cycle. The data are useful in planning for future long-range missions and in estimating the expected biological damage.

  13. Stochastic reacceleration of cosmic rays in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Ptuskin, V. S.

    1994-01-01

    The effects of reacceleration on cosmic rays have been studied over a wide charge and energy range using a model of reacceleration by the interstellar turbulence. We take into account only inevitable stochastic reacceleration of cosmic rays by the random hydrodynamic waves, which supposedly exist in the interstellar medium and provide a means for cosmic-ray scattering and spatial diffusion in the Galaxy. Our calculations reproduce not only the B/C ratio but also the H and He data over the entire energy range where the measurements are available. However, the sub-Fe to Fe ratio is not fitted as well as the B/C ratio, and the reacceleration effect does not seem to remove the need for truncation of short path lengths, which is apparently required by the standard leaky box model. This work demonstrates that the cosmic-ray data can be represented at least as well by a reacceleration model with a simple rigidity power-law escape length, which agrees with the Kolmogorov-type spectrum of hydromagnetic turbulence, as they can by the standard leaky box model with its ad hoc escape lengths.

  14. An Inexpensive Cosmic Ray Detector for the Classroom

    ERIC Educational Resources Information Center

    Goldader, Jeffrey D.; Choi, Seulah

    2010-01-01

    Finding ways to demonstrate--in a high school classroom--that subatomic particles from space produce other particles capable of reaching the Earth's surface is not a trivial task. In this paper, we describe a Geiger-Muller tube-based cosmic ray coincidence detector we produced at a total cost of less than $200, using two tubes purchased used…

  15. Cosmic Ray Studies on Skies and on Campus.

    ERIC Educational Resources Information Center

    Jones, Brian

    1993-01-01

    Outlines the highlights of experiments that allow students to trace the historical development of our understandings of cosmic rays. The experiments provide for two outdoor fieldwork experiences, indoor laboratory work, and an opportunity for a group of students to show originality and initiative. (ZWH)

  16. Cosmic-ray neutron simulations and measurements in Taiwan.

    PubMed

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-10-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 × 10(-3) n cm(-2) s(-1), was suggested.

  17. The transport of cosmic rays across magnetic fieldlines

    SciTech Connect

    Desiati, Paolo; Zweibel, Ellen G. E-mail: zweibel@astro.wisc.edu

    2014-08-10

    The long residence times and small anisotropies of cosmic rays suggest that they are well confined and well scattered by the Galactic magnetic field. Due to the disk-like shape of the confinement volume, transport in the vertical direction, which is perpendicular to the mean Galactic magnetic field, is key to cosmic ray escape. It has long been recognized that this vertical transport depends both on the vertical component of the field lines themselves and on the extent to which the cosmic rays are tied to the field lines. In this paper, we use magnetic fields with very simple spatial and temporal structures to isolate some important features of cross field line transport. We show that even simple magnetic nonuniformities combined with pitch angle scattering can enhance cross field line transport by several orders of magnitude, while pitch angle scattering is unnecessary for enhanced transport if the field is chaotic. Nevertheless, perpendicular transport is much less than parallel transport in all the cases we study. We apply the results to confinement of cosmic rays in the Fermi bubbles.

  18. Transport of cosmic ray nuclei in various materials.

    PubMed

    Silberberg, R; Tsao, C H; Letaw, J R

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials. PMID:11538213

  19. Heavy cosmic-ray exposure of Apollo astronauts

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.; Bailey, J. V.

    1975-01-01

    A comprehensive study of the heavy-particle cosmic-ray exposure received by the individual astronauts during the nine lunar Apollo missions reveals a significant variation in the exposure as a function of shielding and the phase of the solar cycle. The data are useful in planning for future long-range missions and in estimating the expected biological damage.

  20. Longitudinal trial functions and the cosmic ray energy scale

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    Formulae which were proposed to represent the longitudinal profiles of cosmic ray air showers are compared, and the physical interpretation of their parameters is examined. Applications to the problem of energy calibration are pointed out. Adoption of a certain especially simple formula is recommended, and its use is illustrated.

  1. Noninvasive Reactor Imaging Using Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.

    2015-10-01

    Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.

  2. Grandscan - AN Experiment to Study Cosmic Rays around EEV

    NASA Astrophysics Data System (ADS)

    Westerhoff, Stefan; Adams, Todd; Benzvi, Segev; Loh, Eugene C.

    For our understanding of the origin of ultra high energy cosmic rays the energy region between 1017 and 1019 eV is of crucial importance. Previous experiments have found indirect evidence that at these energies the origin of cosmic rays changes from predominantly Galactic to extragalactic. In addition weak evidence for an excess of cosmic rays from the direction of the Galactic center in a narrow energy band around 1018 eV has been claimed. However there is no additional evidence supporting this scenario. Neither Galactic nor extragalactic sources have been unambiguously established. Given the importance of this energy range there is a strong case for a dedicated experiment to study the EeV energy region with high precision. In this presentation we describe the design and capabilities of GRaNDScan a portable air fluorescence detector for stereo viewing of air showers at sub-EeV energies. Located at a site on the southern hemisphere GRaNDScan will provide an accurate map of the Galactic center region long suspected to harbor one or several sources of ultra high energy cosmic rays. It will provide information on the chemical composition of any observed excess and measure the energy spectrum in the region of the second knee. ~

  3. Factors affecting cosmic-ray doses at aircraft altitudes.

    PubMed

    Kendall, G M

    2000-11-01

    Cosmic rays make a significant, but not normally a dominant, contribution to the radiation dose of people all over the world. However, doses rise with altitude and the earth's magnetic field means that latitude also becomes important. Solar activity imposes a further, time dependent, variation. This article gives more details of these factors in the context of radiation protection as applied to air travel.

  4. Transport of cosmic ray nuclei in various materials.

    PubMed

    Silberberg, R; Tsao, C H; Letaw, J R

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  5. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 8

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. The present volume contains papers addressing high energy interactions and related phenomena. Specific topic areas include muons, neutrinos, magnetic monopoles, nucleon decay, searches for new particles, and acoustic and thermoluminescence detection techniques.

  6. Transport of cosmic ray nuclei in various materials

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  7. Cosmic rays intensity and atmosphere humidity at near earth surface

    NASA Astrophysics Data System (ADS)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  8. The isotopes of neon in the galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.; Wefel, J. P.

    1979-01-01

    The paper examines the results obtained by the University of Chicago instrument on board the IMP 7 satellite used to measure the abundances of Ne-20 and Ne-22 in the galactic cosmic rays during 1973-1977, over the general energy range of 60-230 MeV per nucleon. It is reported that the instrument shows a mass resolution of 0.7 amu(sigma) which was confirmed by calibrating a backup instrument at the LBL Bevalac with separated beams of neon isotopes. Through the use of standard solar modulation and cosmic-ray propagation models, the cosmic-ray source ratio inferred is Ne-22/Ne-20 = 0.38 = or -0.07 which is significantly greater than the present solar system ratio. It is concluded that propagation effects or cross-section uncertainties cannot account for such a large abundance of Ne-22, and thus this measurement provides evidence that the cosmic rays come from a source region where the Ne-22 abundance is substantially greater than in solar system material.

  9. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2000-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx.10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10, were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  10. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    1999-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx. 10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10 were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  11. Solar Cycle in the Heliosphere and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Galina A.; Cliver, Edward W.; Kovaltsov, Gennady A.; Ling, Alan G.; Shea, M. A.; Smart, D. F.; Usoskin, Ilya G.

    2014-12-01

    Manifestations of the 11-year solar cycle and longer time-scale variability in the heliosphere and cosmic rays are considered. We briefly review the cyclic variability of such heliospheric parameters as solar wind speed and density and heliospheric magnetic field, open magnetic flux and latitude variations of the heliospheric current sheet. It is discussed whether the local in-situ observation near Earth can represent the global 3D heliospheric pattern. Variability of cosmic rays near Earth provides an indirect useful tool to study the heliosphere. We discuss details of the heliospheric modulation of galactic cosmic rays, as recorded at and near Earth, and their relation to the heliospheric conditions in the outer heliosphere. On the other hand, solar energetic particles can serve as probes for explosive phenomena on the Sun and conditions in the corona and inner heliosphere. The occurrence of major solar proton events depicts an overall tendency to follow the solar cycle but individual events may appear at different phases of the solar cycle, as defined by various factors. The solar cycle in the heliosphere and cosmic rays depicts a complex pattern which includes different processes and cannot be described by a simple correlation with sunspot number.

  12. Invalidity of standard perturbation techniques in cosmic ray transport theory

    NASA Technical Reports Server (NTRS)

    Kaiser, T. B.; Birmingham, T. J.; Jones, F. C.

    1973-01-01

    It is contended that the existence of particles with arbitrarily long correlation times invalidates the condition necessary for the applicability of standard perturbation techniques in cosmic ray transport theory. It is also argued that Klimas and Sandri's (1971) conclusion about a non-Markovian time development of the particle distribution is unwarranted.

  13. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  14. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  15. Self-Similar Evolution of Cosmic-Ray Modified Shocks: The Cosmic-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W.

    2009-04-01

    We use kinetic simulations of diffusive shock acceleration (DSA) to study the time-dependent evolution of plane, quasi-parallel, cosmic-ray (CR) modified shocks. Thermal leakage injection of low-energy CRs and finite Alfvén wave propagation and dissipation are included. Bohm diffusion as well as the diffusion with the power-law momentum dependence are modeled. As long as the acceleration timescale to relativistic energies is much shorter than the dynamical evolution timescale of the shocks, the precursor and subshock transition approach the time-asymptotic state, which depends on the shock sonic and Alfvénic Mach numbers and the CR injection efficiency. For the diffusion models we employ, the shock precursor structure evolves in an approximately self-similar fashion, depending only on the similarity variable, x/(ust). During this self-similar stage, the CR distribution at the subshock maintains a characteristic form as it evolves: the sum of two power laws with the slopes determined by the subshock and total compression ratios with an exponential cutoff at the highest accelerated momentum, p max(t). Based on the results of the DSA simulations spanning a range of Mach numbers, we suggest functional forms for the shock structure parameters, from which the aforementioned form of CR spectrum can be constructed. These analytic forms may represent approximate solutions to the DSA problem for astrophysical shocks during the self-similar evolutionary stage as well as during the steady state stage if p max is fixed.

  16. Cosmic ray particle dosimetry and trajectory tracing. [cosmic ray track analysis for Apollo 17 BIOCORE

    NASA Technical Reports Server (NTRS)

    Cruty, M. R.; Benton, E. V.; Turnbill, C. E.; Philpott, D. E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.

  17. Superconducting magnets for space flight. [magnetic cosmic ray spectrometers

    NASA Technical Reports Server (NTRS)

    Golden, R. L.

    1975-01-01

    The operating principle and application of superconducting magnetic spectrometers for cosmic ray analysis are described. Magnetic spectrometer experiments are thought to be possible in the areas of charge composition and its possible energy dependence, isotopic separation up to several GeV/n, electrons and positrons energy spectra, galactic secondary antiprotons, searches for primordial antimatter, searches for substructure in energy spectra, and gamma ray astronomy. Operational problems associated with the magnets are discussed, and a possible shuttle payload is also described.

  18. Single particle effects, Biostack, and risk evaluation - Studies on the radiation risk from Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.

  19. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  20. A large detector for cosmic ray abundance and energy measurements

    NASA Astrophysics Data System (ADS)

    Alsop, C.

    A large aperture, balloon borne cosmic ray detector was designed to measure the energy spectra of individual cosmic ray species with Z greater than 8 in the energy range 0.3GeV/N to 400GeV/N. The energy dependence of the abundance spectrum extending up to such high energies will provide valuable data for determining the nature of the origin and propagation of cosmic rays in the Galaxy. The properties of cosmic ray nuclei and the interpretation of the energy dependence of the abundance spectrum are discussed. The design and response of the BUGS IV cosmic ray detector are described. The measurement techniques used are gas scintillation, gas proportional scintillation and Cerenkov radiation from both gases and solids. The light collection properties of the detector and several experimental investigations of the light collection efficiency of the drift chamber region are described. The expected signals from the gas scintillation and gas Cerenkov emissions are predicted and the choice of a suitable scintillating gas mixture for minimizing the uncertainty in the charge and energy measurements is considered. The theoretical aspects of electron drift and diffusion in gases and several experimental investigations on the electron drift in the BUGS IV drift chamber are given. Also some preliminary results from a uniform field drift chamber are included which demonstrate the sensitivity of the electron drift velocity in inert gas mixtures to water vapor contamination. The expected overall performance of BUGS IV and the results of an experimental simulation of the parachute landing of the detector are given.

  1. Cosmic Ray Composition Studies with Casa-Mia

    NASA Astrophysics Data System (ADS)

    Glasmacher, Margaret Anderson Kennedy

    1998-08-01

    The energy spectrum and composition of cosmic rays with primary energies between 1014 eV and 1016 eV have been studied with the CASA-MIA detector in order to provide experimental evidence to compare with competing models of cosmic ray acceleration. New measurements in this energy region are needed to understand previous contradictory experimental results. The CASA-MIA detector is a ground based air shower array, with 1089 surface detectors spaced 15 meters apart and 1024 buried muon detectors in 16 patches, used to measure the lateral distributions of the electromagnetic and muonic portions of air showers. The CASA-MIA measured differential energy spectrum is a power law with spectral indices of 2.68/pm.05 below approximately 1015 eV and 2.97/pm.05 above. A new method for measuring primary energy is derived from ground based data in a compositionally insensitive way. The 'knee' is shown to be a feature of this energy spectrum, not merely one of the size spectrum. In contrast with some previous reports, the 'knee' does not appear sharp, but rather a smooth transition over the energies from 1015 eV to 3.0×1015 eV. The composition of cosmic rays is roughly half light elements (e.g. protons and Helium) and half heavier at 1014 eV, and becomes increasingly heavy beginning near 5.0×1014 eV and extending to 1016 eV. At 1016 eV, the average composition is roughly 90% heavier than Helium. This result supports the model of cosmic ray acceleration by supernovae, possibly multiple classes of them, and the model of cosmic rays escaping from the galaxy in a charge dependent way.

  2. On the Origin of Ultra High Energy Cosmic Rays

    SciTech Connect

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  3. Angular distribution of cosmic rays in the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Fedorov, Yu. I.

    2001-08-01

    Cosmic ray propagation in the interplanetary medium is considered on the basis of kinetic equation describing the scattering of charged particles by magnetic irregularities and their focusing by regular interplanetary magnetic field. The relationship between cosmic ray distribution function and parameters of particle scattering in the interplanetary medium is investigated. Obtained results are applied to the analyses of solar proton events and galactic cosmic ray anisotropy. 1 COSMIC RAY DISTRIBUTION FUNCTION Angular distribution of energetic charged particles contains valuable information about particle scattering in the heliosphere and the geometry of interplanetary magnetic field (IMF) (Bieber and Pomerantz, 1983; Beeck and Wibberenz,1986; Wibberenz and Green, 1988; Hatzky and Wibberenz, 1997). In the present paper the relationship between the distribution function of cosmic rays (CR) and parameters of particle scattering is investigated. The kinetic equation describing CR propagation in the interplanetary medium, can be written as (Earl,1981; Toptygin,1985) ∂f ∂t + vµ ∂f ∂z + v 2ζ (1 - µ2 ) ∂f ∂µ - ∂ ∂µ Dµµ ∂f ∂µ = Q, (1) where f is CR distribution function, Dµµ is the diffusion coefficient in angular space, µ = cos θ and θ is the pitch angle, ς is the focusing length, and z is a coordinate directed along regular magnetic field. The particle source is included in the right hand side of Eq(1). One can present the distribution function as a superposition of isotropic f0 and anisotropic δf(µ) components f(z, µ, t) = 1 2 f0(z, t) + δf(z, µ, t). (2) Assuming that the particle source Q is isotropic and subtracting from Eq.(1) averaged over µ equation, we obtain

  4. A Tale of Cosmic Rays Narrated in γ Rays by Fermi

    NASA Astrophysics Data System (ADS)

    Tibaldo, Luigi

    2014-10-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling us the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ-ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ-ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ-ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multimessenger observations are bringing us ever closer to solving the cosmic-ray

  5. Cosmic ray Forbush-decreases as indicators of space dangerous phenomena and possible use of cosmic ray data for their prediction

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    We consider the influence of space phenomena, as strong interplanetary shock waves causing great cosmic ray Forbush-decreases, on satellite electronics, as well as on people health and technology at ground level. The hazardous potential of great magnetic storms accompanied by cosmic ray Forbush-effects was studied by a number of authors (see review in Ptitsyna et al. 1998). The prediction of this dangerous phenomenon can be done by using cosmic ray data on pre-increase and pre-decrease effects and on the change of 3-D cosmic ray anisotropy. We show that this prediction may be done accurately in the frame of an International Cosmic Ray Service (ICRS) (Dorman et al. 1993). For forecasting dangerous Forbush-decreases it will be necessary to analyze cosmic ray one-hourly data in real time.

  6. Balloon monitoring of cosmic ray fluxes: galactic and solar cosmic rays in the near-Earth space

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Galina; Makhmutov, Vladimir; Stozhkov, Yuri; Svirzhevskaya, Albina; Svirzhevsky, Nikolai

    The long-term observations of charged particle fluxes in the atmosphere at the polar and mid latitudes are conducted by the Lebedev Physical Institute since 1957 up to the present time. Meteorological balloons with a Geiger counter telescope are launched several times a week in the Arctic, Antarctic and Moscow regions. Simple instrumentation returns the secondary cosmic ray fluxes at varies altitudes from the ground level up to the 30-35 km. Since the geomagnetic field and the atmosphere act as an energy analyzer it is possible to estimate the intensity of galactic cosmic rays with energy above 100 and 1500 MeV during the whole period of observations and energy spectra of solar cosmic rays (when available) at the atmospheric boundary. We present the particle absolute fluxes and energy spectra, discuss the reliability of the results obtained and compare the results with data of measurements performed by the neutron monitor network and the near-Earth orbit spacecraft. We argue for necessity of the simultaneous ground-based, balloon, and spacecraft measurements of cosmic rays.

  7. Issues in Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    With shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen gas is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  8. Issues In Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  9. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect

    Not Available

    2009-11-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  10. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  11. Elemental technetium as a cosmic-ray clock

    NASA Technical Reports Server (NTRS)

    Drach, J.; Salamon, M. H.

    1985-01-01

    Several radioactive isotopes have been proposed as clocks for the study of the mean cosmic ray confinement time, T sub e. Measurements of Be-10 and Al-26 give a value for T sub e of about 10 Myr when one uses a leaky box cosmic ray propagation model. It is important to obtain additional measurements of T sub e from other radioactive isotopes in order to check whether the confinement is the same throughout the periodic table. The possible use of Tc (Z = 43) as a cosmic clock is investigated. Since all isotopes of Tc are radioactive, one might be able to group these isotopes and use the elemental abundance as a whole. The results of the calculations are somewhat inconclusive for two reasons. First, the beta + decay half lives of two of the Tc isotopes relevant to our calculation are not known. Second, the dependence of the Tc abundance on the mean confinement time is rather weak when one considers the number of events expected in 4 trays of plastic track detectors. However, a future, finite measurement of the Beta + half lives and the possible use of the entire collecting area of the HNC to detect Tc nuclei could make the use of Tc as a cosmic ray clock more attractive.

  12. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions

    SciTech Connect

    Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.

    2011-04-01

    This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.

  13. Neutrino diagnostics of ultrahigh energy cosmic ray protons

    SciTech Connect

    Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.

    2009-04-15

    The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproduce the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.

  14. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  15. Spectra of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mccray, R.

    1982-01-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  16. Elemental technetium and promethium as cosmic-ray clocks

    NASA Technical Reports Server (NTRS)

    Drach, J.; Salamon, M. H.

    1987-01-01

    The possibility of using elemental Tc (Z = 43) and Pm (Z = 61) as clocks to measure the mean cosmic-ray confinement time in the Galaxy, tau(epsilon) is considered. For this purpose it is necessary to estimate the unknown beta(+) decay half-lives of several Tc and Pm isotopes; these estimates are obtained using beta-decay systematics. In the case of Tc it is possible to estimate the half-lives sufficiently well and show that this element can indeed be used as a cosmic-ray clock; in the case of Pm the half-lives are too uncertain to permit any conclusion. In order to make meaningful measurement of tau(epsilon) using elemental Tc, a comsic-ray detector must have a charge resolution less than about 0.25e in the region around Tc, and enough collecting power to detect a few hundred Tc nuclei.

  17. Spallation processes and nuclear interaction products of cosmic rays.

    PubMed

    Silberberg, R; Tsao, C H

    1990-08-01

    Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.

  18. Spallation processes and nuclear interaction products of cosmic rays

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.

    1990-01-01

    Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.

  19. Elemental technetium and promethium as cosmic-ray clocks

    SciTech Connect

    Drach, J.; Salamon, M.H.

    1987-08-01

    The possibility of using elemental Tc (Z = 43) and Pm (Z = 61) as clocks to measure the mean cosmic-ray confinement time in the Galaxy, tau(epsilon) is considered. For this purpose it is necessary to estimate the unknown beta(+) decay half-lives of several Tc and Pm isotopes; these estimates are obtained using beta-decay systematics. In the case of Tc it is possible to estimate the half-lives sufficiently well and show that this element can indeed be used as a cosmic-ray clock; in the case of Pm the half-lives are too uncertain to permit any conclusion. In order to make meaningful measurement of tau(epsilon) using elemental Tc, a comsic-ray detector must have a charge resolution less than about 0.25e in the region around Tc, and enough collecting power to detect a few hundred Tc nuclei. 32 references.

  20. A study of cosmic rays in the Galaxy

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Büsching, I.

    2000-10-01

    This is a progress report on a new study of cosmic ray propagation in the Galaxy. We use a diffusion equation in three spatial dimensions taking into account catastrophic and continuous losses in the steady state and in the time dependent case. The diffusion coefficient is considered as depending on momentum, being spatial constant in the galactic disc and in the halo separately. Such calculations are needed to understand the influence of the galactic structure and the time dependence of the sources on cosmic ray spectra measured on earth. We also intend to employ these calculations in a model of diffuse galactic gamma ray emission that can be used to estimate the foreground in the GLAST data analysis. We acknowledge financial support by the Bundesministerium für Bildung und Forschung, grant DLR RD-JX 50 QV 0002.

  1. Cosmic Ray Monitoring and Space Dangerous Phenomena, 2. Methods of Cosmic Ray Using For Forecasting of Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Dorman, L. I.; Eroshenko, E. A.; Iucci, N.; Mavromichalaki, H.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Yanke, V. G.; Zukerman, I. G.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon tele- scopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for peo- ple technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geo- magnetic storms can be used global-spectrographic method if on-line will be avail- able 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of ge- omagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre- decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major ge- omagnetic storms. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting fea- tures for big Forbush-decreases". Nuclear Physics B, Vol. 49A, pp. 136-144. (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, Vol. 6, p. 476-479, (1999).

  2. On the possibility of observing cosmic ray sources in high energy gamma rays

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.

    1987-01-01

    If cosmic rays are accelerated by strong shocks, then cosmic ray sources should be characterized by spectra, dN/dE alpha E exp -(2.0-2.2), reflecting the strength of those shocks. This is expected from the 'standard leaky box' model of cosmic ray propagation in which the source spectra are harder than the observed spectra because higher energy particles have shorter residence times in the galactic magnetic fields. Furthermore, data on cosmic ray nucleons suggest that these sources might be surrounded by material. If the latter is true, such sources should be observable in gamma rays at energies beyond 1 GeV where the angular resolution of gamma-ray telescopes is optimized and the background is significantly reduced. For identified sources, the source location accuracy can be shown to improve with increasing energy in spite of the decreasing statistics, as long as the gamma-ray spectrum is harder than dN/dE alpha E exp -gamma. A Monte Carlo model is used to predict the photon spectra which would be expected from cosmic ray sources under varying assumptions about the strength of the shocks in the acceleration region.

  3. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos.

    PubMed

    Murase, Kohta; Guetta, Dafne; Ahlers, Markus

    2016-02-19

    The latest IceCube data suggest that the all-flavor cosmic neutrino flux may be as large as 10^{-7}  GeV cm^{-2} s^{-1} sr^{-1} around 30 TeV. We show that, if sources of the TeV-PeV neutrinos are transparent to γ rays with respect to two-photon annihilation, strong tensions with the isotropic diffuse γ-ray background measured by Fermi are unavoidable, independently of the production mechanism. We further show that, if the IceCube neutrinos have a photohadronic (pγ) origin, the sources are expected to be opaque to 1-100 GeV γ rays. With these general multimessenger arguments, we find that the latest data suggest a population of cosmic-ray accelerators hidden in GeV-TeV γ rays as a neutrino origin. Searches for x-ray and MeV γ-ray counterparts are encouraged, and TeV-PeV neutrinos themselves will serve as special probes of dense source environments.

  4. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos.

    PubMed

    Murase, Kohta; Guetta, Dafne; Ahlers, Markus

    2016-02-19

    The latest IceCube data suggest that the all-flavor cosmic neutrino flux may be as large as 10^{-7}  GeV cm^{-2} s^{-1} sr^{-1} around 30 TeV. We show that, if sources of the TeV-PeV neutrinos are transparent to γ rays with respect to two-photon annihilation, strong tensions with the isotropic diffuse γ-ray background measured by Fermi are unavoidable, independently of the production mechanism. We further show that, if the IceCube neutrinos have a photohadronic (pγ) origin, the sources are expected to be opaque to 1-100 GeV γ rays. With these general multimessenger arguments, we find that the latest data suggest a population of cosmic-ray accelerators hidden in GeV-TeV γ rays as a neutrino origin. Searches for x-ray and MeV γ-ray counterparts are encouraged, and TeV-PeV neutrinos themselves will serve as special probes of dense source environments. PMID:26943524

  5. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  6. Calibration of the Cherenkov telescope array using cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Parsons, R. D.; Hinton, J. A.; Schoorlemmer, H.

    2016-11-01

    Cosmic ray electrons represent a background for gamma-ray observations with Cherenkov telescopes, initiating air-showers which are difficult to distinguish from photon-initiated showers. This similarity, however, and the presence of cosmic ray electrons in every field observed, makes them potentially very useful for calibration purposes. Here we study the precision with which the relative energy scale and collection area/efficiency for photons can be established using electrons for a major next generation instrument such as CTA. We find that variations in collection efficiency on hour timescales can be corrected to better than 1%. Furthermore, the break in the electron spectrum at ∼ 0.9 TeV can be used to calibrate the energy scale at the 3% level on the same timescale. For observations on the order of hours, statistical errors become negligible below a few TeV and allow for an energy scale cross-check with instruments such as CALET and AMS. Cosmic ray electrons therefore provide a powerful calibration tool, either as an alternative to intensive atmospheric monitoring and modelling efforts, or for independent verification of such procedures.

  7. Solar and Galactic Cosmic Rays Observed by SOHO

    NASA Astrophysics Data System (ADS)

    Fleck, Bernhard; Curdt, Werner; Olive, Jean-Philippe; van Overbeek, Ton

    2015-04-01

    Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to 75% of its original level over 1 ½ solar cycles, Single Event Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that the total number of SSR SEUs with solar origin over the 17 ½ years from January 1996 through June 2013 is of the same order as those generated by cosmic ray hits. 49% of the total solar array degradation during that time can be attributed to proton events, i.e. the effect of a series of short-lived, violent events (SEPs) is comparable to the cycle-integrated damage by cosmic rays.

  8. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  9. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  10. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  11. Virgo cluster as a high energy cosmic rays source

    NASA Technical Reports Server (NTRS)

    Karakula, S.; Tkaczyk, W.

    1985-01-01

    The extragalactic charged particles are reflecting from the Galaxy by its magnetic field. Assuming magnetic field in the Galaxy as quasilongitudinal, the mean transparency of Galaxy has been evaluated for extragalactic protons defined as a fraction of particles at a given energy from a given direction passing by the galactic plane. The anisotropy caused by the Galactic magnetic field reflection of protons can explain observed arrival directions of extensive air showers at large angle to the galactic plane. Our analysis shows that the increase with energy observed in sin b sup 11 is self-consistent with changing in the cosmic ray energy spectrum at high energy (E 10 to the 19th power eV) in the case when extragalactic cosmic ray source with spectral index -2.2 is at the position of the Virgo Cluster.

  12. CMOS RAM cosmic-ray-induced-error-rate analysis

    NASA Technical Reports Server (NTRS)

    Pickel, J. C.; Blandford, J. T., Jr.

    1981-01-01

    A significant number of spacecraft operational anomalies are believed to be associated with cosmic-ray-induced soft errors in the LSI memories. Test programs using a cyclotron to simulate cosmic rays have established conclusively that many common commercial memory types are vulnerable to heavy-ion upset. A description is given of the methodology and the results of a detailed analysis for predicting the bit-error rate in an assumed space environment for CMOS memory devices. Results are presented for three types of commercially available CMOS 1,024-bit RAMs. It was found that the HM6508 is susceptible to single-ion induced latchup from argon and krypton ions. The HS6508 and HS6508RH and the CDP1821 apparently are not susceptible to single-ion induced latchup.

  13. Measurements of ultraheavy cosmic rays with HEAO-3

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.; Garrard, T. L.; Stone, E. C.; Waddington, C. J.

    1987-01-01

    The HEAO-3 Heavy Nuclei Experiment has measured abundances of elements from Ar-18 to U-92 in the cosmic rays. The results on the ultraheavy elements, those with atomic numbers greater than 30, indicate that the source of the cosmic rays contain a mixture of r-process and s-process material similar to that found in the solar system. This result is at variance with previous indications that the sources are greatly enhanced with freshly synthesized r-process material. Apparent discrepancies between the results and the accepted solar-system abundance have led to a reexamination of data on photospheric abundances of Ge and Pb, resulting in suggested reductions in their values.

  14. Updated Computational Model of Cosmic Rays Near Earth

    NASA Technical Reports Server (NTRS)

    ONeill, Patrick M.

    2006-01-01

    An updated computational model of the galactic-cosmic-ray (GCR) environment in the vicinity of the Earth, Earth s Moon, and Mars has been developed, and updated software has been developed to implement the updated model. This model accounts for solar modulation of the cosmic-ray contribution for each element from hydrogen through iron by computationally propagating the local interplanetary spectrum of each element through the heliosphere. The propagation is effected by solving the Fokker-Planck diffusion, convection, energy-loss boundary-value problem. The Advanced Composition Explorer NASA satellite has provided new data on GCR energy spectra. These new data were used to update the original model and greatly improve the accuracy of prediction of interplanetary GCR.

  15. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    SciTech Connect

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  16. The cosmic ray antiproton background for AMS-02

    SciTech Connect

    Kappl, Rolf; Winkler, Martin Wolfgang E-mail: martin.winkler@desy.de

    2014-09-01

    The AMS-02 experiment is measuring the cosmic ray antiproton flux with high precision. The interpretation of the upcoming data requires a thorough understanding of the secondary antiproton background. In this work, we employ newly available data of the NA49 experiment at CERN, in order to recalculate the antiproton source term arising from cosmic ray spallations on the interstellar matter. We systematically account for the production of antiprotons via hyperon decay and discuss the possible impact of isospin effects on antineutron production. A detailed comparison of our calculation with the existing literature as well as with Monte Carlo based evaluations of the antiproton source term is provided. Our most important result is an updated prediction for the secondary antiproton flux which includes a realistic assessment of the particle physics uncertainties at all energies.

  17. Cosmic ray antiproton and positron production in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Golden, R. L.; Brown, M. L.; Lacy, J. L.

    1975-01-01

    We have calculated the energy spectra of cosmic ray secondary antiprotons and positrons using the latest available data on inclusive reactions. Using the measured positron spectrum, we have found that the amount of matter traversed by the cosmic rays in the few GeV region to be 4.7 (+ or - 1.5) g/sq cm of interstellar hydrogen. The computed antiproton to proton ratio is about .0004 for energies 5-10 GeV. This is sufficient to make observations of antiprotons feasible from balloon flights. We have also pointed out the type of information that can be obtained if accurate information of the spectra of these two components becomes available.

  18. The birth of cosmic ray work in Japan

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun

    2013-02-01

    Systematic studies of cosmic rays in Japan were started when the Nishina Laboratory was established in Riken in 1931, after Nishina came back from the Niels Bohr Institute in Copenhagen. He was already known as an author of Klein-Nishina formula. He spent a great deal of effort to spread modern physics in Japan, inviting Dirac and Heisenberg to give series of lectures at the university of Tokyo, which later established the strong group of theoretical physicists including Yukawa, Tomonaga, Sakata and others. He also spent a great deal of effort in comprehensive studies of cosmic-rays including the precise measurements of the mass of mesons, of the intensity at the deepest underground of 3000 m.w.e., and of other research to be discussed. It is to be noted that the encouragement by the theoretical group of Yukawa, Tomonaga and others stimulated the recovery of the research after World War II in Japan.

  19. Ultrahigh-energy Cosmic Rays and Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Kotera, Kumiko; Silk, Joseph

    2016-06-01

    The recent detection of the gravitational-wave source GW150914 by the LIGO collaboration motivates a speculative source for the origin of ultrahigh-energy cosmic rays as a possible byproduct of the immense energies achieved in black hole (BH) mergers, provided that the BHs have spin, as seems inevitable, and there are relic magnetic fields and disk debris remaining from the formation of the BHs or from their accretion history. We argue that given the modest efficiency \\lt 0.01 required per event per unit of gravitational-wave energy release, merging BHs potentially provide an environment for accelerating cosmic rays to ultrahigh energies. The presence of tidally disrupted planetary or asteroidal debris could lead to associated fast radio bursts.

  20. UH cosmic rays: Possible origin in massive stars

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.

    1977-01-01

    The origin of the Z greater than 28, ultraheavy, cosmic rays in supernova explosions of massive stars is considered. For Z greater than 70, the UH data is dominated by an r-process source distribution, but for the elements just beyond iron, 29 or = Z less than 36, the data cannot be explained by any single process of nucleosynthesis. This problem is solved naturally in a massive star model by secondary neutron capture reactions occuring during core helium burning and during explosive carbon burning. Interstellar propagation calculations were performed with these episodes of synthesis as source distributions, and the results offer an explanation for the current UH cosmic-ray data. The heavy element synthesis during explosive carbon burning is reexamined using more realistic initial conditions given by the post-helium-burning configuration of the star. Effects of preferential acceleration are considered, and experimental tests are discussed.

  1. Detecting cosmic rays with the LOFAR radio telescope

    NASA Astrophysics Data System (ADS)

    Schellart, P.; Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Horneffer, A.; James, C. W.; Krause, M.; Mevius, M.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.; Alexov, A.; Anderson, J.; Avruch, I. M.; Bähren, L.; Beck, R.; Bell, M. E.; Bennema, P.; Bentum, M. J.; Bernardi, G.; Best, P.; Bregman, J.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Ciardi, B.; Coolen, A.; de Gasperin, F.; de Geus, E.; de Jong, A.; de Vos, M.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Ferrari, C.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Holties, H. A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKay-Bukowski, D.; McKean, J. P.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Nijboer, R.; Norden, M. J.; Orru, E.; Overeem, R.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Romein, J. W.; Röttgering, H.; Schoenmakers, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tang, Y.; Tasse, C.; Toribio, C.; van Leeuwen, J.; van Nieuwpoort, R.; van Weeren, R. J.; Vermaas, N.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2013-12-01

    The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first ~2 years of observing, 405 cosmic-ray events in the energy range of 1016-1018 eV have been detected in the band from 30-80 MHz. Each of these air showers is registered with up to ~1000 independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.

  2. Approximate supernova remnant dynamics with cosmic ray production

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.; Drury, L. O.; Dorfi, E. A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  3. Determining the Mass Composition of Cosmic Rays Using Shower Universality

    NASA Astrophysics Data System (ADS)

    Biscoveanu, Andrea; Mostafa, Miguel

    2016-03-01

    The mass composition of ultra-high energy cosmic rays is an important parameter for understanding their origin. Using both fluorescence and surface detectors, The Pierre Auger Observatory measures the depth of shower maximum, Xmax, from which the mass of the primary particle can be inferred. The surface detector measurement of Xmax is based on the principle of shower universality, and increases the number of cosmic rays by at least a factor of 10 with respect to the fluorescence detector measurement since it is not limited by the duty cycle of the fluorescence telescopes. We present an event-by-event comparison of the Xmax measurements from both types of detectors for energies above 10 18 . 8 eV, and a preliminary anisotropy study discriminating by the mass of the primary particle calculated using universality.

  4. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  5. Constraint on electromagnetic acceleration of highest energy cosmic rays.

    PubMed

    Medvedev, Mikhail V

    2003-04-01

    The energetics of electromagnetic acceleration of ultrahigh-energy cosmic rays (UHECRs) is constrained both by confinement of a particle within an acceleration site and by radiative energy losses of the particle in the confining magnetic fields. We demonstrate that the detection of approximately 3 x 10(20) eV events is inconsistent with the hypothesis that compact cosmic accelerators with high magnetic fields can be the sources of UHECRs. This rules out the most popular candidates, namely spinning neutron stars, active galactic nuclei (AGNs). Galaxy clusters and, perhaps, AGN radio lobes and gamma-ray burst blast waves remain the only possible (although not very strong) candidates for UHECR acceleration sites. Our analysis places no limit on linear accelerators. With the data from the future Auger experiment one should be able to answer whether a conventional theory works or some new physics is required to explain the origin of UHECRs. PMID:12786427

  6. Hydromagnetic waves and cosmic-ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch-angle (and energy) diffusion of cosmic rays in hydromagnetic wave fields is considered. The treatment remains strictly within the quasi-linear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch-angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since the Landau resonance in this approximation also does not lead to particle reflections, a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well-known difficulties of quasi-linear scattering theory for cosmic rays near 90 deg pitch angle.

  7. An Inexpensive Cosmic Ray Detector for the Classroom

    NASA Astrophysics Data System (ADS)

    Goldader, Jeffrey D.; Choi, Seulah

    2010-12-01

    Finding ways to demonstrate—in a high school classroom—that subatomic particles from space produce other particles capable of reaching the Earth's surface is not a trivial task. In this paper, we describe a Geiger-Muller tube-based cosmic ray coincidence detector we produced at a total cost of less than 200, using two tubes purchased used online; if the tubes were purchased new, the total cost would be about 325. Our detector is able to produce unambiguous CR detections in just 1000 total seconds of data collection. Furthermore, it is small and easily manipulated, allowing us to easily demonstrate the relationship between cosmic ray flux and the zenith angle.

  8. Ultimate Spectrum of Solar/Stellar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Struminsky, Alexei

    2015-08-01

    We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).

  9. Cosmic ray anisotropy in fractional differential models of anomalous diffusion

    SciTech Connect

    Uchaikin, V. V.

    2013-06-15

    The problem of galactic cosmic ray anisotropy is considered in two versions of the fractional differential model for anomalous diffusion. The simplest problem of cosmic ray propagation from a point instantaneous source in an unbounded medium is used as an example to show that the transition from the standard diffusion model to the Lagutin-Uchaikin fractional differential model (with characteristic exponent {alpha} = 3/5 and a finite velocity of free particle motion), which gives rise to a knee in the energy spectrum at 10{sup 6} GeV, increases the anisotropy coefficient only by 20%, while the anisotropy coefficient in the Lagutin-Tyumentsev model (with exponents {alpha} = 0.3 and {beta} = 0.8, a long stay of particles in traps, and an infinite velocity of their jumps) is close to one. This is because the parameters of the Lagutin-Tyumentsev model have been chosen improperly.

  10. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David; Pohl, Martin

    2011-09-10

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10{sup 18} eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10{sup -3} of the average. Difficulties with these avoidance scenarios are noted.

  11. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  12. A numerical investigation of cosmic ray modulation near the heliopause

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Zhang, Ming; Toit Strauss, Du; Pogorelov, Nikolai; Feng, Xueshang; Potgieter, Marius

    2016-07-01

    A hybrid transport model is used for studying the modulation of galactic cosmic ray in the global heliosphere. This model incorporates the output data of a comprehensive MagnetoHydroDynamics (MHD) model as numerical input for the Parker's transport equation which is solved using a Stochastic Differential Equations (SDE) approach. We use this approach to study the transport of galactic cosmic rays near and beyond the heliopause (HP). We find that: The simulated radial flux near the HP increases when increasing the ratio of the parallel to the perpendicular diffusion coefficients in the interstellar magnetic field of the outer heliosheath. As the multiplying factor of this ratio reaches 10 ^{10}, the radial flux experiences a sudden upwards jump near the HP, similar to what Voyager 1 had observed in 2012. We simulate the cosmic ray radial flux along different directions in the heliosphere. There is not a well-defined thin layer between the solar wind region and interstellar region along the tail and polar directions of the heliosphere. By analysing the radial flux profile along the direction of Voyager 2, together with its trajectory information, the time when the HP may be crossed by Voyager 2 is predicted. We also simulate the cosmic ray radial flux for different energy values along the direction of Voyager 1. We find that there is indeed a modulation region beyond the HP but only of a modest width of about 10 AU, so that Voyager 1 observing the very local interstellar spectra is justified in numerical modelling. We find that after increasing the ratio of the mentioned diffusion coefficients beyond the HP, more pseudo-particles in our SDE approach, which have been traced from the upwind nose region, exit in the downwind tail region. It is thus possible that they diffuse directly from the tail region to the nose region.

  13. Muon Production in Relativistic Cosmic-Ray Interactions

    SciTech Connect

    Klein, Spencer

    2009-07-27

    Cosmic-rays with energies up to 3x1020 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is sqrt snn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders.This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (pT) spectra in cosmic-ray air showers fromMACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher pT region where perturbative QCD should apply. With a 1 km2 surface area, the full IceCube detector should observe hundreds of muons/year with pT in the pQCD regime.

  14. Investigation of Cosmic Ray Transport and Search for Exotic Matter

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, Nicolas

    Precise multi-messenger measurements extending to TeV energies provide the means to confirm or refute much of the existing data, in particular, the observed high-energy positron enhancement, which may constitute evidence for dark matter particle annihilations. The proposed analysis effort would focus on galactic cosmic-ray spectra, element abundances, and measurements of cosmic-ray isotopes. A ring imaging Cherenkov detector and Monte Carlo simulations to reduce the signal selection uncertainties enable precise measurements of the radioisotope 10Be, which serves as a chronometer for cosmic-ray propagation models, in addition to secondary-to-primary ratios of B/C and sub-Fe/Fe up to 10 GeV/nucleon. The ratio of radioactive 10Be to stable 9Be is sensitive to the propagation lifetime of the cosmic rays. Ultra- precision detectors now measure these particles with accuracy for the coordinates to 10 micron, the travel time to 100 ps, and the velocity to 0.1%. A powerful magnet with a suite of particle detectors of large geometrical acceptance on the Space Station forms a magnetic spectrometer with resolving power capable of distinguishing an antihelium nucleus among ~10^10 background particles. The possible presence of cosmological antimatter and the nature of dark matter in the universe are fundamental physics questions of modern astrophysics and cosmology. The existence (or absence) of antimatter nuclei in space is tied to the theoretical foundation of elementary particle physics: CP-violation, baryon non-conservation, Grand Unified Theory, etc. Our fundamental research project addresses NASA s 2010 Science Plan for SMD s Science Goal for Astrophysics, specifically, the objective to "Understand the origin and destiny of the universe, and the nature of black holes, dark energy, dark matter, and gravity."

  15. Time-Correlated Particles Produced by Cosmic Rays

    SciTech Connect

    Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona; Snyderman, Neal J.; Sheets, Steven A.; Wurtz, Ron E.

    2015-05-06

    This report describes the NA-22 supported cosmic ray experimental and analysis activities carried out at LLNL since the last report, dated October 1, 2013. In particular we report on an analysis of the origin of the plastic scintillator signals resembling the signals produced by minimum ionizing particles (MIPs). Our most notable result is that when measured in coincidence with a liquid scintillator neutron signal the MIP-like signals in the plastic scintillators are mainly due to high energy tertiary neutrons.

  16. On the biological effects of cosmic rays: Epidemiological study

    NASA Astrophysics Data System (ADS)

    Conforto, A. M.; Signorini, C.

    1991-04-01

    The determination of the biological effects of cosmic rays and other natural radiation to resolve the more general problem of the consequences on human health, from the basis of ionizing radiation, is addressed. Difficulties relating to an epmidemiological study are outlined and results are discussed particularly concerning their inconsistency. In particular, high and low doses are discussed, referencing the Hiroshima bomb, the HBRA (High Background Radiation Area), and the CA (Control Area). High and low regions are discussed for the case of cancer.

  17. Human exposure to galactic cosmic rays in space

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, F. A.; Shinn, J. L.; Wilson, J. W.

    1992-01-01

    The Langley Research Center GCR (galactic cosmic rays) code (HZETRN) and the computerized Anatomical Man (CAM) model are used to estimate astronaut exposures, from GCR particles, for missions beyond earth's magnetosphere. Conventional risk assessments in terms of total absorbed dose and dose equivalent are made for skin, ocular lens, and bone marrow. For each organ, evaluations are made of relative contributions from incident protons, iron nuclei, and their secondary reaction products.

  18. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  19. WIND/EPACT observations of anomalous cosmic rays

    NASA Astrophysics Data System (ADS)

    Reames, D. V.; Barbier, L. M.; von Rosenvinge, T. T.

    1997-05-01

    The Energetic Particles, Acceleration, Composition and Transport (EPACT) Experiment on the WIND spacecraft, and especially its large-geometry Low Energy Matrix Telescope (LEMT), is capable of sensitive measurements of ions of the anomalous cosmic-ray (ACR) component above 2 MeV/amu. We report on the energy spectra of He, C, N, O, Ne, S, and Ar and estimate element abundances at the acceleration site.

  20. Ultra-high energy cosmic rays: Setting the stage

    NASA Astrophysics Data System (ADS)

    Sokolsky, P.

    2013-06-01

    The history of ultra-high energy cosmic ray physics is reviewed from the post-war era of arrays such as Volcano Ranch, Haverah Park and Akeno to the development of air-fluorescence and current hybrid arrays. The aim of this paper is to present the background information needed for a better understanding of the current issues in this field that are discussed in much greater depth in the rest of this conference.