Science.gov

Sample records for cosmic-ray ionization rate

  1. The galactic cosmic ray ionization rate.

    PubMed

    Dalgarno, A

    2006-08-15

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H(3)(+) in diffuse clouds and the recognition that dissociative recombination of H(3)(+) is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium.

  2. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  3. Voyager 1 in the Local Interstellar Medium: Cosmic-ray Energy Density and Ionization Rate

    NASA Astrophysics Data System (ADS)

    Cummings, A. C.; Stone, E. C.; Heikkila, B. C.; Lal, N.; Webber, W. R.; Johannesson, G.; Moskalenko, I.; Orlando, E.; Porter, T.

    2015-12-01

    We present the energy spectra of cosmic ay nuclei and electrons in the local interstellar medium (LISM) from the Cosmic Ray Subsystem on Voyager 1 (V1). We use four models of the local interstellar spectra of nuclei and one of electrons that are constrained by the observations to compute the energy density and ionization rate of atomic H in the LISM above 3 MeV for electrons and protons and above 3 MeV/nuc for nuclei with Z > 1. We find that the total cosmic-ray energy density is in the range 0.82-0.97 eV/cm3, which includes a contribution of 0.023 eV/cm3 from electrons. We find the cosmic-ray ionization rate of atomic H to be in the range 1.45-1.58 x 10-17 s-1, which is a factor of more than 10 below the cosmic-ray ionization rate in diffuse interstellar clouds based on astrochemistry methods. We discuss possible reasons for this difference. Voyager data analysis is supported by NASA Grant NNN12AA012. GALPROP development is supported by NASA Grants NNX13AC47G and NNX10AE78G.

  4. The distribution of cosmic-ray ionization rates in diffuse molecular clouds as probed by H3+.

    PubMed

    Indriolo, Nick

    2012-11-13

    Owing to its simple chemistry, H(3)(+) is widely regarded as the most reliable tracer of the cosmic-ray ionization rate in diffuse interstellar clouds. At present, H(3)(+) observations have been made in over 50 sight lines that probe the diffuse interstellar medium (ISM) throughout the Galaxy. This small survey presents the opportunity to investigate the distribution of cosmic-ray ionization rates in the ISM, as well as any correlations between the ionization rate and line-of-sight properties. Some of the highest inferred ionization rates are about 25 times larger than the lowest upper limits, suggesting variations in the underlying low-energy cosmic-ray flux across the Galaxy. Most likely, such variations are caused predominantly by the distance between an observed cloud and the nearest site of particle acceleration.

  5. Compact cosmic ray detector for unattended atmospheric ionization monitoring.

    PubMed

    Aplin, K L; Harrison, R G

    2010-12-01

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates. PMID:21198037

  6. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    SciTech Connect

    Aplin, K. L.; Harrison, R. G.

    2010-12-15

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  7. Spectrum and ionization rate of low-energy Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Nath, Biman B.; Gupta, Nayantara; Biermann, Peter L.

    2012-09-01

    We consider the rate of ionization of diffuse and molecular clouds in the interstellar medium by Galactic cosmic rays (GCRs) in order to constrain its low-energy spectrum. We extrapolate the GCR spectrum obtained from PAMELA at high energies (≥200 GeV nucleon-1) and a recently derived GCR proton flux at 1-200 GeV from observations of gamma-rays from molecular clouds, and find that the observed average Galactic ionization rate can be reconciled with this GCR spectrum if there is a low-energy cut-off for protons at 10-100 MeV. We also identify the flattening below a few GeV as being due to (a) decrease of the diffusion coefficient and dominance of convective loss at low energy and (b) the expected break in energy spectrum for a constant spectral index in momentum. We show that the inferred CR proton spectrum of ? for Ekin≤ few GeV is consistent with a power-law spectrum in momentum p-2.45± 0.4, which we identify as the spectrum at source. Diffusion loss at higher energies then introduces a steepening by E-α with α˜ 1/3, making it consistent with high-energy measurements.

  8. Investigating the Cosmic-ray Ionization Rate Near the Supernova Remnant IC 443 through H+ 3 Observations

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Blake, Geoffrey A.; Goto, Miwa; Usuda, Tomonori; Oka, Takeshi; Geballe, T. R.; Fields, Brian D.; McCall, Benjamin J.

    2010-12-01

    Observational and theoretical evidence suggests that high-energy Galactic cosmic rays are primarily accelerated by supernova remnants. If also true for low-energy cosmic rays, the ionization rate near a supernova remnant should be higher than in the general Galactic interstellar medium (ISM). We have searched for H+ 3 absorption features in six sight lines which pass through molecular material near IC 443—a well-studied case of a supernova remnant interacting with its surrounding molecular material—for the purpose of inferring the cosmic-ray ionization rate in the region. In two of the sight lines (toward ALS 8828 and HD 254577) we find large H+ 3 column densities, N(H+ 3) ≈ 3 × 1014 cm-2, and deduce ionization rates of ζ2 ≈ 2 × 10-15 s-1, about five times larger than inferred toward average diffuse molecular cloud sight lines. However, the 3σ upper limits found for the other four sight lines are consistent with typical Galactic values. This wide range of ionization rates is likely the result of particle acceleration and propagation effects, which predict that the cosmic-ray spectrum and thus ionization rate should vary in and around the remnant. While we cannot determine if the H+ 3 absorption arises in post-shock (interior) or pre-shock (exterior) gas, the large inferred ionization rates suggest that IC 443 is in fact accelerating a large population of low-energy cosmic rays. Still, it is unclear whether this population can propagate far enough into the ISM to account for the ionization rate inferred in diffuse Galactic sight lines. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by

  9. CONSTRAINING THE X-RAY AND COSMIC-RAY IONIZATION CHEMISTRY OF THE TW Hya PROTOPLANETARY DISK: EVIDENCE FOR A SUB-INTERSTELLAR COSMIC-RAY RATE

    SciTech Connect

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Adams, Fred C.; Qi, Chunhua; Öberg, Karin I.

    2015-02-01

    We present an observational and theoretical study of the primary ionizing agents (cosmic rays (CRs) and X-rays) in the TW Hya protoplanetary disk. We use a set of resolved and unresolved observations of molecular ions and other molecular species, encompassing 11 lines total, in concert with a grid of disk chemistry models. The molecular ion constraints comprise new data from the Submillimeter Array on HCO{sup +}, acquired at unprecedented spatial resolution, and data from the literature, including ALMA observations of N{sub 2}H{sup +}. We vary the model incident CR flux and stellar X-ray spectra and find that TW Hya's HCO{sup +} and N{sub 2}H{sup +} emission are best-fit by a moderately hard X-ray spectra, as would be expected during the ''flaring'' state of the star, and a low CR ionization rate, ζ{sub CR} ≲ 10{sup –19} s{sup –1}. This low CR rate is the first indication of the presence of CR exclusion by winds and/or magnetic fields in an actively accreting T Tauri disk system. With this new constraint, our best-fit ionization structure predicts a low turbulence ''dead-zone'' extending from the inner edge of the disk out to 50-65 AU. This region coincides with an observed concentration of millimeter grains, and we propose that the inner region of TW Hya is a dust (and possibly planet) growth factory as predicted by previous theoretical work.

  10. On the Inference of the Cosmic-ray Ionization Rate ζ from the HCO+-to-DCO+ Abundance Ratio: The Effect of Nuclear Spin

    NASA Astrophysics Data System (ADS)

    Shingledecker, Christopher N.; Bergner, Jennifer B.; Le Gal, Romane; Öberg, Karin I.; Hincelin, Ugo; Herbst, Eric

    2016-10-01

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO+]/[DCO+] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ-ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO+]/[DCO+] to ζ, we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO+]/[DCO+] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.

  11. DETECTION OF OH{sup +} IN TRANSLUCENT INTERSTELLAR CLOUDS: NEW ELECTRONIC TRANSITIONS AND PROBING THE PRIMARY COSMIC RAY IONIZATION RATE

    SciTech Connect

    Zhao, D.; Linnartz, H.; Galazutdinov, G. A.; Krełowski, J.

    2015-06-01

    We present the detection of rotationally resolved electronic transitions in the OH{sup +} A{sup 3}Π–X{sup 3}Σ{sup −} (0, 0) and (1, 0) bands toward CD-32 4348, HD 63804, HD 78344, and HD 80077. These four translucent clouds have been studied in a recent Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph observational run. In total, seven absorption features of OH{sup +} are detected, and six of them are identified here for the first time, providing a precise tool to trace OH{sup +} in translucent interstellar clouds. An improved set of line positions and oscillator strengths is compiled to support our data interpretation. A dedicated analysis of the observed features in individual targets yields an accurate determination of OH{sup +} column densities. The results are applied to estimate the primary cosmic ray ionization rate in the investigated translucent clouds, which yields a typical value of ∼1.0 × 10{sup −16} s{sup −1}. In addition, following this work, two of the new interstellar features recently reported by Bhatt and Cami, at ∼3572.65 and 3346.96 Å, can be identified as OH{sup +} absorption lines now.

  12. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  13. Are cosmic rays effective for ionization of the solar nebula?

    NASA Technical Reports Server (NTRS)

    Dolginov, A. Z.; Stepinski, T. F.

    1993-01-01

    In this paper, we argue that the effectiveness of cosmic rays to ionize the bulk of the nebular gas may be further impaired by the influence of the magnetic field on the propagation of cosmic rays. When cosmic rays enter the nebular disk they ionize the gas and make the dynamo generation of magnetic fields possible. However, once magnetic fields are embedded in the nebular gas, the upcoming cosmic rays can no longer penetrate directly into the nebular disk because they start to interact with the magnetic field and lose their energy before propagating significantly toward the midplane. That, in turn, undercuts the ionization source within the bulk of the gas stopping the dynamo action. Nebular dynamo models ignored this back reaction of magnetic fields on cosmic rays. We calculate this back reaction effect, but for the sake of mathematical simplicity, we ignore the effect of magnetic field weakening due to diminishing ionization by cosmic rays.

  14. Optical and Ionization Basic Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  15. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.

    2015-02-01

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. INVESTIGATING THE COSMIC-RAY IONIZATION RATE IN THE GALACTIC DIFFUSE INTERSTELLAR MEDIUM THROUGH OBSERVATIONS OF H{sup +}{sub 3}

    SciTech Connect

    Indriolo, Nick; McCall, Benjamin J.

    2012-01-20

    Observations of H{sup +}{sub 3} in the Galactic diffuse interstellar medium have led to various surprising results, including the conclusion that the cosmic-ray ionization rate ({zeta}{sub 2}) is about one order of magnitude larger than previously thought. The present survey expands the sample of diffuse cloud sight lines with H{sup +}{sub 3} observations to 50, with detections in 21 of those. Ionization rates inferred from these observations are in the range (1.7 {+-} 1.3) Multiplication-Sign 10{sup -16} s{sup -1} < {zeta}{sub 2} < (10.6 {+-} 8.2) Multiplication-Sign 10{sup -16} s{sup -1} with a mean value of {zeta}{sub 2} = (3.5{sup +5.3}{sub -3.0}) Multiplication-Sign 10{sup -16} s{sup -1}. Upper limits (3{sigma}) derived from non-detections of H{sup +}{sub 3} are as low as {zeta}{sub 2} < 0.4 Multiplication-Sign 10{sup -16} s{sup -1}. These low upper limits, in combination with the wide range of inferred cosmic-ray ionization rates, indicate variations in {zeta}{sub 2} between different diffuse cloud sight lines. A study of {zeta}{sub 2} versus N{sub H} (total hydrogen column density) shows that the two parameters are not correlated for diffuse molecular cloud sight lines, but that the ionization rate decreases when N{sub H} increases to values typical of dense molecular clouds. Both the difference in ionization rates between diffuse and dense clouds and the variation of {zeta}{sub 2} among diffuse cloud sight lines are likely the result of particle propagation effects. The lower ionization rate in dense clouds is due to the inability of low-energy (few MeV) protons to penetrate such regions, while the ionization rate in diffuse clouds is controlled by the proximity of the observed cloud to a site of particle acceleration.

  17. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  18. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  19. Cosmic ray composition measurements and high energy ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Arens, J. F.; Ormes, J. F.

    1974-01-01

    Element abundances of cosmic rays Li through Si with energy above 0.8 GeV/amu were measured on a balloon borne instrument containing a total absorption ionization spectrometer. Statistical techniques were used to analyze the five measurements of each particle to determine its charge and energy. The technique allows a determination of systematic errors to be made. Corrections for Landau fluctuations, spark chamber inefficiency, and background particles were included. Comparison with other published results is made. Differences in the shape of the spectrum determined from measurements of different workers indicate that the absolute intensity is still known to only plus or minus 15% between 2 and 10 GV/c rigidity.

  20. Ionization and heating by X-rays and cosmic rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2015-09-01

    High-energy radiation from the central T Tauri and protostars plays an important role in shaping protoplanetary disks and influences their evolution. Such radiation, in particular X-rays and extreme-ultraviolet (EUV) radiation, is predominantly generated in unstable stellar magnetic fields (e.g., the stellar corona), but also in accretion hot spots. Even jets may produce X-ray emission. Cosmic rays, i.e., high-energy particles either from the interstellar space or from the star itself, are of crucial importance. Both highenergy photons and particles ionize disk gas and lead to heating. Ionization and heating subsequently drive chemical networks, and the products of these processes are accessible through observations of molecular line emission. Furthermore, ionization supports the magnetorotational instability and therefore drives disk accretion, while heating of the disk surface layers induces photoevaporative flows. Both processes are crucial for the dispersal of protoplanetary disks and therefore critical for the time scales of planet formation. This chapter introduces the basic physics of ionization and heating starting from a quantum mechanical viewpoint, then discusses relevant processes in astrophysical gases and their applications to protoplanetary disks, and finally summarizes some properties of the most important high-energy sources for protoplanetary disks. 14th Lecture from Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  1. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    SciTech Connect

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Falgarone, E.; Schilke, P.; Chambers, E. T.; Ossenkopf, V.; Benz, A. O.; Winkel, B.; Menten, K. M.; Black, John H.; Persson, C. M.; Bruderer, S.; Van Dishoeck, E. F.; Godard, B.; Lis, D. C.; Goicoechea, J. R.; Gupta, H.; Sonnentrucker, P.; Van der Tak, F. F. S.; and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ζ{sub H} throughout our sample, and find a lognormal distribution with mean log (ζ{sub H}) = –15.75 (ζ{sub H} = 1.78 × 10{sup –16} s{sup –1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.

  2. Determination of electron production rates caused by cosmic ray particles in ionospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Buchvarova, M. B.; Mateev, L.; Ruder, H.

    Cosmic rays (CR) create the lower parts of planetary ionospheres. The observed CR spectrum can be distributed into the following five intervals: I ( E = 3.10 6 — 10 11 GeV/n), II ( E = 3.10 2 — 3.10 6 GeV/n), III ( E = 30 MeV/n — 3.10 2GeV/n), IV ( E = 1 — 30 MeV/n) and V ( E = 10 KeV/n — 1 MeV/n), where E is the kinetic energy of the particles (Dorman, 1977; Velinov, 2000). Some methods exist for calculating ionization by relativistic particles in CR intervals I, II and III. For the high latitude and polar ionosphere, however, intervals III, IV and V are also significant since they contain solar cosmic ray and anomalous cosmic ray components. Formulas for the electron production rate q (cm -3s -1) at height h in the planetary ionosphere as a result of penetration of energetic particles from intervals III, IV and V are deduced in this paper. For this purpose the law of particle energy transformation by penetration through the ionosphere — atmosphere system is obtained. A model for the calculation of the cosmic ray spectrum on the basis of satellite measurements is created. This computed analytical model gives a practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.

  3. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. IV. THE EFFECT OF COSMIC RAYS

    SciTech Connect

    Rimmer, P. B.; Helling, Ch.

    2013-09-10

    Cosmic rays provide an important source for free electrons in Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 10{sup 6} eV cosmic ray transport model for particle energies of 10{sup 9} eV cosmic ray enhancement of free electrons in substellar atmospheres of free-floating objects. The cosmic ray calculations are applied to DRIFT-PHOENIX model atmospheres of an example brown dwarf with effective temperature T{sub eff} = 1500 K, and two example giant gas planets (T{sub eff} = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure p{sub gas} < 10{sup -2} bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10{sup -4}-10{sup -2} bar, depending on the effective temperature. For the model atmosphere of the example giant gas planet considered here (T{sub eff} = 1000 K), cosmic rays bring the degree of ionization to f{sub e} {approx}> 10{sup -8} when p{sub gas} < 10{sup -8} bar, suggesting that this part of the atmosphere may behave as a weakly ionized plasma. Although cosmic rays enhance the degree of ionization by over three orders of magnitude in the upper atmosphere, the effect is not likely to be significant enough for sustained coupling of the magnetic field to the gas.

  4. CMOS RAM cosmic-ray-induced-error-rate analysis

    NASA Technical Reports Server (NTRS)

    Pickel, J. C.; Blandford, J. T., Jr.

    1981-01-01

    A significant number of spacecraft operational anomalies are believed to be associated with cosmic-ray-induced soft errors in the LSI memories. Test programs using a cyclotron to simulate cosmic rays have established conclusively that many common commercial memory types are vulnerable to heavy-ion upset. A description is given of the methodology and the results of a detailed analysis for predicting the bit-error rate in an assumed space environment for CMOS memory devices. Results are presented for three types of commercially available CMOS 1,024-bit RAMs. It was found that the HM6508 is susceptible to single-ion induced latchup from argon and krypton ions. The HS6508 and HS6508RH and the CDP1821 apparently are not susceptible to single-ion induced latchup.

  5. Atmospheric ionization and cosmic rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    de Angelis, Alessandro

    2014-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterized by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  6. Polarization correction for ionization loss in a galactic cosmic ray transport code (HZETRN)

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Farhat, Hamidullah; Badavi, Francis F.; Wilson, John W.

    1993-01-01

    An approximate polarization correction for ionization loss suggested by Sternheimer has been implemented in the galactic cosmic ray transport code (HZETRN) developed at the Langley Research Center. Sample calculations made for the aluminum shield and liquid hydrogen shield show no more than a plus or minus 2 percent change in the linear energy transfer (LET) distribution for flux compared with those without polarization correction. This very small change is expected because the effect of polarization correction on the reduction in stopping power of ions with energies above 2 GeV/amu is suppressed by the decrease in galactic cosmic ray ion flux at such high energies.

  7. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    SciTech Connect

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C. E-mail: melott@ku.edu

    2010-05-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV. An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV–1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  8. Damping of Magnetohydrodynamic Turbulence in Partially Ionized Plasma: Implications for Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Yan, Huirong; Lazarian, A.

    2016-08-01

    We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  9. THE CHEMISTRY OF INTERSTELLAR OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS

    SciTech Connect

    Hollenbach, David; Kaufman, M. J.; Neufeld, D.; Wolfire, M.; Goicoechea, J. R.

    2012-08-01

    We model the production of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} in interstellar clouds, using a steady-state photodissociation region code that treats the freezeout of gas species, grain surface chemistry, and desorption of ices from grains. The code includes polycyclic aromatic hydrocarbons (PAHs), which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A{sub V} {approx}< 1 and one at A{sub V} {approx} 3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far-ultraviolet flux on the cloud ({chi} {approx}< 1000; {chi} = 1 = local interstellar value), the columns of OH{sup +} and H{sub 2}O{sup +} scale roughly as the cosmic-ray primary ionization rate {zeta}{sub crp} divided by the hydrogen nucleus density n. The H{sub 3}O{sup +} column is dominated by the second peak, and we show that if PAHs are present, N(H{sub 3}O{sup +}) {approx}4 Multiplication-Sign 10{sup 13} cm{sup -2} independent of {zeta}{sub crp} or n. If there are no PAHs or very small grains at the second peak, N(H{sub 3}O{sup +}) can attain such columns only if low-ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH{sup +})/N(H) and N(OH{sup +})/N(H{sub 2}O{sup +}) can be used to estimate {zeta}{sub crp}/n, {chi}/n and A{sub V} in them. We compare our models to Herschel observations of these two ions, and estimate {zeta}{sub crp} {approx}4-6 Multiplication-Sign 10{sup -16}(n/100 cm{sup -3}) s{sup -1} and {chi}/n = 0.03 cm{sup 3} for diffuse foreground clouds toward W49N.

  10. The CNO Concentration in Cosmic Ray Spectrum as Measured From The Advanced Thin Ionization Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction "target".

  11. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  12. Ionization of galactic cosmic rays and high-energy particles in the ionosphere and atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vellinov, P. I.; Mateev, L. N.

    This paper presents a new model for the ionization of cosmic rays in the atmosphere of Mars, based on an engineering model for the Martian atmosphere developed by Moroz et al. (1988). Based on the theoretical model, a computer program was developed in TURBO-PASCAL. The q(h) profiles (where q is the rate of electron production at a height h) at the minimum and the maximum of solar activity calculated for summer in the northern Martian atmosphere, and for winter in the southern hemisphere are presented.

  13. Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    DYASTIMA is an application, based on Geant4, which simulates the cascades of particles that are generated due to the interactions of cosmic ray particles with the atmospheres of the planets. The first version of DYASTIMA has been successfully applied to the Earth's atmosphere, providing results that are in accordance with the publications of other models. Since then, important improvements and extensions have been made to this application, including a graphical user interface environment that allows the more effective management of the configuration parameters. Also, the actual modeling of the atmosphere has been changed allowing the definition of more complex cases and at the same time providing, in a more efficient way (with respect to the program's previous version) enhanced outputs. In this work, we combine the new version of DYASTIMA with the NMBANGLE PPOLA model, that estimates the spectrum of SEPs during relativistic proton events using ground level neutron monitor data from the worldwide network. Such a joint model has as a primary scope the simulation of a SEP event and of its secondary products at different altitudes in the Earth's atmosphere, providing at the same time an estimation of the respective ionization rates and of their spatial and temporal dependence. We apply this joint model to GLE 71, on 17 May 2012, and we discuss the results.

  14. Comparative Analysis of Ionization Effect during Major Gles Due to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    Several major ground level enhancements (GLEs) occurred during previous solar cycle 23. During the solar cycle 23, sixteen GLE events were observed with intensities ranging ~ 3 - 269% at the sea level. The first event occurred on 6 November 1997 (GLE 55) and the last event occurred on 13 December 2006 (GLE 70). Here we focus on major GLEs, namely on their ionization effect due to cosmic rays of galactic and solar origin and provide a comparative analysis. The solar energetic particles protons of MeV and greater energies cause an excess of ionization in the atmosphere. The ionization effect in the Earth atmosphere is obtained for various latitudes and altitudes in the atmosphere using solar proton energy spectra derived from ground based measurements with neutron monitors. The ion production is obtained using a numerical model for cosmic ray induced ionization, based on Monte Carlo simulations of atmospheric cascade ion the atmosphere of the Earth. Her we consider the GLE 70 on December of 13, 2006, which is among is among the strongest recorded events during solar cycle 23, even it occurred at quit solar activity conditions. We compare the ionization effect this event with Bastille day event (GLE 59). A quantitative comparison with the sequence of Halloween events (GLE 65-67) and the major event of 20 January 2005 (GLE 69) is carried out. We briefly discussed the results.

  15. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. III. EFFICIENT COSMIC RAY ACCELERATION

    SciTech Connect

    Morlino, G.; Blasi, P.; Bandiera, R.; Amato, E.; Caprioli, D.

    2013-05-10

    In this paper, we present the first formulation of the theory of nonlinear particle acceleration in collisionless shocks in the presence of neutral hydrogen in the acceleration region. The dynamical reaction of the accelerated particles, the magnetic field amplification, and the magnetic dynamical effects on the shock are also included. The main new aspect of this study, however, consists of accounting for charge exchange and the ionization of a neutral hydrogen, which profoundly change the structure of the shock, as discussed in our previous work. This important dynamical effect of neutrals is mainly associated with the so-called neutral return flux, namely the return of hot neutrals from the downstream region to upstream, where they deposit energy and momentum through charge exchange and ionization. We also present the self-consistent calculation of Balmer line emission from the shock region and discuss how to use measurements of the anomalous width of the different components of the Balmer line to infer cosmic ray acceleration efficiency in supernova remnants showing Balmer emission: the broad Balmer line, which is due to charge exchange of hydrogen atoms with hot ions downstream of the shock, is shown to become narrower as a result of the energy drainage into cosmic rays, while the narrow Balmer line, due to charge exchange in the cosmic-ray-induced precursor, is shown to become broader. In addition to these two well-known components, the neutral return flux leads to the formation of a third component with an intermediate width: this too contains information on ongoing processes at the shock.

  16. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  17. Cosmic ray studies with a gas Cerenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Simon, M.; Spiegelhauer, H.; Yodh, G. B.

    1980-01-01

    The results from a balloon-borne gas Cerenkov counter (threshold 16.5 GeV/nuc) and an ionization spectrometer are presented. The gas Cerenkov counter provides an absolute energy calibration for the response of the calorimeter for the Z range of 5-26 nuclei of cosmic rays. The contribution of scintillation to the gas Cerenkov pulse height has been obtained by independently selecting particles below the gas Cerenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi-squared between a Monte Carlo simulated data and flight data. Best fit power laws were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E exp-2.7, are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer.

  18. Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Ormes, J. S.; Schmidt, W. K. H.

    1976-01-01

    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat.

  19. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry.

  20. A comparison between the processing of Titan aerosols analogs by ionizing photons and energetic cosmic rays.

    NASA Astrophysics Data System (ADS)

    De Araujo Vasconcelos, Fredson; Pilling, Sergio; Boduch, Philippe; Alexandre Souza Bergantini, M.; Ding, M. Jingjie J.; Rothard, Hermann; Robson Rocha, Will

    Titan, the largest satellite of Saturn, has an atmosphere mainly made of N_{2} and CH_{4} and includes traces of several simple organic compounds. This atmosphere also partly consists of haze and erosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over Titańs surface. In this work, we investigate the possible effects produced by ionizing photons (vacuum ultraviolet and soft X-rays) and cosmic ray analogs (15.7 MeV (16) O (+5) ) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. For photons, the experiments have been performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. For ions, the investigation was performed at the Grand Accelerateur National d’Ions Lourds (GANIL) Caen, France. In-situ sample analyses were performed by a Fourier transform infrared spectrometer at different fluences. During the sample processing, the infrared spectra have presented several new organic molecules, including nitriles, HCN and aromatic CN compounds. The processing of the sample by fast ions has enhanced the formation of daughter species in the Titan aerosol sample when compared with the products from the employing VUV and soft X-rays photons. The destruction cross section of the parent species was determined, as well as, the formation cross section for some selected daughter species. Molecular Half-lives were extrapolated to the Titańs environment. This investigation confirms previous results which showed that the organic chemistry on frozen moons inside Solar system can be very complex and extremely rich in prebiotic compounds. Authors would like to tanks the agencies FAPESP (JP-2009/18304-0), CAPES-Cofecub (569/2007), INCT-A and CNPq for the financial support.

  1. An enhanced cosmic-ray flux towards zeta Persei inferred from a laboratory study of the H3+-e- recombination rate.

    PubMed

    McCall, B J; Huneycutt, A J; Saykally, R J; Geballe, T R; Djuric, N; Dunn, G H; Semaniak, J; Novotny, O; Al-Khalili, A; Ehlerding, A; Hellberg, F; Kalhori, S; Neau, A; Thomas, R; Osterdahl, F; Larsson, M

    2003-04-01

    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many molecules. In dense interstellar clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density and temperature. But observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. Models of diffuse clouds have, however, been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons (e-), the electron fraction, and the cosmic-ray ionization rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards Persei) where the electron fraction is already known. From these, we find that the cosmic-ray ionization rate along this line of sight is 40 times faster than previously assumed. If such a high cosmic-ray flux is ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.

  2. Cosmic ray production rates of Be-10 and Al-26 in quartz from glacially polished rocks

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Kohl, C. P.; Winterer, E. L.; Klein, J.; Middleton, R.

    1989-01-01

    The concentrations of Be-10 and Al-26 in quartz crystals extracted from glacially polished granitic surfaces from the Sierra Nevada range are studied. These surfaces are identified with the glacial advance during the Tioga period about 11,000 yr ago. The measurements yield the most accurate estimates to date for the absolute production rates of three nuclides in SiO2 due to cosmic ray nucleons and muons for geomagnetic latitudes 43.8-44.6 N and altitudes 2.1-3.6 km.

  3. The stopping rate of negative cosmic-ray muons near sea level

    NASA Technical Reports Server (NTRS)

    Spannagel, G.; Fireman, E. L.

    1971-01-01

    A production rate of 0.065 + or - 0.003 Ar-37 atom/kg min of K-39 at 2-mwe depth below sea level was measured by sweeping argon from potassium solutions. This rate is unaffected by surrounding the solution by paraffin and is attributed to negative muon captures and the electromagnetic interaction of fast muons, and not to nucleonic cosmic ray component. The Ar-37 yield from K-39 by the stopping of negative muons in a muon beam of a synchrocyclotron was measured to be 8.5 + or - 1.7%. The stopping rate of negative cosmic ray muons at 2-mwe depth below sea level from these measurements and an estimated 17% electromagnetic production is 0.63 + or - 0.13 muon(-)/kg min. Previous measurements on the muon stopping rate vary by a factor of 5. Our value is slightly higher but is consistent with two previous high values. The sensitivity of the Ar-37 radiochemical method for the detection of muons is considerably higher than that of the previous radiochemical methods and could be used to measure the negative muon capture rates at greater depths.

  4. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  5. Accurate analytical modelling of cosmic ray induced failure rates of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Bauer, Friedhelm D.

    2009-06-01

    A new, simple and efficient approach is presented to conduct estimations of the cosmic ray induced failure rate for high voltage silicon power devices early in the design phase. This allows combining common design issues such as device losses and safe operating area with the constraints imposed by the reliability to result in a better and overall more efficient design methodology. Starting from an experimental and theoretical background brought forth a few yeas ago [Kabza H et al. Cosmic radiation as a cause for power device failure and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 9-12, Zeller HR. Cosmic ray induced breakdown in high voltage semiconductor devices, microscopic model and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 339-40, and Matsuda H et al. Analysis of GTO failure mode during d.c. blocking. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 221-5], an exact solution of the failure rate integral is derived and presented in a form which lends itself to be combined with the results available from commercial semiconductor simulation tools. Hence, failure rate integrals can be obtained with relative ease for realistic two- and even three-dimensional semiconductor geometries. Two case studies relating to IGBT cell design and planar junction termination layout demonstrate the purpose of the method.

  6. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  7. OT2_alopezse_3: Mapping the cosmic ray ionisation rate across the Northern end of the Orion A iant molecular cloud

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.

    2011-09-01

    Cosmic rays (CR) are ubiquitous in the Galaxy and have the important role of ionizing the dens gas of the ISM. New Herschel observations have shown the huge diagnostic power of the OH+ fundamental transition to measure the CR ionization rate in diffuse clouds. Based on previous "serendipity" observations toward OMC2-FIR4 within the KP CHESS, we discovered a tenuous foreground cloud absorbing the fundamental OH+ line. Similarly, Gupta et al. (2010) found an OH+ absorption component at a similar velocity towards Orion KL and estimated a large CR ionization rate more than 10 times larger than the average value observed in diffuse clouds . We propose here to roughly map the CR ionization rate in the direction of the OMC2 and OMC3 complex to understand its extent, nature, and, finally, the source of ionization.

  8. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  9. Cosmic ray ionization and dose at Mars: Benchmarking deterministic and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.

    2014-12-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the GEANT4 application, Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, which allows for a better understanding of the spectral form in the comparison. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  10. Heart rate changes in relation to cosmic ray intensity variability: A wide investigation in different latitudes and longitudes

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, Helen; Safaraly-Oghlu Babayev, Elchin; -Christina Papailiou, Maria; Dimitrova, Svetla; Kudela, Karel; Stetiarova, Jana; Giannaropoulou, Elisavet; Loucas, Panayiotis

    The increased number of recent studies over the last years, regarding the possible effect of geomagnetic disturbances and cosmic ray intensity variations may have on human physiological parameters (such as heart rate, arterial diastolic and systolic blood pressure, etc) suggests that biological objects and, particularly, human health are potentially affected by solar activity and related geophysical changes. Different scientific groups from Azerbaijan (Baku), Bulgaria (Sofia), Greece (Athens) and Slovakia (Kosice) have conducted relevant researches, separately or in cooperation with each another, using medical data from 1994 to 2008. The results of collaborative study of human heart rate changes in relation to cosmic ray intensity variations are presented in this paper. Heart rate data were digitally registered: 1) for seven functionally healthy persons on working days (including Saturdays) during experiments at the Laboratory of Heliobiology located at the Medical Centre INAM, Baku, for the time period from July 15, 2006 to March 3, 2008; 2) for 86 healthy volunteers of the Solar -Terrestrial Laboratory of the Bulgarian Academy of Sciences, Sofia on every working day during the autumn and spring in years of maximal solar activity, from October 1, 2001 to November 9, 2001 and from April 8, 2002 to May 28, 2002; 3) for 225 persons with no cardiac symptoms or hospital admission, of the cardiological clinic of the KAT Hospital in Athens, for the time period from 2002 to 2006; and 4) for 4018 Slovak aviators during the time period from January 1, 1994 to December 31, 2002. It should be noted that considered period covers different phases of solar activity cycles and is characterized by such time intervals of strong solar and geomagnetic activity as October -November 2003, November 2004, January and July 2005 and December 2006. The statistical methods were applied to establish a statistical significance of the effect of cosmic ray intensity variations on heart rate

  11. The physical theory of one dimensional galactic cosmic-ray propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Obrien, K.

    1972-01-01

    An analytical theory of atmospheric cosmic-ray propagation is developed based on a phenomenological model of hadron-nucleus collisions. This model correctly predicts the sea level cosmic-ray nucleon, pion and muon spectra, the cosmic-ray ionization profile in the atmosphere, and neutron flux and density profiles in the atmosphere. It is concluded that the large scale properties of atmospheric cosmic-rays can be accurately predicted on the basis of a nucleonic cascade with all secondaries mediated by pion production. Implications for energy independence of cross sections, the recent 70 GeV results from Serpukhov, and nucleonic relaxation rates in the atmosphere are discussed.

  12. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  13. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  14. Galactic cosmic rays and N2 dissociation on Titan

    NASA Technical Reports Server (NTRS)

    Capone, L. A.; Dubach, J.; Prasad, S. S.; Whitten, R. C.

    1983-01-01

    The electromagnetic and particle cascade resulting from the absorption of galactic cosmic rays in the atmosphere of Titan is shown to be an important mechanism for driving the photochemistry at pressures of 1 to 50 mbar in the atmosphere. In particular, the cosmic ray cascade dissociates N2, a process necessary for the synthesis of nitrogen organics such as HCN. The important interactions of the cosmic ray cascade with the atmosphere are discussed. The N2 excitation and dissociation rates and the ionization rates of the principal atmospheric consituents are computed for a Titan model atmosphere that is consistent with Voyager 1 observations. It is suggested that HCN may be formed efficiently in the lower atmosphere through the photodissociation of methylamine. It is also argued that models of nitrogen and hydrocarbon photochemistry in the lower atmosphere of Titan should include the absorption of galactic cosmic rays as an important energy source.

  15. Cosmic ray synthesis of organic molecules in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Capone, L. A.; Dubach, J.; Whitten, R. C.; Prasad, S. S.; Santhanam, K.

    1980-01-01

    The possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2-CH4-H2 Titan model atmosphere has been studied. The cosmic-ray-induced ionization results in peak electron densities of 2000/cu cm, with NH(+), C3H9(+), and C4H9(+) being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.

  16. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  17. Model Simulations of Medium Time Scale Ionization Due to Cosmic Rays and Solar Energetic Particles (GLE59 and GLE in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    The galactic cosmic rays (GCR) and solar energetic particles (SEP) could cause an excess of ionization in the atmosphere, specifically in polar and sub-polar regions. This effect is observed mainly in the middle atmosphere. The ionization effect could be strong at short time scales during major ground level enhancements (GLE)s of GCR. However, for the aims of recent atmospheric physics and atmospheric chemistry studies, namely the influence on the minor constituents and aerosols, it is important to derive the medium time scale ionization effect at various altitudes above the sea level. GLE 70 on December of 13, 2006 is the third strongest event of the previous solar cycle 23. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of a full Monte Carlo simulation of CR induced atmospheric cascade at several altitudes, namely 35 km, 25 km, 15 km and 8 km above the sea level. Here we adopt previously reported ion production rate profiles obtained with Monte Carlo simulation of atmospheric cascade performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators. A realistic winter atmospheric model is assumed. The 24-h ionization effect is computed for the sub-polar and polar regions, where it is expected to be the maximal effect of the planetary distribution on the Earth. Thus studied precipitation of energetic particles (GCR and SEP) is important and should be included in chemistry-climate models. Similar computations are performed for GLE 59 the so-called Bstille day event on 14 July 2000.

  18. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  19. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude.

    PubMed

    Bütikofer, R; Flückiger, E O; Desorgher, L; Moser, M R

    2008-03-01

    In January 2005 toward the end of solar activity cycle 23 the Sun was very active. Between 15 and 20 January 2005, the solar active region NOAA AR 10720 produced five powerful solar flares. In association with this major solar activity several pronounced variations in the ground-level cosmic ray intensity were observed. The fifth of these flares (X7.1) produced energetic solar cosmic rays that caused a giant increase in the count rates of the ground-based cosmic ray detectors (neutron monitors). At southern polar neutron monitor stations the increase of the count rate reached several thousand percent. From the recordings of the worldwide network of neutron monitors, we determined the characteristics of the solar particle flux near Earth. In the initial phase of the event, the solar cosmic ray flux near Earth was extremely anisotropic. The energy spectrum of the solar cosmic rays was fairly soft during the main and the decay phase. We investigated also the flux of different secondary particle species in the atmosphere and the radiation dosage at flight altitude. Our analysis shows a maximum increment of the effective dose rate due to solar cosmic rays in the south polar region around 70 degrees S and 130 degrees E at flight altitude of almost three orders of magnitude.

  20. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  1. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  2. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  3. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    NASA Technical Reports Server (NTRS)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  4. Relative contributions of galactic cosmic rays and lunar proton "albedo" to dose and dose rates near the Moon

    NASA Astrophysics Data System (ADS)

    Spence, Harlan E.; Golightly, Michael J.; Joyce, Colin J.; Looper, Mark D.; Schwadron, Nathan A.; Smith, Sonya S.; Townsend, Lawrence W.; Wilson, Jody; Zeitlin, Cary

    2013-11-01

    use validated radiation transport models of the Cosmic Ray Telescope for the Effects of Radiation instrument and its response to both primary galactic cosmic rays (GCR) and secondary radiation, including lunar protons released through nuclear evaporation, to estimate their relative contributions to total dose rate in silicon (372 μGy/d) and dose equivalent rate at the skin (2.88 mSv/d). Near the Moon, we show that GCR accounts for ~91.4% of the total absorbed dose, with GCR protons accounting for ~42.8%, GCR alpha particles for ~18.5%, and GCR heavy ions for ~30.1%. The remaining ~8.6% of the dose at Lunar Reconnaissance Orbiter altitudes (~50 km) arises from secondary lunar species, primarily "albedo" protons (3.1%) and electrons (2.2%). Other lunar nuclear evaporation species contributing to the dose rate are positrons (1.5%), gammas (1.1%), and neutrons (0.7%). Relative contributions of these same species to the total dose equivalent rate in skin, a quantity of more direct biological relevance, favor those with comparatively high quality factors. Consequently, the primary GCR heavy ion components dominate the estimated effective skin dose. Finally, we note that when considering the lunar radiation environment, although the Moon blocks approximately half of the sky, thus essentially halving the absorbed dose rate near the Moon relative to deep space, the secondary radiation created by the presence of the Moon adds back a small, but measurable, absorbed dose (~8%) that can and should be now accounted for quantitatively in radiation risk assessments at the Moon and other similar exploration targets.

  5. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  6. A ready-to-use galactic cosmic ray model

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Mrigakshi, Alankrita I.; Reitz, Günther

    2013-02-01

    Galactic cosmic ray nuclei close to Earth are of great importance in different fields of research. By studying their intensity in near-Earth interplanetary space and modeling their modulation in the heliosphere it is possible to gain knowledge both about the structure of the heliosphere and the transport processes within. Additionally, secondary phenomena like cloud formation, ionization processes in the atmosphere, cosmogenic nuclide production and radiation exposure in space and at aviation altitudes are related to the intensity of the galactic cosmic rays and their modulation in the heliosphere. In order to improve the knowledge about these processes and underlying mechanisms it is often beneficial to perform numerical simulations. A necessary prerequisite for such simulations is a model describing the galactic cosmic ray intensities for all particle types and energies of importance. Several of these models exist in the literature. However, many of these do not provide essential characteristics like the description of heavier nuclei or it is difficult to associate them to recent or actual solar modulation conditions. In this work a model is presented which describes the galactic cosmic ray spectra of nuclei based on a single parameter. The values of this parameter for different solar modulation conditions are derived from measurements of the Advanced Composition Explorer (ACE) spacecraft and Oulu neutron monitor count rates. Comparing the galactic cosmic ray spectra predicted by the model to a comprehensive set of experimental data from literature shows very good agreement.

  7. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    SciTech Connect

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  8. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  9. Cosmic Rays, UV Photons, and Haze Formation in the Upper Atmospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul B.; Walsh, Catherine; Helling, Christiane

    2014-01-01

    Cosmic ray ionization has been found to be a dominant mechanism for the formation of ions in dense interstellar environments. Cosmic rays are further known to initiate the highly efficient ion-neutral chemistry within star forming regions. In this talk we explore the effect of both cosmic rays and UV photons on a model hot Jupiter atmosphere using a non-equlibrium chemical network that combines reactions from the UMIST Database for Astrochemistry, the KIDA database for interstellar and protoplanetary environments and three-body and combustion reactions from the NIST database and from various irradiated gas planet networks. The physical parameters for our model atmosphere are based on HD 189733 b (Effective Temperature of 1000 K, log g = 3.3, solar metallicity, at a distance 0.03 AU from a K dwarf). The active UV photochemistry high in our model hot Jupiter atmosphere tends to destroy these hydrocarbons, but on a time-scale sufficiently slow that PAH formation could already have taken place. In most cases, carbon-bearing species formed by cosmic rays are destroyed by UV photons (e.g. C2H2, C2H4, HC3N). Conversely, carbon-bearing species enhanced by an active photochemistry are depleted when cosmic ray ionization is significant (e.g. CN, HCN and CH4). Ammonia is an interesting exception to this trend, enhanced both by an active photochemistry and a high cosmic ray ionization rate.

  10. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  11. Low cloud properties influenced by cosmic rays

    PubMed

    Marsh; Svensmark

    2000-12-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.

  12. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  13. Influence of the superposition approximation on calculated effective dose rates from galactic cosmic rays at aerospace-related altitudes

    NASA Astrophysics Data System (ADS)

    Copeland, Kyle

    2015-07-01

    The superposition approximation was commonly employed in atmospheric nuclear transport modeling until recent years and is incorporated into flight dose calculation codes such as CARI-6 and EPCARD. The useful altitude range for this approximation is investigated using Monte Carlo transport techniques. CARI-7A simulates atmospheric radiation transport of elements H-Fe using a database of precalculated galactic cosmic radiation showers calculated with MCNPX 2.7.0 and is employed here to investigate the influence of the superposition approximation on effective dose rates, relative to full nuclear transport of galactic cosmic ray primary ions. Superposition is found to produce results less than 10% different from nuclear transport at current commercial and business aviation altitudes while underestimating dose rates at higher altitudes. The underestimate sometimes exceeds 20% at approximately 23 km and exceeds 40% at 50 km. Thus, programs employing this approximation should not be used to estimate doses or dose rates for high-altitude portions of the commercial space and near-space manned flights that are expected to begin soon.

  14. Cosmic ray intensity variations in connection with the level of precipitation and ground temperature variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.

    If cosmic ray ionization of lower atmosphere influenced on cloudiness covering, we will expect also some correllation of cosmic ray intensity with the level of precipitation and ground temperature variations: with increasing of cosmic ray intensity will be increase cloudiness covering, so we will expect increasing of the level of precipitation and decreasing of the ground temperature. We compare observed during many years on many meteorological stations in former USSR and later in Russia, as well as in Israel and other countries available data on time variations of the level of precipitation and ground temperature variations with cosmic ray data on cosmic ray variations from many stations of worldwide network and determined the regression and correlation coefficients. We discuss the obtained results in the frame of the problem of possible cosmic ray influence on processes in the atmosphere, on weather and climate change experiments effects of atmospheric electric field in cosmic rays. On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cosmic ray cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m ≥ 1, m ≥ 2, m ≥ 3, m ≥ 4, m ≥ 5, m ≥ 6, m ≥ 7, and m ≥ 8, as well as for m = 1, m = 2, m = 3, m = 4, m = 5, m = 6, and m = 7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM in Rome and other cosmic ray stations. According to the theoretical calculations of Dorman and Dorman (2004) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman and Dorman (2004), the biggest electric field effect is expected in the multiplicity m = 1, much smaller in m = 2 and

  15. Possible influence of cosmic rays on climate through thunderstorm clouds, 2. Observations in different cosmic ray components

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'eman, Yu.; Parisi, M.; Pustil'nik, L. A.; Signoretti, F.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    We compare observed in many experiments effects of atmospheric electric field in cosmic rays. On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cosmic ray cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m ≥ 1, m ≥ 2, m ≥ 3, m ≥ 4, m ≥ 5, m ≥ 6, m ≥ 7, and m ≥ 8, as well as for m = 1, m = 2, m = 3, m = 4, m = 5, m = 6, and m = 7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM in Rome and other cosmic ray stations. According to the theoretical calculations of Dorman and Dorman (2004) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman and Dorman (2004), the biggest electric field effect is expected in the multiplicity m = 1, much smaller in m = 2 and negligible effect is expected in higher multiplicities. We control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. We consider also the possible influence of CR air ionization (especially by secondary energetic electrons) on thunderstorms and lightnings, and through this -- on climate. References: Dorman L.I. and I.V. Dorman ``Possible influence of cosmic rays on climate through thunderstorm clouds, 1. Theory on cosmic ray connection with atmospheric electric field phenomenon''. Report on the Session D2.1/C2.2/E3.1 of COSPAR-2004.

  16. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  17. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    young scientist from the Graz University, started to investigate how γ-radiations change their intensity with the distance from their sources, i.e. from the ground. When he performed his historical experiments on balloons in 1911-1912, it was found that at the beginning (up to approximately one km) ionization did not change, but with increase of the altitude for up to 4 - 5 km, the ionization rate escalates several times. Victor Hess drew a conclusion that some new unknown source of ionization of extra terrestrial origin exists. He named it 'high altitude radiation'. 5. Many scientists did not agree with this conclusion and tried to prove that the discovered new radiation has terrestrial origin (e.g., radium and other emanations from radioactive substances in the ground, particle acceleration up to high energies during thunderstorms, and so on). However, a lot of experiments showed that Victor Hess's findings are right: the discovered new radiation has extra terrestrial origin. 6. In 1926 the great American scientist Robert Millikan named them 'cosmic rays': cosmic as coming from space, and rays because it was generally wrongly accepted at those time that the new radiation mostly consisted of γ-rays. Robert Millikan believed that God exists and continues to work: in space God has creates He atoms from four atoms of H with the generation high energy gamma rays (in contradiction with physical laws, as this reaction can occur only at very high temperature and great density, e.g., as inside stars). 7. On this problem, interesting to many people, there was a famous public discussion between two Nobel laureates Arthur Compton and Robert Millikan, widely reported in newspapers. Only after a lot of latitude surveys in the 1930s, organized mostly by Compton and Millikan, it became clear that 'cosmic rays' are mostly not γ-rays, but rather charged particles (based on Störmer's theory about behavior of charged energetic particles in the geomagnetic field, developed in 1910

  18. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  19. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  20. Development of the cosmic ray techniques

    SciTech Connect

    Rossi, B.

    1982-12-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray telescope. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers. 34 references.

  1. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  2. Production of Be-10 and Al-26 by cosmic rays in terrestrial quartz in situ and implications for erosion rates

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Lal, D.; Klein, J.; Middleton, R.

    1986-01-01

    Results of determinations of Be-10 and Al-26 produced by cosmic rays in situ in several terrestrial rock samples exposed at altitudes of 1-4 km are presented. The theoretical saturation values for these isotopes produced in quartz at the earth's surface are shown and discussed, and the expected isotope concentrations are considered in terms of a simple exosure history model which occurs without change in the altitude of the sample. The advantages of using Be-10 and Al-26 in this application, as opposed to C1-36, are discussed. The results demonstrate the feasibility of quantitatively measuring Be-10 and Al-26 produced in situ by cosmic rays in quartz and the possible applications of these isotopes as a pair for studying continental weathering/erosion processes.

  3. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  4. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  5. Effects of Cosmic Rays on Atmospheric Chlorofluorocarbon Dissociation and Ozone Depletion

    SciTech Connect

    Lu, Q.-B.; Sanche, L.

    2001-08-13

    Data from satellite, balloon, and ground-station measurements show that ozone loss is strongly correlated with cosmic-ray ionization-rate variations with altitude, latitude, and time. Moreover, our laboratory data indicate that the dissociation induced by cosmic rays for CF{sub 2}Cl {sub 2} and CFCl{sub 3} on ice surfaces in the polar stratosphere at an altitude of {approx}15 km is quite efficient, with estimated rates of 4.3 x 10{sup -5} and 3.6 x 10{sup -4} s{sup -1}, respectively. These findings suggest that dissociation of chlorofluorocarbons by capture of electrons produced by cosmic rays and localized in polar stratospheric cloud ice may play a significant role in causing the ozone hole.

  6. Effects of cosmic rays on atmospheric chlorofluorocarbon dissociation and ozone depletion.

    PubMed

    Lu, Q B; Sanche, L

    2001-08-13

    Data from satellite, balloon, and ground-station measurements show that ozone loss is strongly correlated with cosmic-ray ionization-rate variations with altitude, latitude, and time. Moreover, our laboratory data indicate that the dissociation induced by cosmic rays for CF(2)Cl(2) and CFCl(3) on ice surfaces in the polar stratosphere at an altitude of approximately 15 km is quite efficient, with estimated rates of 4.3 x 10(-5) and 3.6 x 10(-4) s(-1), respectively. These findings suggest that dissociation of chlorofluorocarbons by capture of electrons produced by cosmic rays and localized in polar stratospheric cloud ice may play a significant role in causing the ozone hole.

  7. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  8. Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.

    2010-01-01

    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.

  9. Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1988-01-01

    Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.

  10. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  11. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    young scientist from the Graz University, started to investigate how γ-radiations change their intensity with the distance from their sources, i.e. from the ground. When he performed his historical experiments on balloons in 1911-1912, it was found that at the beginning (up to approximately one km) ionization did not change, but with increase of the altitude for up to 4 - 5 km, the ionization rate escalates several times. Victor Hess drew a conclusion that some new unknown source of ionization of extra terrestrial origin exists. He named it 'high altitude radiation'. 5. Many scientists did not agree with this conclusion and tried to prove that the discovered new radiation has terrestrial origin (e.g., radium and other emanations from radioactive substances in the ground, particle acceleration up to high energies during thunderstorms, and so on). However, a lot of experiments showed that Victor Hess's findings are right: the discovered new radiation has extra terrestrial origin. 6. In 1926 the great American scientist Robert Millikan named them 'cosmic rays': cosmic as coming from space, and rays because it was generally wrongly accepted at those time that the new radiation mostly consisted of γ-rays. Robert Millikan believed that God exists and continues to work: in space God has creates He atoms from four atoms of H with the generation high energy gamma rays (in contradiction with physical laws, as this reaction can occur only at very high temperature and great density, e.g., as inside stars). 7. On this problem, interesting to many people, there was a famous public discussion between two Nobel laureates Arthur Compton and Robert Millikan, widely reported in newspapers. Only after a lot of latitude surveys in the 1930s, organized mostly by Compton and Millikan, it became clear that 'cosmic rays' are mostly not γ-rays, but rather charged particles (based on Störmer's theory about behavior of charged energetic particles in the geomagnetic field, developed in 1910

  12. Interactions of cosmic rays with the venusian atmosphere during different periods of solar activity

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Paschalis, Pavlos; Grassi, Davide; Mavromichalaki, Helen; Andriopoulou, Maria

    2016-04-01

    Interactions of the galactic and solar cosmic ray particles with the atmosphere of Venus result in extensive nuclear and electromagnetic cascades that can affect cloud formation and chemistry in deep atmospheric layers. Variability in the energy spectrum of the cosmic ray particles and in their integrated flux and direction would have possible effects in the local neutral densities, particle ionization and escape. It is therefore of significant importance to understand and quantify such space weather phenomena at Venus, in the context of future mission preparation and also data interpretations of previous missions (e.g. Venus Express). In this paper, we perform a calculation of the atmosphere ionization and ion production rates caused by cosmic rays, as a function of depth in the Venusian atmosphere. We examine the interactions of the planet's atmosphere with galactic and solar cosmic rays (during solar energetic particle events). The latter scenario was studied for two paradigm cases: the very energetic solar event in October 1989 and the recent, less energetic, solar event in May 2012, assuming that the directional and energy properties of the solar particles allowed their arrival and penetration to the Venusian atmosphere. For the event in 2012, we considered the solar particle properties (integrated flux and spectrum) obtained by the NMBANGLE PPOLA model (Plainaki et al., 2010; 2014) applied previously for the Earth case, scaled to the distance of Venus (i.e. 0.72 AU from the Sun). In order to simulate the actual cascade in the atmosphere initiated by the incoming cosmic ray fluxes we use a Monte Carlo modeling technique based on the Geant4 software, previously applied for the Earth case (Paschalis et al., 2014), namely DYASTIMA. Our predictions are afterwards compared to other estimations derived from previous studies. The current method is furthermore proposed as a paradigm for studying cosmic ray-atmosphere interactions in the terrestrial planets possessing

  13. Acoustic instability driven by cosmic-ray streaming

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-08-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) Pc. At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta PC/PC approximately (kL) -1 much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are

  14. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  15. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-11-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determines the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here, we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  16. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  17. Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles

    NASA Astrophysics Data System (ADS)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2015-04-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  18. Ionization dynamics of small water clusters: Proton transfer rate

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Takada, Tomoya

    2016-08-01

    The surfaces of icy planets and comets are composed of frozen water (H2O), carbon dioxide (CO2), and methane (CH4). These surfaces are irradiated by solar wind and cosmic rays from the interstellar space and they cause ionization of surface molecules. In this report, the effects of ionization of cold water clusters have been investigated using a direct ab initio molecular dynamics (AIMD) method to elucidate the rate of proton transfer (PT) in cations of small water clusters (H2O)n (n = 2-7). After ionization of the water clusters, PT occurred in all the cluster cations, and dissociation of the OH radical occurred for n = 4-7. The time of PT decreased with increasing the cluster size at n = 2-5 and reached a limiting value at n = 6 and 7. The mechanism of the PT process in ionized water clusters was discussed based on the theoretical results.

  19. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Astrophysics Data System (ADS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-10-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  20. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  1. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2016-07-12

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  2. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  3. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  4. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  5. Cosmic-ray ionisation in collapsing clouds

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Hennebelle, P.; Galli, D.

    2013-12-01

    Context. Cosmic rays play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampered by the braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas. Aims: In this paper we examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can produce a significant reduction of the ionisation fraction. Methods: To check whether the cosmic-ray ionisation rate can fall below the critical value required to maintain good coupling, we first study the propagation of cosmic rays in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal components and the mass-to-flux ratio. We then follow the path of cosmic rays using realistic magnetic field configurations generated by numerical simulations of a rotating collapsing core with different initial conditions. Results: We find that an increment of the toroidal component of the magnetic field, or, in general, a more twisted configuration of the field lines, results in a decrease in the cosmic-ray flux. This is mainly due to the magnetic mirroring effect that is stronger where larger variations in the field direction are present. In particular, we find a decrease of the cosmic-ray ionisation rate below 10-18 s-1 in the central 300-400 AU, where density is higher than about 109 cm-3. This very low value of the ionisation rate is attained in the cases of intermediate and low magnetisation (mass-to-flux ratio λ = 5 and 17, respectively) and for toroidal fields larger than about 40% of the total field. Conclusions: Magnetic field effects can significantly reduce the ionisation fraction in collapsing clouds. We provide a handy fitting formula to compute approximately the attenuation of the cosmic-ray ionisation rate

  6. Cosmic-ray production rates of He-, Ne- and Ar-isotopes in H-chondrites based on 36Cl-36Ar-ages

    NASA Astrophysics Data System (ADS)

    Leya, I.; Graf, Th.; Nishiizumi, K.; Wieler, R.

    2001-07-01

    We present the concentrations and isotopic compositions of He, Ne, and Ar for non-magnetic fractions and bulk samples of 17 H-chondrites which were recently investigated for their 36Cl-36Ar cosmic-ray exposure ages (Graf et al., 2001). All selected meteorites are observed falls with cosmic-ray exposure ages close to the 7 Ma peak. The rare gas data are consistent with 10Be and 36Cl production rates in the metal phase. Remarkably, only one out of the 17 H-chondrites, Bath, shows clear indications for a complex exposure history. Based on rare gas concentrations and 36Cl-36Ar exposure ages, 21Ne production rates as a function of 22Ne/21Ne and a mean 38Ar production rate are determined. The results confirm model calculations which predict that the relationship between 21Ne production rates and 22Ne/21Ne is ambiguous for high shielding. Besides the mean 38Ar production rate we also give production rate ratios P(38Ar from Ca) / P(38Ar from Fe). They vary between 10 and 77, showing no significant correlation with 38Ar-concentrations or 22Ne/21Ne. By investigating the metal-separates, Graf et al. (2001) found significant 3He deficits for six out of the 17 meteorites. For the non-magnetic fractions and bulk samples investigated here the data points in a 3He/21Ne versus 22Ne/21Ne diagram plot in the area defined by most of the H-chondrites. This means that 3He deficits in the metal phase are much more pronounced than in silicate minerals and we will argue that 3H diffusive losses in meteorites should be the rule rather than the exception. The 21Ne exposure ages, calculated on the basis of modeled 21Ne production rates, confirm the assumption by Graf et al. (2001) that the H5-chondrites with low 3He/38Ar in the metal formed in a separate event than those with normal 3He/38Ar ratios. The data can best be interpreted by assuming that the prominent 7 Ma exposure age peak of the H-chondrites is due to at least two events about 7.0 and 7.6 Ma ago.

  7. Cosmic rays and the birth of particle physics

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael

    2013-02-01

    Twenty years after the discovery of cosmic rays, the methods of research and resulting discoveries were dramatically changed by the introduction of experimental methods that made visible the passage of individual particles. Between 1932 and 1955, tracks of cosmic rays were found in cloud chambers and special photographic emulsions. From measurements of the ionization produced along these tracks, the mass, charge and energy of a single relativistic particle could be determined. The dynamics of decays and collisions could be analyzed. Positrons and then electron-positron pairs were discovered, followed by muons and pions and then the inhabitants of the 'particle zoo'. Fundamental concepts were challenged. From the mid- 1950s, larger accelerators began to produce many of the 'new' particles, displacing cosmic rays from their prime role in particle studies. But without the initial discoveries in cosmic rays, there might well not be the modern industrial-scale particle physics research.

  8. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  9. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    PubMed

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.

  10. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS

    PubMed Central

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0,” which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth’s atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research. PMID:26674183

  11. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    PubMed

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research. PMID:26674183

  12. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  13. Cosmic rays, clouds, and climate.

    PubMed

    Carslaw, K S; Harrison, R G; Kirkby, J

    2002-11-29

    It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.

  14. Cosmic ray studies at CERN

    SciTech Connect

    Fernandez T, Arturo

    2006-09-25

    The use of the sophisticated and large underground detectors at CERN for cosmic ray studies has been considered by several groups, e.g. UA1, LEP and LHC detectors. They offer the opportunity to provide large sensitivity area with magnetic analysis which allow a precise determination of the direction of cosmic ray muons as well as their momentum up to the order of some TeV. The aim of this article is to review the observation of high energy cosmic ray muons using precise spectrometers at CERN, mainly LEP detectors as well as the possibility of improve those measurements with LHC apparatus, giving special emphasis to the ACORDE-ALICE cosmic ray physics program.

  15. Blast waves with cosmic rays

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2015-04-01

    Blast waves appear in many astrophysical phenomena, such as supernovae. In this paper we discuss blast waves with cosmic rays, i.e., with a component with a power-law number density distribution function N( p) ∝ p -Γ that may be particulary important in describing the evolution of supernova remnants. We confirm some previous findings that a significant amount of cosmic ray energy is deposited towards the center of a remnant.

  16. SLOW DIFFUSION OF COSMIC RAYS AROUND A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Takahara, Fumio

    2010-04-01

    We study the escape of cosmic-ray protons accelerated at a supernova remnant (SNR). We are interested in their propagation in the interstellar medium (ISM) after they leave the shock neighborhood where they are accelerated, but when they are still near the SNR with their energy density higher than that in the average ISM. Using Monte Carlo simulations, we found that the cosmic rays with energies of {approx}< TeV excite Alfven waves around the SNR on a scale of the SNR itself if the ISM is highly ionized. Thus, even if the cosmic rays can leave the shock, scattering by the waves prevents them from moving further away from the SNR. The cosmic rays form a slowly expanding cosmic-ray bubble, and they spend a long time around the SNR. This means that the cosmic rays cannot actually escape from the SNR until a fairly late stage of the SNR evolution. This is consistent with some results of Fermi and H.E.S.S. observations.

  17. Cosmic ray-induced soft errors in static MOS memory cells

    NASA Technical Reports Server (NTRS)

    Sivo, L. L.; Peden, J. C.; Brettschneider, M.; Price, W.; Pentecost, P.

    1979-01-01

    Previous analytical models were extended to predict cosmic ray-induced soft error rates in static MOS memory devices. The effect is due to ionization and can be introduced by high energy, heavy ion components of the galactic environment. The results indicate that the sensitivity of memory cells is directly related to the density of the particular MOS technology which determines the node capacitance values. Hence, CMOS is less sensitive than e.g., PMOS. In addition, static MOS memory cells are less sensitive than dynamic ones due to differences in the mechanisms of storing bits. The flip-flop of a static cell is inherently stable against cosmic ray-induced bit flips. Predicted error rates on a CMOS RAM and a PMOS shift register are in general agreement with previous spacecraft flight data.

  18. Cosmic Ray Electron Science with GLAST

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Moiseev, Alexander

    2007-01-01

    Cosmic ray electrons at high energy carry information about their sources, their definition in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from approx. 20 to approx. 700 GeV that will allow us to search for anisotropies in anival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  19. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  20. UNDERSTANDING TeV-BAND COSMIC-RAY ANISOTROPY

    SciTech Connect

    Pohl, Martin; Eichler, David E-mail: eichler@bgu.ac.il

    2013-03-20

    We investigate the temporal and spectral correlations between flux and anisotropy fluctuations of TeV-band cosmic rays in light of recent data taken with IceCube. We find that for a conventional distribution of cosmic-ray sources, the dipole anisotropy is higher than observed, even if source discreteness is taken into account. Moreover, even for a shallow distribution of galactic cosmic-ray sources and a reacceleration model, fluctuations arising from source discreteness provide a probability only of the order of 10% that the cosmic-ray anisotropy limits of the recent IceCube analysis are met. This probability estimate is nearly independent of the exact choice of source rate, but generous for a large halo size. The location of the intensity maximum far from the Galactic Center is naturally reproduced.

  1. Cosmic-ray exposure records and origins of meteorites

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages.

  2. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  3. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  4. Cosmic Ray Origins: An Introduction

    NASA Astrophysics Data System (ADS)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  5. Galactic Cosmic Rays in the Local Interstellar Medium: Voyager 1 Observations and Model Results

    NASA Astrophysics Data System (ADS)

    Cummings, A. C.; Stone, E. C.; Heikkila, B. C.; Lal, N.; Webber, W. R.; Jóhannesson, G.; Moskalenko, I. V.; Orlando, E.; Porter, T. A.

    2016-11-01

    Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc‑1 and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc‑1, with a broad maximum in the 10–50 MeV nuc‑1 range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is ‑0.009 ± 0.055% AU‑1, consistent with models having no local interstellar gradient. The energy spectrum of electrons (e ‑ + e +) with 2.7–74 MeV is consistent with E ‑1.30±0.05 and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc‑1 and electrons with >3 MeV is 0.83–1.02 eV cm‑3 and the ionization rate of atomic H is in the range of 1.51–1.64 × 10‑17 s‑1. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

  6. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  7. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  8. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  9. Ultraheavy cosmic rays - Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1978-01-01

    The recent extreme ultraheavy cosmic-ray observations (Z greater than or equal to 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar-system abundances is also used. There is the continued strong indication of an r-process dominance in the extreme ultraheavy cosmic rays. It is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fitted with the same r-process calculation which also fits the solar-system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. An estimate is also made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  10. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  11. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  12. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  13. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Sauer, H H; Smart, D F

    1996-01-01

    Galactic cosmic rays, which are thought to be produced and accelerated by a variety of mechanisms in the Milky Way galaxy, interact with the solar wind, the earth's magnetic field, and its atmosphere to produce hadron, lepton, and photon fields at aircraft altitudes that are quite unlike anything produced in the laboratory. The energy spectra of these secondary particles extend from the lowest possible energy to energies over an EeV. In addition to cosmic rays, energetic particles, generated on the sun by solar flares or coronal mass ejections, bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as cosmic rays. The authors have calculated atmospheric cosmic-ray angular fluxes, spectra, scalar fluxes, and ionization, and compared them with experimental data. Agreement with these data is seen to be good. These data have been used to calculate equivalent doses in a simplified human phantom at aircraft altitudes and the estimated health risks to aircraft crews. The authors have also calculated the radiation doses from several large solar energetic particle events (known as GLEs, or Ground Level Events), which took place in 1989, including the very large event known as GLE 42, which took place on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory. Unfortunately, there are essentially no experimental data with which to compare these calculations.

  14. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  15. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  16. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  17. Cosmic Ray elimination using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Orozco-Aguilera, M. T.; Cruz, J.; Altamirano, L.; Serrano, A.

    2009-11-01

    In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  18. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  19. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  20. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  1. Characterising CCDs with cosmic rays

    DOE PAGES

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  2. Antiprotons in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1999-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration flew in May 1999 a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton/proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates. A description of the instrument, details of the flight and instrument performance, and status of the data analysis will be given.

  3. Black hole production by cosmic rays.

    PubMed

    Feng, Jonathan L; Shapere, Alfred D

    2002-01-14

    Ultrahigh energy cosmic rays create black holes in scenarios with extra dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce black holes deep in the atmosphere, initiating quasihorizontal showers far above the standard model rate. At the Auger Observatory, hundreds of black hole events may be observed, providing evidence for extra dimensions and the first opportunity for experimental study of microscopic black holes. If no black holes are found, the fundamental Planck scale must be above 2 TeV for any number of extra dimensions.

  4. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  5. The ATLAS trigger - commissioning with cosmic rays

    NASA Astrophysics Data System (ADS)

    Boyd, J.

    2008-07-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity there are roughly 23 collisions per bunch crossing. ATLAS has designed a three-level trigger system to select potentially interesting events. The first-level trigger, implemented in custom-built electronics, reduces the incoming rate to less than 100 kHz with a total latency of less than 2.5μs. The next two trigger levels run in software on commercial PC farms. They reduce the output rate to 100-200 Hz. In preparation for collision data-taking which is scheduled to commence in May 2008, several cosmic-ray commissioning runs have been performed. Among the first sub-detectors available for commissioning runs are parts of the barrel muon detector including the RPC detectors that are used in the first-level trigger. Data have been taken with a full slice of the muon trigger and readout chain, from the detectors in one sector of the RPC system, to the second-level trigger algorithms and the data-acquisition system. The system is being prepared to include the inner-tracking detector in the readout and second-level trigger. We will present the status and results of these cosmic-ray based commissioning activities. This work will prove to be invaluable not only during the commissioning phase but also for cosmic-ray data-taking during the normal running for detector performance studies.

  6. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  7. Gamma ray bursts and cosmic ray origin

    NASA Astrophysics Data System (ADS)

    Dermer, C. D.

    This paper presents the theoretical basis of the fireball/blast wave model, and some implications of recent results on GRB source models and cosmic-ray production from GRBs. BATSE observations of the prompt γ-ray luminous phase, and Beppo-SAX and long wavelength afterglow observations of GRBs are briefly summarized. Derivation of spectral and temporal indices of an adiabatic blast wave decelerating in a uniform surrounding medium in the limiting case of a nonrelativistic reverse shock, both for spherical and collimated outflows, is presented as an example of the elementary theory. External shock model fits for the afterglow lead to the conclusion that GRB outflows are jetted. The external shock model also explains the temporal duration distribution and clustering of peak energies in prompt spectra of long-duration GRBs, from which the redshift dependence of the GRB source rate density can be derived. Source models are reviewed in light of the constant energy reservoir result of Frail et al. that implies a total GRB energy of a few ×1051 ergs and an average beaming fraction of ≈ 1/500 of full sky. Paczy´nski's isotropic hypernova model is ruled out. The Vietri-Stella model two-step collapse process is preferred over a hypernova/collapsar model in view of the X-ray observations of GRBs and the constant energy reservoir result. Second-order processes in GRB blast waves can accelerate particles to ultra-high energies. GRBs may be the sources of UHECRs and cosmic rays with energies above the knee of the cosmic ray spectrum. High-energy neutrino and γ-ray observations with GLAST and ground-based γ-ray telescopes will be crucial to test GRB source models.

  8. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  9. Cosmic rays flux and geomagnetic field variations at midlatitudes

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Ribeiro, Paulo; Tragaldabas Collaboration Team

    2014-05-01

    It is well known that the cosmic rays flux is modulated by the solar wind and the Earth's magnetic field. The Earth's magnetic field deflects charged particles in accordance with their momentum and the local field strength and direction. The geomagnetic cutoffs depend both on the internal and the external components of the geomagnetic field, therefore reflecting the geodynamo and the solar activity variations. A new generation, high performance, cosmic ray detector Tragaldabas was recently installed at the University of Santiago de Compostela (Spain). The detector has been acquiring test data since September 2013 with a rate of about 80 events/s over a solid angle of ~5 srad. around the vertical direction. To take full advantage of this new facility for the study of cosmic rays arriving to the Earth, an international collaboration has been organized, of about 20 researchers from 10 laboratories of 5 European countries. The Magnetic Observatory of Coimbra (Portugal) has been measuring the geomagnetic field components for almost 150 years since the first measurements in 1866. It is presently equipped with up-to-date instruments. Here we present a preliminary analysis of the global cosmic ray fluxes acquired by the new Tragaldabas detector in relation to the geomagnetic field variations measured by the Coimbra observatory. We also compare the data from the new cosmic rays detector with results obtained by the Castilla-La Mancha Neutron Monitor (CaLMa, Gadalajara, Spain) that is in operation since October 2011.

  10. Cosmic-ray slowing down in molecular clouds: Effects of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Chabot, Marin

    2016-01-01

    Context. A cosmic ray (CR) spectrum propagated through ISM contains very few low-energy (<100 MeV) particles. Recently, a local CR spectrum, with strong low energy components, has been proposed to be responsible for the over production of H3+ molecule in some molecular clouds. Aims: We aim to explore the effects of the chemical composition of low-energy cosmic rays (CRs) when they slow down in dense molecular clouds without magnetic fields. We considered both ionization and solid material processing rates. Methods: We used galatic CR chemical composition from proton to iron. We propagated two types of CR spectra through a cloud made of H2: those CR spectra with different contents of low energy CRs and those assumed to be initially identical for all CR species. The stopping and range of ions in matter (SRIM) package provided the necessary stopping powers. The ionization rates were computed with cross sections from recent semi-empirical laws, while effective cross sections were parametrized for solid processing rates using a power law of the stopping power (power 1 to 2). Results: The relative contribution to the cloud ionization of proton and heavy CRs was found identical everywhere in the irradiated cloud, no matter which CR spectrum we used. As compared to classical calculations, using protons and high-energy behaviour of ionization processes (Z2 scaling), we reduced absolute values of ionization rates by few a tens of percents but only in the case of spectrum with a high content of low-energy CRs. We found, using the same CR spectrum, the solid material processing rates to be reduced between the outer and inner part of thick cloud by a factor 10 (as in case of the ionization rates) or by a factor 100, depending on the type of process.

  11. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  12. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  13. Transport of cosmic ray nuclei in various materials.

    PubMed

    Silberberg, R; Tsao, C H; Letaw, J R

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials. PMID:11538213

  14. Transport of cosmic ray nuclei in various materials.

    PubMed

    Silberberg, R; Tsao, C H; Letaw, J R

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  15. Transport of cosmic ray nuclei in various materials

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  16. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  17. Cosmic rays: the highest-energy messengers.

    PubMed

    Olinto, Angela V

    2007-01-01

    The origin of the most energetic particles ever observed, cosmic rays, will begin to be revealed in the next few years. Newly constructed ultrahigh-energy cosmic ray observatories together with high-energy gamma-ray and neutrino observatories are well positioned to unveil this mystery before the centenary of their discovery in 2012. Cosmic ray sources are likely to involve the most energetic phenomena ever witnessed in the universe.

  18. Cosmic Ray Albedo Proton Yield Correlated with Lunar Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Spence, H. E.; Case, A. W.; Blake, J. B.; Golightly, M. J.; Kasper, J. C.; Looper, M. D.; Mazur, J. E.; Schwadron, N. A.; Townsend, L. W.; Zeitlin, C. J.

    2012-12-01

    High energy cosmic rays constantly bombard the lunar regolith, producing secondary "albedo" or "splash" particles like protons and neutrons, some of which escape back to space. Two lunar missions, Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith[1-4], with reduced neutron fluxes near the lunar poles being the result of collisions with hydrogen nuclei in ice deposits[5] in permanently shadowed craters. Here we investigate an analogous phenomenon with high energy (~100 MeV) lunar albedo protons. LRO has been observing the surface and environment of the Moon since June of 2009. The CRaTER instrument (Cosmic Ray Telescope for the Effects of Radiation) on LRO is designed to characterize the lunar radiation environment and its effects on simulated human tissue. CRaTER's multiple solid-state detectors can discriminate the different elements in the galactic cosmic ray (GCR) population above ~10 MeV/nucleon, and can also distinguish between primary GCR protons arriving from deep space and albedo particles propagating up from the lunar surface. We use albedo protons with energies greater than 60 MeV to construct a cosmic ray albedo proton map of the Moon. The yield of albedo protons is proportional to the rate of lunar proton detections divided by the rate of incoming GCR detections. The map accounts for time variation in the albedo particles driven by time variations in the primary GCR population, thus revealing any true spatial variation of the albedo proton yield. Our current map is a significant improvement over the proof-of-concept map of Wilson et al.[6]. In addition to including twelve more months of CRaTER data here, we use more numerous minimum ionizing GCR protons for normalization, and we make use of all six of CRaTER's detectors to reduce contamination from spurious non-proton events in the data stream. We find find that the flux

  19. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  20. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  1. Time-Correlated Particles Produced by Cosmic Rays

    SciTech Connect

    Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona; Snyderman, Neal J.; Sheets, Steven A.; Wurtz, Ron E.

    2015-05-06

    This report describes the NA-22 supported cosmic ray experimental and analysis activities carried out at LLNL since the last report, dated October 1, 2013. In particular we report on an analysis of the origin of the plastic scintillator signals resembling the signals produced by minimum ionizing particles (MIPs). Our most notable result is that when measured in coincidence with a liquid scintillator neutron signal the MIP-like signals in the plastic scintillators are mainly due to high energy tertiary neutrons.

  2. On the biological effects of cosmic rays: Epidemiological study

    NASA Astrophysics Data System (ADS)

    Conforto, A. M.; Signorini, C.

    1991-04-01

    The determination of the biological effects of cosmic rays and other natural radiation to resolve the more general problem of the consequences on human health, from the basis of ionizing radiation, is addressed. Difficulties relating to an epmidemiological study are outlined and results are discussed particularly concerning their inconsistency. In particular, high and low doses are discussed, referencing the Hiroshima bomb, the HBRA (High Background Radiation Area), and the CA (Control Area). High and low regions are discussed for the case of cancer.

  3. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  4. WINDS, CLUMPS, AND INTERACTING COSMIC RAYS IN M82

    SciTech Connect

    Yoast-Hull, Tova M.; Everett, John E.; Zweibel, Ellen G.; Gallagher, J. S. III

    2013-05-01

    We construct a family of models for the evolution of energetic particles in the starburst galaxy M82 and compare them to observations to test the calorimeter assumption that all cosmic ray energy is radiated in the starburst region. Assuming constant cosmic ray acceleration efficiency with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations as a function of energy. Cosmic rays are injected with Galactic energy distributions and electron-to-proton ratio via Type II supernovae at the observed rate of 0.07 yr{sup -1}. From the cosmic ray spectra, we predict the radio synchrotron and {gamma}-ray spectra. To more accurately model the radio spectrum, we incorporate a multiphase interstellar medium in the starburst region of M82. Our model interstellar medium is highly fragmented with compact dense molecular clouds and dense photoionized gas, both embedded in a hot, low density medium in overall pressure equilibrium. The spectra predicted by this one-zone model are compared to the observed radio and {gamma}-ray spectra of M82. {chi}{sup 2} tests are used with radio and {gamma}-ray observations and a range of model predictions to find the best-fit parameters. The best-fit model yields constraints on key parameters in the starburst zone of M82, including a magnetic field strength of {approx}250 {mu}G and a wind advection speed in the range of 300-700 km s{sup -1}. We find that M82 is a good electron calorimeter but not an ideal cosmic-ray proton calorimeter and discuss the implications of our results for the astrophysics of the far-infrared-radio correlation in starburst galaxies.

  5. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what

  6. TIROS-N Cosmic Ray study

    NASA Technical Reports Server (NTRS)

    Blandford, J. T., Jr.; Pickel, J. C.

    1980-01-01

    An experimental and analytical study was performed on the impact of galactic cosmic rays on the TIROS-N satellite memory in orbit. Comparisons were made of systems equipped with the Harris HMI-6508 1 x 1024 CMOS/bulk RAM and the RCA CDP-1821 1 x 1024 bit CMOS/SOS RAM. Based upon the experimental results, estimated bit error rates were determined. These were at least 8.0 bit errors/day for a 300 kilobit memory with the HMI-6508 and .014 bit errors/day with the CDF-1821. It was also estimated that the HMI-6508 latchup rate in orbit is at least two orders of magnitude less than the bit error rates; the CDP-1821 will not latchup.

  7. Estimates of cellular mutagenesis from cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A parametric track structure model is used to estimate the cross section as a function of particle velocity and charge for mutations at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus in human fibroblast cell cultures. Experiments that report the fraction of mutations per surviving cell for human lung and skin fibroblast cells indicate small differences in the mutation cross section for these two cell lines when differences in inactivation rates between these cell lines are considered. Using models of cosmic ray transport, the mutation rate at the HGPRT locus is estimated for cell cultures in space flight and rates of about 2 to 10 x 10(exp -6) per year are found for typical spacecraft shielding. A discussion of how model assumptions may alter the predictions is also presented.

  8. Effects of Martian Dust Storms on Ionization Profiles and Surface Dose Rates From Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.

    2013-12-01

    Global dust storms can engulf Mars and distribute dust throughout the atmosphere. The change in composition and density of the atmosphere due to dust storms affects the ionization rate due to cosmic rays impinging on Mars. To model the effect of dust storms on the Martian ionization profile, five solar energetic proton event models are used as inputs into the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS is a cosmic ray irradiation model adapted for fast computations and has been applied to the Martian atmosphere. Full atmosphere ionization profiles for both dust storms and quiet times are reported at multiple sites on Mars, including the Gale Crater, site of the Curiosity rover landing. Variation in the ionization profile and surface dose rates is observed as a function of input event spectrum, atmospheric dust load, and elevation. Variation in the dose rate at the surface due to dust loading is bounded by approximately 25% for large integral fluence events with a soft spectral shape, while variation due to input spectrum and elevation can be two orders of magnitude. In addition, it is demonstrated that solar energetic proton events can create ionization rates large enough at the appropriate altitudes to account for the observed radio blackouts by the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on the Mars Express spacecraft.

  9. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2000-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx.10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10, were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  10. Solar-Cosmic-Ray-Produced Nuclides in Extraterrestrial Matter

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    1999-01-01

    There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx. 10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10 were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.

  11. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  12. Generation of Runaway Electrons Induced by Cosmic-Ray Muons in Thunderstorm Electric Fields

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishijima, T.; Sugita, T.; Kawasaki, Z.

    2004-05-01

    Gamma ray dose-rate increases associated with winter thunderstorm activities have been observed in the coastal areas facing the Sea of Japan [1]. In order to investigate the generation of energetic photons which originate in thunderstorm electric fields, we have calculated the behavior of secondary cosmic ray electrons and photons in electric fields with Monte Carlo method. In the calculation, the electron and photon fluxes have increased greatly in the region where the field strength exceeds about 280 P(z) kV/m-atm, and these energy spectra show a large increase in the energy region up to several MeV [2]. In addition to the analysis of the electromagnetic component of cosmic rays, we have carried out the Monte Carlo transport calculations of the cosmic-ray muons and associated particles (e.g. knock-on electrons and bremsstrahlung photons) in thunderstorm electric fields, using GEANT4 code [3]. Muons form a large part of the secondary cosmic-rays and directly reach the regions of strong electric fields owing to their high penetrability in the atmosphere. Therefore, they can serve as the source of a considerable amount of runaway electrons, through their ionization process with air molecules, and their decay into energetic electrons. The electron and photon fluxes show notable increases in the strong electric field, while the muon flux does not fluctuate significantly. These results indicate that the production of energetic electrons by cosmic ray muons plays an important role in the enhancement of electron and photon fluxes in thunderstorm electric fields. Finally, we discuss a feasibility of muon-triggered lightning deduced from the muon transport calculation inside thunderstorm electric fields. From the calculation results, we estimate that the irradiation of muon beams rapidly increases energy deposition in the region of strong electric fields, and produce numerous electron - ion pairs. These productions may induce the lightning discharge by the runaway

  13. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  14. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  15. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show that a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform, thus bringing relevant information on the cosmic ray radial distribution.

  16. Shielding against galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  17. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  18. Cosmic rays intensity and atmosphere humidity at near earth surface

    NASA Astrophysics Data System (ADS)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  19. Cosmic-Ray Injection from Star-Forming Regions.

    PubMed

    Carlson, Eric; Profumo, Stefano; Linden, Tim

    2016-09-01

    At present, all physical models of diffuse Galactic γ-ray emission assume that the distribution of cosmic-ray sources traces the observed populations of either OB stars, pulsars, or supernova remnants. However, since H_{2}-rich regions host significant star formation and numerous supernova remnants, the morphology of observed H_{2} gas (as traced by CO line surveys) should also provide a physically motivated, high-resolution tracer for cosmic-ray injection. We assess the impact of utilizing H_{2} as a tracer for cosmic-ray injection on models of diffuse Galactic γ-ray emission. We employ state-of-the-art 3D particle diffusion and gas density models, along with a physical model for the star-formation rate based on global Schmidt laws. Allowing a fraction, f_{H_{2}}, of cosmic-ray sources to trace the observed H_{2} density, we find that a theoretically well-motivated value f_{H_{2}}∼0.20-0.25 (i) provides a significantly better global fit to the diffuse Galactic γ-ray sky and (ii) highly suppresses the intensity of the residual γ-ray emission from the Galactic center region. Specifically, in models utilizing our best global fit values of f_{H_{2}}∼0.20-0.25, the spectrum of the galactic center γ-ray excess is drastically affected, and the morphology of the excess becomes inconsistent with predictions for dark matter annihilation. PMID:27661675

  20. Cosmic-Ray Injection from Star-Forming Regions.

    PubMed

    Carlson, Eric; Profumo, Stefano; Linden, Tim

    2016-09-01

    At present, all physical models of diffuse Galactic γ-ray emission assume that the distribution of cosmic-ray sources traces the observed populations of either OB stars, pulsars, or supernova remnants. However, since H_{2}-rich regions host significant star formation and numerous supernova remnants, the morphology of observed H_{2} gas (as traced by CO line surveys) should also provide a physically motivated, high-resolution tracer for cosmic-ray injection. We assess the impact of utilizing H_{2} as a tracer for cosmic-ray injection on models of diffuse Galactic γ-ray emission. We employ state-of-the-art 3D particle diffusion and gas density models, along with a physical model for the star-formation rate based on global Schmidt laws. Allowing a fraction, f_{H_{2}}, of cosmic-ray sources to trace the observed H_{2} density, we find that a theoretically well-motivated value f_{H_{2}}∼0.20-0.25 (i) provides a significantly better global fit to the diffuse Galactic γ-ray sky and (ii) highly suppresses the intensity of the residual γ-ray emission from the Galactic center region. Specifically, in models utilizing our best global fit values of f_{H_{2}}∼0.20-0.25, the spectrum of the galactic center γ-ray excess is drastically affected, and the morphology of the excess becomes inconsistent with predictions for dark matter annihilation.

  1. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  2. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  3. The isotopic composition of cosmic ray chlorine

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1985-01-01

    The isotopic composition of galactic cosmic ray chlorine (approx. = 225 MeV/amu) has been studied using the high energy cosmic ray experiment on the International Sun Earth Explorer 3 (ISEE-3) spacecraft. The abundances of 35C1 and 37C1 are found to be consistent with the secondary production expected from a propagation model developed to account for both light and subiron secondaries. An upper limit on the abundance of the radioactive isotope 36C1 (halflife approx. = 0.3 Myr) is used to set a lower limit on the confinement time of cosmic rays of approximately 1 Myr.

  4. Cosmic Rays Variations and Human Physiological State

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2009-12-01

    It was obtained in our previous investigations that geomagnetic activity as an indirect indicator of solar activity correlates with some human physiological and psycho-physiological parameters. A lot of studies indicate that other parameters of space weather like cosmic rays Forbush decreases affect myocardial infarction, brain stroke, car accidents, etc. The purpose of that work was to study the effect of cosmic rays variations on human physiological status. It was established that the decrease in cosmic rays intensity was related to an increase in systolic and diastolic blood pressure and reported subjective psycho-physiological complaints in healthy volunteers.

  5. Influence of the backreaction of streaming cosmic rays on magnetic field generation and thermal instability

    SciTech Connect

    Nekrasov, Anatoly K.; Shadmehri, Mohsen E-mail: nekrasov.anatoly@gmail.com

    2014-06-10

    Using a multifluid approach, we investigate streaming and thermal instabilities of the electron-ion plasma with homogeneous cold cosmic rays propagating perpendicular to the background magnetic field. Perturbations are also considered to be across the magnetic field. The backreaction of cosmic rays resulting in strong streaming instabilities is taken into account. It is shown that, for sufficiently short wavelength perturbations, the growth rates can exceed the growth rate of cosmic-ray streaming instability along the magnetic field, found by Nekrasov and Shadmehri, which is in turn considerably larger than the growth rate of the Bell instability. The thermal instability is shown not to be subject to the action of cosmic rays in the model under consideration. The dispersion relation for the thermal instability has been derived, which includes sound velocities of plasma and cosmic rays and Alfvén and cosmic-ray streaming velocities. The relation between these parameters determines the kind of thermal instability ranging from the Parker to the Field instabilities. The results obtained can be useful for a more detailed investigation of electron-ion astrophysical objects, such as supernova remnant shocks, galaxy clusters, and others, including the dynamics of streaming cosmic rays.

  6. STREAMING COLD COSMIC-RAY BACK-REACTION AND THERMAL INSTABILITIES ALONG THE BACKGROUND MAGNETIC FIELD

    SciTech Connect

    Nekrasov, Anatoly K.; Shadmehri, Mohsen E-mail: nekrasov.anatoly@gmail.com

    2012-09-01

    Using a multi-fluid approach, we investigate the streaming and thermal instabilities of electron-ion-cosmic-ray astrophysical objects in which homogeneous cold cosmic rays have a drift velocity perpendicular to the background magnetic field. One-dimensional perturbations along the magnetic field are considered. The induced return current of the background plasma and back-reaction of cosmic rays are taken into account. It is shown that the cosmic-ray back-reaction results in a streaming instability with considerably higher growth rates than that due to the return current of the background plasma. This increase is by a factor of the square root of the ratio of the background plasma mass density to the cosmic-ray mass density. The maximal growth rate and the corresponding wavenumber are then found. Thermal instability is shown to be not subject to the action of cosmic rays in the model under consideration. The dispersion relation for thermal instability includes ion inertia. In the limit of a fast thermal energy exchange between electrons and ions, the isobaric and isochoric growth rates are obtained. The results can be useful for the investigation of electron-ion astrophysical objects such as galaxy clusters, including the dynamics of streaming cosmic rays.

  7. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  8. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  9. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  10. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  11. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2014-05-01

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π0→γγ. For a "normal" star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a "thick-target" model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  12. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  13. Heliosphere Changes Affect Cosmic Ray Penetration

    NASA Video Gallery

    The changes in the size of our solar system’s boundaries also cause changes to the galactic cosmic rays that enter the solar system. Although these boundaries do a good job of deflecting the majo...

  14. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  15. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  16. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  17. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  18. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  19. Apollo 17 lunar surface cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The objectives and selected data are presented for the Apollo 17 Lunar Surface Cosmic Ray Experiment (LSCRE) for the purpose of introducing an analysis of three of the separate detectors contained within in LSCRE package. The mica detector for measuring heavy solar wind, and the lexan stack and glass detectors for measuring energetic particles in space are discussed in terms of their deployment, exposure time, calibration, and data yield. Relevant articles on solar particles, interplanetary ions, and cosmic ray nuclei are also included.

  20. Cosmic Ray Interaction Models: an Overview

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey

    2016-07-01

    I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  1. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  2. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  3. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  4. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  5. Reminiscences of cosmic ray research in Mexico

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge

    2009-11-01

    Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north-south and west-east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.

  6. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  7. Determination of the cosmic-ray-induced neutron flux and ambient dose equivalent at flight altitude

    NASA Astrophysics Data System (ADS)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2015-07-01

    There is interest in modeling the atmosphere in the South Atlantic Magnetic Anomaly in order to obtain information about the cosmic-ray induced neutron spectrum and angular distribution as functions of altitude. In this work we use the Monte Carlo codes MCNPX and Geant4 to determine the cosmic-ray-induced neutron flux in the atmosphere produced by the cosmic ray protons incident on the top of the atmosphere and to estimate the ambient dose equivalent rate as function of altitude. The results present a reasonable conformity to other codes (QARM and EXPACS) based on other parameterizations.

  8. Cosmic-ray-produced neon and helium in the summit lavas of Maui

    NASA Technical Reports Server (NTRS)

    Marti, K.; Craig, H.

    1987-01-01

    The identification of cosmic-ray-produced Ne-21c in addition to He-3c, components attributed to cosmic ray-induced spallation reactions, are reported in gases extracted by fusion of olivines and clinopyroxenes after vacuum-crushing. The observed (He-3/Ne-21)c ratios and the ratio of Ne-21c in olivine to that in clinopyroxene are consistent with an in situ origin of He-3c and Ne-21c by cosmic-ray spallation reactions. These components could be important for interpreting helium isotopic data in terrestrial reservoirs. Geophysical applications could include determinations of erosion rates and exposure histories of terrestrial rocks.

  9. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  10. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  11. CR-1 Chip: Custom VLSI Circuitry for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Adams, James

    This paper describes a custom VLSI chip developed for use with large arrays of silicon detectors in cosmic ray experiments. It provides 16 channels of front-end electronics for integrating the charge pulse from silicon detectors and present the result as a held DC level. The outputs are multiplexed onto a common output line. The chip also has circuitry for calibration pulse injection into each channel. The noise is low enough to clearly distinguish minimum ionizing proton signals while the dynamic range of 1:4000 allows all charges from H to Fe to be measured even at large angles. The nominal power consumption is < 5.4 mW/channel.

  12. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  13. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  14. Cosmic ray exposure ages of iron meteorites, complex irradiation and the constancy of cosmic ray flux in the past

    NASA Technical Reports Server (NTRS)

    Marti, K.; Lavielle, B.; Regnier, S.

    1984-01-01

    While previous calculations of potassium ages assumed a constant cosmic ray flux and a single stage (no change in size) exposure of iron meteorites, present calculations relaxed these constancy assumptions and the results reveal multistage irradiations for some 25% of the meteorites studied, implying multiple breakup in space. The distribution of exposure ages suggests several major collisions (based on chemical composition and structure), although the calibration of age scales is not yet complete. It is concluded that shielding-corrected (corrections which depend on size and position of sample) production rates are consistent for the age bracket of 300 to 900 years. These production rates differ in a systematic way from those calculated for present day fluxes of cosmic rays (such as obtained for the last few million years).

  15. Cosmic ray environment model for Earth orbit

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1985-01-01

    A set of computer codes, which include the effects of the Earth's magnetic field, used to predict the cosmic ray environment (atomic numbers 1 through 28) for a spacecraft in a near-Earth orbit is described. A simple transport analysis is used to approximate the environment at the center of a spherical shield of arbitrary thickness. The final output is in a form (a Heinrich Curve) which has immediate applications for single event upset rate predictions. The codes will culate the time average environment for an arbitrary number (fractional or whole) of circular orbits. The computer codes were run for some selected orbits and the results, which can be useful for quick estimates of single event upset rates, are given. The codes were listed in the language HPL, which is appropriate or a Hewlett Packard 9825B desk top computer. Extensive documentation of the codes is available from COSMIC, except where explanations have been deferred to references where extensive documentation can be found. Some qualitative aspects of the effects of mass and magnetic shielding are also discussed.

  16. Solar and Galactic Cosmic Rays Observed by SOHO

    NASA Astrophysics Data System (ADS)

    Fleck, Bernhard; Curdt, Werner; Olive, Jean-Philippe; van Overbeek, Ton

    2015-04-01

    Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to 75% of its original level over 1 ½ solar cycles, Single Event Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that the total number of SSR SEUs with solar origin over the 17 ½ years from January 1996 through June 2013 is of the same order as those generated by cosmic ray hits. 49% of the total solar array degradation during that time can be attributed to proton events, i.e. the effect of a series of short-lived, violent events (SEPs) is comparable to the cycle-integrated damage by cosmic rays.

  17. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  18. Space weather prediction by cosmic rays

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Souvatzoglou, G.; Sarlanis, C.; Mariatos, G.; Plainaki, C.; Gerontidou, M.; Belov, A.; Eroshenko, E.; Yanke, V.

    Relativistic (galactic and solar) cosmic rays (CR) registered by neutron monitors can play a useful key-role in space weather storms forecasting and in the specification of magnetic properties of coronal mass ejections (CMEs), shocks and ground level enhancements (GLEs). In order to produce a real-time prediction of space weather phenomena, only real-time data from a neutron monitor network should be employed. Recently in Athens cosmic-ray station a real-time data collection and acquisition system has been created in collaboration with the cosmic ray group of IZMIRAN. This system collects data in real-time mode from about 15 real-time cosmic ray stations by using the internet. The main server in Athens station collects 5-min and hourly cosmic ray data. The measurements of all stations are being processed automatically while converted into a suitable form, so as to be serviceably for forecasting purposes. All programs have been written in an expandable form, in order to upgrade the network of real-time neutron monitors with the biggest possible number of stations, easily. Programs which make use of these data for forecasting studies are already running in experimental mode. The increased number of NM stations operating in real time provides a good basis for using Neutron Monitor network as a tool of forecasting the arrival of the interplanetary disturbances at the Earth.

  19. Research Concerning Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell; Cunningham, John; Kuhlmann, Steve; Spinka, Hal; Underwood, Dave; Hammergren, Mark

    2010-02-01

    Throughout my academic career at Loyola I have carried out research with the Loyola University Cosmic Event Detection System concerning the possibility of detection of ultra high energy cosmic rays (UHECRs) based on radio meteor scattering methods. This research was furthered through summer internships and research fellowships at Adler Planetarium Chicago and Stony Brook University in New York. At Adler Planetarium we used a helium balloon carrying a Geiger counter and other equipment to record the cosmic ray flux at various points in the atmosphere. The results clearly show the flux depends on the atmospheric density. At Stony Brook University I studied their advanced system for detecting cosmic rays in similar manner to radio meteor scattering principles. Research there focused on detection algorithms and also on the possibility of utilizing Digital Tv (DTv) signals for further research. Through the research a solid understanding of cosmic rays was formed including topics such as origins and energy scales of cosmic rays, both of which pose unanswered questions. )

  20. Cosmic ray induced ionisation of a molecular cloud shocked by the W28 supernova remnant

    NASA Astrophysics Data System (ADS)

    Vaupré, S.; Hily-Blant, P.; Ceccarelli, C.; Dubus, G.; Gabici, S.; Montmerle, T.

    2014-08-01

    Cosmic rays are an essential ingredient in the evolution of the interstellar medium, as they dominate the ionisation of the dense molecular gas, where stars and planets form. However, since they are efficiently scattered by the galactic magnetic fields, many questions remain open, such as where exactly they are accelerated, what is their original energy spectrum, and how they propagate into molecular clouds. In this work we present new observations and discuss in detail a method that allows us to measure the cosmic ray ionisation rate towards the molecular clouds close to the W28 supernova remnant. To perform these measurements, we use CO, HCO+, and DCO+ millimetre line observations and compare them with the predictions of radiative transfer and chemical models away from thermodynamical equilibrium. The CO observations allow us to constrain the density, temperature, and column density towards each observed position, while the DCO+/HCO+ abundance ratios provide us with constraints on the electron fraction and, consequently, on the cosmic ray ionisation rate. Towards positions located close to the supernova remnant, we find cosmic ray ionisation rates much larger (≳100) than those in standard galactic clouds. Conversely, towards one position situated at a larger distance, we derive a standard cosmic ray ionisation rate. Overall, these observations support the hypothesis that the γ rays observed in the region have a hadronic origin. In addition, based on CR diffusion estimates, we find that the ionisation of the gas is likely due to 0.1-1 GeV cosmic rays. Finally, these observations are also in agreement with the global picture of cosmic ray diffusion, in which the low-energy tail of the cosmic ray population diffuses at smaller distances than the high-energy counterpart.

  1. Cosmic-ray antiprotons as a probe of a photino-dominated universe

    NASA Technical Reports Server (NTRS)

    Silk, J.; Srednicki, M.

    1984-01-01

    Observational tests of the hypothesis that the universe is flat and dominated by dark matter in the form of massive photinos include the production of significant fluxes of cosmic rays and gamma rays in our galactic halo. Specification of the cosmological photino density and the masses of scalar quarks and leptons determines the present annihilation rate. The predicted number of low-energy cosmic-ray antiprotons is comparable to the observed flux.

  2. On the slow time geomagnetic field modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley

    2016-07-01

    Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (DeltaCR)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (DeltaH) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimum. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and especially in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance contributes much less in modulating the cosmic ray flux.

  3. Radiation protection issues in galactic cosmic ray risk assessment

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1994-01-01

    Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays.

  4. Radiation protection issues in galactic cosmic ray risk assessment.

    PubMed

    Sinclair, W K

    1994-01-01

    Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays. PMID:11538038

  5. Radiation protection issues in galactic cosmic ray risk assessment.

    PubMed

    Sinclair, W K

    1994-01-01

    Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays.

  6. Bruno Rossi: Cosmic Ray Research 1929 - 1953

    NASA Astrophysics Data System (ADS)

    Cronin, Jim

    2012-03-01

    Bruno Rossi, a fresh PhD from the University of Bologna, arrived in Florence in 1928. He was appointed assistant to Antonio Garbasso, professor of experimental physics. Garbosso at that time was Mayor of Florence. His days of physics were over which gave the young Rossi a freedom to follow any line of research. After some agonizing he came upon research in cosmic rays following the discovery that a large part of the cosmic rays were charged particles. Thus began a long period of creative research. Rossi had all the talents needed, a powerful intellect and the natural ability to construct apparatus that gave clear results for his experiments. I will give some examples of his many discoveries concerning the nature of cosmic rays.

  7. Detecting EHE Cosmic Rays Using Cherenkov Light

    NASA Astrophysics Data System (ADS)

    Bergman, Douglas

    2011-04-01

    Cherenkov light has been used to detect gamma rays in the TeV energy range using an imaging technique and cosmic rays in the PeV energy range using a non-imaging technique. We would like to extend the use of the non-imaging technique up to nearly 1 EeV. At these energies the technique can be used in conjunction with fluorescence detection of cosmic rays, allowing for hybrid reconstruction of shower geometries and cross calibration of energy scales. We envision using an array of Cherenkov detectors as part of the Telescope Array (TA) Low Energy extension (TALE), extending the energy range of the detector down to the Knee of the cosmic ray energy spectrum.

  8. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  9. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  10. Cosmic ray acceleration by binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kundt, W.

    Young binary neutron stars, the elder brothers of pulsars, are proposed as the boosters of the ionic component of cosmic rays. Their rotational energy can be converted into beams of cosmic rays if there is enough coupling between the corotating magnetosphere and the impinging plasma, in a manner similar to the sparking of a grindstone. Power-law spectra in energy are obtained from a power-law dependence of the accelerating fields. The upper cutoff energy should not greatly exceed 10 to the 20th eV. The observed ionic cosmic-ray spectrum would result from a superposition of the injection by no more than about one million young binary neutron stars.

  11. Cosmic-Ray Observations with HAWC30

    NASA Astrophysics Data System (ADS)

    Fiorino, Daniel

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 meters on the slope of Volc'an Sierra Negra near Puebla, Mexico. HAWC is an extensive air-shower array comprising 300 optically-isolated water Cherenkov detectors. Each detector contains 200,000 liters of filtered water and four upward-facing photomultiplier tubes. Since September 2012, 30 water Cherenkov detectors have been instrumented and operated in data acquisition. With 10 percent of the detector complete and six months of operation, the event statistics are already sufficient to perform detailed studies of cosmic rays observed at the site. We will report on cosmic-ray observations with HAWC30, in particular the detection and study of the shadow of the moon. From these observations, we infer the pointing accuracy of the detector and our angular resolution of the detector reconstruction.

  12. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  13. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  14. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  15. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  16. Muon Production in Relativistic Cosmic-Ray Interactions

    SciTech Connect

    Klein, Spencer

    2009-07-27

    Cosmic-rays with energies up to 3x1020 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is sqrt snn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders.This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (pT) spectra in cosmic-ray air showers fromMACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher pT region where perturbative QCD should apply. With a 1 km2 surface area, the full IceCube detector should observe hundreds of muons/year with pT in the pQCD regime.

  17. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  18. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  19. Cosmic Rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  20. Linear growth of the Kelvin-Helmholtz instability with an adiabatic cosmic-ray gas

    SciTech Connect

    Suzuki, Akihiro; Takahashi, Hiroyuki R.; Kudoh, Takahiro

    2014-06-01

    We investigate effects of cosmic rays on the linear growth of the Kelvin-Helmholtz instability. Cosmic rays are treated as an adiabatic gas and allowed to diffuse along magnetic field lines. We calculated the dispersion relation of the instability for various sets of two free parameters, the ratio of the cosmic-ray pressure to the thermal gas pressure, and the diffusion coefficient. Including cosmic-ray effects, a shear layer is more destabilized and the growth rates can be enhanced in comparison with the ideal magnetohydrodynamical case. Whether the growth rate is effectively enhanced or not depends on the diffusion coefficient of cosmic rays. We obtain the criterion for effective enhancement by comparing the growing timescale of the instability with the diffusion timescale of cosmic rays. These results can be applied to various astrophysical phenomena where a velocity shear is present, such as outflows from star-forming galaxies, active galactic nucleus jet, channel flows resulting from the nonlinear development of the magnetorotational instability, and galactic disks.

  1. The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S.; Giannaropoulou, E.

    2011-09-01

    Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data regarding 4018 Slovak aviators were analyzed in relation to daily variations of cosmic ray and geomagnetic activity. Specifically daily data concerning mean values of heart rate which were registered during the medical examinations of the Slovak aviators, were related to daily variations of cosmic ray intensity, as measured by the Neutron Monitor Station on Lomnicky Stit (http://neutronmonitor.ta3.sk/realtime.php3) and the high resolution neutron monitor database (http://www.nmdb.eu) and daily variations of Dst and Ap geomagnetic indices. All subjects were men in good health of age 18-60 yrs. This particular study refers to the time period from 1 January 1994 till 31 December 2002. Statistical methods were applied to establish a statistical significance of the effect of geomagnetic activity levels and cosmic ray intensity variations on the aforementioned physiological parameters for the whole group. The Pearson r-coefficients were calculated and the Analysis of Variance (ANOVA) method was applied to establish the statistical significance levels (p-values) of the effect of geomagnetic activity and cosmic ray intensity variations on heart rate up to three days before and three days after the respective events. Results show that there is an underlying effect of geomagnetic activity and cosmic ray intensity variations on the cardiovascular functionality.

  2. The Annual Cosmic-Radiation Intensities 1391 - 2014; The Annual Heliospheric Magnetic Field Strengths 1391 - 1983, and Identification of Solar Cosmic-Ray Events in the Cosmogenic Record 1800 - 1983

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; Beer, J.

    2015-10-01

    The annual cosmogenic ^{10}Be ice-core data from Dye 3 and the North Greenland Ice-core Project (NGRIP), and neutron-monitor data, 1951 - 2014, are combined to yield a record of the annual cosmic-ray intensity, 1391 - 2014. These data were then used to estimate the intensity of the heliospheric magnetic field (HMF), 1391 - 1983. All of these annual data are provided in the Electronic Supplementary Material. Analysis of these annual data shows that there were significant impulsive increases in ^{10}Be production in the year following the very large solar cosmic-ray events of 1942, 1949, and 1956. There was an additional enhancement that we attribute to six high-altitude nuclear explosions in 1962. All of these enhancements result in underestimates of the strength of the HMF. An identification process is defined, resulting in a total of seven impulsive ^{10}Be events in the interval 1800 - 1942 prior to the first detection of a solar cosmic-ray event using ionization chambers. Excision of the ^{10}Be impulsive enhancements yields a new estimate of the HMF, designated B(PCR-2). Five of the seven ^{10}Be enhancements prior to 1941 are well correlated with the occurrence of very great geomagnetic storms. It is shown that a solar cosmic-ray event similar to that of 25 July 1946, and occurring in the middle of the second or third year of the solar cycle, may merge with the initial decreasing phase of the 11-year cycle in cosmic-ray intensity and be unlikely to be detected in the ^{10}Be data. It is concluded that the occurrence rate for solar energetic-particle (SEP) events such as that on 23 February 1956 is about seven per century, and that there is an upper limit to the size of solar cosmic-ray events.

  3. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  4. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-01

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  5. The cosmic-ray population of the galactic central molecular zone

    SciTech Connect

    Yoast-Hull, Tova M.; Zweibel, Ellen G.; Gallagher, J. S. III

    2014-08-01

    The conditions in the Galactic Center are often compared with those in starburst systems, which contain higher supernova rates, stronger magnetic fields, more intense radiation fields, and larger amounts of dense molecular gas than in our own Galactic disk. Interactions between such an augmented interstellar medium and cosmic rays result in brighter radio and γ-ray emission. Here, we test how well the comparisons between the Galactic Center and starburst galaxies hold by applying a model for cosmic-ray interactions to the Galactic Center to predict the resulting γ-ray emission. The model only partially explains the observed γ-ray and radio emission. The model for the γ-ray spectrum agrees with the data at TeV energies but not at GeV energies. Additionally, as the fits of the model to the radio and γ-ray spectra require significant differences in the optimal wind speed and magnetic field strength, we find that the single-zone model alone cannot account for the observed emission from the Galactic Center. Our model is improved by including a soft, additional cosmic-ray population. We assess such a cosmic-ray population and its potential sources and find that a cosmic-ray electron spectrum is energetically favored over a cosmic-ray proton spectrum.

  6. Detection of a change in the North-South ratio of count rates of particles of high-energy cosmic rays during a change in the polarity of the magnetic field of the Sun

    NASA Astrophysics Data System (ADS)

    Karelin, A. V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Vacchi, A.; Vannuccini, E.; Vasil'ev, G. I.; Voronov, S. A.; Gal'per, A. M.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Zampa, G.; Zampa, N.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Kvashnin, A. N.; Koldashov, S. V.; Koldobskii, S. A.; Krut'kov, S. Yu.; Leonov, A. A.; Marcelli, L.; Martucci, M.; Maiorov, A. G.; Malakhov, V. V.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Rosetto, M. L.; Simon, M.; Sarkar, R.; Scotti, V.; Sparvoli, R.; Spillantini, P.; Formato, V.; Yurkin, Yu. T.

    2015-02-01

    A change in the ratio of the intensities of particles of high-energy cosmic rays arriving from the North and South in the time interval of 2010-2014 has been detected with a calorimeter entering into the experimental complex of the PAMELA satellite experiment since June 2006. The polarity of the magnetic field of the Sun changed in a part of this time interval. Thus, the results indicate that the North-South asymmetry of cosmic ray fluxes is related to the magnetic field of the Sun.

  7. Products from cosmic-ray interactions in extraterrestrial matter: What they tell us about radiation backgrounds in space

    SciTech Connect

    Reedy, R.C.

    1987-01-01

    The nuclides and the heavy-nuclei ''tracks'' made by the interactions of solar and galactic cosmic-ray particles with meteorites, lunar samples, and the Earth have been extensively studied, simulated, and modelled. Most research involves the use of these cosmogenic products to study the history of the ''targets'' or of the cosmic rays. However, much work has also been done in understanding these interactions and in predicting their rates as a function of the target's size and shape and of the location inside the target. These studies apply to any object exposed to cosmic rays. The fluxes as a function of depth for cosmic-ray primary and secondary particles vary greatly with particle energy and type. The variations of the fluxes of these cosmic rays in the past have been studied. Energetic solar particles are unpredictable and are the greatest potential radiation hazard in space. 11 refs., 1 fig.

  8. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  9. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  10. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  11. Current Status of Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2016-03-01

    I will review the current instrumentation and recent results. I will discuss which measurements have to be done in the near future to significantly advance our knowledge about the phenomenon of cosmic rays, their sources, and their interactions with the interstellar medium. A support from NASA APRA Grant No. NNX13AC47G is greatly acknowledged.

  12. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  13. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  14. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  15. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  16. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  17. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  18. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  19. Cosmic Ray Diffusion Tensor Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, C.; Bieber, J. W.; Breech, B.; Burger, R. A.; Clem, J.; Matthaeus, W. H.

    2008-12-01

    We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind [Breech et al., 2008.]. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic ray following the method presented in Bieber et al. [1995]. We use the nonlinear guiding center (NLGC) theory to obtain the perpendicular diffusion coefficient of the cosmic ray [Matthaeus et al. 2003]. We find that (1) the radial mean free path decreases from 1 AU to 20 AU for both turbulence scenarios; (2) after 40 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 20 AU, after which the perpendicular component becomes important; (4) the rigidity P dependence of the parallel component of the diffusion tensor is proportional to P.404 for one turbulence scenario and P.374 for the other at 1 AU from 0.1 GVto 10 GV, but in the outer heliosphere its dependence becomes stronger above 4 GV; (5) the rigidity P dependence of the perpendicular component of the diffusion tensor is very weak. Supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G.

  20. Modeling cosmic ray proton induced terrestrial neutron flux: A look-up table

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew C.; Melott, Adrian L.; Atri, Dimitra

    2013-06-01

    contribute a significant radiation dose at commercial passenger airplane altitudes. With cosmic ray energies > 1 GeV, these effects could, in principle, be propagated to ground level. Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies < 1 GeV. Astrophysical shocks from events such as supernovae accelerate high-energy cosmic rays (HECRs) well above this range. The Earth is likely episodically exposed to a greatly increased HECR flux from such events. Solar events of smaller energies are much more common and short lived but still remain a topic of interest due to the ground level enhancements they produce. The air showers produced by cosmic rays (CRs) ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Although the secondary spectra from current day terrestrial cosmic ray flux are well known, this is not true for spectra produced by many astrophysical events. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to CRs at various primary energies and altitudes. We provide here look-up tables that can be used to determine neutron fluxes from proton primaries with kinetic energies of 1 MeV-1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. This contrasts with all other similar works, which are spectrum dependent. Our results demonstrate the difficulty in deducing the nature of primaries from the spectrum of ground level neutron enhancements.

  1. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population. PMID:22116880

  2. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

  3. Structure Formation Cosmic Rays: Identifying Observational Constraints

    NASA Astrophysics Data System (ADS)

    Prodanovic, T.; Fields, B. D.

    2005-06-01

    Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs) would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be 6Li. The rare isotope 6Li is produced only by cosmic rays, dominantly in alpha alpha rightarrow 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is 6Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metal-poor halo stars. Given the already existing problem of establishing the concordance between 7Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model- independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1) we establish the connection between gamma-ray and 6Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB); 2) we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs), which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using

  4. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    PubMed

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  5. Pulsars, supernovae, and ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Fang, K.; Olinto, A. V.; Phinney, E. S.

    2012-12-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10^{19} eV as indicated by air shower studies reported by the Auger Observatory. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10^{16} and 10^{18} eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, differing considerably between the energy scale used by Auger and that used by the Telescope Array. Depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy, the contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum below the ankle. Fast spinning newborn pulsars that could produce UHECRs would be born in supernovae that could present interesting specific radiative features, due to the interaction of the pulsar wind with the surrounding ejecta. The resulting supernova lightcurves could present a high luminosity plateau over a few years, and a bright X-ray and gamma-ray peak around one or two years after the onset of the explosion. If such signatures were observed, they could have important implications both for UHECR astrophysics and for the understanding of core-collapse supernovae.

  6. Cosmic ray modulation over a solar cycle.

    NASA Astrophysics Data System (ADS)

    Ferreira, Stefan; Manuel, Rex; Potgieter, Marius

    2016-07-01

    The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulationmodel. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulation of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solarminimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays.

  7. Exclusion of cosmic rays in protoplanetary disks. II. Chemical gradients and observational signatures

    SciTech Connect

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Adams, Fred C.

    2014-10-20

    The chemical properties of protoplanetary disks are especially sensitive to their ionization environment. Sources of molecular gas ionization include cosmic rays (CRs), stellar X-rays, and short-lived radionuclides, each of which varies with location in the disk. This behavior leads to a significant amount of chemical structure, especially in molecular ion abundances, which is imprinted in their submillimeter rotational line emission. Using an observationally motivated disk model, we make predictions for the dependence of chemical abundances on the assumed properties of the ionizing field. We calculate the emergent line intensity for abundant molecular ions and simulate sensitive observations with the Atacama Large Millimeter/Sub-millimeter Array (ALMA) for a disk at D = 100 pc. The models readily distinguish between high ionization rates (ζ ≳ 10{sup –17} s{sup –1} per H{sub 2}) and below, but it becomes difficult to distinguish between low ionization models when ζ ≲ 10{sup –19} s{sup –1}. We find that H{sub 2}D{sup +} emission is not detectable for sub-interstellar CR rates with ALMA (6h integration), and that N{sub 2}D{sup +} emission may be a more sensitive tracer of midplane ionization. HCO{sup +} traces X-rays and high CR rates (ζ{sub CR} ≳ 10{sup –17} s{sup –1}), and provides a handle on the warm molecular ionization properties where CO is present in the gas. Furthermore, species like HCO{sup +}, which emits from a wide radial region and samples a large gradient in temperature, can exhibit ring-like emission as a consequence of low-lying rotational level de-excitation near the star. This finding highlights a scenario where rings are not necessarily structural or chemical in nature, but simply a result of the underlying line excitation properties.

  8. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  9. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    NASA Astrophysics Data System (ADS)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL <> and links on that page to CRIS and to Science News.

  10. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  11. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  12. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  13. Regolith history from cosmic-ray-produced isotopes

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1974-01-01

    A statistical model is given for soil development relating meteoroid impacts on the moon to cosmic-ray-produced isotopes in the soil. By means of this model, the average lunar mass loss rate during the past 1.4 aeons is determined to be 170g/sq cm aeon and the soil mixing rate to be approximately 200 cm/aeon from the gadolinium isotope data for the Apollo 15 and 16 drill stems. The isotope data also restrict the time variation of the meteoroid flux during the past 1.4 aeons.

  14. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  15. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  16. Robustness of SuperJunction structures against cosmic ray induced breakdown

    NASA Astrophysics Data System (ADS)

    Antoniou, Marina; Udrea, Florin; Bauer, Friedhelm

    2010-04-01

    In this paper we present a new design approach which dramatically improves the robustness of power semiconductor device against cosmic rays induced breakdown. This failure mode occurs during continuous operation at a DC rail voltage, which in practice is well below the breakdown rating (typically half of the breakdown). This failure is more prominent for higher breakdown rated devices (above 2 kV) and represents one of the main causes of concern, especially if the power systems are operated at higher altitude. Using a mathematical model for the calculation of the cosmic ray breakdown failure rate proposed by Zeller [1], we show that by employing a SuperJunction structure in the drift region of a high voltage diode we can achieve a great improvement in the robustness of the device against cosmic ray radiation. Since the cosmic ray failure rate is strongly dependent on the electric field distribution, the two-dimensional nature of the SuperJunction electric field with lower peaks and more even distribution offers a huge advantage over the use of standard PiN devices. Finally, a physical two-dimensional electric field model for the SuperJunction structures is developed which is then imported into Zeller's model to compute the cosmic ray failure rate for different DC voltage rails.

  17. Solar and Galactic Cosmic Rays Observed by SOHO

    NASA Astrophysics Data System (ADS)

    Curdt, W.; Fleck, B.

    Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to ≈77% of its original level over roughly 1 1/2 solar cycles, Single Event Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that during solar cycle 23 (1996 Apr 1 -- 2008 Aug 31) only 6% of the total number of SSR SEUs were caused by SEPs; the remaining 94% were due to galactic cosmic rays. During the maximum period of cycle 23 (2000 Jan 1 -- 2003 Dec 31), the SEP contribution increased to 22%, and during 2001, the year with the highest SEP rate, to 30%. About 40% of the total solar array degradation during the 17 years from Jan 1996 through Feb 2013 can be attributed to proton events, i.e. the effect of a series of short-lived, violent SEP events is comparable to the cycle-integrated damage by cosmic rays.

  18. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  19. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  20. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  1. Astroparticle Physics: Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  2. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  3. Yakutsk Institute's cosmic ray research facility

    NASA Astrophysics Data System (ADS)

    Konovalov, B.

    1984-11-01

    Progress in cosmic physics research and aeronomy is reported. Geophysical observatories and stations, test ranges and other facilities spread over a vast territory of the Yakutsk Autonomous Republic and instruments onboard satellites are outlined. The ionosphere, magnetic fields and earth currents, cosmic rays and radio emissions, polar aurora and meteorological phenomena are studied. A large installation of the SHALL which investigates cosmic-ray showers is discussed. The creation of a unique complex for study of the ionosphere which will interconnect existing ionosphere stations near Yakutsk and in Zhigansk, a geospace-physics observatory in Tiksi, and a station which is to be created on Kotel'nyy Island is reported. It will be possible to discern from data received at central post how the solar wind is flowing around the Earth and what changes are produced in the ionosphere. The SHALL will be able to assess the radiation situation around the planet and to give accurate forecasts of shortwave radio conditions.

  4. Cosmic rays and the Monogem supernova remnant

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    2004-10-01

    Recent findings indicate that the Monogem Ring and the associated pulsar PSR B0656 + 14 may be the `Single Source' responsible for the formation of the sharp knee in the cosmic ray energy spectrum at ˜3 PeV. The energy spectrum of cosmic rays expected for the Monogem Ring supernova remnant (SNR) from our SNR acceleration model [J. Phys. G: Nucl. Part. Phys. 27 (2001) 941] has been published by us elsewhere [J. Phys. G: Nucl. Part. Phys. 29 (2003) 709] . In this paper we go on to estimate the contribution of the pulsar B0656 + 14 to the cosmic rays in the PeV region. We conclude that although the pulsar can contribute to the formation of the knee, it cannot be the dominant source of it and an SNR is still needed. We also examine the possibility of the pulsar giving the peak of the extensive air shower (EAS) intensity observed from the region inside the Monogem Ring [ApJ Lett. 597 (2003) L129]. The estimates of the gamma-ray flux produced by cosmic ray particles from this pulsar indicate that it can be the source of the observed peak, if the particles were confined within the SNR during a considerable fraction of its total age. The flux of gamma quanta at PeV energies has a high sensitivity to the duration of the confinement. The estimates of this time and of the following diffusion of cosmic rays from the confinement volume turn out to be in remarkable agreement with the time needed for these cosmic rays to propagate to the solar system and to form the observed knee in the cosmic ray energy spectrum. Other possible mechanisms for the production of particles which could give rise to the observed narrow peak in the EAS intensity were also examined. Electrons scattered on the microwave background or on X-rays, emitted by SNR, cannot be responsible for the gamma-quanta in the peak. Neutrons produced in PP-collisions or released from the disintegration of accelerated nuclei seem to be also unable to create the peak since they cannot give the observed flux. If the

  5. The Pierre Auger Cosmic Ray Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  6. The HEAT Cosmic Ray Antiproton Experiment

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1998-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration is constructing a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton to proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates.

  7. Hydromagnetic waves and cosmic ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch angle diffusion of cosmic rays in hydromagnetic wave fields is considered strictly within the quasilinear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since in this approximation also the Landau resonance does not lead to particle reflections a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well known difficulties of quasilinear scattering theory for cosmic rays near 90 degrees pitch angle.

  8. Diffusion-convection function of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Yang, G.

    1985-01-01

    The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.

  9. Space erosion and cosmic ray exposure ages of stony meteorites

    NASA Astrophysics Data System (ADS)

    Rubincam, David Parry

    2015-01-01

    Space erosion from dust impacts may set upper limits on the cosmic ray exposure (CRE) ages of stony meteorites. A meteoroid orbiting within the asteroid belt is bombarded by both cosmic rays and interplanetary dust particles. Galactic cosmic rays penetrate only the first few meters of the meteoroid; deeper regions are shielded. The dust particle impacts create tiny craters on the meteoroid's surface, eroding it away by abrasion at a particular rate. Hence a particular point inside a meteoroid accumulates cosmic ray products only until that point wears away, limiting CRE ages. The results would apply to other regolith-free surfaces in the Solar System as well, so that abrasion may set upper CRE age limits which depend on the dusty environment. Calculations based on N. Divine's dust populations and on micrometeoroid cratering indicate that large stony meteoroids in circular ecliptic orbits at 2 AU will record 21Ne CRE ages of ∼176 × 106 y if dust masses are in the range 10-21-10-3 kg. This is in broad agreement with the maximum observed CRE ages of ∼100 × 106 y for stones. High erosion rates in the inner Solar System may limit the CRE ages of Near-Earth Asteroids (NEAs) to ∼120 × 106 y. A characteristic of erosion is that the neon concentrations tend to rise as the surface of the meteorite is approached, rather than drop off as for meteorites with fixed radii. Pristine samples recovered from space may show the rise. If the abrasion rate for stones were a factor of ∼6 larger than found here, then the ages would drop into the 30 × 106 y range, so that abrasion alone might be able to explain many CRE ages. However, there is no strong evidence for higher abrasion rates, and in any case would probably not be fast enough to explain the youngest ages of 0.1-1 × 106 y. Further, space erosion is much too slow to explain the ∼600 × 106 y ages of iron meteorites.

  10. Cosmic ray intensity gradients in the solar system

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1975-01-01

    Recent progress in the determination of cosmic-ray intensity gradients is reviewed. Direct satellite measurements of the integral gradient are described together with various types of indirect measurements, including measurements of the Ar-37/Ar-39 ratio in samples from the Lost City meteorite, studies of anisotropies in neutron-monitor counting rates, and analysis of the sidereal diurnal anisotropy observed at a single point on earth. Nucleonic radial gradients and electron gradients measured by satellites in differential energy windows are discussed, and theoretical studies of the physical processes involved in these gradients are summarized. Observations of intensity gradients in heliographic latitude are reported.

  11. Pion Production Momentum Loss of Cosmic Ray Hadrons

    NASA Astrophysics Data System (ADS)

    Krakau, S.; Schlickeiser, R.

    2015-04-01

    We present new results on the energy loss rate of high energy protons due to pion production in proton-proton interactions. Our calculations are based on the parameterized pion flux of Kelner et al. Our new results are valid for proton energies in the range of 1 GeV \\ll E≤slant {{10}8} GeV, which enhance the valid energy range by orders of magnitude. With these results one can calculate the energy loss due to pion production for cosmic ray protons from low energies to energies between the knee and ankle.

  12. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  13. Cosmic ray air showers from sphalerons

    NASA Astrophysics Data System (ADS)

    Brooijmans, Gustaaf; Schichtel, Peter; Spannowsky, Michael

    2016-10-01

    The discovery of the Higgs boson marks a key ingredient to establish the electroweak structure of the Standard Model. Its non-abelian gauge structure gives rise to, yet unobserved, non-perturbative baryon and lepton number violating processes. We propose to use cosmic ray air showers, as measured, for example, at the Pierre Auger Observatory, to set a limit on the hadronic production cross section of sphalerons. We identify several observables to discriminate between sphaleron and QCD induced air showers.

  14. Rigidity Dependence of Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2012-07-01

    The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-1990 for Deep River, Goose Bay and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases in 1987 at Deep River and in 1986 at Tokyo during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for these neutron monitoring stations of low and high cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics.

  15. Isotopic stack: measurement of heavy cosmic rays

    SciTech Connect

    Beaujean, R.; Schmidt, M.; Enge, W.; Siegmon, G.; Krause, J.; Fischer, E.

    1984-07-13

    A stack of plastic nuclear track detectors was exposed to heavy cosmic rays on the pallet of Spacelab 1. Some layers of the stack were rotated with respect to the main stack to determine the arrival time of the particles. After return of the stack the latent particle tracks are revealed by chemical etching. Under the optical microscope the charge, mass, energy, and impact direction of the particles can be deduced from the track geometry.

  16. Tracks of cosmic rays in plastics.

    PubMed

    Fleischer, R L; Price, P B; Walker, R M; Filz, R C; Fukui, K; Friedlander, M W; Holeman, E; Rajan, R S; Tamhane, A S

    1967-01-13

    Cosmic ray nuclei have been observed with the use of plastic trackdetecting solids in satellites and high-altitude balloon flights. Nuclear emulsions in the stacks of plastic sheets allowed the positive identification of cosmic raynuclei as light as nitrogen. The most striking new information was the failure to observe relativistic iron nuclei, a result which has led to an advance in the understanding of track registration criteria.

  17. Longevity and Highest-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.; Keszthelyi, Bettina; Ng, Y. Jack

    It is proposed that the highest energy ~1020 eV cosmic ray primaries are protons which are decay products of a superheavy particle, G. The protons may be decay products either directly of a nearby (galactic) G or of a long-lived intermediate particle X which arises from decay of a distant (cosmological) G, then decays in or near our Galaxy. Such scenarios can occur in e.g. SU(15) grand unification and in some preon models.

  18. Active-Pixel Cosmic-Ray Sensor

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Cunningham, Thomas J.; Holtzman, Melinda J.

    1994-01-01

    Cosmic-ray sensor comprises planar rectangular array of lateral bipolar npn floating-base transistors each of which defines pixel. Collector contacts of all transistors in each row connected to same X (column) line conductor; emitter contacts of all transistors in each column connected to same Y (row) line conductor; and current in each row and column line sensed by amplifier, output of which fed to signal-processing circuits.

  19. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Pu, Ge; Callaghan, Ed; Parsons, Matthew; Cribflex Team

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award.

  20. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  1. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  2. Explanation of the local galactic cosmic ray energy spectra measured by Voyager 1. I. Protons

    SciTech Connect

    Schlickeiser, R.; Kempf, A.; Webber, W. R. E-mail: ank@tp4.rub.de

    2014-05-20

    Almost exactly 100 yr after the original discovery of cosmic rays, the V1 spacecraft has observed, for the first time, the local interstellar medium energy spectra of cosmic ray H, He, C/O nuclei at nonrelativistic kinetic energies, after leaving the heliosphere modulation region on 2012 August 25. We explain these observations by modeling the propagation of these particles in the local Galactic environment with an updated steady-state spatial diffusion model including all particle momentum losses with the local interstellar gas (Coulomb/ionization, pion production, adiabatic deceleration, and fragmentation interactions). Excellent agreement with the V1 cosmic ray H observations is obtained if the solar system resides within a spatially homogeneous layer of distributed cosmic ray sources injecting the same momentum power law ∝p {sup –s} with s = 2.24 ± 0.12. The best fit to the V1 H observations also provides an estimate of the characteristic break kinetic energy T{sub C} = 116 ± 27 MeV, representing the transition from ionization/Coulomb energy losses at low energies to pion production and adiabatic deceleration losses in a Galactic wind at high energies. As the determined value is substantially smaller than 217 MeV in the absence of adiabatic deceleration, our results prove the existence of a Galactic wind in the local Galactic environment.

  3. A Tale of Cosmic Rays Narrated in γ Rays by Fermi

    NASA Astrophysics Data System (ADS)

    Tibaldo, Luigi

    2014-10-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling us the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ-ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ-ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ-ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multimessenger observations are bringing us ever closer to solving the cosmic-ray

  4. Similarity of subcardian and sharp variations of cosmic ray intensity to the heart variability

    NASA Astrophysics Data System (ADS)

    Petropoulos, B.; Mavromichalaki, H.; Papailiou, M.; Kelesidis, K.; Mertzanos, G.

    In this paper we examine the relationship between the daily variation of cosmic ray intensity as it is measured by the Neutron Monitor of the University of Athens underline http cosray phys uoa gr and the average daily and hourly heart frequency of patients with no symptoms and no hospital admission of the cardiological clinic of the KAT Hospital This work involves the years from 2002 to 2005 which represent the descending phase of the present solar cycle Periodicities of 2 3 4 6 8 and 12 hours were found through Fourier analysis of the hourly data of cosmic ray intensity These periodicities match the circular variations for the same period found with the method of successive approximations in a 24hour base in the cosmic ray intensity as well as in the average heart frequency for certain days when Holter was used This similarity suggests that the cosmic ray intensity variations are connected with heart frequency variations During intense cosmic rays variations produced by strong solar phenomena like Forbush decreases and relativistic proton events the amplitude of the circular structure takes its minimum value in both series of data It is shown that disturbances in the heart rate are connected with the sudden variations of cosmic rays intensity during this kind of events The results will be extremely useful in the future study of Space Weather and its effect on human activities in space and in human health In this investigation we are interested in how the cosmic rays and the geomagnetic field during magnetic storms

  5. Steady state and dynamical structure of a cosmic-ray-modified termination shock

    NASA Technical Reports Server (NTRS)

    Donohue, D. J.; Zank, G. P.

    1993-01-01

    A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.

  6. The Cosmic Ray Experiment Kascade-Grande

    NASA Astrophysics Data System (ADS)

    Brancus, I. M.; Apel, W. D.; Badea, F. A.; Bekk, K.; Bercuci, A.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brüggemann, M.; Buchholz, P.; Chiavassa, A.; Daumiller, K.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Kampert, K.-H.; Klages, H. O.; Kolotaev, Y.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Obenland, R.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Risse, A.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zimmermann, D.

    2006-08-01

    The cosmic ray experiment KASCADE, set up in Forschungszentrurn Karlsruhe, Germany as a multi-detector installation, studying the electromagnetic, the muonic and the hadronic extensive air showers (EAS) component for each observed shower event, has explored the primary energy spectrum and the mass composition of cosmic rays in the energy range of the so called "knee" (around 3 PeV). The multidimensional analyses reveal a distinct knee (change of the spectral index of a power-law description) in the energy spectra of the light primary cosmic rays and the dominance of heavy particles with increasing energy. This result provides some important implications, discriminating various conjectures and astrophysical models of the origin of the knee. The KASCADE-Grande experiment is an upgrade of the KASCADE experiment extending the detection area by a factor of 10. It is motivated by studies of a higher primary energy range, looking for the knee-like features of the heavy components, which are expected to appear in the range of 100 PeV. The lecture describes details of motivation, of experimental lay-out and of first studies with KASCADE-Grande.

  7. Cosmic Ray Energetics and Mass (CREAM)

    NASA Technical Reports Server (NTRS)

    Coutu, Stephane

    2005-01-01

    The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.

  8. Cosmic ray anisotropies near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.

    2014-12-01

    Context. The Voyager 1 spacecraft became the first man-made probe to cross the heliopause into the local interstellar medium and measure the galactic environment, including charged particle intensities, in situ. Aims: We qualitatively explain the observed anisotropies of galactic and anomalous cosmic rays in the interstellar medium. Methods: A pitch-angle-dependent numerical model was constructed and applied to the study of both heliospheric (anomalous cosmic rays and termination shock particles) and galactic cosmic rays near the heliopause region. Results: In accordance with the observations, the model is able to reproduce the observed anisotropic nature of both particle populations. In the interstellar medium, the heliospheric particle distribution shows a peak at pitch angles near 90°, while for galactic particles, their distribution shows a deficiency at these pitch-angle values. Conclusions: The observed anisotropies are related to the pitch-angle dependence of the perpendicular diffusion coefficient, and if this dependence is chosen appropriately, the anisotropies observed by Voyager 1 can be explained naturally.

  9. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  10. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  11. Constraints on particle dark matter from cosmic-ray antiprotons

    SciTech Connect

    Fornengo, N.; Vittino, A.; Maccione, L. E-mail: luca.maccione@lmu.de

    2014-04-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints.

  12. Interstellar environment change: effects on heliospheric structure, galactic cosmic ray modulation and cosmogenic isotope production.

    NASA Astrophysics Data System (ADS)

    Mueller, H. R.; Florinski, V.; Zank, G. P.

    2005-12-01

    Galactic cosmic ray (GCR) intensity levels in the inner heliosphere over the past million years, preserved in cosmogenic isotope records, display significant variability on virtually all timescales. Here we focus on the variability caused by changes in the interstellar environment of the Sun as it encounters interstellar clouds or low-density regions (supernova bubbles) during its journey through the Galaxy. Three possible environments are compared and the resulting structure of the heliosphere investigated: the tenuous fully ionized Local Bubble, the Local Interstellar Cloud, and a dense cold cloud of pure atomic hydrogen. Using several plausible models of interplanetary turbulence evolution and particle diffusion we investigate the dependence of the cosmic-ray mean free paths and intensities on the size of the modulation region and the pickup ion (PUI) intensities. We show that, while denser clouds usually yield smaller diffusion coefficients due to enhanced PUI turbulence, GCR radiation levels in the inner heliosphere are actually increased due to a reduction in the size of the modulation region. Our results indicate that GCR intensities at Earth can vary by a factor 2 to 7 between 300 MeV and 1 GeV compared to the present intensity. Interestingly, most of the changes are due to a variation in the thickness of the modulation wall in the inner heliosheath. Finally, we calculate cosmogenic isotope production rates in the Earth's atmosphere for the three environments and show that Beryllium-10 concentration could vary between 25% declines in low-density environments to increases in excess of 300% in high density interstellar clouds.

  13. Measurements of the cosmic-ray Be/B ratio and the age of cosmic rays

    NASA Technical Reports Server (NTRS)

    Brown, J. W.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    The ratio Be/B depends on whether the confinement time of cosmic rays in the Galaxy is long or short compared to the radioactive half-life of Be-10. We report observations of this ratio which were obtained with a dE/dx-Cerenkov detector launched into a polar orbit on OGO-6 as part of the Caltech Solar and Galactic Cosmic Ray Experiment. Be/B ratios were determined for various rigidity thresholds up to 15 GV. We find no statistically significant rigidity dependence of the ratio, which is 0.41 plus or minus 0.02 when averaged over all observed cutoffs. Additional calculations suggest that if the present fragmentation parameters are correct, then the lifetime of cosmic rays in the Galaxy is less then 10 m.y.

  14. Cosmic-Ray Neon, Wolf-Rayet Stars, and the Superbubble Origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Binns, W. R.; Wiedenbeck, M. E.; Arnould, M.; Cummings, A. C.; George, J. S.; Goriely, S.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Meynet, G.; Scott, L. M.; Stone, E. C.; von Rosenvinge, T. T.

    2005-11-01

    We report the abundances of neon isotopes in the Galactic cosmic rays (GCRs) using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). These abundances have been measured for seven energy intervals over the energy range of 84<=E/M<=273 MeV nucleon-1. We have derived the 22Ne/20Ne ratio at the cosmic-ray source using the measured 21Ne, 19F, and 17O abundances as ``tracers'' of secondary production of the neon isotopes. Using this approach, the 22Ne/20Ne abundance ratio that we obtain for the cosmic-ray source is 0.387+/-0.007(statistical)+/-0.022(systematic). This corresponds to an enhancement by a factor of 5.3+/-0.3 over the 22Ne/20Ne ratio in the solar wind. This cosmic-ray source 22Ne/20Ne ratio is also significantly larger than that found in anomalous cosmic rays, solar energetic particles, most meteoritic samples of matter, and interplanetary dust particles. We compare our ACE CRIS data for neon and refractory isotope ratios, and data from other experiments, with recent results from two-component Wolf-Rayet (W-R) models. The three largest deviations of GCR isotope ratios from solar system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are indeed present in the GCRs. In fact, all of the isotope ratios that we have measured are consistent with a GCR source consisting of about 80% material with solar system composition and about 20% W-R material. Since W-R stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of these data with W-R models suggests that superbubbles are the likely source of at least a substantial fraction of GCRs.

  15. EXCLUSION OF COSMIC RAYS IN PROTOPLANETARY DISKS: STELLAR AND MAGNETIC EFFECTS

    SciTech Connect

    Cleeves, L. Ilsedore; Adams, Fred C.; Bergin, Edwin A.

    2013-07-20

    Cosmic rays (CRs) are thought to provide an important source of ionization in the outermost and densest regions of protoplanetary disks; however, it is unknown to what degree they are physically present. As is observed in the solar system, stellar winds can inhibit the propagation of CRs within the circumstellar environment and subsequently into the disk. In this work, we explore the hitherto neglected effects of CR modulation by both stellar winds and magnetic field structures and study how these processes act to reduce disk ionization rates. We construct a two-dimensional protoplanetary disk model of a T-Tauri star system, focusing on ionization from stellar and interstellar FUV, stellar X-ray photons, and CRs. We show that stellar winds can power a heliosphere-like analog, i.e., a ''T-Tauriosphere,'' diminishing CR ionization rates by several orders of magnitude at low to moderate CR energies (E{sub CR} {<=} 1 GeV). We explore models of both the observed solar wind CR modulation and a highly simplified estimate for ''elevated'' CR modulation as would be expected from a young T-Tauri star. In the former (solar analog) case, we estimate the ionization rate from galactic CRs to be {zeta}{sub CR} {approx} (0.23-1.4) Multiplication-Sign 10{sup -18} s{sup -1}. This range of values, which we consider to be the maximum CR ionization rate for the disk, is more than an order of magnitude lower than what is generally assumed in current models for disk chemistry and physics. In the latter elevated case, i.e., for a ''T-Tauriosphere,'' the ionization rate by CRs is {zeta}{sub CR} {approx}< 10{sup -20} s{sup -1}, which is 1000 times smaller than the interstellar value. We discuss the implications of a diminished CR ionization rate on the gas physics by estimating the size of the resulting magnetorotational instability dead zones. Indeed, if winds are as efficient at CR modulation as predicted here, short-lived radionuclides (now extinct) would have provided the major source

  16. Analysis of Geomagnetic Disturbances and Cosmic Ray Intensity Variations in Relation to Medical Data from Rome

    NASA Astrophysics Data System (ADS)

    Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Tsipis, A.

    2010-07-01

    Over the last few years many studies have been conducted concerning the possible influence of geomagnetic and solar activity and cosmic ray activity on human physiological state and in particular on human cardio - health state. As it is shown the human organism is sensitive to environmental changes and reacts to them through a series of variations of its physiological parameters such as heart rate, arterial systolic and diastolic blood pressure, etc. In this paper daily mean values of heart rate, as they were registered for a group of 2.028 volunteers during medical examinations in the Polyclinico Tor Vergata, Rome, Italy are analyzed in relation to daily cosmic ray intensity variations, as measured by the Neutron Monitor of the University of Athens and daily variations of the geomagnetic indices Dst, Ap and Kp. The results from this study show that geomagnetic activity changes and cosmic rays intensity variations may regulate the human homeostasis.

  17. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  18. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    NASA Astrophysics Data System (ADS)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  19. A connection between star formation activity and cosmic rays in the starburst galaxy M82

    NASA Astrophysics Data System (ADS)

    VERITAS Collaboration; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Celik, O.; Cesarini, A.; Chow, Y. C.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Dickherber, R.; Duke, C.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lebohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.

    2009-12-01

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse γ-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of γ-ray emission. Here we report the detection of >700-GeV γ-rays from M82. From these data we determine a cosmic-ray density of 250eVcm-3 in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  20. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela V.

    2013-03-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 1019 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ~ E-1) due to pulsar spin down and a maximum energy Emax ~ Z 1019 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 1016 and 1018 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy.

  1. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    SciTech Connect

    Stawarz, Lukasz; Petrosian, Vahe; Blandford, Roger D.; /KIPAC, Menlo Park

    2011-08-19

    Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution or particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons

  2. 10Be Production in the Atmosphere by Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Herbst, Klaudia; Heber, Bernd; Berger, Thomas; Reitz, Günther

    2013-06-01

    Galactic cosmic ray nuclei and energetic protons produced in solar flares and accelerated by coronal mass ejections are the main sources of high-energy particles of extraterrestrial origin in near-Earth space and inside the Earth's atmosphere. The intensity of galactic cosmic rays inside the heliosphere is strongly influenced by the modulation of the interstellar source particles on their way through interplanetary space. Among others, this modulation depends on the activity of the Sun, and the resulting intensity of the energetic particles in the atmosphere is an indicator of the solar activity. Therefore, rare isotopes found in historical archives and produced by spallation reactions of primary and secondary hadrons of cosmic origin in the atmosphere, so-called cosmogenic nuclides, can be used to reconstruct the solar activity in the past. The production rate of 10Be, one of the cosmogenic nuclides most adequate to study the solar activity, is presented showing its variations with geographic latitude and altitude and the dependence on different production cross-sections present in literature. In addition, estimates for altitude integrated production rates of 10Be at different locations since the early nineteen sixties are shown.

  3. Cosmic-ray-produced KR in St. Severin core AIII

    NASA Astrophysics Data System (ADS)

    Lavielle, B.; Marti, K.

    Kr isotopic abundances in 10 samples from core AIII of the St. Severin chondrite are reported, and the variation with depth of cosmic-ray produced Kr is discussed. It is shown that the ratio (Kr-78/Kr-83)c changes with depth and can be used as an irradiation hardness monitor. Cosmic-ray-produced Kr and Ne in the St. Severin core are compared with ratios observed in bulk chondrites. A linear correlation between (Ne-22/Ne-21)c and (Kr-78/Kr-83)c exists for bulk samples of chondrites of varying preatmospheric size, but does not exist in the St. Severin core. The calculated Kr-83 production rates, P83, are similar in H, L, and LL chondrites for samples of comparable shielding conditions. However, P83 rates increase by a factor of about 2 with shielding depth. The maximum observed P83 values correspond to (Kr-78/Kr-83)c factor of about 2 with shielding depth. The maximum observed P83 values correspond to (Kr-78/Kr-83)c less than about 0.14.

  4. Cosmic-ray-produced Kr in St. Severin core AIII

    NASA Technical Reports Server (NTRS)

    Lavielle, B.; Marti, K.

    1988-01-01

    Kr isotopic abundances in 10 samples from core AIII of the St. Severin chondrite are reported, and the variation with depth of cosmic-ray produced Kr is discussed. It is shown that the ratio (Kr-78/Kr-83)c changes with depth and can be used as an irradiation hardness monitor. Cosmic-ray-produced Kr and Ne in the St. Severin core are compared with ratios observed in bulk chondrites. A linear correlation between (Ne-22/Ne-21)c and (Kr-78/Kr-83)c exists for bulk samples of chondrites of varying preatmospheric size, but does not exist in the St. Severin core. The calculated Kr-83 production rates, P83, are similar in H, L, and LL chondrites for samples of comparable shielding conditions. However, P83 rates increase by a factor of about 2 with shielding depth. The maximum observed P83 values correspond to (Kr-78/Kr-83)c factor of about 2 with shielding depth. The maximum observed P83 values correspond to (Kr-78/Kr-83)c less than about 0.14.

  5. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  6. Cosmic-ray scintillation at the lunar surface

    SciTech Connect

    Benson, R.; Duller, N.M.; Green, P.J.

    1981-02-01

    The theory of cosmic-ray scintillations has developed rapidly over the past few years. Cosmic-ray scintillations arise from various irregularities in the magnetic fields through which cosmic-ray particles must travel before being observed. These scintillations are characterized by broad-band fluctuations in intensity over time. We have undertaken a study of the cosmic-ray background as observed with the Rice University Suprathermal Ion Detector Experimental (SIDE) that was deployed on the lunar surface during the Apollo 14 mission. The energy threshold for cosmic-ray protons was approximately 25 MeV in one sensor and 50 MeV in another. We find that the interplanetary cosmic-ray scintillations are observed with the SIDE and these observations are consistent with current theoretical models and with other experimental results.

  7. Propagation of cosmic-ray nuclei in a diffusing galaxy with convective halo and thin matter disk

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lee, M. A.; Gupta, M.

    1992-01-01

    A diffusion model for cosmic-ray propagation in the galaxy that includes the effects of convection in the halo is presented. Calculations are made for 13 primary and secondary nuclei with rigidities between 1 and 1000 GV using interaction loss rates, secondary production rates, and radioactive decay on the basis of recent new cross-section measurements. It is found that, in order to fit the rather weak radial dependence of cosmic-ray protons derived from gamma-ray data, the radial profile of the cosmic-ray sources must also have a weak radial dependence. It is suggested that convection perpendicular to the disk of the Milky Way Galaxy may not be important even at rigidities less than a few GV. The obtained limits on halo thicknesses are consistent with what can be determined for the distribution of cosmic-ray electrons in the halo based on the distribution of radio synchrotron emission in this and other galaxies.

  8. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    NASA Technical Reports Server (NTRS)

    Nautiyal, C. M.; Rao, M. N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed.

  9. What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

    SciTech Connect

    Bloom, Elliott

    2000-10-10

    Gamma rays in the band from 20 MeV to 300 GeV, used in combination with data from radio and X-ray bands, provide a powerful tool for studying the origin of cosmic rays in our sister galaxies Andromeda and the Magellanic Clouds. Gamma-ray Large Area Space Telescope (GLAST) will spatially resolve these galaxies and measure the spectrum and intensity of diffuse gamma radiation from the collisions of cosmic rays with gas and dust in them. Observations of Andromeda will give an external perspective on a spiral galaxy like the Milky Way. Observations of the Magellanic Clouds will permit a study of cosmic rays in dwarf irregular galaxies, where the confinement is certainly different and the massive star formation rate is much greater.

  10. Magnetohydrodynamic plasma instability driven by Alfven waves excited by cosmic rays

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Webb, G. M.

    1984-04-01

    Hydrodynamical equations describing the mutual interaction of cosmic rays, thermal plasma, magnetic field, and Alfven waves scattering the cosmic rays used in cosmic ray shock acceleration theory are analyzed for long-wavelength linear compressible instabilities. It is shown that the backward propagating slow magnetoacoustic mode is driven convectively unstable by the wave pressure of self-excited Alfven waves. The marginal stability curve is derived and the stabilizing effects of a preexisting wave field and propagation oblique to the magnetic field are discussed along with the dependence of the growth rates of the instability on the various parameters. A similar analysis is performed for a plasma which does not behave adiabatically, being dissipatively heated by the self-excited Alfven field. This system is found to be unstale to compressions associated with both backward and forward propagating slow magnetoacoustic waves.

  11. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  12. Two centenaries: The discovery of cosmic rays and the birth of Lajos Jánossy

    NASA Astrophysics Data System (ADS)

    Király, Péter

    2013-02-01

    Centenaries provide useful perspectives for looking back upon long-past events and on their later consequences, and also on the activities of persons who made a lasting impact on some important field of research. Cosmic ray physics, as we now know it, had multiple roots. The most important puzzle that incited research in the early 20th century, however, was connected with the lack of understanding of the origin of an omnipresent extremely penetrating ionizing radiation. At least in hindsight, the balloon ascent of Victor Hess on the 7th August 1912 provided the first convincing evidence for the cosmic origin of that radiation, although Werner Kolhörster's subsequent flights to even higher altitudes and with better instrumentation certainly provided important confirmation. General acceptance of the existence of that radiation came more than a decade later, and its basic properties were revealed only in the early 30's. It was at about that time that a research student of Kolhörster, Lajos Jánossy, who happened to be borne in the discovery year of 1912, started his research in cosmic ray physics. Later he did important research in London, Manchester and Dublin, and wrote one of the first comprehensive monographs on cosmic rays. After his return to Hungary in 1950, he played an important part in establishing cosmic ray research in a newly formed research institute in Budapest.

  13. SPECTRA OF COSMIC-RAY PROTONS AND HELIUM PRODUCED IN SUPERNOVA REMNANTS

    SciTech Connect

    Ptuskin, Vladimir; Zirakashvili, Vladimir; Seo, Eun-Suk

    2013-01-20

    Data obtained in the Advanced Thin Ionization Calorimeter (ATIC-2), Cosmic Ray Energetics and Mass (CREAM), and Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiments suggest that the elemental interstellar spectra of cosmic rays below the knee at a few times 10{sup 6} GeV are not simple power laws, but that they experience hardening at a magnetic rigidity of about 240 GV. Another essential feature is the difference between proton and helium energy spectra, such that the He/p ratio increases by more than 50% in the energy range from 10{sup 2} to 10{sup 4} GV. We consider the concavity of the particle spectrum resulting from the nonlinear nature of diffusive shock acceleration in supernova remnants (SNRs) as a possible reason for the observed spectrum hardening. The increase of the helium-to-proton ratio with energy can be interpreted as a consequence of cosmic-ray acceleration by forward and reverse shocks in SNRs. The contribution of particles accelerated by reverse shocks makes the concavity of the produced overall cosmic-ray spectrum more pronounced. The spectra of protons and helium nuclei accelerated in SNRs and released into the interstellar medium are calculated. The derived steady-state interstellar spectra are in reasonably good agreement with observations.

  14. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Rosenvinge, T. T. von

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  15. New approach to cosmic ray investigations above the knee

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Petrukhin, A. A.

    2016-05-01

    It is assumed that at energies around the knee the nucleus-nucleus interaction is drastically changed due to production of blobs of quark-gluon matter with very large orbital momentum. This approach allows explain all so-called unusual events observed in cosmic rays and gives a new connection between results of EAS investigations and energy spectrum and mass composition of primary cosmic rays. To check this approach, the experiments in cosmic rays and at LHC are proposed.

  16. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  17. Cosmic ray Implications for Human Health

    NASA Astrophysics Data System (ADS)

    Shea, M. A.; Smart, D. F.

    2000-07-01

    There appears to be concern among some people about the possible effects of cosmic radiation on everyday life. The amount of cosmic radiation that reaches the Earth and its environment is a function of solar cycle, altitude and latitude. The possible effect of naturally occurring cosmic radiation on airplane crews and space flight personal is a subject of current study. This paper discusses the variables controlling the cosmic ray flux in the atmosphere and describes models and software that have been developed that provide quantitative information about the cosmic radiation exposure at flight altitudes. The discussion is extended to include the cosmic radiation exposure to manned spacecraft.

  18. The galactic origin of cosmic rays. I

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    The theoretical basis for the supernova envelope shock origin of cosmic rays is reviewed. The theoretical explanation of the SN Type I light curve requires the ejection of a relativistic mass fraction. The criterion of the adiabatic deceleration by Alfven wave trapping neither applies in theory, when beta is greater than 1, or practice, as in the Starfish high-altitude nuclear explosion experiment. Arguments of delayed acceleration due to K-capture are not applicable to SN ejecta because a period of prompt recombination exists before subsequent stripping in propagation.

  19. Acceleration and propagation of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2015-12-01

    Analysis of the solar cosmic ray measurements on the Geostationary Orbital Environmental Satellite (GOES) spacecraft indicated that the duration of solar flare relativistic proton large pulses is comparable with the solar wind propagation duration from the Sun to the Earth. The front of the proton flux from flares on the western solar disk approaches the Earth with a flight time along the Archimedean spiral magnetic field line of 15-20 min. The proton flux from eastern flares is registered in the Earth's orbit 3-5 h after the flare onset. These particles apparently propagate across IMF owing to diffusion.

  20. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle. PMID:19392251

  1. Ultra high energy cosmic ray spectrum

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cady, R.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, P. R.; Loh, E. C.; Mizumoto, Y.; Salamon, M. H.

    1985-01-01

    Ultra-high energy cosmic rays have been observed by means of atmospheric fluorescence with the Fly's Eye since 1981. The differential energy spectrum above 0.1 EeV is well fitted by a power law with slope 2.94 + or - 0.02. Some evidence of flattening of the spectrum is observed or energies greater than 10 EeV, however only one event is observed with energy greater than 50 EeV and a spectral cutoff is indicated above 70 EeV.

  2. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Callaghan, Edward; Parsons, Matthew

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award. Supported by a Society of Physics Students Chapter Research Award.

  3. Searching for Cosmic Ray Radar Echos In TARA Data

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2013-04-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation for about a year and half. This bi-static CW radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). For the majority of its operation it has been in the TARA1.5 phase in which a 1.5 kW transmitter broadcasts from a single Yagi antenna across the TA surface detector array to our receiver station 50 km away. Our initial DAQ system has obtained millions of triggers utilizing a USRP2 PC controlled radio. During recent months, we have commissioned a 250 MHz sample rate detector with an intelligent self-triggering algorithm that can detect radar echo chirp signals below the noise. I will describe the stages of analysis used for comparing TARA radar triggers with TA data and present a synopsis of the analysis of the USRP2 data and preliminary results from the more advanced DAQ system.

  4. Cosmic Ray Inspection and Passive Tomography for SNM Detection

    SciTech Connect

    Armitage, John; Oakham, Gerald; Bryman, Douglas; Cousins, Thomas; Noeel, Scott; Gallant, Grant; Jason, Andrew; Jonkmans, Guy; Stocki, Trevor J.; Waller, David

    2009-12-02

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or a subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.

  5. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  6. Transition from Galactic to extragalactic cosmic rays and cosmic ray anisotropy

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.; Sigl, G.

    2013-06-01

    This talk based on results of ref. [1], where we constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z ≳ 10(16-17) eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. If the primary composition is mostly light or intermediate around E ˜ 1018 eV, the transition at the ankle is ruled out, except in the unlikely case of an extreme Galactic magnetic field with strength >10 μG. Therefore, the fast rising proton contribution suggested by KASCADE-Grande data between 1017 eV and 1018 eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E > 1018 eV, the transition energy can be close to the ankle, if Galactic cosmic rays are produced by sufficiently frequent transients as e.g. magnetars.

  7. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  8. Variations of the cosmic ray general component in Antarctica

    NASA Technical Reports Server (NTRS)

    Charakhchyan, T. N.; Krasotkin, A. F.; Kurguzova, A. I.; Svirzhevsky, N. S.

    1985-01-01

    A cosmic ray variations, zonal cosmic ray modulation, was found in the lower atmosphere from the sonde measurement results. The variations give rise to anomalies in the latitude distributions of the cosmic ray charged component and the anomalous north-south asymmetry. To find the nature of the variations, the cosmic ray general component was measured with the same detectors as in the sonde measurements gas discharge counters and the counter telescopes with 7-mm Al filters detecting the electrons of energy above 200 keV and 5 MeV. The measurement data obtained in Antarctica in the years 1978 to 1983 are presented and discussed.

  9. Cosmic-ray record in solar system matter

    SciTech Connect

    Reedy, R.C.; Arnold, J.R.; Lal, D.

    1983-01-14

    The energetic nuclei in cosmic rays interact with meteoroids, the moon, planets, and other solar system matter. The nucleides and heavy nuclei tracks produced by the cosmic-ray particles in these targets contain a wealth of information about the history of the objects and temporal ans spatial variations in the particle fluxes. Most lunar samples and many meteorites ahve complex histories of cosmic-ray exposure from erosion, gardening, fragmentation, orbital changes, and other processes. There appear to be variations in the past fluxes of solar particles, and possibly also galactic cosmic rays, on time scales of 10/sup 4/ to 10/sup 7/ years.

  10. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  11. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  12. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  13. The return of the anomalous cosmic rays to 1 Au in 1992

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Cummings, A. C.; Cummings, J. R.; Stone, E. C.; Klecker, B.; Hovestadt, D.; Scholer, M.; Mason, G. M.; Mazur, J. E.; Hamilton, D. C.

    1993-01-01

    New observations of low energy (approximately 1 to 200 MeV/nuc) cosmic rays measured by three newly launched experiments on Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) during 1992 and 1993 show the strong presence of anomalous cosmic ray (ACR) nitrogen and oxygen, well before the approaching solar minimum. When compared with ACR temporal variations over the past two solar cycles we find that the 1992-1993 fluxes are approximately 5 to 10 times their level at corresponding neutron monitor counting rates in 1969-1970 and 1985.

  14. A suggested standardized format for cosmic ray ground-level event data

    NASA Technical Reports Server (NTRS)

    Shea, M. A.; Zaljubovsky, I. I.; Wada, M.; Inoue, A.

    1985-01-01

    A standardized format is suggested for the archival storage and exchange of neutron monitor data obtained during solar flare initiated ground level cosmic ray events. Using the data for the 7 May 1978 ground level event, a format has been developed that incorporates hourly data preceding and following the event and small time interval data immediately before and during the event. Provision has been made for the inclusion of uncorrected and corrected data as well as the atmospheric pressure. The cosmic ray intensity data are then reduced to a standard counting rate of counts per second facilitating the graphing and comparison of these data for various analyses.

  15. Consequences of parton saturation and string percolation on the development of cosmic ray showers.

    PubMed

    Pajares, C; Sousa, D; Vázquez, R A

    2001-02-26

    At high gluon or string densities, gluon saturation or the strong interaction among strings, either forming color ropes or giving rise to string percolation, induces a strong suppression in the particle multiplicities produced at high energy. This suppression implies important modifications on cosmic ray shower development. In particular, it is shown that it affects the depth of maximum, the elongation rate, and the behavior of the number of muons at energies about 10(17)--10(18) eV. The existing cosmic ray data point out in the same direction. PMID:11290221

  16. Solar cosmic ray effects in the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Shirochkov, A. V.

    1989-01-01

    The polar cap absorption (PCA) events are the most remarkable geophysical phenomena in the high latitude ionosphere. Their effects are extended on the whole polar region in both hemispheres. The PCA events are caused by the intense fluxes of the solar cosmic rays (SCR) which are generated by the solar proton flares. Entering into the Earth's magnetosphere and ionosphere the SCR fluxes create excessive anomal ionization at the ionospheric heights of 50 to 100 km which exceeds usual undisturbed level of ionization in several orders of magnitude. The PCA events can be considered as catastrophic in relation to the polar ionosphere because all radio systems using ionospheric radio channels ceased to operate during these events. On the other hand the abnormally high level of ionization in the ionospheric D region during the PCA events create excellent opportunities to conduct fruitful aeronomical research for the lower ionosphere. Obvious scientific and practical importance of the PCA events leads to publishing of special PCA catalogues. The ionospheric effects caused by the SCR fluxes were profoundly described in the classical paper (Bailey, 1964). Nevertheless several aspects of this problem were not studied properly. An attempt is made to clarify these questions.

  17. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of {approx}1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 {plus_minus} 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  18. Atmospheric changes caused by galactic cosmic rays over the period 1960–2010

    DOE PAGES

    Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; Mertens, Christopher J.; Fleming, Eric L.

    2016-05-13

    The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NOx increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2–1more » %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2+ M → ClONO2+ M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less

  19. Atmospheric changes caused by galactic cosmic rays over the period 1960-2010

    NASA Astrophysics Data System (ADS)

    Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; Mertens, Christopher J.; Fleming, Eric L.

    2016-05-01

    The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960-2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4-15 % are computed in the Southern polar troposphere with associated ozone increases of 1-2 %. NOx increases of ˜ 1-6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2-1 %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2+ M → ClONO2+ M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. This will be corrected in future works.

  20. Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.

    2009-02-01

    There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.

  1. The Cosmic Rays and Gamma-Quanta Local Sources Spectra Distinction and Formation of Uniform Cosmic Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Georgievna Sinitysna, Vera; Nikolsky, S. I.

    2003-07-01

    The obtained experimental data about local sources of gamma-quanta are characteristic by the following fact. Though the observed metagalactic sources (active galactic nuclei) are 106 - 107 times more powerful, unlike the galactic one, the gamma-quanta energy spectra from both galactic and metagalactic sources can be averaged with spectrum index F (> Eγ ) ˜ Eγ 1.3±0.15 . This result puts - under doubt the assumption about the galactic origin of observable cosmic ray flux. Uniform cosmic ray spectrum is forming in "infinite" number of elastic (or inelastic) collisions with relict photons in intergalactic space, where the cosmic rays are 0.999... part of their time as the common volume of extragalactic space exceeds more then thousand times the total galactic volume in Universe. Accordingly, the observable spectrum distribution has index of (2.72 ± 0.02) = 2.718..., that is Napier's number. The local sources of extra-high energy cosmic radiation search by the EAS flux excess at narrow angular interval at the direction on supposed sources did not give conformable results because of extremely low flux of showers generated by gamma-quanta, which is connected with the process of accumulation of charged particles in Metagalaxy, which includes intergalactic space. This was confirmed at experiments in the ionization calorimeter with Pb absorb ent of total EAS formed by gamma-quanta which have no muons and hadrons flux determination. The analysis of such showers showed that between EAS on observation level of 3760 m high above sea level the "no hadron" showers flux is slight 0.005 ± 0.001 of full EAS flux; "no muons" showers showed the same result at 0.004 ± 0.001 EAS with primary energy > (3 - 4)1014 eV not a single muon was observed (Fig. 1). As a consequence of small flux of EAS containing no hadrons and muons searching of high-energy gamma-quanta stellar sources it was advisable to concentrate on observations of probable high-energy gamma-quanta sources at narrow

  2. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  3. Modeling galactic cosmic rays at lunar orbit

    NASA Astrophysics Data System (ADS)

    Huang, Chia-Lin; Spence, Harlan; Kress, Brian; Shepherd, Simon

    High-energy particles such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs) have sufficient kinetic energy to produce undesirable biological effects in astronauts as well as environmental effects on spacecraft electronic systems. In low Earth orbit, such radiation effects are minimized owing to the strong geomagnetic cutoff from Earth's internal magnetic field. However, the risks increase at higher altitudes wherever shielding magnetic fields are weak, including at lunar orbit. In order to prepare for future robotic and human exploration on the Moon, characterizing the lunar radiation environment is essential. Because GCRs and SEPs are charged particles with large gyroradii, their trajectories are governed by magnetic fields present on large size scales. For example, at lunar orbit, both the external interplanetary magnetic field and Earth's internally complex magnetosphere could alter the energetic particle flux. We combine an empirical magnetic field model of Earth's magnetosphere with a fullyrelativistic charged particle trajectory code to model the access of GCRs and SEPs to the lunar surface. We follow ions with energies above 10 MeV/nucleon starting from an isotropic spatial distribution in interplanetary space and calculate particle flux in the different regions of the solar wind-magnetosphere system through which the Moon orbits. Finally, we determine the extent of magnetospheric shielding at the Moon as a function of incident particle energy and lunar position. These simulation results will eventually be compared to data from NASA's Lunar Reconnaissance Orbiter "Cosmic Ray Telescope for the Effects of Radiation" instrument after its launch in late 2008.

  4. Radiation Hazard from Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf

    2006-03-01

    Space radiation is a major hazard to astronauts in long-duration human space explosion. Astronauts are exposed to an enormous amount of radiation during their missions away from the Earth in outer space. Deep space is a rich environment of protons, gamma rays and cosmic rays. A healthy 40 years old man staying on Earth away from large doses of radiation stands a 20% chance of dying from cancer. If the same person travels into a 3- year Mars mission, the added risk should increase by 19%. This indicates that there is 39% chance of having cancer after he comes back to Earth. Female astronaut chances to get cancer is even almost double the above percentage. The greatest threat to astronauts en route to the red planet is galactic cosmic rays (GCR). GCRs penetrate through the skin of spaceships and people like tiny firearm bullets, breaking the strands of DNA molecules, damaging genes, and killing cells. Understanding the nature of the GCRs, their effect on biological cells, and their interactions with different shielding materials is the key point to shield against them in long space missions. In this paper we will present a model to evaluate the biological effects of GCRs and suggestion different ways to shield against them.

  5. Transport of cosmic rays across the heliopause

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Luo, X.; Pogorelov, N.

    2015-12-01

    The heliopause (HP) is a boundary that separates the flow with embedded magnetic field of solar origin in the inner heliosheath from that of the interstellar origin in the outer heliosheath. According to the theory of ideal MHD, it should be a tangential discontinuity, but magnetic reconnection or instability can make it more complicated. Voyager 1 crossed the HP in August 2012 at a radial distance of 122 AU from the Sun. The behaviors of Galactic cosmic rays (GCR) and anomalous cosmic rays (ACR) at the HP crossing are very complex. The intensity of GCR experiences step-like increases to reach a nearly steady interstellar level in the outer heliosheath. Its angular distribution changes from isotropic inside the HP to bidirectional anisotropy that appear on and off for several periods of time in the outer heliosheath. The ACR intensity experiences several episodes of decreases near the HP before it eventually disappears. The anisotropy of ACR in the partial depression regions is pancake-like, indicating there is some temporary trapping of particles of near-90° pitch angles. The information has provided us clues for understanding the properties of particle transport in the turbulence of the interstellar magnetic field. In this paper, we review results of model calculations of GCR and ACR transport across the HP. With the observations and modeling results, we can now establish constraints on the properties of particle scattering, diffusion, and interstellar magnetic field turbulence level.

  6. Acceleration of cosmic rays in Tycho's SNR.

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Caprioli, D.

    We apply the non-linear diffusive shock acceleration theory in order to describe the properties of SN 1572 (G120.1+1.4, hereafter simply Tycho). By analyzing its multi-wavelength spectrum, we show how Tycho's forward shock (FS) is accelerating protons up to ˜ 500 TeV, channeling into cosmic rays more than 10 per cent of its kinetic energy. We find that the streaming instability induced by cosmic rays is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ˜ 300 mu G), in particular the X-ray morphology of the remnant. We are able to explain the gamma-ray spectrum from the GeV up to the TeV band, recently measured respectively by Fermi-LAT and VERITAS, as due to pion decay produced in nuclear collisions by accelerated nuclei scattering against the background gas. We also show that emission due to the accelerated electrons does not play a relevant role in the observed gamma-ray spectrum.

  7. EDITORIAL: Focus on High Energy Cosmic Rays FOCUS ON HIGH ENERGY COSMIC RAYS

    NASA Astrophysics Data System (ADS)

    Teshima, Masahiro; Watson, Alan A.

    2009-06-01

    The topic of high-energy cosmic rays has recently attracted significant attention. While the AGASA and HiRes Observatories have closed after many years of successful operation, the Pierre Auger Observatory began taking data in January 2004 and the first results have been reported. Plans for the next generation of instruments are in hand: funding is now being sought for the northern phase of the Auger Observatory and plans for a space detector, JEM-EUSO, to be launched in 2013-14 are well advanced with the long-term target of a dedicated satellite for the 2020s. It therefore seemed an appropriate time to make a collection of outstanding and original research articles from the leading experimental groups and from some of the theorists who seek to interpret the hard-won data and to speculate on the origin of the highest energy cosmic rays. This focus issue in New Journal of Physics on the topic of high energy cosmic rays, contains a comprehensive account of the work of the Yakutsk group (A A Ivanov, S P Knurenko and I Ye Sleptsov) who have used Cerenkov radiation produced by shower particles in the air to provide the basis for energy calibration. This technique contrasts with that of detecting fluorescence radiation from space that is proposed for the JEM-EUSO instrument to be placed on the International Space Station in 2013, described by Y Takahashi. Supplementing this is an article by A Santangelo and A Petrolini describing the scientific goals, requirements and main instrument features of the Super Extreme Universe Space Observatory mission (S-EUSO). The use of fluorescence light to measure energies was the key component of the HiRes instrument and is also used extensively by the Pierre Auger Collaboration so an article, by F Arqueros, F Blanco and J Rosado, summarizing the properties of fluorescence emission, still not fully understood, is timely. M Nagano, one of the architects of the AGASA Observatory, has provided an overview of the experimental situation with

  8. Cosmic rays, conditions in interplanetary space and geomagnetic variations during solar cycles 19-24

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have studied conditions in interplanetary space, which can have an influence on galactic and solar cosmic rays (CRs). In this connection the solar wind and interplanetary magnetic field parameters and CRs variations have been compared with geomagnetic activity represented by the equatorial Dst and Kp indices beginning from 1955 to the end 2015. The indices are in common practice in the solar wind-magnetosphere-ionosphere interaction studies and they are the final product of this interaction. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Correlation of sunspot numbers and long-term variations of cosmic rays do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU also. Moreover records of in situ space measurements of the IMF and most other indicators of solar activity cover only a few decades and have a lot of gaps for calculations of long-term variations. Because of this, in such investigations, the geomagnetic indices have some inestimable advantage as continuous series other the solar wind measurements. We have compared the yearly average variations of the indices and of the solar wind parameters with cosmic ray data from Moscow, Climax, Halekala and Oulu neutron monitors during the 20-24 solar cycles. During the descending phases of the solar cycles the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations and had effects on cosmic rays variations. We show that long-term Dst and Kp variations in these solar cycles were correlated with cosmic ray count rates and can be used for prediction of CR variations. Climate change in connection with evolution of CRs variations is discussed.

  9. Bioeffectiveness of Cosmic Rays Near the Earth Surface

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.

    2014-10-01

    Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the

  10. An Overview of First-Year Results from the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER) (Invited)

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Golightly, M.; Schwadron, N. A.; Wilson, J. K.; Case, A.; Kasper, J. C.; Blake, J.; Looper, M. D.; Mazur, J.; Townsend, L.; Zeitlin, C.; Stubbs, T. J.; Crater Science Team

    2010-12-01

    We present an overview of science results from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) obtained during its first year of operations aboard the Lunar Reconnaissance Orbiter (LRO) at the Moon. CRaTER has been immersed in the ionizing radiation environment of the Moon since its launch on NASA’s LRO in June 2009. CRaTER measures the linear energy transfer (LET) of energetic particles traversing the instrument, a quantity that describes the rate at which particles lose kinetic energy as they pass through matter. A significant portion of the kinetic energy converts into deleterious ionizing radiation through the interactions with matter, thus posing a major radiation risk for human and robotic space explorers subjected to deep space energetic particles. CRaTER employs strategically placed solid-state detectors and tissue equivalent plastic (TEP), a synthetic analog for human tissue, to quantify radiation effects pertinent to astronaut safety. In this talk, we present science highlights resulting from CRaTER studies. These CRaTER science results include: radiation dose rate estimates during the recent deep, prolonged solar minimum; lunar orbit dose rate comparisons with Apollo-era estimates; assessment of variability of galactic cosmic rays and their sources; first direct observations of albedo protons from the lunar regolith and comparison with models; and detection of first, weak solar-related energetic particle events of the new solar cycle.

  11. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments Database

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  12. Measuring and Modeling Cosmic Ray Showers with an MBL System: An Undergraduate Project.

    ERIC Educational Resources Information Center

    Jackson, David P.; Welker, Matthew T.

    2001-01-01

    Describes a novel method for inducing and measuring cosmic ray showers using a low-cost, microcomputer-based laboratory system. Uses low counting-rate radiation monitors in the reproduction of Bruno Rossi's classic experiment. (Contains 16 references.) (Author/YDS)

  13. Measurement and simulation of cosmic rays effects on neutron multiplicity counting

    NASA Astrophysics Data System (ADS)

    Weinmann-Smith, R.; Swinhoe, M. T.; Hendricks, J.

    2016-04-01

    Neutron coincidence and multiplicity counting is a standard technique used to measure uranium and plutonium masses in unknown samples for nuclear safeguards purposes, but background sources of radiation can obscure the results. In particular, high energy cosmic rays can produce large coincidence count contributions. Since some of the events occur in the sample itself, it is impossible to measure the background separately. This effect greatly increases the limit of detection of some low level neutron coincidence counting applications. The cosmic ray capability of MCNP6 was used to calculate the expected coincidence rates from cosmic rays for different sample configurations and experimental measurements were conducted for comparison. Uranium enriched to 66%, lead bricks, and an empty detector were measured in the mini Epithermal Neutron Multiplicity Counter, and MCNP6 simulations were made of the same measurements. The results show that the capability is adequate for predicting the expected background rates. Additional verification of MCNP6 was given by comparison of particle production rates to other publications, increasing confidence in MCNP6's use as a tool to lower the limit of detection. MCNP6 was then used to find particle and source information that would be difficult to detect experimentally. The coincidence count contribution was broken down by particle type for singles, doubles, and triples rates. The coincidence count contribution was broken down by source, from(a , n) , spontaneous fission, and cosmic rays, for each multiplicity.

  14. Cosmic Rays with Portable Geiger Counters: From Sea Level to Airplane Cruise Altitudes

    ERIC Educational Resources Information Center

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco

    2009-01-01

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive…

  15. Galactic cosmic rays on extrasolar Earth-like planets. I. Cosmic ray flux

    NASA Astrophysics Data System (ADS)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2015-09-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields, especially in the case of planets more massive than Earth (super-Earths). Planetary magnetic fields, however, constitute one of the shielding layers that protect the planet against cosmic-ray particles. In particular, a weak magnetic field results in a high flux of Galactic cosmic rays that extends to the top of the planetary atmosphere. Aims: We wish to quantify the flux of Galactic cosmic rays to an exoplanetary atmosphere as a function of the particle energy and of the planetary magnetic moment. Methods: We numerically analyzed the propagation of Galactic cosmic-ray particles through planetary magnetospheres. We evaluated the efficiency of magnetospheric shielding as a function of the particle energy (in the range 16 MeV ≤ E ≤ 524 GeV) and as a function of the planetary magnetic field strength (in the range 0 M⊕ ≤ M ≤ 10 M⊕). Combined with the flux outside the planetary magnetosphere, this gives the cosmic-ray energy spectrum at the top of the planetary atmosphere as a function of the planetary magnetic moment. Results: We find that the particle flux to the planetary atmosphere can be increased by more than three orders of magnitude in the absence of a protecting magnetic field. For a weakly magnetized planet (ℳ = 0.05 ℳ⊕), only particles with energies below 512 MeV are at least partially shielded. For a planet with a magnetic moment similar to that of Earth, this limit increases to to 32 GeV, whereas for a strongly magnetized planet (ℳ = 10.0 ℳ⊕), partial shielding extends up to 200 GeV. Over the parameter range we studied, strong shielding does not occur for weakly magnetized planets. For a planet with a magnetic moment similar to that of Earth, particles with energies below 512 MeV are strongly shielded, and for strongly magnetized planets, this limit increases to 10 GeV. Conclusions: We find that magnetic shielding strongly

  16. On the Possibility of Radar Detection of Ultra-high Energy Cosmic Ray- and Neutrino-induced Air Showers

    NASA Technical Reports Server (NTRS)

    Gorham, P.

    1999-01-01

    We show that cosmic rays air showers resulting from primaries with energies above 10(sup 19) eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower.

  17. Early developments: Particle physics aspects of cosmic rays

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2014-01-01

    Cosmic rays is the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. In subsequent cloud chamber investigations Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Measurements with nuclear emulsions by Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. The cloud chamber continued to be a powerful instrument in cosmic ray studies. Rochester and Butler found V's, which turned out to be shortlived neutral kaons decaying into a pair of charged pions. Also Λ's, Σ's, and Ξ's were found in cosmic rays. But after that accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A. Cosmic ray neutrino results were best explained by the assumption of neutrino oscillations opening a view beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of accelerators.

  18. Investigation of primary cosmic rays at the Moon's surface

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Muhamedshin, R. A.; Podorozhniy, D. M.; Sveshnikova, L. G.; Turundaevskiy, A. N.; Tkachev, L. G.; Chubenko, A. P.; Vasilyev, O. A.

    2013-01-15

    The possibility of experimentally studying primary cosmic rays at the Moon's surface is considered. A mathematical simulations of showers initiated in the lunar regolith by high-energy particles of primary cosmic rays is performed. It is shown that such particles can in principle be recorded by simultaneously detecting three components of backscattered radiation (secondary neutrons, gamma rays, and radio emission).

  19. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  20. Cosmic ray sampling of a clumpy interstellar medium

    SciTech Connect

    Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S. III; Yoast-Hull, Tova M.

    2013-12-10

    How cosmic rays sample the multi-phase interstellar medium (ISM) in starburst galaxies has important implications for many science goals, including evaluating the cosmic ray calorimeter model for these systems, predicting their neutrino fluxes, and modeling their winds. Here, we use Monte Carlo simulations to study cosmic ray sampling of a simple, two-phase ISM under conditions similar to those of the prototypical starburst galaxy M82. The assumption that cosmic rays sample the mean density of the ISM in the starburst region is assessed over a multi-dimensional parameter space where we vary the number of molecular clouds, the galactic wind speed, the extent to which the magnetic field is tangled, and the cosmic ray injection mechanism. We evaluate the ratio of the emissivity from pion production in molecular clouds to the emissivity that would be observed if the cosmic rays sampled the mean density, and seek areas of parameter space where this ratio differs significantly from unity. The assumption that cosmic rays sample the mean density holds over much of parameter space; however, this assumption begins to break down for high cloud density, injection close to the clouds, and a very tangled magnetic field. We conclude by evaluating the extent to which our simulated starburst region behaves as a proton calorimeter and constructing the time-dependent spectrum of a burst of cosmic rays.

  1. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  2. Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.

  3. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.

  4. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  5. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  6. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  7. Using the information of cosmic rays to predict influence epidemic

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  8. Using the information of cosmic rays to predict influence epidemic

    NASA Astrophysics Data System (ADS)

    Yu, Z. D.

    1985-08-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  9. From cosmic ray source to the Galactic pool

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2014-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3 × 1015 eV) or perhaps even the ankle (3 × 1018 eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if non-linear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that makes up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E-2 will result in an E-2 escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with non-linear shock modification.

  10. Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.

  11. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  12. Long Term Time Variability of Cosmic Rays and Possible Relevance to the Development of Life on Earth

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    2010-07-01

    An analysis is made of the manner in which the cosmic ray intensity at Earth has varied over its existence and its possible relevance to both the origin and the evolution of life. Much of the analysis relates to the `high energy’ cosmic rays ( E > 1014 eV; =0.1 PeV) and their variability due to the changing proximity of the solar system to supernova remnants which are generally believed to be responsible for most cosmic rays up to PeV energies. It is pointed out that, on a statistical basis, there will have been considerable variations in the likely 100 My between the Earth’s biosphere reaching reasonable stability and the onset of very elementary life. Interestingly, there is the increasingly strong possibility that PeV cosmic rays are responsible for the initiation of terrestrial lightning strokes and the possibility arises of considerable increases in the frequency of lightnings and thereby the formation of some of the complex molecules which are the `building blocks of life’. Attention is also given to the well known generation of the oxides of nitrogen by lightning strokes which are poisonous to animal life but helpful to plant growth; here, too, the violent swings of cosmic ray intensities may have had relevance to evolutionary changes. A particular variant of the cosmic ray acceleration model, put forward by us, predicts an increase in lightning rate in the past and this has been sought in Korean historical records. Finally, the time dependence of the overall cosmic ray intensity, which manifests itself mainly at sub-10 GeV energies, has been examined. The relevance of cosmic rays to the `global electrical circuit’ points to the importance of this concept.

  13. Stochastic Acceleration of Galactic Cosmic Rays by Compressible Plasma Fluctuations in Supernova Shells

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    2015-10-01

    A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.

  14. Longitudinal distribution of cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Venkatesan, D.

    1985-01-01

    The longitudinal distribution of cosmic ray intensity was examined during the years 1974-1976 when the persistent high speed solar wind stream structures produced a well ordered inner heliosphere. Solar wind velocity is mapped back to the Sun and compared with cosmic ray intensity which is represented relative to the solar rotation average. Low solar wind velocity is observed to be a necessary, but not sufficient, condition for the occurrence of higher cosmic ray intensities at 1 AU. These relative enhancements cover a restricted range of heliographic longitudes and persist for several solar rotations. The observed solar wind and cosmic ray intensity relationships are consistent with a simple model suggested here in which cosmic ray modulation is very weak in the inner heliosphere, sunward of the first shock crossing on each field line and more intense in the outer heliosphere.

  15. The cosmic ray interplanetary radial gradient from 1972 - 1985

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lockwood, J. A.

    1985-01-01

    It is now established that the solar modulation of cosmic rays is produced by turbulent magnetic fields propagated outward by the solar wind. Changes in cosmic ray intensity are not simultaneous throughout the modulation region, thus requiring time dependent theories for the cosmic ray modulation. Fundamental to an overall understanding of this observed time dependent cosmic ray modulation is the behavior of the radial intensity gradient with time and heliocentric distance over the course of a solar modulation cycle. The period from 1977 to 1985 when data are available from the cosmic ray telescopes on Pioneer (P) 10, Voyager (V) 1 and 2, and IMP 8 spacecraft is studied. Additional data from P10 and other IMP satellites for 1972 to 1977 can be used to determine the gradient at the minimum in the solar modulation cycle and as a function of heliocentric distance. All of these telescopes have thresholds for protons and helium nuclei of E 60 MeV/nucleon.

  16. Common solution to the cosmic ray anisotropy and gradient problems.

    PubMed

    Evoli, Carmelo; Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2012-05-25

    Multichannel cosmic ray spectra and the large scale cosmic ray anisotropy can hardly be made compatible in the framework of conventional isotropic and homogeneous propagation models. These models also have problems explaining the longitude distribution and the radial emissivity gradient of the γ-ray Galactic interstellar emission. We argue here that accounting for a physically motivated correlation between the cosmic ray escape time and the spatially dependent magnetic turbulence power can naturally solve both problems. Indeed, by exploiting this correlation we find propagation models that fit a wide set of cosmic ray spectra, and consistently reproduce the cosmic ray anisotropy in the energy range 10(2)-10(4) GeV and the γ-ray longitude distribution recently measured by Fermi-LAT.

  17. Cosmic-Ray Rejection by Linear Filtering of Single Images

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.

    2000-05-01

    We present a convolution-based algorithm for finding cosmic rays in single well-sampled astronomical images. The spatial filter used is the point-spread function (approximated by a Gaussian) minus a scaled delta function, and cosmic rays are identified by thresholding the filtered image. This filter searches for features with significant power at spatial frequencies too high for legitimate objects. Noise properties of the filtered image are readily calculated, which allows us to compute the probability of rejecting a pixel not contaminated by a cosmic ray (the false alarm probability). We demonstrate that the false alarm probability for a pixel containing object flux will never exceed the corresponding probability for a blank-sky pixel, provided we choose the convolution kernel appropriately. This allows confident rejection of cosmic rays superposed on real objects. Identification of multiple-pixel cosmic-ray hits can be enhanced by running the algorithm iteratively, replacing flagged pixels with the background level at each iteration.

  18. Directional clustering in highest energy cosmic rays

    SciTech Connect

    Goldberg, Haim; Weiler, Thomas J.

    2001-09-01

    An unexpected degree of small-scale clustering is observed in highest-energy cosmic ray events. Some directional clustering can be expected due to purely statistical fluctuations for sources distributed randomly in the sky. This creates a background for events originating in clustered sources. We derive analytic formulas to estimate the probability of random cluster configurations, and use these formulas to study the strong potential of the HiRes, Auger, Telescope Array and EUSO-OWL-AirWatch facilities for deciding whether any observed clustering is most likely due to nonrandom sources. For a detailed comparison to data, our analytical approach cannot compete with Monte Carlo simulations, including experimental systematics. However, our derived formulas do offer two advantages: (i) easy assessment of the significance of any observed clustering, and most importantly, (ii) an explicit dependence of cluster probabilities on the chosen angular bin size.

  19. Propagation and nucleosynthesis of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Giler, M.; Wibig, T.

    1985-01-01

    The observed fluxes of cosmic ray (C.R.) ultraheavy elements depend on their charge and mass spectrum at the sources and on the propagation effects, on the distribution of path lengths traversed by the particles on their way from the sources to the observation point. The effect of different path length distributions (p.l.d.) on the infered source abunances is analyzed. It seems that it is rather difficult to fit a reasonable p.l.d. so that the obtained source spectrum coincides with the Solar System (SS) abundances in more detail. It suggests that the nucleosynthesis conditions for c.r. nuclei may differ from that for SS matter. The nucleosynthesis of ultraheavy elements fitting its parameters to get the c.r. source abundances is calculated. It is shown that it is possible to get a very good agreement between the predicted and the observed source abundance.

  20. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  1. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  2. 'Excess' of primary cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Shen, Zhao-Qiang; Lu, Bo-Qiang; Dong, Tie-Kuang; Fan, Yi-Zhong; Feng, Lei; Liu, Si-Ming; Chang, Jin

    2015-10-01

    With the accurate cosmic ray (CR) electron and positron spectra (denoted as Φe- and Φe+, respectively) measured by AMS-02 Collaboration, the difference between the electron and positron fluxes (i.e., ΔΦ =Φe- -Φe+), dominated by the propagated primary electrons, can be reliably inferred. In the standard model, the spectrum of propagated primary CR electrons at energies ≥ 30GeV softens with the increase of energy. The absence of any evidence for such a continuous spectral softening in ΔΦ strongly suggests a significant 'excess' of primary CR electrons and at energies of 100- 400GeV the identified excess component has a flux comparable to that of the observed positron excess. Middle-age but 'nearby' supernova remnants (e.g., Monogem and Geminga) are favored sources for such an excess.

  3. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1992-01-01

    Energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds was studied. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the post-shock region although some shocks will be followed by an ejecta with a high field. Each event is different. The lower energy particles can help in identifying the dominant processes in individual events.

  4. Interplanetary diffusion coefficients for cosmic rays

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    Information on the cosmic-ray diffusion coefficient, kappa, derived from near-earth observations of the solar modulation of galactic electron fluxes and from the near-earth power spectra of the interplanetary magnetic field, has been used to study the heliocentric radial dependence of kappa, and to derive limits on the spatial extent of the solar modulation region. Representing kappa, as a separable function of radius r and rigidity, and assumming kappa(r) proportional to r to the n-th power, we can place a limit on the power law exponent, n not greater than 1.2. The distance of the modulation boundary is a function of n, and, e.g., for n = 0, falls into the range of 6-25 AU.

  5. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  6. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  7. Lunar monitoring outpost of cosmic rays

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail; Kalmykov, Nikolai; Turundaevskiy, Andrey; Chubenko, Alexander; Podorozhny, Dmitry; Mukhamedshin, Rauf; Sveshnikova, Lubov; Tkachev, Leonid; Konstantinov, Andrey

    The basic purpose of the planned NEUTRONIUM-100 experiment considers expansion of the direct measurements of cosmic rays spectra and anisotropy to the energy range of ~1017 eV with element-by-element resolution of the nuclear component. These measurements will make it possible to solve the problem of the “knee” of the spectrum and to make choice between the existing models of the cosmic rays origin and propagation. The proposed innovative method of energy measurements is based on the simultaneous detection of different components of back scattered radiation generated by showers produced by the primary particle in the regolyth (neutrons, gamma rays and radio waves). A multi-module system disposed on the Moon's surface is proposed for particles registration. Each module consists of a radio antenna, contiguous to the regolyth, scintillation detectors with gadolinium admixture and silicon charge detectors. Scintillation detectors record electrons and gamma-rays of back scattered radiation and delayed neutrons. The area of the experimental facility will be at least ~100 m2, suitable for upgrading. Average density of the detecting equipment is evaluated as 10-20 g/m2. Taking into account the weight of the equipment delivered from the Earth will be about 10 tons it is possible to compose an eqperimental facility with geometric factor of 150-300 m2sr. The Moon provides unique conditions for this experiment due to presence of the absorbing material and absence of atmosphere. The experiment will allow expansion of the measurements up to ~1017 eV with element-by-element resolution of the nuclear component. Currently direct measurements reach energy range of up to ~1015 eV, and Auger shower method does not provide information about the primary particle's charge. It is expected that ~15 particles with energy >1017 eV will be detected by the proposed experimental equipment per year. It will provide an opportunity to solve the problems of the current high-energy astrophysics.

  8. Extragalactic cosmic rays and their signatures

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2014-01-01

    The signatures of UHE proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible manifestations of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E in integral spectrum. Observed practically in all experiments since 1963, the ankle is usually interpreted as a feature caused by transition from galactic to extragalactic cosmic rays. Using the mass composition measured by HiRes, Telescope Array and Auger detectors at energy (1-3) EeV, calculated anisotropy of galactic cosmic rays at these energies, and the elongation curves we strongly argue against the interpretation of the ankle given above. The transition must occur at lower energy, most probably at the second knee as the dip model predicts. The other prediction of the dip model, the shape of the dip, is well confirmed by HiRes, Telescope Array (TA), AGASA and Yakutsk detectors, and, after recalibration of energies, by Auger detector. Predicted beginning of GZK cutoff and E agree well with HiRes and TA data. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, as required by the dip model, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The Auger-based scenario is consistent with another interpretation of the ankle at energy Ea≈4 EeV as transition from extragalactic protons to extragalactic nuclei. The heavy-nuclei dominance at higher energies may be provided by low-energy of acceleration for protons Epmax∼4 EeV and rigidity-dependent EAmax=ZEpmax for nuclei. The highest energy suppression may be explained as nuclei-photodisintegration cutoff.

  9. PLATEAUING COSMIC RAY DETECTORS TO ACHIEVE OPTIMUM OPERATING VOLTAGE

    SciTech Connect

    Knoff, E.N.; Peterson, R.S.

    2008-01-01

    Through QuarkNet, students across the country have access to cosmic ray detectors in their high school classrooms. These detectors operate using a scintillator material and a photomultiplier tube (PMT). A data acquisition (DAQ) board counts cosmic ray hits from the counters. Through an online e-Lab, students can analyze and share their data. In order to collect viable data, the PMTs should operate at their plateau voltages. In these plateau ranges, the number of counts per minute remains relatively constant with small changes in PMT voltage. We sought to plateau the counters in the test array and to clarify the plateauing procedure itself. In order to most effectively plateau the counters, the counters should be stacked and programmed to record the number of coincident hits as well as their singles rates. We also changed the threshold value that a signal must exceed in order to record a hit and replateaued the counters. For counter 1, counter 2, and counter 3, we found plateau voltages around 1V. The singles rate plateau was very small, while the coincidence plateau was very long. The plateau voltages corresponded to a singles rate of 700–850 counts per minute. We found very little effect of changing the threshold voltages. Our chosen plateau voltages produced good performance studies on the e-Lab. Keeping in mind the nature of the experiments conducted by the high school students, we recommend a streamlined plateauing process. Because changing the threshold did not drastically affect the plateau voltage or the performance study, students should choose a threshold value, construct plateau graphs, and analyze their data using a performance study. Even if the counters operate slightly off their plateau voltage, they should deliver good performance studies and return reliable results.

  10. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  11. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  12. Observation and implications of sub-iron and iron abundance ratios in low energy galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Durgaprasad, N.; Vahia, M. N.; Biswas, S.; Ramadurai, S.; Singh, R. K.; Yadav, J. S.; Dutta, A.; Goswami, J. N.

    1995-01-01

    The Spacelab-3 cosmic ray experiment Anuradha was used to measure the sub-iron (Sc-Cr) to iron abundance ratios in the low energy galactic cosmic rays. Measurements made in four different depth of the detector yielded the (Sc-Cr)/Fe ratios of 0.8 to 1.2 in 30 to 300 MeV/N. These are in agreement with results from Skylab and Soyuz-6 experiments and establishes that this abundance ratio is about 1.0 inside the magnetosphere. It is seen that this abundance ratio is about a factor of two higher than values of about 0.5 measured in space crafts in interplanetary space. It is shown that the enhancement of the ratio is probably due to geomagnetic transmission effect and the degree of ionization of the low energy Sc to Cr and Fe ions in galactic cosmic rays. Further studies are needed to fully understand the phenomena and their implications.

  13. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  14. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  15. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGES

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  16. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  17. Cosmic-ray Exposure Ages of Meteorites

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.

    2003-12-01

    The classic idea of a cosmic-ray exposure (CRE) age for a meteorite is based on a simple but useful picture of meteorite evolution, the one-stage irradiation model. The precursor rock starts out on a parent body, buried under a mantle of material many meters thick that screens out cosmic rays. At a time ti, a collision excavates a precursor rock - a "meteoroid." The newly liberated meteoroid, now fully exposed to cosmic rays, orbits the Sun until a time tf, when it strikes the Earth, where the overlying blanket of air (and possibly of water or ice) again shuts out almost all cosmic rays (cf. Masarik and Reedy, 1995). The quantity tf-ti is called the CRE age, t. To obtain the CRE age of a meteorite, we measure the concentrations in it of one or more cosmogenic nuclides (Table 1), which are nuclides that cosmic rays produce by inducing nuclear reactions. Many shorter-lived radionuclides excluded from Table 1 such as 22Na (t1/2=2.6 yr) and 60Co (t1/2=5.27 yr) can also furnish valuable information, but can be measured only in meteorites that fell within the last few half-lives of those nuclides (see, e.g., Leya et al. (2001) and references therein). Table 1. Cosmogenic nuclides used for calculating exposure ages NuclideHalf-lifea (Myr) Radionuclides 14C0.005730 59Ni0.076 41Ca0.1034 81Kr0.229 36Cl0.301 26Al0.717 10Be1.51 53Mn3.74 129I15.7 Stable nuclides 3He 21Ne 38Ar 83Kr 126Xe a http://www2.bnl.gov/ton. CRE ages have implications for several interrelated questions. From how many different parent bodies do meteorites come? How well do meteorites represent the population of the asteroid belt? How many distinct collisions on each parent body have created the known meteorites of each type? How often do asteroids collide? How big and how energetic were the collisions that produced meteoroids? What factors control the CRE age of a meteorite and how do meteoroid orbits evolve through time? We will touch on these questions below as we examine the data.By 1975, the CRE ages of

  18. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E < 1015 eV) PCR-IIPrimary cosmic rays II (E > 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the

  19. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure.

    PubMed

    Sato, Tatsuhiko

    2016-09-21

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR's evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally.

  20. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure.

    PubMed

    Sato, Tatsuhiko

    2016-01-01

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR's evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally. PMID:27650664

  1. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure

    PubMed Central

    Sato, Tatsuhiko

    2016-01-01

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR’s evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally. PMID:27650664

  2. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko

    2016-09-01

    After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR’s evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally.

  3. COULD COSMIC RAYS AFFECT INSTABILITIES IN THE TRANSITION LAYER OF NONRELATIVISTIC COLLISIONLESS SHOCKS?

    SciTech Connect

    Stroman, Thomas; Pohl, Martin; Niemiec, Jacek; Bret, Antoine

    2012-02-10

    There is an observational correlation between astrophysical shocks and nonthermal particle distributions extending to high energies. As a first step toward investigating the possible feedback of these particles on the shock at the microscopic level, we perform particle-in-cell (PIC) simulations of a simplified environment consisting of uniform, interpenetrating plasmas, both with and without an additional population of cosmic rays. We vary the relative density of the counterstreaming plasmas, the strength of a homogeneous parallel magnetic field, and the energy density in cosmic rays. We compare the early development of the unstable spectrum for selected configurations without cosmic rays to the growth rates predicted from linear theory, for assurance that the system is well represented by the PIC technique. Within the parameter space explored, we do not detect an unambiguous signature of any cosmic-ray-induced effects on the microscopic instabilities that govern the formation of a shock. We demonstrate that an overly coarse distribution of energetic particles can artificially alter the statistical noise that produces the perturbative seeds of instabilities, and that such effects can be mitigated by increasing the density of computational particles.

  4. Cosmic ray models for early galactic lithium, beryllium, and boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To better understand the early galactic production of Li, Be, and B by cosmic ray spallation and fusion reactions, the dependence of these production rates on cosmic ray models and model parameters is examined. The sensitivity of elemental and isotropic production to the cosmic ray pathlength magnitude and energy dependence, source spectrum spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B-versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic ray models for the early Galaxy.

  5. Production of cosmogenic Be nuclei in the Earth's atmosphere by cosmic rays: Its dependence on solar modulation and the interstellar cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Webber, W. R.; Higbie, P. R.

    2003-09-01

    Recent work by [2001] shows that 10Be production rates by cosmic rays on the polar plateau are little affected by geomagnetic field changes in the last few hundred years. Also, the 10Be observed in ice cores on the polar plateau probably originated at high latitudes and precipitated to the Earth in about 1 year, according to McCracken. As a result of this assumption, ice core records of 10Be concentration extending back several hundred years, including the Maunder minimum, have the potential to study the solar modulation of cosmic rays on a time scale extending back several hundred years. These ice core records indicate that the 10Be concentration at the time of the Maunder minimum was ˜2.0 times what it was during recent sunspot minima in 1965 and 1976. We have examined 10Be production in the atmosphere using new data related to the interstellar cosmic ray spectrum and the effects of solar modulation as determined from Voyager spacecraft data in the outer heliosphere. We have used the FLUKA Monte Carlo program along with new cross-section data to calculate the production of nucleons and 10Be nuclei in the atmosphere. These calculations show that 10Be temporal variations are sensitive indicators of low-energy solar modulation. Our calculations of 10Be production are able to reproduce well the factor ˜1.5-2.0 change in 10Be observed in the ice core data as a result of the 11-year solar modulation. We are also able to show that starting as recently as the sunspot minimum of 1954, the cosmic ray intensity at the Earth was higher than it was during more recent minima. The cosmic ray intensity during these minima time periods represents the residual modulation between the Earth and interstellar space. The 10Be measurements are consistant with the fact that given the interstellar cosmic ray spectrum used in this analysis, this residual modulation was small or zero at the time of the Maunder minimum.

  6. Cosmic rays IX. Interactions and transport of cosmic rays in the Galaxy

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Langer, N.; Seo, Eun-Suk; Stanev, T.

    2001-04-01

    We propose that cosmic rays interact mostly near their sources of origin. To be specific, we differentiate the various supernovae by their mass of the progenitor star along the zero age main sequence. Stars between about 8 and 15 solar masses explode into the interstellar medium, and accelerate cosmic rays, as discussed by many for some time. From about 15 to 25 solar masses stars explode into their own stellar wind; this wind has built up a thin shell of both wind material and interstellar medium material in the red and blue giant phases preceding the supernova event. The shock accelerating cosmic ray particles races through that wind, gets loaded up with energetic particles, interacts while it goes, and finally smashes into the shell. While the shock goes out, it snowplows the entire wind into the pre-existing shell to form a composite shell. We propose that for the mass range 15 to 25 solar masses this composite shell is immediately broken up so that the time scale for interaction is caused by the breakup and so is convective. We note that the wind material for this range of zero age masses is a approximately half helium, and half hydrogen. The interactions in the composite wind-shell and the immediate environment produce positrons, gamma emission, but only few secondary nuclei, because for this mass range the enrichment in heavier elements is still minor. The energy spectrum of the gamma emission and the positrons produced corresponds then to the source spectrum. In contrast, from about 25 solar masses and up the wind is strongly enriched in heavy elements, and the wind shell is massive, comprising most of the initial zero age star's mass, as well as a good part of the local interstellar medium. We propose that for the interaction of the cosmic ray particles carried out by the shock in the snow-plow through the wind to the shell the interaction is diffusive, and calculate the diffusion coefficient. This leads to a leakage time energy dependence of E-5/9 in the

  7. Anisotropy of TeV Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pogorelov, Nikolai; Desiati, Paolo; DuVernois, Michael

    2016-07-01

    TeV cosmic rays are significantly deflected by the magnetic field of the heliosphere, and they gain or lose energies in heliospheric electric field that in the meantime drives the motion of plasma. These propagation mechanisms will cause the map of TeV cosmic rays seen at the Earth to look different from the map seen in the local interstellar medium without the presence of the heliosphere. We have developed a method of using Liouville's theorem to map out particle distribution function to Earth from the local interstellar medium, where we assume that the cosmic rays have small pitch-angle anisotropy harmonics up to the second order and a small uniform spatial density gradient. The amount of heliospheric distortion can be determined by tracing the trajectories of cosmic rays propagating through the heliosphere. In this paper, we apply this method to TeV cosmic ray propagation through a MHD-kinetic model of the heliosphere and try to fit observations from Tibet ASgamma and IceCube experiments. We are able to locate features in the TeV cosmic ray anisotropy that are associated with the interstellar magnetic field, hydrogen deflection plane, heliotail, and solar corona. Some of the features are also slightly affected by the solar cycle and interstellar magnetic turbulence. The results provide us powerful tools to explore large-scale heliospheric structures as well as to determine the cosmic ray distribution in the local interstellar medium.

  8. FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Szadkowska, Anna

    2014-09-01

    Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜V2/R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.

  9. FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Szadkowska, Anna

    2014-12-01

    Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜ V2/ R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.

  10. Fermi Acceleration---From Cosmic Rays to Discharge Heating

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    1998-11-01

    The motion of a ball bouncing between a fixed and an oscillating wall was originally proposed by Fermifootnote E. Fermi, Phys. Rev. 75, 1169 (1949) in 1949 as a model for cosmic ray acceleration. Expectations that the ball could be heated to very high energies gave way to the realization that while the motion is chaotic at low energies, the phase space has an intricate fractal structure and there is an adiabatic limit to the heating. The application of these ideas to ``collisionless,'' ``anomalous,'' or ``stochastic'' electron heating in discharges has been fruitful. Electrons are heated collisionlessly by repeated interaction with time-periodic fields that are localized within a sheath, skin depth layer, or resonance layer inside the discharge. However, generation and loss processes and interparticle collisions dominate the purely dynamical phase randomization in most discharges. A phase-averaged Fokker-Planck description of the motion can be used to determine the heating rate. Collisionless heating has been found to be important in radio frequency (rf)-driven capacitive discharges, in microwave-driven electron cyclotron resonance (ECR) discharges, and in rf-driven inductive discharges. The latter application harks back to the discovery by Pippardfootnote A.B. Pippard, Physica 15, 45 (1949) also in 1949, of the anomalous high frequency skin resistance in metals at low temperatures. In this talk, the discovery of cosmic rays, Fermi's proposal for their origin, and the dynamics of Fermi acceleration are reviewed. Then Fermi acceleration is used as a paradigm to describe collisionless heating in discharges(M.A. Lieberman and V.A. Godyak, IEEE Trans. Plasma Sci.) 26, 955 (1998), with illustrations drawn from experiments, computer simulations and analysis of capacitive, inductive, and ECR discharges. The relation of Fermi acceleration to ``collisionless absorption by Landau damping'' is discussed. Recent studies of novel collisionless heating effects, such as negative

  11. Testing the Role of Cosmic Ray Reacceleration in the Galaxy

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Simpson, J. A.

    1999-05-01

    Cosmic rays constitute a super-thermal gas of charged particles magnetically confined within the Galaxy. While propagating though the interstellar medium (ISM), cosmic ray nuclei undergo nuclear spallation reactions, producing both stable (i.e., Be and B) and unstable secondary nuclei. Consistent cosmic ray confinement times of ~ 20 Myr have been reported from measurements of the radioactive secondary isotopes (10) Be, (26) Al, (36) Cl and (54) Mn using data from the High Energy Telescope (HET) on the Ulysses spacecraft. It is generally accepted that Galactic cosmic rays of energy less than ~ 10(14) eV are accelerated by supernova shocks in the ISM. Reacceleration of existing cosmic rays in the ISM is implicit in interstellar shock acceleration models, but whether reacceleration plays a significant role in cosmic ray production and interstellar propagation is largely unknown. The abundances of secondary electron-capture isotopes provide a crucial test of cosmic ray reacceleration. Electron-capture is suppressed during interstellar propagation because cosmic ray nuclei are essentially stripped of their electrons. If, however, cosmic rays experience significant reacceleration, nuclei will have spent time at lower energies where electron pick-up, and hence electron capture, is more likely than at higher energies. Thus, electron capture secondary isotopes would be less abundant (and their daughters, more abundant) than otherwise predicted. The abundance ratio of (49) V to (51) V is a particularly sensitive test of this effect. The latest Ulysses HET data is used to address this problem. This research was supported in part by NASA/JPL Contract 955432 and NASA Grant NAG5-5179.

  12. Effect of cosmic ray on global high cloud from MODIS

    NASA Astrophysics Data System (ADS)

    Kim, H.-S.; Choi, Y.-S.

    2012-04-01

    The Earth's climate is affected by not only internal forcings but also external forcings related with solar activities. The energetic particles called "cosmic rays" from outer space have been considered as a potentially important external climate forcing since the first report by Svensemark and Friis-Christensen (1997) which showed a significant correlation between cloudiness and cosmic ray. This correlation is a basis of a couple of hypotheses in microphysical processes: ion-aerosol clear-air mechanism and ion-aerosol near-cloud mechanism. These mechanisms have been either supported or objected by many successive studies, most of which correlated long-term trends of cloud and cosmic ray. However, it is most likely that such methodology is not suitable to find actual connection, because long-term trends of clouds may invite affection by many factors other than cosmic ray. It is therefore necessary to find the relation at shorter time scale, since cosmic ray affect the process of cloud formation in a moment. Here we show spatial distributions of correlation between global high cloud fraction data from MODIS and cosmic ray of neutron monitor data from McMurdo, Antarctic. We removed 3-month running means from the original data in order to get high frequency fluctuations. As results, positive correlations are dominant in the spatial distribution, especially over lands on the northern hemisphere and oceans on the Southern hemisphere. On the other hand, negative correlations exist over limited area including the Indian Ocean. According to the cross-correlation (with time lags), the areas with positive correlation is widely distributed at zero lag. At ±1 month lags, the signs of correlations become the opposite of that at zero lag. Furthermore, the correlation between relative high cloud amount to total cloud and cosmic ray shows similar distribution to the correlation between absolute high cloud amount and cosmic ray, implying stronger high cloud response to cosmic ray

  13. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  14. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    SciTech Connect

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  15. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    NASA Astrophysics Data System (ADS)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  16. Global modulation of cosmic rays in the heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius

    2016-07-01

    It is possible, now for the first time, to describe the total, global modulation of cosmic rays in the heliosphere using Voyager observations from the Earth to the heliopause and from the PAMELA space mission at the Earth, in comparison with comprehensive numerical models. The very local interstellar spectra for several cosmic ray species have become much better known so that together with knowledge of where the heliopause is located, comprehensive modelling has taken a huge step forward. New and exciting observations, with ample challenges to theoretical and modelling approaches to the acceleration, transport and modulation of cosmic rays in the heliosphere will be reviewed in this presentation.

  17. Calculations of cosmic-ray helium transport in shielding materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1993-01-01

    The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.

  18. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  19. The first stars: formation under cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Hummel, Jacob A.; Stacy, Athena; Bromm, Volker

    2016-08-01

    We explore the impact of a cosmic ray (CR) background generated by supernova explosions from the first stars on star-forming metal-free gas in a minihalo at z ˜ 25. Starting from cosmological initial conditions, we use the smoothed particle hydrodynamics code GADGET-2 to follow gas collapsing under the influence of a CR background up to densities of n = 1012 cm-3, at which point we form sink particles. Using a suite of simulations with two sets of initial conditions and employing a range of CR background models, we follow each simulation for 5000 yr after the first sink forms. CRs both heat and ionize the gas, boosting H2 formation. Additional H2 enhances the cooling efficiency of the gas, allowing it to fulfil the Rees-Ostriker criterion sooner and expediting the collapse, such that each simulation reaches high densities at a different epoch. As it exits the loitering phase, the thermodynamic path of the collapsing gas converges to that seen in the absence of any CR background. By the time the gas approaches sink formation densities, the thermodynamic state of the gas is thus remarkably similar across all simulations. This leads to a robust characteristic mass that is largely independent of the CR background, of order ˜ a few × 10 M⊙ even as the CR background strength varies by five orders of magnitude.

  20. GEMS at the galactic cosmic-ray source.

    SciTech Connect

    Westphal, A. J.; Davis, A. M.; Levine, J.; Pellin, M. J.; Savina, M. R.

    2007-01-01

    Galactic cosmic rays probably predominantly originate from shock-accelerated gas and dust in superbubbles. It is usually assumed that the shock-accelerated dust is quickly destroyed by sputtering. However, it may be that some of the dust can survive bombardment by the high-metallicity gas in the superbubble interior, and that some of that dust has been incorporated into solar system materials. Interplanetary dust particles (IDPs) contain enigmatic submicron components called GEMS (Glass with Embedded Metal and Sulfides). These GEMS have properties that closely match those expected of a population of surviving shock-accelerated dust at the GCR source (Westphal and Bradley in Astrophys. J. 617:1131, 2004). In order to test the hypothesis that GEMS are synthesized from shock-accelerated dust in superbubbles, we plan to measure the relative abundances of Fe, Zr, and Mo isotopes in GEMS using the new Resonance Ionization Mass Spectrometer at Argonne National Laboratory. If GEMS are synthesized from shock-accelerated dust in superbubbles, they should exhibit isotopic anomalies in Fe, Zr and Mo: specificially, enhancements in the r-only isotopes {sup 96}Zr and {sup 100}Mo, and separately in {sup 58}Fe, should be observed. We review also recent developments in observations of GEMS, laboratory synthesis of GEMS-like materials, and implications of observations of GEMS-like materials in Stardust samples.

  1. Grammage of cosmic rays around Galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    D'Angelo, Marta; Blasi, Pasquale; Amato, Elena

    2016-10-01

    The residence time of cosmic rays (CRs) in the Galaxy is usually inferred from the measurement of the ratio of secondary-to-primary nuclei, for instance the boron (B)/carbon (C) ratio, which provides an estimate of the amount of matter traversed by CRs during their propagation, the so-called CR grammage. However, after being released by their parent sources, for instance, supernova remnants, CRs must cross the disc of the Galaxy, before entering the much lower density halo, in which they are believed to spend most of their time before eventually escaping the Galaxy. In the near-source region, the CR propagation is shown to be dominated by the nonlinear self-generation of waves. Here we show that due to this effect, the time that CRs with energies up to ˜10 TeV spend within a distance Lc˜100 pc from the sources is much larger than naive estimates would suggest. Depending on the level of ionization of the medium surrounding the source, the grammage accumulated in the source vicinity may be a non-negligible fraction of the total grammage traversed throughout the whole Galaxy. Moreover, there is an irreducible grammage that CRs traverse while trapped downstream of the shock that accelerated them, though this contribution is rather uncertain. We conclude that some caution should be used in inferring parameters of Galactic CR propagation from measurements of the B/C ratio.

  2. On the mechanism for breaks in the cosmic ray spectrum

    SciTech Connect

    Malkov, M. A.; Diamond, P. H.; Sagdeev, R. Z.

    2012-08-15

    The proof of cosmic ray (CR) origin in supernova remnants (SNR) must hinge on full consistency of the CR acceleration theory with the observations; direct proof is impossible because of the orbit stochasticity of CR particles. Recent observations of a number of galactic SNR strongly support the SNR-CR connection in general and the Fermi mechanism of CR acceleration, in particular. However, many SNR expand into weakly ionized dense gases, and so a significant revision of the mechanism is required to fit the data. We argue that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by exactly one power. The spectral break is caused by a partial evanescence of Alfven waves that confine particles to the accelerator. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated. Using the recent Fermi spacecraft observation of the SNR W44 as an example, we demonstrate that the parent proton spectrum is a classical test particle power law {proportional_to}E{sup -2}, steepening to E{sup -3} at E{sub br} Almost-Equal-To 7 GeV.

  3. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  4. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    SciTech Connect

    Fang, Ke; Olinto, Angela V.; Kotera, Kumiko E-mail: kotera@iap.fr

    2013-03-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10{sup 19} eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ∼ E{sup −1}) due to pulsar spin down and a maximum energy E{sub max} ∼ Z 10{sup 19} eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10{sup 16} and 10{sup 18} eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy.

  5. Solution to the Cosmic Ray Anisotropy Problem

    NASA Astrophysics Data System (ADS)

    Mertsch, Philipp; Funk, Stefan

    2015-01-01

    In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ˜90 ° , the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources.

  6. Solar Cosmic Ray Acceleration and Propagation

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  7. A Cosmic Ray Telescope For Educational Purposes

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a ``telescope'' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6×1.9×3.7 cm3. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  8. Measurement of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 – 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 – 1018 eV.

  9. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  10. The escape model for Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    The escape model explains the cosmic ray (CR) knee by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this model calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time τesc(E) exhibits a knee-like structure around E/Z = few × 1015 eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs happens in this model at low energies and is terminated below ≈ 3 × 1018 eV. The intermediate energy region up to the ankle is populated by CRs accelerated in starburst galaxies. This model provides a good fit to ln(A) data, while the estimated CR dipole anisotropy is close to, or below, upper limits in the energy range 1017 - 1018 eV. The phase of the dipole is expected to change between 1 × 1017 and 3 × 1018 eV.

  11. Tevatron QCD for Cosmic-Rays

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2010-12-01

    The two multi-purpose experiments D0 and CDF are operated at the Tevatron collider, where proton anti-proton collisions take place at a centre of mass energy of 1.96 TeV in Run II. In the kinematic plane of Q{sup 2}-scale and (anti-)proton momentum fraction x, Tevatron jet measurements cover a wide range, with phase space regions in common and beyond the HERA ep-collider reach. The kinematic limit of the Auger experiment is given by a centre of mass energy of 100 TeV. Cosmic rays cover a large region of the kinematic phase space at low momenta x, corresponding to forward proton/diffractive physics and also at low scales, corresponding to the hadronization scale and the underlying event. Therefore of particular interest are exclusive and diffractive measurements as well as underlying event, double parton scattering and minimum bias measurements. The kinematic limit of the Tevatron corresponds to the PeV energy region below the knee of the differential cosmic particle flux energy distribution. The data discussed here are in general corrected for detector effects, such as efficiency and acceptance. Therefore they can be used directly for testing and improving existing event generators and any future calculations/models. Comparisons take place at the hadronic final state (particle level).

  12. Cosmic ray measurements around the knee

    NASA Astrophysics Data System (ADS)

    Chiavassa, Andrea

    2016-07-01

    Primary cosmic rays of energy greater than ˜ 1014 eV must be studied by indirect experiments measuring the particles generated in the EAS (Extensive Air Shower) development in atmosphere. These experiments are mainly limited by the systematic errors due to their energy calibration. I will discuss the main sources of these errors: the choice of the hadronic interaction model and of the mass of the primary particle (that cannot be measured on a event by event basis). I will then summarize some recent measurements of the all particle spectrum, and I will show that, keeping into account the differences due to the energy calibration, they all agree on the spectral shape. Then I will describe the measurements of the light and heavy primaries mass groups spectra, discussing the claimed features. Using a simple calculation of the elemental spectra (based on the hypothesis that the knee energies follow a Peter's cycle) I will try to discuss if all these results can be interpreted in a common picture.

  13. Measurement of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 - 1018 eV.

  14. Recent results form measurements of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 airplane and on the ground.

    PubMed

    Goldhagen, P; Clem, J M; Wilson, J W

    2003-01-01

    Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.

  15. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude.

    PubMed

    Goldhagen, P; Clem, J M; Wilson, J W

    2004-01-01

    Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra.

  16. Observations of High Energy Cosmic Ray Electrons by the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Chang, J.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2009-01-01

    Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.

  17. MDAC solar cosmic ray experiment on OGO-6

    NASA Technical Reports Server (NTRS)

    Masley, A. J.

    1973-01-01

    The instrumentation of the OGO-F solar cosmic ray experiment is described and results of data obtained during the satellite lifetime from launch on June 5, 1969, through September, 1970, and discussed.

  18. Fluctuations of cross sections seen in cosmic ray data

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1994-08-01

    We argue that the unexpected nonexponential behavior of some cosmic ray data is just a manifestation of cross section fluctuations discussed recently in the literature and observed in nuclear collisions and in diffraction dissociation experiments on accelerators.

  19. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  20. Detectors of Cosmic Rays, Gamma Rays, and Neutrinos

    SciTech Connect

    Altamirano, A.; Navarra, G.

    2009-04-30

    We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

  1. ASPIRE - Cloud Chambers as an Introduction to Cosmic Ray Observation

    NASA Astrophysics Data System (ADS)

    Callahan, Julie; Matthews, John; Jui, Charles

    2012-03-01

    ASPIRE is the K12 - Education & Public Outreach program for the Telescope Array ultra-high energy cosmic ray research project in Utah. The Telescope Array experiment studies ultra-high energy cosmic rays with an array of ˜500 surface scintillator detectors and three fluorescence telescope stations observing over 300 square miles in the West Desert of Utah. Telescope Array is a collaboration of international institutions from the United States, Japan, Korea, Russia and Belgium. Cloud chambers are an inexpensive and easy demonstration to visually observe evidence of charged particles and cosmic ray activity both for informal events as well as for K12 classroom activities. Join us in building a cloud chamber and observe cosmic rays with these table-top demonstrations. A brief overview of the Telescope Array project in Millard County, Utah will also be presented.

  2. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Recent observations of cosmic gamma radiation are reviewed. It is shown that this radiation consists of an extragalactic background as well as a bright band of galactic radiation lying in the plane of the Milky Way and produced primarily by cosmic-ray collisions with interstellar gas atoms. The galactic gamma radiation is divided into a near component apparently associated with Gould's belt and a far component originating about 15,000 light years away and narrowly confined to the galactic plane. A Great Galactic Ring is identified which is 35,000 light years in diameter and in which most galactic cosmic rays are produced and supernovae and pulsars are concentrated. The physical mechanisms responsible for the production of most of the cosmic gamma rays in the Galaxy are examined, and the origin of galactic cosmic rays is considered. It is concluded that the cosmic rays are produced either in supernova explosions or in the pulsars they leave behind

  3. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 7

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic ray Conference are compiled. This volume contains papers which address various aspects of extensive air showers (EAS) produced by energetic particles and gamma rays.

  4. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung

    2000-01-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  5. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  6. Influence of magnetic clouds on cosmic ray intensity variations

    NASA Technical Reports Server (NTRS)

    BADRUDDIN; Yadav, R. S.; Yadav, N. R.; Agrawal, S. P.

    1985-01-01

    Neutron monitor data has been analyzed to study the nature of galactic cosmic ray transient modulation associated with three types of interplanetary magnetic clouds - clouds associated with shocks, stream interfaces and cold magnetic enhancements.

  7. Cosmic Rays Variation Before Changes in Sun-Earth Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2011-12-01

    Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.

  8. On the level of the cosmic ray sea flux

    SciTech Connect

    Casanova, S.; Aharonian, F. A.; Gabici, S.; Torii, K.; Fukui, Y.; Onishi, T.; Yamamoto, H.; Kawamura, A.

    2009-04-08

    The study of Galactic diffuse {gamma} radiation combined with the knowledge of the distribution of the molecular hydrogen in the Galaxy offers a unique tool to probe the cosmic ray flux in the Galaxy. A methodology to study the level of the cosmic ray 'sea' and to unveil target-accelerator systems in the Galaxy, which makes use of the data from the high resolution survey of the Galactic molecular clouds performed with the NANTEN telescope and of the data from {gamma}-ray instruments, has been developed. Some predictions concerning the level of the cosmic ray 'sea' and the {gamma}-ray emission close to cosmic ray sources for instruments such as Fermi and Cherenkov Telescope Array are presented.

  9. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  10. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 1

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. The topic areas covered in this volume include gamma ray bursts, gamma rays from point sources, and diffuse gamma ray emission.

  11. Cosmic Rays. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Carrigan, B.

    1980-04-01

    Measurement techniques, isotopic composition, distribution, intensity, anisotropy, and sources of cosmic rays are covered in the citations. This updated bibliography contains 75 abstracts, 22 of which are new entries to the previous edition.

  12. The dynamic heliosphere, solar activity, and cosmic rays

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius S.

    2010-08-01

    This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.

  13. Thunderstorms, cosmic rays, and solar-lunar influences

    SciTech Connect

    Lethbridge, M.D.

    1990-08-20

    A study of cosmic rays and thunderstorm frequency has shown a decrease in thunderstorms at the time of high cosmic rays and an increase in thunderstorms 2-4 days later. This was done by superposed epoch analysis of thunderstorms over the eastern two thirds of the United States for 1957-1976. When data for spring and fall months were used, the minimum deepened. When high cosmic rays near full and new moon for these months were key days, the minimum deepened again and was significant at less than the 0.01% level. It is believed that when the Sun, Earth, and Moon are aligned, particulate matter in the lower stratosphere is modulated and acted upon by cosmic rays, bringing about an immediate decrease in thunderstorms.

  14. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  15. Intensities of high-energy cosmic rays at Mount Kanbala

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The energy spectra of atmospheric cosmic rays at Mt. Kanbala (520 g/sq cm.) are measured with emulsion chambers. The power indexes of the spectra are values of about 2.0 for both gamma-rays and hadrons. Those fluxes are consistent with the ones expected from the model of primary cosmic rays with heavy nuclei of high content in the energy around 10 to the 15th power eV.

  16. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  17. Consistency of cosmic-ray source abundances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    Certain results regarding the ratio of cosmic-ray sources (CRS) and Solar System abundances are the same as those obtained from explosive nucleosynthesis. Such a model is consistent with the fact that in the Solar System Mg, Si, and Fe are believed to be produced by explosive nucleosynthesis, whereas C and O are mainly products of other processes. The model considered explains the carbon-to-oxygen ratio in the cosmic rays.

  18. Cosmic Ray removal in single images for LAMOST

    NASA Astrophysics Data System (ADS)

    Bai, Zhongrui; Zhang, Haotong; Zhao, Yongheng; Li, Guangwei

    2015-08-01

    We present a method for detecting and removing cosmic rays in single images for LAMOST. The method is consist of two steps. Firstly, we use Laplacian Egde Detection(van Dokkum 2001, PASP, 113, 1420) to initially detect the cosmic rays. Secondly, we make a final judgement by applying a 2-d profile fitting and give a reasonable value for confirmed ones. The method is tested by both man-made and real data.

  19. Spatial variation of cosmic rays near the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Kota, J.

    1985-01-01

    A quantitative comparison between theoretical predictions and observations of the intensity of galactic cosmic rays near the interplanetary current sheet is reported. Comparison of model calculations is made with a statistical analysis of observations of galactic cosmic rays at Earth and the simultaneous position of the current sheet. An ensemble of different current sheet inclinations is used, in order to make the analysis of the computations approximate the method used to analyses the data.

  20. A benchmark for galactic cosmic ray transport codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.

    1987-01-01

    A nontrivial analytic benchmark solution for galactic cosmic ray transport is presented for use in transport code validation. Computational accuracy for a previously-developed cosmic ray transport code is established to within one percent by comparison with this exact benchmark. Hence, solution accuracy for the transport problem is mainly limited by inaccuracies in the input spectra, input interaction databases, and the use of a straight ahead/velocity-conserving approximation.

  1. Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2016-03-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. Aims: We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Methods: Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N2-O2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. Results: We find that up to 20% of stratospheric ozone is destroyed by cosmic-ray protons. The effect on the planetary spectra, however, is negligible. The reduction of the planetary ozone layer leads to an increase in the weighted surface UV flux by two orders of magnitude under stellar UV flare conditions. The resulting biological effective dose rate is, however, too low to strongly affect surface life. We also examine the surface particle flux: For a planet with a terrestrial atmosphere (with a surface pressure of 1033 hPa), a reduction of the magnetic shielding efficiency can increase the biological radiation dose rate by a factor of two, which is non-critical for biological systems. For a planet with a weaker atmosphere (with a surface pressure of 97.8 hPa), the planetary magnetic field has a much stronger influence on the biological radiation dose, changing it by up to two orders of magnitude. Conclusions: For a planet with an Earth-like atmospheric pressure, weak or absent magnetospheric shielding against galactic cosmic

  2. Galactic cosmic-ray modulation near the heliopause

    SciTech Connect

    Guo, X.; Florinski, V.

    2014-09-20

    We investigate the modulation of galactic cosmic rays in the inner and outer heliosheaths using three-dimensional numerical simulations. The model is based on the Parker transport equation integrated using a stochastic phase-space trajectory method. Integration is performed on a plasma background obtained from a global three-dimensional magnetohydrodynamic simulations. Our results predict a negligible amount of modulation in the outer heliosheath because of weak scattering of cosmic ray ions owing to very low levels of magnetic fluctuation power at wavenumbers relevant to the transport of cosmic rays with MeV to GeV energies. This means that the heliopause may be treated as a Dirichlet-type boundary for the purpose of energetic particle modeling. We present models with and without drift velocity to facilitate comparison with papers published earlier. We also attempt to reproduce the sudden step-like increases of cosmic-ray intensity observed by Voyager 1 before its encounter with the heliopause. Our results indicate that very slow cross-field diffusion in the outer heliosheath could produce a large gradient of cosmic rays inside the heliospheric boundary. The resulting large gradient in cosmic-ray intensity near the heliopause qualitatively agrees with recent Voyager 1 observations.

  3. Cosmic Rays, Interstellar Gas and Diffuse Gamma-ray Emission

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle

    2016-07-01

    Cosmic rays smoothly permeate the interstellar medium. The gamma radiation they spawn along their journey has received much attention lately to follow the evolution of the cosmic-ray flux and spectrum in the solar neighbourhood, a few hundred parsecs beyond the Voyager measurements, and further out, on kiloparsec scales across the Galactic disc and above the disc into the halo. Beyond heating the interstellar gas and initiating its chemical enrichment, cosmic rays also serve to trace the total gas in its different forms and to reveal the gas mass in the dark interface between the atomic and molecular phases. Fermi LAT and TeV observations have also enabled the study of the youth of cosmic rays in the turbulent environment of massive star clusters. They have disclosed how little we know about the impact of stellar-wind driven turbulence on the cosmic-ray distribution emerging from the parent region. In this lively context, I will review recent results and discuss open questions on the dynamic interplay between cosmic rays and their interstellar environment.

  4. Magnetospheric modulation effects on solar cosmic rays from simultaneous OGO 1 and 3 ion chamber data in 1968 and 1969

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.

    1973-01-01

    Simultaneous observations by identical ionization chambers aboard the satellites OGO-1 and OGO-3 are utilized to investigate spatial variations in particle intensity near and inside the magnetosphere during the solar cosmic ray events of September 1966. Cross-correlation of the absolute proton flux computed from the chamber rate during three solar particle events shows good agreement with the measurements by the IMP-F Solar Proton Monitor during the same events. The chamber has a dynamic range of over six orders of magnitude. Before launch it was calibrated in the laboratory with radiation dosages in the range 1 R/hr-6000 R/hr. The OGO-1 and OGO-3 chambers, which were normalized in the laboratory prior to the launch, are found to maintain their normalization within approximately equal to 1 per cent during their flight. The high sensitivity and absolute inter-comparability of the instruments allow small intensity differences to be detected and it is established that the observed differences can be explained by a magnetospheric screening effect when an anisotropic beam of particles is present in space. Evidence is presented to show that the screening is at times complete for a duration of as much as 110 min in the tail of the magnetosphere so that during this period the solar cosmic rays (E approximately equal to 15 MeV) have virtually no access to that region of the magnetosphere. Small intensity fluctuations of a temporal nature observed and found to be subjected to a damping effect inside the magnetosphere.

  5. Solar modulation of earthquake occurrence in areas penetrated by L of 2.0 populated by anomalous cosmic rays

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina; Inchin, Alexander; Toyshiev, Nursultan

    An analysis of data of global seismological catalog NEIC (National Earthquake Information Center of the U.S. Geological Survey) for 1973-2011 (182933 events with magnitude equal to 4.5 and more) has been carried out with taken into account the geometry of the main geomagnetic field as gives the International Geomagnetic Reference Field (IGRF-11) model. It is found that the greatest number of earthquakes occurs in seismic areas penetrated by the geomagnetic force lines L=1.0-1.1, and additionally, the L-shell distribution of earthquake counting rate is peaked at the L equal to 2.0-2.2, which are inhabited by the Anomalous Cosmic Rays (ACRs). It is revealed that occurrence of strong earthquakes (with magnitude 7.0 and more) in these areas is modulated by the 11 year solar cycle. Namely, during 1973-2011, twenty strong earthquakes occurred in regions where the L=2.0-2.2 are loaned into the earth’s crust and, surprisingly, all of these earthquakes occurred only at the declining phase of the 11 year solar cycles while were absent at the ascending phase. Solar modulation of earthquake occurrence may be explained at present in the frame of a modern idea that earthquake is triggered by the electric currents flowing into the global electric circuit (GEC), where the charged geomagnetic force lines play the role of conductors (field align currents). The operation of GEC depends on intensity of cosmic rays which provide ionization and conductivity of the air in the middle atmosphere. Since the ACRs are especially sensitive to solar modulation, and since they populate the L of 2.0, it may be expected that earthquake occurrence in the areas penetrated by L of 2.0 would be especially sensitive to solar modulation. Our results prove this expectation, but much work is required to study this problem in more details.

  6. Galactic Cosmic Rays and the Environment

    NASA Astrophysics Data System (ADS)

    Castagnoli, G. Cini

    SH.3.6.14 Galactic Cosmic Rays and the Environment G. Cini Castagnoli, G. Bonino, P. Della Monica, C. Taricco Istituto di Cosmogeofisica, CNR, Corso Fiume 4, 10133 Torino, Italy and Dipartimento di Fisica Generale, Università di Torino, Via P. Giuria 1, 10125 Torino Recently Svensmark and Friis-Christensen (1997) reported an indication that the Galactic Cosmic Rays (GCR) modulated by the solar wind may contribute to the variations in the formation of clouds, which in turn should follow the 11 y solar cycle. On the other hand experiments, conducted in vitro, on the variations of δ3C in symbiont bearing 1 foraminifera have shown that the carbon isotope fractionation from sea water, of the calcite of their shells, depends mainly on the photosynthetic activity (primary productivity) of the symbionts and therefore from the illumination level of their habitat. We have measured and analyzed (Cini Castagnoli et al., 1999) the δ3C profile of G. ruber in an Ionian sea 1 shallow water core very precisely dated. This allows us to acquire information on the ambient light level (connected to the solar irradiance modulation and to the cloud coverage) of the Gallipoli terrace in the past Millenium. The record (1205-1975 AD) of 200 points with time resolution 3.87 years shows a highly significant 11 y cyclicity covariant with Sunspots of amplitude 0.04 ‰ . A test for determining the δ3C-irradiance relation has been 1 13 performed by studying variations of δ C and the percentage annual number of rainy days during the last century in this region. Our results agree with the expectations on the basis of experiments performed in vitro on G. sacculifer ( on G. ruber is not available). The amplitude of the 11 y δ3C signal turns out to be of the order of 1.5 W/m2. This value seems to be 1 quite high (although of the same order) to be directly induced solely by changes in the solar constant, if in past times they were similar to those measured in space during solar cycles 22-23. The

  7. Assessment of galactic cosmic ray models

    NASA Astrophysics Data System (ADS)

    Mrigakshi, Alankrita Isha; Matthiä, Daniel; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.

    2012-08-01

    Among several factors involved in the development of a manned space mission concept, the astronauts' health is a major concern that needs to be considered carefully. Galactic cosmic rays (GCRs), which mainly consist of high-energetic nuclei ranging from hydrogen to iron and beyond, pose a major radiation health risk in long-term space missions. It is therefore required to assess the radiation exposure of astronauts in order to estimate their radiation risks. This can be done either by performing direct measurements or by making computer based simulations from which the dose can be derived. A necessary prerequisite for an accurate estimation of the exposure using simulations is a reliable description of the GCR spectra. The aim of this work is to compare GCR models and to test their applicability for the exposure assessment of astronauts. To achieve this, commonly used models capable of describing both light and heavy GCR particle spectra were evaluated by investigating the model spectra for various particles over several decades. The updated Badhwar-O'Neill model published in the year 2010, CREME2009 which uses the International Standard model for GCR, CREME96 and the Burger-Usoskin model were examined. Hydrogen, helium, oxygen and iron nuclei spectra calculated by the different models are compared with measurements from various high-altitude balloon and space-borne experiments. During certain epochs in the last decade, there are large discrepancies between the GCR energy spectra described by the models and the measurements. All the models exhibit weaknesses in describing the increased GCR flux that was observed in 2009-2010.

  8. Cosmic Ray Anomalies from the MSSM?

    SciTech Connect

    Cotta, R.C.; Conley, J.A.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2011-08-11

    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e{sup +} + e{sup -}) ux and from PAMELA itself on the {anti p}p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional minimal Supergravity (mSUGRA) version of Supersymmetry even if boosts as large as 10{sup 3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the Minimal Supersymmetric Standard Model (MSSM) with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the Lightest Supersymmetric Particle (LSP) is mostly pure bino and annihilates almost exclusively into {tau} pairs comes very close to satisfying these requirements. The lightest in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by {approx}1 unit of {chi}{sup 2}/dof in comparison to the best fit without Supersymmetry while employing boosts in the range {approx}100-200. The implications of these models for future experiments are discussed.

  9. Are cosmic rays modulated beyond the heliopause?

    SciTech Connect

    Kóta, J.; Jokipii, J. R.

    2014-02-10

    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈10{sup 26} cm{sup 2} s{sup –1}, a value that is two orders of magnitude smaller than the value of 10{sup 28} cm{sup 2} s{sup –1} determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈10{sup 22} cm{sup 2} s{sup –1}) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈10{sup 20} cm{sup 2} s{sup –1}; this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  10. Are Cosmic Rays Modulated beyond the Heliopause?

    NASA Astrophysics Data System (ADS)

    Kóta, J.; Jokipii, J. R.

    2014-02-01

    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈1026 cm2 s-1, a value that is two orders of magnitude smaller than the value of 1028 cm2 s-1 determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈1022 cm2 s-1) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈1020 cm2 s-1 this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  11. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  12. Atmospheric changes caused by galactic cosmic rays over the period 1960-2010

    NASA Astrophysics Data System (ADS)

    Jackman, C. H.; Marsh, D. R.; Kinnison, D. E.; Mertens, C. J.; Fleming, E. L.

    2015-12-01

    The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960-2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4-15 % are computed in the Southern polar troposphere with associated ozone increases of 1-2 %. NOx increases of ∼ 1-6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2-1 %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2 + M → ClONO2 + M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused tropospheric column ozone increases of 0.08 % or less and GCR-caused stratospheric column ozone decreases of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods.

  13. Evaluating biomarkers to model cancer risk post cosmic ray exposure

    NASA Astrophysics Data System (ADS)

    Sridharan, Deepa M.; Asaithamby, Aroumougame; Blattnig, Steve R.; Costes, Sylvain V.; Doetsch, Paul W.; Dynan, William S.; Hahnfeldt, Philip; Hlatky, Lynn; Kidane, Yared; Kronenberg, Amy; Naidu, Mamta D.; Peterson, Leif E.; Plante, Ianik; Ponomarev, Artem L.; Saha, Janapriya; Snijders, Antoine M.; Srinivasan, Kalayarasan; Tang, Jonathan; Werner, Erica; Pluth, Janice M.

    2016-06-01

    Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing

  14. Evaluating biomarkers to model cancer risk post cosmic ray exposure.

    PubMed

    Sridharan, Deepa M; Asaithamby, Aroumougame; Blattnig, Steve R; Costes, Sylvain V; Doetsch, Paul W; Dynan, William S; Hahnfeldt, Philip; Hlatky, Lynn; Kidane, Yared; Kronenberg, Amy; Naidu, Mamta D; Peterson, Leif E; Plante, Ianik; Ponomarev, Artem L; Saha, Janapriya; Snijders, Antoine M; Srinivasan, Kalayarasan; Tang, Jonathan; Werner, Erica; Pluth, Janice M

    2016-06-01

    Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing

  15. Evaluating biomarkers to model cancer risk post cosmic ray exposure.

    PubMed

    Sridharan, Deepa M; Asaithamby, Aroumougame; Blattnig, Steve R; Costes, Sylvain V; Doetsch, Paul W; Dynan, William S; Hahnfeldt, Philip; Hlatky, Lynn; Kidane, Yared; Kronenberg, Amy; Naidu, Mamta D; Peterson, Leif E; Plante, Ianik; Ponomarev, Artem L; Saha, Janapriya; Snijders, Antoine M; Srinivasan, Kalayarasan; Tang, Jonathan; Werner, Erica; Pluth, Janice M

    2016-06-01

    Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing

  16. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hórandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou c, V.; Payet, K.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcǎu, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto a, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  17. Bioeffectiveness of Cosmic Rays Near the Earth Surface

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.

    2014-10-01

    Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the

  18. Atmospheric Effects on Cosmic Ray Air Showers Observed with HAWC

    NASA Astrophysics Data System (ADS)

    Young, Steven

    2014-01-01

    The High Altitude Water Cherenkov Gamma Ray detector (HAWC), currently under construction on the Sierra Negra volcano near Puebla, Mexico, can be used to study solar physics with its scaler data acquisition system. Increases in the scaler rates are used to observe GeV cosmic rays from solar flares while decreases in the rates show the heliospheric disturbances associated with coronal mass ejections. However, weather conditions and height-dependent state variables such as pressure and temperature affect the production of extensive particle air showers that can be detected by the scaler system. To see if these atmospheric effects can be removed, we obtained local weather data from the Global Data Assimilation System (GDAS) and the local weather station at HAWC. The scaler pulse rates were then correlated to the pressure and temperature. We present data from a Forbush decrease observed by HAWC following a significant coronal mass ejection in April 2013, and describe our efforts to remove atmospheric variations from the scaler counts. This work was partially supported by the National Science Foundation’s REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  19. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.

  20. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.