Sample records for cosmic x rays

  1. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  3. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  4. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  5. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  6. Advances in solar and cosmic X-ray astronomy - A survey of experimental techniques and observational results.

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Thomas, R. J.; Underwood, J. H.

    1972-01-01

    The current status of X-ray astronomy is surveyed by reviewing observational results and theoretical conclusions gained within the past two years in areas dealing with the quiet-sun, slowly-varying, and burst components of solar X-radiation and with the features of cosmic X-ray sources. Thermal and nonthermal processes responsible for a wide variety of X-ray emission mechanisms in nature are explained, and characteristics of X radiation from specific solar structures are described. Attention is given to the effects of interstellar and intergalactic matter on cosmic X-rays; the properties of galactic and extragalactic X-ray sources; and the specifications of such instruments as gas-filled ionization detectors, proportional counters, Geiger counters, scintillation detectors, photoelectric detectors, polarimeters, collimators, spectrometers, and imaging systems.

  7. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates.

  8. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  9. International Cosmic Ray Conference, 13th, University of Denver, Denver, Colo., August 17-30, 1973, Proceedings. Volume 5

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An X-ray observation of the Norma-Lupus region, charge and isotope measurements of heavy cosmic ray nuclei and their role in the determination of cosmic ray age, and the possibility of a contribution to primary cosmic ray spectra from pulsars are among the topics covered in papers concerned with some of the results of recent cosmic ray research. Other topics covered include multiple scattering of charged particles in magnetic fields, absorption of primary cosmic rays in the atmosphere, and phase lag effects on cosmic ray modulation during a recent solar cycle. Individual items are announced in this issue.

  10. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  11. The Origin of the UCSD X-ray Astronomy Program - A Personal Perspective

    NASA Astrophysics Data System (ADS)

    Peterson, Laurence E.

    2013-01-01

    I was a graduate student in the late 1950’s at the University of Minnesota in the Cosmic Ray Group under Prof. John R. Winckler. He had a project monitoring Cosmic ray time variations from an extensive series of balloon flights using simple detectors during the International Geophysical Year 1957-58. During the 20 March 1958 flight, a short 18 sec. burst of high energy radiation was observed simultaneously with a class II Solar flare. From the ratio of the Geiger counter rate to the energy loss in the ionization chamber, it was determined this radiation was likely hard X-rays or low-energy gamma rays and not energetic particles. Further analysis using information from other concurrent observations indicated the X-rays were likely due to Bremsstrahlung from energetic electrons accelerated in the solar flare magnetic field; these same electrons produced radio emissions. This first detection of extra-terrestrial X- or gamma rays showed the importance of non-thermal processes in Astrophysical phenomena. Winckler and I were interested by the possibility of non-solar hard X-rays. While completing my thesis on a Cosmic ray topic, I initiated a balloon program to develop more sensitive collimated low-background scintillation counters. This led to a proposal to the newly formed NASA to place an exploratory instrument on the 1st Orbiting Solar Observatory launched 7 March 1962. In August that year, I assumed a tenure-track position at UCSD; the data analysis of OSO-1 and the balloon program were transferred to UCSD to initiate the X-ray Astronomy program. The discovery of Cosmic X-ray sources in the 1-10 Kev range on a rocket flight in June 1962 by Giacconi and colleagues gave impetus to the UCSD activities. It seemed evident cosmic X-ray sources could be detected above 20 Kev using high-flying balloons. Early results included measurements of the 50 million K gas in SCO X-1, and the X-ray continuum from the Crab Nebula characterized by a power-law dN/dE ~ E-2.2. The instrument developments resulted in ever more sophisticated and sensitive counter systems. Follow-on instruments were flown on OSO-III and OSO-VII by the early 70’s, the HEAO-1 in 1976, and the RXTE in 1995. These provided many new results on Cosmic X-rays.

  12. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  13. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara

    2013-11-01

    The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.

  14. Rossi and high-energy astronomy

    NASA Astrophysics Data System (ADS)

    Clark, George W.

    2012-03-01

    The contributions of Bruno Rossi to high-energy astronomy began in Italy in the 1930s with investigations concerning the nature of cosmic rays in theory and in hands-on experiments at the universities of Florence and Padua. Recent discoveries had cast doubt on Robert Millikan's idea that the primary cosmic rays are gamma rays created in the production of the elements by fusion of hydrogen atoms in interstellar space. Rossi entered the field with a prediction published in 1930 of a difference between the intensity of cosmic rays from the east and the west that would occur if the primary cosmic rays were charged particles of one sign. In the same year he invented the first practical electronic coincidence circuit, which he used in a series of fundamental particle experiments and in an unsuccessful attempt to detect an east-west effect at Florence. Expecting by theory that the effect would be greater at high altitude near the equator, he took his experiment to Eritrea in 1934 where his measurements demonstrated that the primary cosmic rays are predominantly positive particles. In the report of his expedition he also described his discovery of extensive cosmic-ray air showers. After WWII and his work at Los Alamos, Rossi resumed his cosmic-ray research, now at MIT, in a new style best described in his own words: ``Now I had the responsibility of an entire group, and what mattered was no longer my own work, but the work of the group.'' He suggested the new methods of ``density sampling'' and ``fast timing'' for air shower studies, and promoted their application in numerous experiments on the nature and origins of the highest energy cosmic rays. In 1959 he initiated and participated as a consultant in the work of Riccardo Giacconi that led to the discovery of the first x-ray star, Sco X-1, and the development of the first imaging x-ray telescopes. At MIT, members of the Rossi Cosmic Ray Group took the early steps in gamma-ray astronomy, first with balloon experiments that set lower and lower limits on the intensity of primary gamma rays, and then with the satellite experiments led by William Kraushaar that discovered the galactic and extra-galactic components of cosmic gamma rays. After Sco X-1, Rossi focused his efforts on exploring the solar wind and the interplanetary plasma while leaving his younger colleagues to pursue the new field of extra-solar x-ray astronomy with balloon, rocket, and satellite experiments.

  15. Lightning Initiation and Propagation

    DTIC Science & Technology

    2009-08-22

    ray (gamma ray ) and multiple-station (>24) cosmic - ray - muon detection network (TERA) pl:esently in place. Upgrade TERA with LaBr3 detectors to...DATES COVERED 4. TITLE AND SUBTITLE Lightning Initistion and Propagation Including the Role of X- Rays , Gamma Rays , and Cosmic Rays 5a... rays , gamma rays , and cosmic rays in the initiation and propagation of lightning and in the phenomenology of thunderclouds. The experimental

  16. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  17. Impact of Cosmic-Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  18. Evaluating Galactic Cosmic Ray Environment Models Using RaD-X Flight Data

    NASA Technical Reports Server (NTRS)

    Norman, R. B.; Mertens, C. J.; Slaba, T. C.

    2016-01-01

    Galactic cosmic rays enter Earth's atmosphere after interacting with the geomagnetic field. The primary galactic cosmic rays spectrum is fundamentally changed as it interacts with Earth's atmosphere through nuclear and atomic interactions. At points deeper in the atmosphere, such as at airline altitudes, the radiation environment is a combination of the primary galactic cosmic rays and the secondary particles produced through nuclear interactions. The RaD-X balloon experiment measured the atmospheric radiation environment above 20 km during 2 days in September 2015. These experimental measurements were used to validate and quantify uncertainty in physics-based models used to calculate exposure levels for commercial aviation. In this paper, the Badhwar-O'Neill 2014, the International Organization for Standardization 15390, and the German Aerospace Company galactic cosmic ray environment models are used as input into the same radiation transport code to predict and compare dosimetric quantities to RaD-X measurements. In general, the various model results match the measured tissue equivalent dose well, with results generated by the German Aerospace Center galactic cosmic ray environment model providing the best comparison. For dose equivalent and dose measured in silicon, however, the models were compared less favorably to the measurements.

  19. Spectroscopic analysis of solar and cosmic X-ray spectra. 1: The nature of cosmic X-ray spectra and proposed analytical techniques

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.

    1975-01-01

    Techniques for the study of the solar corona are reviewed as an introduction to a discussion of modifications required for the study of cosmic sources. Spectroscopic analysis of individual sources and the interstellar medium is considered. The latter was studied via analysis of its effect on the spectra of selected individual sources. The effects of various characteristics of the ISM, including the presence of grains, molecules, and ionization, are first discussed, and the development of ISM models is described. The expected spectral structure of individual cosmic sources is then reviewed with emphasis on supernovae remnants and binary X-ray sources. The observational and analytical requirements imposed by the characteristics of these sources are identified, and prospects for the analysis of abundances and the study of physical parameters within them are assessed. Prospects for the spectroscopic study of other classes of X-ray sources are also discussed.

  20. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  1. First Hard X-Ray Detection of the Non-Thermal Emission Around the Arches Cluster: Morphology and Spectral Studies With NuSTAR

    NASA Technical Reports Server (NTRS)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.; hide

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)

  2. Cosmic-ray tracks in plastics: the apollo helmet dosimetry experiment.

    PubMed

    Comstock, G M; Fleischer, R L; Giard, W R; Hart, H R; Nichols, G E; Price, P B

    1971-04-09

    Counts of tracks from heavy cosmic-ray nuclei in helmets from Apollo missions 8 and 12 show variations caused by solar modulation of the galactic cosmic-ray flux. Specific estimates of the biological damage to certain nonreplaceable cells by track-forming particles during these space missions indicate that the fraction of deactivated cells could range from a lower limit of 3 x 10(-7) to an upper limit of 1.4 x 10(-4).

  3. High sensitive X-ray films to detect electron showers in 100 GeV region

    NASA Technical Reports Server (NTRS)

    Taira, T.; Shirai, T.; Tateyama, N.; Torii, S.; Nishimura, J.; Fujii, M.; Yoshida, A.; Aizu, H.; Nomura, Y.; Kazuno, M.

    1985-01-01

    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons.

  4. A cosmic X-ray astronomy bibliography: The Astrophysical Journal, 1962 to 1972

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1972-01-01

    The results are presented of a survey of the Astrophysical Journal for the period January 1962 through March 1972 (volumes 135-172). Some 395 references are contained within this document related to cosmic X-ray astronomy.

  5. New fermionic dark matters, extended Standard Model and cosmic rays

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Kwang

    2017-08-01

    Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 1015 eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of -4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.

  6. A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.

    1986-01-01

    Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.

  7. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  8. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  9. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  10. Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yasunobu

    Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.

  11. AURORAL X-RAYS, COSMIC RAYS, AND RELATED PHENOMENA DURING THE STORM OF FEBRUARY 10-11, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winckler, J.R.; Peterson, L.; Hoffman, R.

    1959-06-01

    Balloon observations were made during the auroral storm of February 10- 11, 1958, at Minneapolis. Strong x-ray bursts in two groups were detected. The groups appeared coincident with two large magnetic bays, with strong radio noise absorption, and with the passage across the zenith of a very large amount of auroral luminosity. From the x-ray intensity and measured energies, an electron current of 0.6 x 10/sup 6/ electrons /cm/sup 2// scc was present. These electrons ionizing the upper D layer accounted for the increased cosmic noise absorption. The x-rays themselves carried 1000 times less energy than the electrons and couldmore » not provide sufficient ionization for the observed radio absorption. Visual auroral fornis during this storm are reported to have lower borders at thc 200 to 300 km level. There is thus a difficulty in bringing the electrons to the D layer without ani accompanying visible aurora. A cosmic-ray decrease accompanied the storm and was observed to be from 4 to 6% at sea level, 21% in the balloon altitude ionization, and 15% in total energy influx at 55 deg geomagnetic latitude. Compared with the great intensity of the magnetic and auroral phenomena in this storm, the cosmic-ray modulation was not exceptionally large. (auth)« less

  12. Relevance of cosmic gamma rays to the mass of gas in the galaxy

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    The bulk of the diffuse gamma-ray flux comes from cosmic ray interactions in the interstellar medium. A knowledge of the large scale spatial distribution of the Galactic gamma-rays and the cosmic rays enables the distribution of the target gas to be examined. An approach of this type is used here to estimate the total mass of the molecular gas in the galaxy. It is shown to be much less than that previously derived, viz., approximately 6 x 10 to the 8th power solar masses within the solar radius as against approximately 3 x 10 to the 9th power based on 2.6 mm CO measurements.

  13. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  14. Correlation between low level fluctuations in the x ray background and faint galaxies

    NASA Technical Reports Server (NTRS)

    Tolstoy, Eline; Griffiths, R. E.

    1993-01-01

    A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).

  15. The spectral archive of cosmic X-ray sources observed by the Einstein Observatory Focal Plane Crystal Spectrometer

    NASA Technical Reports Server (NTRS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Clark, George W.; Coyne, Joan M.; Markert, Thomas H.; Saez, Pablo J.; Schattenburg, Mark L.; Winkler, P. F.

    1992-01-01

    The Einstein Observatory Focal Plane Crystal Spectrometer (FPCS) used the technique of Bragg spectroscopy to study cosmic X-ray sources in the 0.2-3 keV energy range. The high spectral resolving power (E/Delta-E is approximately equal to 100-1000) of this instrument allowed it to resolve closely spaced lines and study the structure of individual features in the spectra of 41 cosmic X-ray sources. An archival summary of the results is presented as a concise record the FPCS observations and a source of information for future analysis by the general astrophysics community. For each observation, the instrument configuration, background rate, X-ray flux or upper limit within the energy band observed, and spectral histograms are given. Examples of the contributions the FPCS observations have made to the understanding of the objects observed are discussed.

  16. Can the cosmic x ray and gamma ray background be due to reflection of a steep power law spectrum and Compton scattering by relativistic electrons?

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland

    1991-01-01

    We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.

  17. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  18. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  19. Indications of proton-dominated cosmic-ray composition above 1.6 EeV.

    PubMed

    Abbasi, R U; Abu-Zayyad, T; Al-Seady, M; Allen, M; Amman, J F; Anderson, R J; Archbold, G; Belov, K; Belz, J W; Bergman, D R; Blake, S A; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Ivanov, D; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Loh, E C; Liu, J; Lundquist, J P; Maestas, M M; Manago, N; Marek, L J; Martens, K; Matthews, J A J; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Rodriguez, D; Sasaki, N; Schnetzer, S R; Scott, L M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S; Thomas, S B; Thomas, J R; Thomson, G B; Tupa, D; Zech, A; Zhang, X

    2010-04-23

    We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d/d[log(E)] of 47.9+/-6.0(stat)+/-3.2(syst) g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4x10(18) eV.

  20. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  1. On the modulation of X ray fluxes in thunderstorms

    NASA Technical Reports Server (NTRS)

    Mccarthy, Michael P.; Parks, George K.

    1992-01-01

    The production of X-ray fluxes in thunderstorms has been attributed to bremsstrahlung. Assuming this, another question arises. How can a thunderstorm modulate the number density of electrons which are sufficiently energetic to produce X-rays? As a partial answer to this question, the effects of typical thunderstorm electric fields on a background population of energetic electrons, such as produced by cosmic ray secondaries and their decays or the decay of airborne radionuclides, are considered. The observed variation of X-ray flux is shown to be accounted for by a simple model involving typical electric field strengths. A necessary background electron number density is found from the model and is determined to be more than 2 orders of magnitude higher than that available from radon decay and a factor of 8 higher than that available from cosmic ray secondaries. The ionization enhancement due to energetic electrons and X-rays is discussed.

  2. Cosmological Implications of the Effects of X-Ray Clusters on the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1996-01-01

    We have been carrying forward a program to confront X-ray observations of clusters and their evolution as derived from X-ray observatories with observations of the cosmic microwave background radiation (CMBR). In addition to the material covered in our previous reports (including three published papers), most recently we have explored the effects of a cosmological constant on the predicted Sunyaev-Zel'dovich effect from the ensemble of clusters. In this report we summarize that work from which a paper will be prepared.

  3. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  4. From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2014-01-01

    Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi's intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth's magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.

  5. Cosmic ray propagation in the local superbubble

    NASA Technical Reports Server (NTRS)

    Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.

    1984-01-01

    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.

  6. Selected Theoretical Studies Group contributions to the 14th International Cosmic Ray conference. [including studies on galactic molecular hydrogen, interstellar reddening, and on the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.

  7. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  8. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.

  9. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.« less

  10. DoD Space Radiation Concerns.

    DTIC Science & Technology

    1992-07-15

    cosmic - ray transport. NASA TM X-2440, 1972:117-122. DoD Space Radiation Concerns 8 2. Atkins SG, Small JT, McFarland TH. Military Man-in Space (MMIS...136. 29. Silberberg R, Tsao CH, Adams JH Jr., Letaw JR. Radiation doses and LET distributions of cosmic rays . Rad. Res., 1984, 98:209-226. 30. Stauber...levels on mission success and completion. Natural Radiation Trapped Radiation Belts Galactic Cosmic Rays (GCR) Solar Particle Events (SPEs) Man-Made

  11. A new population of very high energy gamma-ray sources in the Milky Way.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-03-25

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

  12. The Origin of Cosmic Rays: What can GLAST Say?

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F.; Digel, Seith; Moskalenko, Igor V.; Moiseev, Alexander; Williamson, Roger

    2000-01-01

    Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter, It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.

  13. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs makemore » a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.« less

  14. The beta(+) decay and cosmic-ray half-life of Mn-54

    NASA Astrophysics Data System (ADS)

    Dacruz, M. T. F.; Norman, E. B.; Chan, Y. D.; Garcia, A.; Larimer, R. M.; Lesko, K. T.; Stokstad, R. G.; Wietfeldt, F. E.

    1993-03-01

    We performed a search for the beta(+) branch of Mn-54 decay. As a cosmic ray, Mn-54, deprived of its atomic electrons, can decay only via beta(+) and beta(-) decay, with a half-life of the order of 106 yr. This turns Mn-54 into a suitable cosmic chronometer for the study of cosmic-ray confinement times. We searched for coincident back-to-back 511-keV gamma-rays using two germanium detectors inside a Nal(Tl) annulus. An upper limit of 2 x 10-8 was found for the beta(+) decay branch, corresponding to a lower limit of 13.7 for the log ft value.

  15. A preliminary design study for a cosmic X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are described of theoretical and experimental investigations aimed at the development of a curved crystal cosmic X-ray spectrometer to be used at the focal plane of the large orbiting X-ray telescope on the third High Energy Astronomical Observatory. The effort was concentrated on the development of spectrometer concepts and their evaluation by theoretical analysis, computer simulation, and laboratory testing with breadboard arrangements of crystals and detectors. In addition, a computer-controlled facility for precision testing and evaluation of crystals in air and vacuum was constructed. A summary of research objectives and results is included.

  16. Monte-Carlo Estimation of the Inflight Performance of the GEMS Satellite X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; hide

    2014-01-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  17. Monte-Carlo estimation of the inflight performance of the GEMS satellite x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; Krizmanic, John; Sturner, Steven; Griffiths, Scott; Kaaret, Philip; Marlowe, Hannah

    2014-07-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  18. A cosmic and solar X-ray and gamma-ray instrument for a scout launch

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.

    1988-01-01

    An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.

  19. Cooperative Research in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Trasco, John D.

    1997-01-01

    A joint agreement between NASA/Goddard and The University of Maryland currently supports cooperative research in Satellite Based Studies of Photons and Charged Particles in the following areas: 1) Detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; 2) Research with several past and upcoming X-ray satellites; 3) High resolution gamma-ray spectroscopy of celestial sources; 4) Theoretical astrophysics.

  20. Design, implementation, and performance of the Astro-H SXS calorimeter array and anticoincidence detector

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelly, Daniel; Leutenegger, Maurice A.; McCammon, Dan; Scott Porter, F.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.

  1. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect components for the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  2. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  3. Cosmic-Ray Energetics and Mass (CREAM) Unbagging and Inspection

    NASA Image and Video Library

    2017-06-22

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  4. An RXTE Study of M87 and the Core of the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.

    1998-01-01

    We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray Timing Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT approx. = 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma(sub core) greater than 1.90 and Gamma(sub jet) greater than 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.

  5. An RXTE Study of M87 and the Core of the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.

    1998-01-01

    We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray 7Tming Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT is approximately equal to 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma (sub core) > 1.90 and Gamma (sub jet) > 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.

  6. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  7. Ionic charge distributions of energetic particles from solar flares

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    The effects which solar flare X-rays have on the charge states of solar cosmic rays is determined quantitatively. Rather than to characterize the charge distribution by temperature alone, it is proposed that the X-ray flux at the acceleration site also is used. The effects of flare X-rays are modeled mathematically.

  8. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  9. A relation between the short time variations of cosmic rays and geomagnetic field change

    NASA Technical Reports Server (NTRS)

    Saki, T.; Kato, M.

    1985-01-01

    An event is reported of approx. 37 min periodicity in cosmic ray intensity observed at Akeno(38 deg 47 N, 138 deg 30 E. 900m above s.l., cutoff 10.4 GV) during 1300 approx. 1900 UT on April 25th, 1984, just a day before Forbush decrease of April 26th. This event seemed to be followed by the periodic variations of the geomagnetic field observed at Kakioka (36 deg 23 N, 140 deg 18 E). The regression coefficient between them was obtained approx. 0.07%/10nT. It is shown that in general the power spectral density of cosmic rays in the frequency of 0.0001 approx. 0.001Hz correlates positively with the fluctuations of geomagnetic field (Dst field) around approx. 1.2x0.0001Hz. From the analysis of 47 days data (April 14th to June 13th, 1984) the regression curve was obtained as y=0.275x sup 0.343 with the correlation coefficient of 0.48, where x and y mean Fourier components of Dst field summed over 1.04 approx. 1.39x0.001Hz and cosmic ray power spectral density averaged over 0.0001 approx. 0.001Hz.

  10. CREST: a New Multi-TeV Cosmic-Ray Electron Detector

    NASA Astrophysics Data System (ADS)

    Coutu, Stephane; Wakely, Scott; Anderson, Tyler; Bower, Charles; Geske, Matthew; Mueller, Dietrich; Musser, James; Nutter, Scott; Schubnell, Michael; Tarle, Gregory; Yagi, Atsushi

    Recent observations of TeV gamma rays from supernova remnants, coupled with measurements of non-thermal X-ray emission, are interpreted as evidence for shock acceleration of cosmic rays in supernova remnants. While it is often assumed that the particles accelerated in these sources include electrons up to multi-TeV energies, direct cosmic-ray electron observations are currently restricted to energies below about 2 TeV. Any attempt to extend the energy range is hampered by limited exposure and low fluxes. However, significant intensities at these energies would indicate the presence of relatively nearby acceleration sites. We describe a new balloonborne detector, the Cosmic Ray Electron Synchrotron Telescope (CREST). This instrument achieves high sensitivity by detecting the synchrotron x-ray photons emitted by an electron in the Earth's magnetic field, rather than the primary electron itself. A 5.3 m2 array of 1024 BaF2 crystals surrounded by veto scintillators will be flown by balloon in Antarctica in 2009, preceded by a prototype test flight from Ft Sumner, NM, in Spring 2008. We expect to explore the TeV energy region of primary electrons, with sensitivity up to about 50 TeV. Here we describe the CREST science, instrument design and performance.

  11. Exploring the Extreme Universe! (2nd Edition)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2002-01-01

    A large array of web sites devoted to the science that the NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics (LHEA) studies have been frozen in time and included on this CD. Featured are five of our 'Understanding the Extreme Universe' sites, which offer explanations about cosmic ray, gamma ray, and X-ray science and satellites, as well as cosmic distances. They also include images and engaging activities that are great for helping both children and adults to learn more about science and basic physical principles. The 'Missions That Take Us There' section contains web sites on the satellite, balloon-borne, International Space Station, and rocket missions in our Laboratory that study X-rays, gamma rays, and cosmic rays. There are also two multi-mission sites and an experiment that measures Earth's UV light in preparation for a future cosmic ray mission. Most of the sites on this CD contain high-resolution images that are great for scientific presentations, study, or just your own enjoyment. This CD shows our web sites as they existed in April of 2001. We have made sure to include the WWW address for every site, so you will know where to go to access the most current versions of them.

  12. Cosmic-ray shock acceleration in oblique MHD shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  13. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  14. A Synthesis Of Cosmic X-ray And Infrared Background

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Helou, G.; Armus, L.; Stierwalt, S.

    2012-01-01

    We present a synthesis model of cosmic IR and X-ray background, with the goal to derive a complete census of cosmic evolution of star formation (SF) and black-hole (BH) growth by complementing advantages of X-ray and IR surveys to each other. By assuming that individual galaxies are experiencing both SF and BH accretion, our model decomposes the total IR LF into SF and BH components while taking into account the luminosity-dependent SED and its dispersion of the SF component, and the extinction-dependent SED of the BH component. The best-fit parameters are derived by fitting to the number counts and redshift distributions at X-ray including both hard and soft bands, and mid-IR to submm bands including IRAS, Spitzer, Herschel, SCUBA, Aztec and MAMBO. Based on the fit result, our models provide a series of predictions on galaxy evolution and black-hole growth. For evolution of infrared galaxies, the model predicts that the total infrared luminosity function is best described through evolution in both luminosity and density. For evolution of AGN populations, the model predicts that the evolution of X-ray LF also shows luminosity and density dependent, that the type-1/type-2 AGN fraction is a function of both luminosity and redshift, and that the Compton-thick AGN number density evolves strongly with redshift, contributing about 20% to the total cosmic BH growth. For BH growth in IR galaxies, the model predicts that the majority of BH growth at z>1 occurs in infrared luminous galaxies and the AGN fraction as a function of IR survey is a strong function of the survey depth, ranging from >50% at bright end to below 10% at faint end. We also evaluates various AGN selection techniques at X-ray and IR wavelengths and offer predictions for future missions at X-ray and IR.

  15. The observable signature of late heating of the Universe during cosmic reionization.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  16. Search for cosmic ray sources using muons detected by the MACRO experiment

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-03-01

    The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known γ-ray sources are also proved negative.

  17. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

  18. SOLAR COSMIC RAYS AND SOFT RADIATION OBSERVED AT 5,000,000 KILOMETERS FROM EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnoldy, R.L.; Hoffman, R.A.; Winckler, J.R.

    1960-09-01

    During the period Mar. 27 to Apr. 6, 1960, the integrating ionization chamber and Geiger counter in Pioneer V detected solar cosmic rays and some soft- radiation effects associated with a high level of solar activity. The space probe was 5 x 10/sup 6/ km from the earth, approximately in the plane of the ecliptic, and located somewhat behind the sunearth radius toward the sun. The solar activity was associated with McMath plage region 5615 and was characterized by numerous flares of all sizes, large loops and surge prominences, and strong emission over a wide range of frequencies. On Mar.more » 31 at 0800 UT, a severe geomagnetic storm began on earth accompanied by major earth-current disturbances, a complete blackout of the North Atlantic communications channel, and auroral displays. At the same time, a large Forbush decrease occurred in the galactic cosmic radiation. An intense series of balloon flights was conducted to record the counting-rate increases at high altitudes due to solar cosmic rays and auroral x rays. Explorer VII showed substantial changes in the radiation belts and detected the solar cosmic rays. The observations of Pioneer V are summarized and compared to the findings of Explorer VII for the same period. (B.O.G.)« less

  19. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2016-03-01

    The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.

  20. The International X-ray Observatory: Science Prospects and Technology Challenges

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2008-01-01

    This talk will describe the International X-ray Observatory (IXO) mission. It will present the key scientific goals, relating to strong gravity, cosmic feedback, and the life cycle of matter. The mission configuration will be described. Emphasis will be placed on the design and anticipated implementation of the X-ray mirror system.

  1. Probing the Hot and Energetic Universe: X-rays and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bautz, Marshall; Kraft, Ralph

    2016-03-01

    X-ray observations are a cornerstone of our understanding of the formation and evolution of structure in the Universe, from solar-system-sized supermassive black holes (SMBH) to the largest galaxy clusters. At the most basic level, a significant fraction of the energy output in the Universe is in X-rays, and much of this emission traces the response of baryonic matter to the inexorable, gravity-driven growth of cosmic structure. At present, for example, half or more of the baryons in the Universe reside in a hot (>1 MK) X-ray-emitting phase. We discuss some of the remarkable progress that has been made in understanding the broad outlines of these processes with the current generation of X-ray observatories. We summarize the potential of recently launched and forthcoming X-ray observatories to track the development of large-scale cosmic structure and to understand the physics linking the growth of SMBH with that of the (many orders of magnitude larger) galaxies and clusters which host them. We briefly review nearer-term prospects for smaller, focussed missions, including one that will soon exploit pulsating X-ray emission from neutron stars to probe the equation of state of matter at nuclear densities.

  2. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  3. Observation of Anisotropy in the Galactic Cosmic Ray Arrival Directions at 400 TEV With IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2011-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33x l0(epx 9) muon events with a median angular resolution of approx 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 Te V. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.30 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  4. Observation of an Anisotropy in the Galactic Cosmic Ray Arrival Direction at 400 TeV with IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2012-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33 x 10(exp 9) muon events with a median angular resolution of approx. 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  5. Cassiopeia A supernova

    NASA Image and Video Library

    2017-12-08

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. This composite shows the Cassiopeia A supernova remnant across the spectrum: Gamma rays (magenta) from NASA's Fermi Gamma-ray Space Telescope; X-rays (blue, green) from NASA's Chandra X-ray Observatory; visible light (yellow) from the Hubble Space Telescope; infrared (red) from NASA's Spitzer Space Telescope; and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, CXC/SAO/JPL-Caltech/Steward/O. Krause et al., and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. Composition of primary cosmic rays near the knee

    NASA Technical Reports Server (NTRS)

    Acharya, B. S.; Rao, M. V. S.; Sivaprasad, K.; Sreekantan, B. V.

    1985-01-01

    The size dependence of high energy muons and the size spectrum obtained in the air shower experiment suggest that the mean mass of cosmic rays remains nearly constant at approx 15 up to 5 x 1000,000 GeV and becomes one beyond. The composition model in which nuclei are removed spectrum steepens at 6.7 x 10 power GeV due to leakage from the galaxy, which explains the data which are consistent with data from other experiments.

  7. The KLEM High-Energy Cosmic Ray Collector for the Nucleon Satellite Mission

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    The basic objective of the KLEM (Kinematic Lightweight Energy Meter) Project is to directly measure the elemental energy spectra of very high-energy (10(exp 11) - 10(exp 16) eV) cosmic rays by determining the angular distribution of secondaries produced in a target layer. A small-scale version of a KLEM device has been designed for inclusion in the NUCLEON Russian satellite mission. Despite its 3 relatively small size of 36 x 36 x 30 cubic cm, this instrument has an aperture of about 0.12 square m sr and can thus make an important contribution to data concerning the elemental energy spectra of cosmic rays up to 10(exp 15) eV. Details of the experiment and the astrophysical significance of the mission will be presented.

  8. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  9. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  10. Correlations Between the Cosmic X-Ray and Microwave Backgrounds: Constraints on a Cosmological Constant

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Crittenden, R. G.; Turok, N. G.

    1998-01-01

    In universes with significant curvature or cosmological constant, cosmic microwave background (CMB) anisotropies are created very recently via the Rees-Sciama or integrated Sachs-Wolfe effects. This causes the CMB anisotropies to become partially correlated with the local matter density (z less than 4). We examine the prospects of using the hard (2- 10 keV) X-ray background as a probe of the local density and the measured correlation between the HEAO1 A2 X-ray survey and the 4-year COBE-DMR map to obtain a constraint on the cosmological constant. The 95% confidence level upper limit on the cosmological constant is OMega(sub Lambda) less than or equal to 0.5, assuming that the observed fluctuations in the X-ray map result entirely from large scale structure. (This would also imply that the X-rays trace matter with a bias factor of b(sub x) approx. = 5.6 Omega(sub m, sup 0.53)). This bound is weakened considerably if a large portion of the X-ray fluctuations arise from Poisson noise from unresolved sources. For example, if one assumes that the X-ray bias is b(sub x) = 2, then the 95% confidence level upper limit is weaker, Omega(sub Lambda) less than or equal to 0.7. More stringent limits should be attainable with data from the next generation of CMB and X-ray background maps.

  11. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  13. The Hard X-ray Imager (HXI) for the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Kataoka, Jun; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yatsu, Yoichi; Yuasa, Takayuki

    2012-09-01

    The Hard X-ray Imager (HXI) is one of the four detectors on board the ASTRO-H mission (6th Japanese X-ray satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride double-sided strip detector, both with a high spatial resolution of 250 μm. Combined with the hard X-ray telescope (HXT), it consists a hard X-ray imaging spectroscopic instrument covering the energy range from 5 to 80 keV with an effective area of <300 cm2 in total at 30 keV. An energy resolution of 1-2 keV (FWHM) and lower threshold of 5 keV are both achieved with using a low noise front-end ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the instrument to achieve an extremely good reduction of background caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest results of the detector development, and the current status of the hardware.

  14. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  15. Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, R.D.

    1980-06-15

    QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion ofmore » the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.« less

  16. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  17. The distribution of cosmic rays in the galaxy and their dynamics as deduced from recent gamma-ray observations. [X-ray intensity variations with galactocentric distance

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.

    1974-01-01

    Recent data from SAS-2 on the galactic gamma ray line flux as a function of longitude reveal a broad maximum in the gamma ray intensity in the region absolute value of l approximately smaller than 30 deg. These data imply that the low energy galactic cosmic ray flux varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement can be plausibly accounted for by first order Fermi acceleration, compression and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy.

  18. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  19. Measurement of the degree of anisotropy of the cosmic radiation using the IMP space vehicle

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.

    1972-01-01

    The detector and data reduction techniques used in connection with the cosmic ray experiments designed for and flown on Explorer 34 and 41 satellites are described. A history of the program development and the present status of data processing are briefly summarized. The instrument to measure the anisotropy and energy spectra of cosmic ray electrons and protons, and X-rays of solar and galactic origin is discussed. The main characteristics of the detectors and the stability during 23 months of operation are described. The method of analysis of the angular distribution of solar cosmic ray particles in the ecliptic plane is given. It is shown that the anisotropy of low energy particles of solar origin decreases sharply to a very small value when the satellite penetrates the magnetosphere.

  20. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  1. ATCA 16 cm observation of CIZA J1358.9-4750: Implication of merger stage and constraint on non-thermal properties

    NASA Astrophysics Data System (ADS)

    Akahori, Takuya; Kato, Yuichi; Nakazawa, Kazuhiro; Ozawa, Takeaki; Gu, Liyi; Takizawa, Motokazu; Fujita, Yutaka; Nakanishi, Hiroyuki; Okabe, Nobuhiro; Makishima, Kazuo

    2018-06-01

    We report the Australia Telescope Compact Array 16 cm observation of CIZA J1358.9-4750. Recent X-ray studies imply that this galaxy cluster is composed of merging, binary clusters. Using the EW367 configuration, we found no significant diffuse radio emission in and around the cluster. An upper limit of the total radio power at 1.4 GHz is ˜1.1 × 1022 W Hz-1 in 30 square arcminutes, which is a typical size for radio relics. It is known that an empirical relation holds between the total radio power and X-ray luminosity of the host cluster. The upper limit is about one order of magnitude lower than the power expected from the relation. Very young (˜70 Myr) shocks with low Mach numbers (˜1.3), which are often seen at an early stage of merger simulations, are suggested by the previous X-ray observation. The shocks may generate cosmic-ray electrons with a steep energy spectrum, which is consistent with non-detection of bright (>1023 W Hz-1) relic in this 16 cm band observation. Based on the assumption of energy equipartition, the upper limit gives a magnetic field strength of below 0.68f(Dlos/1 Mpc)-1(γmin/200)-1 μG, where f is the cosmic-ray total energy density over the cosmic-ray electron energy density, Dlos is the depth of the shock wave along the sightline, and γmin is the lower cutoff Lorentz factor of the cosmic-ray electron energy spectrum.

  2. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-12-08

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  3. Direct energy inputs to the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Lanzerotti, L. J.

    1979-01-01

    As a working definition of the extent of the middle atmosphere (MA), the height range from 30 to 100 km was adopted. The neutral and ionic composition and the dynamics within this height range are, for the most part, poorly understood. From available information, the importance of various particle and photon energy sources, including their variability, for ionization of the neutral atmosphere in this height range is assessed. The following topics are discussed: (1) penetration of the MA by particle and electromagnetic energy; (2) ionization sources for the MA; (3) galactic cosmic rays; (4) solar H Ly alpha, other EUV, and X-rays; (5) magnetospheric electrons and bremsstrahlung X-rays; and (6) solar cosmic rays.

  4. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strengthmore » of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.« less

  5. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  6. Baryons at the edge of the X-ray-brightest galaxy cluster.

    PubMed

    Simionescu, Aurora; Allen, Steven W; Mantz, Adam; Werner, Norbert; Takei, Yoh; Morris, R Glenn; Fabian, Andrew C; Sanders, Jeremy S; Nulsen, Paul E J; George, Matthew R; Taylor, Gregory B

    2011-03-25

    Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.

  7. The Scientific Potential of X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.

    2016-04-01

    X-ray Polarimetry is a rich, untapped source of information on the geometry and/or magnetic structure of a wide range of cosmic object from accreting black holes to jets and neutron stars. This introductory overview will outline the basics of the production of polarized X-ray emission and emphasise its importance in our quest to understand how compact objects work.

  8. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  9. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  10. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; et al.

    2017-07-31

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  11. Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments

    NASA Astrophysics Data System (ADS)

    Korsmeier, Michael; Donato, Fiorenza; Di Mauro, Mattia

    2018-05-01

    The cosmic-ray flux of antiprotons is measured with high precision by the space-borne particle spectrometers AMS-02. Its interpretation requires a correct description of the dominant production process for antiprotons in our Galaxy, namely, the interaction of cosmic-ray proton and helium with the interstellar medium. In light of new cross section measurements by the NA61 experiment of p +p →p ¯+X and the first ever measurement of p +He →p ¯+X by the LHCb experiment, we update the parametrization of proton-proton and proton-nucleon cross sections. We find that the LHCb p He data constrain a shape for the cross section at high energies and show for the first time how well the rescaling from the p p channel applies to a helium target. By using p p , p He and p C data we estimate the uncertainty on the Lorentz invariant cross section for p +He →p ¯+X . We use these new cross sections to compute the source term for all the production channels, considering also nuclei heavier than He both in cosmic rays and the interstellar medium. The uncertainties on the total source term are up to ±20 % and slightly increase below antiproton energies of 5 GeV. This uncertainty is dominated by the p +p →p ¯+X cross section, which translates into all channels since we derive them using the p p cross sections. The cross sections to calculate the source spectra from all relevant cosmic-ray isotopes are provided in Supplemental Material. We finally quantify the necessity of new data on antiproton production cross sections, and pin down the kinematic parameter space which should be covered by future data.

  12. Cross-correlation of the X-ray background with nearby galaxies

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer

    1991-01-01

    The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.

  13. Search for microquasar features in cosmic ray spectra with AMS-01

    NASA Astrophysics Data System (ADS)

    Monreal, Benjamin

    2004-12-01

    Accreting x-ray binaries are sometimes observed to emit compact, relativistic jets of cool plasma; these objects are called "microquasars". It is possible that these jets are responsible for a large flux of galactic cosmic ray protons and nuclei. The energy spectrum from these sources will be very different from the featureless power-law expected from ordinary cosmic-ray acceleration in supernova shocks. The AMS-01 instrument measured cosmic ray protons and helium during 10 days on the Space Shuttle Discovery in 1998; we analyze this data searching for spectral distortions due to nearby microquasar activity. We show that the microquasar contribution to the CR proton flux can be no more than ~2% in the range 2-50 GeV. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. Cooperative research in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Details of the activities conducted under the joint effort of the University of Maryland and NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics are detailed for the period July 1989 through April 1994. The research covered a variety of topics including: (1) detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; (2) support work for several x-ray satellites; (3) high resolution gamma-ray spectroscopy of celestial sources; (4)theoretical astrophysics; and (5) active galaxies.

  15. A graphite crystal polarimeter for stellar X-ray astronomy.

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Berthelsdorf, R.; Epstein, G.; Linke, R.; Mitchell, D.; Novick, R.; Wolff, R. S.

    1972-01-01

    The first crystal X-ray polarimeter to be used for X-ray astronomy is described. Polarization is measured by modulation of the X rays diffracted at an average 45 deg glancing angle from large, curved graphite crystal panels as these rotate about an axis parallel to the incident X-ray flux. Arrangement of the crystal panels, the design of the detector, and the signal-processing circuitry were optimized to minimize systematic effects produced by off-axis pointing of the rocket and cosmic ray induced events. The in-flight performance of the instrument in relation to the observed background signal is discussed.

  16. A New Approach in Coal Mine Exploration Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Darijani, Reza; Negarestani, Ali; Rezaie, Mohammad Reza; Fatemi, Syed Jalil; Akhond, Ahmad

    2016-08-01

    Muon radiography is a technique that uses cosmic ray muons to image the interior of large scale geological structures. The muon absorption in matter is the most important parameter in cosmic ray muon radiography. Cosmic ray muon radiography is similar to X-ray radiography. The main aim in this survey is the simulation of the muon radiography for exploration of mines. So, the production source, tracking, and detection of cosmic ray muons were simulated by MCNPX code. For this purpose, the input data of the source card in MCNPX code were extracted from the muon energy spectrum at sea level. In addition, the other input data such as average density and thickness of layers that were used in this code are the measured data from Pabdana (Kerman, Iran) coal mines. The average thickness and density of these layers in the coal mines are from 2 to 4 m and 1.3 gr/c3, respectively. To increase the spatial resolution, a detector was placed inside the mountain. The results indicated that using this approach, the layers with minimum thickness about 2.5 m can be identified.

  17. Neutral particle background in cosmic ray telescopes composed of silicon solid state detectors

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1977-01-01

    The energy loss-spectrum of secondary charged particles produced by the interaction of gamma-rays and energetic neutrons in silicon solid state detectors has been measured with a satellite-borne cosmic ray telescope. In the satellite measurements presented here two distinct neutral background effects are identified: secondary protons and alpha particles with energies of about 2 to 100 MeV produced by neutron interactions, and secondary electrons with energies of about 0.2 to 10 MeV produced by X-ray interactions. The implications of this neutral background for satellite measurements of low energy cosmic rays are discussed, and suggestions are given for applying these results to other detector systems in order to estimate background contamination and optimize detector system design.

  18. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  19. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude.

    PubMed

    Bütikofer, R; Flückiger, E O; Desorgher, L; Moser, M R

    2008-03-01

    In January 2005 toward the end of solar activity cycle 23 the Sun was very active. Between 15 and 20 January 2005, the solar active region NOAA AR 10720 produced five powerful solar flares. In association with this major solar activity several pronounced variations in the ground-level cosmic ray intensity were observed. The fifth of these flares (X7.1) produced energetic solar cosmic rays that caused a giant increase in the count rates of the ground-based cosmic ray detectors (neutron monitors). At southern polar neutron monitor stations the increase of the count rate reached several thousand percent. From the recordings of the worldwide network of neutron monitors, we determined the characteristics of the solar particle flux near Earth. In the initial phase of the event, the solar cosmic ray flux near Earth was extremely anisotropic. The energy spectrum of the solar cosmic rays was fairly soft during the main and the decay phase. We investigated also the flux of different secondary particle species in the atmosphere and the radiation dosage at flight altitude. Our analysis shows a maximum increment of the effective dose rate due to solar cosmic rays in the south polar region around 70 degrees S and 130 degrees E at flight altitude of almost three orders of magnitude.

  20. Radiation factors in space and a system for their monitoring.

    PubMed

    Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F

    1994-10-01

    The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.

  1. Cosmic Ray Exposure Ages of Stony Meteorites: Space Erosion or Yarkovsky?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2014-01-01

    Space erosion from dust impacts may set upper limits on the cosmic ray exposure (CRE) ages of stony meteorites. A meteoroid orbiting within the asteroid belt is bombarded by both cosmic rays and interplanetary dust particles. Galactic cosmic rays penetrate only the first few meters of the meteoroid; deeper regions are shielded. The dust particle impacts create tiny craters on the meteoroid's surface, wearing it away by space erosion (abrasion) at a particular rate. Hence a particular point inside a meteoroid accumulates cosmic ray products only until that point wears away, limiting CRE ages. The results would apply to other regolith-free surfaces in the solar system as well, so that abrasion may set upper CRE age limits which depend on the dusty environment. Calculations based on N. Divine's dust populations and on micrometeoroid cratering indicate that stony meteoroids in circular ecliptic orbits at 2 AU will record 21Ne CRE ages of approx.176 x 10(exp 6) years if dust masses are in the range 10(exp -21) - 10(exp -3) kg. This is in broad agreement with the maximum observed CRE ages of approx. 100 x 10(exp 6) years for stones. High erosion rates in the inner solar system may limit the CRE ages of Near-Earth Asteroids (NEAs) to approx. 120 x 10(exp 6) years. If abrasion should prove to be approx. 6 times quicker than found here, then space erosion may be responsible for many of the measured CRE ages of main belt stony meteorites. In that case the CRE ages may not measure the drift time to the resonances due to the Yarkovsky effects as in the standard scenario, and that for some reason Yarkovsky is ineffective.

  2. Cosmic-Ray Energetics and Mass Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  3. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  4. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  5. New constraints on the TeV SNR shells RX J1713.7-3946 and HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Eger, P.; Doroshenko, V.; Cui, Y.; H. E. S. S. Collaboration

    2016-06-01

    Resolved TeV-emitting supernova remnants remain a small and precious class of sources to study cosmic ray acceleration in SNRs. We present new multi-wavelength results of the two prominent objects RX J1713.7-3946 and HESS J1731-347. For RX J1713.7-3946, extensive new H.E.S.S. data have permitted to study the nature of the TeV-emitting CR particles through improved broadband spectral studies, as well as through detailed investigations of morphological differences between TeV gamma-rays and X-rays. Concerning HESS J1731-347, the TeV morphology of the object and its surroundings has been studied using cosmic ray acceleration simulations of the object. The SNR also hosts a luminous X-ray emitting central compact object (CCO). Investigations of the CCO in X-rays and in the infrared have permitted to set interesting constraints on the SNR and its progenitor.

  6. Quasars, pulsars, black holes and HEAO's

    NASA Technical Reports Server (NTRS)

    Doolitte, R. F.; Moritz, K.; Whilden, R. D. C.

    1974-01-01

    Astronomical surveys are discussed by large X-ray, gamma ray, and cosmic ray instruments carried onboard high-energy astronomy observatories. Quasars, pulsars, black holes, and the ultimate benefits of the new astronomy are briefly discussed.

  7. VizieR Online Data Catalog: WATCH Solar X-Ray Burst Catalogue (Crosby+ 1998)

    NASA Astrophysics Data System (ADS)

    Crosby, N.; Lund, N.; Vilmer, N.; Sunyaev, R.

    1998-01-01

    Catalogue containing solar X-ray bursts measured by the Danish Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) experiment aboard the Russian satellite GRANAT in the deca-keV energy range. Table 1 lists the periods during which solar observations with WATCH are available (WATCH ON-TIME) and where the bursts listed in the catalogue have been observed. (2 data files).

  8. Development of a scintillating optical fiber ionization calorimeter

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.

    1990-10-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.

  9. Development of a scintillating optical fiber ionization calorimeter

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.

    1990-01-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.

  10. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-04-09

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less

  11. Fermi-LAT Observations of the Diffuse γ-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Ziegler, M.; Zimmer, S.

    2012-05-01

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.

  12. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertaintiesmore » associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less

  13. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Atwood, W. B.

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper.« less

  14. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Adams, J. S.; Arsenovic, P.; Ayers, T.; Chiao, M. P.; DiPirro, M. J.; Eckart, M. E.; Fujimoto, R.; Kazeva, J. D.; Kelley, R. L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that make the SXS a powerful x-ray spectrometer also make it sensitive to the entire electromagnetic band. If characterized as a bolometer, it would have a noise equivalent power (NEP) of < 4x10(exp -18) W/(Hz)0.5. Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs are addressed by a series of five thin-film radiation blocking filters that block long-wavelength radiation while minimizing x-ray attenuation. The SXS aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three warmer filters also were equipped with thermometers and heaters for decontamination.

  15. Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, J. W.; Loh, P. R.; Mizumoto, Y.; Sokolsky, P.; Sommers, P.; Steck, D.

    1985-01-01

    Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm.

  16. The Heavy Nuclei eXplorer (HNX) Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Krizmanic, John; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2015-04-01

    The Heavy Nuclei eXplorer (HNX) will investigate the nature of the reservoirs of nuclei at the cosmic-ray sources, the mechanisms by which nuclei are removed from the reservoirs and injected into the cosmic accelerators, and the acceleration mechanism. HNX will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), flying in the SpaceX DragonLab, to measure, for the first time, the abundance of every individual element in the periodic table from carbon through the actinides, providing the first measurement of many of these elements. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei Z >= 30, including about 50 actinides, and will: determine whether GCRs are accelerated from new or old material, and find their age; measure the mix of nucleosynthesis processes responsible for the UHGCRs; determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrument complement of HNX will be discussed.

  17. Chandra Detection of Intracluster X-Ray sources in Virgo

    NASA Astrophysics Data System (ADS)

    Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze

    2017-09-01

    We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.

  18. First cosmic-ray images of bone and soft tissue

    NASA Astrophysics Data System (ADS)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  19. New simulation of QSO X-ray heating during the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Ross, Hannah E.; Dixon, Keri; Iliev, Ilian; Mellema, Garrelt

    2018-05-01

    The upcoming radio interferometer Square Kilometre Array is expected to directly detect the redshifted 21-cm signal from the Cosmic Dawn for the first time. In this era temperature fluctuations from X-ray heating of the neutral intergalactic medium can impact this signal dramatically. Previously, in Ross et al. (2017), we presented the first large-volume, 244 h-1 Mpc=349 Mpc a side, fully numerical radiative transfer simulations of X-ray heating. This work is a follow-up where we now also consider QSO-like sources in addition to high mass X-ray binaries. Images of the two cases are clearly distinguishable at SKA1-LOW resolution and have RMS fluctuations above the expected noise. The inclusion of QSOs leads to a dramatic increase in non-Gaussianity of the signal, as measured by the skewness and kurtosis of the 21-cm signal. We conclude that this increased non-Gaussianity is a promising signature of early QSOs.

  20. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  1. High energy astronomy or astrophysics and properties of the interplanetary plasma

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.

  2. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  3. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  4. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  5. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  6. Cosmic-Ray Energetics and Mass Processing - Unbagging and Inspection

    NASA Image and Video Library

    2017-06-22

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  7. Recent Progress on Supernova Remnants - Progenitors, Evolution, Cosmic-ray Acceleration

    NASA Astrophysics Data System (ADS)

    Bamba, A.

    2017-10-01

    Supernova remnants supplies heavy elements, kinetic and thermal energies, and cosmic rays, into the universe, and are the key sources to make the diversity of the universe. On the other hand, we do not know the fundamental issues of supernova remnants, such as (1) what their main progenitors are, (2) how they evolve into the realistic (non-uniform) interstellar space, and (3) which type of supernova remnants can accelerate cosmic rays to the knee energy. Recent X-ray studies with XMM-Newton, Chandra, Suzaku, NuSTAR, and Hitomi, progressed understandings of these issues, and found that each issue connect others tightly. In this paper, we will overview these progresses with focusing the above three topics, and discuss what we should do next.

  8. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  9. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Astrophysics Data System (ADS)

    Lukasiak, A.; Ferrando, P.; McDonald, F. B.; Webber, W. R.

    1994-03-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and a cosmic-ray lifetime for escape of 27 (+19, -9) x 106 years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  10. Searching for New Physics with Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.

  11. Measuring the Cosmic Particle Radiation from electrons to actinides - HNX/TIGERISS

    NASA Astrophysics Data System (ADS)

    Mitchell, John

    2017-01-01

    The Heavy Nuclei eXplorer (HNX) mission will measure the abundances of nuclei from Carbon (Z =6) to Curium (Z =96) in the cosmic radiation with the resolution to identify the atomic number of each detected nucleus. HNX will measure a significant number of actinides. HNX utilizes two high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-Ray Trans-Iron Galactic Element Recorder (CosmicTIGER), located in a SpaceX DragonLab capsule orbiting the Earth. This talk will discuss the motivating science, the HNX mission, the design and performance of the HNX instruments, and another new instrument, TIGERISS (Trans-Iron Galactic Element Recorder on the ISS), that will be proposed as an intermediate between SuperTIGER and HNX.

  12. Astrophysical radiation environments of habitable worlds

    NASA Astrophysics Data System (ADS)

    Smith, David Samuel

    Numerous astrophysical sources of radiation affect the environment of planets orbiting within the liquid-water habitable zone of main-sequence stars. This dissertation reaches a number of conclusions about the ionizing radiation environment of the habitable zone with respect to X-rays and gamma-rays from stellar flares and background Galactic cosmic rays. Gamma-rays and X-rays incident on terrestrial-like exoplanet atmospheres can be efficiently reprocessed into diffuse UV emission that, depending on the presence of atmospheric UV absorbers, can reach the surface. Extreme solar X-ray flares over the last 4.6 Gyr could have delivered large enough radiation doses to the Martian surface to sterilize any unprotected organisms, depending on the largest energy releases possible. These flares also pose a significant hazard to manned space missions, since a large flare can occur with little or no warning during an extravehicular activity. A flare as large as the largest observed could deliver radiation doses exceeding safety limits to an astronaut protected by only a spacesuit. With respect to particle radiation, the nature of Galactic cosmic-ray modulation by astrospheres means that habitable-zone cosmic-ray fluxes change by much larger magnitudes when passing through low- densities regions of the interstellar medium. In contrast to the popular idea that passages through dense molecular clouds are required to significantly enhance Galactic cosmic-ray fluxes and affect planets' electrical circuits, background mutation rates, and climates, we find that densities of only 0.1-10 cm -3 , the densities of most interstellar clouds, are sufficient to bring fluxes close to the full, interstellar level. Finally, passages through dense molecular clouds are necessary to shrink astrospheres to within the habitable zone, but such events produce even higher interstellar hydrogen and dust accretion rates than have been estimated because of the combination of enhanced charge-exchange rates between stellar-wind ions and interstellar neutrals and the growing importance of the central star's gravity on particle trajectories as the astrosphere shrinks.

  13. The Cosmic-Ray and Gas Content of the Cygnus Region as Measured in Gamma Rays by the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; hide

    2011-01-01

    Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large masses of the interstellar clouds, the cosmic-ray population in the Cygnus complex averaged over a few hundred parsecs is similar to that of the local interstellar space.

  14. The XMM-SERVS Survey: first results in the 5 deg^2 XMM-LSS region

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Ting; Brandt, William; Luo, Bin; X-SERVS team

    2018-01-01

    We present an X-ray source catalog obtained with XMM-Newton in the XMM-LSS region as part of the X-SERVS survey (XMM-SERVS-LSS), which aims to expand the parameter space of current X-ray surveys with medium-deep X-ray observations in multiple large fields with superb multiwavelength coverage. Within the 5 deg$^2$ XMM-SERVS-LSS field, we combine the 1.3 Ms XMM observations allocated at XMM AO-15 with archival data, and identified 5218 X-ray sources of which 2400 are new sources. We reach $1.2\\times10^{-15}$ erg s$^{-1} cm$^{-1}$ for 50\\% of the area, which is comparable to the XMM-COSMOS survey but with 2.5 times more sources. We also present multiwavelength identifications, basic photometric properties, and spectroscopic redshifts obtained from the literature. These data, combined with the existing data from COSMOS, will enable a wide range of science on AGN evolution, including studying SMBH growth across the full range of cosmic environments and minimizing cosmic variance.

  15. Cosmic radiation dose measurements from the RaD-X flight campaign

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing

    2016-10-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  16. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  17. Ram Pressure Stripping: Observations Meet Simulations

    NASA Astrophysics Data System (ADS)

    Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren

    2017-01-01

    Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.

  18. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  19. Studies of the evolution of the x ray emission of clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick

    1990-01-01

    The x ray luminosity function of clusters of galaxies was determined at different cosmic epoches using data from the Einstein Observatory Extended Medium Survey. The sample consisted of 67 x ray selected clusters that were grouped into three redshift shells. Evolution was detected in the x ray properties of clusters. The present volume density of high luminosity clusters was found to be greater than it was in the past. This result is the first convincing evidence for evolution in the x ray properties of clusters. Investigations into the constraints provided by these data on various Cold Dark Matter models are underway.

  20. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  1. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  2. Recent high energy gamma-ray results from SAS-2

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.

    1977-01-01

    Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.

  3. Cosmic ray neutrino tests for heavier weak bosons and cosmic antimatter

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Stecker, F. W.

    1981-01-01

    A program for using high energy neutrino astronomy with large neutrino detectors to directly test for the existence of heavier weak intermediate vector bosons (ivb) and cosmic antimatter is described. Such observations can provide a direct test of baryon symmetric cosmologies. Changes in the total cross section for nu(N) yields mu(X) due to additional propagators are discussed and higher mass resonances in the annihilation channel bar-nu sub e e(-) yields X are analyzed. The annihilation channel is instrumental in the search for antimatter, partcularly if heavier IVB's exist.

  4. Low Cost Balloon programme of Indian Centre for Space Physics

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  5. A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Eisch, Jonathan

    Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event distributions with limited statistics, and a method to optimize and estimate the error on a regularized fit.

  6. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  7. The response of an RC line MWPC to primary cosmic rays. [Multi-Wire Proportional Counter

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Selig, W. J.; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.

    1978-01-01

    A simple 50 x 50 sq cm MWPC plane was arranged as an RC-line and flown on a balloon flight with the MSFC-UAH Cosmic Ray experiment. Positions of primary cosmic ray tracks in the RC-line were determined by the risetime method and compared with the expected position as indicated by a best line fitted through four planes of the conventional MWPC hodoscope. Mean errors were estimated for sea-level muons, and CNO group and iron group particles. It is believed that the delta-rays accompanying the primaries degraded the position resolution. Measured standard deviations allowing for uncertainty in the true track position are of the order of 1 cm or less in the primary charge region between 7 and 26.

  8. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  9. Discovery of localized regions of excess 10-TeV cosmic rays.

    PubMed

    Abdo, A A; Allen, B; Aune, T; Berley, D; Blaufuss, E; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; Gonzalez, M M; Goodman, J A; Hoffman, C M; Hüntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Nemethy, P; Noyes, D; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2008-11-28

    The 7 year data set of the Milagro TeV observatory contains 2.2 x 10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of approximately 10 degrees has been found in two localized regions of unknown origin with greater than 12sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at approximately 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.

  10. Universal energy spectrum from point sources

    NASA Technical Reports Server (NTRS)

    Tomozawa, Yukio

    1992-01-01

    The suggestion is made that the energy spectrum from point sources such as galactic black hole candidates (GBHC) and active galactic nuclei (AGN) is universal on the average, irrespective of the species of the emitted particles, photons, nucleons, or others. The similarity between the observed energy spectra of cosmic rays, gamma-rays, and X-rays is discussed. In other words, the existing data for gamma-rays and X-rays seem to support the prediction. The expected data from the Gamma Ray Observatory are to provide a further test.

  11. The TESIS Project: Are Type 2 QSO Hidden in X-Ray Emitting EROs?

    NASA Astrophysics Data System (ADS)

    Severgnini, P.; Della Ceca, R.; Braito, V.; Saracco, P.; Longhetti, M.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    X-ray selected EROs are, on average, the hardest X-ray sources in medium and deep X-ray fields. This coupled with their extremely red colors (R-K > 5) suggest that they represent one of the most promising population where looking for high-luminosity (LX > 1044 erg s-1) and X-ray obscured (NH > 1022 cm-2) type2 AGNs, the so called QSO2 (e.g., [5]; [4]; Mignoli et al. submitted to A&A). These latter are predicted in large density by the synthesis model of the Cosmic X-ray background [9] even if only few observational evidences have been found so far (e.g., [1] and references therein; Caccianiga et al. A&A accepted).

  12. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  13. Energy spectra of cosmic gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Klebesadel, R. W.; Strong, I. B.

    1973-01-01

    Spectral measurements of six cosmic gamma-ray bursts in the energy region of 0.1 to 1.2 MeV, made using a semi-omnidirectional X-ray detector on IMP-6 are reported. These measurements confirm the hard X-ray or gamma-ray nature of the bursts, as inferred from the original observations by Klebesadel et al., (1973), and show that their maximum energy release is in this several hundred keV region. Each burst consists of several 1 or 2-second pulses each with the characteristic spectrum of approximately 150-keV exponential, followed by a softer decay. There is no evidence of line structure in this energy region, or for a marked change in the energy spectrum within a given pulse. Event size spectra are estimated for galactic and extragalactic models; the total emission is consistent with present measurements of the diffuse background, and unlikely to account for any spectral feature in the few-MeV region.

  14. Gamma-ray bursts from superconducting cosmic strings at large redshifts

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Paczynski, Bohdan; Spergel, David

    1987-01-01

    The relation between cusp events and gamma-rays bursts is investigated. The optical depth of the universe to X-rays and gamma-rays of various energies is calculated and discussed. The cosmological evolution of cosmic strings is examined, and the energetics and time-scales related to the cusp phenomena are estimated. It is noted that it is possible to have energy bursts with a duration of a few seconds or less from cusps at z = 1000; the maximum amount of energy associated with such an event is limited to 10 to the 7th ergs/sq cm.

  15. Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012

    NASA Astrophysics Data System (ADS)

    Livada, M.; Mavromichalaki, H.; Plainaki, C.

    2018-01-01

    During the burst of solar activity in March 2012, close to the maximum of solar cycle 24, a number of X-class and M-class flares and halo CMEs with velocity up to 2684 km/s were recorded. During a relatively short period (7-21 March 2012) two Forbush decreases were registered in the ground-level neutron monitor data. In this work, after a short description of the solar and geomagnetic background of these Forbush decreases, we deduce the cosmic ray density and anisotropy variations based on the daily cosmic ray data of the neutron monitor network (http://www.nmdb.eu; http://cosray.phys.uoa.gr). Applying to our data two different coupling functions methods, the spectral index of these Forbush decreases was calculated following the technique of Wawrzynczak and Alania (Adv. Space Res. 45:622-631, 2010). We pointed out that the estimated values of the spectral index γ of these events are almost similar for both cases following the fluctuation of the Forbush decrease. The study and the calculation of the cosmic ray spectrum during such cosmic ray events are very important for Space Weather applications.

  16. Design, implementation, and performance of the Astro-H soft x-ray spectrometer aperture assembly and blocking filters

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  17. Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Scully, S. T.; Stecker, F. W.

    2009-01-01

    There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.

  18. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  19. Research relative to high energy astrophysics. [large area modular array of reflectors, X-ray spectroscopy, and thermal control

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1984-01-01

    Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.

  20. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; hide

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  1. Exploring the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

    This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  2. Comptonization of X-rays by low-temperature electrons. [photon wavelength redistribution in cosmic sources

    NASA Technical Reports Server (NTRS)

    Illarionov, A.; Kallman, T.; Mccray, R.; Ross, R.

    1979-01-01

    A method is described for calculating the spectrum that results from the Compton scattering of a monochromatic source of X-rays by low-temperature electrons, both for initial-value relaxation problems and for steady-state spatial diffusion problems. The method gives an exact solution of the inital-value problem for evolution of the spectrum in an infinite homogeneous medium if Klein-Nishina corrections to the Thomson cross section are neglected. This, together with approximate solutions for problems in which Klein-Nishina corrections are significant and/or spatial diffusion occurs, shows spectral structure near the original photon wavelength that may be used to infer physical conditions in cosmic X-ray sources. Explicit results, shown for examples of time relaxation in an infinite medium and spatial diffusion through a uniform sphere, are compared with results obtained by Monte Carlo calculations and by solving the appropriate Fokker-Planck equation.

  3. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  4. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  5. Milagro Contributions to XXVI International Cosmic Ray Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, C.M.; Haines, T.J.; Sinnis, G.

    1999-08-01

    Milagrito, a prototype for the Milagro detector, operated for 15 months in 1997--8 and collected 8.9 x 10{sup 9} events. It was the first extensive air shower (EAS) array sensitive to showers initiated by primaries with energy below 1 TeV. The shadows of the sun and moon observed with cosmic rays can be used to study systematic pointing shifts and measure the angular resolution of EAS arrays. Below a few TeV, the paths of cosmic rays coming toward the earth are bent by the helio- and geo-magnetic fields. This is expected to distort and displace the shadows of the sunmore » and the moon. The moon shadow, offset from the nominal (unreflected) position, has been observed with high statistical significance in Milagrito. This can be used to establish energy calibrations, as well as to search for the anti-matter content of the VHE cosmic ray flux. The shadow of the sun has also been observed with high significance.« less

  6. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  7. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  8. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  9. Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1990-01-01

    Three gravitational potentials differing in the content of dark matter in the Galactic plane are used to study the structure of the z-distribution of mass and pressure in the solar neighborhood. A P(0) of roughly (3.9 + or - 0.6) x 10 to the -12th dyn/sq cm is obtained, with roughly equal contributions from magnetic field, cosmic ray, and kinetic terms. This boundary condition restricts both the magnitude of gravity and the high z-pressure. It favors lower gravity and higher values for the cosmic ray, magnetic field, and probably the kinetic pressures than have been popular in the past. Inclusion of the warm H(+) distribution carries a significant mass component into the z about 1 kpc regime.

  10. The CNO Concentration in Cosmic Ray Spectrum as Measured From The Advanced Thin Ionization Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction "target".

  11. Searching for TeV cosmic electrons with the CREST experiment

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Anderson, T.; Bower, C.; Gennaro, J.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N. H.; Schubnell, M.; Tarlé, G.; Wakely, S.; Yagi, A.

    2011-06-01

    The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. Such would be the markers of nearby cosmic accelerators, as energetic electrons from distant Galactic sources are expected to be depleted by radiative losses during interstellar transport. Electrons will be detected indirectly by the characteristic signature of their geomagnetic synchrotron losses, in the form of a burst of coaligned x-ray photons intersecting the plane of the instrument. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. The payload is composed of an array of 1024 BaF2 crystals surrounded by a set of veto scintillator detectors. A long-duration balloon flight in Antarctica is planned for the 2011-12 season.

  12. Crest - A Balloon-borne Instrument To Measure Cosmic-ray Electrons Above TeV Energies.

    NASA Astrophysics Data System (ADS)

    Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N.; Tarlé, G.; Wakely, S.; Yagi, A.

    2009-01-01

    The observation of high energy (E > 1 TeV) electrons in the cosmic radiation provides important information on the distribution and energetics of local cosmic-ray sources. Galactic cosmic-ray electrons are thought to be shock accelerated in supernova remnants as evident from observations of non-thermal X-rays and TeV gamma rays. Their locally observed energy spectrum above 1 TeV is expected to reflect the distribution and abundance of nearby acceleration sites. However, the rates at these energies are low and the direct detection would require unfeasibly large balloons or satellite born detectors. CREST, a balloon-borne detector array of 1024 BaF2 crystals, overcomes this hurdle: it will measure the intensity and spectrum of multi-TeV electrons by detecting synchrotron photons emitted from electrons passing through the earth's magnetic field. Thus CREST's acceptance is several times its geometric area providing sensitivity up to about 50 TeV. Following an engineering flight in spring of 2009, CREST will be flown in a circumpolar orbit on an upcoming Antarctic long-duration balloon flight. This work is supported by NASA and CSBF.

  13. Status of the Simbol-X Background Simulation Activities

    NASA Astrophysics Data System (ADS)

    Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.

    2009-05-01

    The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.

  14. X-Ray Spectroscopic Laboratory Experiments in Support of the X-Ray Astronomy Program

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    1997-01-01

    Our program is to perform a series of laboratory investigations designed to resolved significant atomic physics uncertainties that limit the interpretation of cosmic X-ray spectra. Specific goals include a quantitative characterization of Fe L-shell spectra; the development of new techniques to simulate Maxwellian plasmas using an Electron Beam Ion Trap (EBIT); and the measurement of dielectronic recombination rates for photoionized gas. New atomic calculations have also been carried out in parallel with the laboratory investigations.

  15. Cosmic Sparklers

    NASA Image and Video Library

    2015-07-02

    This new composite image of stellar cluster NGC 1333 combines X-rays from NASA's Chandra X-ray Observatory (pink); infrared data from NASA's Spitzer Space Telescope (red); and optical data from the Digitized Sky Survey and the National Optical Astronomical Observatories' Mayall 4-meter telescope on Kitt Peak near Tucson, Arizona. The Chandra data reveal 95 young stars glowing in X-ray light, 41 of which had not been seen previously using Spitzer because they lacked infrared emission from a surrounding disk. http://photojournal.jpl.nasa.gov/catalog/PIA19347

  16. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  17. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  18. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  19. The space shuttle payload planning working groups. Volume 3: High energy astrophysics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the High Energy Astrophysics working group of the space shuttle payload planning activity are presented. The objectives to be accomplished during space shuttle missions are defined as: (1) X-ray astronomy, (2) hard X-ray and gamma ray astronomy, and (3) cosmic ray astronomy. The instruments and test equipment required to accomplish the mission are identified. Recommendations for managing the installation of the equipment and conducting the missions are included.

  20. Polarimetry of X-rays and messengers of High Energy phenomena

    NASA Astrophysics Data System (ADS)

    Costa, E.

    2017-05-01

    Astrophysics of High Energies has been historically based on radio, X-ray and γ -ray data. Understanding the mechanism and the site of acceleration of Cosmic Rays, has been probably the most important goal of this discipline. Recently high energy neutrinos and gravitational waves have shown up as new messengers and we expect a major role from X-ray observations, to understand the nature and location of the emitters. In fact X-rays have been for more than half a century the driver to study the Violent Universe. Yet one feature of this messengers, the Polarimetry, is still totally unexploited. Within a few years, a mission will add two important parameters to understand the physical context of high energy phenomena, namely the amount and angle of X-ray polarimetry.

  1. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2010-06-01

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased frommore » 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.« less

  2. Search for Nonthermal X-Rays from Supernova Remnant Shells

    NASA Astrophysics Data System (ADS)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  3. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  4. The imprint of Gould's belt on the local cosmic ray electron spectrum

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Perrot, C.; Grenier, I.

    2001-08-01

    In a recent paper Pohl and Esposito (1998) demonstrated that if the sources of cosmic-rays are discrete, as are Supernova Remnants (SNR), then the spectra of cosmic-ray electrons largely vary with location and time and the locally measured electron spectrum may not be representative of the electron spectra elsewhere in the Galaxy, which could be substantially harder than the local one. They have shown that the observed excess of γ-ray emission above 1 GeV can in fact be partially explained as a correspondingly hard inverse Compton component, provided the bulk of cosmic-ray electrons is produced in SNR. As part of a program to model the Galactic γ-ray foreground we have continued the earlier studies by investigating the impact of the star forming region Gould's Belt on the local electron spectrum. If the electron sources in Gould's Belt were continous, the local electron spectrum would be slightly hardened. If the electron sources are discrete, which is the more probable case, the variation in the local electron spectrum found by Pohl & Esposito persists. 1 The local cosmic-ray electron spectrum The recent detections of non-thermal X-ray synchrotron radiation from the supernova remnants SN1006 (Koyama et al., 1995), RX J1713.7-3946 (Koyama et al., 1997), IC443 (Keohane et al., 1997; Slane et al., 1999), Cas A (Allen et al., 1997), and RCW86 (Borkowski et al., 2001) and the subsequent detections of SN1006 (Tanimori et al., 1998), RX J1713.7-3946 (Muraishi et al., 2000), and Cas A (Aharonian et al., 2001) at TeV energies support the hypothesis that at least Galactic cosmic-ray electrons are accelerated predominantly in SNR. The Galactic distribution and spectrum of cosmic-ray electrons are intimately linked to the distribution and nature of their sources. Supernovae and hence their remnants are tran-

  5. Hard X-ray imaging facility for space shuttle: A scientific and conceptual engineering study

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.; Hudson, H. S.; Hurford, G.; Schneible, D.

    1976-01-01

    A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment.

  6. The Chandra Deep Field-North Survey and the cosmic X-ray background.

    PubMed

    Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E

    2002-09-15

    Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.

  7. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  8. Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.

    1985-01-01

    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.

  9. Physics and astrophysics from a lunar base; Proceedings of the 1st NASA Workshop, Stanford, CA, May 19, 20, 1989

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Editor); Wilson, T. L. (Editor)

    1990-01-01

    The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.

  10. Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1977-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.

  11. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  12. Cosmic-ray effects in the Gum nebula

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Boldt, E. A.

    1971-01-01

    The effects of low energy heavy nuclei from the supernova explosion on nearby interstellar space were investigated. In addition to the ionization and heating of the Gum nebula, these particles may produce detectable fluxes of X-rays and gamma rays, both as continuum radiation and line emission.

  13. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kelley, Richard L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The properties that make the SXS array a powerful x-ray spectrometer also make it sensitive to photons from the entire electromagnetic band, and particles as well. If characterized as a bolometer, it would have a noise equivalent power (NEP) of less than 4x10(exp -18) W/(Hz)0.5(exp 0.5). Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. Both of these needs are addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that block long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three outer filters also have been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  14. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.

    2017-06-01

    The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

  15. Hard X-ray tests of the unified model for an ultraviolet-detected sample of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Mulchaey, John S.; Myshotzky, Richard F.; Weaver, Kimberly A.

    1992-01-01

    An ultraviolet-detected sample of Seyfert 2 galaxies shows heavy photoelectric absorption in the hard X-ray band. The presence of UV emission combined with hard X-ray absorption argues strongly for a special geometry which must have the general properties of the Antonucci and Miller unified model. The observations of this sample are consistent with the picture in which the hard X-ray photons are viewed directly through the obscuring matter (molecular torus?) and the optical, UV, and soft X-ray continuum are seen in scattered light. The large range in X-ray column densities implies that there must be a large variation in intrinsic thicknesses of molecular tori, an assumption not found in the simplest of unified models. Furthermore, constraints based on the cosmic X-ray background suggest that some of the underlying assumptions of the unified model are wrong.

  16. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  17. The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station

    NASA Astrophysics Data System (ADS)

    Zhang, S. N.; Adriani, O.; Albergo, S.; Ambrosi, G.; An, Q.; Bao, T. W.; Battiston, R.; Bi, X. J.; Cao, Z.; Chai, J. Y.; Chang, J.; Chen, G. M.; Chen, Y.; Cui, X. H.; Dai, Z. G.; D'Alessandro, R.; Dong, Y. W.; Fan, Y. Z.; Feng, C. Q.; Feng, H.; Feng, Z. Y.; Gao, X. H.; Gargano, F.; Giglietto, N.; Gou, Q. B.; Guo, Y. Q.; Hu, B. L.; Hu, H. B.; He, H. H.; Huang, G. S.; Huang, J.; Huang, Y. F.; Li, H.; Li, L.; Li, Y. G.; Li, Z.; Liang, E. W.; Liu, H.; Liu, J. B.; Liu, J. T.; Liu, S. B.; Liu, S. M.; Liu, X.; Lu, J. G.; Mazziotta, M. N.; Mori, N.; Orsi, S.; Pearce, M.; Pohl, M.; Quan, Z.; Ryde, F.; Shi, H. L.; Spillantini, P.; Su, M.; Sun, J. C.; Sun, X. L.; Tang, Z. C.; Walter, R.; Wang, J. C.; Wang, J. M.; Wang, L.; Wang, R. J.; Wang, X. L.; Wang, X. Y.; Wang, Z. G.; Wei, D. M.; Wu, B. B.; Wu, J.; Wu, X.; Wu, X. F.; Xia, J. Q.; Xiao, H. L.; Xu, H. H.; Xu, M.; Xu, Z. Z.; Yan, H. R.; Yin, P. F.; Yu, Y. W.; Yuan, Q.; Zha, M.; Zhang, L.; Zhang, L.; Zhang, L. Y.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. L.; Zhao, Z. G.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.

  18. Discovery of Molecular and Atomic Clouds Associated with the Magellanic Superbubble 30 Doradus C

    NASA Astrophysics Data System (ADS)

    Sano, H.; Yamane, Y.; Voisin, F.; Fujii, K.; Yoshiike, S.; Inaba, T.; Tsuge, K.; Babazaki, Y.; Mitsuishi, I.; Yang, R.; Aharonian, F.; Rowell, G.; Filipović, M. D.; Mizuno, N.; Tachihara, K.; Kawamura, A.; Onishi, T.; Fukui, Y.

    2017-07-01

    We analyzed the 2.6 mm CO and 21 cm H I lines toward the Magellanic superbubble 30 Doradus C, in order to reveal the associated molecular and atomic gas. We uncovered five molecular clouds in a velocity range from 251 to 276 km s-1 toward the western shell. The non-thermal X-rays are clearly enhanced around the molecular clouds on a parsec scale, suggesting possible evidence for magnetic field amplification via shock-cloud interaction. The thermal X-rays are brighter in the eastern shell, where there are no dense molecular or atomic clouds, opposite to the western shell. The TeV γ-ray distribution may spatially match the total interstellar proton column density as well as the non-thermal X-rays. If the hadronic γ-ray is dominant, the total energy of the cosmic-ray protons is at least ˜ 1.2× {10}50 erg with the estimated mean interstellar proton density ˜60 cm-3. In addition, the γ-ray flux associated with the molecular cloud (e.g., MC3) could be detected and resolved by the Cherenkov Telescope Array (CTA). This should permit CTA to probe the diffusion of cosmic-rays into the associated dense ISM.

  19. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Bautz, Marshall

    2017-01-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.

  20. An alternative interpretation for cosmic ray peaks

    DOE PAGES

    Kim, Doojin; Park, Jong -Chul

    2015-10-03

    We propose an alternative mechanism based upon dark matter (DM) interpretation for anomalous peak signatures in cosmic ray measurements, assuming an extended dark sector with two DM species. This is contrasted with previous effort to explain various line-like cosmic-ray excesses in the context of DM models where the relevant DM candidate directly annihilates into Standard Model (SM) particles. The heavier DM is assumed to annihilate to an on-shell intermediate state. As the simplest choice, it decays directly into the lighter DM along with an unstable particle which in turn decays to a pair of SM states corresponding to the interestingmore » cosmic anomaly. We show that a sharp continuum energy peak can be readily generated under the proposed DM scenario, depending on dark sector particle mass spectra. Remarkably, such a peak is robustly identified as half the mass of the unstable particle. Furthermore, other underlying mass parameters are analytically related to the shape of energy spectrum. We apply this idea to the two well-known line excesses in the cosmic photon spectrum: 130 GeV γ-ray line and 3.5 keV X-ray line. As a result, each observed peak spectrum is well-reproduced by theoretical expectation predicated upon our suggested mechanism, and moreover, our resulting best fits provide rather improved χ 2 values.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  2. Hercules X-1: Spectral Variability of an X-Ray Pulsar in a Stellar Binary System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.

    1976-01-01

    A cosmic X-ray spectroscopy experiment onboard the Orbiting Solar Observatory 8 (OSO-8), observed Her x-1 continuously for approximately 8 days. Spectral-temporal correlations of the X-ray emission were obtained. The major results concern observations of: (1) iron band emission, (2) spectral hardening (increase in effective x-ray temperature) within the X-ray pulse, and (3) a transition from an X-ray low state to a high state. The spectrum obtained prior to the high state can be interpreted as reflected emission from a hot coronal gas surrounding an accretion disk, which itself shields the primary X-ray source from the line of sight during the low state. The spectral hardening within the X-ray pulse was indicative of the beaming mechanism at the neutron star surface. The hardest spectrum by pulse phase was identified with the line of sight close to the Her x-1 magnetic dipole axis, and the X-ray pencil beam become harder with decreasing angle between the line of sight and the dipole axis.

  3. Spectral-luminosity evolution of active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  4. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    NASA Astrophysics Data System (ADS)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  5. Desorption from interstellar grains

    NASA Technical Reports Server (NTRS)

    Leger, A.; Jura, M.; Omont, A.

    1985-01-01

    Different desorption mechanisms from interstellar grains are considered to resolve the conflict between the observed presence of gaseous species in molecular clouds and their expected depletion onto grains. The physics of desorption is discussed with particular reference to the process of grain heating and the specific heat of the dust material. Impulsive heating by X-rays and cosmic rays is addressed. Spot heating of the grains by cosmic rays and how this can lead to desorption of mantles from very large grains is considered. It is concluded that CO depletion on grains will be small in regions with A(V) less than five from the cloud surface and n(H) less than 10,000, in agreement with observations and in contrast to expectations from pure thermal equilibrium. Even in very dense and obscured regions and in the absence of internal ultraviolet sources, the classical evaporation of CO or N2 and O2-rich mantles by cosmic rays is important.

  6. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV.more » The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.« less

  7. The X-Ray Background and the AGN Luminosity Function

    NASA Astrophysics Data System (ADS)

    Hasinger, G.

    The deepest X-ray surveys performed with ROSAT were able to resolve as much as 70-80% of the 1-2 keV X-ray background into resolved sources. Optical follow-up observations were able to identify the majority of faint X-ray sources as active galactic nuclei (AGN) out to redshifts of 4.5 as well as a sizeable fraction as groups of galaxies out to redshifts of 0.7. A new population of X-ray luminous, optically innocent narrow emission line galaxies (NELGs) at the faintest X-ray fluxes is still a matter of debate, most likely many of them are also connected to AGN. First deep surveys with the Japanese ASCA satellite give us a glimpse of the harder X-ray background where the bulk of the energy density resides. Future X-ray observatories (XMM and AXAF) will be able to resolve the harder X-ray background. For the first time we are now in a position to study the cosmological evolution of the X-ray luminosity function of AGN, groups of galaxies and galaxies and simultaneously constrain their total luminosity output over cosmic time.

  8. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  9. Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Seungwon; Ko, P.; Park, Wan-Il

    2014-06-01

    We investigate the indirect signatures of the Higgs portal U(1){sub X} vector dark matter (VDM) X{sub μ} from both its pair annihilation and decay. The VDM is stable at renormalizable level by Z{sub 2} symmetry, and thermalized by Higgs-portal interactions. It can also decay by some nonrenormalizable operators with very long lifetime at cosmological time scale. If dim-6 operators for VDM decays are suppressed by 10{sup 16} GeV scale, the lifetime of VDM with mass ∼ 2 TeV is just right for explaining the positron excess in cosmic ray observed by PAMELA and AMS02 Collaborations. The VDM decaying into μ{supmore » +}μ{sup −} can fit the data, evading various constraints on cosmic rays. We give one UV-complete model as an example. This scenario for Higgs portal decaying VDM with mass around ∼ 2 TeV can be tested by DM direct search at XENON1T, and also at the future colliders by measuring the Higgs self-couplings.« less

  10. Runaway breakdown and electrical discharges in thunderstorms

    NASA Astrophysics Data System (ADS)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  11. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free amino acids. Complex amino acid precursors with high molecular weights could be formed in simulated dense cloud environments. They would have been altered in the early solar system by irradiation with soft X-rays from the young Sun, which caused increase of hydrophobicity of the organics of interstellar origin. They were taken up by parent bodies of meteorites or comets, and could have been delivered to the Earth by meteorites, comets and cosmic dusts. Cosmic dusts were so small that they were directly exposed to the solar radiation, which might be critical for the survivability of organics in them. In order to evaluate the roles of space dusts as carriers of bioorganic compounds to the primitive Earth, we are planning the Tanpopo Mission, where collection of cosmic dusts by using ultra low-density aerogel, and exposure of amino acids and their precursors for years are planned by utilizing the Japan Experimental Module / Exposed Facility of the ISS [2]. The mission is now scheduled to start in 2013. We thank Dr. Katsunori Kawasaki of Tokyo Institute of Technology, and Dr. Satoshi Yoshida of National Institute of Radiological Sciences for their help in particles irradiation. We also thank to the members of JAXA Tanpopo Working Group (PI: Prof. Akihiko Yamagishi) for their helpful discussion. [1] K. Kobayashi, et al., in ``Astrobiology: from Simple Molecules to Primitive Life,'' ed. by V. Basiuk, American Scientific Publishers, Valencia, CA, (2010), pp. 175-186. [2] K. Kobayashi, et al., Trans. Jpn. Soc. Aero. Space Sci., in press (2012).

  12. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes << 7 × 10(exp -177 erg sq. cm/ s. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  13. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  14. Power-law X-ray and gamma-ray emission from relativistic thermal plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1985-01-01

    A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.

  15. The cosmic matrix in the 50th anniversary of relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Aimuratov, Y.; Becerra, L.; Bianco, C. L.; Karlica, M.; Kovacevic, M.; Melon Fuksman, J. D.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Shakeri, S.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.

    Our concept of induced gravitational collapse (IGC paradigm) starting from a supernova occurring with a companion neutron star, has unlocked the understanding of seven different families of gamma ray bursts (GRBs), indicating a path for the formation of black holes in the universe. An authentic laboratory of relativistic astrophysics has been unveiled in which new paradigms have been introduced in order to advance knowledge of the most energetic, distant and complex systems in our universe. A novel cosmic matrix paradigm has been introduced at a relativistic cosmic level, which parallels the concept of an S-matrix introduced by Feynmann, Wheeler and Heisenberg in the quantum world of microphysics. Here the “in” states are represented by a neutron star and a supernova, while the “out” states, generated within less than a second, are a new neutron star and a black hole. This novel field of research needs very powerful technological observations in all wavelengths ranging from radio through optical, X-ray and gamma ray radiation all the way up to ultra-high-energy cosmic rays.

  16. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  17. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  18. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelluti, N.; Urry, M.; Arendt, R.

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5more » σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.« less

  19. The charged particle veto system of the cosmic ray electron synchrotron telescope

    NASA Astrophysics Data System (ADS)

    Geske, Matthew T.

    The Cosmic Ray Electron Synchrotron Telescope is a balloon-borne detector designed to measure cosmic electrons at energies from 2 to 50 TeV. CREST completed a successful 10-day Antarctic flight which launched on December 25, 2011. CREST utilizes a novel detection method, searching for the synchrotron radiation emitted by the interaction of TeV-energy electrons with the geomagnetic field. The main detector component for CREST is a 32 x 32 square array of BaF 2 crystal detectors coupled to photomultiplier tubes, with an inter-crystal spacing of 7.5 cm. This document describes the design, construction and flight of the CREST experiment. A special focus is put upon the charged particle veto system, and its use in the analysis of the CREST results. The veto system, consisting of a series of 27 large slabs of organic plastic scintillator read out through photomultiplier tubes, is designed as a passive mechanism for rejecting charged particle events that could contaminate the X-ray signal from synchrotron radiation. The CREST veto system has 99.15% geometric coverage, with individual detector components exhibiting a mean detection efficiency of 99.7%. In whole, the veto system provides a charged particle rejection factor of better than 7 x 103.

  20. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    NASA Technical Reports Server (NTRS)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  1. No evidence for a significant AGN contribution to cosmic hydrogen reionization

    NASA Astrophysics Data System (ADS)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.

    2018-03-01

    We reinvestigate a claimed sample of 22 X-ray detected active galactic nuclei (AGN) at redshifts z > 4, which has reignited the debate as to whether young galaxies or AGN reionized the Universe. These sources lie within the Great Observatories Origins Deep Survey-South (GOODS-S)/Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) field, and we examine both the robustness of the claimed X-ray detections (within the Chandra 4Ms imaging) and perform an independent analysis of the photometric redshifts of the optical/infrared counterparts. We confirm the reality of only 15 of the 22 reported X-ray detections, and moreover find that only 12 of the 22 optical/infrared counterpart galaxies actually lie robustly at z > 4. Combining these results we find convincing evidence for only seven X-ray AGN at z > 4 in the GOODS-S field, of which only one lies at z > 5. We recalculate the evolving far-ultraviolet (1500 Å) luminosity density produced by AGN at high redshift, and find that it declines rapidly from z ≃ 4 to z ≃ 6, in agreement with several other recent studies of the evolving AGN luminosity function. The associated rapid decline in inferred hydrogen ionizing emissivity contributed by AGN falls an order-of-magnitude short of the level required to maintain hydrogen ionization at z ≃ 6. We conclude that all available evidence continues to favour a scenario in which young galaxies reionized the Universe, with AGN making, at most, a very minor contribution to cosmic hydrogen reionization.

  2. Spectra of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mccray, R.

    1982-01-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  3. Development of the GEM-TPC X-ray Polarimeter with the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Takao; Hayato, Asami; Iwakiri, Wataru; Takeuchi, Yoko; Kubota, Megu; Nishida, Kazuki; Enoto, Teruaki; Tamagawa, Toru

    2018-02-01

    We have developed a gaseous Time Projection Chamber (TPC) containing a single-layered foil of a gas electron multiplier (GEM) to open up a new window on cosmic X-ray polarimetry in the 2-10 keV band. The micro-pattern TPC polarimeter in combination with the Scalable Readout System produced by the RD51 collaboration has been built as an engineering model to optimize detector parameters and improve polarimeter sensitivity. The polarimeter was characterized with unpolarized X-rays from an X-ray generator in a laboratory and polarized X-rays on the BL32B2 beamline at the SPring-8 synchrotron radiation facility. Preliminary results show that the polarimeter has a comparable modulation factor to a prototype of the flight one.

  4. The MIT OSO-7 X-ray experiment. A five color survey of the positions and time variations of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Taylor, R. S.; Clark, G. W.

    1971-01-01

    The all-sky, X-ray measurements are made in five broad energy bands from 0.5 to 60 keV with X-ray collimators of one and three degree FWHM response. Working with the onboard star sensor source locations may be determined to a precision of plus or minus 0.1 deg. The experiment is located in wheel compartment number three of the spacecraft. A time division logic system divides each wheel rotation into 256 data bins in each of which X-ray counts are accumulated over a 190 second interval. Measurement chain circuits include provision for both geometric and risetime anticoincidence. A detailed description of the instrument is included as is pertinent operating information.

  5. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  6. Unveiling the Synchrotron Cosmic Web: Pilot Study

    NASA Astrophysics Data System (ADS)

    Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas

    2011-10-01

    The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.

  7. Search for X-ray jets from high redshift radio sources.

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.; Cheung, Teddy; Gobeille, Doug; Marshall, Herman L.; Migliori, Giulia; Siemiginowska, Aneta; Wardle, John F. C.; Worrall, Diana M.; Birkinshaw, Mark

    2018-06-01

    We are conducting a Chandra "snapshot" survey of 14 radio quasars at redshifts z>3. These are selected to have one sided, arc-sec scale structure, either a jet or lobe, and come from a complete, objectively-defined sample of sources with radio flux density > 70 mJy, and with a spectroscopic redshift from the SDSS. Our objectives are to find X-ray emitting jets, compare the X-ray and radio morphology, and detect X-ray emission arising from inverse Compton scattering of the cosmic microwave background even for those cases where the radio emission is no longer detectable. For this meeting, we expect 5 of the 14 sources to have been observed.

  8. Satellite Observations of Rapidly Varying Cosmic X-ray Sources. Ph.D. Thesis - Catholic Univ.

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.

    1979-01-01

    The X-ray source data obtained with the high energy celestial X-ray detector on the Orbiting Solar Observatory -8 are presented. The results from the 1977 Crab observation show nonstatistical fluctuations in the pulsed emission and in the structure of the integrated pulse profile which cannot be attributed to any known systematic effect. The Hercules observations presented here provide information on three different aspects of the pulsed X-ray emission: the variation of pulsed flux as a function of the time from the beginning of the ON-state, the variation of pulsed flux as a function of binary phase, and the energy spectrum of the pulse emission.

  9. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  10. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  11. Lighter-than-Air Science

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Reviews practical applications, particularly in scientific research, of hot air balloons. Recent U.S. governmental projects in near-space research are described. Lists (1) major accomplishments of scientific ballooning, including discoveries in cosmic ray particles, gamma and x-rays, and other radiation; (2) measurement of fluorocarbon…

  12. Erzion interpretation of negative penetrating cosmic ray particles excess flux observed in bubble chamber "SKAT"

    NASA Astrophysics Data System (ADS)

    Bazhutov, Yu. N.

    2001-08-01

    It is discussed the interpretation of negative penetrating cosmic ray particles excess flux observed in bubble chamber "SKAT" for the momentum range P > P0 = 30 GeV/c by Erzions, hypothetical heavy stable penetrating hadrons, proposed to explain the anomalous vertical muons energy spectrum at small depth underground. Here it is shown that negative charge of p articles observed in "SKAT" is the same as predicted by theoretical Erzion model. The excess particles flux ( J ˜ 10-5 cm-2 s-1 sr-1 ) corresponds to the Erzion intensity observed by scintillation telescope in our previous experiment. The threshold momentum ( P0 ) and the track length threshold ( L0 = 50 cm of liquid BrF3C) are in good accordance with Erzion stop path as for the single charged particle with mass M ≅ 200 GeV/c2 . But to don't contradict with all previous charge ratio results for cosmic ray muons in 30 - 100 GeV/c momentum range it is necessary to propose for such particles the Solar sporadic origin taking to account that both Erzion observations were in the active Sun years (April 23,1979 & July, 1999). INTRODUCTION. 20 years ago to explain anomalous energy spectrum of vertical cosmic ray muons, observed at sea level and small depth underground (<100 m.w.e.) [1,2], it was proposed hypothesis of existing in cosmic rays new heavy stable penetrating hadrons [3]. From that time our experiments to search such particles were started [4,5,6]. Later the theoretical model U(1)xSUl(2)xSU r(2)xSU(3) of such particles (Erzions) has been created in framework of "mirror" models [7,8], which without contradictions to elementary particles Standard Model has explained large kind of another anomalous results in cosmic rays and nuclear physics [9-19]. At last after almost 20 years Erzions search they have been observed due to small vertical original scintillation telescope "Doch-4" [20,21,22]. The observed Erz ions mass was ME = (175+/-25) GeV/c2 and intensity at sea level - JE = (1.8+/-0.4)ṡ10-6 cm-2 sr-1 s-1 (at EE ≤ 6 GeV, PE ≤ 50 GeV/c2 ). To confirm such Erzion discovery it was undertook the attempt of Erzions search on one of the largest bubble chamber (BC) "SKAT", exposed 16 years (19761992) on the neutrino beam of Serpukhov Proton Accelerator.

  13. Multi-Satellite Attitude Prediction program/Orbiting Solar Observatory-8 (MSAP/OSO-8) operating guide

    NASA Technical Reports Server (NTRS)

    Tate, V. H.; Wyckoff, D. C.; Decicco, J. M.

    1976-01-01

    The sun's lower corona and chromosphere and their interaction in the X-ray and ultraviolet (UV) spectral regions were investigated to better understand the transport of energy from the photosphere to the corona. The interaction between the solar electromagnetic and particle radiation and the earth's environment was studied and the background component of cosmic X-rays was discussed.

  14. The Constellation-X Mission: Science Prospects and Technology Challenges

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2007-01-01

    This talk will describe the Constellation-X mission. It will present the key scientific goals, relating to strong gravity, dark energy, ultra-dense matter and cosmic structure. The mission configuration will be described. Emphasis will be placed on the design and anticipated implementation of the X-ray mirror system.

  15. Preheating of the Universe by cosmic rays from primordial supernovae at the beginning of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Sunyaev, R.

    2015-12-01

    The 21-cm signal from the cosmic reionization epoch can shed light on the history of heating of the primordial intergalactic medium (IGM) at z ˜ 30-10. It has been suggested that X-rays from the first accreting black holes could significantly heat the Universe at these early epochs. Here we propose another IGM heating mechanism associated with the first stars. As known from previous work, the remnants of powerful supernovae (SNe) ending the lives of massive Population III stars could readily expand out of their host dark matter minihaloes into the surrounding IGM, aided by the preceding photo-evaporation of the halo's gas by the UV radiation from the progenitor star. We argue that during the evolution of such a remnant, a significant fraction of the SN kinetic energy can be put into low-energy (E ≲ 30 MeV) cosmic rays that will eventually escape into the IGM. These subrelativistic cosmic rays could propagate through the Universe and heat the IGM by ˜10-100 K by z ˜ 15, before more powerful reionization/heating mechanisms associated with the first galaxies and quasars came into play. Future 21-cm observations could thus constrain the energetics of the first SNe and provide information on the magnetic fields in the primordial IGM.

  16. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jester, Sebastian; /Fermilab; Harris, D.E.

    2006-05-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering ofmore » cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.« less

  17. Simulating the physical properties of dark matter and gas inside the cosmic web

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Meneghetti, M.; Moscardini, L.; Rasia, E.; Bonaldi, A.

    2006-08-01

    Using the results of a high-resolution, cosmological hydrodynamical re-simulation of a supercluster-like region, we investigate the physical properties of the gas located along the filaments and bridges which constitute the so-called cosmic web. First, we analyse the main characteristics of the density, temperature and velocity fields, which have quite different distributions, reflecting the complex dynamics of the structure-formation process. Then we quantify the signals which originate from the matter in the filaments by considering different observables. Inside the cosmic web, we find that the halo density is about 10-14 times larger than cosmic mean; the bremsstrahlung X-ray surface brightness reaches at most 10-16 erg s-1 cm-2 arcmin-2 the Compton-y parameter due to the thermal Sunyaev-Zel'dovich effect is about 10-6 the reduced shear produced by the weak lensing effect is ~0.01-0.02. These results confirm the difficulty of an observational detection of the cosmic web. Finally, we find that projection effects of the filamentary network can affect the estimates of the properties of single clusters, increasing their X-ray luminosity by less than 10 per cent and their central Compton-y parameter by up to 30 per cent.

  18. Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.

    2017-08-01

    The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.

  19. Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Hurley, K.; Mctiernan, J. M.; Laros, J. G.

    1992-01-01

    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated.

  20. Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Non-Linear Shock Acceleration Models

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P.; Grenier, Isabelle A.; Goret, Philippe

    1998-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding blast wave. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. The recently reported observation of TeV gamma-rays from SN1006 by the CANGAROO Collaboration, combined with the fact that several unidentified EGRET sources have been associated with known radio/optical/X-ray-emitting remnants, provides powerful motivation for studying gamma-ray emission from SNRs. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency considerations and impact photon intensities and spectral shapes at all energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions.

  1. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  2. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; di Matteo, A.; Fujii, T.; Fujita, K.; Fukushima, M.; Furlich, G.; Goto, T.; Hanlon, W.; Hayashi, M.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jeong, H. M.; Jeong, S. M.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kuznetsov, M.; Kwon, Y. J.; Lee, K. H.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuyama, T.; Matthews, J. N.; Mayta, R.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, R.; Nakamura, T.; Nonaka, T.; Oda, H.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Okuda, T.; Omura, Y.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sahara, R.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Seki, T.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takagi, Y.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamamoto, M.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhezher, Y.; Zundel, Z.; Telescope Array Collaboration

    2018-05-01

    The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed {X}\\max distributions with Monte Carlo {X}\\max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data {X}\\max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic {X}\\max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.

  3. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D >more » 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.« less

  4. X-ray spectral signatures of photoionized plasmas. [astrophysics

    NASA Technical Reports Server (NTRS)

    Liedahl, Duane A.; Kahn, Steven M.; Osterheld, Albert L.; Goldstein, William H.

    1990-01-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae. This point is illustrated by comparing model spectra which have been calculated under conditions appropriate to both coronal plasmas and X-ray photoionized plasmas. It is shown that the (3s-2p)/(3d-2p) line ratios in the Fe L-shell spectrum can be used to effectively discriminate between these two cases. This diagnostic will be especially useful for data analysis associated with AXAF and XMM, which will carry spectroscopic instrumentation with sufficient sensitivity and resolution to identify X-ray photoionized nebulae in a wide range of astrophysical environments.

  5. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  6. Copernicus observations of a number of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Mason, K. O.; Sanford, P. W.; White, N. E.

    1976-01-01

    The Copernicus satellite was launched on 21 August 1972. The main experiment on board is the University of Princeton UV telescope. In addition a cosmic X-ray package of somewhat modest aperture was provided by the Mullard Space Science Laboratory (MSSL) of University College London. Following a brief description of the instrument, a list of galactic sources observed during the year is presented. Although the X-ray detection aperture is small, the ability to point the satellite for long periods of time with high accuracy makes Copernicus an ideal vehicle for the study of variable sources.

  7. Electronic Warfare

    DTIC Science & Technology

    2012-02-08

    EMOE is the background electromagnetic environment and the friendly, neutral, and adversarial electronic order of battle within the...X-RayELF VLF MF VHF SHFLF HF Radio Spectrum Visible Spectrum UHF EHF Gamma Ray Cosmic Ray The top bar shows how the electromagnetic spectrum is...effects of sunspots, lightning, and precipitation static. Essentially, the EME is the global EM background . Figure I-2. Electromagnetic Environment

  8. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; National Academy of Sciences, Washington, D.C. 20001; Ackermann, M.

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-lawmore » shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.« less

  9. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  10. Bragg crystal spectroscopy on the OSO 8 satellite

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Chanan, G. A.; Helfand, D. J.; Ku, W. H.-M.; Novick, R.

    1979-01-01

    Results are reported for high-resolution OSO 8 Bragg-crystal spectroscopy of a variety of cosmic X-ray sources in the energy range from 2 to 10 keV. A continuous spectrum of Sco X-1 is examined, and results of a search for narrow line emission due to iron near 6.7 keV are presented for 32 galactic X-ray sources, including Sco X-1, Cyg X-3, and Cen X-3. It is noted that the strongest evidence for iron line emission has been obtained for Cyg X-3 and that evidence for an iron line feature has also been found in the spectrum of Cen X-3.

  11. Microanalytical study of some cosmic dust discovered in sea-floor sediments in China

    NASA Technical Reports Server (NTRS)

    Shijie, Z.; Hanchang, P.; Zhong, Y.

    1984-01-01

    The study of cosmic dust can provide useful data in the investigation of the origin of the Earth and the evolution of celestial bodies. Three types of cosmic dust (ferriginous, siliceous, and glassy) were discovered in the seafloor sediments near China. Their chemical composition and microstructure were examined by X-ray diffraction, fractography, and electron microscopy. The major mineral in an iron-containing cosmic dust is magnetite. The silicate spheres contain sundry metals and metal oxides. Glassy microtektites are similar in composition to tektites, and are found in all the major meteorite areas worldwide.

  12. The SWIFT AGN and Cluster Survey. I. Number Counts of AGNs and Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon D.; Kochanek, Christopher S.; Nugent, Jenna M.; Bregman, Joel N.

    2015-05-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding γ-ray bursts to provide a medium depth (4× {{10}-15} erg cm-2 s-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wide-field Infrared Survey Explorer mid-infrared (MIR) colors to classify the sources. For AGNs we can roughly separate the point sources into MIR-red and MIR-blue AGNs, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher-redshift (z\\gt 0.5) X-ray-selected clusters.

  13. Los Alamos, Toshiba probing Fukushima with cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create imagesmore » of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.« less

  14. Iron K shell line, a probe of low energy cosmic rays in SNRs

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji; Sato, Tamotsu

    2016-06-01

    Since the discovery of non thermal power-law X-rays at the rim of SN1006 by Koyama et al. (1995), this feature has been established to be evidence of high energy cosmic rays (HECRs). The HECRs are created by a diffuse shock acceleration process. Accordingly low energy cosmic rays (LECRS) must be presented as the injector of this acceleration process. We found for the first time that the K-shell line from neutral iron at 6.4 keV is good tracer of LECRs in SNRs. This paper present the observational facts for LECRs from intermediate aged SNRs, 3C391, Kes79, Kes 78 and W44 in the Scutum Arm region (see figure, Sato et al. 2014, 2015). Two SNRs, 3C391 and W44, exhibit recombining plasma (RP), an unusual structure in the frame work of the standard SNR evolution scenario. Together with the RP, we discuss the origin of LECRs in the SNRs.

  15. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2018-01-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  16. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-01-23

    Leon Van Speybroeck of the Harvard-Smithsonian Center for Astrophysics in Cambridge Massachusetts was awarded the 2002 Bruno Rossi Prize of the High-Energy Astrophysics Division of the American Astronomy Society. The Rossi Prize is an arnual recognition of significant contributions in high-energy astrophysics in honor of the Massachusetts Institute of Technology's late Professor Bruno Rossi, an authority on cosmic ray physics and a pioneer in the field of x-ray astronomy. Van Speybroeck, who led the effort to design and make the x-ray mirrors for NASA's premier Chandra X-Ray Observatory, was recognized for a career of stellar achievements in designing precision x-ray optics. As Telescope Scientist for Chandra, he has worked for more than 20 years with a team that includes scientists and engineers from the Harvard-Smithsonian, NASA's Marshall Space Flight Center, TRW, Inc., Huhes-Danbury (now B.F. Goodrich Aerospace), Optical Coating Laboratories, Inc., and Eastman-Kodak on all aspects of the x-ray mirror assembly that is the heart of the observatory.

  17. Hydrodynamical and Spectral Simulations of HMXB Winds

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.; Liedahl, D. A.; Plewa, T.

    2006-09-01

    We describe the results of a research program to develop improved models of the X-ray spectra of cosmic sources such as X-ray binaries, CVs, and AGN in which UV line-driven mass flows are photoionized by an X-ray source. Work to date has focused on high-mass X-ray binaries (HMXBs) and on Vela X-1 in particular, for which there are high-quality Chandra HETG spectra in the archive. Our research program combines FLASH hydrodynamic calculations, XSTAR photoionization calculations, HULLAC atomic data, improved calculations of the line force multiplier, X-ray emission models appropriate to X-ray photoionized plasmas, and Monte Carlo radiation transport. We will present movies of the relevant physical quantities (density, temperature, ionization parameter, velocity) from a FLASH two-dimensional time-dependent simulation of Vela X-1, maps showing the emissivity distributions of the X-ray emission lines, and a preliminary comparison of the resulting synthetic spectra to the Chandra HETG spectra. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  18. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA, thanks to its very high sensitivity and unique capability to make images of exceedingly faint radio-emitting objects," Bagchi said. The scientists also used the European Space Agency's XMM-Newton, the world's most sensitive X-ray observatory, to observe this extraordinary cluster of galaxies. "The advanced technical capabilities of the orbiting XMM-Newton revealed a spectacular bullet-like region of X-ray emission in this dynamically active cluster," said Gastao B. Lima Neto, of the Institute of Astronomy and Geophysics in Sao Paulo, Brazil, a co-author of the research paper. "Our X-ray observations strongly suggest a recent collision and merger of two or more smaller clusters. Such a phenomenon is among the most energetic events in the Universe after the Big Bang. Only a tiny fraction of the total energy of this collision, if transferred to electrons, would cause them to emit the radio waves observed by the VLA. However, the main question is, how this is achieved," said Florence Durret of the Astrophysical Institute of Paris, France, another of the researchers. The scientists calculated that the total energy of the colliding groups of galaxies would be enough to keep our Sun shining for more than 20 sextillion years (2 followed by 22 zeros)! "We think the shock waves that sped up these electrons came from the collision of a smaller group of galaxies with the main body of the larger cluster. When two such massive objects crash into each other at supersonic speed, gigantic ripple-like shock waves are created in the surrounding gas, which race out to the outer regions of the forming cluster at a speed of thousands of kilometers per second," Bagchi said. "You can imagine that each cluster is like a supersonic aircraft, moving faster than the speed of sound in the surrounding gas, and just as you hear a sonic boom when shock waves from an airplane pass by you, we believe that the situation in the Abell 3376 cluster is similar, with ringlike radio structures tracing out the shock waves," Bagchi explained. Such a scenario also is supported by images of the cluster made with the XMM-Newton and ROSAT X-ray satellites, as well as by computer simulations, Bagchi added. The exact mechanism for producing the shock waves is still open to question, the scientists said. "This is the first observational evidence for this type of shock wave around a massive galaxy cluster," Bagchi said. "This discovery will help us understand more about the thin gas between the galaxies, and also about the magnetic fields in the outskirts of such clusters -- magnetic fields whose origin still is unknown," he said. In addition, the scientists speculate that violent regions like those in Abell 3376 may be sites from which cosmic rays originate. Cosmic rays are protons or atomic nuclei accelerated to nearly the speed of light, and shocks such as those found in the collisions of galaxy groups may be energetic enough to provide the required amount of "kick." "Some of the most energetic cosmic ray particles detected on Earth may contain about 100 million times more energy than the highest energy achieved so far in any man-made particle accelerator. Where do these cosmic rays come from and exactly what process kicks them to such stupendous energy is still a fascinating unsolved problem of physics," said graduate student Surajit Paul of the Institute for Theoretical Physics and Astrophysisc at Wuerzburg University in Germany, who was on the research team. "A cosmic accelerator source containing powerful shock waves and magnetic fields extending over millions of light years in length is capable of accelerating a proton or nucleus to such enormous energies. Although our observations do not conclusively show the evidence for such particles, our VLA radio image does show clearly that such structures are indeed present in this galaxy cluster. Only future cosmic ray observations can tell if Abell 3376 is an ultra-high-energy cosmic ray source. We will continue to explore this fascinating cosmic laboratory in the future, employing some of the world's most sensitive radio, X-ray and gamma-ray telescopes to reveal its mysteries," Bagchi said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  19. An Instrument to Measure Elemental Energy Spectra of Cosmic Ray Nuclei Up to 10(exp 16) eV

    NASA Technical Reports Server (NTRS)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov,S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    A longstanding goal of cosmic ray research is to measure the elemental energy spectra of cosmic rays up to and through the "knee" (approx. equal to 3 x 10 (exp 15) eV. It is not currently feasible to achieve this goal with an ionization calorimeter because the mass required to be deployed in Earth orbit is very large (at least 50 tonnes). An alternative method will be presented. This is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer using silicon microstrip detector technology. The proposed technique can be used over a wide range of energies (10 (exp 11)- 10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a design for a new lightweight instrument with a large aperture (KLEM) will be described.

  20. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; hide

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  1. The Imaging X-ray Polarimetry Explorer (IXPE)

    NASA Astrophysics Data System (ADS)

    Weisskopf, Martin C.; Ramsey, Brian; O'Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffitta, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffrey; Kaspi, Victoria; Muleri, Fabio; Marshall, Herman; Matt, Giorgio; Romani, Roger

    2016-07-01

    The Imaging X-ray Polarimetry Explorer (IXPE) expands observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions—such as neutron stars and black holes. Polarization singularly probes physical anisotropies—ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin—that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  2. 44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Terrier, R.; Trap, G.; Lebrun, F.; Decourchelle, A.; Vink, J.

    2009-05-01

    Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44Ti γ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.

  3. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Ayres, D. S. E.

    1986-01-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.

  4. Simulating the impact of X-ray heating during the cosmic dawn

    NASA Astrophysics Data System (ADS)

    Ross, Hannah E.; Dixon, Keri L.; Iliev, Ilian T.; Mellema, Garrelt

    2017-07-01

    Upcoming observations of the 21-cm signal from the epoch of reionization will soon provide the first direct detection of this era. This signal is influenced by many astrophysical effects, including long-range X-ray heating of the intergalactic gas. During the preceding cosmic dawn era, the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest volume (349 Mpc comoving = 244 h-1Mpc) full numerical radiative transfer simulations to date of this epoch which include the effects of helium and multifrequency heating, both with and without X-ray sources. We show that X-ray sources contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared to the common assumption of temperature saturation. The 21-cm differential brightness temperature power spectrum is initially boosted on large scales, before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolution around 11 arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.

  5. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (I) they grow readily from the remnants of Population III stars and (II) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  6. Performance comparison of MoNA and LISA neutron detectors

    NASA Astrophysics Data System (ADS)

    Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse

    2010-11-01

    In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.

  7. Synchrotron X-ray fluorescence analyses of stratospheric cosmic dust - New results for chondritic and low-nickel particles

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1990-01-01

    Trace element abundance determinations were performed using synchrotron X-ray fluorescence on nine particles collected from the stratosphere and classified as cosmic. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging from 1.3 to 38 times the C1 concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere.

  8. DUMBO - A cosmic-ray astrophysics facility in Canada

    NASA Astrophysics Data System (ADS)

    Hanna, D.

    1986-04-01

    A deep-underground muon-bundle observatory (DUMBO) is proposed for construction at 700 m depth near Sudbury, Ontario, Canada. The DUMBO design calls for two parallel 3.6 x 21.6-m stacks of multiwire proportional chambers in adjacent mine tunnels (synthesizing a larger-area detector) and a 121-station surface EAS array with variable density to accommodate shower energies in the 100-TeV and 10-PeV ranges. The aims of DUMBO include determining the nuclear composition of cosmic rays, ultrahigh-energy gamma-ray astronomy, and characterizing the point sources of muons observed in recent proton-decay experiments; the physics of these processes and the detector capabilities they imply are discussed. Graphs, diagrams, and drawings are provided.

  9. High energy primary electron spectrum observed by the emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Aizu, H.; Hiraiwa, N.; Taira, T.; Kobayashi, T.; Niu, K.; Koss, T. A.; Lord, J. J.; Golden, R. L.

    1978-01-01

    A detector of the emulsion chamber type is used to measure the energy spectrum of cosmic-ray electrons. Two large emulsion chambers, each having an area of 40 by 50 sq cm, are exposed for about 25.5 hr at an average pressure altitude of 3.9 mbar. About 500 high-energy cascades (no less than about 600 GeV) are detected by searching for dark spots on the X-ray films. A power-law energy dependence formula is derived for the spectrum of primary cosmic-ray electrons in the energy region over 100 GeV. The results are in good agreement with the transition curves obtained previously by theoretical and Monte Carlo calculations.

  10. Calculation of Cosmic Ray Induced Single Event Upsets: Program CRUP, Cosmic Ray Upset Program

    DTIC Science & Technology

    1983-09-14

    1.., 0 .j ~ u M ~ t R A’- ~~ ’ .~ ; I .: ’ 1 J., ) ’- CALCULATION OF COSMIC RAY INDUCED SINGLE EVEI’o"T UPSETS: PROGRAM CRUP , COSMIC RAY UPSET...neceuety end Identity by blo..;k number) 0Thls report documents PROGR.Al\\1 CRUP , COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic...34. » » •-, " 1 » V »1T"~ Calculation of Cosmic Ray Induced Single Event Upsets: PROGRAM CRUP , COSMIC RAY UPSET PROGRAM I. INTRODUCTION Since the

  11. The average X-ray/gamma-ray spectra of Seyfert galaxies from Ginga and OSSE and the origin of the cosmic X-ray background

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Done, Chris; Smith, David; Mcnaron-Brown, Kellie

    1995-01-01

    We have obtained the first average 2-500 keV spectra of Seyfert galaxies, using the data from Ginga and Compton Gamma-Ray Observatory's (CGRO) Oriented Scintillation Spectrometer Experiment (OSSE). Our sample contains three classes of objects with markedly different spectra: radio-quiet Seyfert 1's and 2's, and radio-loud Seyfert 1's. The average radio-quiet Seyfert 1 spectrum is well-fitted by a power law continuum with the energy spectral index alpha approximately equals 0.9, a Compton reflection component corresponding to a approximately 2 pi covering solid angle, and ionized absorption. There is a high-energy cutoff in the incident power law continuum: the e-folding energy is E(sub c) approximately equals 0.6(sup +0.8 sub -0.3) MeV. The simplest model that describes this spectrum is Comptonization in a relativistic optically-thin thermal corona above the surface of an accretion disk. Radio-quiet Seyfert 2's show strong netural absorption, and there is an indication that their X-ray power laws are intrinsically harder. Finally, the radio-loud Seyfert spectrum has alpha approximately equals 0.7, moderate neutral absorption E(sub C) = 0.4(sup +0.7 sub -0.2) MeV, and no or little Compton reflection. This is incompatible with the radio-quiet Seyfert 1 spectrum, and probably indicating that the X-rays are beamed away from the accretion disk in these objects. The average spectra of Seyferts integrated over redshift with a power-law evolution can explain the hard X-ray spectrum of the cosmic background.

  12. CXBN: a blueprint for an improved measurement of the cosmological x-ray background

    NASA Astrophysics Data System (ADS)

    Simms, Lance M.; Jernigan, J. G.; Malphrus, Benjamin K.; McNeil, Roger; Brown, Kevin Z.; Rose, Tyler G.; Lim, Hyoung S.; Anderson, Steven; Kruth, Jeffrey A.; Doty, John P.; Wampler-Doty, Matthew; Cominsky, Lynn R.; Prasad, Kamal S.; Thomas, Eric T.; Combs, Michael S.; Kroll, Robert T.; Cahall, Benjamin J.; Turba, Tyler T.; Molton, Brandon L.; Powell, Margaret M.; Fitzpatrick, Jonathan F.; Graves, Daniel C.; Gaalema, Stephen D.; Sun, Shunming

    2012-10-01

    A precise measurement of the Cosmic X-ray Background (CXB) is crucial for constraining models of the evolution and composition of the universe. While several large, expensive satellites have measured the CXB as a secondary mission, there is still disagreement about normalization of its spectrum. The Cosmic X-ray Background NanoSat (CXBN) is a small, low-cost satellite whose primary goal is to measure the CXB over its two-year lifetime. Benefiting from a low instrument-induced background due to its small mass and size, CXBN will use a novel, pixelated Cadmium Zinc Telluride (CZT) detector with energy resolution < 1 keV over the range 1-60 keV to measure the CXBN with unprecedented accuracy. This paper describes CXBN and its science payload, including the GEANT4 model that has been used to predict overall performance and the backgrounds from secondary particles in Low Earth Orbit. It also addresses the strategy for scanning the sky and calibrating the data, and presents the expected results over the two-year mission lifetime.

  13. X-Ray Probes of Cosmic Star-Formation History

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.

  14. Cosmic ray isotope measurements with a new Cerenkov X total energy telescope

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Kish, J. C.; Schrier, D. A.

    1985-01-01

    Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes.

  15. The microphysics and macrophysics of cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less

  16. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    NASA Astrophysics Data System (ADS)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  17. Einstein observations of the X-ray structure of Centaurus A - Evidence for the radio-lobe energy source

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Feigelson, E.; Delvaille, J.; Giacconi, R.; Grindlay, J.; Schwartz, D. A.; Fabian, A. C.

    1979-01-01

    The X-ray source at the center of the radio galaxy Centaurus A has been resolved into the following components with the imaging detectors on board the Einstein X-ray Observatory: (1) a point source coincident with the infrared nucleus; (2) diffuse X-ray emission coinciding with the inner radio lobes; (3) a 4-arcmin extended region of emission about the nucleus; and (4) an X-ray jet between the nucleus and the NE inner radio lobe. The 2 x 10 to the 39th ergs/s detected from the radio lobes probably arises from inverse Compton scattering of the microwave background. The average magnetic field in the SW lobe is determined to be not less than 4 microgauss. The extended region may be due to emission by a cloud of hot gas, cosmic-ray scattering, or stellar sources. The jet provides strong evidence for the continuous resupply of energy to the lobes from the nucleus.

  18. Soft X-ray astronomy proportional counter electronics

    NASA Technical Reports Server (NTRS)

    Gardner, W. R.

    1971-01-01

    The X-ray multiwire proportional counter is designed to measure cosmic X-ray fluxes at sounding rocket altitudes in the energy range of 0.1 to 10 keV. Four instruments will be launched in a Black Brant 4 rocket employing different combinations of detector windows and gas. The detector is constructed with two layers of twelve cells. A columnator is mounted on the face of one layer whose cells are wired together alternately to form two main detector sections. The electronics and gas regulation systems are mounted on the face of the second layer whose cells are wired together to form one anticoincidence detector section. Normally X-rays will have short ionization paths in only one of the main detector cells at a time and won't enter the anticoincidence detector cells. To distinguish between X-rays and charged particles, the instrument includes a coincidence discriminator, an anticoincidence discriminator, and a pulse rise time discriminator.

  19. Origin of Gamma-Ray Families Accompanied by Halos and Detected in Experiments with X-Ray Emulsion Chambers

    NASA Astrophysics Data System (ADS)

    Puchkov, V. S.; Pyatovsky, S. E.

    2018-03-01

    The phenomenon of gamma-ray families featuring halos that is observed in an experiment with x-ray emulsion chambers (XREC) in the Pamir experiment and in other XREC experiments is explained. The experimental properties of halos are analyzed via a comparison with the results of their simulation. It is shown that gamma-ray families featuring halos are predominantly produced (more than 96% of them) by protons and heliumnuclei. This makes it possible to employ the experimental properties of halos to estimate the fraction of protons and helium nuclei in the mass composition of primary cosmic radiation.

  20. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 40

    DTIC Science & Technology

    1978-01-25

    the meteorite material with cosmic muons , and due to instrument noise. This phenomenon is attributed to the presence of some spontaneously fissile...references 4: 2 Russian, 2 Western. USSR AN INSTRUMENT FOR VISUALIZING THE X- RAY TOPOGRAPHIC PATTERNS IN P-N STRUCTURES DURING THE FABRICATION PROCESS...Special Design and Engineering Office of Industrial Television [Abstract] The x- ray topographic method according to A. P. Lang or G. Borrman is

  1. The origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1986-01-01

    Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.

  2. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  3. Status and expected perfomance of the MAXI mission for the JEM/ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, J.; Kawai, N.

    2008-12-24

    MAXI (Monitor of All-sky X-ray Image) is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image every ISS orbit. Only with a few weeks scan, MAXI is expected to make a milli-Crab X-ray all sky map excluding bright region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if once they occur, but also observes long-term variability of Galact ic and extra-Galactic X-ray sources. MAXI also provides an X-ray source catalogue at that time with diffuse cosmic X-ray background. MAXI consistsmore » of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis software including alert system on ground are being developed by mission team. In this paper we report an overview of final instruments of MAXI and capability of MAXI.« less

  4. Spectral studies of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Blissett, R. J.

    1980-01-01

    The conventional "indirect" method of reduction and data analysis of spectral data from non-dispersive X-ray detectors, by the fitting of assumed spectral models, is examined. The limitations of this procedure are presented, and alternative schemes are considered in which the derived spectra are not biased to an astrophysical source model. A new method is developed in detail to directly restore incident photon spectra from the detected count histograms. This Spectral Restoration Technique allows an increase in resolution, to a degree dependent on the statistical precision of the data. This is illustrated by numerical simulations. Proportional counter data from Ariel 5 are analysed using this technique. The results obtained for the sources Cas A and the Crab Nebula are consistent with previous analyses and show that increases in resolution of up to a factor three are possible in practice. The source Cyg X-3 is closely examined. Complex spectral variability is found, with the continuum and iron-line emission modulated with the 4.8 hour period of the source. The data suggest multi-component emission in the source. Comparing separate Ariel 5 observations and published data from other experiments, a correlation between the spectral shape and source intensity is evident. The source behaviour is discussed with reference to proposed source models. Data acquired by the low-energy detectors on-board HEAO-1 are analysed using the Spectral Restoration Technique. This treatment explicitly demonstrates the existence of oxygen K-absorption edges in the soft X-ray spectra of the Crab Nebula and Sco X-1. These results are considered with reference to current theories of the interstellar medium. The thesis commences with a review of cosmic X-ray sources and the mechanisms responsible for their spectral signatures, and continues with a discussion of the instruments appropriate for spectral studies in X-ray astronomy.

  5. Primary cosmic ray particles with z 35 (VVH particles). [very heavy particle detection by high altitude balloons

    NASA Technical Reports Server (NTRS)

    Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.

    1972-01-01

    Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high altitude balloon flights. From the analysis of 141 particle tracks recorded during a total exposure of 1.3 x 10 to the 7th power sq m ster.sec., a charge spectrum of the VVH particles has been derived.

  6. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  7. Solar--geophysical data. Prompt reports. [Number 405, May 1978. Data for A/pril 1978--March 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.E.

    1978-05-01

    This prompt report provides data for April 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, inferred IP magnetic field polarities, mean solar magnetic field, solar wind measurements, geomagnetic substorms, and magnetograms of geomagnetic storm. It also provides data for March 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices. A new data page lists the North American magnetometer network.

  8. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  9. X-Ray Polarimetry with GEMS

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  10. Comet composition and density analyzer

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.

  11. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  12. The cosmic X-ray experiment aboard HEAO-1

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Bolt, E.; Holt, S.; Serlemitsos, P. J.; Garmire, G.; Agrawal, P.; Reigler, G.; Bowyer, C. S.; Lampton, M.

    1978-01-01

    The HEAO-1 A-2 experiment, designed to study the large scale structure of the galaxy and the universe at X-ray energies is described. The instrument consists of six gas proportional counters of three types nominally covering the energy ranges of 0.15-3 keV, 1.2-20 keV, and 2.5-60 keV. The two low energy detectors have about 400 sq cm open area each while the four others have about 800 sq cm each. Dual field of view collimators allow the unambiguous determination of instrument internal background and diffuse X-ray brightness. Instrument characteristics and early performance are discussed.

  13. New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantz, A.; Allen, S.W.; Ebeling, H.

    We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less

  14. PE-46 The Design of the Lynx X-Ray Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon; Dipirro, Michael; Eckart, Megan; Sakai, Kazuhiro; Smith, Stephen; Yoon, Wonsik; Bennett, Douglas; Kotsubo, Vincent; Mates, Benjamin; Swetz, Daneil; hide

    2017-01-01

    Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be the next astrophysics flagship mission after WFIRST. One of Lynx's three instruments is an imaging spectrometer consisting of an x-ray microcalorimeter behind an X-ray optic with an angular resolution of 0.5 arc-seconds and approximately 3 sq m of area at 1 keV. This instrument will provide unparalleled diagnostics of distant extended structures and in particular will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the design and read-out of the of the array configuration including a number of sub-array options for increasing the capabilities to maximize the scientific return of the Lynx observatory.

  15. X-raying the most luminous quasars at cosmic noon

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Martocchia, S.; Zappacosta, L.

    2017-10-01

    The WISE/SDSS hyper-luminous (log L_Bol > 47) quasar (WISSH) survey is performing a multi-band systematic exploration of the most luminous AGN shining at the golden epoch of AGN activity (i.e. z ˜ 2-4). This gives the opportunity of overcoming the luminosity bias in the exploration of the accretion phenomenon and the impact of AGN radiative output on the host. In this talk, I present the results of our study of the X-ray spectra of 40 WISSH quasars. I report on the correlations between the X-ray and Optical, UV and MIR properties, and the behavior of the X-ray bolometric correction at the brightest end of the luminosity function. I discuss the relative X-ray weakness of these very powerful quasars compared to less luminous AGN. This X-ray weakness can be a key ingredient for accelerating powerful ionized outflows (ubiquitously revealed in the UV/optical spectra of WISSH quasars) and, furthermore, radiation-driven winds can be effective in destroying the X-ray corona and quenching the X-ray emission. The potential offered by Athena in studying this extreme class of AGN is also discussed.

  16. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  17. CdZnTe detector for hard x-ray and low energy gamma-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Alvarez, J. M.; Barriere, N.; Caroli, E.; Curado da Silva, R. M.; Del Sordo, S.; Di Cosimo, S.; Frutti, M.; Hernanz, M.; Lozano, M.; Quadrini, E.; Pellegrini, G.; Stephen, J. B.; Ubertini, P.; Uslenghi, M. C.; Zoglauer, A.

    2008-07-01

    The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs (Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton regime. We report the preliminary results of an optimization study based on simulations and laboratory tests, as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.

  18. The charged particle radiation environment for AXAF

    NASA Technical Reports Server (NTRS)

    Joy, Marshall

    1990-01-01

    The Advanced X Ray Astrophysics Facility (AXAF) will be subjected to several sources of charged particle radiation during its 15-year orbital lifetime: geomagnetically-trapped electrons and protons, galactic cosmic ray particles, and solar flare events. These radiation levels are presented for the AXAF orbit for use in the design of the observatory's science instruments.

  19. Detecting and Characterizing Nighttime Lighting Using Multispectral and Hyperspectral Imaging

    DTIC Science & Technology

    2012-12-01

    OBJECTIVES...............................................................................2  II.  BACKGROUND ...accomplish the same. 3 II. BACKGROUND The approach to extracting information from optical remote sensing at night is slightly different than...although it occupies a very small region within the EMS. Other familiar forms of energy that lie along the spectrum include, cosmic rays, gamma rays, x

  20. Exploding Stars and Stripes

    NASA Astrophysics Data System (ADS)

    2011-03-01

    The discovery of a pattern of X-ray "stripes" in the remains of an exploded star may provide the first direct evidence that a cosmic event can accelerate particles to energies a hundred times higher than achieved by the most powerful particle accelerator on Earth. This result comes from a very long observation of the Tycho supernova remnant with NASA's Chandra X-ray Observatory. It could explain how some of the extremely energetic particles bombarding the Earth, called cosmic rays, are produced. "We've seen lots of intriguing structures in supernova remnants, but we've never seen stripes before," said Kristoffer Eriksen, a postdoctoral researcher at Rutgers University who led the study. "This made us think very hard about what's happening in the blast wave of this powerful explosion." This latest study from Chandra provides support for a theory about how magnetic fields can be dramatically amplified in such blast waves. In this theory, the magnetic fields become highly tangled and the motions of the particles very turbulent near the expanding supernova shock wave at the front edge of the supernova remnant. High-energy charged particles can bounce back and forth across the shock wave repeatedly, gaining energy with each crossing. Theoretical models of the motion of the most energetic particles -- which are mostly protons -- are predicted to leave a messy network of holes and dense walls corresponding to weak and strong regions of magnetic fields, respectively. The X-ray stripes discovered by the Chandra researchers are thought to be regions where the turbulence is greater and the magnetic fields more tangled than surrounding areas, and may be the walls predicted by the theory. Electrons become trapped in these regions and emit X-rays as they spiral around the magnetic field lines. However, the regular and almost periodic pattern of the X-ray stripes was not predicted by the theory. "It was a big surprise to find such a neatly arranged set of stripes," said co-author Jack Hughes, professor of physics and astronomy at Rutgers. "We were not expecting so much order to appear in so much chaos. It could mean that the theory is incomplete, or that there's something else we don't understand." Assuming that the spacing between the X-ray stripes corresponds to the radius of the spiraling motion of the highest energy protons in the supernova remnant, the spacing corresponds to energies about 100 times higher than reached in the Large Hadron Collider. These energies equal the highest energies of cosmic rays thought to be produced in our Galaxy. Because cosmic rays are composed of charged particles, like protons and electrons, their direction of motion changes when they encounter magnetic fields throughout the galaxy. So, the origin of individual cosmic rays detected on Earth cannot be determined. Supernova remnants have long been considered a good candidate for producing the most energetic cosmic rays in our Galaxy. The protons can reach energies that are hundreds of times higher than the highest energy electrons, but since they do not radiate efficiently like the electrons, direct evidence for the acceleration of cosmic ray protons in supernova remnants has been lacking. These results also support the prediction that magnetic fields in interstellar space are greatly amplified in supernova remnants, but the difference between the observed and predicted structures means that other interpretations cannot be ruled out. "We were excited to discover these stripes because they might allow us to directly track, for the first time, the origin of the most energetic particles produced in our galaxy," said Eriksen. "But, we're not claiming victory yet." The Tycho supernova remnant is named for the famous Danish astronomer Tycho Brahe, who reported observing the supernova in 1572. Scientists think the explosion occurred when a white dwarf star grew in mass and exceeded its weight limit, forming a so-called Type Ia supernova. The Tycho remnant is located in the Milky Way, about 13,000 light years from Earth. "Supernova remnants are our best cosmic laboratories for understanding how nature accelerates the highest energy cosmic rays," said Roger Blandford of Stanford University, a noted expert in this field who was not involved with these findings. "These careful measurements provide a very strong clue as to what actually happens at these giant shock fronts." These results were published in the February 20th, 2011 issue of The Astrophysical Journal Letters. The other co-authors are Carles Badenes from Tel-Aviv University and the Weizmann Institute of Science in Israel, Robert Fesen from Dartmouth College, NH, Parviz Ghavamian from Space Telescope Science Institute, Baltimore, MD, David Moffett, from Furman University, Greenville, SC, Paul Plucinsky from Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, Cara Rakowski from the Naval Research Laboratory, Washington, DC, Estela M. Reynoso from the Institute of Astronomy and Space Physics and University of Buenos Aires, Argentina and Patrick Slane from CfA. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.si.edu and http://chandra.nasa.gov

  1. Search for neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Galatà, S.

    2012-12-01

    Neutrino telescopes are nowadays exploring a new window of observation on the high energy universe and may shed light on the longstanding problem regarding the origin of cosmic rays. The ANTARES neutrino telescope is located underwater 40 km offshore from the Southern coast of France, on a plateau at 2475 m depth. Since 2007 it observes the high energy (>100 GeV) neutrino sky looking for cosmic neutrino sources. Among the candidate neutrino emitters are microquasars, i.e. galactic X-ray binaries exhibiting relativistic jets, which may accelerate hadrons thus producing neutrinos, under certain conditions. These sources are also variable in time and undergo X-ray or gamma ray outburst that can be related to the acceleration of relativistic particles witnessed by their radio emission. These events can provide a trigger to the neutrino search, with the advantage of drastically reducing the atmospheric neutrino background. A search for neutrino emission from microquasar during outbursts is presented based on the data collected by ANTARES between 2007 and 2010. Upper limits are shown and compared with the predictions.

  2. Complex organic molecules in the Galactic Centre: the N-bearing family

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Jiménez-Serra, I.; Rivilla, V. M.; Martín, S.; Martín-Pintado, J.; Requena-Torres, M. A.; Armijos-Abendaño, J.; Riquelme, D.; Aladro, R.

    2018-05-01

    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.

  3. Inferring Compton-thick AGN candidates at z > 2 with Chandra using the >8 keV rest-frame spectral curvature

    NASA Astrophysics Data System (ADS)

    Baronchelli, L.; Koss, M.; Schawinski, K.; Cardamone, C.; Civano, F.; Comastri, A.; Elvis, M.; Lanzuisi, G.; Marchesi, S.; Ricci, C.; Salvato, M.; Trakhtenbrot, B.; Treister, E.

    2017-10-01

    To fully understand cosmic black hole growth, we need to constrain the population of heavily obscured active galactic nuclei (AGNs) at the peak of cosmic black hole growth (z ˜1-3). Sources with obscuring column densities higher than 1024 atoms cm-2, called Compton-thick (CT) AGNs, can be identified by excess X-ray emission at ˜20-30 keV, called the 'Compton hump'. We apply the recently developed Spectral Curvature (SC) method to high-redshift AGNs (2 < z < 5) detected with Chandra. This method parametrizes the characteristic 'Compton hump' feature cosmologically redshifted into the X-ray band at observed energies <10 keV. We find good agreement in CT AGNs found using the SC method, and bright sources fit using their full spectrum with X-ray spectroscopy. In the Chandra Deep Field-South, we measure a CT fraction of 17^{+19}_{-11} per cent (3/17) for sources with observed luminosity >5 × 1043erg s-1. In the Cosmological Evolution Survey (COSMOS), we find an observed CT fraction of 15^{+4}_{-3} per cent (40/272) or 32 ± 11 per cent when corrected for the survey sensitivity. When comparing to low redshift AGNs with similar X-ray luminosities, our results imply that the CT AGN fraction is consistent with having no redshift evolution. Finally, we provide SC equations that can be used to find high-redshift CT AGNs (z > 1) for current (XMM-Newton) and future (eROSITA and ATHENA) X-ray missions.

  4. A Closer Look at the Alpha Persei Coronal Conundrum

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2017-03-01

    A ROSAT survey of the Alpha Per open cluster in 1993 detected its brightest star, the mid-F supergiant α Persei: the X-ray luminosity and spectral hardness were similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot of α Per found the far-ultraviolet (FUV) coronal-proxy Si IV unexpectedly weak. This, and a suspicious offset of the ROSAT source, suggested that a late-type companion might be responsible for the X-rays. Recently, a multifaceted program tested that premise. Ground-based optical coronography and near-UV imaging with Hubble Space Telescope (HST) Wide-Field Camera 3 searched for any close-in faint candidate coronal objects, but without success. Then, a Chandra pointing found the X-ray source single and coincident with the bright star. Significantly, the Si IV emissions of α Per, in a deeper FUV spectrum collected by the HST Cosmic Origin Spectrograph as part of the joint program, are aligned well with chromospheric atomic oxygen (which must be intrinsic to the luminous star), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. The overluminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an alternative is that α Per represents a novel class of coronal source. Resolving the first possibility now has become more difficult, because the easy solution—a well-separated companion—has been eliminated. Testing the other possibility will require a broader high-energy census of the early-F supergiants.

  5. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.

  6. Observation of excess flux for negative cosmic ray penetrating particles in bubble chamber "SKAT" for momentum range (30GeV/c

    NASA Astrophysics Data System (ADS)

    Bazhutov, Yu. N.; Baranov, D. S.

    2001-08-01

    There are presented the first results of the new heavy stable cosmic ray particles search in the bubble chamber "SKAT" (450 x 160 x 90 cm3 ), which was exposed in the neutrino beam of Serpukhov Accelerator during 1976 - 1992 years and was viewed along the horizontal direction so as the magnet field direction (MDM > 150 GeV/c). From looking over 1,270 stills (1 roll for April 23, 1979) it was selected 757 tracks of cosmic ray particles with zenith angle θ < 45°, track length - L > 50 cm and momentum P>2.0GeV/c. From this events there were constructed momentum spectrums for both negative and positive vertical cosmic ray penetrating particles in the (2.0 - 126) GeV/c range and calculated their charge ratio. For positive particles the momentum spectrum has normal shape in all studied range the same as for negative particles but only for momentum range (2.0 - 32) GeV/c and charge ratio for this range is normal and the same as for cosmic muons. But for momentum P>32GeV/c it was observed negative particles excess flux (~10-5 cm-2 s-1 sr-1 ) with changed charge ratio - R = 0.62 +/0.18 (˜>3.5σ) for momentum range (32GeV/c3σ) and for momentum range (3.6GeV/c107 cm2 ṡsṡsr); 2) the installation place must be on the Earth surface or small underground (< 100 m.w.e.); 3) it is desirable to use track detector for event and particle charge viewing. One of the largest Bubble Chamber "SKAT" (BC), operated from 1976 to 1992 on the Serpukhov Accelerator neutrino beam had satisfied to all these demands. Its operation on the neutrino beam could provide a small background from Accelerator fo r our researches. Accumulated ~ 4 x 2,000,000 stills inside ~ 4 x 1660 rolls during this long period were conserved until now and were ready to analysis. The large Bubble Chamber (450 x 160 x 90 cm3 ) had been placed in greatest magnetic field (17 kG) horizontally directed so as coaxial to it view of 4 stereo photo chambers. So near vertical penetrating cosmic rays could be registered the same as near horizontal neutrino beam events. Full "SKAT" exposition is S-T ~ 4ṡ109 cm2 ṡsṡsr , that is rather more demanded one. It provides us for charge and momentum (MDM > 150 GeV/c) measurements. BC had been placed on the Earth surface, but had large magnetic iron screen (d ~ 2500 g/cm2 = 25m.w.e., Fig.1).

  7. Essays in Space Science

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven (Editor); Cline, Thomas L. (Editor); Ormes, Jonathan F. (Editor)

    1987-01-01

    The papers presented cover a broad segment of space research and are an acknowledgement of the personal involvement of Frank McDonald in many of these efforts. The totality of the papers were chosen so as to sample the scientific areas influenced by him in a significant manner. Three broad areas are covered: particles and fields of the solar system; cosmic ray astrophysics; and gamma ray, X-ray, and infrared astronomics.

  8. Leon Van Speybroeck Wins Astrophysics Bruno Rossi Prize

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leon Van Speybroeck of the Harvard-Smithsonian Center for Astrophysics in Cambridge Massachusetts was awarded the 2002 Bruno Rossi Prize of the High-Energy Astrophysics Division of the American Astronomy Society. The Rossi Prize is an arnual recognition of significant contributions in high-energy astrophysics in honor of the Massachusetts Institute of Technology's late Professor Bruno Rossi, an authority on cosmic ray physics and a pioneer in the field of x-ray astronomy. Van Speybroeck, who led the effort to design and make the x-ray mirrors for NASA's premier Chandra X-Ray Observatory, was recognized for a career of stellar achievements in designing precision x-ray optics. As Telescope Scientist for Chandra, he has worked for more than 20 years with a team that includes scientists and engineers from the Harvard-Smithsonian, NASA's Marshall Space Flight Center, TRW, Inc., Huhes-Danbury (now B.F. Goodrich Aerospace), Optical Coating Laboratories, Inc., and Eastman-Kodak on all aspects of the x-ray mirror assembly that is the heart of the observatory.

  9. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weidenhaupt, K.; Weindl, A.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 × 10 19 eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1° from the position of an active galactic nucleus within 75 Mpc (using the Véron-Cetty and Véron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is 38-6+7%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of 69-13+11%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.

  10. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  11. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.

  12. THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; hide

    2014-01-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z < or = 60 and measures the energy spectra of the more abundant elements for Z < or = 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  13. Co/Ni Ratio Between Is Approximately 0.35 - 8.0 GeV/nucleon from the TIGER-2001 Flight

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Barbier, L. M.; Binns, W. R.; Cummings, J. R.; Geier, S.; Israel, M. N.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Rauch, B. F.; hide

    2007-01-01

    The Trans-Iron Galactic Element Recorder (TIGER) was launched in December 2001 and 2003 from McMurdo, Antarctica and was designed to observe elements ranging from 14 < Z < 40 over an extended energy range. Observations of radioactive isotopes produced during explosive nucleosynthesis such as Ni-59 that decay only through electron capture provide important constraints on the delay between nucleosynthesis and the acceleration of galactic cosmic rays (GCRs). The isotopes of Co and Ni at low energies, in particular, the observations of the Ni-59 and Co-59 from the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer, indicate a significant time delay (greater than 7.6 x 10^4 yr) between GCR nucleosynthesis and acceleration. While TIGER is not able to resolve isotopes, observations of the elemental abundances of Co and Ni at high energies further constrain models for the acceleration and propagation of GCRs. The 2001 & 2003 flights of TIGER lasted a total of approx. 50 days and collected sufficient statistics to study the Co/Ni elemental ratio over a wide range in energies. We present the elemental ratio of Co/Ni in galactic cosmic rays between approx. 0.8- 5.0 GeV/nucleon and compare these results with previous measurements and models for cosmic-ray propagation.

  14. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  15. The NuSTAR Extragalactic Surveys: The Number Counts Of Active Galactic Nuclei And The Resolved Fraction Of The Cosmic X-ray Background

    NASA Technical Reports Server (NTRS)

    Harrison, F. A.; Aird, J.; Civano, F.; Lansbury, G.; Mullaney, J. R.; Ballentyne, D. R.; Alexander, D. M.; Stern, D.; Ajello, M.; Barret, D.; hide

    2016-01-01

    We present the 3-8 kiloelectronvolts and 8-24 kiloelectronvolts number counts of active galactic nuclei (AGNs) identified in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33 percent -39 percent of the X-ray background in the 8-24 kiloelectronvolts band, directly identifying AGNs with obscuring columns up to approximately 10 (exp 25) per square centimeter. In the softer 3-8 kiloelectronvolts band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5 times 10 (exp -15) less than or approximately equal to S (3-8 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12) probed by NuSTAR. In the hard 8-24 kiloelectronvolts band NuSTAR probes fluxes over the range 2 times 10 (exp -14) less than or approximately equal to S (8-24 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12), a factor approximately 100 times fainter than previous measurements. The 8-24 kiloelectronvolts number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT15-55 kiloelectronvolts number counts measured at higher fluxes (S (15-55 kiloelectronvolts) less than or approximately equal to 10 (exp -11) ergs per second per square centimeter), reflecting the evolution of the AGN population between the Swift/BAT local (redshift is less than 0.1) sample and NuSTAR's redshift approximately equal to 1 sample. CXB (Cosmic X-ray Background) synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts

  16. Determination and study of the cosmic-ray composition above 100 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, G.; Haines, T.J.; Hoffman, C.M.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeVmore » (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.« less

  17. Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Coelho, Jaziel G.; Malheiro, M.

    2017-06-01

    The origins of ultra-high-energy cosmic rays (E ≳ 1019 eV) are a mystery and still under debate in astroparticle physics. In recent years some efforts were made to understand their nature. In this contribution we consider the possibility of Some Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) beeing white dwarf pulsars, and show that these sources can achieve large electromagnetic potentials on their surface that accelerate particle almost at the speed of light, with energies E ~ 1020-21 eV. The sources SGRs/AXPs considered as highly magnetized white dwarfs are well described in the Hillas diagram, lying close to the AR Sorpii and AE Aquarii which are understood as white dwarf pulsars.

  18. STS-41 mission charts, computer-generated and artist concept drawings, photos

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 related charts, computer-generated and artist concept drawings, and photos of the Ulysses spacecraft and mission flight path provided by the European Space Agency (ESA). Charts show the Ulysses mission flight path and encounter with Jupiter (45980, 45981) and sun (illustrating cosmic dust, gamma ray burst, magnetic field, x-rays, solar energetic particles, visible corona, interstellar gas, plasma wave, cosmic rays, solar radio noise, and solar wind) (45988). Computer-generated view shows the Ulysses spacecraft (45983). Artist concept illustrates Ulysses spacecraft deploy from the space shuttle payload bay (PLB) with the inertial upper stage (IUS) and payload assist module (PAM-S) visible (45984). Ulysses spacecraft is also shown undergoing preflight testing in the manufacturing facility (45985, 45986, 45987).

  19. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  20. Roentgen Satellite (ROSAT)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Objectives of NASA's participation in the ROSAT mission are to: a) measure the spatial, spectral, and temporal characteristics of discrete cosmic sources including normal stars, collapsed stellar objects, and active galactic nuclei; b) perform spectroscopic mapping of extended X-ray sources including supernova remnants, galaxies, and clusters of galaxies; and c) conduct the above observations of cosmic sources with unprecedented sensitivity and spatial resolution over the 0.1 - 2.0 keV energy band.

  1. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  2. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  3. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. http://www.nrao.edu/

  4. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. Nobel Prize In Physics Awarded To Astronomer For NASA-Funded Research

    NASA Astrophysics Data System (ADS)

    2002-10-01

    Riccardo Giacconi, the "father of X-ray astronomy," has received the Nobel Prize in physics for "pioneering contributions to astrophysics," which have led to the discovery of cosmic X-ray sources. Giaconni, president of the Associated Universities Inc., in Washington, and Research Professor of Physics and Astronomy at Johns Hopkins University, Baltimore, discovered the first X-ray stars and the X-ray background in the 1960s and conceived of and led the implementation of the Uhuru and High Energy Astronomy Observatory-2 (HEAO-2) X-ray observatories in the 1970s. With funding from NASA, he also detected sources of X-rays that most astronomers now consider to contain black holes. Giacconi said that receiving the award confirms the importance of X-ray astronomy. "I think I'm one of the first to get the Nobel prize for work with NASA, so that's good for NASA and I think it's also good for the field," he said. "It's also nice for all the other people who've worked in this field. I recognize that I was never alone. I'm happy for me personally, I'm happy for my family, and I'm happy for the field and for NASA," Giacconi added. In 1976, Giacconi along with Harvey Tananbaum of the Harvard- Smithsonian Center for Astrophysics, Cambridge, Mass., submitted a proposal letter to NASA to initiate the study and design of a large X-ray telescope. In 1977 work began on the program, which was then known as the Advanced X-ray Astrophysics Facility and in 1998 renamed the Chandra X-ray Observatory. "Partnerships with universities and scientists are essential in our quest to answer the fundamental questions of the universe," said Dr. Ed Weiler, NASA Associate Administrator for Space Science, Headquarters, Washington. "Dr. Giacconi's achievements are a brilliant example of this synergy among NASA, universities and their community of scientists and students," he said. Giacconi is Principal Investigator for the ultradeep survey with Chandra - the "Chandra Deep Field South" - that has already obtained the deepest X-ray exposures to date with a million-second observation. He was also the first director of the Hubble Space Telescope Science Institute in Baltimore. Giacconi, 71, received half the prize. Raymond Davis Jr., 87, of the University of Pennsylvania and Masatoshi Koshiba, 76, of the University of Tokyo will share the other half of the prize, worth about $1 million, for their research into cosmic neutrinos. For more information visit: http://nobelprize.org/ Chandra Chronicles: A High-Energy Visonary Wins Nobel Prize

  6. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    We present the results of our analysis of cosmic-ray electrons using about 8x10{sup 6} electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrummore » can be described with a power law {proportional_to}E{sup -3.08{+-}0.05} with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV.« less

  7. Evidence for GeV cosmic rays from white dwarfs in the local cosmic ray spectra and in the gamma-ray emissivity of the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Kamae, Tuneyoshi; Lee, Shiu-Hang; Makishima, Kazuo; Shibata, Shinpei; Shigeyama, Toshikazu

    2018-03-01

    Recent observations found that electrons are accelerated to ˜10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected, implying that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor ˜2.5. The cosmic rays (CRs) produced by local CVs and novae will accumulate in the local bubble for 106-107 yr. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum from gamma-ray spectra at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy (>100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs, and that the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100-200 GeV. All local CR spectra populate a limited energy band below 100-200 GeV and enhance gamma-ray emissivity below ˜10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.

  8. Galactic-cosmic-ray-produced 3He in a ferromanganese crust: any supernova 60Fe excess on earth?

    PubMed

    Basu, S; Stuart, F M; Schnabel, C; Klemm, V

    2007-04-06

    An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    The dramatic change in x-ray emission from the Terzan 2 cluster is shown in this series of 2.5-minute exposures taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory immediately before, during, and after the burst. Total exposure (20 minutes) of the object, including the outburst, is shown in the fourth photograph. These images represent the first observation of an x-ray burst in progress. The actual burst lasted 50 seconds. Among the rarest, and most bizarre, phenomena observed by x-ray astronomers are the so-called cosmic bursters (x-ray sources that suddenly and dramatically increase in intensity then subside). These sudden bursts of intense x-ray radiation apparently come from compact objects with a diameter smaller than 30 miles (48 kilometers). Yet, despite their minuscule size, a typical x-ray burster can release more x-ray energy in a single brief burst than our Sun does in an entire week. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  10. Fabrication of imaging X-ray optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Joki, E. G.; Brookover, W. J.

    The design, fabrication, and performance of optics for X-ray astronomy and laboratory applications are described and illustrated with diagrams, drawings, graphs, photographs, and sample images. Particular attention is given to the Wolter I telescope developed for spectroscopic observation of 8-30-A cosmic X-ray sources from a rocketborne X-ray Objective Grating Spectrometer; this instrument employs three nested paraboloid-hyperboloid mirrors of 5083 Al alloy, figured by diamond turning and covered with a thin coating of acrylic lacquer prior to deposition of a 40-nm-thick layer of Sn. In calibration tests at NASA Marshall, the FWHM of the line-spread function at 1.33 nm was found to be 240 microns, corresponding to 21 arcsec. Also presented are the results of reflectivity measurements on C and W multilayers sputtered on Si and fusion glass substrates.

  11. Six Years of Monitoring of the Sgr B2 Molecular Cloud with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Terrier, R.; Bélanger, G.; Ponti, G.; Trap, G.; Goldwurm, A.; Decourchelle, A.

    2009-05-01

    Several molecular clouds around the Galactic Centre (GC) emit strong neutral iron fluorescence line at 6.4 keV, as well as hard X-ray emission up to 100 keV. The origin of this emission has long been a matter of controversy: irradiation by low energy cosmic ray electrons or X-rays emitted by a nearby flaring source in the central region. A recent evidence for time variability in the iron line intensity that has been detected in the Sgr B2 cloud favors the reflexion scenario. We present here the data obtained after 6 years of INTEGRAL monitoring of the GC. In particular, we show a lightcurve of Sgr B2 that reveals a decrease in the hard X-ray flux over the last years and discuss its implications. We finally discuss perspectives with Simbol-X.

  12. Cosmic gamma-rays and cosmic nuclei above 1 TeV

    NASA Technical Reports Server (NTRS)

    Watson, A. A.

    1986-01-01

    Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.

  13. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  14. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  15. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  16. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  17. Spectral evolution in young active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Boldt, E.; Leiter, D.

    1986-01-01

    The spectral evolution of AGNs is discussed within the context of a scenario where the cosmic X-ray background (CXB) is dominated by these sources. Attention is draqwn to the fact that the individually observed AGN X-ray spectra are significantly steeper than that of the CXB. The remarkably flat spectrum thereby required for the 'as-yet' unresolved sources of the residual CXB is interpreted as an observational constraint on an earlier stage of AGN evolution. Assuming black hole disk accretion, a picture emerges where young AGNs are compact Eddington limited thermal X-ray sources and where canonical AGNs represent later stages in which they have become appreciably less compact, exhibiting the importance of nonthermal disk-dynamo processes.

  18. Planetary X ray experiment

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1972-01-01

    Design studies for an X-ray experiment using solid state detectors and for an experiment using a proportional counter for investigating Jovian and Saturnian magnetospheres are reported. Background counting rates through the forward aperture and leakage fluxes are discussed for each design. It is concluded that the best choice of instrument appears to have following the characteristics: (1) two separate multiwire proportional counters for redundancy; (2) passive collimation to restrict the field to about 5 deg, wiregrid modulation collimation to about 0.1 deg angular resolution; (3) no active shielding system around the counter body; and (4) light passive shielding around any portion of the counter body exposed to space to absorb most of the cosmic X-ray background.

  19. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  20. Discovering the invisible universe

    NASA Astrophysics Data System (ADS)

    Friedman, Herbert

    1991-02-01

    The history of astronomical observations outside the visible range is surveyed in a review for general readers. Consideration is given to Jansky's discovery of cosmic radio emission, the pioneering radio observers of the 1940s, the larger radio telescopes built since 1950, aperture synthesis and the Very Large Array, terrestrial and space VLBI networks, ground-based and satellite observations in the IR band, the discovery and early laboratory characterization of X-rays, and X-ray observations from sounding rockets and satellites. Extensive photographs, drawings, diagrams, and sample images are provided.

  1. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  2. History of cosmic ray influence on ozone layer-key steps

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A.

    The history of cosmic radiation influence as a source of odd nitrogen in the stratosphere began about three decades ago (Dalgarno, 1971; Warneck, 1972). Corresponding estimated NO x production by galactic cosmic rays which leads to one molecular of NO per one pair of ions (Nicolet, 1975) in the stratosphere and mesosphere. First simple model was suggested by Ruderman and Chamberlain (1975) to explain the origin of the sun spot modulation of ozone. Nitric oxide generation in the stratosphere by solar proton events leads to ozone depletion (Crutzen et al., 1975). First results supported this idea were obtained from the board of Nimbus-4 (Heath et al., 1977). Several mechanisms concerning the possibility of cosmic ray influence on climate and life were suggested in different papers (Ruderman, 1974; Reid et al., 1976; Chamberlain, 1977; and others). Many important steps to understand the role of solar protons in atmospheric chemistry have been made by Charles Jackman with co-authors (1978, 1980 up to 2001) Different groups found the response of ozone after SPE in July 2000 using UARS data. It is important now to prolong numerical modeling and observations using new missions like ENVISAT and SAGE-III instrument.

  3. Cosmic ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    The cosmic rays, an active gaseous component of the disk of the galaxy, are considered along with their propagation and containment as a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic ray gas pressure comparable to the magnetic pressure, but the rate of inflation is unknown. The time spent by the individual cosmic ray particles in the disk is inversely proportional to the cosmic ray production rate. It is evident from the decay of Be(1c) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  4. High-energy particle acceleration in the shell of a supernova remnant.

    PubMed

    Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2004-11-04

    A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.

  5. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  6. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  7. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  8. A Search for Hot, Diffuse Gas in Superclusters

    NASA Technical Reports Server (NTRS)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  9. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  10. REVIEWS OF TOPICAL PROBLEMS: Astrophysical aspects of cosmic-ray research (first 75 years and outlook for the future)

    NASA Astrophysics Data System (ADS)

    Ginzburg, Vitalii L.

    1988-06-01

    (Invited talk at the 20th International Cosmic Ray Conference, Moscow, 2-15 August 1987) The basic topics discussed here are the primary cosmic rays near the earth, cosmic rays in the universe, the origin of cosmic rays, a galactic model with a halo, and some prospects for future research.

  11. The Parker Instability with Cosmic-Ray Streaming

    NASA Astrophysics Data System (ADS)

    Heintz, Evan; Zweibel, Ellen G.

    2018-06-01

    Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.

  12. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  13. HX-POL - A Balloon-Bourne Hard X-Ray Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; De Geronimo, G.; Garson, A., III, Martin, J.

    2009-12-09

    We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galacticmore » X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors.« less

  14. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  15. Monte Carlo Study of Cosmic-Ray Propagation in the Galaxy and Diffuse Gamma-Ray Production

    NASA Astrophysics Data System (ADS)

    Huang, C.-Y.; Pohl, M.

    This talk present preliminary results for the time-dependent cosmic-ray propagation in the Galaxy by a fully 3-dimensional Monte Carlo simulation. The distribution of cosmic-rays (both protons and helium nuclei) in the Galaxy is studied on various spatial scales for both constant and variable cosmic-ray sources. The continuous diffuse gamma-ray emission produced by cosmic-rays during the propagation is evaluated. The results will be compared with calculations made with other propagation models.

  16. Dios: The Dark Baryon Exploring Mission

    NASA Technical Reports Server (NTRS)

    T.Ohashi; Ishisaki, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.; hide

    2016-01-01

    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30 diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.

  17. Ghost Remains After Black Hole Eruption

    NASA Astrophysics Data System (ADS)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after it has died," said co-author Scott Chapman, also of Cambridge University. "This means we don't have to catch the black holes in the act to witness the big impact they have." This is the first X-ray ghost ever seen after the demise of radio-bright jets. Astronomers have observed extensive X-ray emission with a similar origin, but only from galaxies with radio emission on large scales, signifying continued eruptions. In HDF 130, only a point source is detected in radio images, coinciding with the massive elliptical galaxy seen in its optical image. This radio source indicates the presence of a growing supermassive black hole. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act NASA Joins "Around the World in 80 Telescopes" Celebrate the International Year of Astronomy Galaxies Coming of Age in Cosmic Blobs "This result hints that the X-ray sky should be littered with such ghosts," said co-author Caitlin Casey, also of Cambridge, "especially if black hole eruptions are as common as we think they are in the early Universe." The power contained in the black hole eruption was likely to be considerable, equivalent to about a billion supernovas. The energy is dumped into the surroundings and transports and heats the gas. "Even after the ghost disappears, most of the energy from the black hole's eruption remains", said Fabian. "Because they're so powerful, these eruptions can have profound effects lasting for billions of years." The details of Chandra's data of HDF 130 helped secure its true nature. For example, in X-rays, HDF 130 has a cigar-like shape that extends for some 2.2 million light years. The linear shape of the X-ray source is consistent with the shape of radio jets and not with that of a galaxy cluster, which is expected to be circular. The energy distribution of the X-rays is also consistent with the interpretation of an X-ray ghost. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  18. Explaining TeV cosmic-ray anisotropies with non-diffusive cosmic-ray propagation

    DOE PAGES

    Harding, James Patrick; Fryer, Chris Lee; Mendel, Susan Marie

    2016-05-11

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. Furthermore, the features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  19. EXPLAINING TEV COSMIC-RAY ANISOTROPIES WITH NON-DIFFUSIVE COSMIC-RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan, E-mail: jpharding@lanl.gov, E-mail: fryer@lanl.gov, E-mail: smendel@lanl.gov

    2016-05-10

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  20. A Closer Look at the Alpha Persei Coronal Conundrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, Thomas R., E-mail: Thomas.Ayres@Colorado.edu

    2017-03-01

    A ROSAT survey of the Alpha Per open cluster in 1993 detected its brightest star, the mid-F supergiant α Persei: the X-ray luminosity and spectral hardness were similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot of α Per found the far-ultraviolet (FUV) coronal-proxy Si iv unexpectedly weak. This, and a suspicious offset of the ROSAT source, suggested that a late-type companion might be responsible for the X-rays. Recently, a multifaceted program tested that premise. Ground-based optical coronography and near-UV imaging with Hubble Space Telescope ( HST ) Wide-Field Camera 3 searched formore » any close-in faint candidate coronal objects, but without success. Then, a Chandra pointing found the X-ray source single and coincident with the bright star. Significantly, the Si iv emissions of α Per, in a deeper FUV spectrum collected by the HST Cosmic Origin Spectrograph as part of the joint program, are aligned well with chromospheric atomic oxygen (which must be intrinsic to the luminous star), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. The overluminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an alternative is that α Per represents a novel class of coronal source. Resolving the first possibility now has become more difficult, because the easy solution—a well-separated companion—has been eliminated. Testing the other possibility will require a broader high-energy census of the early-F supergiants.« less

  1. SU(2) x U(1) vacuum and the Centauro events

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.

    1985-01-01

    It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately equals 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. A relationship then between their lifetime, tau, and the threshold energy for bubble formation, E sub th, appears to be insensitive to the value of tau and always close to E sub th approximately 10 to 15th power eV. Finally it is speculated that these bubbles might be manifestations of the SU(2) x U(1) false vacuum excited in these collisions. The absence of in the Centauro events is then explained by the decay modes of these excitations.

  2. A model for 3:2 HFQPO pairs in black hole binaries based on cosmic battery

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Yin; Ye, Yong-Chun; Wang, Ding-Xiong; Li, Yang

    2016-04-01

    A model for 3:2 high-frequency quasi-periodic oscillations (HFQPOs) with 3:2 pairs observed in four black hole X-ray binaries (BHXBs) is proposed by invoking the epicyclic resonances with the magnetic connection (MC) between a spinning black hole (BH) with a relativistic accretion disc. It turns out that the MC can be worked out due to Poynting-Robertson cosmic battery, and the 3:2 HFQPO pairs associated with the steep power-law states can be fitted in this model. Furthermore, the severe damping problem in the epicyclic resonance model can be overcome by transferring energy from the BH to the inner disc via the MC process for emitting X-rays with sufficient amplitude and coherence to produce the HFQPOs. In addition, we discuss the important role of the magnetic field in state transition of BHXBs.

  3. ATHENA: system design and implementation for a next-generation x-ray telescope

    NASA Astrophysics Data System (ADS)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.; Stefanescu, A.

    2017-08-01

    ATHENA, Europe's next generation x-ray telescope, is currently under Assessment Phase study with parallel candidate industrial Prime contractors after selection for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. This paper will consider the main technical requirements of the mission, and their mapping to resulting design choices at both mission and spacecraft level. The reference mission architecture and current reference spacecraft design will then be described, with particular emphasis given to description of the Science Instrument Module (SIM) design, currently under the responsibility of the ESA Study Team. The SIM is a very challenging item due primarily to the need to provide to the instruments (i) a soft ride during launch, and (ii) a very large ( 3 kW) heat dissipation capability at varying interface temperatures and locations.

  4. Jets in black-hole and neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  5. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vink, Jacco

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power lawmore » up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.« less

  6. Multiwavelength study of X-ray luminous clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field

    NASA Astrophysics Data System (ADS)

    Miyaoka, Keita; Okabe, Nobuhiro; Kitaguchi, Takao; Oguri, Masamune; Fukazawa, Yasushi; Mandelbaum, Rachel; Medezinski, Elinor; Babazaki, Yasunori; Nishizawa, Atsushi J.; Hamana, Takashi; Lin, Yen-Ting; Akamatsu, Hiroki; Chiu, I.-Non; Fujita, Yutaka; Ichinohe, Yuto; Komiyama, Yutaka; Sasaki, Toru; Takizawa, Motokazu; Ueda, Shutaro; Umetsu, Keiichi; Coupon, Jean; Hikage, Chiaki; Hoshino, Akio; Leauthaud, Alexie; Matsushita, Kyoko; Mitsuishi, Ikuyuki; Miyatake, Hironao; Miyazaki, Satoshi; More, Surhud; Nakazawa, Kazuhiro; Ota, Naomi; Sato, Kousuke; Spergel, David; Tamura, Takayuki; Tanaka, Masayuki; Tanaka, Manobu M.; Utsumi, Yousuke

    2018-01-01

    We present a joint X-ray, optical, and weak-lensing analysis for X-ray luminous galaxy clusters selected from the MCXC (Meta-Catalog of X-Ray Detected Clusters of Galaxies) cluster catalog in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey field with S16A data. As a pilot study for a series of papers, we measure hydrostatic equilibrium (HE) masses using XMM-Newton data for four clusters in the current coverage area out of a sample of 22 MCXC clusters. We additionally analyze a non-MCXC cluster associated with one MCXC cluster. We show that HE masses for the MCXC clusters are correlated with cluster richness from the CAMIRA catalog, while that for the non-MCXC cluster deviates from the scaling relation. The mass normalization of the relationship between cluster richness and HE mass is compatible with one inferred by matching CAMIRA cluster abundance with a theoretical halo mass function. The mean gas mass fraction based on HE masses for the MCXC clusters is = 0.125 ± 0.012 at spherical overdensity Δ = 500, which is ˜80%-90% of the cosmic mean baryon fraction, Ωb/Ωm, measured by cosmic microwave background experiments. We find that the mean baryon fraction estimated from X-ray and HSC-SSP optical data is comparable to Ωb/Ωm. A weak-lensing shear catalog of background galaxies, combined with photometric redshifts, is currently available only for three clusters in our sample. Hydrostatic equilibrium masses roughly agree with weak-lensing masses, albeit with large uncertainty. This study demonstrates that further multiwavelength study for a large sample of clusters using X-ray, HSC-SSP optical, and weak-lensing data will enable us to understand cluster physics and utilize cluster-based cosmology.

  7. Chandra Shows New Way to Measure Cosmic Distances

    NASA Astrophysics Data System (ADS)

    2000-04-01

    Using NASA's Chandra X-ray Observatory, a team of scientists has attacked one of astronomy's oldest and thorniest problems, determining the distance to a cosmic object. Through measuring the distance to an X-ray source by observing the delay and smearing out of X-ray signals traversing 30,000 light years of interstellar gas and dust, Chandra "opened a new world," said Peter Predehl of the Max-Planck Institute, Garching, Germany, the lead author on a report to be published in the European journal, Astronomy and Astrophysics. "Geometrical distance measurements are of particular importance for astronomy. Now we have a new method that works for distant sources," Predehl said. One of the most crucial pieces of information needed in astronomy is the distance to the stars and galaxies. They are also among the most difficult to obtain because, with rare exceptions, astronomers cannot measure distance directly and must use a variety of ingenious but uncertain techniques. This new method relies on the scattering of X-rays by interstellar dust grains between a source and the Earth. Although the scattering material is different, the dust produces a halo, much like the halo around a traffic light on a foggy night. "When the light switches from red to green (or vice versa), the halo around the light is also slightly delayed," Predehl explained. "No one would use this delay for determining the distance to the traffic light, of course, (the delay is only a few billionths of a second). But if the 'traffic light' is 30,000 light years away, the delay is on the order 15 minutes. Using the excellent and unprecedented resolution of the Chandra observatory, we can distinguish between light which was 30,000 years on its way and other light which needed only a few minutes more. " Other members of the team included Vadim Burwitz and Joachim Trumper, also of the Max-Planck Institute, and Frits Paerels of Columbia University, New York. Trumper and a colleague proposed using this method 27 years ago, but it could not be applied until an X-ray observatory with Chandra's unique capability was available. The X-ray source Cygnus X-3 acts like a cosmic traffic light, or more appropriately, lighthouse. Its X-ray emission varies regularly with a 4.8 hour period, as a neutron star or black hole circles a nearby companion star. The radiation from the halo is delayed and smeared out, so the variations are damped. For the inner part of the halo, the damping is small, whereas for the outer part, the periodic variation is completely washed out. By observing the time delay and variations at different parts of the halo, the distance to the source can be determined. Seismologists use a similar method based on the propagation of sound waves through the Earth to determine the epicenters of earthquakes or to locate unusual geological formations. Predehl and colleagues observed Cygnus X-3 for 3.5 hours with Chandra using the Advanced CCD Imaging Spectrometer (ACIS). By analyzing the time variations in the halo, the astronomers determined that the distance to Cygnus X-3 is 30,000 light years, within about 20 percent accuracy. The accuracy was limited by the short observing time, which was less than the full 4.8 hour period of variation. The team hopes to refine this estimate in the near future as data from a longer observation of the source becomes available. The X-ray scattering method of measuring cosmic distances depends on the fact that X-rays, because of their high energies, are scattered through small angles by dust grains. It cannot be used with optical telescopes because visible light photons have lower energy and are scattered through much larger angles by the dust grains. In principle, the method could also work for nearby galaxies, such as the Small and Large Magellanic Clouds and the Andromeda Nebula. If so, it would help astronomers in their quest to understand the size and age of the universe, since it would provide an independent estimate of the size of the first steps on the cosmic distance ladder. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, Mass., and Penn State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/cygx399/index.html AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above.

  8. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  9. Cosmic-ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1977-01-01

    The cosmic rays are an active gaseous component of the disk of the galaxy, and their propagation and containment is a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic-ray gas pressure, P, comparable to the magnetic pressure B super 2/ 8 pi, but the rate of inflation is unknown. The time spent by the individual cosmic-ray particles in the disk is inversely proportional to the cosmic-ray production rate and may be anything from 100,000 to more than 10 million years. It is evident from the decay of Be(10) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  10. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi's measurement in a low Earth orbit

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; Koi, Tatsumi; Madejski, Greg; Mizuno, Tsunefumi; Ohno, Masanori; Saito, Shinya; Sato, Tamotsu; Wright, Dennis H.; Enoto, Teruaki; Fukazawa, Yasushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Kobayashi, Shogo B.; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel; Makishima, Kazuo; Mimura, Taketo; Miyake, Katsuma; Mori, Kunishiro; Murakami, Hiroaki; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Ohta, Masayuki; Ozaki, Masanobu; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yasuda, Tetsuya; Yatsu, Yoichi; Yuasa, Takayuki; Zoglauer, Andreas

    2018-05-01

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.

  11. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi ’s measurement in a low Earth orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less

  12. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi ’s measurement in a low Earth orbit

    DOE PAGES

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; ...

    2018-02-19

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less

  13. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  14. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  15. Cosmic Ray Induced Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2011-11-01

    After cancer studies performed on flight crews during the 1970s, it was found that cosmic rays produce a signficant flux of thermal neutrons at airplane altitudes. In the case of high energy cosmic rays these biologically threatening neutrons are increased at ground level. Our work models the flux of neutrons produced by high energy cosmic rays, exploring the possibility of biological impact due to extended periods of increase high energy cosmic ray flux.

  16. Cosmic ray experimental observations

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Mcdonald, F. B.

    1974-01-01

    The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.

  17. The AMS tracking detector for cosmic-ray physics in space

    NASA Astrophysics Data System (ADS)

    Bourquin, Maurice; AMS Tracker Collaboration

    2005-04-01

    AMS-02 is a general-purpose spectrometer designed to measure cosmic rays and gamma rays in near-Earth orbit. The main scientific motivations are the search for cosmic anti-matter, the search for dark matter, precision measurements on the relative abundance of different nuclei and isotopes, as well as the measurement of very high-energy gamma rays. Constructed by a large international collaboration of institutes from America, Asia and Europe, it will collect data on the International Space Station for a period of at least three years. In this contribution, I first identify the various detector requirements necessary to carry out this ambitious program. In particular, a large-area silicon microstrip detector inside a 0.8 T superconducting magnet is well suited to measure rigidity p/Z and specific energy loss d E/d x of cosmic rays, as well as the direction and energy of converted gamma rays. I review the advantage of such a silicon-tracking detector, taking into account the constraints of the space environment. The collaboration has gained extensive operating experience with double-sided silicon sensors in beam tests, and above all with AMS-01, a precursor spectrometer flown in the cargo bay of the Shuttle Discovery. During the entire 10-day STS-91 mission, the Silicon Tracker functioned without fault and with good spatial resolution. From the lessons learned with AMS-01, improvements were made to the design and assembly procedure of the 2500 sensors of AMS-02. As a result, the charge identification has been extended from Oxygen ( Z=8) to Iron ( Z=26). The physics reach of the new spectrometer is presented.

  18. The Contribution of z < or Approx. 6 Sources to the Spatial Coherence in the Unresolved Cosmic Near-Infrared and X-Ray Backgrounds

    NASA Technical Reports Server (NTRS)

    Helgason, K.; Cappelluti, N.; Hasinger, G.; Kashlinsky, A.; Ricotti, M.

    2014-01-01

    A spatial clustering signal has been established in Spitzer/IRAC measurements of the unresolved cosmic near-infrared background (CIB) out to large angular scales, approx. 1deg. This CIB signal, while significantly exceeding the contribution from the remaining known galaxies, was further found to be coherent at a highly statistically significant level with the unresolved soft cosmic X-ray background (CXB). This measurement probes the unresolved CXB to very faint source levels using deep near-IR source subtraction.We study contributions from extragalactic populations at low to intermediate redshifts to the measured positive cross-power signal of the CIB fluctuations with the CXB. We model the X-ray emission from active galactic nuclei (AGNs), normal galaxies, and hot gas residing in virialized structures, calculating their CXB contribution including their spatial coherence with all infrared emitting counterparts. We use a halo model framework to calculate the auto and cross-power spectra of the unresolved fluctuations based on the latest constraints of the halo occupation distribution and the biasing of AGNs, galaxies, and diffuse emission. At small angular scales (1), the 4.5microns versus 0.5-2 keV coherence can be explained by shot noise from galaxies and AGNs. However, at large angular scales (approx.10), we find that the net contribution from the modeled populations is only able to account for approx. 3% of the measured CIB×CXB cross-power. The discrepancy suggests that the CIB×CXB signal originates from the same unknown source population producing the CIB clustering signal out to approx. 1deg.

  19. The International Cometary Explorer (ICE) mission to comet Giacobini-Zinner (G/Z)

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Farquhar, R. W.; Maran, S. P.; Niedner, M. B.; Von Rosenvinge, T.

    1985-01-01

    The primary objectives of the International Cometary Explorer (ICE) mission is to provide in situ data on the interaction between solar wind and the atmosphere of the P/Giacobini-Zinner comet (G/Z), making measurements of particles, fields, and waves while passing through the cometary tail of G/Z on September 11, 1985. Following the G/Z tail intercept, the ICE measurements will complement the later upstream measurements obtained by the Comet Halley probe. The major ICE payload includes a vector helium magnetometer, the plasma-wave experiment, the radio-wave experiment, the plasma-electron experiment, and the plasma ion experiment. Other experiments are intended to measure energetic protons, X-rays, low energy to high energy cosmic rays, cosmic ray electrons, and gamma-ray bursts. The ICE measurements of G/Z will be supplemented with ground-based measurements. Schematic diagrams are included.

  20. The Imaging X-Ray Polarimetry Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  1. A new detection of an UFO in the X-ray spectrum of a lensed QSO

    NASA Astrophysics Data System (ADS)

    Dadina, M.

    2017-10-01

    The discovery of the "M_{SMBH}-σ relation" indicated that a connection between the central black-hole and the hosting galaxies acted during the cosmic time. With the discovery in X-rays of the ultra-fast outflows in nearby AGN, we have most probably probed one of the ingredients that are needed to build-up this mechanism. At high-z, however, such measurements were possible only in an handful of objects and this was possible mainly for the presence of gravitational lenses that magnified otherwise X-ray weak QSO. Following this, we proposed a program to use XMM-Newton and gravitational lenses as telescopes to point bright, lensed and distant QSO to characterize in detail their X-ray spectrum and to detect blushifted absorption lines at E˜7-10 keV (rest frame). Here we present the preliminary results obtained for the z=2.64 QSO MG J0414+0534.

  2. The X-ray Integral Field Unit (X-IFU) for Athena

    NASA Technical Reports Server (NTRS)

    Ravera, Laurent; Barret, Didier; Willem den Herder, Jan; Piro, Luigi; Cledassou, Rodolphe; Pointecouteau, Etienne; Peille, Philippe; Pajot, Francois; Arnaud, Monique; Pigot, Claude; hide

    2014-01-01

    Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.

  3. Alvarez, Luis Walter (1911-88)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Physicist and astronomer, born in San Francisco, CA, professor at the University of California, Nobel prizewinner (1968) for his discoveries in particle physics. Used cosmic rays to `x-ray' the pyramids of Egypt, finding in particular that the tombs in the Great Pyramid at Giza had no hidden rooms. Alvarez (and his son) discovered globally distributed iridium at the Cretaceous/Tertiary boundary i...

  4. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  5. Background simulations for the wide field imager aboard the ATHENA X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Hauf, Steffen; Kuster, Markus; Hoffmann, Dieter H. H.; Lang, Philipp-Michael; Neff, Stephan; Pia, Maria Grazia; Strüder, Lothar

    2012-09-01

    The ATHENA X-ray observatory was a European Space Agency project for a L-class mission. ATHENA was to be based upon a simplified IXO design with the number of instruments and the focal length of the Wolter optics being reduced. One of the two instruments, the Wide Field Imager (WFI) was to be a DePFET based focal plane pixel detector, allowing for high time and spatial resolution spectroscopy in the energy-range between 0.1 and 15 keV. In order to fulfill the mission goals a high sensitivity is essential, especially to study faint and extended sources. Thus a detailed understanding of the detector background induced by cosmic ray particles is crucial. During the mission design generally extensive Monte-Carlo simulations are used to estimate the detector background in order to optimize shielding components and software rejection algorithms. The Geant4 toolkit1,2 is frequently the tool of choice for this purpose. Alongside validation of the simulation environment with XMM-Newton EPIC-pn and Space Shuttle STS-53 data we present estimates for the ATHENA WFI cosmic ray induced background including long-term activation, which demonstrate that DEPFET-technology based detectors are able to achieve the required sensitivity.

  6. Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1979-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation, allowing for the target atom to remain unexcited or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%-30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions, has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results.

  7. The Terzan 2 Cluster Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The dramatic change in x-ray emission from the Terzan 2 cluster is shown in this series of 2.5-minute exposures taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory immediately before, during, and after the burst. Total exposure (20 minutes) of the object, including the outburst, is shown in the fourth photograph. These images represent the first observation of an x-ray burst in progress. The actual burst lasted 50 seconds. Among the rarest, and most bizarre, phenomena observed by x-ray astronomers are the so-called cosmic bursters (x-ray sources that suddenly and dramatically increase in intensity then subside). These sudden bursts of intense x-ray radiation apparently come from compact objects with a diameter smaller than 30 miles (48 kilometers). Yet, despite their minuscule size, a typical x-ray burster can release more x-ray energy in a single brief burst than our Sun does in an entire week. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  8. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  9. Compton thick active galactic nuclei in Chandra surveys

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian

    2014-09-01

    We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model, and that this factor increases with redshift, consistent with an increase in the obscured fraction towards higher redshifts. The strong relationship between the parameters of obscuration and LX points towards an origin intrinsic to the AGN; however, the increase of the covering factor with redshift may point towards contributions to the obscuration by the host galaxy. We make NH, Γ (with uncertainties), observed X-ray fluxes and intrinsic 2-10 keV luminosities for all sources analysed in this work publicly available in an online catalogue.

  10. The First Flight of ATIC : Preliminary Results on CNO Nuclei

    NASA Technical Reports Server (NTRS)

    Fazely, A.; Gunasingha, R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight,investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction'target'.

  11. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  12. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.

    2017-08-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  13. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.

    2017-06-01

    We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.

  14. The Soft X-ray Imager (SXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.

    2015-09-01

    The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.

  15. A Shifting Shield Provides Protection Against Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux at Earth.In a new study, a team of scientists led by Nicola Tomassetti (University of Perugia, Italy) has modeled this solar modulation to better understand the process by which the Suns changing activity influences the cosmic ray flux that reaches us at Earth.Modeling a LagTomassetti and collaborators model uses two solar-activity observables as inputs: the number of sunspots and the tilt angle of the heliospheric current sheet. By modeling basic transport processes in the heliosphere, the authors then track the impact that the changing solar properties have on incoming galactic cosmic rays. In particular, the team explores the time lag between when solar activity changes and when we see the responding change in the cosmic-ray flux.Cosmic-ray flux observations are best fit by the authors model when an 8-month lag is included (red bold line). A comparison model with no lag (black dashed line) is included. [Tomassetti et al. 2017]By comparing their model outputs to the large collection of time-dependent observations of cosmic-ray fluxes, Tomassetti and collaborators show that the best fit to data occurs with an 8-month lag between changing solar activity and local cosmic-ray flux modulation.This is an important outcome for studying the processes that affect the cosmic-ray flux that reaches Earth. But theres an additional intriguing consequence of this result: knowledge of the current solar activity could allow us to predict the modulation that will occur for cosmic rays near Earth an entire 8 months from now! If this model is correct, it brings us one step closer to being able to plan safer space missions for the future.CitationNicola Tomassetti et al 2017 ApJL 849 L32. doi:10.3847/2041-8213/aa9373

  16. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  17. CosmicSIG science and plans

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2014-03-01

    Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.

  18. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    NASA Technical Reports Server (NTRS)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus activity in these galaxies are thus combining to produce an even more effective and widespread "feedback" process, acting on the long-term gas reservoir for the galaxy, than either individually could achieve. If episodic radio activity and co-eval starbursts are common in massive, high-redshift galaxies, then this IC-feedback mechanism may play a role in affecting the star formation histories of the most massive galaxies at the present day.

  19. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  20. Comparing Data from Telescopic X-Ray Instruments: Can We Trust All Satellites?

    NASA Astrophysics Data System (ADS)

    Joyce, Quianah T.; Fortenberry, Alexander; Gendre, Bruce

    2017-01-01

    In astronomy and astrophysics, X-ray emissions from cosmic entities aid in revealing what type of sources they emanate from. Swift, NASA’s latest X-ray satellite, has not been operating at its intended configurations. The satellite is experiencing difficulties maintaining a stable temperature in its charge capture device. This research intends to determine if this complication causes discrepancies in Swift’s collected data by using gamma-ray burst data. Gamma-ray bursts are excellent comparison candidates due to their brightness and fluctuations. We compared archived data of GRB 130427A and GRB 090423A from Swift and the European Space Agency’s XMM-Newton observatory. Next, we reduced the data and produced the respective spectra. We then analyzed and compared the spectra to one another to find any discrepancies. We have determined, based on data analysis of the spectra, that Swift is working properly despite the cooling malfunction.

  1. Simulating a Measurement of the 2nd Knee in the Cosmic Ray Spectrum with an Atmospheric Fluorescence Telescope Tower Array

    PubMed Central

    Liu, Jiali; Yang, Qunyu; Bai, Yunxiang; Cao, Zhen

    2014-01-01

    A fluorescence telescope tower array has been designed to measure cosmic rays in the energy range of 1017–1018 eV. A full Monte Carlo simulation, including air shower production, light generation and propagation, detector response, electronics, and trigger system, has been developed for that purpose. Using such a simulation tool, the detector configuration, which includes one main tower array and two side-trigger arrays, 24 telescopes in total, has been optimized. The aperture and the event rate have been estimated. Furthermore, the performance of the X max⁡ technique in measuring composition has also been studied. PMID:24737964

  2. The sidereal anisotropy of cosmic rays around 3 x 10 (15) eV observed at a middle north latitude

    NASA Technical Reports Server (NTRS)

    Murakami, K.; Kifune, T.; Hayashida, N.

    1985-01-01

    The sidereal time variation of cosmic rays (median primary energy : 3 10 to the 15th power eV) is investigated with air shower observations at Akeno, Japan (900 m a.s.l.) which started in September 1981. Air showers are detected by a coincidence requirement on several muon detectors. The result obtained for three years is suggestive of a big semi-diurnal variation (0.37 % in amplitude). On the other hand, the diurnal variation is rather small than the semi-diurnal one. The feature of the sidereal anisotropy supposed from the present result looks quite different from that below 10 to the 14th power eV.

  3. General consequences of the violated Feynman scaling

    NASA Technical Reports Server (NTRS)

    Kamberov, G.; Popova, L.

    1985-01-01

    The problem of scaling of the hadronic production cross sections represents an outstanding question in high energy physics especially for interpretation of cosmic ray data. A comprehensive analysis of the accelerator data leads to the conclusion of the existence of breaked Feynman scaling. It was proposed that the Lorentz invariant inclusive cross sections for secondaries of a given type approaches constant in respect to a breaked scaling variable x sub s. Thus, the differential cross sections measured in accelerator energy can be extrapolated to higher cosmic ray energies. This assumption leads to some important consequences. The distribution of secondary multiplicity that follows from the violated Feynman scaling using a similar method of Koba et al is discussed.

  4. Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1998-01-01

    Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.

  5. Spacelab mission 2: Experimental descriptions

    NASA Technical Reports Server (NTRS)

    Clifton, K. S. (Editor)

    1982-01-01

    The second Spacelab Mission and the 12 multidisciplinary experiments selected to fly on board are described. These experiments include the following: vitamin D metabolities and bone demineralization; interaction of oxygen and gravity influenced lignification; ejectable plasma diagnostics package; plasma depletion experiments for ionospheric and radio astronomical studies; small helium cooled IR telescope; elemental composition and energy spectra of cosmic ray nuclei; hard X-ray imaging of clusters of galaxies and other extended X-ray sources; solar magnetic and velocity field measurement system; solar coronal helium abundance Spacelab experiment; solar UV high resolution telescope and spectroraph; solar UV spectral irradiance monitor; and properties of superfluid helium in zero-G.

  6. Supernova Origin of Cosmic Rays from a γ-Ray Signal in the Constellation III Region of the Large Magellanic Cloud.

    PubMed

    Neronov, Andrii

    2017-11-10

    Cosmic rays could be produced via shock acceleration powered by supernovae. The supernova hypothesis implies that each supernova injects, on average, some 10^{50}  erg in cosmic rays, while the shock acceleration model predicts a power law cosmic ray spectrum with the slope close to 2. Verification of these predictions requires measurement of the spectrum and power of cosmic ray injection from supernova population(s). Here, we obtain such measurements based on γ-ray observation of the Constellation III region of the Large Magellanic Cloud. We show that γ-ray emission from this young star formation region originates from cosmic rays injected by approximately two thousand supernovae, rather than by a massive star wind powered by a superbubble predating supernova activity. Cosmic ray injection power is found to be (1.1_{-0.2}^{+0.5})×10^{50}  erg/supernova (for the estimated interstellar medium density 0.3  cm^{-3}). The spectrum is a power law with slope 2.09_{-0.07}^{+0.06}. This agrees with the model of particle acceleration at supernova shocks and provides a direct proof of the supernova origin of cosmic rays.

  7. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  8. Observations of the Non-Thermal X-ray Emission from the Galactic Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Pannuti, Thomas G.; Allen, Glenn E.

    2002-01-01

    G347.3-0.5 (ALEX J1713.7-3946) is a member of the new class of shell-type Galactic supernova remnants (SNRs) that feature non-thermal components to their X-ray emission. We have analyzed the X-ray spectrum of this SNR over a broad energy range (0.5 to 30 key) using archived data from observations made with two satellites, the R6ntgensatellit (ROSA I) and the Advanced Satellite for Cosmology and Astrophysics (ASCA), along with data from our own observations made with the Rossi X-ray Timing Explorer (RXTE) Using a combination of the models EQUIL and SRCUT to fit thermal and non-thermal emission, respectively, from this SNR, we find evidence for a modest thermal component to G347.30.5's diffuse emission with a corresponding energy of kT approx. = 1.4 key. We also obtain an estimate of 70 Texas for the maximum energy of the cosmic-ray electrons that, have been accelerated by this SNR.

  9. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara

    Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.

  10. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; hide

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  11. Studies of dark energy with X-ray observatories.

    PubMed

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity.

  12. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians prepare the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  13. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  14. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician prepares the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  15. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is being prepared for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  16. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  17. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  18. Relation of large-scale coronal X-ray structure and cosmic rays. I - Sources of solar wind streams as defined by X-ray emission and H-alpha absorption features

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Nolte, J. T.; Sullivan, J. D.; Lazarus, A. J.; Mcintosh, P. S.; Gold, R. E.; Roelof, E. C.

    1975-01-01

    The large-scale structure of the corona and the interplanetary medium during Carrington rotations 1601-1607 is discussed relative to recurrent high-speed solar wind streams and their coronal sources. Only streams A, C, D, and F recur on more than one rotation. Streams A and D are associated with coronal holes, while C and F originate in the high corona (20-50 solar radii) over faint X-ray emissions. The association of the streams with holes is confirmed by earlier findings that there are no large equatorial holes without an associated high-speed stream and that the area of the equatorial region of coronal holes is highly correlated with the maximum velocity observed in the associated stream near 1 AU.

  19. Charge-coupled-device X-ray detector performance model

    NASA Technical Reports Server (NTRS)

    Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.

    1987-01-01

    A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.

  20. Face Illusion in the Cosmic Clouds

    NASA Image and Video Library

    2014-10-22

    In this image of PSR B1509-58 about 170,000 light-years from Earth, X-rays from NASA Chandra in gold are seen along with infrared data from NASA Wide-field Infrared Survey Explorer WISE telescope in red, green and blue.

  1. Stereo Reconstruction of ELVES at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Mussa, R.; Tonachini, A. S.

    2013-12-01

    The Pierre Auger Observatory, located in Malargue (Argentina), is the world's largest facility (3000 km2) for the study of Ultra High Energy Cosmic Rays (E>10^18 eV). The four sites of the Fluorescence Detector (covering a field of view of 30x180 degrees) are continuously observing the night sky with 100 ns time resolution and a space resolution of about 1 degree. In May 2005, the first ELVES candidate was serendipitously observed by the FD, which is designed to detect the electromagnetic component of cosmic ray showers and to reject lightning. Since March 2013, the Auger Observatory has implemented a special trigger dedicated to the detection of ELVES, whose topology (a rapidly evolving ring) is quite different from the one of cosmic ray events. This allows to record events with high efficiency and unprecedented accuracy. The average distance between two eyes, about 40 km, allows stereo imaging of a large fraction of ELVES candidate events. More than 100 ELVES candidates from the first 6 months of data taking will be shown.

  2. Predicting the response of a submillimeter bolometer to cosmic rays.

    PubMed

    Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  3. Predicting the response of a submillimeter bolometer to cosmic rays

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Sudiwala, Rashmi V.; Ade, Peter A. R.; Griffin, Matthew J.; Wakui, Elley; Bhatia, Ravinder S.; Lange, Andrew E.; Bock, James J.; Turner, Anthony D.; Yun, Minhee H.; Beeman, Jeffrey W.

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  4. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    PubMed

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  5. Radioactivity observed in scintillation counters during the HEAO-1 mission

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; Jung, G. V.; Matteson, J. L.

    1989-01-01

    Results are reported from an analysis of radioactivity induced in the NaI medium-energy detector of the hard X-ray and low-energy gamma-ray experiment during the HEAO-1 satellite mission (1977-1978). Consideration is given to the instrument characteristics, the origin and variability of background, and the separation of cosmic-ray activity from the internal activity due to South Atlantic Anomaly trapped protons. Energy spectra and tables listing the nuclide identifications are provided.

  6. Proceedings of the Space Shuttle Sortie Workshop. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are presented on the mission planning progress in each of the working paper reports. The general topics covered are the following: space technology; materials processing and space manufacturing; communications and navigation; earth and ocean physics; oceanography; earth resources and surface environmental quality; meteorology and atmospheric environmental quality; life sciences; atmospheric and space physics; solar physics; high energy cosmic rays; X-ray and gamma ray astronomy; ultraviolet-optical astronomy; planetary astronomy; and infrared astronomy.

  7. Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Lo Cicero, Ugo; Sciortino, Luisa; Parodi, Giancarlo; D'Anca, Fabio; Giglio, Paolo; Ferruggia Bonura, Salvatore; Nuzzo, Flavio; Jimenez Escobar, Antonio; Ciaravella, Angela; Collura, Alfonso; Varisco, Salvatore; Samain, Valerie

    2018-05-01

    The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing characterization tests.

  8. X-Ray Probes of Cosmic Star Formation History

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.

  9. Difference between even and odd 11-year cycles in cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Otaola, J. A.; Perez-Enriquez, R.; Valdes-Galicia, J. F.

    1985-01-01

    Cosmic ray data for the period 1946-1984 are used to determine the run of the cosmic ray intensity over three complete solar cycles. The analysis shows a tendency towards a regular alternation of cosmic ray intensity cycles with double and single maxima. Whereas a saddle-like shape is characteristic of even cycles, odd cycles are characterized by a peak-like shape. The importance of this behavior is discussed in terms of different processes influencing cosmic ray transport in the heliosphere.

  10. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  11. Exposure History of Lunar Meteorites Queen Alexandra Range 93069 and 94269

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Caffee, M. W.; Jull, A. J. T.; Reedy, R. C.

    1996-01-01

    Cosmic-ray produced C-14 (t(sub 1/2) = 5730 years), 36Cl (3.01 x 10(exp 5 years), Al-26 (7.05 x 10(exp 5 years), and Be-10 (1.5 x 10(exp 6 years) in the recently discovered lunar meteorites Queen Alexandra Range 93069 (QUE 93069) and 94269 (QUE 94269) were measured by accelerator mass spectrometry. The abundance pattern of these four cosmogenic radionuclides and of noble gases indicates QUE 93069 and QUE 94269 were a paired fall and were exposed to cosmic rays near the surface of the Moon for at least several hundred million years before ejection. After the meteorite was launched from the Moon, where it had resided at a depth of 65-80 g/cm square, it experienced a short transition time, approximately 20-50 ka, before colliding with the Earth. The terrestrial age of the meteorite is 5-10 ka. Comparison ofthe cosmogenic nuclide concentrations in QUE 93069/94269 and MAC 88104/88105 clearly shows that these meteorites were not ejected by a common event from the Moon.

  12. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  13. Milky Way's Super-efficient Particle Accelerators Caught in The Act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays - extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it directly tells us how much energy is removed from the shocked gas in the stellar explosion and used to accelerate particles. "When a star explodes in what we call a supernova a large part of the explosion energy is used for accelerating some particles up to extremely high energies", says Helder. "The energy that is used for particle acceleration is at the expense of heating the gas, which is therefore much colder than theory predicts". People Who Read This Also Read... NASA Announces 2009 Astronomy and Astrophysics Fellows Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Oldest Known Objects Are Surprisingly Immature The researchers looked at the remnant of a star that exploded in AD 185, as recorded by Chinese astronomers. The remnant, called RCW 86, is located about 8200 light-years away towards the constellation of Circinus (the Drawing Compass). It is probably the oldest record of the explosion of a star. Using ESO's Very Large Telescope, the team measured the temperature of the gas right behind the shock wave created by the stellar explosion. They measured the speed of the shock wave as well, using images taken with NASA's X-ray Observatory Chandra three years apart. They found it to be moving at between 10 and 30 million km/h, between 1 and 3 percent the speed of light. The temperature of the gas turned out to be 30 million degrees Celsius. This is quite hot compared to everyday standards, but much lower than expected, given the measured shock wave's velocity. This should have heated the gas up to at least half a billion degrees. "The missing energy is what drives the cosmic rays", concludes Vink.

  14. Assessment of the Influence of the RaD-X Balloon Payload on the Onboard Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Gronoff, Guilluame; Mertens, Christopher J.; Norman, Ryan B.; Straume, Tore; Lusby, Terry C.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements.

  15. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  16. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  17. A hot X-ray filament associated with A3017 galaxy cluster

    NASA Astrophysics Data System (ADS)

    Parekh, V.; Durret, F.; Padmanabh, P.; Pandge, M. B.

    2017-09-01

    Recent simulations and observations have shown large-scale filaments in the cosmic web connecting nodes, with accreting materials (baryonic and dark matter) flowing through them. Current high-sensitivity observations also show that the propagation of shocks through filaments can heat them up and make filaments visible between two or more galaxy clusters or around massive clusters, based on optical and/or X-ray observations. We are reporting here the special case of the cluster A3017 associated with a hot filament. The temperature of the filament is 3.4^{-0.77}_{+1.30} keV and its length is ∼1 Mpc. We have analysed its archival Chandra data and report various properties. We also analysed GMRT 235/610 MHz radio data. Radio observations have revealed symmetric two-sided lobes that fill cavities in the A3017 cluster core region, associated with central active galactic nucleus. In the radio map, we also noticed a peculiar linear vertical radio structure in the X-ray filament region which might be associated with a cosmic filament shock. This radio structure could be a radio phoenix or old plasma where an old relativistic population is re-accelerated by shock propagation. Finally, we put an upper limit on the radio luminosity of the filament region.

  18. The basis for cosmic ray feedback: Written on the wind

    PubMed Central

    Zweibel, Ellen G.

    2017-01-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734

  19. The basis for cosmic ray feedback: Written on the wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  20. The basis for cosmic ray feedback: Written on the wind.

    PubMed

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  1. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale

    2017-12-22

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  2. Single particle effects, Biostack, and risk evaluation - Studies on the radiation risk from Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.

  3. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  4. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station.

    PubMed

    Aguilar, M; Ali Cavasonza, L; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeğmez-du Pree, S; Battarbee, M; Battiston, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindel, K F; Bindi, V; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Burger, W J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Creus, W; Crispoltoni, M; Cui, Z; Dadzie, K; Dai, Y M; Datta, A; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guo, K H; Haino, S; Han, K C; He, Z H; Heil, M; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jia, Yi; Jinchi, H; Kang, S C; Kanishev, K; Khiali, B; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Kulemzin, A; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, Q; Li, T X; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lordello, V D; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lyu, S S; Machate, F; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mikuni, V M; Mo, D C; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Oliva, A; Orcinha, M; Palermo, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Perrina, C; Phan, H D; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Tacconi, M; Tang, X W; Tang, Z C; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wu, H; Wu, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zannoni, M; Zeissler, S; Zhang, C; Zhang, F; Zhang, J; Zhang, J H; Zhang, S W; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2018-01-12

    We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4×10^{6} nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0±0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.

  5. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palermo, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2018-01-01

    We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 ×106 nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li /Be flux ratio of 2.0 ±0.1 . The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.

  6. Solar flare induced cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.

    2018-06-01

    Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.

  7. Imagine the Universe!. Version 2

    NASA Technical Reports Server (NTRS)

    Whitlock, Laura A.; Bene, Meredith; Cliffe, J. Allie; Lochner, James C.

    1998-01-01

    Imagine the Universe! gives students, teachers, and the general public a window on how high-energy astrophysics is used to probe the structure and evolution of the Universe. This is the universe as revealed by X-rays, gamma-rays and cosmic rays. Information about this exciting branch of astronomy is available in Imagine the Universe! at a variety of reading levels, and is illustrated with on-line graphics, animations, and movies. Information is presented on topics ranging from the Sun to black holes to X-ray and gamma-ray satellites. Imagine! also features a Teacher's Corner with study guides, lesson plans, and information on other education resources. Further descriptions of features of the Imagine! site and the other sites included on the CD-ROM may be found in sections V and VI of the booklet file.

  8. Lifting the veil on the X-ray universe

    NASA Astrophysics Data System (ADS)

    1999-11-01

    ESA's X-ray Multi Mirror mission - XMM - is the second Cornerstone in ESA's Long Term Scientific Programme (*). This new X-ray space telescope promises even more discoveries. With the large collecting area of its mirrors and the high sensitivity of its cameras, XMM is expected to increase radically our understanding of high-energy sources - clues to a mysterious past, and keys to understanding the future of the Universe. 174 wafer-thin X-ray mirrors X-rays coming from celestial objects are highly energetic and elusive. They can best be measured and studied after focusing a sufficient number upon sensitive detectors. To achieve this, XMM's Mirror Modules have been given a gargantuan appetite for X-rays. The space observatory combines three barrel-shaped telescope modules. In each are nested 58 wafer-thin concentric mirror shells highly polished and subtly shaped. Passing through at an extremely shallow angle, the so-called "grazing incidence", the X-rays will be beamed to the science instruments situated on the focal plane at the other extremity of the satellite. The three mirror modules have a total mirror surface of over 120m2 - practically the size of a tennis court.. The collecting power of XMM's three telescopes is the greatest ever seen on an X-ray space mission, many times more than the most recently launched X-ray satellite. The design and assembly of the mirror modules, their testing for operation in space and their precise calibration constitute one of the greatest achievements of the XMM programme. The flimsy mirror shells, with their gold reflective surface on a nickel backing, were made by replication like carbon copies from master moulds. They were shaped to an accuracy of a thousandth of a millimetre, and then polished to a smoothness a thousand times better than that. Packaged one within another like Russian dolls, each mirror was focused and centred with respect to its neighbour to an accuracy of 25 microns - a quarter of the width of a human hair. A multi-spectral space telescope The spacecraft carries three sets of science instruments, not only capable of making images of an X-ray source but also able to precisely distinguish the "colour" of the X-rays being viewed. At the prime focus of each of the telescopes are three European Photon Imaging Cameras. With silicon chips that can register extremely weak X-ray radiation, these advanced cameras are capable of detecting rapid variations in the intensity of a source. Grating structures at the exit of two mirror modules will reflect about half the incoming rays to a secondary focus, with its own cameras. This Reflection Grating Spectrometer will "fan out" the various wavelengths (much like a prism with visible light), and indicate in more detail the presence of individual elements, such as oxygen and iron. The third instrument aboard XMM is a conventional but very sensitive optical telescope. It will observe simultaneously the same regions as the X-ray telescopes but in the ultraviolet and visible wavelengths, giving astronomers complementary data about the X-ray sources being studied. In orbit, this 30-cm telescope will be as sensitive as a 4-m instrument on the Earth's surface. The mysteries of the X-ray sky XMM will explore the hidden depths of the Universe, its violent hotspots where stars and galaxies are formed, and where worlds and matter itself disappear. Much as the colour of a street lamp can indicate which gas it uses, the science instruments on board XMM will reveal the deepest secrets of X-ray objects, their chemical composition and temperatures - clues to the physical processes that are taking place. Astronomers will use XMM to resolve the mysteries of stars that exploded long ago as supernovae and whose remnants, glowing with X-rays, may be supplying material for new planets and stars. They will study regions of supernova remnants that are still hot and may hold the key to understanding the origin of the enigmatic cosmic rays that pervade the Universe. The mission will study X-rays that originate from "vampire stars" that feed upon their companions, where intense gravitational fields swirl matter from one sphere to the other in strange and terrifying ballets. XMM's high-speed cameras will examine celestial sources whose X-rays pulse rhythmically and mysteriously, and those that flash briefly, pinpointing perhaps gigantic explosions that result from colliding black holes in far off galaxies. XMM will delve into enigmatic black holes, cosmic dustbins that consign matter and light to oblivion, where tired X-rays have lost energy and time itself is slowing down. The golden X-ray eyes of ESA's observatory will try to make sense of a 'bigger picture', ascertaining how galaxies aggregate millions of stars, how these galaxies themselves form clusters and groups scattered across cosmic space. XMM will also attempt to understand the nature of the invisible dark matter that fills interstellar space. A high-flying mission The XMM spacecraft, the largest science satellite ever built in Europe, is due to be launched in December 1999 by an Ariane-5 from the European Spaceport in Kourou. After being released by the launcher, XMM will be placed in a highly eccentric 48-hour orbit, rising to a distance of 114 000 km from the Earth, then returning to within 7 000 km of our planet. This orbit has been chosen for several reasons. It offers an optimal contact between ground tracking stations and the satellite; it will allow the satellite to pass rapidly through the Earth's radiation belts which could harm its delicate science instruments; and above all it will offer astronomers the longest possible observation periods. Note to editors: No X-rays from space can penetrate the Earth's atmosphere so all X-ray astronomy is carried out with instruments on rockets, stratospheric balloons or satellites. X-rays from the Sun were first detected during sounding rocket flights in the 1950s. By 1970, more than forty X-rays sources had been detected during rocket-borne experiments. Satellites have since conducted more extensive surveys. The first satellite dedicated to X-ray astronomy was Uhuru. Launched in 1970 it mapped the sky identifying 339 sources. Several others were to follow, including Einstein which carried grazing incidence mirrors and detectors capable of recording images of cosmic X-ray sources. Einstein studied more than ten thousand sources. EXOSAT (1983-1986) was the European Space Agency's first X-ray observatory mission. Placed on a highly eccentric orbit reaching out 191 700 km from Earth, it allowed very long observations above the radiation belts and greatly enlarged our understanding of many classes of X-ray sources. The German/US/UK ROSAT launched in 1990 was another big step forwards. Until its recent switch off it carried out a complete sky survey identifying 100 000 X-ray sources. XMM will be opening up a golden age of X-ray astronomy alongside two other major missions. Launched in July 1999, Chandra is the third of NASA's Great Observatories. It is exploring X-rays from space with images 25 times sharper than previously obtained. ASTRO-E is Japan's fifth X-ray astronomy mission and is due to be launched early in 2000. Europe has already begun studying a next generation X-ray astrophysics facility, XEUS. By making use of the International Space Station and by ensuring significant potential for growth and evolution, XEUS will offer vastly expanded capabilities allowing the study of the very first black holes created when the Universe was just a few percent of its present age.

  9. Systems and methods for detecting nuclear radiation in the presence of backgrounds

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-06-21

    Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.

  10. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  11. Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang

    NASA Astrophysics Data System (ADS)

    2003-11-01

    The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago. The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no indication of any complex structure or a jet. "This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the Big Bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20th Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the Big Bang. Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. Radio image of GB1508 Radio Image of GB1508 As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe. When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions," said Siemiginowska. "This jet is hopefully just the first in a large sample of these distant objects that can be used to tell us how the intensity of the cosmic microwave background changed over time." "In fact, if this interpretation is correct, then discovery of this jet is consistent with our previous prediction that X-ray jets can be detected at arbitrarily large distances!" said team member Dan Schwartz, also of the Harvard-Smithsonian Center for Astrophysics. Chandra originally observed GB1508+5714 with the purpose of studying the X-ray emission from the dust located between the Earth and the far-flung quasar. The jet was found by Siemiginowska and her colleagues when they examined the data once it became available publicly in the Chandra archive. This led another astronomer to then carefully look at radio observations of the object. Indeed, archived Very Large Array data confirmed the existence of the jet associated with the quasar GB1508+5714. A paper on the radio observations of GB1508+5714 has been accepted by Astrophysical Journal Letters from Teddy Cheung of Brandeis University in Waltham, Mass. Another group of astronomers led by Weimin Yuan of the University of Cambridge, UK independently reported the discovery of the extended emission in GB1508+5714 in X-rays. In a paper to be published in an upcoming issue of the Monthly Notices of the Royal Astronomical Society, the authors note that significant energy is being deposited in the outer regions of the host galaxy at a very early stage. This energy input could have a profound effect on the evolution of the galaxy by triggering the formation of stars, or inhibiting the growth of the galaxy through accretion of matter from intergalactic space. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  12. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  13. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  14. Exploring Cosmic X-ray Source Polarization

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Jahodal, K.; Kallman, T. R.; Kaaret, P.

    2008-01-01

    Cosmic X-ray sources are expected to be polarized, either because of their asymmetry and the role of scattering in their emission or the role of magnetic fields. Polarization at other wavelengths has been useful. X-ray polarization will provide a new handle on black hole parameters, in particular the spin, on accretion flows and outflows, on neutron star spin orientations and emission mechanisms, on the quantum mechanical effects of super-strong magnetic fields of magnetars, and on the structure of supernovae shocks. The proposed Gravity and Extreme Magnetism SMEX (GEMS) will use high efficiency polarimeters behind thin foil mirrors. The statistical sensitivity and control of systematics will allow measurement of polarization fractions as small as 1% from many galactic and extragalactic sources. Targets which should be polarized at the level that GEMS can easily measure include stellar black holes, Seyfert galaxies and quasars, blazars, rotation-powered and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. The polarimeters are Time Projection Chambers that allow reconstruction of images of photoelectron tracks for 2-10 keV Xrays. They can be deep without sacrificing modulation. These polarimeters do not image the sky, but the telescope point spread function and detector collimation allow structure to be resolved at the 10 arcmin level. Rotation of the spacecraft is not needed for the signal measurement in the Time Projection Chambers, but provides for measurement and correction of systematic errors. It also allows a small Bragg reflection soft X-ray experiment to be included that can be used for isolated neutron stars and blazars.

  15. Obscured Black Hole Growth at High Redshift and High Luminosity

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    We propose to complete the census of cosmic black hole growth by measuring luminous and/or distant quasars using Spitzer, Herschel, Chandra and XMM-Newton imaging in Stripe 82 the deepest Sloan Digital Sky Survey field, and now the premier legacy field among 100 deg2 survey areas. These extensive ancillary data offer unsurpassed sensitivity to accreting supermassive black holes in luminous quasars out to z 6, including obscured objects missed by optical/UV surveys. We address six science goals centered on the growth of supermassive black holes: 1) We will constrain the mass accreted in luminous quasars by determining the evolving luminosity function of high-luminosity X-ray-selected AGN, including obscured quasars, especially at high redshift, where previous surveys have limited statistics. 2) We will build a comprehensive multi-wavelength population synthesis model that describes cosmic black hole accretion across most of the history of the Universe, constrained by the wealth of data now available. This will be the first population synthesis model that is constrained at high luminosity and high redshift (courtesy of Stripe 82X). 3) We will characterize the spectral energy distributions (SEDs) of luminous X-ray selected quasars, including obscured ones. We will assess the dust content in the host galaxies and diagnose the relative contributions of black hole fueling and star formation, using Herschel data to probe the cold molecular gas from which stars form and comparing X-rays from accretion onto the central black hole. We will also use high-quality optical imaging to disentangle nuclear from host galaxy emission in a representative sub-sample of quasars. 4) Using Spitzer, Herschel, Chandra, XMM-Newton, and optical data, we will identify candidates for the most heavily obscured black holes, which we will follow up with ground-based IR spectroscopy using Keck and Palomar (to which Yale has guaranteed access). In this way we will recover obscured AGN missed by optical surveys, mitigating optical biases in quasar demography. 5) We will investigate the large-scale environments of quasars, in which black holes appear to acquire at least half of their mass, by studying the clustering of AGN in Stripe 82. Specifically, we will measure the halo occupation distribution, which is the probability of a dark matter halo of a given mass to host central and satellite AGN above a given luminosity. We will assess whether rapid black hole growth depends on halo mass, and how the average halo mass in which AGN occur might depend on AGN or galaxy properties. For this analysis, the hundreds of luminous quasars at z>2 in Stripe 82X and its high redshift completeness (92%) are particularly important. 6) We will investigate early black hole growth at z>6 by analyzing fluctuations in the infrared and X-ray backgrounds (i.e., below source detection levels). Specifically, we will directly correlate the Spitzer-measured cosmic infrared background (CIB) and the cosmic X-ray background (CXB) measured with XMM-Newton, on roughly 20 times larger scales than previous studies. This offers the best probe of early BH growth until high-sensitivity X-ray observatories like Athena and Lynx. These studies will determine how much mass is accreted in the most luminous and/or obscured quasars, and how the energy released into galaxies depends on key variables such as redshift, AGN luminosity, Eddington ratio and wavelength. This accurate, data validated estimate of the radiation deposited into host galaxies is essential for incorporating feedback into models of galaxy evolution. The Stripe 82X survey, as the richest multiwavelength survey covering >30 deg2 of the sky, deep enough in X-rays to see luminous quasars out to z 10, will yield many important discoveries, ideally including unexpected ones found by others in the community.

  16. Search for gamma-ray emission from the Coma Cluster with six years of Fermi-LAT data

    DOE PAGES

    Ackermann, M.

    2016-03-08

    We present results from γ-ray observations of the Coma cluster incorporating 6 years of Fermi-LAT data and the newly released “Pass 8” event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the γ-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radiomore » halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100MeV are 1.7 x 10 -9 ph cm -2 s -1 and 5.2 x 10 -9 ph cm -2 s -1 respectively (the latter corresponds to residual emission at the level of 1:8σ). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of cosmic rays and magnetic field properties. The minimal expected γ-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.« less

  17. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  18. Cosmic Ray investigations on peak Musala in Bulgaria: A memoir

    NASA Astrophysics Data System (ADS)

    Kavlakov, S.

    2009-11-01

    A very brief historical description of the Bulgarian Cosmic Ray investigations, in the Cosmic Ray Station on peak Musala (2925 m.a.s.l.) is presented. Difficulties of the high mountain measurements that time are mentioned, together with the hard emotional and successful work done by a small staff of young Bulgarian cosmic ray scientists.

  19. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  20. Transient cosmic ray increase associated with a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1985-01-01

    On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.

  1. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  2. TeV γ-ray fluxes from the long campaigns on Mrk 421 as constraints on the emission of TeV-PeV neutrinos and UHECRs

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Marinelli, A.

    2015-10-01

    Long TeV γ-ray campaigns have been carried out to study the spectrum, variability and duty cycle of the BL Lac object Markarian 421. These campaigns have given some evidence of the presence of protons in the jet: (i) Its spectral energy distribution which shows two main peaks; one at low energies (∼1 keV) and the other at high energies (hundreds of GeV), has been described by using synchrotron proton blazar model. (ii) The study of the variability at GeV γ-rays and X-rays has indicated no significant correlation. (iii) TeV γ-ray detections without activity in X-rays, called "orphan flares" have been observed in this object. Recently, The Telescope Array Collaboration reported the arrival of 72 ultra-high-energy cosmic rays with some of them possibly related to the direction of Markarian 421. The IceCube Collaboration reported the detection of 37 extraterrestrial neutrinos in the TeV-PeV energy range collected during three consecutive years. In particular, no neutrino track events were associated with this source. In this paper, we consider the proton-photon interactions to correlate the TeV γ-ray fluxes reported by long campaigns with the neutrino and ultra-high-energy cosmic ray observations around this blazar. Considering the results reported by The IceCube and Telescope Array Collaborations, we found that only from ∼25% to 70% of TeV fluxes described with a power law function with exponential cutoff can come from the proton-photon interactions.

  3. To Boldly Go: America's Next Era in Space. The Plasma Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this, the eighth seminar in the Administrator's Seminar Series. She introduced the NASA Administrator, Daniel S. Goldin, who, in turn, introduced the subject of plasma. Plasma, an ionized gas, is a function of temperature and density. We ve learned that, at Jupiter, the radiation is dense. But, Goldin asked, what else do we know? Dr. Cordova then introduced Dr. James Van Allen, for whom the Van Allen radiation belt was named. Dr. Van Allen, a member of the University of Iowa faculty, discussed the growing interest in practical applications of space physics, including radiation fields and particles, plasmas and ionospheres. He listed a hierarchy of magnetic fields, beginning at the top, as pulsars, the Sun, planets, interplanetary medium, and interstellar medium. He pointed out that we have investigated eight of the nine known planets,. He listed three basic energy sources as 1) kinetic energy from flowing plasma such as constitutional solar wind or interstellar wind; 2) rotational energy of the planet, and 3) orbital energy of satellites. He believes there are seven sources of energetic particles and five potential places where particles may go. The next speaker, Dr. Ian Axford of New Zealand, has been associated with the Max Planck Institut fuer Aeronomie and plasma physics. He has studied solar and galactic winds and clusters of galaxies of which there are several thousand. He believes that the solar wind temperature is in the millions of degrees. The final speaker was Dr. Roger Blanford of the California Institute of Technology. He classified extreme plasmas as lab plasmas and cosmic plasmas. Cosmic plasmas are from supernovae remnants. These have supplied us with heavy elements and may come via a shock front of 10(sup 15) electron volts. To understand the physics of plasma, one must learn about x-rays, the maximum energy of acceleration by supernova remnants, particle acceleration and composition of cosmic rays, maximum acceleration, and how fast protons are heated by ions. He asked questions about where high energy cosmic rays are made, what accelerates electrons, radiates gamma rays, makes electronpositron plasma, and finally noted that pulsars are good time keepers, but we need a better understanding of their mechanism and of plasmas, both cosmic and ground-based. In the discussion period, Goldin asked if NASA should put up an x-ray interferometer. The answer was no; gamma rays are of greater interest just now. Goldin also asked what the assembled scientists would like to see for a future mission? They expressed an interest in learning more about the origin of galaxies, cosmic rays, solar systems, planets, the existence of life "out there", gamma ray sources, the nature of gamma ray bursts, and the flow of gases around black holes. The discussion concluded with a suggestion that NASA should communicate to the general public more information regarding actual technological trials and tribulations involved in getting an experiment to work. The speakers thought that this would help non-scientists to better appreciate what it is that NASA does in connection with the benefits that are achieved.

  4. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  5. The impact of networks of robotic telescopes in continuous monitoring of high energy cosmic sources

    NASA Astrophysics Data System (ADS)

    Giovannelli, Franco; Sabau-Graziati, Lola

    High energy (HE) cosmic sources are characterized by emissions in a wide range of the electromagnetic spectrum. In order to clarify their behavior and understand the involved physics it is necessary to perform simultaneous measurements in a range of energy as wide as possible. This makes it necessary to use different techniques and instrumentation both space- and ground-based. Simultaneous observations are in general very difficult to be performed because they need the involvement of many instruments that belong to many experiments under the control of many groups and countries. However, since the importance of multifrequency measurements is now universally recognized, many efforts are made in order to obtain such measurements. Our group has been a pioneer in such a kind of measurements since middle of 1970s. We will briefly discuss the impact of such measurements in different class of HE cosmic sources, such as T Tauri stars (TTSs), active galactic nuclei (AGNs), gamma-ray bursts (GRBs), X-ray binary systems (XRBs), and cataclysmic variables (CVs). This discussion is mainly based on the review paper "The impact of the space experiments on our knowledge of the physics of the universe" tep{GiovannelliSabauGraziati2004} and subsequent revisions. We will also discuss the importance of having a network of robotic telescopes that can provide long term optical monitoring of the classes of HE sources already discussed. Such measurements will provide fundamental data for understanding many problems that are still open, such as the physics of the outbursts in flaring systems, the search of rotational periods of white dwarfs in CVs and orbital periods of those systems, rotational periods and periodicities of flare-like events of TTSs, correlations between optical and X-ray flares in X-ray/Be systems, fluctuations in the light curves of AGNs and their correlations with the HE emission in order to test the validity of current models, etc.

  6. Cosmic ray transport in astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less

  7. A hard X-ray and gamma ray observation of the 22 November 1977 solar flare. [experimental design

    NASA Technical Reports Server (NTRS)

    Chambon, G.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.; Likine, O. B.; Kouznetsov, A. V.; Estouline, I. V.

    1978-01-01

    The Franco-Soviet experiment package Signe 2 MP for solar and cosmic X and gamma ray observations, launched aboard a Soviet Prognoz satellite into a highly eccentric earth orbit is described. An uncollimated NaI detector 37 mm thick by 90 mm diameter, placed on the upper surface of the satellite faced the sun. A collimated lateral NaI detector 14 mm thick by 38 mm diameter also faced the sun, and a similar lateral detector faced the anti-solar direction. Data tapes reveal an intense solar flare up to energies of up to 5 MeV, with evidence for line emission at 2.23 MeV and possibly 4.4 MeV. The event observed was associated with the Mc Math Plage Region 15031, and an H-alpha flare of importance 2B. It is not yet clear what radio emission is associated with the X-ray observation.

  8. Unveiling the past of the Galactic nucleus with X-ray echoes

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-12-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  9. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  10. Relation of large-scale coronal X-ray structure and cosmic rays. II - Coronal control of interplanetary injection of 300 keV protons

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Krieger, A. S.; Nolte, J. T.; Mcintosh, P. S.; Lazarus, A. J.; Sullivan, J. D.

    1975-01-01

    We report the striking coronal control of low-energy solar particles from the solar flare of September 7, 1973. The flare was at S18, W46 (Carrington longitude 188 deg) in McMath Plage Region 12307. We find strong intensity gradients in heliolongitude (about 10% per deg) that are nearly identical in protons, helium, and medium nuclei at energies about 0.5 MeV/nuc, as well as relativistic electrons and 3 MeV protons. This pervasive gradient occurs at longitudes over bright X-ray emission structures east of the flare site which interconnect large-scale chromospheric polarity regions identifiable in H-alpha filtergrams.

  11. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  12. A Demonstration Device for Cosmic Rays Telescopes

    ERIC Educational Resources Information Center

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon…

  13. Significant accomplishments in science and technology, Goddard Space Flight Center, 1974. [proceedings - NASA programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Topics covered are: (1) earth resources (climatology, oceanography, soils, strip mines), and (2) astronomy (magnetic fields and atmospheres of the planets and the sun; galactic and interstellar gas; cosmic and X-ray radiation). Photographs of satellite observations are included.

  14. MAX '91: An advanced payload for the exploration of high energy processes on the active sun

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The results of a NASA science working group established to study a follow-on to the Solar Maximum Mission are given. A complement of instruments is suggested, with the primary objective of studying the physics of energetic processes in cosmic plasmas by observing high-energy phenomena in solar flares. High-quality flare observations will be possible with these instruments during the next peak in solar activity expected to last from 1990 through at least 1995. The primary objective of MAX '91 is to study energetic processes in cosmic plasmas by observing high-energy phenomena in solar flares. These processes, which are of general astrophysical importance, include energy release, particle acceleration, and energy transport. Results from comprehensive observing programs conducted during the last solar cycle have demonstrated the great scientific potential of high-energy emissions for addressing these central physical processes. Consequently, a payload optimized for observations of high-energy solar flare phenomena is suggested for MAX '91. It consists of the following four specific instruments: (1) a Fourier-transform X-ray and gamma-ray imager covering the energy range from a few keV to 1 MeV with arcsecond spatial resolution; (2) a cooled germanium X-ray and gamma-ray spectrometer with keV spectral resolution covering the energy range from 10 keV to 50 MeV; (3) Bragg spectrometers with high spectral resolution at wavelengths between 1 and 9 angstrons; and (4) a soft X-ray, EUV, or UV imaging instrument with arcsecond spatial resolution.

  15. Influence of the backreaction of streaming cosmic rays on magnetic field generation and thermal instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Anatoly K.; Shadmehri, Mohsen, E-mail: anekrasov@ifz.ru, E-mail: nekrasov.anatoly@gmail.com, E-mail: m.shadmehri@gu.ac.ir

    2014-06-10

    Using a multifluid approach, we investigate streaming and thermal instabilities of the electron-ion plasma with homogeneous cold cosmic rays propagating perpendicular to the background magnetic field. Perturbations are also considered to be across the magnetic field. The backreaction of cosmic rays resulting in strong streaming instabilities is taken into account. It is shown that, for sufficiently short wavelength perturbations, the growth rates can exceed the growth rate of cosmic-ray streaming instability along the magnetic field, found by Nekrasov and Shadmehri, which is in turn considerably larger than the growth rate of the Bell instability. The thermal instability is shown notmore » to be subject to the action of cosmic rays in the model under consideration. The dispersion relation for the thermal instability has been derived, which includes sound velocities of plasma and cosmic rays and Alfvén and cosmic-ray streaming velocities. The relation between these parameters determines the kind of thermal instability ranging from the Parker to the Field instabilities. The results obtained can be useful for a more detailed investigation of electron-ion astrophysical objects, such as supernova remnant shocks, galaxy clusters, and others, including the dynamics of streaming cosmic rays.« less

  16. Results from Two Low Mass Cosmic Ray Experiments Flown on the HASP Platform

    NASA Astrophysics Data System (ADS)

    Fontenot, R. S.; Hollerman, W. A.; Tittsworth, M.; Fountain, W.; Christl, M.; Thibodaux, C.; Broussard, B. M.

    2009-03-01

    The High Altitude Student Payload (HASP) program is designed to carry twelve student experiments to an altitude of about 123,000 feet (˜37 km). In 2006, students participated in the first HASP launch to measure cosmic ray intensities using traditional film and absorbers. This 10 kg payload flew from Fort Sumner, New Mexico in early September 2006 and was a great success. In 2007, students participated in the second HASP flight to measure the cosmic ray intensity and flux using a traditional film and absorber stack with five layers of optically stimulated luminescent (OSL) dosimeters. Results from both payloads showed that the cosmic ray flux decreases as a function of payload depth. As the cosmic rays go through the stack, they deposit their energy in the payload material. Determining cosmic ray flux is a tedious task. It involves digitizing the film and determining the real cosmic ray density. For the first HASP payload, students used a program known as GlobalLab to count particles. For the second payload, the students decided to use a combination of the GREYCStoration image regularization algorithm, an embossing filter, and a depth-merging filter to reconstruct the paths of the cosmic rays.

  17. Atmospheric changes caused by galactic cosmic rays over the period 1960–2010

    DOE PAGES

    Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; ...

    2016-05-13

    The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NO x increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NO x increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreasesmore » of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NO x. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NO x and ClO x ozone loss cycles (e.g., the ClO + NO 2+ M → ClONO 2+ M reaction) and the change in the importance of ClO x in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less

  18. Atmospheric changes caused by galactic cosmic rays over the period 1960–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.

    The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NO x increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NO x increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreasesmore » of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NO x. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NO x and ClO x ozone loss cycles (e.g., the ClO + NO 2+ M → ClONO 2+ M reaction) and the change in the importance of ClO x in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less

  19. CXBN-2 CubeSat – ELaNa XVII

    NASA Image and Video Library

    2016-12-08

    The Cosmic X-Ray Background NanoSat-2 (CXBN-2) CubeSat Mission developed by Morehead State University and its partners the Keldysh Institute (Moscow, Russia), the Maysville Community and Technical College (Morehead, KY) and KYSpace LLC (Lexington, KY) will increase the precision of measurements of the Cosmic X-Ray Background in the 30-50 keV range to a precision of <5%, thereby constraining models that attempt to explain the relative contribution of proposed sources lending insight into the underlying physics of the early universe. The mission addresses a fundamental science question that is central to our understanding of the structure, origin, and evolution of the universe by potentially lending insight into both the high-energy background radiation and into the evolution of primordial galaxies. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  20. U.S. Government Funding for Science and Technology Cooperation with Russia

    DTIC Science & Technology

    2002-01-01

    and Vietnamese scientists to study and understand the origin of cosmic rays , and "* collaboration among U.S., Russian, Ukrainian, and Lithuanian...International Space Station; for solar terrestrial surface radiation over the Arctic basin; and to index and track Russian biomedical articles and...experimentation on an electric propulsion thruster for small, low-power satellites "• calibrating data analysis from the Stellar X- Ray Polarimeter of

Top