Regularizing cosmological singularities by varying physical constants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dąbrowski, Mariusz P.; Marosek, Konrad, E-mail: mpdabfz@wmf.univ.szczecin.pl, E-mail: k.marosek@wmf.univ.szczecin.pl
2013-02-01
Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.
Graviton fluctuations erase the cosmological constant
NASA Astrophysics Data System (ADS)
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
A hundred years with the cosmological constant
NASA Astrophysics Data System (ADS)
Grøn, Øyvind G.
2018-07-01
The main points in the history of the cosmological constant are briefly discussed. As a conceptual background, useful for teaching of physics at an elementary college and university level, Newton’s theory formulated locally in terms of the Poisson equation is presented, and it is shown how it is modified by the introduction of the cosmological constant. The different physical interpretations of the cosmological constant, as introduced by Einstein in 1917 and interpreted by Lemaître in 1934, are presented. Energy conservation in an expanding universe dominated by vacuum energy is discussed. The connection between the cosmological constant and the quantum mechanical vacuum energy is mentioned, together with the problem that a quantum mechanical calculation of the density of the vacuum energy gives a vastly too large value of the cosmological constant. The article is concluded by reviewing a solution of this problem that was presented on May 11, 2017.
Wormholes and the cosmological constant problem.
NASA Astrophysics Data System (ADS)
Klebanov, I.
The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.
Fast optimization algorithms and the cosmological constant
NASA Astrophysics Data System (ADS)
Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad
2017-11-01
Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.
String cosmology and the landscape
NASA Astrophysics Data System (ADS)
Bena, Iosif; Graña, Mariana
2017-03-01
String Theory is believed to have a landscape of 10500 vacua with properties that resemble those of our Universe. The existence of these vacua can be combined with anthropic reasoning to explain some of the hardest problems in cosmology and high-energy physics: the cosmological constant problem, the hierarchy problem, and the un-natural almost-flatness of the inflationary potential. We will explain the construction of these vacua, focusing on the challenges of obtaining vacua with a positive cosmological constant.
Quantum vacuum energy in general relativity
NASA Astrophysics Data System (ADS)
Henke, Christian
2018-02-01
The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ (a)=Λ_0+Λ_1 a^{-(4-ɛ)}, 0 < ɛ ≪ 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter.
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
The covariant entropy conjecture and concordance cosmological models
NASA Astrophysics Data System (ADS)
He, Song; Zhang, Hongbao
2008-10-01
Recently a covariant entropy conjecture has been proposed for dynamical horizons. We apply this conjecture to concordance cosmological models, namely, those cosmological models filled with perfect fluids, in the presence of a positive cosmological constant. As a result, we find that this conjecture has a severe constraint power. Not only does this conjecture rule out those cosmological models disfavored by the anthropic principle, but also it imposes an upper bound 10-60 on the cosmological constant for our own universe, which thus provides an alternative macroscopic perspective for understanding the long-standing cosmological constant problem.
Can compactifications solve the cosmological constant problem?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertzberg, Mark P.; Center for Theoretical Physics, Department of Physics,Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139; Masoumi, Ali
2016-06-30
Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain whymore » Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.« less
Cosmological measure with volume averaging and the vacuum energy problem
NASA Astrophysics Data System (ADS)
Astashenok, Artyom V.; del Popolo, Antonino
2012-04-01
In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero.
On anthropic solutions of the cosmological constant problem
NASA Astrophysics Data System (ADS)
Banks, Tom; Dine, Michael; Motl, Lubos
2001-01-01
Motivated by recent work of Bousso and Polchinski (BP), we study theories which explain the small value of the cosmological constant using the anthropic principle. We argue that simultaneous solution of the gauge hierarchy problem is a strong constraint on any such theory. We exhibit three classes of models which satisfy these constraints. The first is a version of the BP model with precisely two large dimensions. The second involves 6-branes and antibranes wrapped on supersymmetric 3-cycles of Calabi-Yau manifolds, and the third is a version of the irrational axion model. All of them have possible problems in explaining the size of microwave background fluctuations. We also find that most models of this type predict that all constants in the low energy lagrangian, as well as the gauge groups and representation content, are chosen from an ensemble and cannot be uniquely determined from the fundamental theory. In our opinion, this significantly reduces the appeal of this kind of solution of the cosmological constant problem. On the other hand, we argue that the vacuum selection problem of string theory might plausibly have an anthropic, cosmological solution.
Cosmological Constant: A Lesson from Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo
2012-02-01
The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.
Cosmological constant: a lesson from Bose-Einstein condensates.
Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo
2012-02-17
The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.
An étude on global vacuum energy sequester
D’Amico, Guido; Kaloper, Nemanja; Padilla, Antonio; ...
2017-09-18
Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore,more » the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.« less
Cosmic acceleration in the nonlocal approach to the cosmological constant problem
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2018-04-01
We have recently constructed a manifestly local formulation of a nonlocal approach to the cosmological constant problem which can treat with quantum effects from both matter and gravitational fields. In this formulation, it has been explicitly shown that the effective cosmological constant is radiatively stable even in the presence of the gravitational loop effects. Since we are naturally led to add the R^2 term and the corresponding topological action to an original action, we make use of this formulation to account for the late-time acceleration of expansion of the universe in case of the open universes with infinite space-time volume. We will see that when the "scalaron", which exists in the R^2 gravity as an extra scalar field, has a tiny mass of the order of magnitude {O}(1 meV), we can explain the current value of the cosmological constant in a consistent manner.
Cosmological Constant as a Manifestation of the Hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Gu, Je-An
2007-12-21
There has been the suggestion that the cosmological constant as implied by the dark energy is related to the well-known hierarchy between the Planck scale, M{sub PI}, and the Standard Model scale, M{sub SM}. Here we further propose that the same framework that addresses this hierarchy problem must also address the smallness problem of the cosmological constant. Specifically, we investigate the minimal supersymmetric (SUSY) extension of the Randall-Sundrum model where SUSY-breaking is induced on the TeV brane and transmitted into the bulk. We show that the Casimir energy density of the system indeed conforms with the observed dark energy scale.
A no hair theorem and the problem of initial conditions. [in cosmological model
NASA Technical Reports Server (NTRS)
Jensen, Lars Gerhard; Stein-Schabes, Jaime A.
1987-01-01
It is shown that under very general conditions, any inhomogeneous cosmological model with a positive cosmological constant that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This renders the problem of initial conditions less severe.
The Relation between Cosmological Redshift and Scale Factor for Photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn; Department of Physics, Wuhan University, Wuhan 430072
The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems;more » and the Sandage–Loeb effect. All of this method is feasible now or in the near future.« less
An analytic cosmology solution of Poincaré gauge gravity
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Chee, Guoying
2016-06-01
A cosmology of Poincaré gauge theory is developed. An analytic solution is obtained. The calculation results agree with observation data and can be compared with the ΛCDM model. The cosmological constant puzzle is the coincidence and fine tuning problem are solved naturally at the same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the vacuum universe, and is derived from the theory naturally rather than added artificially. The dark energy originates from geometry, includes the cosmological constant but differs from it. The analytic expression of the state equations of the dark energy and the density parameters of the matter and the geometric dark energy are derived. The full equations of linear cosmological perturbations and the solutions are obtained.
REVIEWS OF TOPICAL PROBLEMS: Cosmological branes and macroscopic extra dimensions
NASA Astrophysics Data System (ADS)
Barvinsky, Andrei O.
2005-06-01
The idea of adding extra dimensions to the physical world — thus making the observable universe a timelike surface (or brane) embedded in a higher-dimensional space-time — is briefly reviewed, which is believed to hold serious promise for solving fundamental problems concerning the hierarchy of physical interactions and the cosmological constant. Brane localization of massless gravitons is discussed as a mechanism leading to the effective four-dimensional Einstein gravity theory on the brane in the low-energy limit. It is shown that this mechanism is a corollary of the AdS/CFT correspondence principle well-known from string theory. Inflation and other cosmological evolution scenarios induced by the local and nonlocal structures of the effective action of the gravitational brane are considered, as are the effects that enable the developing gravitational-wave astronomy to be used in the search for extra dimensions. Finally, a new approach to the cosmological constant and cosmological acceleration problems is discussed, which involves variable local and nonlocal gravitational 'constants' arising in the infrared modifications of the Einstein theory that incorporate brane-induced gravity models and models of massive gravitons.
The tethered galaxy problem: a possible window to explore cosmological models
NASA Astrophysics Data System (ADS)
Tangmatitham, Matipon; Nemiroff, Robert J.
2017-01-01
In the tethered galaxy problem, a hypothetical galaxy is being held at a fixed proper distance. Contrary to Newtonian intuition, it has been shown that this tethered galaxy can have a nonzero redshift. However, constant proper distance has been suggested as unphysical in a cosmological setting and therefore other definitions have been suggested. The tethered galaxy problem is therefore reviewed in Friedmann cosmology. In this work, different tethers are considered as possible local cosmological discriminators.
Anti-anthropic solutions to the cosmic coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedrow, Joseph M.; Griest, Kim, E-mail: j.m.fedrow@gmail.com, E-mail: kgriest@ucsd.edu
2014-01-01
A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predictedmore » by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.« less
Cosmological constant problem and renormalized vacuum energy density in curved background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp
The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derivemore » this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.« less
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2003-08-01
We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.
Λ(t) CDM and the present accelerating expansion of the universe from 5D scalar vacuum
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Zamarripa, J.; Peraza, A.; Licea, J. A.
2017-12-01
In this letter we investigate some consequences of considering our 4D observable universe as locally and isometrically embedded in a 5D spacetime, where gravity is described by a Brans-Dicke theory in vacuum. Once we impose the embedding conditions we obtain that gravity on the 4D spacetime is governed by the Einstein field equations modified by an extra term that can play the role of a dynamical cosmological constant. Two examples were studied. In the first we derive a cosmological model of a universe filled only with a cosmological constant. In the second we obtain a cosmological solution describing a universe filled with matter, radiation and a dynamical cosmological constant. We constrain the model by using the current observational data combination Planck + WP + BAO + SN. The present acceleration in the expansion of the universe is explained by the geometrically induced dynamical cosmological constant avoiding the introduction of a dark energy component and without addressing the underlying cosmological constant problem. Moreover, all 4D matter sources are geometrically induced in the same manner as it is usually done in the Wesson's induced matter theory.
Asymptotically Vanishing Cosmological Constant in the Multiverse
NASA Astrophysics Data System (ADS)
Kawai, Hikaru; Okada, Takashi
We study the problem of the cosmological constant in the context of the multiverse in Lorentzian space-time, and show that the cosmological constant will vanish in the future. This sort of argument was started by Sidney Coleman in 1989, and he argued that the Euclidean wormholes make the multiverse partition function a superposition of various values of the cosmological constant Λ, which has a sharp peak at Λ = 0. However, the implication of the Euclidean analysis to our Lorentzian space-time is unclear. With this motivation, we analyze the quantum state of the multiverse in Lorentzian space-time by the WKB method, and calculate the density matrix of our universe by tracing out the other universes. Our result predicts vanishing cosmological constant. While Coleman obtained the enhancement at Λ = 0 through the action itself, in our Lorentzian analysis the similar enhancement arises from the front factor of eiS in the universe wave function, which is in the next leading order in the WKB approximation.
NASA Astrophysics Data System (ADS)
Totani, Tomonori
2017-10-01
In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.
Barvinsky, A O
2007-08-17
The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.
Brane junctions in the Randall-Sundrum scenario
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Shirman, Yuri
2000-01-01
We present static solutions to Einstein's equations corresponding to branes at various angles intersecting in a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological constants, and thus cannot have a dynamical origin. We present these conditions in detail for two simple examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios, and outline the desired features of the brane configurations which may bring us closer towards a resolution of the cosmological constant problem.
Deflation of the cosmological constant associated with inflation and dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: geng@phys.nthu.edu.tw, E-mail: chungchi@mx.nthu.edu.tw
2016-06-01
In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.
More on Weinberg's no-go theorem in quantum gravity
NASA Astrophysics Data System (ADS)
Nagahama, Munehiro; Oda, Ichiro
2018-05-01
We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.
One hundred years of the cosmological constant: from "superfluous stunt" to dark energy
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2018-05-01
We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.
One hundred years of the cosmological constant: from "superfluous stunt" to dark energy
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2018-03-01
We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
NASA Astrophysics Data System (ADS)
Narimani, Ali; Afshordi, Niayesh; Scott, Douglas
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.
Fine Structure of Dark Energy and New Physics
Jejjala, Vishnu; Kavic, Michael; Minic, Djordje
2007-01-01
Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less
Accelerating universe with time variation of G and Λ
NASA Astrophysics Data System (ADS)
Darabi, F.
2012-03-01
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach's cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach's cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρ˜ a -4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.
Time variation of fundamental constants in nonstandard cosmological models
NASA Astrophysics Data System (ADS)
Mosquera, M. E.; Civitarese, O.
2017-10-01
In this work we have studied the lithium problem in nonstandard cosmological models. In particular, by using the public code alterbbn, we have included in the computation of the primordial light nuclei abundances, the effects of the inclusion of dark energy and dark entropy, along with the variation of the fine structure constant and the Higgs vacuum expectation value. In order to set constrains on the variation of the fundamental constants we have compared our theoretical results with the available observational data. We have found that the lithium abundance is reduced for not-null variation at the 3 σ -level of both constants.
Cosmological constant implementing Mach principle in general relativity
NASA Astrophysics Data System (ADS)
Namavarian, Nadereh; Farhoudi, Mehrdad
2016-10-01
We consider the fact that noticing on the operational meaning of the physical concepts played an impetus role in the appearance of general relativity (GR). Thus, we have paid more attention to the operational definition of the gravitational coupling constant in this theory as a dimensional constant which is gained through an experiment. However, as all available experiments just provide the value of this constant locally, this coupling constant can operationally be meaningful only in a local area. Regarding this point, to obtain an extension of GR for the large scale, we replace it by a conformal invariant model and then, reduce this model to a theory for the cosmological scale via breaking down the conformal symmetry through singling out a specific conformal frame which is characterized by the large scale characteristics of the universe. Finally, we come to the same field equations that historically were proposed by Einstein for the cosmological scale (GR plus the cosmological constant) as the result of his endeavor for making GR consistent with the Mach principle. However, we declare that the obtained field equations in this alternative approach do not carry the problem of the field equations proposed by Einstein for being consistent with Mach's principle (i.e., the existence of de Sitter solution), and can also be considered compatible with this principle in the Sciama view.
Mysterious Anti-Gravity and Dark-Essence
NASA Astrophysics Data System (ADS)
Gu, Je-An
2013-12-01
The need of anti-gravity and dark-essence in cosmology is the greatest scientific mystery in the 21st century. This paper presents a personal view of several relevant issues, including the long-standing cosmological constant problem, the newly emerging dark radiation issue, and the basic stability issue of the general-relativity limit in modified gravity.
Mysterious Anti-Gravity and Dark-Essence
NASA Astrophysics Data System (ADS)
Gu, Je-An
2013-01-01
The need of anti-gravity and dark-essence in cosmology is the greatest scientific mystery in the 21st century. This paper presents a personal view of several relevant issues, including the long-standing cosmological constant problem, the newly emerging dark radiation issue, and the basic stability issue of the general-relativity limit in modified gravity.
The cosmological constant as an eigenvalue of a Sturm-Liouville problem
NASA Astrophysics Data System (ADS)
Astashenok, Artyom V.; Elizalde, Emilio; Yurov, Artyom V.
2014-01-01
It is observed that one of Einstein-Friedmann's equations has formally the aspect of a Sturm-Liouville problem, and that the cosmological constant, Λ, plays thereby the role of spectral parameter (what hints to its connection with the Casimir effect). The subsequent formulation of appropriate boundary conditions leads to a set of admissible values for Λ, considered as eigenvalues of the corresponding linear operator. Simplest boundary conditions are assumed, namely that the eigenfunctions belong to L 2 space, with the result that, when all energy conditions are satisfied, they yield a discrete spectrum for Λ>0 and a continuous one for Λ<0. A very interesting situation is seen to occur when the discrete spectrum contains only one point: then, there is the possibility to obtain appropriate cosmological conditions without invoking the anthropic principle. This possibility is shown to be realized in cyclic cosmological models, provided the potential of the matter field is similar to the potential of the scalar field. The dynamics of the universe in this case contains a sudden future singularity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasiello, Matteo; Vlah, Zvonimir
A specific value for the cosmological constant Λ can account for late-time cosmic acceleration. However, motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists. Going beyond ΛCDM often comes with additional degrees of freedom (dofs). For these to pass existing observational tests, an efficient screening mechanism must be in place. Furthermore, the linear and quasi-linear regimes of structure formation are ideal probes of such dofs and can capture the onset of screening. We propose here a semi-phenomenological “filter” to account for screeningmore » dynamics on LSS observables, with special emphasis on Vainshtein-type screening.« less
The Rh = ct universe in alternative theories of gravity
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Kazanas, Demosthenes
2017-12-01
The Λ cold dark matter (ΛCDM) model (one comprising of a cosmological constant Λ and cold dark matter) is generally considered the standard model in cosmology. One of the alternatives that has received attention in the last few years is the Rh = ct universe, which provides an age for the Universe similar to that of ΛCDM and whose (vanishing) deceleration parameter is apparently not inconsistent with observations. Like the ΛCDM, the Rh = ct universe is based on a Friedmann-Robertson-Walker cosmology with the total energy density ρ and pressure p of the cosmic fluid satisfying the simple equation of state ρ + 3p = 0, i.e. a vanishing total active gravitational mass. In an earlier paper, we examined the possible sources for the Rh = ct universe within general relativity, and we have shown that it still contains a dark energy component, albeit not in the form of a cosmological constant. The growing interest in gravitational theories, alternative to Einstein's general relativity, in cosmology, is mainly driven by the need for cosmological models that attain a late-time accelerated expansion without the presence of a cosmological constant as in the ΛCDM, and thereby avoiding the problems associated with it. In this paper, we discuss some of these common alternative theories and show that the Rh = ct is also a solution to some of them.
Cosmologies with varying speed of light: kinematic tests
NASA Astrophysics Data System (ADS)
Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.
2003-08-01
In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Screening in perturbative approaches to LSS
Fasiello, Matteo; Vlah, Zvonimir
2017-08-24
A specific value for the cosmological constant Λ can account for late-time cosmic acceleration. However, motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists. Going beyond ΛCDM often comes with additional degrees of freedom (dofs). For these to pass existing observational tests, an efficient screening mechanism must be in place. Furthermore, the linear and quasi-linear regimes of structure formation are ideal probes of such dofs and can capture the onset of screening. We propose here a semi-phenomenological “filter” to account for screeningmore » dynamics on LSS observables, with special emphasis on Vainshtein-type screening.« less
Cosmologically allowed regions for the axion decay constant Fa
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Sonomoto, Eisuke; Yanagida, Tsutomu T.
2018-07-01
If the Peccei-Quinn symmetry is already broken during inflation, the decay constant Fa of the axion can be in a wide region from 1011GeV to 1018GeV for the axion being the dominant dark matter. In this case, however, the axion causes the serious cosmological problem, isocurvature perturbation problem, which severely constrains the Hubble parameter during inflation. The constraint is relaxed when Peccei-Quinn scalar field takes a large value ∼Mp (Planck scale) during inflation. In this letter, we point out that the allowed region of the decay constant Fa is reduced to a rather narrow region for a given tensor-to-scalar ratio r when Peccei-Quinn scalar field takes ∼Mp during inflation. For example, if the ratio r is determined as r ≳10-3 in future measurements, we can predict Fa ≃ (0.1- 1.4) ×1012GeV for domain wall number NDW = 6.
Anthropic versus cosmological solutions to the coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreira, A.; Avelino, P. P.; Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto
2011-05-15
In this paper, we investigate possible solutions to the coincidence problem in flat phantom dark-energy models with a constant dark-energy equation of state and quintessence models with a linear scalar field potential. These models are representative of a broader class of cosmological scenarios in which the universe has a finite lifetime. We show that, in the absence of anthropic constraints, including a prior probability for the models inversely proportional to the total lifetime of the universe excludes models very close to the {Lambda} cold dark matter model. This relates a cosmological solution to the coincidence problem with a dynamical dark-energymore » component having an equation-of-state parameter not too close to -1 at the present time. We further show that anthropic constraints, if they are sufficiently stringent, may solve the coincidence problem without the need for dynamical dark energy.« less
NASA Astrophysics Data System (ADS)
Lubo, M.; Rooman, M.; Spindel, Ph.
1999-02-01
We investigate, in the framework of (2+1)-dimensional gravity, stationary rotationally symmetric gravitational sources of the perfect fluid type, embedded in a space of an arbitrary cosmological constant. We show that the matching conditions between the interior and exterior geometries imply restrictions on the physical parameters of the solutions. In particular, imposing finite sources and the absence of closed timelike curves privileges negative values of the cosmological constant, yielding exterior vacuum geometries of rotating black hole type. In the special case of static sources, we prove the complete integrability of the field equations and show that the sources' masses are bounded from above and, for a vanishing cosmological constant, generally equal to 1. We also discuss and illustrate the stationary configurations by explicitly solving the field equations for constant mass-energy densities. If the pressure vanishes, we recover as interior geometries Gödel-like metrics defined on causally well behaved domains, but with unphysical values of the mass to angular momentum ratio. The introduction of pressure in the sources cures the latter problem and leads to physically more relevant models.
The varying cosmological constant: a new approximation to the Friedmann equations and universe model
NASA Astrophysics Data System (ADS)
Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.
2018-05-01
We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.
Small dark energy and stable vacuum from Dilaton-Gauss-Bonnet coupling in TMT
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo I.; Nishino, Hitoshi; Rajpoot, Subhash
2017-04-01
In two measures theories (TMT), in addition to the Riemannian measure of integration, being the square root of the determinant of the metric, we introduce a metric-independent density Φ in four dimensions defined in terms of scalars \\varphi _a by Φ =\\varepsilon ^{μ ν ρ σ } \\varepsilon _{abcd} (partial _{μ }\\varphi _a)(partial _{ν }\\varphi _b) (partial _{ρ }\\varphi _c) (partial _{σ }\\varphi _d). With the help of a dilaton field φ we construct theories that are globally scale invariant. In particular, by introducing couplings of the dilaton φ to the Gauss-Bonnet (GB) topological density {√{-g}} φ ( R_{μ ν ρ σ }^2 - 4 R_{μ ν }^2 + R^2 ) we obtain a theory that is scale invariant up to a total divergence. Integration of the \\varphi _a field equation leads to an integration constant that breaks the global scale symmetry. We discuss the stabilizing effects of the coupling of the dilaton to the GB-topological density on the vacua with a very small cosmological constant and the resolution of the `TMT Vacuum-Manifold Problem' which exists in the zero cosmological-constant vacuum limit. This problem generically arises from an effective potential that is a perfect square, and it gives rise to a vacuum manifold instead of a unique vacuum solution in the presence of many different scalars, like the dilaton, the Higgs, etc. In the non-zero cosmological-constant case this problem disappears. Furthermore, the GB coupling to the dilaton eliminates flat directions in the effective potential, and it totally lifts the vacuum-manifold degeneracy.
NASA Astrophysics Data System (ADS)
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
NASA Astrophysics Data System (ADS)
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-07-01
Models of the very early Universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS
NASA Astrophysics Data System (ADS)
Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas
2016-06-01
We investigate the problem of finding a pure spin-connection formulation of general relativity with nonvanishing cosmological constant. We first revisit the problem at the linearized level and find that the pure spin-connection, quadratic Lagrangian, takes a form reminiscent to Weyl gravity, given by the square of a Weyl-like tensor. Upon Hodge dualization, we show that the dual gauge field in (A )dSD transforms under G L (D ) in the same representation as a massive graviton in the flat spacetime of the same dimension. We give a detailed proof that the physical degrees of freedom indeed correspond to a massless graviton propagating around the (anti-) de Sitter background and finally speculate about a possible nonlinear pure-connection theory dual to general relativity with cosmological constant.
Relaxation of vacuum energy in q-theory
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
Beyond Λ CDM: Problems, solutions, and the road ahead
NASA Astrophysics Data System (ADS)
Bull, Philip; Akrami, Yashar; Adamek, Julian; Baker, Tessa; Bellini, Emilio; Beltrán Jiménez, Jose; Bentivegna, Eloisa; Camera, Stefano; Clesse, Sébastien; Davis, Jonathan H.; Di Dio, Enea; Enander, Jonas; Heavens, Alan; Heisenberg, Lavinia; Hu, Bin; Llinares, Claudio; Maartens, Roy; Mörtsell, Edvard; Nadathur, Seshadri; Noller, Johannes; Pasechnik, Roman; Pawlowski, Marcel S.; Pereira, Thiago S.; Quartin, Miguel; Ricciardone, Angelo; Riemer-Sørensen, Signe; Rinaldi, Massimiliano; Sakstein, Jeremy; Saltas, Ippocratis D.; Salzano, Vincenzo; Sawicki, Ignacy; Solomon, Adam R.; Spolyar, Douglas; Starkman, Glenn D.; Steer, Danièle; Tereno, Ismael; Verde, Licia; Villaescusa-Navarro, Francisco; von Strauss, Mikael; Winther, Hans A.
2016-06-01
Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, Λ CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of Λ CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.
The Hubble IR cutoff in holographic ellipsoidal cosmologies
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Cruz, Norman
2018-01-01
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω =p/ρ , whose range belongs to quintessence or even phantom matter.
Cosmological perturbation and matter power spectrum in bimetric massive gravity
NASA Astrophysics Data System (ADS)
Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo
2018-04-01
We discuss the linear perturbation equations with the synchronous gauge in a minimal scenario of the bimetric massive gravity theory. We find that the matter density perturbation and matter power spectrum are suppressed. We also examine the ghost and stability problems and show that the allowed deviation of this gravitational theory from the cosmological constant is constrained to be smaller than O(10-2) by the large scale structure observational data.
Cosmological constant and quantum gravitational corrections to the running fine structure constant.
Toms, David J
2008-09-26
The quantum gravitational contribution to the renormalization group behavior of the electric charge in Einstein-Maxwell theory with a cosmological constant is considered. Quantum gravity is shown to lead to a contribution to the running charge not present when the cosmological constant vanishes. This reopens the possibility, suggested by Robinson and Wilczek, of altering the scaling behavior of gauge theories at high energies although our result differs. We show the possibility of an ultraviolet fixed point that is linked directly to the cosmological constant.
A Universe without Weak Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-04-07
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scalemore » of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.« less
NASA Astrophysics Data System (ADS)
Ivanov, A. N.; Wellenzohn, M.
2016-09-01
We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.
Growth of matter perturbation in quintessence cosmology
NASA Astrophysics Data System (ADS)
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
Some solutions for one of the cosmological constant problems
NASA Astrophysics Data System (ADS)
Nojiri, Shin'Ichi
2016-11-01
We propose several covariant models which may solve one of the problems in the cosmological constant. One of the models can be regarded as an extension of sequestering model. Other models could be regarded as extensions of the covariant formulation of the unimodular gravity. The contributions to the vacuum energy from the quantum corrections from the matters are absorbed into a redefinition of a scalar field and the quantum corrections become irrelevant to the dynamics. In a class of the extended unimodular gravity models, we also consider models which are regarded as topological field theories. The models can be extended and not only the vacuum energy but also any quantum corrections to the gravitational action could become irrelevant for the dynamics. We find, however, that the BRS symmetry in the topological field theories is broken spontaneously and therefore, the models might not be consistent.
Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant
NASA Astrophysics Data System (ADS)
Garattini, Remo
2012-07-01
Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.
Matter-antimatter asymmetry induced by a running vacuum coupling
NASA Astrophysics Data System (ADS)
Lima, J. A. S.; Singleton, D.
2017-12-01
We show that a CP-violating interaction induced by a derivative coupling between the running vacuum and a non-conserving baryon current may dynamically break CPT and trigger baryogenesis through an effective chemical potential. By assuming a non-singular class of running vacuum cosmologies which provides a complete cosmic history (from an early inflationary de Sitter stage to the present day quasi-de Sitter acceleration), it is found that an acceptable baryon asymmetry is generated for many different choices of the model parameters. It is interesting that the same ingredient (running vacuum energy density) addresses several open cosmological questions/problems: avoids the initial singularity, provides a smooth exit for primordial inflation, alleviates both the coincidence and the cosmological constant problems, and, finally, is also capable of explaining the generation of matter-antimatter asymmetry in the very early Universe.
Degravitation, inflation and the cosmological constant as an afterglow
NASA Astrophysics Data System (ADS)
Patil, Subodh P.
2009-01-01
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation — where Netwon's constant is promoted to a scale dependent filter function — as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant `afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units Λ ~ l2pl/L2. We discuss circumstances through which this scenario reasonably yields the presently observed value for Λ ~ O(10-120). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large in addition to why it is not zero, it does not satisfactorily address the co-incidence problem without additional tuning.
Initial conditions of inhomogeneous universe and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Totani, Tomonori
2016-06-01
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint 0δ(√-g) = to metric variations δ gμν, and then the cosmological constant Λ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initial conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on δ gμν to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero Λ in a homogeneous patch of the universe created by inflation, but Λ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.
NASA Astrophysics Data System (ADS)
Sugiyama, Naoshi; Gouda, Naoteru; Sasaki, Misao
1990-12-01
Thorough numerical calculations of the fluctuations in the cosmic microwave background radiation using the gage-invariant formalism are carried out for various cosmological models with the cosmological constant. It is shown that a spatially flat cold dark matter-dominated universe of Omega(0) = 0.1 to about 0.4 and H(0) = 50 to about 100 km/s per Mpc with adiabatic perturbations has the possibility of giving the final answer to cosmological puzzles. It is also found that the introduction of the cosmological constant may revive pure baryonic universe models.
Some remarks on anthropic approaches to the strong CP problem
NASA Astrophysics Data System (ADS)
Dine, Michael; Haskins, Laurel Stephenson; Ubaldi, Lorenzo; Xu, Di
2018-05-01
The peculiar value of θ is a challenge to the notion of an anthropic landscape. We briefly review the possibility that a suitable axion might arise from an anthropic requirement of dark matter. We then consider an alternative suggestion of Kaloper and Terning that θ might be correlated with the cosmological constant. We note that in a landscape one expects that θ is determined by the expectation value of one or more axions. We discuss how a discretuum of values of θ might arise with an energy distribution dominated by QCD, and find the requirements to be quite stringent. Given such a discretuum, we find no circumstances where small θ might be selected by anthropic requirements on the cosmological constant.
The cosmological constant and dark energy
NASA Astrophysics Data System (ADS)
Peebles, P. J.; Ratra, Bharat
2003-04-01
Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant Λ. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lemaître model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.
Cosmic acceleration and the helicity-0 graviton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved.more » Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.« less
Large numbers hypothesis. IV - The cosmological constant and quantum physics
NASA Technical Reports Server (NTRS)
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
The Conformal Factor and the Cosmological Constant
NASA Astrophysics Data System (ADS)
Giddings, Steven B.
The issue of the conformal factor in quantum gravity is examined for Lorentzian signature spacetimes. In Euclidean signature, the “wrong” sign of the conformal action makes the path integral undefined, but in Lorentzian signature this sign is tied to the instability of gravity and once this is accounted for the path integral should be well-defined. In this approach it is not obvious that the Baum-Hawking-Coleman mechanism for suppression of the cosmological constant functions. It is conceivable that since the multiuniverse system exhibits an instability for positive cosmological constant, the dynamics should force the system to zero cosmological constant.
Nonsingular universe in massive gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.
2017-06-01
One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.
Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, George F.R.; Platts, Emma; Weltman, Amanda
2016-04-01
We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof ofmore » principle, with no definite claim on the physical mechanism required for the present dark energy to decay.« less
Is the continuous matter creation cosmology an alternative to ΛCDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F., E-mail: fabris@pq.cnpq.br, E-mail: pacheco@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
2014-06-01
The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, amore » fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology.« less
Cosmological constant in scale-invariant theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.
2011-10-01
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
Initial conditions of inhomogeneous universe and the cosmological constant problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Totani, Tomonori, E-mail: totani@astron.s.u-tokyo.ac.jp
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint 0δ(√− g ) = to metric variations δ g {sup μν}, and then the cosmological constant Λ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initialmore » conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on δ g {sup μν} to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero Λ in a homogeneous patch of the universe created by inflation, but Λ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.« less
Is there another coincidence problem at the reionization epoch?
NASA Astrophysics Data System (ADS)
Lombriser, Lucas; Smer-Barreto, Vanessa
2017-12-01
The cosmological coincidences between the matter and radiation energy densities at recombination as well as between the densities of matter and the cosmological constant at the present time are well known. We point out that, moreover, the third intersection between the energy densities of radiation and the cosmological constant coincides with the reionization epoch. To quantify the statistical relevance of this concurrence, we compute the Bayes factor between the concordance cosmology with free Thomson scattering optical depth and a model for which this parameter is inferred from imposing a match between the time of density equality and the epoch of reionization. This is to characterize the potential explanatory gain if one were to find a parameter-free physical connection. We find a very strong preference for such a concurrence on the Jeffreys scale from current cosmological observations. We furthermore discuss the effect of the choice of priors, changes in reionization history, and free sum of neutrino masses. We also estimate the impact of adding intermediate polarization data from the Planck High Frequency Instrument and prospects for future 21 cm surveys. In the first case, the preference for the correlation remains substantial, whereas future data may give results more decisive in pro or substantial in contra of it. Finally, we provide a discussion on different interpretations of these findings. In particular, we show how a connection between the star-formation history and the cosmological background dynamics can give rise to this concurrence.
A Solution to the Cosmological Problem of Relativity Theory
NASA Astrophysics Data System (ADS)
Janzen, Daryl
After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big Bang singularity, to appeal to the need for a quantum theory of gravity. This thesis takes a very different approach to the problem, in hypothesising that, because our physical model really does appear to do a very good job of describing the observed cosmic expansion rate, and all the data indicate that our Universe might well expand precisely according to the flat ΛCDM scale-factor, it may not be the model, but our basic expectations that need to be modified in order to derive a physical theory that stands in reasonable agreement with the empirical results; i.e., that it may actually be that we need to re-examine, and rationally modify our expectations of what should theoretically be, so that we might derive a theory to explain the empirical results of cosmology, which would be based solely on reasonably acceptable first principles. Therefore, a self-consistent theory is constructed here, upon re-consideration of the cosmological foundations of relativity theory, which eventually does afford an explanation of the cosmological problem, as it provides good reason to actually expect observations in the fundamental rest-frame to be described precisely by the flat ΛCDM scale-factor which has been empirically constrained.
Predicting the cosmological constant with the scale-factor cutoff measure
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Simone, Andrea; Guth, Alan H.; Salem, Michael P.
2008-09-15
It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant {lambda} gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of {lambda} depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes'more » (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of {lambda}, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of {lambda} that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter {omega}, indicating that with this measure there is a possibility of detectable negative curvature.« less
Constraints on a new post-general relativity cosmological parameter
NASA Astrophysics Data System (ADS)
Caldwell, Robert; Cooray, Asantha; Melchiorri, Alessandro
2007-07-01
A new cosmological variable is introduced to characterize the degree of departure from Einstein’s general relativity with a cosmological constant. The new parameter, ϖ, is the cosmological analog of γ, the parametrized post-Newtonian variable which measures the amount of spacetime curvature per unit mass. In the cosmological context, ϖ measures the difference between the Newtonian and longitudinal potentials in response to the same matter sources, as occurs in certain scalar-tensor theories of gravity. Equivalently, ϖ measures the scalar shear fluctuation in a dark-energy component. In the context of a vanilla, cosmological constant-dominated universe, a nonzero ϖ signals a departure from general relativity or a fluctuating cosmological constant. Using a phenomenological model for the time evolution ϖ=ϖ0ρDE/ρM which depends on the ratio of energy density in the cosmological constant to the matter density at each epoch, it is shown that the observed cosmic microwave background temperature anisotropies limit the overall normalization constant to be -0.4<ϖ0<0.1 at the 95% confidence level. Existing measurements of the cross-correlations of the cosmic microwave background with large-scale structure further limit ϖ0>-0.2 at the 95% CL. In the future, integrated Sachs-Wolfe and weak lensing measurements can more tightly constrain ϖ0, providing a valuable clue to the nature of dark energy and the validity of general relativity.
Null hypersurfaces in de Sitter and anti-de Sitter cosmologies
NASA Astrophysics Data System (ADS)
Hogan, P. A.
The study of gravitational waves in the presence of a cosmological constant has led to interesting forms of the de Sitter and anti-de Sitter line elements based on families of null hypersurfaces. The forms are interesting because they focus attention on the geometry of null hypersurfaces in spacetimes of constant curvature. Two examples are worked out in some detail. The first originated in the study of collisions of impulsive gravitational waves in which the post-collision spacetime is a solution of Einstein’s field equations with a cosmological constant, and the second originated in the generalization of plane fronted gravitational waves with parallel rays to include a cosmological constant.
Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model
NASA Astrophysics Data System (ADS)
Sudoh, Takahiro; Totani, Tomonori; Makiya, Ryu; Nagashima, Masahiro
2017-01-01
The anthropic principle is one of the possible explanations for the cosmological constant (Λ) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, P(<Λobs), though stars are found in much smaller galaxies as well. Here we examine the anthropic argument by using a semi-analytic model of cosmological galaxy formation, which can reproduce many observations such as galaxy luminosity functions. We calculate the probability distribution of Λ by running the model code for a wide range of Λ, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit Λ, and that the number of observers is proportional to stellar mass, we find P(<Λobs) = 6.7 per cent without introducing any galaxy mass threshold. We also investigate the effect of metallicity; we find P(<Λobs) = 9.0 per cent if observers exist only in galaxies whose metallicity is higher than the solar abundance. If the number of observers is proportional to metallicity, we find P(<Λobs) = 9.7 per cent. Since these probabilities are not extremely small, we conclude that the anthropic argument is a viable explanation, if the value of Λ observed in our Universe is determined by a probability distribution.
Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe''
NASA Astrophysics Data System (ADS)
Bauer, Florian; Solà, Joan; Štefancić, Hrvoje
2010-12-01
We demonstrate that there exists a large class of Script F(R,Script G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ~ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, Script M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ``Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ``cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional Script F(R,Script G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ``concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.
Zel'dovich Λ and Weinberg's relation: an explanation for the cosmological coincidences
NASA Astrophysics Data System (ADS)
Alfonso-Faus, Antonio
2008-11-01
In 1937 Dirac proposed the large number hypothesis (LNH). The idea was to explain that these numbers were large because the Universe is old. A time variation of certain “constants” was assumed. So far, no experimental evidence has significantly supported this time variation. Here we present a simplified cosmological model. We propose a new cosmological system of units, including a cosmological Planck’s constant that “absorbs” the well known large number 10120. With this new Planck’s constant no large numbers appear at the cosmological level. They appear at lower levels, e.g. at the quantum world. We note here that Zel’dovich formula, for the cosmological constant Λ, is equivalent to the Weinberg’s relation. The immediate conclusion is that the speed of light c must be proportional to the Hubble parameter H, and therefore decrease with time. We find that the gravitational radius of the Universe and its size are one and the same constant (Mach’s principle). The usual cosmological Ω’s parameters for mass, lambda and curvature turn out to be all constants of order one. The anthropic principle is not necessary in this theory. It is shown that a factor of 1061 converts in this theory a Planck fluctuation (a quantum black hole) into a cosmological quantum black hole: the Universe today. General relativity and quantum mechanics give the same local solution of an expanding Universe with the law a( t)≈constṡ t. This constant is just the speed of light today. Then the Hubble parameter is exactly H= a( t)'/ a( t)=1/ t.
Non-minimal derivative coupling gravity in cosmology
NASA Astrophysics Data System (ADS)
Gumjudpai, Burin; Rangdee, Phongsaphat
2015-11-01
We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.
Mass generation, the cosmological constant problem, conformal symmetry, and the Higgs boson
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-05-01
In 2013 the Nobel Prize in Physics was awarded to Francois Englert and Peter Higgs for their work in 1964 along with the late Robert Brout on the mass generation mechanism (the Higgs mechanism) in local gauge theories. This mechanism requires the existence of a massive scalar particle, the Higgs boson, and in 2012 the Higgs boson was finally discovered at the Large Hadron Collider after being sought for almost half a century. In this article we review the work that led to the discovery of the Higgs boson and discuss its implications. We approach the topic from the perspective of a dynamically generated Higgs boson that is a fermion-antifermion bound state rather than an elementary field that appears in an input Lagrangian. In particular, we emphasize the connection with the Bardeen-Cooper-Schrieffer theory of superconductivity. We identify the double-well Higgs potential not as a fundamental potential but as a mean-field effective Lagrangian with a dynamical Higgs boson being generated through a residual interaction that accompanies the mean-field Lagrangian. We discuss what we believe to be the key challenge raised by the discovery of the Higgs boson, namely determining whether it is elementary or composite, and through study of a conformal invariant field theory model as realized with critical scaling and anomalous dimensions, suggest that the width of the Higgs boson might serve as a suitable diagnostic for discriminating between an elementary Higgs boson and a composite one. We discuss the implications of Higgs boson mass generation for the cosmological constant problem, as the cosmological constant receives contributions from the very mechanism that generates the Higgs boson mass in the first place. We show that the contribution to the cosmological constant due to a composite Higgs boson is more tractable and under control than the contribution due to an elementary Higgs boson, and is potentially completely under control if there is an underlying conformal symmetry not just in a critical scaling matter sector (which there would have to be if all mass scales are to be dynamical), but equally in the gravity sector to which the matter sector couples.
NASA Astrophysics Data System (ADS)
Dine, Michael; Fischler, Willy
1983-01-01
Cosmological aspects of a very weakly interacting axion are discussed. A solution to the problem of domain walls discussed by Sikivie is mentioned. Demanding that axions do not dominate the present energy density of the universe is shown to give an upper bound on the axion decay constant of at most 1012 GeV.
Dynamics of viscous cosmologies in the full Israel-Stewart formalism
NASA Astrophysics Data System (ADS)
Lepe, Samuel; Otalora, Giovanni; Saavedra, Joel
2017-07-01
A detailed dynamical analysis for a bulk viscosity model in the full Israel-Stewart formalism for a spatially flat Friedmann-Robertson-Walker universe is performed. In our study we have considered the total cosmic fluid constituted by radiation, dark matter, and dark energy. The dark matter fluid is treated as an imperfect fluid which has a bulk viscosity that depends on its energy density in the usual form ξ (ρm)=ξ0ρm1 /2, whereas the other components are assumed to behave as perfect fluids with constant equation of state parameter. We show that the thermal history of the Universe is reproduced provided that the viscous coefficient satisfies the condition ξ0≪1 , either for a zero or a suitable nonzero coupling between dark energy and viscous dark matter. In this case, the final attractor is a dark-energy-dominated, accelerating universe, with an effective equation of state parameter in the quintessence-like, cosmological constant-like, or phantom-like regime, in agreement with observations. As our main result, we show that in order to obtain a viable cosmological evolution and at the same time alleviating the cosmological coincidence problem via the mechanism of scaling solution, an explicit interaction between dark energy and viscous dark matter seems inevitable. This result is consistent with the well-known fact that models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. Furthermore, by insisting on above, we show that in the present context a phantom nature of this interacting dark energy fluid is also favored.
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
Late-time cosmic acceleration: ABCD of dark energy and modified theories of gravity
NASA Astrophysics Data System (ADS)
Sami, M.; Myrzakulov, R.
2016-10-01
We briefly review the problems and prospects of the standard lore of dark energy. We have shown that scalar fields, in principle, cannot address the cosmological constant problem. Indeed, a fundamental scalar field is faced with a similar problem dubbed naturalness. In order to keep the discussion pedagogical, aimed at a wider audience, we have avoided technical complications in several places and resorted to heuristic arguments based on physical perceptions. We presented underlying ideas of modified theories based upon chameleon mechanism and Vainshtein screening. We have given a lucid illustration of recently investigated ghost-free nonlinear massive gravity. Again, we have sacrificed rigor and confined to the basic ideas that led to the formulation of the theory. The review ends with a brief discussion on the difficulties of the theory applied to cosmology.
Deviation from Standard Inflationary Cosmology and the Problems in Ekpyrosis
NASA Astrophysics Data System (ADS)
Tseng, Chien-Yao
There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ( alma*l'm') of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.
Cosmological constant is a conserved charge
NASA Astrophysics Data System (ADS)
Chernyavsky, Dmitry; Hajian, Kamal
2018-06-01
Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.
Unimodular Einstein-Cartan gravity: Dynamics and conservation laws
NASA Astrophysics Data System (ADS)
Bonder, Yuri; Corral, Cristóbal
2018-04-01
Unimodular gravity is an interesting approach to address the cosmological constant problem, since the vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological constant appears as an integration constant. These features arise as a consequence of considering a constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by considering the spin density of matter fields as a source of spacetime torsion. Even though the most general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their functional dependence. The field equations are obtained and the conservation laws associated with the symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with standard Einstein-Cartan theory are shown.
Revisiting the decoupling effects in the running of the Cosmological Constant
NASA Astrophysics Data System (ADS)
Antipin, Oleg; Melić, Blaženka
2017-09-01
We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given.
Some Consequences of a Time Dependent Speed of Light
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2007-06-01
For reasons connected with both cosmology (the flatness and horizon problems) and atomic physics (n-body Dirac equation, etc.), various proposals have been made to modify general or special relativity(SR) to accommodate a cosmologically decreasing light speed [J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003)]. Two such theories, projective SR [S.N. Manida, gr-qc/9905046; S. S. Stepanov, physics/9909009 and Phys. Rev. D, 62, 023507 (2000)] and symmetric SR [F.T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005)] adapt special relativity to in different ways to an expanding, hyperbolically curved position space and predict time-dependences of c within reach of measurement but differing by a factor of two. Both theories bring in a new constant λ-1=σ=c^2H0-1. As Magueijo points, out the role of c in physics and cosmology is so profound that many deep changes must follow if is not absolutely invariant in space and time. In particular, symmetric SR brings a new light to the Dirac large-number relationship between the constants of gravitation and atomic physics.
NASA Astrophysics Data System (ADS)
Kraiko, A. N.; Valiyev, Kh. F.
2016-10-01
The new model of the Big Bang and the Universe expansion is constructed. It is based on solutions in classical and in relativistic statements of problem on the dispersion into the void of the gas compressed into a point or in a finite, but for further negligible, volume. If to restrict in relativistic statement gas speed value v by the speed of light (υ =| v |
A simple cosmology with a varying fine structure constant.
Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João
2002-01-21
We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanzi, Andrea
2010-08-15
The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnaturalmore » fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.« less
Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.
Husain, Viqar; Qureshi, Babar
2016-02-12
The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Kaplan, David E.; Rajendran, Surjeet
2018-02-01
We present a class of nonsingular, bouncing cosmologies that evade singularity theorems through the use of vorticity in compact extra dimensions. The vorticity combats the focusing of geodesics during the contracting phase. The construction requires fluids that violate the null energy condition (NEC) in the compact dimensions, where they can be provided by known stable NEC violating sources such as Casimir energy. The four dimensional effective theory contains an NEC violating fluid of Kaluza-Klein excitations of the higher dimensional metric. These spacetime metrics could potentially allow dynamical relaxation to solve the cosmological constant problem. These ideas can also be used to support traversable Lorentzian wormholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz Cruz, J. Lorenzo
We suggest that dark matter can be identified with a stable composite fermion X{sup 0}, that arises within the holographic AdS/CFT models, where the Higgs boson emerges as a composite pseudo-goldstone boson. The predicted properties of X{sup 0} satisfies the cosmological bounds, with m{sub X{sup 0}}{approx}4{pi}f{approx_equal}O(TeV). Thus, through a deeper understanding of the mechanism of electroweak symmetry breaking, a resolution of the Dark Matter enigma is found. Furthermore, by proposing a discrete structure of the Higgs vacuum, one can get a distinct approach to the cosmological constant problem.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
NASA Astrophysics Data System (ADS)
Wojtak, Radosław; Prada, Francisco
2017-10-01
The standard relation between the cosmological redshift and cosmic scalefactor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the Λ cold-dark-matter (ΛCDM) cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryon acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model predicts a significant difference between the actual Hubble constant, h = 0.48 ± 0.02, and its local determination, hobs = 0.73 ± 0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ωm = 0.87 ± 0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck ΛCDM cosmology. The model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the PlanckΛCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
Wojtak, Radosław; Prada, Francisco
2017-06-21
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less
Composite dark energy: Cosmon models with running cosmological term and gravitational coupling
NASA Astrophysics Data System (ADS)
Grande, Javier; Solà, Joan; Štefančić, Hrvoje
2007-02-01
In the recent literature on dark energy (DE) model building we have learnt that cosmologies with variable cosmological parameters can mimic more traditional DE pictures exclusively based on scalar fields (e.g. quintessence and phantom). In a previous work we have illustrated this situation within the context of a renormalization group running cosmological term, Λ. Here we analyze the possibility that both the cosmological term and the gravitational coupling, G, are running parameters within a more general framework (a variant of the so-called “ΛXCDM models”) in which the DE fluid can be a mixture of a running Λ and another dynamical entity X (the “cosmon”) which may behave quintessence-like or phantom-like. We compute the effective EOS parameter, ω, of this composite fluid and show that the ΛXCDM can mimic to a large extent the standard ΛCDM model while retaining features hinting at its potential composite nature (such as the smooth crossing of the cosmological constant boundary ω=-1). We further argue that the ΛXCDM models can cure the cosmological coincidence problem. All in all we suggest that future experimental studies on precision cosmology should take seriously the possibility that the DE fluid can be a composite medium whose dynamical features are partially caused and renormalized by the quantum running of the cosmological parameters.
Gambini, R; Pullin, J
2000-12-18
We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant field theory. This theory is the lambda --> infinity limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant.
Degravitation of the cosmological constant in bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platscher, Moritz; Smirnov, Juri, E-mail: moritz.platscher@mpi-hd.mpg.de, E-mail: juri.smirnov@mpi-hd.mpg.de
2017-03-01
In this article the phenomenon of degravitation of the cosmological constant is studied in the framework of bigravity. It is demonstrated that despite a sizable value of the cosmological constant its gravitational effect can be only mild. The bigravity framework is chosen for this demonstration as it leads to a consistent, ghost-free theory of massive gravity. We show that degravitation takes place in the limit where the physical graviton is dominantly a gauge invariant metric combination. We present and discuss several phenomenological consequences expected in this regime.
Earth’s gravity and the cosmological constant: a worked example
NASA Astrophysics Data System (ADS)
Pereira, J. A. M.
2016-03-01
The cosmological constant regained the attention of the scientific community following the recent discovery of the accelerated expansion of the Universe. Consequently, interest in the subject increased amongst the public such that it now often appears in the classroom and popular science publications. The purpose of this article is to use basic concepts of Newtonian mechanics, like dynamics, kinetic energy and potential energy diagrams, in a scenario where the cosmological constant’s action, considered as being an inertial force driven by the accelerated expansion of the Universe, could counteract Earth’s gravity. The effect that the cosmological constant might have near the Earth’s surface is discussed showing how everyday life would change. This is done in such a way that makes it accessible to students in their first year of college. Finally, the modern interpretation of the cosmological constant, associated with the existence of dark energy, is briefly discussed along with upper limit estimations for its value based on the anthropic principle.
NASA Astrophysics Data System (ADS)
Uzan, Jean-Philippe
2013-02-01
Fundamental constants play a central role in many modern developments in gravitation and cosmology. Most extensions of general relativity lead to the conclusion that dimensionless constants are actually dynamical fields. Any detection of their variation on sub-Hubble scales would signal a violation of the Einstein equivalence principle and hence a lead to gravity beyond general relativity. On super-Hubble scales, or maybe should we say on super-universe scales, such variations are invoked as a solution to the fine-tuning problem, in connection with an anthropic approach.
Dynamical approach to the cosmological constant.
Mukohyama, Shinji; Randall, Lisa
2004-05-28
We consider a dynamical approach to the cosmological constant. There is a scalar field with a potential whose minimum occurs at a generic, but negative, value for the vacuum energy, and it has a nonstandard kinetic term whose coefficient diverges at zero curvature as well as the standard kinetic term. Because of the divergent coefficient of the kinetic term, the lowest energy state is never achieved. Instead, the cosmological constant automatically stalls at or near zero. The merit of this model is that it is stable under radiative corrections and leads to stable dynamics, despite the singular kinetic term. The model is not complete, however, in that some reheating is required. Nonetheless, our approach can at the very least reduce fine-tuning by 60 orders of magnitude or provide a new mechanism for sampling possible cosmological constants and implementing the anthropic principle.
How to obtain a cosmological constant from small exotic R4
NASA Astrophysics Data System (ADS)
Asselmeyer-Maluga, Torsten; Król, Jerzy
2018-03-01
In this paper we determine the cosmological constant as a topological invariant by applying certain techniques from low dimensional differential topology. We work with a small exotic R4 which is embedded into the standard R4. Any exotic R4 is a Riemannian smooth manifold with necessary non-vanishing curvature tensor. To determine the invariant part of such curvature we deal with a canonical construction of R4 where it appears as a part of the complex surface K 3 # CP(2) bar. Such R4's admit hyperbolic geometry. This fact simplifies significantly the calculations and enforces the rigidity of the expressions. In particular, we explain the smallness of the cosmological constant with a value consisting of a combination of (natural) topological invariant. Finally, the cosmological constant appears to be a topologically supported quantity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtak, Radosław; Prada, Francisco
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less
NASA Astrophysics Data System (ADS)
Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond
2018-03-01
In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavanis, Pierre-Henri
We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} having a linear component p = αρc{sup 2} and a polytropic component p = kρ{sup 1+1/n}c{sup 2}. For α= 1/3, n= 1 and k=−4/(3ρ{sub P}), where ρ{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes themore » transition between the vacuum energy era and the radiation era. For t≥ 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup −35} m to a size a{sub 1}= 2.6110{sup −6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup −44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ= 0). For α= 0, n=−1 and k=−ρ{sub Λ}, where ρ{sub Λ}= 7.0210{sup −24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub Λ}. corresponding to a time t{sub 2}= 0.203t{sub Λ} where l{sub Λ}= 4.38 10{sup 26} m is the cosmological length and t{sub Λ}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}∼t{sub 2}). Our model gives the same results as the standard ΛCDM model for t≫t{sub P} and completes it by incorporating a phase of early inflation for t < 23.3t{sub P} in a very natural manner. Furthermore, it reveals a nice 'symmetry' between the early and the late evolution of the universe. The early universe is modeled by a polytrope n=+ 1 and the late universe by a polytrope n=−1. Furthermore, the cosmological constant Λ in the late universe plays a role similar to the Planck constant ℏ in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the 'cosmophysics' just like the Planck constant describes the 'microphysics'. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant 'problem' may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.« less
Computational complexity of the landscape II-Cosmological considerations
NASA Astrophysics Data System (ADS)
Denef, Frederik; Douglas, Michael R.; Greene, Brian; Zukowski, Claire
2018-05-01
We propose a new approach for multiverse analysis based on computational complexity, which leads to a new family of "computational" measure factors. By defining a cosmology as a space-time containing a vacuum with specified properties (for example small cosmological constant) together with rules for how time evolution will produce the vacuum, we can associate global time in a multiverse with clock time on a supercomputer which simulates it. We argue for a principle of "limited computational complexity" governing early universe dynamics as simulated by this supercomputer, which translates to a global measure for regulating the infinities of eternal inflation. The rules for time evolution can be thought of as a search algorithm, whose details should be constrained by a stronger principle of "minimal computational complexity". Unlike previously studied global measures, ours avoids standard equilibrium considerations and the well-known problems of Boltzmann Brains and the youngness paradox. We also give various definitions of the computational complexity of a cosmology, and argue that there are only a few natural complexity classes.
Quantum to classical transition in the Hořava-Lifshitz quantum cosmology
NASA Astrophysics Data System (ADS)
Bernardini, A. E.; Leal, P.; Bertolami, O.
2018-02-01
A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.
Cosmological implications of quantum mechanics parametrization of dark energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof
2017-08-01
We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.
NASA Astrophysics Data System (ADS)
Ishak-Boushaki, Mustapha B.
2018-06-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on (in)consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use new statistical measures that can detect discordances between data sets when present. We use an algorithmic procedure based on these new measures that is able to identify in some cases whether an inconsistency is due to problems related to systematic effects in the data or to the underlying model. Some recent published tensions between data sets are also examined using our formalism, including the Hubble constant measurements, Planck and Large-Scale-Structure. (Work supported in part by NSF under Grant No. AST-1517768).
An explanation for the tiny value of the cosmological constant and the low vacuum energy density
NASA Astrophysics Data System (ADS)
Nassif, Cláudio
2015-09-01
The paper aims to provide an explanation for the tiny value of the cosmological constant and the low vacuum energy density to represent the dark energy. To accomplish this, we will search for a fundamental principle of symmetry in space-time by means of the elimination of the classical idea of rest, by including an invariant minimum limit of speed in the subatomic world. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks down the Lorentz symmetry. The metric of the flat space-time shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological length scales. Thus, the equation of state for the cosmological constant [ p(pressure) (energy density)] naturally emerges from such a space-time with an energy barrier of a minimum speed. The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained, being in agreement with the observational results of Perlmutter, Schmidt and Riess.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-12-15
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less
Quasar populations in a cosmological constant-dominated flat universe
NASA Technical Reports Server (NTRS)
Malhotra, Sangeeta; Turner, Edwin L.
1995-01-01
Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.
Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant
NASA Astrophysics Data System (ADS)
Meyer, Sven; Bartelmann, Matthias
2017-12-01
We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.
Vacuum phase transition solves the H0 tension
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Linder, Eric V.; Melchiorri, Alessandro
2018-02-01
Taking the Planck cosmic microwave background data and the more direct Hubble constant measurement data as unaffected by systematic offsets, the values of the Hubble constant H0 interpreted within the Λ CDM cosmological constant and cold dark matter cosmological model are in ˜3.3 σ tension. We show that the Parker vacuum metamorphosis (VM) model, physically motivated by quantum gravitational effects and with the same number of parameters as Λ CDM , can remove the H0 tension and can give an improved fit to data (up to a mean Δ χ2=-7.5 ). It also ameliorates tensions with weak lensing data and the high redshift Lyman alpha forest data. Considering Bayesian evidence, we found in the case of the Planck data set alone positive evidence for a VM model against a cosmological constant both in the six- and nine-parameter framework. When the R16 data set is also considered, we found a strong evidence for the VM model against a cosmological constant in nine-parameter space. We separately consider a scale-dependent scaling of the gravitational lensing amplitude, such as provided by modified gravity, neutrino mass, or cold dark energy, motivated by the somewhat different cosmological parameter estimates for low and high CMB multipoles. We find that no such scale dependence is preferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández Cristóbal, Jose Ma, E-mail: jmariaffc@gmail.com
Under the generic designation of unimodular theory, two theoretical models of gravity are considered: the unimodular gravity and the TDiff theory. Our approach is primarily pedagogical. We aim to describe these models both from a geometric and a field-theoretical point of view. In addition, we explore connections with the cosmological-constant problem and outline some applications. We do not discuss the application of this theory to the quantization of gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfora, Fabrizio; Willison, Steven; Giacomini, Alex
2009-08-15
It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effectmore » opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.« less
NASA Astrophysics Data System (ADS)
Wainwright, John
2007-04-01
The present volume is an introduction to general relativity and cosmology, at a level suitable for beginning graduate students or advanced undergraduates. The book consists of two main parts, the first entitled `Elements of differential geometry', and the second `The theory of gravitation'. Chapters 2-7, part I, introduce the basic ideas of differential geometry in a general setting, and are based on previously unpublished notes by one of the authors. On the one hand, the treatment is modern in that it uses a `top-down' approach, i.e. starting with general differentiable manifolds, and deferring the introduction of a metric tensor until after the notions of affine connection and curvature have been introduced. On the other hand, the treatment is classical in that it relies heavily, though not exclusively, on index notation. The general material, chapters 1-7, is then followed by four more specialized chapters dealing with matters of specific interest for general relativity. Topics include symmetry groups acting on Riemannian manifolds, with spherically symmetric spacetimes and spatially homogeneous spacetimes as examples, the efficient calculation of curvature, and the Petrov classification of the Weyl curvature tensor using spinors. Part II deals with general relativity and cosmology. The basic assumptions of the theory and its application to spherically symmetric gravitational fields are discussed in two chapters, and there is some historical material and motivation for the basic assumptions at the beginning of the book. The final chapter contains a detailed discussion of the Kerr solution. But the main emphasis in part II is on relativistic cosmology, in particular the analysis of cosmological models more general than the familiar Friedmann-Lemaitre (FL) models. The material on cosmology begins with a discussion of relativistic hydrodynamics and thermodynamics. The kinematical quantities (rate of expansion, shear, etc, of a timelike congruence) are introduced and their evolution equations are derived. There follows a description of the fluid model of the Universe and optical observations in such a model, within the framework of a general spacetime geometry. The discussion is subsequently specialized to the Robertson-Walker geometry and the FL models. The rest of part II, two lengthy chapters, deals with two classes of solutions of Einstein's field equations that represent spatially inhomogeneous cosmological models, and that contain the FL models as a special case. The first is the family of Lemaitre-Tolman solutions, whose discovery dates back to the 1930s. They are spherically symmetric solutions of Einstein's field equations with pressure-free matter and a cosmological constant as the matter-energy content. The second class is the family of Szekeres solutions, which can be thought of as generalizations of the Lemaitre-Tolman solutions without any symmetries. Parts of these two chapters are based on Krasinski's book on inhomogeneous cosmologies [4], with the difference that the present work does not attempt to be comprehensive, but instead provides clear derivations of the most important results. A potential reader may ask how this book differs from other texts on general relativity. It is unique in a number of respects. First is the authors' emphasis on spatially inhomogeneous cosmological models, i.e. models that do not satisfy the cosmological principle. The authors appear to have reservations about the almost universal preference in the cosmological community for working within the framework of the FL models, combined with the inflationary scenario in the very early universe (see in particular, pages 235-6, and sections 17.8-17.10), and these reservations motivate the above emphasis. They remind the reader that the FL models are based on the cosmological principle, which has a philosophical rather than a physical status, since it cannot be directly tested by observation. In other words, observations alone do not uniquely select the FL models (see also [3], section 5.5, in this regard). Moreover the interpretation of cosmological observations depends on the choice of the underlying spacetime geometry. For example, there is ambiguity in inferring the spatial distribution of matter from redshift measurements. The authors discuss in some detail the work of Kurki-Suonio and Liang [5] to illustrate this point. They also refer to Celerier [1] who shows that the high redshift type Ia supernovae observations are compatible with a Lemaitre-Tolman model with zero cosmological constant, i.e. these observations do not imply that the universe is accelerating if one considers models more general than the FL models, in contrast to the usual interpretation. The authors also give a critique of the cosmological inflation scenario, arguing that the problems that it aims to solve (the so-called horizon problem and the flatness problem) are a consequence of the very special geometry of the FL models. In particular, the flatness problem loses its urgency when one broadens the class of cosmological models, since the condition for flatness depends on spatial position. They also discuss in detail an analysis due to Celerier and Schneider [2] showing how the horizon problem can be resolved using a delayed big-bang singularity in a Lemaitre-Tolman cosmology (section 18.17). We comment on two notable omissions as regards cosmology. First, the authors only refer in passing to the notion of the density parameter, which plays an important role in the analysis of the FL models, and which can also be introduced in more general models. Second, there is no discussion of perturbations of the FL models, although two related concepts, the density contrast and the curvature contrast, are analysed in the Lemaitre-Tolman models (section 18.19). A second unusual feature is that there is a considerable emphasis on exact solutions, their derivation and physical interpretation. Derivations that are given in detail are for the spatially homogeneous solution of Bianchi type I with pressure-free matter, the Lemaitre-Tolman solutions, the Szekeres solutions and the Kerr solution (the original derivation using the Kerr-Schild metric, and Carter's derivation using separability of the Klein-Gordon equation). Readers may wish to compare the above-mentioned derivation of the Bianchi type I solutions, which uses metric components and coordinates, with the derivation given in [3] (see section 5.3), using the orthonormal frame formalism. In summary, this book is an interesting and informative introduction to general relativity and cosmology. The unconventional choice of topics and emphasis may, however, lead some readers to conclude that it may be more suitable as a reference work than as the text for a course. References [1] Celerier M N 2000 Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353 63 [2] Celerier M N and Schneider J 1998 A solution to the horizon problem: a delayed big bang singularity Phys. Lett. A 249 37 [3] Ellis G F R and van Elst H 1999 Cosmological models Theoretical and Observational Cosmology ed M Lachieze-Rey (Dordrecht: Kluwer) [4] Krasinski A 1997 Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press) [5] Kurki-Suonio H and Liang E 1992 Relation of redshift surveys to matter distribution in spherically symmetric dust Universes Astrophys. J. 390 5
Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks
NASA Astrophysics Data System (ADS)
Halnon, Theodore; Bojowald, Martin
2017-01-01
In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. Partial funding from the Ronald E. McNair Postbaccalaureate Achievement Program.
NASA Astrophysics Data System (ADS)
Bolejko, Krzysztof
2018-01-01
During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.
Scalar field and time varying cosmological constant in f(R,T) gravity for Bianchi type-I universe
NASA Astrophysics Data System (ADS)
Singh, G. P.; Bishi, Binaya K.; Sahoo, P. K.
2016-04-01
In this article, we have analysed the behaviour of scalar field and cosmological constant in $f(R,T)$ theory of gravity. Here, we have considered the simplest form of $f(R,T)$ i.e. $f(R,T)=R+2f(T)$, where $R$ is the Ricci scalar and $T$ is the trace of the energy momentum tensor and explored the spatially homogeneous and anisotropic Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model. It is assumed that the Universe is filled with two non-interacting matter sources namely scalar field (normal or phantom) with scalar potential and matter contribution due to $f(R,T)$ action. We have discussed two cosmological models according to power law and exponential law of the volume expansion along with constant and exponential scalar potential as sub models. Power law models are compatible with normal (quintessence) and phantom scalar field whereas exponential volume expansion models are compatible with only normal (quintessence) scalar field. The values of cosmological constant in our models are in agreement with the observational results. Finally, we have discussed some physical and kinematical properties of both the models.
Is the cosmological constant screened in Liouville gravity with matter?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inami, Takeo; Koyama, Yoji; Nakayama, Yu
In this study, there has been a proposal that infrared quantum effects of massless interacting field theories in de Sitter space may provide time-dependent screening of the cosmological constant. As a concrete model of the proposal, we study the three loop corrections to the energy–momentum tensor of massless λΦ 4 theory in the background of classical Liouville gravity in D = 2 dimensional de Sitter space. We find that the cosmological constant is screened, in sharp contrast to the massless λΦ 4 theory in D = 4 dimensions due to the sign difference between the cosmological constant of the Liouvillemore » gravity and that of the Einstein gravity. To argue for the robustness of our prediction, we introduce the concept of time-dependent infrared counter-terms and examine if they recover the de Sitter invariance in the λΦ 4 theory in comparison with the Sine–Gordon model, where it was possible.« less
Is the cosmological constant screened in Liouville gravity with matter?
Inami, Takeo; Koyama, Yoji; Nakayama, Yu; ...
2015-05-19
In this study, there has been a proposal that infrared quantum effects of massless interacting field theories in de Sitter space may provide time-dependent screening of the cosmological constant. As a concrete model of the proposal, we study the three loop corrections to the energy–momentum tensor of massless λΦ 4 theory in the background of classical Liouville gravity in D = 2 dimensional de Sitter space. We find that the cosmological constant is screened, in sharp contrast to the massless λΦ 4 theory in D = 4 dimensions due to the sign difference between the cosmological constant of the Liouvillemore » gravity and that of the Einstein gravity. To argue for the robustness of our prediction, we introduce the concept of time-dependent infrared counter-terms and examine if they recover the de Sitter invariance in the λΦ 4 theory in comparison with the Sine–Gordon model, where it was possible.« less
Tilted Bianchi type-I wet dark fluid model in Saez and Ballester theory
NASA Astrophysics Data System (ADS)
Sahu, S. K.; Tole, T. T.; Balcha, M.
2018-06-01
Tilted Bianchi-I wet dark fluid cosmological model is investigated in Saez and Ballester scalar theory of gravitation. Background cosmologies are obtained for a constant deceleration parameter. We consider a linear relationship between the shear scalar and the expansion scalar. We have discussed some physical and geometrical properties of the models. In our models, equation of state of the dark energy is observed to behave like a cosmological constant at late times.
NASA Astrophysics Data System (ADS)
Khurshudyan, M.; Mazhari, N. S.; Momeni, D.; Myrzakulov, R.; Raza, M.
2015-02-01
The subject of this paper is to investigate the weak regime covariant scalar-tensor-vector gravity (STVG) theory, known as the MOdified gravity (MOG) theory of gravity. First, we show that the MOG in the absence of scalar fields is converted into Λ( t), G( t) models. Time evolution of the cosmological parameters for a family of viable models have been investigated. Numerical results with the cosmological data have been adjusted. We've introduced a model for dark energy (DE) density and cosmological constant which involves first order derivatives of Hubble parameter. To extend this model, correction terms including the gravitational constant are added. In our scenario, the cosmological constant is a function of time. To complete the model, interaction terms between dark energy and dark matter (DM) manually entered in phenomenological form. Instead of using the dust model for DM, we have proposed DM equivalent to a barotropic fluid. Time evolution of DM is a function of other cosmological parameters. Using sophisticated algorithms, the behavior of various quantities including the densities, Hubble parameter, etc. have been investigated graphically. The statefinder parameters have been used for the classification of DE models. Consistency of the numerical results with experimental data of S n e I a + B A O + C M B are studied by numerical analysis with high accuracy.
Loop quantum gravity simplicity constraint as surface defect in complex Chern-Simons theory
NASA Astrophysics Data System (ADS)
Han, Muxin; Huang, Zichang
2017-05-01
The simplicity constraint is studied in the context of four-dimensional spinfoam models with a cosmological constant. We find that the quantum simplicity constraint is realized as the two-dimensional surface defect in SL (2 ,C ) Chern-Simons theory in the construction of spinfoam amplitudes. By this realization of the simplicity constraint in Chern-Simons theory, we are able to construct the new spinfoam amplitude with a cosmological constant for an arbitrary simplicial complex (with many 4-simplices). The semiclassical asymptotics of the amplitude is shown to correctly reproduce the four-dimensional Einstein-Regge action with a cosmological constant term.
A Brane Model, Its Ads-DS States and Their Agitated Extra Dimensions
NASA Astrophysics Data System (ADS)
Günther, Uwe; Vargas Moniz, Paulo; Zhuk, Alexander
2006-02-01
We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields. It is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density.
Critique of Coleman's Theory of the Vanishing Cosmological Constant
NASA Astrophysics Data System (ADS)
Susskind, Leonard
In these lectures I would like to review some of the criticisms to the Coleman worm-hole theory of the vanishing cosmological constant. In particular, I would like to focus on the most fundamental assumption that the path integral over topologies defines a probability for the cosmological constant which has the form EXP(A) with A being the Baum-Hawking-Coleman saddle point. Coleman argues that the euclideam path integral over all geometries may be dominated by special configurations which consist of large smooth "spheres" connected by any number of narrow wormholes. Formally summing up such configurations gives a very divergent expression for the path integral…
Constraints on Cosmology and Gravity from the Growth of X-ray Luminous Galaxy Clusters
NASA Astrophysics Data System (ADS)
Mantz, Adam; Allen, S. W.; Rapetti, D.; Ebeling, H.; Drlica-Wagner, A.
2010-03-01
I will present simultaneous constraints on galaxy cluster X-ray scaling relations and models of cosmology and gravity obtained from observations of the growth of massive clusters. The data set consists of 238 flux-selected clusters at redshifts z≤0.5 drawn from the ROSAT All-Sky Survey, and incorporates extensive Chandra follow-up observations. Our results on the scaling relations are consistent with excess heating of the intracluster medium, although the evolution of the relations remains consistent with the predictions of simple gravitational collapse models. For spatially flat, constant-w cosmological models, the cluster data yield Ωm=0.23±0.04, σ8=0.82±0.05, and w=-1.01±0.20, including conservative allowances for systematic uncertainties. Our results are consistent and competitive with a variety of independent cosmological data. In evolving-w models, marginalizing over transition redshifts in the range 0.05-1, the combination of the growth of structure data with the cosmic microwave background, supernovae, cluster gas mass fractions and baryon acoustic oscillations constrains the dark energy equation of state at late and early times to be respectively w0=-0.88±0.21 and wet=-1.05+0.20-0.36. Applying this combination of data to the problem of determining fundamental neutrino properties, we place an upper limit on the species-summed neutrino mass at 0.33eV (95% CL) and constrain the effective number of relativistic species to 3.4±0.6. In addition to dark energy and related problems, such data can be used to test the predictions of General Relativity. Introducing the standard Peebles/Linder parametrization of the linear growth rate, we use the cluster data to constrain the growth of structure, independent of the expansion of the Universe. Our analysis provides a tight constraint on the combination γ(σ8/0.8)6.8=0.55+0.13-0.10, and is simultaneously consistent with the predictions of relativity (γ=0.55) and the cosmological constant expansion model. This work was funded by NASA, the U.S. Department of Energy, and Stanford University.
Information carrying capacity of a cosmological constant
NASA Astrophysics Data System (ADS)
Simidzija, Petar; Martín-Martínez, Eduardo
2017-01-01
We analyze the exchange of information in different cosmological backgrounds when sender and receiver are timelike separated and communicate through massless fields (without the exchange of light signals). Remarkably, we show that the dominance of a cosmological constant makes the amount of recoverable information imprinted in the field by the sender extremely resilient: it does not decay in time or with the spatial separation of the sender and receiver, and it actually increases with the rate of expansion of the Universe. This is in stark contrast with the information carried by conventional light signals and with previous results on timelike communication through massless fields in matter-dominated cosmologies.
Non-minimally coupled varying constants quantum cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less
Bose-Einstein condensate haloes embedded in dark energy
NASA Astrophysics Data System (ADS)
Membrado, M.; Pacheco, A. F.
2018-04-01
Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ < 10-8). However, dark halo masses smaller than 107 M⊙ (ξ > 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark haloes would contain stars up to 8-15 kpc with luminosities 9-4 ×103 L⊙. Then, their observation would be complicated. The comparison of our lower bound for dark halo masses with other bounds based on different arguments, leads us to think that the cosmological constant is actually the responsible of limiting the halo mass.
Conceptual problems in detecting the evolution of dark energy when using distance measurements
NASA Astrophysics Data System (ADS)
Bolejko, K.
2011-01-01
Context. Dark energy is now one of the most important and topical problems in cosmology. The first step to reveal its nature is to detect the evolution of dark energy or to prove beyond doubt that the cosmological constant is indeed constant. However, in the standard approach to cosmology, the Universe is described by the homogeneous and isotropic Friedmann models. Aims: We aim to show that in the perturbed universe (even if perturbations vanish if averaged over sufficiently large scales) the distance-redshift relation is not the same as in the unperturbed universe. This has a serious consequence when studying the nature of dark energy and, as shown here, can impair the analysis and studies of dark energy. Methods: The analysis is based on two methods: the linear lensing approximation and the non-linear Szekeres Swiss-Cheese model. The inhomogeneity scale is ~50 Mpc, and both models have the same density fluctuations along the line of sight. Results: The comparison between linear and non-linear methods shows that non-linear corrections are not negligible. When inhomogeneities are present the distance changes by several percent. To show how this change influences the measurements of dark energy, ten future observations with 2% uncertainties are generated. It is shown the using the standard methods (i.e. under the assumption of homogeneity) the systematics due to inhomogeneities can distort our analysis, and may lead to a conclusion that dark energy evolves when in fact it is constant (or vice versa). Conclusions: Therefore, if future observations are analysed only within the homogeneous framework then the impact of inhomogeneities (such as voids and superclusters) can be mistaken for evolving dark energy. Since the robust distinction between the evolution and non-evolution of dark energy is the first step to understanding the nature of dark energy a proper handling of inhomogeneities is essential.
NASA Astrophysics Data System (ADS)
Li, Li-Xin
We show that the vacuum polarization of quantum fields in an anti-de Sitter space can naturally give rise to a small but nonzero cosmological constant in a brane world living in it. To explain the extremely small ratio of mass density in the cosmological constant to the Planck mass density in our universe (≈10-123) as suggested by cosmological observations, all we need is a four-dimensional brane world (our universe) living in a five-dimensional anti-de Sitter space with a curvature radius r0 10-3 cm and a fundamental Planck energy MP 109 GeV, and a scalar field with a mass m ˜ r-10 ˜ 10-2 eV. Probing gravity down to a scale 10-3 cm, which is attainable in the near future, will provide a test of the model.
Our Universe from the cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrau, Aurélien; Linsefors, Linda, E-mail: Aurelien.Barrau@cern.ch, E-mail: linda.linsefors@lpsc.in2p3.fr
The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this givesmore » rise to a cyclic model of the Universe and suggest some possible tests.« less
Value of the Cosmological Constant in Emergent Quantum Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig
It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence lengthmore » $$\\approx 100$$km and bandwidth $$\\approx 3000$$ Hz.« less
Deformation of the Engle-Livine-Pereira-Rovelli spin foam model by a cosmological constant
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Rabuffo, Giovanni
2018-04-01
In this article, we consider an ad hoc deformation of the Engle-Livine-Pereira-Rovelli model for quantum gravity by a cosmological constant term. This sort of deformation was first introduced by Han for the case of the 4-simplex. In this article, we generalize the deformation to the case of arbitrary vertices, and compute its large-j asymptotics. We show that, if the boundary data correspond to a four-dimensional polyhedron P , then the asymptotic formula gives the usual Regge action plus a cosmological constant term. We pay particular attention to the determinant of the Hessian matrix, and show that it can be related to that of the undeformed vertex.
NASA Astrophysics Data System (ADS)
Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel
2017-09-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.
Dark Energy and the Cosmological Constant: A Brief Introduction
ERIC Educational Resources Information Center
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.
2016-12-01
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; Mojahedi, Mojtaba Amir
2017-05-01
The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter Λ. We apply a numerical method to evaluate the deflection angle of bending light rays, image locations θ of sample source β =-\\tfrac{π }{4}, and corresponding magnifications μ. There are no obtained real values for Einstein ring locations {θ }E(β =0) for CLBHs but we calculate them for QLBHs. As an experimental test of our calculations, we choose mass M of 60 types of the most massive observed galactic black holes acting as a gravitational lens and study quantum matter field effects on the angle of bending light rays in the presence of cosmological constant effects. We calculate locations of non-relativistic images and corresponding magnifications. Numerical diagrams show that the quantum matter effects cause absolute values of the quantum deflection angle to be reduced with respect to the classical ones. The sign of the quantum deflection angle is changed with respect to the classical values in the presence of the cosmological constant. This means dominance of the anti-gravity counterpart of the cosmological horizon on the angle of bending light rays with respect to absorbing effects of 60 local types of the most massive observed black holes. Variations of the image positions and magnifications are negligible when increasing dimensionless cosmological constant ɛ =\\tfrac{16{{Λ }}{M}2}{3}. The deflection angle takes positive (negative) values for CLBHs (QLBHs) and they decrease very fast (slowly) by increasing the closest distance x 0 of bending light ray and/or dimensionless cosmological parameter for sample giant black holes with 0.001< ɛ < 0.01.
Does lower Omega allow a resolution of the large-scale structure problem?
NASA Technical Reports Server (NTRS)
Silk, Joseph; Vittorio, Nicola
1987-01-01
The intermediate angular scale anisotropy of the cosmic microwave background, peculiar velocities, density correlations, and mass fluctuations for both neutrino and baryon-dominated universes with Omega less than one are evaluated. The large coherence length associated with a low-Omega, hot dark matter-dominated universe provides substantial density fluctuations on scales up to 100 Mpc: there is a range of acceptable models that are capable of producing large voids and superclusters of galaxies and the clustering of galaxy clusters, with Omega roughly 0.3, without violating any observational constraint. Low-Omega, cold dark matter-dominated cosmologies are also examined. All of these models may be reconciled with the inflationary requirement of a flat universe by introducing a cosmological constant 1-Omega.
Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, André A.; Abdalla, E.; Xu, Xiao-Dong
2017-01-01
We investigate phenomenological interactions between dark matter and dark energy and constrain these models by employing the most recent cosmological data including the cosmic microwave background radiation anisotropies from Planck 2015, Type Ia supernovae, baryon acoustic oscillations, the Hubble constant and redshift-space distortions. We find that the interaction in the dark sector parameterized as an energy transfer from dark matter to dark energy is strongly suppressed by the whole updated cosmological data. On the other hand, an interaction between dark sectors with the energy flow from dark energy to dark matter is proved in better agreement with the available cosmologicalmore » observations. This coupling between dark sectors is needed to alleviate the coincidence problem.« less
LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity
NASA Astrophysics Data System (ADS)
Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.
A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.
Quintessential inflation from a variable cosmological constant in a 5D vacuum
NASA Astrophysics Data System (ADS)
Membiela, Agustin; Bellini, Mauricio
2006-10-01
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.
On inflation, cosmological constant, and SUSY breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linde, Andrei
2016-11-02
We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer S and the inflaton Φ, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields S and Φ a small term depending on a nilpotent chiral superfield P one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guendelman, E. I.; Kaganovich, A. B.
2007-04-15
The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton {phi} dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective {phi}-Lagrangian p({phi},X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intendedmore » for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field {phi} with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration {radical}(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/{rho}<-1; w asymptotically (as t{yields}{infinity}) approaches -1 from below; {rho} approaches a constant, the smallness of which does not require fine-tuning of dimensionful parameters.« less
Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe
NASA Astrophysics Data System (ADS)
Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore
2016-07-01
We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.
Cosmic vacuum energy decay and creation of cosmic matter.
Fahr, Hans-Jörg; Heyl, Michael
2007-09-01
In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Lambda, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.
Fluctuations, ghosts, and the cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, T.; Holdom, B.
2004-12-15
For a large region of parameter space involving the cosmological constant and mass parameters, we discuss fluctuating spacetime solutions that are effectively Minkowskian on large time and distance scales. Rapid, small amplitude oscillations in the scale factor have a frequency determined by the size of a negative cosmological constant. A field with modes of negative energy is required. If it is gravity that induces a coupling between the ghostlike and normal fields, we find that this results in stochastic rather than unstable behavior. The negative energy modes may also permit the existence of Lorentz invariant fluctuating solutions of finite energymore » density. Finally we consider higher derivative gravity theories and find oscillating metric solutions in these theories without the addition of other fields.« less
Cosmic equilibration: A holographic no-hair theorem from the generalized second law
NASA Astrophysics Data System (ADS)
Carroll, Sean M.; Chatwin-Davies, Aidan
2018-02-01
In a wide class of cosmological models, a positive cosmological constant drives cosmological evolution toward an asymptotically de Sitter phase. Here we connect this behavior to the increase of entropy over time, based on the idea that de Sitter spacetime is a maximum-entropy state. We prove a cosmic no-hair theorem for Robertson-Walker and Bianchi I spacetimes that admit a Q-screen ("quantum" holographic screen) with certain entropic properties: If generalized entropy, in the sense of the cosmological version of the generalized second law conjectured by Bousso and Engelhardt, increases up to a finite maximum value along the screen, then the spacetime is asymptotically de Sitter in the future. Moreover, the limiting value of generalized entropy coincides with the de Sitter horizon entropy. We do not use the Einstein field equations in our proof, nor do we assume the existence of a positive cosmological constant. As such, asymptotic relaxation to a de Sitter phase can, in a precise sense, be thought of as cosmological equilibration.
NASA Astrophysics Data System (ADS)
Özer, Hatice; Delice, Özgür
2018-03-01
Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.
Constraining the phantom braneworld model from cosmic structure sizes
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav; Kousvos, Stefanos R.
2017-11-01
We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.
NASA Technical Reports Server (NTRS)
Horack, John M.; Koshut, Thomas M.; Mallozzi, Robert S.; Emslie, A. Gordon; Meegan, Charles A.
1996-01-01
The distance scale to cosmic gamma-ray bursts (GRB's) is still uncertain by many orders of magnitude; however, one viable scenario places GRB's at cosmological distances, thereby permitting them to be used as tracers of the cosmological expansion over a significant range of redshifts zeta. Also, several recent measurements of the Hubble constant H(sub 0) appearing in the referred literature report values of 70-80 km/s /Mpc. Although there is significant debate regarding these measurements, we proceed here under the assumption that they are evidence of a large value for H(sub 0). This is done in order to investigate the additional constraints on cosmological models that can be obtained under this hypothesis when combined with the age of the universe and the brightness distribution of cosmological gamma-ray bursts. We show that the range of cosmological models that can be consistent with the GRB brightness distribution, a Hubble constant of 70-80 km/s/Mpc, and a minimum age of the universe of 13-15 Gyr is constrained significantly, largely independent of a wide range of assumptions regarding the evolutionary nature of the burst population. Low-density, Lambda greater than 0 cosmological models with deceleration parameter in the range -1 less than q(sub 0) less than 0 and density parameter sigma(sub 0) in the range approximately equals 0.10-0.25(Omega(sub 0) approximately equals 0.2-0.5) are strongly favored.
Nonsingular cosmology from evolutionary quantum gravity
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco; Montani, Giovanni; Pittorino, Fabrizio
2014-11-01
We provide a cosmological implementation of the evolutionary quantum gravity, describing an isotropic Universe, in the presence of a negative cosmological constant and a massive (preinflationary) scalar field. We demonstrate that the considered Universe has a nonsingular quantum behavior, associated to a primordial bounce, whose ground state has a high occupation number. Furthermore, in such a vacuum state, the super-Hamiltonian eigenvalue is negative, corresponding to a positive emerging dust energy density. The regularization of the model is performed via a polymer quantum approach to the Universe scale factor and the proper classical limit is then recovered, in agreement with a preinflationary state of the Universe. Since the dust energy density is redshifted by the Universe de Sitter phase and the cosmological constant does not enter the ground state eigenvalue, we get a late-time cosmology, compatible with the present observations, endowed with a turning point in the far future.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant.
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia
2016-02-26
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Multiverse understanding of cosmological coincidences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori
2009-09-15
There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant,more » the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.« less
Nonparametric Determination of Redshift Evolution Index of Dark Energy
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
We propose a nonparametric method to determine the sign of γ — the redshift evolution index of dark energy. This is important for distinguishing between positive energy models, a cosmological constant, and what is generally called ghost models. Our method is based on geometrical properties and is more tolerant to uncertainties of other cosmological parameters than fitting methods in what concerns the sign of γ. The same parametrization can also be used for determining γ and its redshift dependence by fitting. We apply this method to SNLS supernovae and to gold sample of re-analyzed supernovae data from Riess et al. Both datasets show strong indication of a negative γ. If this result is confirmed by more extended and precise data, many of the dark energy models, including simple cosmological constant, standard quintessence models without interaction between quintessence scalar field(s) and matter, and scaling models are ruled out. We have also applied this method to Gurzadyan-Xue models with varying fundamental constants to demonstrate the possibility of using it to test other cosmologies.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant
NASA Astrophysics Data System (ADS)
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia
2016-02-01
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
The best-fit universe. [cosmological models
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1991-01-01
Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.
Naturalness of unknown physics: Theoretical models and experimental signatures
NASA Astrophysics Data System (ADS)
Kilic, Can
In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.
Cosmological singularities in Bakry-Émery spacetimes
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Woolgar, Eric
2014-12-01
We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.
Correlation between UV and IR cutoffs in quantum field theory and large extra dimensions
NASA Astrophysics Data System (ADS)
Cortés, J. L.
1999-04-01
A recently conjectured relationship between UV and IR cutoffs in an effective field theory without quantum gravity is generalized in the presence of large extra dimensions. Estimates for the corrections to the usual calculation of observables within quantum field theory are used to put very stringent limits, in some cases, on the characteristic scale of the additional compactified dimensions. Implications for the cosmological constant problem are also discussed.
A curious explanation of some cosmological phenomena
NASA Astrophysics Data System (ADS)
Gopal Vishwakarma, Ram
2013-05-01
Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy-stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy-stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy-stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory.
Inflationary Cosmology: Is Our Universe Part of a Multiverse?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, Alan
2008-11-06
In this talk, Guth explains the inflationary theory and reviews the features that make it scientifically plausible. In addition, he discusses the biggest mystery in cosmology: Why is the value of the cosmological constant, sometimes called the "anti-gravity" effect, so remarkably small compared to theoretical expectations?
2012-11-19
the velocity is linear in the coordinates. The solution is analogous to Hubble flows in cosmology and the Bjorken expansion of a QGP, as discussed in...gµν), R is the Ricci curvature scalar built out of two derivatives of the metric, R ∼ ∂∂g, 3 is a cosmological constant (also known as the tension of...the AdS metric solves the Einstein equation (68) with the AdS radius L determined by the cosmological constant, 3, as 3=− d(d−2)2L2 . One can then
An infrared divergence in the cosmological measure theory and the anthropic reasoning
NASA Astrophysics Data System (ADS)
Yurov, A. V.; Yurov, V. A.; Astashenok, A. V.; Shpilevoi, A. A.
2011-10-01
An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant ( Λ˜10-47 GeV4) is so disconcertingly tiny compared to the predicted value of vacuum energy density ρ SUSY˜1012 GeV4. Unfortunately, there is a darker side to this argument; being combined with the cosmic heat death scenario, it consequently leads to another absurd prediction: the probability of randomly selected observer observing Λ=0 ends up being exactly equal to 1. We shall call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a singular runaway measure coupled with the calculation of relative Bayesian probabilities by the means of the doomsday argument. Moreover, it is shown that while the IRD problem occurs for the prediction stage of value of Λ, it disappears at the explanatory stage when Λ has already been measured by the observer.
NASA Astrophysics Data System (ADS)
Bozek, Brandon
This dissertation describes three research projects on the topic of dark energy. The first project is an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their "w 0--wa" parameterization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which can not be distinguished from a cosmological constant at DETF Stage 2, and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The second project details this analysis on a Inverse Power Law (IPL) or "Ratra-Peebles" (RP) model. This model is a member of a popular subset of scalar field quintessence models that exhibit "tracking" behavior that make this model particularly theoretically interesting. We find that the relative increase in constraining power on the parameter space of this model is consistent to what was found in the first project and the DETF report. We also show, using a background cosmology based on an IPL scalar field model that is consistent with a cosmological constant with Stage 2 data, that good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The third project extends the Causal Entropic Principle to predict the preferred curvature within the "multiverse". The Causal Entropic Principle (Bousso, et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have found that values larger than rhok = 40rho m are disfavored by more than 99.99% and a peak value at rho Λ = 7.9 x 10-123 and rho k = 4.3rhom for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, Luis
2017-12-01
To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are the constituents of the physical vacuum, as postulated two decades ago with the superbradyon (superluminal preon) hypothesis, the strongest implication would be the possibility that vacuum actually drives the expansion of the Universe. If an unstable (metastable) vacuum permanently expands, it can release energy in the form of conventional matter and of its associated kinetic energy. The SST can be the expression of such an expanding vacuum at cosmic level. We briefly discuss these and related issues, as well as relevant open questions including the problematics of the initial singularity and the cosmic vacuum dynamics in a pre-Big Bang era. The possibility to obtain experimental information on the preonic internal structure of vacuum is also considered.
Unruh thermal hadronization and the cosmological constant
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Bleicher, Marcus; Mann, Robert B.
2018-05-01
We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.
Black holes in multi-fractional and Lorentz-violating models
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Fine-tuning with brane-localized flux in 6D supergravity
NASA Astrophysics Data System (ADS)
Niedermann, Florian; Schneider, Robert
2016-02-01
There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].
On the Foundations of the Two Measures Field Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guendelman, E. I.; Kaganovich, A. B.
2006-11-03
Two Measures Field Theory (TMT) uses both the Riemannian volume element {radical}(-g)d{sup 4}x and a new one Fcy d4x where the new measure of integration Fcy can be build of four scalar fields. Arguments in favor of TMT, both from the point of view of first principles and from the TMT results are summarized. Possible origin of the TMT and symmetries that protect the structure of TMT are reviewed. It appears that four measure scalar fields treated as 'physical coordinates' allow to define local observables in quantum gravity. The resolution of the old cosmological constant problem as a possible directmore » consequence of the TMT structure is discussed. Other applications of TMT to cosmology and particle physics are also mentioned.« less
Prospects for mirage mediation
NASA Astrophysics Data System (ADS)
Pierce, Aaron; Thaler, Jesse
2006-09-01
Mirage mediation reduces the fine-tuning in the minimal supersymmetric standard model by dynamically arranging a cancellation between anomaly-mediated and modulus-mediated supersymmetry breaking. We explore the conditions under which a mirage ``messenger scale'' is generated near the weak scale and the little hierarchy problem is solved. We do this by explicitly including the dynamics of the SUSY-breaking sector needed to cancel the cosmological constant. The most plausible scenario for generating a low mirage scale does not readily admit an extra-dimensional interpretation. We also review the possibilities for solving the μ/Bμ problem in such theories, a potential hidden source of fine-tuning.
Quantum foam, gravitational thermodynamics, and the dark sector
NASA Astrophysics Data System (ADS)
Ng, Y. Jack
2017-05-01
Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected dark matter.
Field Theoretical Methods in Cosmology
NASA Astrophysics Data System (ADS)
Singh, Anupam
1995-01-01
To optimally utilize all the exciting cosmological data coming in we need to sharpen also the theoretical tools available to cosmologists. One such indispensible tool to understand hot big bang cosmology is finite temperature field theory. We review and summarise the efforts made by us to use finite temperature field theory to address issues of current interest to cosmologists. An introduction to both the real time and the imaginary time formalisms is provided. The imaginary time formalism is illustrated by applying it to understand the interesting possibility of late Time Phase Transitions. Recent observations of the space distribution of quasars indicate a very notable peak in space density at a redshift of 2 to 3. It is pointed out that this may be the result of a phase transition which has a critical temperature of roughly a few meV (in the cosmological units, h = c = k = 1), which is natural in the context of massive neutrinos. In fact, the neutrino masses required for quasar production and those required to solve the solar neutrino problem by the MSW mechanism are consistent with each other. As a bonus, the cosmological constant implied by this model may also help resolve the discrepancy between the recently measured value of the Hubble Constant and the age of the universe. We illustrate the real time formalism by studying one of the most important time-dependent and non-equilibrium phenomena associated with phase transitions. The non-equilibrium dynamics of the first stage of the reheating process, that is dissipation via particle production is studied in scalar field theories. We show that a complete understanding of the mechanism of dissipation via particle production requires a non-perturbative resummation. We then study a Hartree approximation and clearly exhibit dissipative effects related to particle production. The effect of dissipation by Goldstone bosons is studied non-perturbatively in the large N limit in an O(N) theory. We also place our work in perspective and point out some of the related issues which clearly need further exploration.
Einstein's 1917 static model of the universe: a centennial review
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2017-08-01
We present a historical review of Einstein's 1917 paper ` Cosmological Considerations in the General Theory of Relativity' to mark the centenary of a key work that set the foundations of modern cosmology. We find that the paper followed as a natural next step after Einstein's development of the general theory of relativity and that the work offers many insights into his thoughts on relativity, astronomy and cosmology. Our review includes a description of the observational and theoretical background to the paper; a paragraph-by-paragraph guided tour of the work; a discussion of Einstein's views of issues such as the relativity of inertia, the curvature of space and the cosmological constant. Particular attention is paid to little-known aspects of the paper such as Einstein's failure to test his model against observation, his failure to consider the stability of the model and a mathematical oversight concerning his interpretation of the role of the cosmological constant. We recall the response of theorists and astronomers to Einstein's cosmology in the context of the alternate models of the universe proposed by Willem de Sitter, Alexander Friedman and Georges Lemaître. Finally, we consider the relevance of the Einstein World in today's `emergent' cosmologies.
Late-time behaviour of the Einstein–Boltzmann system with a positive cosmological constant
NASA Astrophysics Data System (ADS)
Lee, Ho; Nungesser, Ernesto
2018-01-01
In this paper we study the Einstein–Boltzmann system for Israel particles with a positive cosmological constant. We consider spatially homogeneous solutions of all Bianchi types except type IX and obtain future global existence and the asymptotic behaviour of solutions to the Einstein–Boltzmann system. The result shows that the solutions converge to the de Sitter solution at late times.
Higgs field and cosmological parameters in the fractal quantum system
NASA Astrophysics Data System (ADS)
Abramov, Valeriy
2017-10-01
For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift); temperature and anisotropy of the cosmic microwave background radiation were performed.
NASA Astrophysics Data System (ADS)
Shifflett, J. A.
2008-08-01
We modify the Einstein-Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total Λ = Λ z + Λ b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as | Λ z | → ∞. For | Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10-16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein-Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein-Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~10-66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory.
AdS3 to dS3 transition in the near horizon of asymptotically de Sitter solutions
NASA Astrophysics Data System (ADS)
Sadeghian, S.; Vahidinia, M. H.
2017-08-01
We consider two solutions of Einstein-Λ theory which admit the extremal vanishing horizon (EVH) limit, odd-dimensional multispinning Kerr black hole (in the presence of cosmological constant) and cosmological soliton. We show that the near horizon EVH geometry of Kerr has a three-dimensional maximally symmetric subspace whose curvature depends on rotational parameters and the cosmological constant. In the Kerr-dS case, this subspace interpolates between AdS3 , three-dimensional flat and dS3 by varying rotational parameters, while the near horizon of the EVH cosmological soliton always has a dS3 . The feature of the EVH cosmological soliton is that it is regular everywhere on the horizon. In the near EVH case, these three-dimensional parts turn into the corresponding locally maximally symmetric spacetimes with a horizon: Kerr-dS3 , flat space cosmology or BTZ black hole. We show that their thermodynamics match with the thermodynamics of the original near EVH black holes. We also briefly discuss the holographic two-dimensional CFT dual to the near horizon of EVH solutions.
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.
2016-04-01
Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.
Analytical Considerations about the Cosmological Constant and Dark Energy
NASA Astrophysics Data System (ADS)
Abreu, Everton M. C.; de Assis, Leonardo P. G.; Dos Reis, Carlos M. L.
The accelerated expansion of the universe has now been confirmed by several independent observations including those of high redshift type Ia supernovae, and the cosmic microwave background combined with the large scale structure of the universe. Another way of presenting this kinematic property of the universe is to postulate the existence of a new and exotic entity, with negative pressure, the dark energy (DE). In spite of observationally well established, no single theoretical model provides an entirely compelling framework within which cosmic acceleration or DE can be understood. At present all existing observational data are in agreement with the simplest possibility that the cosmological constant be a candidate for DE. This case is internally self-consistent and noncontradictory. The extreme smallness of the cosmological constant expressed in either Planck, or even atomic units means only that its origin is not related to strong, electromagnetic, and weak interactions. Although in this case DE reduces to only a single fundamental constant we still have no derivation from any underlying quantum field theory for its small value. From the principles of quantum cosmologies, for example, it is possible to obtain the reason for an inverse-square law for the cosmological constant with no conflict with observations. Despite the fact that this general expression is well known, in this work we introduce families of analytical solutions for the scale factor different from the current literature. The knowledge of the scale factor behavior might shed some light on these questions mentioned above since the entire evolution of a homogeneous isotropic universe is contained in the scale factor. We use different parameters for these solutions and with these parameters we establish a connection with the equation of state for different DE scenarios.
NASA Astrophysics Data System (ADS)
Krauss, L. M.
1999-01-01
The long-derided cosmological constant - a contrivance of Albert Einstein's that represents a bizarre form of energy inherent in space itself - is one of two contenders for explaining changes in the expansion rate of the Universe.
Addressing Beyond Standard Model physics using cosmology
NASA Astrophysics Data System (ADS)
Ghalsasi, Akshay
We have consensus models for both particle physics (i.e. standard model) and cosmology (i.e. LambdaCDM). Given certain assumptions about the initial conditions of the universe, the marriage of the standard model (SM) of particle physics and LambdaCDM cosmology has been phenomenally successful in describing the universe we live in. However it is quite clear that all is not well. The three biggest problems that the SM faces today are baryogenesis, dark matter and dark energy. These problems, along with the problem of neutrino masses, indicate the existence of physics beyond SM. Evidence of baryogenesis, dark matter and dark energy all comes from astrophysical and cosmological observations. Cosmology also provides the best (model dependent) constraints on neutrino masses. In this thesis I will try address the following problems 1) Addressing the origin of dark energy (DE) using non-standard neutrino cosmology and exploring the effects of the non-standard neutrino cosmology on terrestrial and cosmological experiments. 2) Addressing the matter anti-matter asymmetry of the universe.
NASA Astrophysics Data System (ADS)
Johnson, Clifford V.
2014-10-01
It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.
The effect of the cosmological constant on a quadrupole signal in the linearized approximation
NASA Astrophysics Data System (ADS)
Somlai, László Ábel; Vasúth, Mátyás
In this study the effects of a nonzero cosmological constant Λ on a quadrupole gravitational wave (GW) signal are analyzed. The linearized approximation of general relativity was used, so the perturbed metric can be written as the sum of hGW GWs and hΛ background term, originated from Λ. The ΛhGW term was also included in this study. To derive physically relevant consequences of Λ≠0 comoving coordinates are used. In these coordinates, the equations of motion (EoMs) are not self-consistent so the result of the linearized theory has to be transformed to the FRW frame. The luminosity distance and the same order of the magnitude of frequency in accordance with the detected GWs were used to demonstrate the effects of the cosmological constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brihaye, Yves; Delsate, Terence; Kodama, Yuta
We consider a six-dimensional brane world model, where the brane is described by a localized solution to the baby-Skyrme model extending in the extra dimensions. The branes have a cosmological constant modeled by inflating four-dimensional slices, and we further consider a bulk cosmological constant. We construct solutions numerically and present evidence that the solutions cease to exist for large values of the brane cosmological constant in some particular case. Then we study the stability of the model by considering perturbation of the gravitational part (resp. baby Skyrmion) with fixed matter fields (resp. gravitational background). Our results indicate that the perturbationmore » equations do not admit localized solutions for certain type of perturbation. The stability analysis can be alternatively seen as leading to a particle spectrum; we give mass estimations for the baby-Skyrme perturbation and for the graviton.« less
Chae, K-H; Biggs, A D; Blandford, R D; Browne, I W A; De Bruyn, A G; Fassnacht, C D; Helbig, P; Jackson, N J; King, L J; Koopmans, L V E; Mao, S; Marlow, D R; McKean, J P; Myers, S T; Norbury, M; Pearson, T J; Phillips, P M; Readhead, A C S; Rusin, D; Sykes, C M; Wilkinson, P N; Xanthopoulos, E; York, T
2002-10-07
We derive constraints on cosmological parameters and the properties of the lensing galaxies from gravitational lens statistics based on the final Cosmic Lens All Sky Survey data. For a flat universe with a classical cosmological constant, we find that the present matter fraction of the critical density is Omega(m)=0.31(+0.27)(-0.14) (68%)+0.12-0.10 (syst). For a flat universe with a constant equation of state for dark energy w=p(x)(pressure)/rho(x)(energy density), we find w<-0.55(+0.18)(-0.11) (68%).
Gravitational lensing limits on the cosmological constant in a flat universe
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1990-01-01
Inflationary cosmological theories predict, and some more general aesthetic criteria suggest, that the large-scale spatial curvature of the universe k should be accurately zero (i.e., flat), a condition which is satisfied when the universe's present mean density and the value of the cosmological constant Lambda have certain pairs of values. Available data on the frequency of multiple image-lensing of high-redshift quasars by galaxies suggest that the cosmological constant cannot make a dominant contribution to producing a flat universe. In particular, if the mean density of the universe is as small as the baryon density inferred from standard cosmic nucleosynthesis calculations or as determined from typical dynamical studies of galaxies and galaxy clusters, then a value of Lambda large enough to produce a k = 0 universe would result in a substantially higher frequency of multiple-image lensing of quasars than has been observed so far. Shortcomings of the available lens data and uncertainties concerning galaxy properties allow some possibility of escaping this conclusion, but systematic searches for a gravitational lenses and continuing investigations of galaxy mass distributions should soon provide decisive information. It is also noted that nonzero-curvature cosmological models can account for the observed frequency of galaxy-quasar lens systems and for a variety of other constraints.
New Horizons in Thermodynamics
NASA Astrophysics Data System (ADS)
Hayward, Geoffrey Gordon
1991-02-01
This thesis collects five papers which treat the theory of horizon thermodynamics and its applications to cosmology. In the first paper I consider general, spherically symmetric spacetimes with cosmological and black hole horizons. I find that a state of thermal equilibrium may exist in classical manifolds with two horizons so long as a matter distribution is present. I calculate the Euclidean action for non-classical manifolds with and without boundary and relate it to the grand canonical weighting factor. I find that the mean thermal energy of the cosmological horizon is negative. In the second paper I derive the first law of thermodynamics for bounded, static, spherically symmetric spacetimes which include a matter distribution and either a black hole or cosmological horizon. I calculate heat capacities associated with matter/horizon systems and find that they may be positive or negative depending on the matter configuration. I discuss the case in which the cosmological constant is allowed to vary and conclude that the Hawking/Coleman mechanisms for explaining the low value of the cosmological constant are not well formulated. In the third paper, co-authored by Jorma Louko, we analyze variational principles for non-smooth metrics. These principles give insight to the problem of constructing minisuperspace path integrals in horizon statistical mechanics and quantum cosmology. We demonstrate that smoothness conditions can be derived from the variational principle as equations of motion. We suggest a new prescription for minisuperspace path integrals on the manifold | D times S^2. In the fourth paper, I examine the contribution of the horizon energy density to black hole temperature. I show the existence of positive heat capacity solutions in the small mass regime. In the fifth paper, co-authored by Diego Pavon we investigate the role of primordial black holes in the very early universe under SU(3) times SU(2) times U (1), SU(5), and their supersymmetric counterparts. Three of the four theories predict a phase in which black holes and radiation are of comparable energy density. The fourth theory, SU(5), predicts a radiation dominated model from the Planck era onward. In the concluding general discussion I show how generalized laws of thermodynamics can be related to variations of the classical gravitational action. These laws apply even for non-static, non-spherically symmetric spacetimes.
Holographic dark energy with cosmological constant
NASA Astrophysics Data System (ADS)
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
2013-10-01
The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as flatness of the Universe, the horizon problem and isotropy of cosmological microwave background. All this material is covered in chapter seven. Chapter eight contains brief discussion of several popular inflation models. Chapter nine is devoted to the problem of the large-scale structure formation from initial quantum vacuum fluctuation during the inflation and the spectrum of the density fluctuations. It also contains remarks on the baryonic asymmetry of the Universe, baryogenesis and primordial black holes. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza-Klein scheme. The authors also discuss how extra dimensions may affect low energy physics. They present examples of higher-dimensional generalizations of the gravity with higher-in-curvature corrections and discuss a possible mechanism of self-stabilization of an extra space. A considerable part of the chapter 10 is devoted to cosmological models with extra dimensions. In particular, the authors discuss how extra dimensions can modify 'standard' inflation models. At the end of this chapter they make several remarks on a possible relation of the value of fundamental constants in our universe with the existence of extra dimensions. Finally, in chapter 11 they demonstrate that several observable properties of the Universe are closely related with the special value of the fundamental physical constants and their fine tuning. They give interesting examples of such fine tuning and summarize many other cases. The book ends with discussion of a so-called 'cascade birth of universes in multidimensional spaces' model, proposed by one of the authors. As is evident from this brief summary of topics presented in the book, many interesting areas of modern gravity and cosmology are covered. However, since the subject is so wide, this inevitably implies that the selection of the topics and level of their presentation in many cases reflects the authors' own preferences. As a result, several important subjects on black holes, cosmology and extra dimensions, widely discussed in the modern literature, are not covered by the book. For example, a reader will not find discussion of non-spherically symmetric higher dimensional black holes which are either non-trivial generalization of the Kerr black holes, or even have a non-spherical topology of the horizon (black rings, black strings and so on). The book does not contain any information on supersymmetric black holes, black branes solutions and their properties. This list can easily be continued (black hole perturbations, gravitational radiation from binary black hole coalescence, cosmology in massive gravity and Hořava-Lifshitz models, etc). However the number of publications connected with the title of the book is so huge now, that it is practically impossible to cover all of them in a single book. Some selection of topics is inevitable. To summarize, I think that the authors did a great job and the book will find its readers. It might be interesting for researchers working in theoretical physics, astrophysics and cosmology. I do not think that it would be very helpful as a textbook for students, although it contains a lot of interesting material which can be used by students for additional reading connected with the basic university courses on gravity and cosmology. It might be also useful to students for their term paper projects and presentations.
The Mary Ingraham Bunting Institute of Radcliffe College Technical Report. Science Scholars Program
1993-08-31
Yang-Mills- Higgs Functional on TR3 with Arbitrary Coupling Constant" Cheryl A. White, Neuroscience, Massachusetts Institute of Technology, "Role of...Bunting Fellow (Creative Writing) Felw(Creative Writing) Non-minimal Critical Points for the Yang-Mills- indepenident Writer IndepnetWir Higgs ...galaxy formation. Recent work by E. Carlson on cosmological models that produce a small cosmological constant might also naturally produce self
The effect of interacting dark energy on local measurements of the Hubble constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odderskov, Io; Baldi, Marco; Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de
2016-05-01
In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}.more » It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.« less
Jackson, Neal
2015-01-01
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
NASA Astrophysics Data System (ADS)
Carr, Bernard
2009-08-01
Part I. Overviews: 1. Introduction and overview Bernard Carr; 2. Living in the multiverse Steven Weinberg; 3. Enlightenment, knowledge, ignorance, temptation Frank Wilczek; Part II. Cosmology and Astrophysics: 4. Cosmology and the multiverse Martin J. Rees; 5. The anthropic principle revisited Bernard Carr; 6. Cosmology from the top down Stephen Hawking; 7. The multiverse hierarchy Max Tegmark; 8. The inflationary universe Andrei Linde; 9. A model of anthropic reasoning: the dark to ordinary matter ratio Frank Wilczek; 10. Anthropic predictions: the case of the cosmological constant Alexander Vilenkin; 11. The definition and classification of universes James D. Bjorken; 12. M/string theory and anthropic reasoning Renata Kallosh; 13. The anthropic principle, dark energy and the LHC Savas Dimopoulos and Scott Thomas; Part III. Particle Physics and Quantum Theory: 14. Quarks, electrons and atoms in closely related universes Craig J. Hogan; 15. The fine-tuning problems of particle physics and anthropic mechanisms John F. Donoghue; 16. The anthropic landscape of string theory Leonard Susskind; 17. Cosmology and the many worlds interpretation of quantum mechanics Viatcheslav Mukhanov; 18. Anthropic reasoning and quantum cosmology James B. Hartle; 19. Micro-anthropic principle for quantum theory Brandon Carter; Part IV. More General Philosophical Issues: 20. Scientific alternatives to the anthropic principle Lee Smolin; 21. Making predictions in a multiverse: conundrums, dangers, coincidences Anthony Aguirre; 22. Multiverses: description, uniqueness and testing George Ellis; 23. Predictions and tests of multiverse theories Don N. Page; 24. Observation selection theory and cosmological fine-tuning Nick Bostrom; 25. Are anthropic arguments, involving multiverses and beyond, legitimate? William R. Stoeger; 26. The multiverse hypothesis: a theistic perspective Robin Collins; 27. Living in a simulated universe John D. Barrow; 28. Universes galore: where will it all end? Paul Davies; Index.
Testable solution of the cosmological constant and coincidence problems
NASA Astrophysics Data System (ADS)
Shaw, Douglas J.; Barrow, John D.
2011-02-01
We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of Λ≈(9.3Gyrs)-2 [≈10-120 in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of Ωk0=-0.0056(ζb/0.5), where ζb˜1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Λ. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between tΛ=Λ-1/2 and the age of the Universe, tU, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different Λ values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.
Cosmology in time asymmetric extensions of general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Genly; Saridakis, Emmanuel N., E-mail: genly.leon@ucv.cl, E-mail: Emmanuel_Saridakis@baylor.edu
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we performmore » a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.« less
Cosmological history in York time: inflation and perturbations
NASA Astrophysics Data System (ADS)
Roser, Philipp; Valentini, Antony
2017-02-01
The constant mean extrinsic curvature on a spacelike slice may constitute a physically preferred time coordinate, `York time'. One line of enquiry to probe this idea is to understand processes in our cosmological history in terms of York time. Following a review of the theoretical motivations, we focus on slow-roll inflation and the freezing and Hubble re-entry of cosmological perturbations. While the physics is, of course, observationally equivalent, we show how the mathematical account of these processes is distinct from the conventional account in terms of standard cosmological or conformal time. We also consider the cosmological York-timeline more broadly and contrast it with the conventional cosmological timeline.
Rotating black holes in higher dimensions with a cosmological constant.
Gibbons, G W; Lü, H; Page, Don N; Pope, C N
2004-10-22
We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and the Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S(D-2) bundles over S2, infinitely many for each odd D>/=5. Applications to string theory and M-theory are indicated.
Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk
2010-02-01
We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.
NASA Astrophysics Data System (ADS)
Moutsopoulos, George
2013-06-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.
Effect of the cosmological constant on the deflection angle by a rotating cosmic string
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Övgün, Ali
2018-03-01
We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.
Some Dynamical Effects of the Cosmological Constant
NASA Astrophysics Data System (ADS)
Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.
Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.
NASA Astrophysics Data System (ADS)
Baxter, J. Erik; Winstanley, Elizabeth
2016-02-01
We investigate the stability of spherically symmetric, purely magnetic, soliton and black hole solutions of four-dimensional 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These solutions are described by N - 1 magnetic gauge field functions ωj. We consider linear, spherically symmetric, perturbations of these solutions. The perturbations decouple into two sectors, known as the sphaleronic and gravitational sectors. For any N, there are no instabilities in the sphaleronic sector if all the magnetic gauge field functions ωj have no zeros and satisfy a set of N - 1 inequalities. In the gravitational sector, we prove that there are solutions which have no instabilities in a neighbourhood of stable embedded 𝔰𝔲(2) solutions, provided the magnitude of the cosmological constant |" separators=" Λ | is sufficiently large.
The Newton constant and gravitational waves in some vector field adjusting mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santillán, Osvaldo P.; Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting thatmore » the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.« less
Anisotropic k-essence cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Forte, Monica
We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies.more » The linear case is compatible with an asymptotic potential interpolating between V{sub l}{proportional_to}{phi}{sup -{gamma}{sub l}}, in the shear dominated regime, and V{sub l}{proportional_to}{phi}{sup -2} at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential.« less
A modified Friedmann equation for a system with varying gravitational mass
NASA Astrophysics Data System (ADS)
Gorkavyi, Nick; Vasilkov, Alexander
2018-05-01
The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Ernazarov, K. K.
2017-01-01
A (n + 1)-dimensional gravitational model with cosmological constant and Gauss-Bonnet term is studied. The ansatz with diagonal cosmological metrics is adopted and solutions with exponential dependence of scale factors: ai ˜ exp (vit), i = 1, …, n, are considered. The stability analysis of the solutions with non-static volume factor is presented. We show that the solutions with v 1 = v 2 = v 3 = H > 0 and small enough variation of the effective gravitational constant G are stable if certain restriction on (vi ) is obeyed. New examples of stable exponential solutions with zero variation of G in dimensions D = 1 + m + 2 with m > 2 are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gergely, Laszlo A.
We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can existmore » on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.« less
Cosmological abundance of the QCD axion coupled to hidden photons
NASA Astrophysics Data System (ADS)
Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu
2018-06-01
We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.
On the physical Hilbert space of loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noui, Karim; Perez, Alejandro; Vandersloot, Kevin
2005-02-15
In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.
Deformation of the quintom cosmological model and its consequences
NASA Astrophysics Data System (ADS)
Sadeghi, J.; Pourhassan, B.; Nekouee, Z.; Shokri, M.
In this paper, we investigate the effects of noncommutative phase-space on the quintom cosmological model. In that case, we discuss about some cosmological parameters and show that they depend on the deformation parameters. We find that the noncommutative parameter plays important role which helps to re-arrange the divergency of cosmological constant. We draw time-dependent scale factor and investigate the effect of noncommutative parameters. Finally, we take advantage from noncommutative phase-space and obtain the deformed Lagrangian for the quintom model. In order to discuss some cosmological phenomena as dark energy and inflation, we employ Noether symmetry.
Distorting general relativity: gravity's rainbow and f(R) theories at work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garattini, Remo, E-mail: Remo.Garattini@unibg.it
2013-06-01
We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift themore » Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.« less
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
NASA Astrophysics Data System (ADS)
Zhu, Tao; Shu, Fu-Wen; Wu, Qiang; Wang, Anzhong
2012-02-01
We consider an extended theory of Horava-Lifshitz gravity with the detailed balance condition softly breaking, but without the projectability condition. With the former, the number of independent coupling constants is significantly reduced. With the latter and by extending the original foliation-preserving diffeomorphism symmetry Diff(M,F) to include a local U(1) symmetry, the spin-0 gravitons are eliminated. Thus, all the problems related to them disappear, including the instability, strong coupling, and different speeds in the gravitational sector. When the theory couples to a scalar field, we find that the scalar field is not only stable in both the ultraviolet and infrared, but also free of the strong coupling problem, because of the presence of high-order spatial derivative terms of the scalar field. Furthermore, applying the theory to cosmology, we find that due to the additional U(1) symmetry, the Friedmann-Robertson-Walker (FRW) universe is necessarily flat. We also investigate the scalar, vector, and tensor perturbations of the flat FRW universe, and derive the general linearized field equations for each kind of the perturbations.
The cosmological constant and the energy of gravitational radiation
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Ifsits, Lukas
2016-06-01
We propose a definition of mass for characteristic hypersurfaces in asymptotically vacuum space-times with nonvanishing cosmological constant Λ ∈R* , generalizing the definition of Trautman and Bondi for Λ =0 . We show that our definition reduces to some standard definitions in several situations. We establish a balance formula linking the characteristic mass and a suitably defined renormalized volume of the null hypersurface, generalizing the positivity identity proved by Chruściel and Paetz when Λ =0 .
Possible Gravitational Anomalies in Quantum Materials
2004-02-12
gauge symmetry is broken. This causes the photon to aquire mass via the Higgs mechanism (Ryder, 2003). The London penetration depth that we observe is...wavelength is a complex number, as required by the positive cosmological constant measured in our universe (Novello et al, 2003). Using Tate’s result...is "only" 14 orders of magnitude above its accepted free-space value from the cosmological constant measurement of i.10-69 kg (De Matos et al, 2005
Nonexistence of degenerate horizons in static vacua and black hole uniqueness
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Woolgar, Eric
2018-02-01
We show that in any spacetime dimension D ≥ 4, degenerate components of the event horizon do not exist in static vacuum configurations with positive cosmological constant. We also show that without a cosmological constant asymptotically flat solutions cannot possess a degenerate horizon component. Several independent proofs are presented. One proof follows easily from differential geometry in the near-horizon limit, while others use Bakry-Émery-Ricci bounds for static Einstein manifolds.
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Baryshev, Yu. V.
2006-09-01
Based on the increasing evidence of the cosmological relevance of the local Hubble flow, we consider a simple analytical cosmological model for the Local Universe. This is a non-Friedmann model with a non-uniform static space-time. The major dynamical factor controlling the local expansion is the antigravity produced by the omnipresent and permanent dark energy of the cosmic vacuum (or the cosmological constant). The antigravity dominates at larger distances than 1-2 Mpc from the center of the Local group. The model gives a natural explanation of the two key quantitative characteristics of the local expansion flow, which are the local Hubble constant and the velocity dispersion of the flow. The observed kinematical similarity of the local and global flows of expansion is clarified by the model. We analytically demonstrate the efficiency of the vacuum cooling mechanism that allows one to see the Hubble law this close to the Local group. The "universal Hubble constant" HV (≈60 km s-1 Mpc-1), depending only on the vacuum density, has special significance locally and globally. The model makes a number of verifiable predictions. It also unexpectedly shows that the dwarf galaxies of the local flow with the shortest distances and lowest redshifts may be the most sensitive indicators of dark energy in our neighborhood.
NASA Technical Reports Server (NTRS)
Boughn, S. P.; Crittenden, R. G.; Turok, N. G.
1998-01-01
In universes with significant curvature or cosmological constant, cosmic microwave background (CMB) anisotropies are created very recently via the Rees-Sciama or integrated Sachs-Wolfe effects. This causes the CMB anisotropies to become partially correlated with the local matter density (z less than 4). We examine the prospects of using the hard (2- 10 keV) X-ray background as a probe of the local density and the measured correlation between the HEAO1 A2 X-ray survey and the 4-year COBE-DMR map to obtain a constraint on the cosmological constant. The 95% confidence level upper limit on the cosmological constant is OMega(sub Lambda) less than or equal to 0.5, assuming that the observed fluctuations in the X-ray map result entirely from large scale structure. (This would also imply that the X-rays trace matter with a bias factor of b(sub x) approx. = 5.6 Omega(sub m, sup 0.53)). This bound is weakened considerably if a large portion of the X-ray fluctuations arise from Poisson noise from unresolved sources. For example, if one assumes that the X-ray bias is b(sub x) = 2, then the 95% confidence level upper limit is weaker, Omega(sub Lambda) less than or equal to 0.7. More stringent limits should be attainable with data from the next generation of CMB and X-ray background maps.
Cosmology with a stiff matter era
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2015-11-01
We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2016-08-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.
Interpretations of Quantum Theory in the Light of Modern Cosmology
NASA Astrophysics Data System (ADS)
Castagnino, Mario; Fortin, Sebastian; Laura, Roberto; Sudarsky, Daniel
2017-11-01
The difficult issues related to the interpretation of quantum mechanics and, in particular, the "measurement problem" are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott's problem.
Foreground contribution to the inferred cosmological parameters from Planck
NASA Astrophysics Data System (ADS)
Vincent, Aaron C.; Wibig, Tadeusz; Wolfendale, Arnold W.
Previous analyses of cosmic microwave background (CMB) measurements [T. Wibig and A. W. Wolfendale, Mon. Not. R. Astron. Soc. 360 (2005) 236, arXiv:astro-ph/0409397; Mon. Not. R. Astron. Soc. 448 (2015) 1030, arXiv:1507.0677.] have revealed contamination by areas of high cosmic ray activity in the Milky Way. Here, we update studies, looking at the most recent Planck release of residual maps. We search for possible effects of foreground contamination in the reconstruction of the ΛCDM cosmological parameters. We focus on the Hubble parameter H0 and the optical depth to reionization τ, both of which exhibit discrepancies between CMB-inferred values and low-redshift measurements (“the delta H0 problem”). Using the publicly available “component separated” Planck temperature maps, we single out three distinct regions: the “loops”, “chimneys” and “low CR” regions, which disproportionately contributed to CR contamination of WMAP data. We find that two of the four maps are strongly affected by removal of anomalously high or low CR activity regions. However, the Commander method, used to produce the angular power spectrum at low ( < 30) multipoles in cosmological analyses, appears robust under these changes. Finally, we use the inferred Hubble parameter H0 as a proxy to look for general directional dependence of the CMB power spectrum, finding a small but robust dependence on the Galactic longitude. Although there is some evidence for a continuing CR contamination, it is insufficient to provide an answer to the delta H0 problem, or to the optical depth problem, though dependence of the derived H0 on direction seems significant. The geometrical pattern — striations along constant longitudes — suggests CR contamination as distinct from a truly cosmological effect.
Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2002-08-01
We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.
Dynamical behavior in f (T, TG) cosmology
NASA Astrophysics Data System (ADS)
Kofinas, Georgios; Leon, Genly; Saridakis, Emmanuel N.
2014-09-01
The f(T,{{T}_{G}}) class of gravitational modification, based on the quadratic torsion scalar T as well as on the new quartic torsion scalar TG, which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both f (T) and f(R,G) ones. We perform a detailed dynamical analysis of a spatially flat universe governed by the simplest non-trivial model of f(T,{{T}_{G}}) gravity which does not introduce a new mass scale. We find that the universe can result in dark-energy dominated, quintessence-like, cosmological-constant-like, or phantom-like solutions, according to the parameter choices. Additionally, it may result in a dark energy-dark matter scaling solution; thus it can alleviate the coincidence problem. Finally, the analysis ‘at infinity’ reveals that the universe may exhibit future, past, or intermediate singularities, depending on the parameters.
Asymptotics with a positive cosmological constant II
NASA Astrophysics Data System (ADS)
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul
2018-02-01
We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.
Multikilovolt Coherent X-Ray Generation for Protein Analysis and Biological Threat Reduction
2003-10-15
Space Links Neutrino Flavour (νe,νµ) Transformations with the Cosmological Constant Λ,” Yang Dai, Alex B. Borisov, James W. Longworth, Keith Boyer, and...Phys. B 36, L285 (2003). 3. “Cryptographic Unification of Mass and Space Links Neutrino Flavour (νe,νµ) Transformations with the Cosmological ...Constant, and the Higgs Mass,” Yang Dai, Alexey B. Borisov, Keith Boyer, and Charles K. Rhodes, Sandia National Laboratories, Report SAND2000-2043, August
Gravitational lenses, cosmology, and galaxy structure
NASA Astrophysics Data System (ADS)
Winn, J.
2002-05-01
Gravitational lenses can be used to study dark matter in galaxies and to measure the Hubble constant. The statistics of lensing can be used to measure the cosmological constant. I have been conducting a survey of the southern sky for new lenses at radio wavelengths, which has resulted in 4 confirmed lenses and 3 strong candidates that require further follow-up. I will describe the survey and the scientific results that have been obtained from the new lenses. I will also describe my other life as a science journalist.
Holographic cosmology and phase transitions of SYM theory
NASA Astrophysics Data System (ADS)
Ghoroku, Kazuo; Meyer, René; Toyoda, Fumihiko
2017-10-01
We study the time development of strongly coupled N =4 supersymmetric Yang Mills (SYM) theory on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We implement the cosmological background as a boundary metric fulfilling the Friedmann equation with a four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the type IIB supergravity and find that the time dependence of the FRW background strongly influences the dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a deconfined phase. We also argue that some cosmological solutions could be related to the inflationary scenario.
Testable solution of the cosmological constant and coincidence problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Douglas J.; Barrow, John D.
2011-02-15
We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvaturemore » of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.« less
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
Cosmological evolution of the Higgs boson's vacuum expectation value
NASA Astrophysics Data System (ADS)
Calmet, Xavier
2017-11-01
We point out that the expansion of the universe leads to a cosmological time evolution of the vacuum expectation of the Higgs boson. Within the standard model of particle physics, the cosmological time evolution of the vacuum expectation of the Higgs leads to a cosmological time evolution of the masses of the fermions and of the electroweak gauge bosons, while the scale of Quantum Chromodynamics (QCD) remains constant. Precise measurements of the cosmological time evolution of μ =m_e/m_p, where m_e and m_p are, respectively, the electron and proton mass (which is essentially determined by the QCD scale), therefore provide a test of the standard models of particle physics and of cosmology. This ratio can be measured using modern atomic clocks.
On the mass of static metrics with positive cosmological constant: I
NASA Astrophysics Data System (ADS)
Borghini, Stefano; Mazzieri, Lorenzo
2018-06-01
In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild–de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.
On the cosmology of scalar-tensor-vector gravity theory
NASA Astrophysics Data System (ADS)
Jamali, Sara; Roshan, Mahmood; Amendola, Luca
2018-01-01
We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.
Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metaxas, Dimitrios
2009-12-15
For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite boundmore » on the graviton mass.« less
BOOK REVIEW Dark Energy: Theory and Observations Dark Energy: Theory and Observations
NASA Astrophysics Data System (ADS)
Faraoni, Valerio
2011-02-01
The 1998 discovery of what seems an acceleration of the cosmic expansion was made using type Ia supernovae and was later confirmed by other cosmological observations. It has made a huge impact on cosmology, prompting theoreticians to explain the observations and introducing the concept of dark energy into modern physics. A vast literature on dark energy and its alternatives has appeared since then, and this is the first comprehensive book devoted to the subject. This book is addressed to an advanced audience comprising graduate students and researchers in cosmology. Although it contains forty four fully solved problems and the first three chapters are rather introductory, they do not constitute a self-consistent course in cosmology and this book assumes graduate level knowledge of cosmology and general relativity. The fourth chapter focuses on observations, while the rest of this book addresses various classes of models proposed, including the cosmological constant, quintessence, k-essence, phantom energy, coupled dark energy, etc. The title of this book should not induce the reader into believing that only dark energy models are addressed—the authors devote two chapters to discussing conceptually very different approaches alternative to dark energy, including ƒ(R) and Gauss-Bonnet gravity, braneworld and void models, and the backreaction of inhomogeneities on the cosmic dynamics. Two chapters contain a general discussion of non-linear cosmological perturbations and statistical methods widely applicable in cosmology. The final chapter outlines future perspectives and the most likely lines of observational research on dark energy in the future. Overall, this book is carefully drafted, well presented, and does a good job of organizing the information available in the vast literature. The reader is pointed to the essential references and guided in a balanced way through the various proposals aimied at explaining the cosmological observations. Not all classes of models are treated in great detail, as expected from a volume covering an estimated four thousand papers. This much needed volume fills a gap in the literature and is a must-have in the library of young and seasoned researchers alike.
The Cosmological Dependence of Galaxy Cluster Morphologies
NASA Astrophysics Data System (ADS)
Crone, Mary Margaret
1995-01-01
Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should be available within the next few years. At that time the predictions described here can be used to set useful cosmological constraints.
A two-fluid approximation for calculating the cosmic microwave background anisotropies
NASA Technical Reports Server (NTRS)
Seljak, Uros
1994-01-01
We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.
Cosmology with decaying cosmological constant—exact solutions and model testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szydłowski, Marek; Stachowski, Aleksander, E-mail: marek.szydlowski@uj.edu.pl, E-mail: aleksander.stachowski@uj.edu.pl
We study dynamics of Λ(t) cosmological models which are a natural generalization of the standard cosmological model (the ΛCDM model). We consider a class of models: the ones with a prescribed form of Λ(t)=Λ{sub bare}+α{sup 2}/t{sup 2}. This type of a Λ(t) parametrization is motivated by different cosmological approaches. We interpret the model with running Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term −dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in themore » form of Bessel functions. Our model shows that fractional density of dark energy Ω{sub e} is constant and close to zero during the early evolution of the universe. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-Paczyński test. In this context we formulate a simple criterion of variability of Λ with respect to t in terms of variability of the jerk or sign of estimator (1−Ω{sub m},0−Ω{sub Λ,0}). The case study of our model enable us to find an upper limit α{sup 2} < 0.012 (2σ C.L.) describing the variation from the cosmological constant while the LCDM model seems to be consistent with various data.« less
A Possible Solution to the Smallness Problem of Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; /SLAC; Gu, Je-An
2005-07-08
The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.
Fully covariant cosmology and its astrophysical implications
NASA Technical Reports Server (NTRS)
Wesson, Paul S.; Liu, Hongya
1995-01-01
We present a cosmological model with good physical properties which is invariant not only under changes of the space and time coordinates but also under changes of an extra (Kaluza-Klein) coordinate related to rest mass. In frames where the latter is chosen to be constant we recover standard cosmology. In frames where it is chosen to be variable we obtain new astrophysical effects and gain insight into the nature of the big bang.
Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity
NASA Astrophysics Data System (ADS)
Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein
2015-12-01
In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.
Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2018-04-01
We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.
Planck Cosmology, Planck Clusters, and What is to Come
NASA Astrophysics Data System (ADS)
Rozo, Eduardo
2015-08-01
Planck's view of the Cosmic Microwave Background (CMB) has ushered in a new era of precision cosmology. In the process, hints of tension with local universe cosmological probes have appeared, including not only tension between the CMB and local Hubble constant measurements, but between the CMB and Planck's own analysis of the SZ galaxy clusters discovered by Planck. We will discuss the state of cluster cosmology in light of these results, and comment on what is to come. Should these tensions continue to exist with ever future measurements of ever increasing precision, the current Planck results will stand as some of the first lines of evidence towards finally breaking the standard LCDM cosmological model!
Cosmological applications of F (T ,TG) gravity
NASA Astrophysics Data System (ADS)
Kofinas, Georgios; Saridakis, Emmanuel N.
2014-10-01
We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.
NASA Astrophysics Data System (ADS)
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected, and the axion mass and relic density measured from cosmological observables.
Deuterium Abundance in Consciousness and Current Cosmology
NASA Astrophysics Data System (ADS)
Rauscher, Elizabeth A.
We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.
String inspired brane world cosmology.
Germani, Cristiano; Sopuerta, Carlos F
2002-06-10
We consider brane world scenarios including the leading correction to the Einstein-Hilbert action suggested by superstring theory, the Gauss-Bonnet term. We obtain and study the complete set of equations governing the cosmological dynamics. We find they have the same form as those in Randall-Sundrum scenarios but with time-varying four-dimensional gravitational and cosmological constants. By studying the bulk geometry we show that this variation is produced by bulk curvature terms parametrized by the mass of a black hole. Finally, we show there is a coupling between these curvature terms and matter that can be relevant for early universe cosmology.
Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna
2016-02-05
There is a deep tension between the well-developed theory of gravitational waves from isolated systems and the presence of a positive cosmological constant Λ, however tiny. In particular a generalization of Einstein's 1918 quadrupole formula that would allow a positive Λ is not yet available. We first explain the principal difficulties and then show that it is possible to overcome them in the weak field limit. These results also provide concrete hints for constructing the Λ>0 generalization of the Bondi-Sachs framework for full, nonlinear general relativity.
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna
2016-02-01
There is a deep tension between the well-developed theory of gravitational waves from isolated systems and the presence of a positive cosmological constant Λ , however tiny. In particular a generalization of Einstein's 1918 quadrupole formula that would allow a positive Λ is not yet available. We first explain the principal difficulties and then show that it is possible to overcome them in the weak field limit. These results also provide concrete hints for constructing the Λ >0 generalization of the Bondi-Sachs framework for full, nonlinear general relativity.
Time arrow is influenced by the dark energy.
Allahverdyan, A E; Gurzadyan, V G
2016-05-01
The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant.
Black hole shadow in an expanding universe with a cosmological constant
NASA Astrophysics Data System (ADS)
Perlick, Volker; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S.
2018-05-01
We analytically investigate the influence of a cosmic expansion on the shadow of the Schwarzschild black hole. We suppose that the expansion is driven by a cosmological constant only and use the Kottler (or Schwarzschild-de Sitter) spacetime as a model for a Schwarzschild black hole embedded in a de Sitter universe. We calculate the angular radius of the shadow for an observer who is comoving with the cosmic expansion. It is found that the angular radius of the shadow shrinks to a nonzero finite value if the comoving observer approaches infinity.
Inflation with a smooth constant-roll to constant-roll era transition
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2017-07-01
In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.
Some remarks on the attractor behaviour in ELKO cosmology
NASA Astrophysics Data System (ADS)
Pereira, S. H.; A. Pinho S., S.; Hoff da Silva, J. M.
2014-08-01
Recent results on the dynamical stability of a system involving the interaction of the ELKO spinor field with standard matter in the universe have been reanalysed, and the conclusion is that such system does not exhibit isolated stable points that could alleviate the cosmic coincidence problem. When a constant parameter δ related to the potential of the ELKO field is introduced in the system however, stable fixed points are found for some specific types of interaction between the ELKO field and matter. Although the parameter δ is related to an unknown potential, in order to satisfy the stability conditions and also that the fixed points are real, the range of the constant parameter δ can be constrained for the present time and the coincidence problem can be alleviated for some specific interactions. Such restriction on the ELKO potential opens possibility to apply the ELKO field as a candidate to dark energy in the universe, and so explain the present phase of acceleration of the universe through the decay of the ELKO field into matter.
Constraining cosmologies with fundamental constants - I. Quintessence and K-essence
NASA Astrophysics Data System (ADS)
Thompson, Rodger I.; Martins, C. J. A. P.; Vielzeuf, P. E.
2013-01-01
Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the Universe. These theories generally include a potential V(φ) which is a function of the scalar field φ. Although V(φ) can be represented by a very diverse set of functions, recent work has shown that under some conditions, such as the slow-roll conditions, the equation of state parameter w is either independent of the form of V(φ) or part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant α and the proton to electron mass ratio μ. Although the current situation on a possible variance of α is complicated, there are firm limitations on the variance of μ in the early universe. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of μ puts significant constraints on the product of a cosmological parameter w + 1 and a new physics parameter ζ2μ, the coupling constant between μ and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of ζμ must be at the lower end of or less than its expected values or the value of w + 1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled to the electromagnetic field, small ζμ, very weakly coupled to gravity, (w + 1) ≈ 0 or both. These results stress that adherence to the measured invariance in μ is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of μ also produces a significant tension with the reported changes in the value of α.
Comparison between the Logotropic and ΛCDM models at the cosmological scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavanis, Pierre-Henri; Kumar, Suresh, E-mail: chavanis@irsamc.ups-tlse.fr, E-mail: suresh.kumar@pilani.bits-pilani.ac.in
We perform a detailed comparison between the Logotropic model [P.H. Chavanis, Eur. Phys. J. Plus, 130 (2015)] and the ΛCDM model. These two models behave similarly at large (cosmological) scales up to the present. Differences will appear only in the far future, in about 25 Gyrs, when the Logotropic Universe becomes phantom while the ΛCDM Universe enters in the de Sitter era. However, the Logotropic model differs from the ΛCDM model at small (galactic) scales, where the latter encounters serious problems. Having a nonvanishing pressure, the Logotropic model can solve the cusp problem and the missing satellite problem of themore » ΛCDM model. In addition, it leads to dark matter halos with a constant surface density Σ{sub 0}=ρ{sub 0} r {sub h} , and can explain its observed value Σ{sub 0}=141 M {sub ⊙}/pc{sup 2} without adjustable parameter. This makes the logotropic model rather unique among all the models attempting to unify dark matter and dark energy. In this paper, we compare the Logotropic and ΛCDM models at the cosmological scale where they are very close to each other in order to determine quantitatively how much they differ. This comparison is facilitated by the fact that these models depend on only two parameters, the Hubble constant H {sub 0} and the present fraction of dark matter Ω{sub m0}. Using the latest observational data from Planck 2015+Lensing+BAO+JLA+HST, we find that the best fit values of H {sub 0} and Ω{sub m0} are H {sub 0}=68.30 km s{sup −1} Mpc{sup −1} and Ω{sub m0}=0.3014 for the Logotropic model, and H {sub 0}=68.02 km s{sup −1} Mpc{sup −1} and Ω{sub m0}=0.3049 for the ΛCDM model. The difference between the two models is at the percent level. As a result, the Logotropic model competes with the ΛCDM model at large scales and solves its problems at small scales. It may therefore represent a viable alternative to the ΛCDM model. Our study provides an explicit example of a theoretically motivated model that is almost indistinguishable from the ΛCDM model at the present time while having a completely different (phantom) evolution in the future. We analytically derive the statefinders of the Logotropic model for all values of the logotropic constant B . We show that the parameter s {sub 0} is directly related to this constant since s {sub 0}=− B /( B +1) independently of any other parameter like H {sub 0} or Ω{sub m0}. For the predicted value of B =3.53× 10{sup −3}, we obtain ( q {sub 0}, r {sub 0}, s {sub 0})=(−0.5516,1.011,−0.003518) instead of ( q {sub 0}, r {sub 0}, s {sub 0})=(−0.5427,1,0) for the ΛCDM model corresponding to 0 B =.« less
Reconstruction of f(T)-gravity in the absence of matter
NASA Astrophysics Data System (ADS)
El Hanafy, W.; Nashed, G. G. L.
2016-06-01
We derive an exact f(T) gravity in the absence of ordinary matter in Friedmann-Robertson-Walker (FRW) universe, where T is the teleparallel torsion scalar. We show that vanishing of the energy-momentum tensor {T}^{μ ν } of matter does not imply vanishing of the teleparallel torsion scalar, in contrast to general relativity, where the Ricci scalar vanishes. The theory provides an exponential ( inflationary) scale factor independent of the choice of the sectional curvature. In addition, the obtained f(T) acts just like cosmological constant in the flat space model. Nevertheless, it is dynamical in non-flat models. In particular, the open universe provides a decaying pattern of the f(T) contributing directly to solve the fine-tuning problem of the cosmological constant. The equation of state (EoS) of the torsion vacuum fluid has been studied in positive and negative Hubble regimes. We study the case when the torsion is made of a scalar field ( tlaplon) which acts as torsion potential. This treatment enables to induce a tlaplon field sensitive to the symmetry of the spacetime in addition to the reconstruction of its effective potential from the f(T) theory. The theory provides six different versions of inflationary models. The real solutions are mainly quadratic, the complex solutions, remarkably, provide Higgs-like potential.
Deviations from Newton's law in supersymmetric large extra dimensions
NASA Astrophysics Data System (ADS)
Callin, P.; Burgess, C. P.
2006-09-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case.
The 1% concordance Hubble constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, C. L.; Larson, D.; Weiland, J. L.
2014-10-20
The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. Amore » precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.« less
Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima
NASA Astrophysics Data System (ADS)
Lahav, Ofer
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)
Tunneling in quantum cosmology and holographic SYM theory
NASA Astrophysics Data System (ADS)
Ghoroku, Kazuo; Nakano, Yoshimasa; Tachibana, Motoi; Toyoda, Fumihiko
2018-03-01
We study the time evolution of the early Universe, which is developed by a cosmological constant Λ4 and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker space-time. The renormalized vacuum expectation value of the energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as C . The evolution is controlled by this radiation C and the cosmological constant Λ4. For positive Λ4, an inflationary solution is obtained at late time. When C is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.
Constraining f(R) gravity in solar system, cosmology and binary pulsar systems
NASA Astrophysics Data System (ADS)
Liu, Tan; Zhang, Xing; Zhao, Wen
2018-02-01
The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.
NASA Astrophysics Data System (ADS)
Komatsu, Nobuyoshi
2017-11-01
A power-law corrected entropy based on a quantum entanglement is considered to be a viable black-hole entropy. In this study, as an alternative to Bekenstein-Hawking entropy, a power-law corrected entropy is applied to Padmanabhan's holographic equipartition law to thermodynamically examine an extra driving term in the cosmological equations for a flat Friedmann-Robertson-Walker universe at late times. Deviations from the Bekenstein-Hawking entropy generate an extra driving term (proportional to the α th power of the Hubble parameter, where α is a dimensionless constant for the power-law correction) in the acceleration equation, which can be derived from the holographic equipartition law. Interestingly, the value of the extra driving term in the present model is constrained by the second law of thermodynamics. From the thermodynamic constraint, the order of the driving term is found to be consistent with the order of the cosmological constant measured by observations. In addition, the driving term tends to be constantlike when α is small, i.e., when the deviation from the Bekenstein-Hawking entropy is small.
Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.
Miyatake, Hironao; Madhavacheril, Mathew S; Sehgal, Neelima; Slosar, Anže; Spergel, David N; Sherwin, Blake; van Engelen, Alexander
2017-04-21
We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in the ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r=0.390_{-0.062}^{+0.070}, at an effective redshift of z=0.53. This is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r=0.419.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyatake, Hironao; Madhavacheril, Mathew S.; Sehgal, Neelima
We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z~1 (background galaxies) and at the surface of last scattering at z~1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in themore » ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r = 0.390 +0.070 –0.062, at an effective redshift of z = 0.53. As a result, this is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r = 0.419.« less
Does the planck mass run on the cosmological-horizon scale?
Robbers, Georg; Afshordi, Niayesh; Doran, Michael
2008-03-21
Einstein's theory of general relativity contains a universal value of the Planck mass. However, one may envisage that in alternative theories of gravity the effective value of the Planck mass (or Newton's constant), which quantifies the coupling of matter to metric perturbations, can run on the cosmological-horizon scale. In this Letter, we study the consequences of a glitch in the Planck mass from subhorizon to superhorizon scales. We show that current cosmological observations severely constrain this glitch to less than 1.2%.
Einstein's equations and a cosmology with finite matter
NASA Astrophysics Data System (ADS)
Clavelli, L.; Goldstein, Gary R.
2015-05-01
We discuss various space-time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.
High-precision spectra for dynamical Dark Energy cosmologies from constant-w models
NASA Astrophysics Data System (ADS)
Casarini, Luciano
2010-08-01
Spanning the whole functional space of cosmologies with any admissible DE state equations w(a) seems a need, in view of forthcoming observations, namely those aiming to provide a tomography of cosmic shear. In this paper I show that this duty can be eased and that a suitable use of results for constant-w cosmologies can be sufficient. More in detail, I ``assign'' here six cosmologies, aiming to span the space of state equations w(a) = wo+wa(1-a), for wo and wa values consistent with WMAP5 and WMAP7 releases and run N-body simulations to work out their non-linear fluctuation spectra at various redshifts z. Such spectra are then compared with those of suitable auxiliary models, characterized by constant w. For each z a different auxiliary model is needed. Spectral discrepancies between the assigned and the auxiliary models, up to k simeq 2-3 h Mpc-1, are shown to keep within 1 %. Quite in general, discrepancies are smaller at greater z and exhibit a specific trend across the wo and wa plane. Besides of aiming at simplifying the evaluation of spectra for a wide range of models, this paper also outlines a specific danger for future studies of the DE state equation, as models fairly distant on the w0-wa plane can be easily confused.
Star formation in the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Leichenauer, Stefan
2009-03-15
We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.
Cosmological constraints and comparison of viable f (R ) models
NASA Astrophysics Data System (ADS)
Pérez-Romero, Judit; Nesseris, Savvas
2018-01-01
In this paper we present cosmological constraints on several well-known f (R ) models, but also on a new class of models that are variants of the Hu-Sawicki one of the form f (R )=R -2/Λ 1 +b y (R ,Λ ) , that interpolate between the cosmological constant model and a matter dominated universe for different values of the parameter b , which is usually expected to be small for viable models and which in practice measures the deviation from general relativity. We use the latest growth rate, cosmic microwave background, baryon acoustic oscillations, supernovae type Ia and Hubble parameter data to place stringent constraints on the models and to compare them to the cosmological constant model but also other viable f (R ) models such as the Starobinsky or the degenerate hypergeometric models. We find that these kinds of Hu-Sawicki variant parametrizations are in general compatible with the currently available data and can provide useful toy models to explore the available functional space of f (R ) models, something very useful with the current and upcoming surveys that will test deviations from general relativity.
Explaining the Supernova Data Without Accelerating Expansion
NASA Astrophysics Data System (ADS)
Stuckey, W. M.; McDevitt, T. J.; Silberstein, M.
2012-10-01
The 2011 Nobel Prize in Physics was awarded "for the discovery of the accelerating expansion of the universe through observations of distant supernovae." However, it is not the case that the type Ia supernova data necessitates accelerating expansion. Since we do not have a successful theory of quantum gravity, we should not assume general relativity (GR) will survive unification intact, especially on cosmological scales where tests are scarce. We provide a simple example of how GR cosmology may be modified to produce a decelerating Einstein-de Sitter cosmology (EdS) that accounts for the Union2 Compilation data as well as the accelerating ΛCDM (EdS plus a cosmological constant).
Doolin, Ciaran; Neupane, Ishwaree P
2013-04-05
A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations.
An Introduction to Galaxies and Cosmology
NASA Astrophysics Data System (ADS)
Jones, Mark H.; Lambourne, Robert J. A.; Serjeant, Stephen
2015-01-01
Introduction; 1. The Milky Way - our galaxy; 2. Normal galaxies; 3. Active galaxies; 4. The spatial distribution of galaxies; 5. Introducing cosmology - the science of the Universe; 6. Big bang cosmology - the evolving Universe; 7. Observational cosmology - measuring the Universe; 8. Questioning cosmology - outstanding problems about the Universe; Answers and comments; Appendix; Glossary; Further reading; Acknowledgements; Figure references; Index.
From SL(5, ℝ) Yang-Mills theory to induced gravity
NASA Astrophysics Data System (ADS)
Assimos, T. S.; Pereira, A. D.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez
From pure Yang-Mills action for the SL(5, ℝ) group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature squared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.
Non-Abelian cosmic string in the Starobinsky model of gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.; de Pádua Santos, A.; Bezerra de Mello, Eugênio R.; Bezerra, V. B.
In this paper, we analyze numerically the behavior of the solutions corresponding to a non-Abelian cosmic string in the framework of the Starobinsky model, i.e. where f(R) = R + ζR2. We perform the calculations for both an asymptotically flat and asymptotically (anti)-de Sitter spacetimes. We found that the angular deficit generated by the string decreases as the parameter ζ increases, in the case of a null cosmological constant. For a positive cosmological constant, we found that the cosmic horizon is affected in a nontrivial way by the parameter ζ.
Implications of a positive cosmological constant for general relativity.
Ashtekar, Abhay
2017-10-01
Most of the literature on general relativity over the last century assumes that the cosmological constant [Formula: see text] is zero. However, by now independent observations have led to a consensus that the dynamics of the universe is best described by Einstein's equations with a small but positive [Formula: see text]. Interestingly, this requires a drastic revision of conceptual frameworks commonly used in general relativity, no matter how small [Formula: see text] is. We first explain why, and then summarize the current status of generalizations of these frameworks to include a positive [Formula: see text], focusing on gravitational waves.
Darkness without dark matter and energy - generalized unimodular gravity
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.; Kamenshchik, A. Yu.
2017-11-01
We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
The New Era of Precision Cosmology: Testing Gravity at Large Scales
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
Relaxing the cosmological constant: a proof of concept
NASA Astrophysics Data System (ADS)
Alberte, Lasma; Creminelli, Paolo; Khmelnitsky, Andrei; Pirtskhalava, David; Trincherini, Enrico
2016-12-01
We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.
Gravitational vacuum energy in our recently accelerating universe
NASA Astrophysics Data System (ADS)
Bludman, Sidney
2009-04-01
We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ACDM model, consisting of cold dark matter and a cosmological constant, interprets 4? geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ACDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Holographic dark energy with cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by usingmore » the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07« less
Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Charmousis, Christos; Esposito-Farèse, Gilles; Lehébel, Antoine
2018-06-01
The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the speed of gravity to be extremely close to that of light. We first show, on the example of an exact Schwarzschild-de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that the solution is stable in a range of the model parameters. We finally show that an infinite class of beyond-Horndeski models satisfying the equality of gravity and light speeds still provides an elegant self-tuning: the very large bare cosmological constant entering the Lagrangian is almost perfectly counterbalanced by the energy-momentum tensor of the scalar field, yielding a tiny observable effective cosmological constant.
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm
2015-12-14
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia, E-mail: blanchet@iap.fr, E-mail: laviniah@kth.se
2015-12-01
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
The Arrow of Time In a Universe with a Positive Cosmological Constant Λ
NASA Astrophysics Data System (ADS)
Mersini-Houghton, Laura
There is a mounting evidence that our universe is propelled into an accelerated expansion driven by Dark Energy. The simplest form of Dark Energy is a cosmological constant Λ, which is woven into the fabric of spacetime. For this reason it is often referred to as vacuum energy. It has the "strange" property of maintaining a constant energy density despite the expanding volume of the universe. Universes whose energy ismade of Λ posses an event horizon with and eternally finite constant temperature and entropy, and are known as DeSitter geometries. Since the entropy of DeSitter spaces remains a finite constant, then the meaning of a thermodynamic arrow of time becomes unclear. Here we explore the consequences of a fundamental cosmological constant Λ for our universe. We show that when the gravitational entropy of a pure DeSitter state ultimately dominates over the matter entropy, then the thermodynamic arrow of time in our universe may reverse in scales of order a Hubble time. We find that due to the dynamics of gravity and entanglement with other domain, a finite size system such as a DeSitter patch with horizon size H 0 -1 has a finite lifetime ∆t. This phenomenon arises from the dynamic gravitational instabilities that develop during a DeSitter epoch and turn catastrophic. A reversed arrow of time is in disagreementwith observations. Thus we explore the possibilities that: Nature may not favor a fundamental Λ, or else general relativity may be modified in the infrared regime when Λ dominates the expansion of the Universe.
The kinematic component of the cosmological redshift
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2011-05-01
It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.
Warm inflationary model in loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Ramon
A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.
NASA Technical Reports Server (NTRS)
Muller, P. M.
1976-01-01
The theory and numerical analysis of ancient astronomical observations (1374 to 1715) are combined with modern data in a simultaneous solution for: the tidal acceleration of the lunar longitude; the observed apparent acceleration of the earth's rotation; the true nontidal geophysical part of this acceleration; and the rate of change in the gravitational constant. Provided are three independent determinations of a rate of change of G consistent with the Hubble Constant and a near zero nontidal rotational acceleration of the earth. The tidal accelerations are shown to have remained constant during the historical period within uncertainties. Ancient and modern solar system data, and extragalactic observations provided a completely consistent astronomical and cosmological scheme.
Brane-world black hole solutions via a confining potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari-Fard, M.; Sepangi, H. R.; Razmi, H.
2007-09-15
Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explainmore » the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics)« less
Quantum Consciousness - The Road to Reality
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell\\x9D? The question boils down to information created by quantum particles blinking ON and OFF analogous to 'Ying and Yang' or some more complex ways that may include dark matter. Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE (Theory of Everything) for any one thing.
Cosmological evolution as squeezing: a toy model for group field cosmology
NASA Astrophysics Data System (ADS)
Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang
2018-05-01
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.
NASA Astrophysics Data System (ADS)
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent observations showed that a significant population of baryons was contained in both a) a population of not easily detected galaxies (i.e. they had been missed for decades) and b) in intergalactic space. In 1999, the balloon borne Boomerang experiment gave good evidence that space was flat (total energy density = 1). Around this same time, various lines of evidence suggested that the ``cosmological constant'' (Lambda) maybe non-zero meaning we now live in a three component universe of baryons, dark matter and dark energy. The WMAP mission a few years later then produced our current cosmological truth that 5% of the Universe is baryons, 20% is Dark Matter, and 75% is Dark energy. What happened to Dark Matter dominance? Where did it go? Is this a fine tuned Universe? Our current cosmological truth, as defined by the WMAP results, rests on two important assumptions: a) that we fully understand gravity as a long range force and that alternative models, such as Modified Newtonian Dynamics (MOND) can therefore be dismissed and b) observationally we are fully confident that we understand supernova explosion physics to the point that they can be used as reliable cosmological indicators. This talk will attempt to summarize this evolution of cosmological truths, cast doubt on the certainty of the previously stated assumptions, and to culturally suggest that we should not continue with arrogance of Aristotle is assuring ourselves that we do in fact, know the ``truth''.
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
The implementation, interpretation, and justification of likelihoods in cosmology
NASA Astrophysics Data System (ADS)
McCoy, C. D.
2018-05-01
I discuss the formal implementation, interpretation, and justification of likelihood attributions in cosmology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal problems that undermine their applicability in this context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyes, H
2005-03-18
The future evolution of the universe suggested by the cosmological model proposed earlier at this meeting by the authors is explored. The fundamental role played by the positive ''cosmological constant'' is emphasized. Dyson's 1979 paper entitled ''Time Without End'' is briefly reviewed. His most optimistic scenario requires that the universe be geometrically open and that biology is structural in the sense that the current complexity of human society can be reproduced by scaling up its (quantum mechanical) structure to arbitrary size. If the recently measured ''cosmological constant'' is indeed a fundamental constant of nature, then Dyson's scenario is, for variousmore » reasons, ruled out by the finite (De Sitter) horizon due to exponential expansion of the resulting space. However, the finite temperature of that horizon does open other interesting options. If, as is suggested by the cosmology under consideration, the current exponential expansion of the universe is due to a phase transition which fixes a physical boundary condition during the early radiation dominated era, the behavior of the universe after the relevant scale factor crosses the De Sitter radius opens up still other possibilities. The relevance of Martin Rees' apocalyptic eschatology recently presented in his book ''Our Final Hour'' is mentioned. It is concluded that even for the far future, whether or not cultural and scientific descendants of the current epoch will play a role in it, an understanding (sadly, currently lacking) of community and political evolution and control is essential for a preliminary treatment of what could be even vaguely called scientific eschatology.« less
Behavior of asymptotically electro-Λ spacetimes
NASA Astrophysics Data System (ADS)
Saw, Vee-Liem
2017-04-01
We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .
Quantum-corrected Geometry of Horizon Vicinity
NASA Astrophysics Data System (ADS)
Park, I. Y.
2017-12-01
We study the deformation of the horizon-vicinity geometry caused by quantum gravitational effects. Departure from the semi-classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein-Hilbert term is crucial for the departure. The analysis leads to a Firewall-type energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon-vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon.
Tuning the cosmological constant, broken scale invariance, unitarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Förste, Stefan; Manz, Paul; Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn
2016-06-10
We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due tomore » quantisation conditions.« less
Supersymmetry Breaking Casimir Warp Drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obousy, Richard K.; Cleaver, Gerald
2007-01-30
This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead ofmore » general relativity.« less
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
2007-10-01
Pathria (1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein’s field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.
Quantum gravity in the Eddington purely affine picture
NASA Astrophysics Data System (ADS)
Martellini, M.
1984-06-01
It was shown by Kijowski and Tulczjew that pure gravity with a cosmological constant can be obtained by a covariant Legendre transformation of a purely affine Lagrangian "in the manner of Eddington" constructed from a symmetric linear connection. In this paper I prove by explicit calculations that the Eddington Lagrangian is equivalent, in the sense which gives the same field equations, to a polynomial effective Lagrangian which turns out to be power-counting renormalizable. Then a formal proof of the unitarity of this theory is stated in the Kugo-Ojima formalism on the basis of the existence of two local Becchi-Rouet-Stora symmetries. These supertransformations are related to the algebra of the diffeomorphisms of the space-time, as well as to that of the volume-preserving space-time transformations which are not fixed by the gauge fixing used for the diffeomorphism group itself. Furthermore, I find that in the purely affine picture quantum gravity exhibits an infrared freedom. Since now the self-coupling constant is given by the cosmological constant, such a property could explain the observed almost zero value of the cosmological term at very large distances, i.e., to very low energies.
Measurement of a cosmographic distance ratio with galaxy and cosmic microwave background lensing
Miyatake, Hironao; Madhavacheril, Mathew S.; Sehgal, Neelima; ...
2017-04-17
We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z~1 (background galaxies) and at the surface of last scattering at z~1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in themore » ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r = 0.390 +0.070 –0.062, at an effective redshift of z = 0.53. As a result, this is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r = 0.419.« less
The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA)
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Bolton, Adam J.; Booth, Jeffrey T.; Bullock, James S.; Cheng, Edward; Coe, Dan; Fassnacht, Christopher D.; Gorjian, Varoujan; Heneghan, Cate; Keeton, Charles R.; Kochanek, Christopher S.; Lawrence, Charles R.; Marshall, Philip J.; Metcalf, R. Benton; Natarajan, Priyamvada; Nikzad, Shouleh; Peterson, Bradley M.; Wambsganss, Joachim
2008-07-01
Dark matter in a universe dominated by a cosmological constant seeds the formation of structure and is the scaffolding for galaxy formation. The nature of dark matter remains one of the fundamental unsolved problems in astrophysics and physics even though it represents 85% of the mass in the universe, and nearly one quarter of its total mass-energy budget. The mass function of dark matter "substructure" on sub-galactic scales may be enormously sensitive to the mass and properties of the dark matter particle. On astrophysical scales, especially at cosmological distances, dark matter substructure may only be detected through its gravitational influence on light from distant varying sources. Specifically, these are largely active galactic nuclei (AGN), which are accreting super-massive black holes in the centers of galaxies, some of the most extreme objects ever found. With enough measurements of the flux from AGN at different wavelengths, and their variability over time, the detailed structure around AGN, and even the mass of the super-massive black hole can be measured. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA) is a mission concept for a 1.5-m near-UV through near-IR space observatory that will be dedicated to frequent imaging and spectroscopic monitoring of ~100 multiply-imaged active galactic nuclei over the whole sky. Using wavelength-tailored dichroics with extremely high transmittance, efficient imaging in six channels will be done simultaneously during each visit to each target. The separate spectroscopic mode, engaged through a flip-in mirror, uses an image slicer spectrograph. After a period of many visits to all targets, the resulting multidimensional movies can then be analyzed to a) measure the mass function of dark matter substructure; b) measure precise masses of the accreting black holes as well as the structure of their accretion disks and their environments over several decades of physical scale; and c) measure a combination of Hubble's local expansion constant and cosmological distances to unprecedented precision. We present the novel OMEGA instrumentation suite, and how its integrated design is ideal for opening the time domain of known cosmologically-distant variable sources, to achieve the stated scientific goals.
Running with rugby balls: bulk renormalization of codimension-2 branes
NASA Astrophysics Data System (ADS)
Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.
2013-01-01
We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
Evolution of cyclic mixmaster universes with noncomoving radiation
NASA Astrophysics Data System (ADS)
Ganguly, Chandrima; Barrow, John D.
2017-12-01
We study a model of a cyclic, spatially homogeneous, anisotropic, "mixmaster" universe of Bianchi type IX, containing a radiation field with noncomoving ("tilted" with respect to the tetrad frame of reference) velocities and vorticity. We employ a combination of numerical and approximate analytic methods to investigate the consequences of the second law of thermodynamics on the evolution. We model a smooth cycle-to-cycle evolution of the mixmaster universe, bouncing at a finite minimum, by the device of adding a comoving "ghost" field with negative energy density. In the absence of a cosmological constant, an increase in entropy, injected at the start of each cycle, causes an increase in the volume maxima, increasing approach to flatness, falling velocities and vorticities, and growing anisotropy at the expansion maxima of successive cycles. We find that the velocities oscillate rapidly as they evolve and change logarithmically in time relative to the expansion volume. When the conservation of momentum and angular momentum constraints are imposed, the spatial components of these velocities fall to smaller values when the entropy density increases, and vice versa. Isotropization is found to occur when a positive cosmological constant is added because the sequence of oscillations ends and the dynamics expand forever, evolving towards a quasi-de Sitter asymptote with constant velocity amplitudes. The case of a single cycle of evolution with a negative cosmological constant added is also studied.
A brief history of the multiverse.
Linde, Andrei
2017-02-01
The theory of the inflationary multiverse changes the way we think about our place in the world. According to its most popular version, our world may consist of infinitely many exponentially large parts, exhibiting different sets of low-energy laws of physics. Since these parts are extremely large, the interior of each of them behaves as if it were a separate universe, practically unaffected by the rest of the world. This picture, combined with the theory of eternal inflation and anthropic considerations, may help to solve many difficult problems of modern physics, including the cosmological constant problem. In this article I will briefly describe this theory and provide links to the some hard to find papers written during the first few years of the development of the inflationary multiverse scenario.
A brief history of the multiverse
NASA Astrophysics Data System (ADS)
Linde, Andrei
2017-02-01
The theory of the inflationary multiverse changes the way we think about our place in the world. According to its most popular version, our world may consist of infinitely many exponentially large parts, exhibiting different sets of low-energy laws of physics. Since these parts are extremely large, the interior of each of them behaves as if it were a separate universe, practically unaffected by the rest of the world. This picture, combined with the theory of eternal inflation and anthropic considerations, may help to solve many difficult problems of modern physics, including the cosmological constant problem. In this article I will briefly describe this theory and provide links to the some hard to find papers written during the first few years of the development of the inflationary multiverse scenario.
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Kobtsev, A. A.
2018-02-01
A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ is studied. We assume the metrics to be diagonal cosmological ones. For certain fine-tuned Λ , we find a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters H >0 and h, corresponding to factor spaces of dimensions 3 and l > 2, respectively and D = 1 + 3 + l. The fine-tuned Λ = Λ (x, l, α ) depends upon the ratio h/H = x, l and the ratio α = α _2/α _1 of two constants (α _2 and α _1) of the model. For fixed Λ , α and l > 2 the equation Λ (x,l,α ) = Λ is equivalent to a polynomial equation of either fourth or third order and may be solved in radicals (the example l =3 is presented). For certain restrictions on x we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. A subclass of solutions with small enough variation of the effective gravitational constant G is considered. It is shown that all solutions from this subclass are stable.
Statistical Hierarchy of Varying Speed of Light Cosmologies
NASA Astrophysics Data System (ADS)
Salzano, Vincenzo; Da¸browski, Mariusz P.
2017-12-01
Many varying speed of light (VSL) theories have been developed recently. Here we address the issue of their observational verification in a fully comprehensive way. By using the most updated cosmological probes, we test three different candidates for a VSL theory (Barrow & Magueijo, Avelino & Martins, and Moffat). We consider many different Ansätze for both the functional form of c(z) and the dark energy dynamics. We compare these results using a reliable statistical tool such as the Bayesian evidence. We find that the present cosmological data are perfectly compatible with any of these VSL scenarios, but for the Moffat model there is a higher Bayesian evidence ratio in favor of VSL rather than the c = constant ΛCDM scenario. Moreover, in such a scenario, the VSL signal can help to strengthen constraints on the spatial curvature (with indication toward an open universe), to clarify some properties of dark energy (exclusion of a cosmological constant at 2σ level), and is also falsifiable in the near future owing to peculiar issues that differentiate this model from the standard one. Finally, we apply an information prior and entropy prior in order to put physical constraints on the models, though still in favor Moffat’s proposal.
Fitting the constitution type Ia supernova data with the redshift-binned parametrization method
NASA Astrophysics Data System (ADS)
Huang, Qing-Guo; Li, Miao; Li, Xiao-Dong; Wang, Shuang
2009-10-01
In this work, we explore the cosmological consequences of the recently released Constitution sample of 397 Type Ia supernovae (SNIa). By revisiting the Chevallier-Polarski-Linder (CPL) parametrization, we find that, for fitting the Constitution set alone, the behavior of dark energy (DE) significantly deviates from the cosmological constant Λ, where the equation of state (EOS) w and the energy density ρΛ of DE will rapidly decrease along with the increase of redshift z. Inspired by this clue, we separate the redshifts into different bins, and discuss the models of a constant w or a constant ρΛ in each bin, respectively. It is found that for fitting the Constitution set alone, w and ρΛ will also rapidly decrease along with the increase of z, which is consistent with the result of CPL model. Moreover, a step function model in which ρΛ rapidly decreases at redshift z˜0.331 presents a significant improvement (Δχ2=-4.361) over the CPL parametrization, and performs better than other DE models. We also plot the error bars of DE density of this model, and find that this model deviates from the cosmological constant Λ at 68.3% confidence level (CL); this may arise from some biasing systematic errors in the handling of SNIa data, or more interestingly from the nature of DE itself. In addition, for models with same number of redshift bins, a piecewise constant ρΛ model always performs better than a piecewise constant w model; this shows the advantage of using ρΛ, instead of w, to probe the variation of DE.
Fitting the constitution type Ia supernova data with the redshift-binned parametrization method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Qingguo; Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190; Li Miao
2009-10-15
In this work, we explore the cosmological consequences of the recently released Constitution sample of 397 Type Ia supernovae (SNIa). By revisiting the Chevallier-Polarski-Linder (CPL) parametrization, we find that, for fitting the Constitution set alone, the behavior of dark energy (DE) significantly deviates from the cosmological constant {lambda}, where the equation of state (EOS) w and the energy density {rho}{sub {lambda}} of DE will rapidly decrease along with the increase of redshift z. Inspired by this clue, we separate the redshifts into different bins, and discuss the models of a constant w or a constant {rho}{sub {lambda}} in each bin,more » respectively. It is found that for fitting the Constitution set alone, w and {rho}{sub {lambda}} will also rapidly decrease along with the increase of z, which is consistent with the result of CPL model. Moreover, a step function model in which {rho}{sub {lambda}} rapidly decreases at redshift z{approx}0.331 presents a significant improvement ({delta}{chi}{sup 2}=-4.361) over the CPL parametrization, and performs better than other DE models. We also plot the error bars of DE density of this model, and find that this model deviates from the cosmological constant {lambda} at 68.3% confidence level (CL); this may arise from some biasing systematic errors in the handling of SNIa data, or more interestingly from the nature of DE itself. In addition, for models with same number of redshift bins, a piecewise constant {rho}{sub {lambda}} model always performs better than a piecewise constant w model; this shows the advantage of using {rho}{sub {lambda}}, instead of w, to probe the variation of DE.« less
Anisotropic Weyl symmetry and cosmology
NASA Astrophysics Data System (ADS)
Moon, Taeyoon; Oh, Phillial; Sohn, Jongsu
2010-11-01
We construct an anisotropic Weyl invariant theory in the ADM formalism and discuss its cosmological consequences. It extends the original anisotropic Weyl invariance of Hořava-Lifshitz gravity using an extra scalar field. The action is invariant under the anisotropic transformations of the space and time metric components with an arbitrary value of the critical exponent z. One of the interesting features is that the cosmological constant term maintains the anisotropic symmetry for z = -3. We also include the cosmological fluid and show that it can preserve the anisotropic Weyl invariance if the equation of state satisfies P = zρ/3. Then, we study cosmology of the Einstein-Hilbert-anisotropic Weyl (EHaW) action including the cosmological fluid, both with or without anisotropic Weyl invariance. The correlation of the critical exponent z and the equation of state parameter bar omega provides a new perspective of the cosmology. It is also shown that the EHaW action admits a late time accelerating universe for an arbitrary value of z when the anisotropic conformal invariance is broken, and the anisotropic conformal scalar field is interpreted as a possible source of dark energy.
The cosmological dependence of cluster density profiles
NASA Technical Reports Server (NTRS)
Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.
1994-01-01
We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.
Cosmological perturbations during the Bose-Einstein condensation of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, R.C.; Gonçalves, S.V.B., E-mail: rodolfo.camargo@pq.cnpq.br, E-mail: sergio.vitorino@pq.cnpq.br
In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational wavesmore » of cosmological origin, as well as the process of large-scale structure formation.« less
Did Cosmology Trigger the Origin of the Solar System?
NASA Technical Reports Server (NTRS)
Blome, H.-J.; Wilson, T. L.
2011-01-01
It is a matter of curious coincidence that the Solar System formed 4.6 billion years ago around the same epoch that the Friedmann-Lemaitre (FL) universe became -dominated or dark-energy-dominated, where is the cosmological constant. This observation was made in the context of known gravitational anomalies that affect spacecraft orbits during planetary flyby's and the Pioneer anomaly, both possibly having connections with cosmology. In addition, it has been known for some time that the Universe is not only expanding but accelerating as well. Hence one must add the onset of cosmological acceleration in the FL universe as having a possible influence on the origin of the Solar System. These connections will now be examined in greater detail.
Brane f(R) gravity cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcerzak, Adam; DaPbrowski, Mariusz P.
2010-06-15
By the application of the generalized Israel junction conditions we derive cosmological equations for the fourth-order f(R) brane gravity and study their cosmological solutions. We show that there exists a nonstatic solution which describes a four-dimensional de Sitter (dS{sub 4}) brane embedded in a five-dimensional anti-de Sitter (AdS{sub 5}) bulk for a vanishing Weyl tensor contribution. On the other hand, for the case of a nonvanishing Weyl tensor contribution, there exists a static brane solution only. We claim that in order to get some more general nonstatic f(R) brane configurations, one needs to admit a dynamical matter energy-momentum tensor inmore » the bulk rather than just a bulk cosmological constant.« less
Gravitation and cosmology with York time
NASA Astrophysics Data System (ADS)
Roser, Philipp
Despite decades of inquiry an adequate theory of 'quantum gravity' has remained elusive, in part due to the absence of data that would guide the search and in part due to technical difficulties, prominently among them the 'problem of time'. The problem is a result of the attempt to quantise a classical theory with temporal reparameterisation and refoliation invariance such as general relativity. One way forward is therefore the breaking of this invariance via the identification of a preferred foliation of spacetime into parameterised spatial slices. In this thesis we argue that a foliation into slices of constant extrinsic curvature, parameterised by 'York time', is a viable contender. We argue that the role of York time in the initial-value problem of general relativity as well as a number of the parameter's other properties make it the most promising candidate for a physically preferred notion of time. A Hamiltonian theory describing gravity in the York-time picture may be derived from general relativity by 'Hamiltonian reduction', a procedure that eliminates certain degrees of freedom -- specifically the local scale and its rate of change -- in favour of an explicit time parameter and a functional expression for the associated Hamiltonian. In full generality this procedure is impossible to carry out since the equation that determines the Hamiltonian cannot be solved using known methods. However, it is possible to derive explicit Hamiltonian functions for cosmological scenarios (where matter and geometry is treated as spatially homogeneous). Using a perturbative expansion of the unsolvable equation enables us to derive a quantisable Hamiltonian for cosmological perturbations on such a homogeneous background. We analyse the (classical) theories derived in this manner and look at the York-time description of a number of cosmological processes. We then proceed to apply the canonical quantisation procedure to these systems and analyse the resulting quantum theories. We discuss a number of conceptual and technical points, such as the notion of volume eigen functions and the absence of a momentum representation as a result of the non-canonical commutator structure. While not problematic in a technical sense, the conceptual problems with canonical quantisation are particularly apparent when the procedure is applied in cosmological contexts. In the final part of this thesis we develop a new quantisation method based on configuration-space trajectories and a dynamical configuration-space Weyl geometry. There is no wave function in this type of quantum theory and so many of the conceptual issues do not arise. We outline the application of this quantisation procedure to gravity and discuss some technical points. The actual technical developments are however left for future work. We conclude by reviewing how the York-time Hamiltonian-reduced theory deals with the problem of time. We place it in the wider context of a search for a theory of quantum gravity and briefly discuss the future of physics if and when such a theory is found.
NASA Astrophysics Data System (ADS)
Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen
2017-03-01
We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant λ . Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally anti-de Sitter background. We find that the generic solutions share a number of basic properties with the known Cvetič, Lü, and Pope black holes which have λ =1 . New features occur as well; for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of λ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-horizon solutions are associated with global solutions.
The Faint Young Sun Paradox in the Context of Modern Cosmology
NASA Astrophysics Data System (ADS)
Dumin, Yu. V.
2015-09-01
The Faint Young Sun Paradox comes from the fact that solar luminosity (2-4)x10^9 years ago was insufficient to support the Earth's temperature necessary for the efficient development of geological and biological evolution (particularly, for the existence of considerable volumes of liquid water). It remains unclear by now if the so-called greenhouse effect on the Earth can resolve this problem. An interesting alternative explanation was put forward recently by M.Krizek (New Astron. 2012, 17, 1), who suggested that planetary orbits expand with time due to the local Hubble effect, caused by the uniformly-distributed Dark Energy. Then, under a reasonable value of the local Hubble constant, it is easy to explain why the Earth was receiving an approximately constant amount of solar irradiation for a long period in the past and will continue to do so for a quite long time in future.
Nonlinear phenomena in general relativity
NASA Astrophysics Data System (ADS)
Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza
2018-04-01
The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.
Dark energy with fine redshift sampling
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2007-03-01
The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≈0.2 0.3.
A Determination of the Rate of Change of G
1975-02-01
the gravitational constant; to Professor Sir Fred Hoyle and Mr Leslie Morrison, whose papers showed how gravitational acceleration could be...The observed rate is also consistent with the Dirac and the Hoyle - Narlikar cosmological theories, and to a lesser degree, with the Brans-Dicke...the expansion. Indeed, at least three currently plausible cosmological theories, Brans-Dicke (1961), Hoyle -Narlikar (1972), and Dirac (1973), demand
Cosmological models with homogeneous and isotropic spatial sections
NASA Astrophysics Data System (ADS)
Katanaev, M. O.
2017-05-01
The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space-time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.
Introduction to big bang nucleosynthesis and modern cosmology
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Kusakabe, Motohiko; Kajino, Toshitaka
Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the testing ground upon which many cosmological models must ultimately rest. It is our only probe of the universe during the important radiation-dominated epoch in the first few minutes of cosmic expansion. This paper reviews the basic equations of space-time, cosmology, and big bang nucleosynthesis. We also summarize the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measurements are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we analyze the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.
Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)
NASA Astrophysics Data System (ADS)
Sahoo, P. K.; Mishra, B.; Tripathy, S. K.
2016-04-01
A class of Kaluza-Klein cosmological models in $f(R,T)$ theory of gravity have been investigated. In the work, we have considered the functional $f(R,T)$ to be in the form $f(R,T)=f(R)+f(T)$ with $f(R)=\\lambda R$ and $f(T)=\\lambda T$. Such a choice of the functional $f(R,T)$ leads to an evolving effective cosmological constant $\\Lambda$ which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads two different aspects of the volumetric expansion namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair we found that the model with exponential volumetric expansion behaves more like a $\\Lambda$CDM model.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
CONSTRAINTS ON HYBRID METRIC-PALATINI GRAVITY FROM BACKGROUND EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, N. A.; Barreto, V. S., E-mail: ndal@roe.ac.uk, E-mail: vsm@roe.ac.uk
2016-02-20
In this work, we introduce two models of the hybrid metric-Palatini theory of gravitation. We explore their background evolution, showing explicitly that one recovers standard General Relativity with an effective cosmological constant at late times. This happens because the Palatini Ricci scalar evolves toward and asymptotically settles at the minimum of its effective potential during cosmological evolution. We then use a combination of cosmic microwave background, supernovae, and baryonic accoustic oscillations background data to constrain the models’ free parameters. For both models, we are able to constrain the maximum deviation from the gravitational constant G one can have at earlymore » times to be around 1%.« less
Bianchi type-I universe in f(R, T) modified gravity with quark matter and Λ
NASA Astrophysics Data System (ADS)
Ćaǧlar, Halife; Aygün, Sezgin
2017-02-01
In this study, we investigate homogeneous and anisotropic Bianchi type I universe in the presence of quark matter source in f(R, T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with cosmological constant Λ (where R is the Ricci scalar and T is the trace of the energy momentum tensor). For this aim we have used the anisotropy feature of Bianchi type I universe and equation of states (EoS) of quark matter. We explore the exact solution f(R,T)=R+2f(T) model for Bianchi type I universe model. When t→∞, we get very small cosmological constant value, this result agrees with recent observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz Cruz, J. Lorenzo
The standard Higgs mechanism employed in the Standard Model (SM) for electroweak symmetry breaking, relies on a homogenous Higgs vacuum expectation value (v.e.v.), i.e. a vacuum that does not depend on the position or the time coordinates. However, other non-homogeneous structures could also be considered, either at long or short distances. For instance, spatial variations of the Higgs v.e.v. on cosmological scales, would induce variations of the fundamental constants, and are severely constrained. Other possibilities, such as a discrete microscopic structure of the Higgs vacuum, or a confined Higgs mechanism associated with a strongly interacting Higgs sector, could be testedmore » and give some light on the electroweak-scale contributions to the cosmological constant.« less
Cosmology and the weak interaction
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.
Cosmological Inflation: A Personal Perspective
NASA Technical Reports Server (NTRS)
Kazanas, Demos
2008-01-01
We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.
Studies into the averaging problem: Macroscopic gravity and precision cosmology
NASA Astrophysics Data System (ADS)
Wijenayake, Tharake S.
2016-08-01
With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model is stronger than that of the standard model. Finally, we constrain the MG model using Cosmic Microwave Background temperature anisotropy data, the distance to supernovae data, the galaxy power spectrum, the weak lensing tomography shear-shear cross-correlations and the baryonic acoustic oscillations. We find that for this model the averaging density parameter is very small and does not cause any significant shift in the other cosmological parameters. However, it can lead to increased errors on some cosmological parameters such as the Hubble constant and the amplitude of the linear matter spectrum at the scale of 8h. {-1}Mpc. Further studiesare needed to explore other solutions and models of MG as well as their effects on precision cosmology.
Cosmology with galaxy cluster phase spaces
NASA Astrophysics Data System (ADS)
Stark, Alejo; Miller, Christopher J.; Huterer, Dragan
2017-07-01
We present a novel approach to constrain accelerating cosmologies with galaxy cluster phase spaces. With the Fisher matrix formalism we forecast constraints on the cosmological parameters that describe the cosmological expansion history. We find that our probe has the potential of providing constraints comparable to, or even stronger than, those from other cosmological probes. More specifically, with 1000 (100) clusters uniformly distributed in the redshift range 0 ≤z ≤0.8 , after applying a conservative 80% mass scatter prior on each cluster and marginalizing over all other parameters, we forecast 1 σ constraints on the dark energy equation of state w and matter density parameter ΩM of σw=0.138 (0.431 ) and σΩM=0.007(0.025 ) in a flat universe. Assuming 40% mass scatter and adding a prior on the Hubble constant we can achieve a constraint on the Chevallier-Polarski-Linder parametrization of the dark energy equation of state parameters w0 and wa with 100 clusters in the same redshift range: σw 0=0.191 and σwa=2.712. Dropping the assumption of flatness and assuming w =-1 we also attain competitive constraints on the matter and dark energy density parameters: σΩ M=0.101 and σΩ Λ=0.197 for 100 clusters uniformly distributed in the range 0 ≤z ≤0.8 after applying a prior on the Hubble constant. We also discuss various observational strategies for tightening constraints in both the near and far future.
Static solutions in Einstein-Chern-Simons gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crisóstomo, J.; Gomez, F.; Mella, P.
In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field h{sup a} with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with h{sup a}. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ{sub 1}) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfiesmore » μ < μ{sub 2}; (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field h{sup a} plays the role of a cosmological constant.« less
Spin foam propagator: A new perspective to include the cosmological constant
NASA Astrophysics Data System (ADS)
Han, Muxin; Huang, Zichang; Zipfel, Antonia
2018-04-01
In recent years, the calculation of the first nonvanishing order of the metric 2-point function or graviton propagator in a semiclassical limit has evolved as a standard test for the credibility of a proposed spin foam model. The existing results of spin foam graviton propagators rely heavily on the so-called double scaling limit where spins j are large and the Barbero-Immirzi parameter γ is small such that the area A ∝j γ is approximately constant. However, it seems that this double scaling limit is bound to break down in models including a cosmological constant. We explore this in detail for the recently proposed model [7 H. M. Haggard, M. Han, W. Kaminski, and A. Riello, Nucl. Phys. B900, 1 (2015), 10.1016/j.nuclphysb.2015.08.023.] by Haggard, Han, Kaminski, and Riello and discuss alternative definitions of a graviton propagator, in which the double scaling limit can be avoided.
Inflation, the Higgs field and the resolution of the Cosmological Constant Paradox
NASA Astrophysics Data System (ADS)
De Martini, Francesco
2017-08-01
The nature of the scalar field responsible for the cosmological inflation, the ”inflaton”, is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved space-time. Within this novel dynamical scenario, the standard electroweak theory of leptons based on the SU(2) L ⊗ U(1) Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, co-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An ”Effective Cosmological Potential”: Veff is expressed in terms of the dark energy potential: {V}{{Λ }}\\equiv {M}{{Λ }}2 via the ”mass reduction parameter”: \\zeta \\equiv \\sqrt{\\frac{|{V}eff|}{|{V}{{Λ }}|}}, a general property of the Universe. The mass of the Higgs boson, which is considered a ”free parameter” by the standard electroweak theory, by our theory is found to be proportional to the geometrical mean: {M}H\\propto \\sqrt{{M}eff× {M}P} of the Planck mass, MP and of the mass {M}eff\\equiv \\sqrt{|{V}eff|} which accounts for the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The experimental result obtained by the ATLAS and CMS Collaborations at CERN in the year 2012: MH = 125.09(GeV/c 2) leads by our theory to a value: Meff ~ 3.19 · 10-6(eV/c 2). The peculiar mathematical structure of Veff offers a clue towards the resolution of a most intriguing puzzle of modern quantum field theory, the ”Cosmological Constant Paradox”.
Probing dark energy via galaxy cluster outskirts
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming
2016-04-01
We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 < z < 1.24, kT ≳ 3 keV) observed with Chandra. We exploited the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w = -1.010 ± 0.030 and Ωm = 0.311 ± 0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm = 0.308 ± 0.017, w0 = -0.993 ± 0.046 and wa = -0.123 ± 0.400. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with w ≡ -1, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.
Finite entanglement entropy of black holes
NASA Astrophysics Data System (ADS)
Giaccari, Stefano; Modesto, Leonardo; Rachwał, Lesław; Zhu, Yiwei
2018-06-01
We compute the area term contribution to black holes' entanglement entropy (using the conical technique) for a class of local or weakly non-local super-renormalizable gravitational theories coupled to matter. For the first time, we explicitly prove that all the beta functions in the proposed theory, except for the cosmological constant, are identically zero in cut-off regularization scheme and not only in dimensional regularization scheme. In particular, we show that there is no divergence quadratic in cut-off and hence there is no contribution to the beta function of the Newton constant. As a consequence of this result, we argue that in these theories of gravity conical entropy is a sensible definition of physical entropy, in particular, it is positive-definite and gauge independent. On top of this the conical entropy, being expressed only in terms of the classical Newton constant, turns out to be finite and naturally coincides with Bekenstein-Hawking entropy. Finally, we propose a theory in which the renormalization of the Newton constant is entirely due to the Standard Model matter, arguing that such a contribution does not give the usual interpretational problems of conical entropy discussed in the literature.
Affine group formulation of the Standard Model coupled to gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems
NASA Astrophysics Data System (ADS)
Singh, A.
2009-12-01
A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.
IDEAL characterization of isometry classes of FLRW and inflationary spacetimes
NASA Astrophysics Data System (ADS)
Canepa, Giovanni; Dappiaggi, Claudio; Khavkine, Igor
2018-02-01
In general relativity, an IDEAL (Intrinsic, Deductive, Explicit, ALgorithmic) characterization of a reference spacetime metric g 0 consists of a set of tensorial equations T[g] = 0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g 0. The same notion can be extended to also include scalar or tensor fields, where the equations T[g, φ]=0 are allowed to also depend on the extra fields ϕ. We give the first IDEAL characterization of cosmological FLRW spacetimes, with and without a dynamical scalar (inflaton) field. We restrict our attention to what we call regular geometries, which uniformly satisfy certain identities or inequalities. They roughly split into the following natural special cases: constant curvature spacetime, Einstein static universe, and flat or curved spatial slices. We also briefly comment on how the solution of this problem has implications, in general relativity and inflation theory, for the construction of local gauge invariant observables for linear cosmological perturbations and for stability analysis.
Modeling Dark Energy Through AN Ising Fluid with Network Interactions
NASA Astrophysics Data System (ADS)
Luongo, Orlando; Tommasini, Damiano
2014-12-01
We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.
NASA Astrophysics Data System (ADS)
Schramm, David N.
1992-07-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Schramm, D. N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Panel Discussion Vi: Cosmology
NASA Astrophysics Data System (ADS)
Anderson, E.; Dolgov, A.; Crothers, S.; Mitra, A.; Rubakov, V.; Zakharov, A.
2014-03-01
Questions to discuss: * To what extent are Dark Matter and Dark Energy necessary to explain the observed properties of the Universe? * Why are the Dark matter profiles so universal at the galactic scales? * Are there viable candidates of modified gravitational dynamics to exclude the dark components of Universe? * Do we have any perspectives to distinguish the Dark Energy from the cosmological constant? * Are there any certain indications for sterile neutrinos in the cosmos? * How does the Planck data change the view of inflation in the early Universe? What could be the origin of the inflaton plateau? So far, what else is interesting about the Planck data? * What are the nearest crucial points in cosmological observations? * Can we be more decisive discriminating between the anthropic principle, the superstringy landscape, fine tuning or dynamics as reasons for the cosmological coincidences?
The cosmology of interacting spin-2 fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamanini, Nicola; Saridakis, Emmanuel N.; Koivisto, Tomi S., E-mail: n.tamanini.11@ucl.ac.uk, E-mail: Emmanuel_Saridakis@baylor.edu, E-mail: t.s.koivisto@astro.uio.no
2014-02-01
We investigate the cosmology of interacting spin-2 particles, formulating the multi-gravitational theory in terms of vierbeins and without imposing any Deser-van Nieuwen-huizen-like constraint. The resulting multi-vierbein theory represents a wider class of gravitational theories if compared to the corresponding multi-metric models. Moreover, as opposed to its metric counterpart which in general seems to contain ghosts, it has already been proved to be ghost-free. We outline a discussion about the possible matter couplings and we focus on the study of cosmological scenarios in the case of three and four interacting vierbeins. We find rich behavior, including de Sitter solutions with anmore » effective cosmological constant arising from the multi-vierbein interaction, dark-energy solutions and nonsingular bouncing behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jazayeri, Sadra; Mukohyama, Shinji; Kavli Institute for the Physics and Mathematics of the Universe
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et al. is satisfied if ghostmore » inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.« less
Simple Model with Time-Varying Fine-Structure ``Constant''
NASA Astrophysics Data System (ADS)
Berman, M. S.
2009-10-01
Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.
BOOK REVIEW: The Scalar-Tensor Theory of Gravitation
NASA Astrophysics Data System (ADS)
Fujii, Yasunori; Maeda, Kei-ichi
2003-10-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical details. The intended audience is graduate students and the book is in fact well suited to a graduate course (the way in which the book is arranged and the subjects are presented is very pedagogical). However, it is as well a very good book for researchers in cosmology and gravitation, who will find much material of interest. I am sure this book will recieve wide acceptance from researchers interested in this field. J Ibánez
Conformally flat tilted Bianchi Type-V cosmological models in general relativity
NASA Astrophysics Data System (ADS)
Bali, Raj; Meena, B. L.
2004-05-01
We have investigated two conformally flat tilted Bianchi Type-V cosmological models in general relativity. To get a determinate solution, we have assumed a supplementary condition A = B^n between metric potentials where n is a constant. The behaviour of the model for n=2 is discussed in detail. Various physical and geometrical aspects of the models are also discussed.
Effect of the cosmological constant on halo size
NASA Astrophysics Data System (ADS)
Kulchoakrungsun, Ekapob; Lam, Adrian; Lowe, David A.
2018-04-01
In this work, we consider the effect of the cosmological constant on galactic halo size. As a model, we study the general relativistic derivation of orbits in the Schwarzschild-de Sitter metric. We find that there exists a length scale rΛ corresponding to a maximum size of a circular orbit of a test mass in a gravitationally bound system, which is the geometric mean of the cosmological horizon size squared and the Schwarzschild radius. This agrees well with the size of a galactic halo when the effects of dark matter are included. The size of larger structures such as galactic clusters and superclusters are also well-approximated by this scale. This model provides a simplified approach to computing the size of such structures without the usual detailed dynamical models. Some of the more detailed approaches that appear in the literature are reviewed, and we find the length scales agree to within a factor of order one. Finally, we note the length scale associated with the effects of MOND or Verlinde’s emergent gravity, which offer explanations of the flattening of galaxy rotation curves without invoking dark matter, may be expressed as the geometric mean of the cosmological horizon size and the Schwarzschild radius, which is typically 100 times smaller than rΛ.
NASA Astrophysics Data System (ADS)
Cruz, Cláudio Nassif
2016-06-01
This research aims to develop a new approach towards a consistent coupling of electromagnetic and gravitational fields, by using an electron that couples with a weak gravitational potential by means of its electromagnetic field. To accomplish this, we must first build a new model which provides the electromagnetic nature of both the mass and the energy of the electron, and which is implemented with the idea of γ-photon decay into an electron-positron pair. After this, we place the electron (or positron) in the presence of a weak gravitational potential given in the intergalactic medium, so that its electromagnetic field undergoes a very small perturbation, thus leading to a slight increase in the field’s electromagnetic energy density. This perturbation takes place by means of a tiny coupling constant ξ because gravity is a very weak interaction compared with the electromagnetic one. Thus, we realize that ξ is a new dimensionless universal constant, which reminds us of the fine structure constant α; however, ξ is much smaller than α because ξ takes into account gravity, i.e. ξ ∝G. We find ξ = V/c≅1.5302 × 10-22, where c is the speed of light and V ∝G(≅4.5876 × 10-14m/s) is a universal minimum speed that represents the lowest limit of speed for any particle. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks the Lorentz symmetry. The metric of the flat spacetime shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological scales (cosmological anti-gravity). The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained in agreement with the observational data.
Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies
NASA Astrophysics Data System (ADS)
Zhou, Yong; Zhao, Zhi-Chao; Chang, Zhe
2017-10-01
It is well known that the Milgrom’s modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10-10 m s-2 by using the Spitzer Photometry and Accurate Rotation Curves (SPARC) data set. Milgrom suggested that the acceleration scale may be a fingerprint of cosmology on local dynamics and related to the Hubble constant g † ˜ cH 0. In this paper, we use the hemisphere comparison method with the SPARC data set to investigate possible spatial anisotropy on the acceleration scale. It is found that the hemisphere of the maximum acceleration scale is in the direction (l,b)=(175\\buildrel{\\circ}\\over{.} {5}-{10^\\circ }+{6^\\circ }, -6\\buildrel{\\circ}\\over{.} {5}-{3^\\circ }+{9^\\circ }) with g †,max = 1.10 × 10-10 m s-2, while the hemisphere of the minimum acceleration scale is in the opposite direction (l,b)=(355\\buildrel{\\circ}\\over{.} {5}-{10^\\circ }+{6^\\circ }, 6\\buildrel{\\circ}\\over{.} {5}-{9^\\circ }+{3^\\circ }) with g †,min = 0.76 × 10-10 m s-2. The level of anisotropy reaches up to 0.37 ± 0.04. Robust tests show that such an anisotropy cannot be reproduced by a statistically isotropic data set. We also show that the spatial anisotropy on the acceleration scale is less correlated with the non-uniform distribution of the SPARC data points in the sky. In addition, we confirm that the anisotropy of the acceleration scale does not depend significantly on other physical parameters of the SPARC galaxies. It is interesting to note that the maximum anisotropy direction found in this paper is close with other cosmological preferred directions, particularly the direction of the “Australia dipole” for the fine structure constant.
Classical and quantum cosmology of minimal massive bigravity
NASA Astrophysics Data System (ADS)
Darabi, F.; Mousavi, M.
2016-10-01
In a Friedmann-Robertson-Walker (FRW) space-time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger-Wheeler-DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle-Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.
Precision cosmology from X-ray AGN clustering
NASA Astrophysics Data System (ADS)
Basilakos, Spyros; Plionis, Manolis
2009-11-01
We place tight constraints on the main cosmological parameters of spatially flat cosmological models by using the recent angular clustering results of XMM-Newton soft (0.5-2keV) X-ray sources, which have a redshift distribution with a median of z ~ 1. Performing a standard likelihood procedure, assuming a constant in comoving coordinates active galactic nuclei (AGN) clustering evolution, the AGN bias evolution model of Basilakos, Plionis & Ragone-Figueroa and the Wilkinson Microwave Anisotropy Probe5 value of σ8, we find stringent simultaneous constraints in the (Ωm, w) plane, with Ωm = 0.26 +/- 0.05, w = -0.93+0.11-0.19.
Measuring our Universe from Galaxy Redshift Surveys.
Lahav, Ofer; Suto, Yasushi
2004-01-01
Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villani, Mattia, E-mail: villani@fi.infn.it
2014-06-01
We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.
Asympotics with positive cosmological constant
NASA Astrophysics Data System (ADS)
Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna
2014-03-01
Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.
Gravity with a cosmological constant from rational curves
NASA Astrophysics Data System (ADS)
Adamo, Tim
2015-11-01
We give a new formula for all tree-level correlators of boundary field insertions in gauged N=8 supergravity in AdS4; this is an analogue of the tree-level S-matrix in anti-de Sitter space. The formula is written in terms of rational maps from the Riemann sphere to twistor space, with no reference to bulk perturbation theory. It is polynomial in the cosmological constant, and equal to the classical scattering amplitudes of supergravity in the flat space limit. The formula is manifestly supersymmetric, independent of gauge choices on twistor space, and equivalent to expressions computed via perturbation theory at 3-point overline{MHV} and n-point MHV. We also show that the formula factorizes and obeys BCFW recursion in twistor space.
Critical gravity in four dimensions.
Lü, H; Pope, C N
2011-05-06
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2015-06-01
Consideration of vacuum polarization in quantum electrodynamics may affect the momentum dispersion relation for photons for a non-trivial background, due to the appearance of curvature dependent terms in the effective action. We investigate the effect of a positive cosmological constant on this at one-loop order for stationary -vacuum spacetimes. To the best of our knowledge, so far it only has been shown that affects the propagation in a time dependent black hole spacetime. Here we consider the static de Sitter cosmic string and the Kerr-de Sitter spacetime to show that there might occur a non-vanishing effect due to for physical polarizations. The consistency of these results with the polarization sum rule is discussed.
Updated reduced CMB data and constraints on cosmological parameters
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Guo, Zong-Kuan; Tang, Bo
2015-07-01
We obtain the reduced CMB data {lA, R, z∗} from WMAP9, WMAP9+BKP, Planck+WP and Planck+WP+BKP for the ΛCDM and wCDM models with or without spatial curvature. We then use these reduced CMB data in combination with low-redshift observations to put constraints on cosmological parameters. We find that including BKP results in a higher value of the Hubble constant especially when the equation of state (EOS) of dark energy and curvature are allowed to vary. For the ΛCDM model with curvature, the estimate of the Hubble constant with Planck+WP+Lensing is inconsistent with the one derived from Planck+WP+BKP at about 1.2σ confidence level (CL).
Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory
NASA Technical Reports Server (NTRS)
Lee, D. L.; Caves, C. M.
1974-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.
Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory
NASA Technical Reports Server (NTRS)
Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.
1976-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.
Type Ia supernovae, standardizable candles, and gravity
NASA Astrophysics Data System (ADS)
Wright, Bill S.; Li, Baojiu
2018-04-01
Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.
Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background
NASA Astrophysics Data System (ADS)
Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng
2018-06-01
We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr = 0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.
NASA Astrophysics Data System (ADS)
Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam
2016-09-01
Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl
2015-11-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less
NASA Astrophysics Data System (ADS)
Marković, Dragoljub
1993-11-01
We explore the feasibility of using LIGO and/or VIRGO gravitational-wave measurements of coalescing, neutron-star-neutron-star (NS-NS) binaries and black-hole-neutron-star (BH-NS) binaries at cosmological distances to determine the cosmological parameters of our Universe. From the observed gravitational waveforms one can infer, as direct observables, the luminosity distance D of the source and the binary's two ``redshifted masses,'' M'1≡M1(1+z) and M'2≡M2(1+z), where Mi are the actual masses and z≡Δλ/λ is the binary's cosmological redshift. Assuming that the NS mass spectrum is sharply peaked about 1.4Msolar, as binary pulsar and x-ray source observations suggest, the redshift can be estimated as z=M'NS/1.4Msolar-1. The actual distance-redshift relation D(z) for our Universe is strongly dependent on its cosmological parameters [the Hubble constant H0, or h0≡H0/100 km s-1Mpc-1, the mean mass density ρm, or density parameter Ω0≡(8π/3H20)ρm, and the cosmological constant, Λ, or λ0≡Λ/(3H20)], so by a statistical study of (necessarily noisy) measurements of D and z for a large number of binaries, one can deduce the cosmological parameters. The various noise sources that will plague such a cosmological study are discussed and estimated, and the accuracies of the inferred parameters are determined as functions of the detectors' noise characteristics, the number of binaries observed, and the neutron-star mass spectrum. The dominant source of error is the detectors' intrinsic noise, though stochastic gravitational lensing of the waves by intervening matter might significantly influence the inferred cosmological constant λ0, when the detectors reach ``advanced'' stages of development. The estimated errors of parameters inferred from BH-NS measurements can be described by the following rough analytic fits: Δh0/h0~=0.02(N/h0)(τR)-1/2 (for N/h0<~2), where N is the detector's noise level (strain/Hz) in units of the ``advanced LIGO'' noise level, R is the event rate in units of the best-estimate value, 100 yr-1 Gpc-3, and τ is the observation time in years. In a ``high density'' universe (Ω0=1, λ0=0) ΔΩ0~=0.3(N/h0)2(τR)-1/2, Δλ0~=0.4(N/h0)1.5(τR)-1/2, for N/h0<~1. In a ``low density'' universe (Ω0=0.2, λ0=0), ΔΩ0~=0.5(N/h0)3(τR)-1/2, Δλ0~=0.7(N/h0)2.5(τR)-1/2, also for N/h0<~1. These formulas indicate that, if event rates are those currently estimated (~3 per year out to 200 Mpc), then when the planned LIGO and/or VIRGO detectors get to be about as sensitive as the so-called ``advanced detector level'' (presumably in the early 2000s), interesting cosmological measurements can begin.
Cosmology based on f(R) gravity with O(1) eV sterile neutrino
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudaykin, Anton S.; Gorbunov, Dmitry S.; Starobinsky, Alexei A.
2015-05-01
We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (themore » case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino oscillation experiments would favor cosmology based on f(R) gravity rather than the ΛCDM model.« less
NASA Astrophysics Data System (ADS)
de la Cruz-Dombriz, Álvaro; Farrugia, Gabriel; Levi Said, Jackson; Sáez-Chillón Gómez, Diego
2017-12-01
In the context of extended teleparallel gravity theories with a 3 + 1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lemaître-Robertson-Walker geometry in four-dimensional spacetime with standard fluids exclusively. We study different types of gravitational Lagrangians and reconstruct solutions provided by analytical expressions for either the cosmological scale factor or the Hubble parameter. We also show that it is possible to find Lagrangians of this type without a cosmological constant such that the behaviour of the ΛCDM model is precisely mimicked. The new Lagrangians may also lead to other phenomenological consequences opening up the possibility for new theories to compete directly with other extensions of General Relativity.
Ancient Cosmology, superfine structure of the Universe and Anthropological Principle
NASA Astrophysics Data System (ADS)
Arakelyan, Hrant; Vardanyan, Susan
2015-07-01
The modern cosmology by its spirit, conception of the Big Bang is closer to the ancient cosmology, than to the cosmological paradigm of the XIX century. Repeating the speculations of the ancients, but using at the same time subtle mathematical methods and relying on the steadily accumulating empirical material, the modern theory tends to a quantitative description of nature, in which increasing role are playing the numerical ratios between the physical constants. The detailed analysis of the influence of the numerical values -- of physical quantities on the physical state of the universe revealed amazing relations called fine and hyperfine tuning. In order to explain, why the observable universe comes to be a certain set of interrelated fundamental parameters, in fact a speculative anthropic principle was proposed, which focuses on the fact of the existence of sentient beings.
Arthur E. Haas, His Life and Cosmologies
NASA Astrophysics Data System (ADS)
Wiescher, Michael
2017-04-01
This paper describes the life and scientific development of Arthur E. Haas, from his early career as young, ambitious Jewish-Austrian scientist at the University of Vienna to his later career in exile at the University of Notre Dame. Haas is known for his early contributions to quantum physics and as the author of several textbooks on topics of modern physics. During the last decade of his life, he turned his attention to cosmology. In 1935 he emigrated from Austria to the United States. There he assumed, on recommendation of Albert Einstein, a faculty position at the University of Notre Dame. He continued his work on cosmology and tried to establish relationships between the mass of the universe and the fundamental cosmological constants to develop concepts for the early universe. Together with Georges Lemaître he organized in 1938 the first international conference on cosmology, which drew more than one hundred attendants to Notre Dame. Haas died in February 1941 after suffering a stroke during a visit in Chicago.
NASA Astrophysics Data System (ADS)
Mazzitelli, Francisco D.; Trombetta, Leonardo G.
2018-03-01
In a recent paper [Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95, 103504 (2017), 10.1103/PhysRevD.95.103504] it was argued that, due to the fluctuations around its mean value, vacuum energy gravitates differently from what was previously assumed. As a consequence, the Universe would accelerate with a small Hubble expansion rate, solving the cosmological constant and dark energy problems. We point out here that the results depend on the type of cutoff used to evaluate the vacuum energy. In particular, they are not valid when one uses a covariant cutoff such that the zero-point energy density is positive definite.
NASA Astrophysics Data System (ADS)
Kounnas, Costas
The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References
Black Hole Information Problem and Wave Bursts
NASA Astrophysics Data System (ADS)
Gogberashvili, Merab; Pantskhava, Lasha
2018-06-01
By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.
Astrophysical bags - A new paradigm for active galactic nuclei?
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
1992-01-01
Active galaxies are believed to consist of a compact nucleus, the standard model for which is a massive black hole or a cluster of black holes. A different paradigm is considered here, deriving from quark confinement theory in QCD. It is an 'astrophysical bag', modelled after the 'hadron bags' of particle physics which have already been studied in astrophysics as quark stars. Another interpretation of the cosmological constant in general relativity, and possibly a new quasar redshift formula, are introduced. As a highly-energetic object, this model may resolve the baryonic matter problem for fuelling AGN accretion processes which black hole paradigms cannot account for. Here, baryons, cosmic rays, and neutrinos are free.
Energy scale of Lorentz violation in Rainbow Gravity
NASA Astrophysics Data System (ADS)
Nilsson, Nils A.; Dąbrowski, Mariusz P.
2017-12-01
We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry-the effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce the scaling function h(E) in order to express this dependence. For cosmological applications we specify the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale ELV to be at least of the order of 1016 GeV at 1 σ which is the GUT scale or even higher 1017 GeV at 3 σ. Our claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime Lorentz violating effects.
Curvature Constraints from the Causal Entropic Principle
NASA Astrophysics Data System (ADS)
Bozek, Brandon
2010-01-01
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The Causal Entropic Principle (Bousso, et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the Causal Entropic Principle to predict the preferred curvature within the "multiverse." We have found that values larger than ρk = 40*ρm are disfavored by more than 99.99% and a peak value at ρΛ = 7.9*10-123 and ρk =4.3*ρm for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Curvature constraints from the causal entropic principle
NASA Astrophysics Data System (ADS)
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-07-01
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the “multiverse.” We have found that values larger than ρk=40ρm are disfavored by more than 99.99% peak value at ρΛ=7.9×10-123 and ρk=4.3ρm for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
De Sitter universe described by a binary mixture with a variable cosmological constant λ
NASA Astrophysics Data System (ADS)
Biswal, S. K.
2018-04-01
We have constructed a self-consistent system of Bianchi Type VI0 cosmology, and mingling of perfect fluid and dark energy in five dimensions. The usual equation of state p = γ ρ with γ \\in [0, 1] is chosen by the perfect fluid. The dark energy assumed to be chosen is taken into consideration to be either the quintessence or Chaplygin gas. The same solutions pertaining to the corresponding the field equations of Einstein are obtained as a quadrature. State parameter's equations for dark energy ω is found to be consistent enough with the recent observations of SNe Ia data (SNe Ia data with CMBR anisotropy) and galaxy clustering statistics. Here our models predict that the rate of expansion of Universe would increase with passage of time. The cosmological constant Λ is traced as a declining function of time and it gets nearer to a small positive value later on which is supported by the results from the current supernovae Ia observations. Also a detail discussion is made on the physical and geometrical aspects of the models.
Curvature constraints from the causal entropic principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-07-15
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m}more » for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.« less
Fate of inflation and the natural reduction of vacuum energy
NASA Astrophysics Data System (ADS)
Nakamichi, Akika; Morikawa, Masahiro
2014-04-01
In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Dereli, Tekin
2013-02-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.
Running vacuum in the Universe and the time variation of the fundamental constants of Nature
NASA Astrophysics Data System (ADS)
Fritzsch, Harald; Solà, Joan; Nunes, Rafael C.
2017-03-01
We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance Λ CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level ≳ 3σ . Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the "micro-macro connection" (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS).
Growth rate in the dynamical dark energy models.
Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina
Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.
Stochastic processes in cosmology
NASA Astrophysics Data System (ADS)
Cáceres, Manuel O.; Diaz, Mario C.; Pullin, Jorge A.
1987-08-01
The behavior of a radiation filled de Sitter universe in which the equation of state is perturbed by a stochastic term is studied. The corresponding two-dimensional Fokker-Planck equation is solved. The finiteness of the cosmological constant appears to be a necessary condition for the stability of the model which undergoes an exponentially expanding state. Present address: Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Laprida 854, 5000 Códoba, Argentina.
The area-angular momentum inequality for black holes in cosmological spacetimes
NASA Astrophysics Data System (ADS)
Gabach Clément, María Eugenia; Reiris, Martín; Simon, Walter
2015-07-01
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant Λ \\gt 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π | J| ≤slant A\\sqrt{(1-Λ A/4π )(1-Λ A/12π )}, which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound | J| ≤slant {J}{max}≈ 0.17/Λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π | J| ≤slant A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a ‘mass functional’, which is basically a suitably regularized harmonic map {{{S}}}2\\to {{{H}}}2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized ‘Carter-identity’, and various techniques from variational calculus, including the mountain pass theorem.
Near horizon symmetry and entropy formula for Kerr-Newman (A)dS black holes
NASA Astrophysics Data System (ADS)
Setare, Mohammad Reza; Adami, Hamed
2018-04-01
In this paper we provide the first non-trivial evidence for universality of the entropy formula 4 πJ 0 + J 0 - beyond pure Einstein gravity in 4-dimensions. We consider the Einstein-Maxwell theory in the presence of cosmological constant, then write near horizon metric of the Kerr-Newman (A)dS black hole in the Gaussian null coordinate system. We consider near horizon fall-off conditions for metric and U(1) gauge field. We find asymptotic combined symmetry generator, consists of diffeomorphism and U(1) gauge transformation, so that it preserves fall-off conditions. Consequently, we find supertranslation, supperrotation and multiple-charge modes and then we show that the entropy formula is held for the Kerr-Newman (A)dS black hole. Supperrotation modes suffer from a problem. By introducing new combined symmetry generator, we cure that problem.
NASA Astrophysics Data System (ADS)
Zhao, Ming-Ming; He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-08-01
We search for sterile neutrinos in the holographic dark energy cosmology by using the latest observational data. To perform the analysis, we employ the current cosmological observations, including the cosmic microwave background temperature power spectrum data from the Planck mission, the baryon acoustic oscillation measurements, the type Ia supernova data, the redshift space distortion measurements, the shear data of weak lensing observation, the Planck lensing measurement, and the latest direct measurement of H0 as well. We show that, compared to the Λ CDM cosmology, the holographic dark energy cosmology with sterile neutrinos can relieve the tension between the Planck observation and the direct measurement of H0 much better. Once we include the H0 measurement in the global fit, we find that the hint of the existence of sterile neutrinos in the holographic dark energy cosmology can be given. Under the constraint of the all-data combination, we obtain Neff=3.76 ±0.26 and mν,sterile eff<0.215 eV , indicating that the detection of Δ Neff>0 in the holographic dark energy cosmology is at the 2.75 σ level and the massless or very light sterile neutrino is favored by the current observations.
Quasinormal modes of asymptotically (A)dS black hole in Lovelock background
NASA Astrophysics Data System (ADS)
Abbasvandi, N.; Soleimani, M. J.; Abdullah, W. A. T. Wan; Radiman, Shahidan
2017-03-01
We study the quasinormal modes of the massless scalar field in asymptotically (A)dS black holes in Lovelock spacetime by using the sixth order of the WKB approximation. We consider the effects of the second and third order of Lovelock coupling constants on quasinormal frequencies spectrum as well as cosmological constant.
Time varying G and \\varLambda cosmology in f(R,T) gravity theory
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.
2017-08-01
We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.
Quantum Cause of Gravity Waves and Dark Matter
NASA Astrophysics Data System (ADS)
Goradia, Shantilal; Goradia Team
2016-09-01
Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell''? The question boils down to information created by quantum particles blinking ON and OFF analogous to `Ying and Yang' or some more complex ways that may include dark matter. If not, what creates curvature of space-time? Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE for any one thing. The long range relativistic propagations of the strong and weak couplings of the microscopic black holes in are just gravity waves. What else could they be?
Observational effects of varying speed of light in quadratic gravity cosmological models
NASA Astrophysics Data System (ADS)
Izadi, Azam; Shacker, Shadi Sajedi; Olmo, Gonzalo J.; Banerjee, Robi
We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (cST) may become variable in that local frame. For theories of the form f(ℛ,ℛμνℛ μν), this variation in cST has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
Solutions with throats in Hořava gravity with cosmological constant
NASA Astrophysics Data System (ADS)
Bellorín, Jorge; Restuccia, Alvaro; Sotomayor, Adrián
2016-10-01
By combining analytical and numerical methods, we find that the solutions of the complete Hořava theory with negative cosmological constant that satisfy the conditions of staticity, spherical symmetry and vanishing of the shift function are two kinds of geometry: (i) a solution with two sides joined by a throat and (ii) a single side with a naked singularity at the origin. We study the second-order effective action. We consider the case when the coupling constant of the (∂ln N)2 term, which is the unique deviation from general relativity (GR) in the effective action, is small. At one side, the solution with the throat acquires a kind of deformed anti-de Sitter (AdS) asymptotia and at the other side, there is an asymptotic essential singularity. The deformation of AdS essentially means that the lapse function N diverges asymptotically a bit faster than AdS. This can also be interpreted as an anisotropic Lifshitz scaling that the solutions acquire asymptotically.
Scale Dependence of Dark Energy Antigravity
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.
2002-09-01
We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.
Higher Spin Fields in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
Lepage-Jutier, Arnaud
In this thesis, we study the effects of massless higher spin fields in three-dimensional gravity with a negative cosmological constant. First, we introduce gravity in Anti-de Sitter (AdS) space without the higher spin gauge symmetry. We recapitulate the semi-classical analysis that outlines the duality between quantum gravity in three dimensions with a negative cosmological constant and a conformal field theory on the asymptotic boundary of AdS 3. We review the statistical interpretation of the black hole entropy via the AdS/CFT correspondence and the modular invariance of the partition function of a CFT on a torus. For the case of higher spin theories in AdS 3 we use those modular properties to bound the amount of gauge symmetry present. We then discuss briefly cases that can evade this bound.
NASA Astrophysics Data System (ADS)
Alexeyev, S. O.; Latosh, B. N.; Echeistov, V. A.
2017-12-01
Predictions of the f( R)-gravity model with a disappearing cosmological constant (Starobinsky's model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky's model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109 M Sun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015 M Sun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.
a Virtual Trip to the Schwarzschild-De Sitter Black Hole
NASA Astrophysics Data System (ADS)
Bakala, Pavel; Hledík, Stanislav; Stuchlík, Zdenĕk; Truparová, Kamila; Čermák, Petr
2008-09-01
We developed realistic fully general relativistic computer code for simulation of optical projection in a strong, spherically symmetric gravitational field. Standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitter (SdS) spacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from static radius. Simulation includes effects of gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the amplification of intensity. The code generates images of static observers sky and a movie simulations for radially free-falling observers. Techniques of parallel programming are applied to get high performance and fast run of the simulation code.
AdS-phobia, the WGC, the Standard Model and Supersymmetry
NASA Astrophysics Data System (ADS)
Gonzalo, Eduardo; Herráez, Alvaro; Ibáñez, Luis E.
2018-06-01
It has been recently argued that an embedding of the SM into a consistent theory of quantum gravity may imply important constraints on the mass of the lightest neutrino and the cosmological constant Λ4. The constraints come from imposing the absence of any non-SUSY AdS stable vacua obtained from any consistent compactification of the SM to 3 or 2 dimensions. This condition comes as a corollary of a recent extension of the Weak Gravity Conjecture (WGC) by Ooguri and Vafa. In this paper we study T 2 /Z N compactifications of the SM to two dimensions in which SM Wilson lines are projected out, leading to a considerable simplification. We analyze in detail a T 2 /Z 4 compactification of the SM in which both complex structure and Wilson line scalars are fixed and the potential is only a function of the area of the torus a 2. We find that the SM is not robust against the appearance of AdS vacua in 2D and hence would be by itself inconsistent with quantum gravity. On the contrary, if the SM is embedded at some scale M SS into a SUSY version like the MSSM, the AdS vacua present in the non-SUSY case disappear or become unstable. This means that WGC arguments favor a SUSY version of the SM, independently of the usual hierarchy problem arguments. In a T 2 /Z 4 compactification in which the orbifold action is embedded into the B - L symmetry the bounds on neutrino masses and the cosmological constant are recovered. This suggests that the MSSM should be extended with a U(1) B- L gauge group. In other families of vacua the spectrum of SUSY particles is further constrained in order to avoid the appearance of new AdS vacua or instabilities. We discuss a possible understanding of the little hierarchy problem in this context.
Cosmological tests of the Hoyle-Narlikar conformal gravity
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Narlikar, J. V.
1980-01-01
For the first time the Hoyle-Narlikar theory with creation of matter and a variable gravitational constant G, is subjected to the following cosmological tests: (1) the magnitude versus z relation, (2) the N(m) versus m relation for quasars, (3) the metric angular diameters versus z relation, (4) the isophotal angles versus z relation, (5) the log N-log S radio source count, and finally (6) the 3 K radiation. It is shown that the theory passes all these tests just as well as the standard cosmology, with the additional advantage that the geometry of the universe is uniquely determined, with a curvature parameter equal to zero. It is also interesting to note that the variability of G affects the log N-log S curve in a way similar to the density evolution introduced in standard cosmologies. The agreement with the data is therefore achieved without recourse to an ad hoc density evolution.
Stability of singularity-free cosmological solutions in Hořava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Misonoh, Yosuke; Fukushima, Mitsuhiro; Miyashita, Shoichiro
2017-02-01
We study the stability of singularity-free cosmological solutions with a positive cosmological constant based on the projectable Hořava-Lifshitz (HL) theory. In the HL theory, the isotropic and homogeneous cosmological solutions with bounce can be realized if the spatial curvature is nonzero. By performing a perturbation analysis around nonflat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime, we derive a quadratic action and discuss the stability, i.e., ghost and tachyon-free conditions. Although the squared effective mass of scalar perturbation must be negative in the infrared regime, we can avoid tachyon instability by considering strong Hubble friction. Additionally, we estimate the backreaction from the perturbations on the background geometry, especially against an anisotropic perturbation in closed FLRW spacetime. It turns out that certain types of bouncing solution may be spoiled even if all perturbation modes are stable.
Interpretation of the Hubble diagram in a nonhomogeneous universe
NASA Astrophysics Data System (ADS)
Fleury, Pierre; Dupuy, Hélène; Uzan, Jean-Philippe
2013-06-01
In the standard cosmological framework, the Hubble diagram is interpreted by assuming that the light emitted by standard candles propagates in a spatially homogeneous and isotropic spacetime. However, the light from “point sources”—such as supernovae—probes the Universe on scales where the homogeneity principle is no longer valid. Inhomogeneities are expected to induce a bias and a dispersion of the Hubble diagram. This is investigated by considering a Swiss-cheese cosmological model, which (1) is an exact solution of the Einstein field equations, (2) is strongly inhomogeneous on small scales, but (3) has the same expansion history as a strictly homogeneous and isotropic universe. By simulating Hubble diagrams in such models, we quantify the influence of inhomogeneities on the measurement of the cosmological parameters. Though significant in general, the effects reduce drastically for a universe dominated by the cosmological constant.
Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity
NASA Astrophysics Data System (ADS)
Sharma, N. K.; Singh, J. K.
2014-09-01
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.
Bouncing and emergent cosmologies from Arnowitt–Deser–Misner RG flows
NASA Astrophysics Data System (ADS)
Bonanno, Alfio; Gionti, S. J. Gabriele; Platania, Alessia
2018-03-01
Asymptotically safe gravity provides a framework for the description of gravity from the trans-Planckian regime to cosmological scales. According to this scenario, the cosmological constant and Newton’s coupling are functions of the energy scale whose evolution is dictated by the renormalization group (RG) equations. The formulation of the RG equations on foliated spacetimes, based on the Arnowitt–Deser–Misner (ADM) formalism, furnishes a natural way to construct the RG energy scale from the spectrum of the Laplacian operator on the spatial slices. Combining this idea with an RG improvement procedure, in this work we study quantum gravitational corrections to the Einstein–Hilbert action on Friedmann–Lemaître–Robertson–Walker backgrounds. The resulting quantum-corrected Friedmann equations can give rise to both bouncing cosmologies and emergent Universe solutions. Our bouncing models do not require the presence of exotic matter and emergent Universe solutions can be constructed for any allowed topology of the spatial slices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedermann, Florian; Schneider, Robert, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de
We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4Dmore » Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.« less
Latest astronomical constraints on some non-linear parametric dark energy models
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos
2018-04-01
We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr
Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academymore » of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.« less
Is There a Cosmological Constant?
NASA Technical Reports Server (NTRS)
Kochanek, Christopher; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
The grant contributed to the publication of 18 refereed papers and 5 conference proceedings. The primary uses of the funding have been for page charges, travel for invited talks related to the grant research, and the support of a graduate student, Charles Keeton. The refereed papers address four of the primary goals of the proposal: (1) the statistics of radio lenses as a probe of the cosmological model (#1), (2) the role of spiral galaxies as lenses (#3), (3) the effects of dust on statistics of lenses (#7, #8), and (4) the role of groups and clusters as lenses (#2, #6, #10, #13, #15, #16). Four papers (#4, #5, #11, #12) address general issues of lens models, calibrations, and the relationship between lens galaxies and nearby galaxies. One considered cosmological effects in lensing X-ray sources (#9), and two addressed issues related to the overall power spectrum and theories of gravity (#17, #18). Our theoretical studies combined with the explosion in the number of lenses and the quality of the data obtained for them is greatly increasing our ability to characterize and understand the lens population. We can now firmly conclude both from our study of the statistics of radio lenses and our survey of extinctions in individual lenses that the statistics of optically selected quasars were significantly affected by extinction. However, the limits on the cosmological constant remain at lambda < 0.65 at a 2-sigma confidence level, which is in mild conflict with the results of the Type la supernova surveys. We continue to find that neither spiral galaxies nor groups and clusters contribute significantly to the production of gravitational lenses. The lack of group and cluster lenses is strong evidence for the role of baryonic cooling in increasing the efficiency of galaxies as lenses compared to groups and clusters of higher mass but lower central density. Unfortunately for the ultimate objective of the proposal, improved constraints on the cosmological constant, the next large survey for gravitational lenses did not release its results during the term of the proposal. The research supported the career development. of six graduate students (polar, Fletcher, Herold, Keeton, Deng and Rusin) and two post-docs (Labor and Munoz).
NASA Astrophysics Data System (ADS)
Ayissi, Raoul Domingo; Noutchegueme, Norbert
2015-01-01
Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.
Scalar-tensor theory of gravitation with negative coupling constant
NASA Technical Reports Server (NTRS)
Smalley, L. L.; Eby, P. B.
1976-01-01
The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.
Huchra, J P
1992-04-17
The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.
REVIEWS OF TOPICAL PROBLEMS: Elementary particles and cosmology (Metagalaxy and Universe)
NASA Astrophysics Data System (ADS)
Rozental', I. L.
1997-08-01
The close relation between cosmology and the theory of elementary particles is analyzed in the light of prospects of a unified field theory. The unity of their respective problems and solution methodologies is indicated. The difference between the concepts of 'Metagalaxy' and 'Universe' is emphasized and some possible schemes for estimating the size of the Universe are pointed out.
NASA Technical Reports Server (NTRS)
Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi
1990-01-01
The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.
Tracking quintessence and k-essence in a general cosmological background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Rupam; Kephart, Thomas W.; Scherrer, Robert J.
We derive conditions for stable tracker solutions for both quintessence and k-essence in a general cosmological background, H{sup 2}{proportional_to}f({rho}). We find that tracker solutions are possible only when {eta}{identical_to}dlnf/dln{rho}{approx_equal}constant, aside from a few special cases, which are enumerated. Expressions for the quintessence or k-essence equation of state are derived as a function of {eta} and the equation of state of the dominant background component.
Evolution of heavy-element abundances in the Galactic halo and disk
NASA Technical Reports Server (NTRS)
Mathews, G. J.; Cowan, J. J.; Schramm, D. N.
1988-01-01
The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is descirbed in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies.
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
2007-02-01
causes the photon to aquire mass via the Higgs mechanism (Ryder, 2003). The London penetration depth that we observe is then just the wavelength of the...Cooper-pair density. Both the penetration depth as well as the graviton wavelength is a complex number, as required by the positive cosmological ...the cosmological constant measurement of i.10-69 kg (De Matos et al, 2005), but it is still a small number. In a recent assessment, Modanese (Modanese
Einstein's Biggest Blunder: A Cosmic Mystery Story
Krauss, Lawrence
2018-01-11
The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.
A scenario for inflationary magnetogenesis without strong coupling problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasinato, Gianmassimo; Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX
2015-03-23
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less
A scenario for inflationary magnetogenesis without strong coupling problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk
2015-03-01
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less
Measures, Probability and Holography in Cosmology
NASA Astrophysics Data System (ADS)
Phillips, Daniel
This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We comment on the general implications of this view, and specifically question the application of classical probability theory to cosmology in cases where key questions are known to have no quantum answer. We argue that the ideas developed here may offer a way out of the notorious measure problems of eternal inflation. The fourth project looks at finite universes as alternatives to multiverse theories of cosmology. We compare two holographic arguments that impose especially strong bounds on the amount of inflation. One comes from the de Sitter Equilibrium cosmology and the other from the work of Banks and Fischler. We find that simple versions of these two approaches yield the same bound on the number of e-foldings. A careful examination reveals that while these pictures are similar in spirit, they are not necessarily identical prescriptions. We apply the two pictures to specific cosmologies which expose potentially important differences and which also demonstrate ways these seemingly simple proposals can be tricky to implement in practice.
NASA Astrophysics Data System (ADS)
Kawabata, T.; Furuno, T.; Ichikawa, M.; Iwasa, N.; Kanada-En'yo, Y.; Koshikawa, A.; Kubono, S.; Miyawaki, E.; Morimoto, T.; Murata, M.; Nanamura, T.; Nishimura, S.; Shikata, Y.; Takahashi, Y.; Takeda, T.; Tsumura, M.; Watanabe, K.
2017-06-01
The cross section for the 4He(α,n)7Be reaction was measured at low energies between Eα = 38.50 and 39.64 MeV motivated by the cosmological lithium problem. On the basis of the detailed balance principle, the cross section for the 7Be(n,α)4He reaction was obtained at Ec.m. = 0.20-0.81 MeV close to the Big Bang nucleosynthesis (BBN) energy window for the first time. The obtained cross sections are significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the 7Be(n,α)4He reaction rate is not large enough to solve the cosmological lithium problem.
KiDS-450: testing extensions to the standard cosmological model
NASA Astrophysics Data System (ADS)
Joudaki, Shahab; Mead, Alexander; Blake, Chris; Choi, Ami; de Jong, Jelte; Erben, Thomas; Fenech Conti, Ian; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Joachimi, Benjamin; Klaes, Dominik; Köhlinger, Fabian; Kuijken, Konrad; McFarland, John; Miller, Lance; Schneider, Peter; Viola, Massimo
2017-10-01
We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg2 of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, non-zero curvature, evolving dark energy, modified gravity and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background (CMB) measurements from Planck. The discordance between the two data sets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to non-linear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favoured by the data includes evolving dark energy with a time-dependent equation of state (in the form of the w0 - wa parametrization). In this model, the respective S_8=σ _8√{Ω m/0.3} constraints agree at the 1σ level, and there is 'substantial concordance' between the KiDS and Planck data sets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in Λ cold dark matter (ΛCDM) and in agreement with the Riess et al. (2016) direct measurement of H0. The dark energy model is moderately favoured as compared to ΛCDM when combining the KiDS and Planck measurements, and marginalized constraints in the w0-wa plane are discrepant with a cosmological constant at the 3σ level. KiDS further constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale-dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index.
Dark energy, α-attractors, and large-scale structure surveys
NASA Astrophysics Data System (ADS)
Akrami, Yashar; Kallosh, Renata; Linde, Andrei; Vardanyan, Valeri
2018-06-01
Over the last few years, a large family of cosmological attractor models has been discovered, which can successfully match the latest inflation-related observational data. Many of these models can also describe a small cosmological constant Λ, which provides the most natural description of the present stage of the cosmological acceleration. In this paper, we study α-attractor models with dynamical dark energy, including the cosmological constant Λ as a free parameter. Predominantly, the models with 0Λ > converge to the asymptotic regime with the equation of state w=‑1. However, there are some models with w≠ ‑1, which are compatible with the current observations. In the simplest models with Λ = 0, one has the tensor to scalar ratio r=12α/N2 and the asymptotic equation of state w=‑1+2/9α (which in general differs from its present value). For example, in the seven disk M-theory related model with α = 7/3 one finds r ~ 10‑2 and the asymptotic equation of state is w ~ ‑0.9. Future observations, including large-scale structure surveys as well as B-mode detectors will test these, as well as more general models presented here. We also discuss gravitational reheating in models of quintessential inflation and argue that its investigation may be interesting from the point of view of inflationary cosmology. Such models require a much greater number of e-folds, and therefore predict a spectral index ns that can exceed the value in more conventional models by about 0.006. This suggests a way to distinguish the conventional inflationary models from the models of quintessential inflation, even if they predict w = ‑1.
A tale of two modes: neutrino free-streaming in the early universe
NASA Astrophysics Data System (ADS)
Lancaster, Lachlan; Cyr-Racine, Francis-Yan; Knox, Lloyd; Pan, Zhen
2017-07-01
We present updated constraints on the free-streaming nature of cosmological neutrinos from cosmic microwave background (CMB) temperature and polarization power spectra, baryonic acoustic oscillation data, and distance ladder measurements of the Hubble constant. Specifically, we consider a Fermi-like four-fermion interaction between massless neutrinos, characterized by an effective coupling constant Geff, and resulting in a neutrino opacity dot tauνpropto Geff2 Tν5. Using a conservative flat prior on the parameter log10( Geff MeV2), we find a bimodal posterior distribution with two clearly separated regions of high probability. The first of these modes is consistent with the standard ΛCDM cosmology and corresponds to neutrinos decoupling at redshift zν,dec > 1.3×105, that is before the Fourier modes probed by the CMB damping tail enter the causal horizon. The other mode of the posterior, dubbed the "interacting neutrino mode", corresponds to neutrino decoupling occurring within a narrow redshift window centered around zν,dec~8300. This mode is characterized by a high value of the effective neutrino coupling constant, log10( Geff MeV2) = -1.72 ± 0.10 (68% C.L.), together with a lower value of the scalar spectral index and amplitude of fluctuations, and a higher value of the Hubble parameter. Using both a maximum likelihood analysis and the ratio of the two mode's Bayesian evidence, we find the interacting neutrino mode to be statistically disfavored compared to the standard ΛCDM cosmology, and determine this result to be largely driven by the low-l CMB temperature data. Interestingly, the addition of CMB polarization and direct Hubble constant measurements significantly raises the statistical significance of this secondary mode, indicating that new physics in the neutrino sector could help explain the difference between local measurements of H0, and those inferred from CMB data. A robust consequence of our results is that neutrinos must be free streaming long before the epoch of matter-radiation equality in order to fit current cosmological data.
On the linearity of tracer bias around voids
NASA Astrophysics Data System (ADS)
Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro
2017-07-01
The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.
Comparison of dark energy models after Planck 2015
NASA Astrophysics Data System (ADS)
Xu, Yue-Yao; Zhang, Xin
2016-11-01
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
Remapping dark matter halo catalogues between cosmological simulations
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.
2014-05-01
We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.
Graviweak Unification, Invisible Universe and Dark Energy
NASA Astrophysics Data System (ADS)
Das, C. R.; Laperashvili, L. V.; Tureanu, A.
2013-07-01
We consider a graviweak unification model with the assumption of the existence of a hidden (invisible) sector of our Universe, parallel to the visible world. This Hidden World (HW) is assumed to be a Mirror World (MW) with broken mirror parity. We start with a diffeomorphism invariant theory of a gauge field valued in a Lie algebra g, which is broken spontaneously to the direct sum of the space-time Lorentz algebra and the Yang-Mills algebra: ˜ {g} = {{su}}(2) (grav)L ⊕ {{su}}(2)L — in the ordinary world, and ˜ {g}' = {{su}}(2){' (grav)}R ⊕ {{su}}(2)'R — in the hidden world. Using an extension of the Plebanski action for general relativity, we recover the actions for gravity, SU(2) Yang-Mills and Higgs fields in both (visible and invisible) sectors of the Universe, and also the total action. After symmetry breaking, all physical constants, including the Newton's constants, cosmological constants, Yang-Mills couplings, and other parameters, are determined by a single parameter g present in the initial action, and by the Higgs VEVs. The dark energy problem of this model predicts a too large supersymmetric breaking scale (MSUSY 1010GeV), which is not within the reach of the LHC experiments.
Emergence of running dark energy from polynomial f( R) theory in Palatini formalism
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej
2017-09-01
We consider FRW cosmology in f(R)= R+ γ R^2+δ R^3 modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.
Cosmological reconstruction and stability in F(T,TG) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
This study investigates the reconstruction scheme and stability of some well-known cosmological models in F(T,TG) gravity, where T and TG represent the torsion scalar and Gauss-Bonnet invariant torsion term, respectively. For this purpose, we consider isotropic homogeneous universe model and develop the corresponding field equations. It is found that we can reproduce cosmological evolution for power-law, de Sitter solutions, phantom/nonphantom era and Λ cold dark matter by applying reconstruction scheme in this gravity. Finally, we discuss stability of the reconstructed power-law and de Sitter solutions as well as two well-known F(T,TG) models. It is concluded that all these models provide stable solutions for suitable choices of the constants except power-law solutions.
Tachyon with an inverse power-law potential in a braneworld cosmology
NASA Astrophysics Data System (ADS)
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-08-01
We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.
NASA Astrophysics Data System (ADS)
de Martini, Francesco
The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved spacetime. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, conformally-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An “effective cosmological potential”: Veff is expressed in terms of the dark energy potential: |VΛ| via the “mass reduction parameter”: |ζ|≡|Veff||VΛ|, a general property of the Universe. The mass of the Higgs boson, which is considered a “free parameter” by the standard electroweak theory, by our theory is found to be proportional to the mass MU≡|Veff| which contributes to the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The nonintegrable application of the Weyl’s geometry leads to a Proca equation accounting for the dynamics of a ϕρ-particle, a vector-meson proposed as an optimum candidate for Dark Matter. The peculiar mathematical structure of Veff offers a clue towards a very general resolution in 4-D of a most intriguing puzzle of modern quantum field theory, the “cosmological constant paradox”(here referred to as: “Λ-paradox”). Indeed, our “universal” theory offers a resolution of the “Λ-paradox” for all exponential inflationary potentials: VΛ(ϕ)∝e‑nϕ, and for all linear superpositions of these potentials, where n belongs to the mathematical set of the “real numbers”. An explicit solution of the Λ-Paradox is reported for n=2. The results of the theory are analyzed in the framework of the recent experimental data of the PLANCK Mission. The average vacuum-energy density in the Universe is found: ρvac=(3.44×10‑3)4(eV)4, the mass-reduction parameter: |ζ|≈10‑38 and the value of the “cosmological constant”: Λ=3,86×10‑64(eV/c2)2. A quite remarkable result of the theory consists of the complete formulation of the Einstein equation including in its structure the “cosmological constant”, Λ. This was the term that Einstein added “by hand” to his famous equation. The critical stability of the Universe is also discussed.
NASA Astrophysics Data System (ADS)
Ghosh, Shubhrangshu; Banik, Prabir
2015-07-01
In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.
Dynamical Effects of the Scale Invariance of the Empty Space: The Fall of Dark Matter?
NASA Astrophysics Data System (ADS)
Maeder, Andre
2017-11-01
The hypothesis of the scale invariance of the macroscopic empty space, which intervenes through the cosmological constant, has led to new cosmological models. They show an accelerated cosmic expansion after the initial stages and satisfy several major cosmological tests. No unknown particles are needed. Developing the weak-field approximation, we find that the here-derived equation of motion corresponding to Newton’s equation also contains a small outward acceleration term. Its order of magnitude is about \\sqrt{{\\varrho }{{c}}/\\varrho } × Newton’s gravity (ϱ being the mean density of the system and {\\varrho }{{c}} the usual critical density). The new term is thus particularly significant for very low density systems. A modified virial theorem is derived and applied to clusters of galaxies. For the Coma Cluster and Abell 2029, the dynamical masses are about a factor of 5-10 smaller than in the standard case. This tends to leave no room for dark matter in these clusters. Then, the two-body problem is studied and an equation corresponding to the Binet equation is obtained. It implies some secular variations of the orbital parameters. The results are applied to the rotation curve of the outer layers of the Milky Way. Starting backward from the present rotation curve, we calculate the past evolution of the Galactic rotation and find that, in the early stages, it was steep and Keplerian. Thus, the flat rotation curves of galaxies appear as an age effect, a result consistent with recent observations of distant galaxies by Genzel et al. and Lang et al. Finally, in an appendix we also study the long-standing problem of the increase with age of the vertical velocity dispersion in the Galaxy. The observed increase appears to result from the new small acceleration term in the equation of the harmonic oscillator describing stellar motions around the Galactic plane. Thus, we tend to conclude that neither dark energy nor dark matter seems to be needed in the proposed theoretical context.
Many-Worlds Interpretation of Quantum Theory and Mesoscopic Anthropic Principle
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Teryaev, O. V.
2008-10-01
We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.
Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities
NASA Astrophysics Data System (ADS)
Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni
2016-09-01
We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.
Defect CFTs and holographic multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiol, Bartomeu, E-mail: bfiol@ub.edu
2010-07-01
We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdSmore » dual, although it might be possible if the defect supports a non-unitary theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carone, Christopher D.; Erlich, Joshua; Vaman, Diana
A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. As a result,more » we comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.« less
A proposed experimental search for chameleons using asymmetric parallel plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate howmore » experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.« less
Ghosts in the self-accelerating brane universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyama, Kazuya; Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth, PO1 2EG
2005-12-15
We study the spectrum of gravitational perturbations about a vacuum de Sitter brane with the induced 4D Einstein-Hilbert term, in a 5D Minkowski spacetime (DGP model). We consider solutions that include a self-accelerating universe, where the accelerating expansion of the universe is realized without introducing a cosmological constant on the brane. The mass of the discrete mode for the spin-2 graviton is calculated for various Hr{sub c}, where H is the Hubble parameter and r{sub c} is the crossover scale determined by the ratio between the 5D Newton constant and the 4D Newton constant. We show that, if we introducemore » a positive cosmological constant on the brane (Hr{sub c}>1), the spin-2 graviton has mass in the range 0
Imprints of cosmic strings on the cosmological gravitational wave background
NASA Astrophysics Data System (ADS)
Kleidis, K.; Papadopoulos, D. B.; Verdaguer, E.; Vlahos, L.
2008-07-01
The equation which governs the temporal evolution of a gravitational wave (GW) in curved space-time can be treated as the Schrödinger equation for a particle moving in the presence of an effective potential. When GWs propagate in an expanding universe with constant effective potential, there is a critical value (kc) of the comoving wave number which discriminates the metric perturbations into oscillating (k>kc) and nonoscillating (k
Inflation from cosmological constant and nonminimally coupled scalar
NASA Astrophysics Data System (ADS)
Glavan, Dražen; Marunović, Anja; Prokopec, Tomislav
2015-08-01
We consider inflation in a universe with a positive cosmological constant and a nonminimally coupled scalar field, in which the field couples both quadratically and quartically to the Ricci scalar. When considered in the Einstein frame and when the nonminimal couplings are negative, the field starts in slow roll and inflation ends with an asymptotic value of the principal slow-roll parameter, ɛE=4 /3 . Graceful exit can be achieved by suitably (tightly) coupling the scalar field to matter, such that at late time the total energy density reaches the scaling of matter, ɛE=ɛm . Quite generically the model produces a red spectrum of scalar cosmological perturbations and a small amount of gravitational radiation. With a suitable choice of the nonminimal couplings, the spectral slope can be as large as ns≃0.955 , which is about one standard deviation away from the central value measured by the Planck satellite. The model can be ruled out by future measurements if any of the following is observed: (a) the spectral index of scalar perturbations is ns>0.960 ; (b) the amplitude of tensor perturbations is above about r ˜10-2 ; (c) the running of the spectral index of scalar perturbations is positive.
NASA Astrophysics Data System (ADS)
Smoller, Joel; Temple, Blake; Vogler, Zeke
2017-11-01
We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p=0. In this phase portrait, the critical k=0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.
Simple cosmological model with inflation and late times acceleration
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2018-03-01
In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.
Smoller, Joel; Temple, Blake; Vogler, Zeke
2017-11-01
We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.
Lorentz violation with a universal minimum speed as foundation of de Sitter relativity
NASA Astrophysics Data System (ADS)
Cruz, Cláudio Nassif; Dos Santos, Rodrigo Francisco; Amaro de Faria, A. C.
We aim to investigate the theory of Lorentz violation with an invariant minimum speed called Symmetrical Special Relativity (SSR) from the viewpoint of its metric. Thus, we should explore the nature of SSR-metric in order to understand the origin of the conformal factor that appears in the metric by deforming Minkowski metric by means of an invariant minimum speed that breaks down Lorentz symmetry. So, we are able to realize that there is a similarity between SSR and a new space with variable negative curvature ( -∞ < ℛ < 0) connected to a set of infinite cosmological constants (0 < Λ < ∞), working like an extended de Sitter (dS) relativity, so that such extended dS-relativity has curvature and cosmological “constant” varying in time. We obtain a scenario that is more similar to dS-relativity given in the approximation of a slightly negative curvature for representing the current universe having a tiny cosmological constant. Finally, we show that the invariant minimum speed provides the foundation for understanding the kinematics origin of the extra dimension considered in dS-relativity in order to represent the dS-length.
CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P
2004-09-29
A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, whichmore » results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.« less
Predicting the Cosmological Constant from the CausalEntropic Principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Harnik, Roni; Kribs, Graham D.
2007-02-20
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, it asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. Themore » alternative approach--weighting by the number of ''observers per baryon''--is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.« less
Cosmological perturbations through a non-singular ghost-condensate/Galileon bounce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battarra, Lorenzo; Koehn, Michael; Lehners, Jean-Luc
2014-07-01
We study the propagation of super-horizon cosmological perturbations in a non-singular bounce spacetime. The model we consider combines a ghost condensate with a Galileon term in order to induce a ghost-free bounce. Our calculation is performed in harmonic gauge, which ensures that the linearized equations of motion remain well-defined and non-singular throughout. We find that, despite the fact that near the bounce the speed of sound becomes imaginary, super-horizon curvature perturbations remain essentially constant across the bounce. In fact, we show that there is a time close to the bounce where curvature perturbations of all wavelengths are required to bemore » momentarily exactly constant. We relate our calculations to those performed in other gauges, and comment on the relation to previous results in the literature.« less
Inflation from higher dimensions
NASA Astrophysics Data System (ADS)
Nakada, Hiroshi; Ketov, Sergei V.
2017-12-01
We derive the scalar potential in four spacetime dimensions from an eight-dimensional (R +γ R4-2 Λ -F42) gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ and the cosmological constant Λ , by using the flux compactification of four extra dimensions on a 4-sphere with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost) stabilized at its minimum. We also speculate about a possibility of embedding our model in eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified eleven-dimensional supergravity.
Constant mean curvature slicings of Kantowski-Sachs spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Searching for sterile neutrinos in dynamical dark energy cosmologies
NASA Astrophysics Data System (ADS)
Feng, Lu; Zhang, Jing-Fei; Zhang, Xin
2018-05-01
We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff < 0.2675 eV and Ne f f < 3.5718 for ACDM cosmology, m v,terile ff < 0.5313 eV and Ne f f < 3.5008 for wCDM cosmology, and raffterile < 0.1989 eV and Ne f f < 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m v,terile ff and Ne f f can be derived, indicating that no evidence of the existence of a sterile neutrino species with eV-scale mass is found in this analysis. Moreover, compared to the ACDM model, in the wCDM model the limit on m v,terile ff becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.
A de Sitter tachyonic braneworld revisited
NASA Astrophysics Data System (ADS)
Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão
2018-01-01
Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.
De Martini, Francesco
2017-11-13
The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU (2) L ⊗ U (1) Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An 'effective cosmological potential': V eff is expressed in terms of the dark energy potential: [Formula: see text] via the 'mass reduction parameter': [Formula: see text], a general property of the Universe. The mass of the Higgs boson, which is considered a 'free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass [Formula: see text] which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a ϕ ρ -particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological 'critical density', to the assessment of the average energy content of the ϕ ρ -excitation. The peculiar mathematical structure of V eff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the 'Cosmological Constant Paradox' (here referred to as the ' Λ -Paradox'). Indeed, our 'universal' theory offers a resolution of the Λ -Paradox for all exponential inflationary potentials: V Λ ( T , ϕ )∝ e - nϕ , and for all linear superpositions of these potentials, where n belongs to the mathematical set of the 'real numbers'. An explicit solution of the Λ -Paradox is reported for n =2. The resolution of the Λ -Paradox cannot be achieved in the context of Riemann's differential geometry.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Principle of Spacetime and Black Hole Equivalence
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2016-06-01
Modelling the universe without relying on a set of hypothetical entities (HEs) to explain observations and overcome problems and difficulties is essential to developing a physical cosmology. The well-known big bang cosmology, widely accepted as the standard model, stands on two fundamentals, which are Einstein’s general relativity (GR) that describes the effect of matter on spacetime and the cosmological principle (CP) of spacetime isotropy and homogeneity. The field equation of GR along with the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of spacetime derived from CP generates the Friedmann equation (FE) that governs the development and dynamics of the universe. The big bang theory has made impressive successes in explaining the universe, but still has problems and solutions of them rely on an increasing number of HEs such as inflation, dark matter, dark energy, and so on. Recently, the author has developed a new cosmological model called black hole universe, which, instead of making many those hypotheses, only includes a new single postulate (or a new principle) to the cosmology - Principle of Spacetime and Black Hole Equivalence (SBHEP) - to explain all the existing observations of the universe and overcome all the existing problems in conventional cosmologies. This study thoroughly demonstrates how this newly developed black hole universe model, which therefore stands on the three fundamentals (GR, CP, and SBHEP), can fully explain the universe as well as easily conquer the difficulties according to the well-developed physics, thus, neither needing any other hypotheses nor existing any unsolved difficulties. This work was supported by NSF/REU (Grant #: PHY-1263253) at Alabama A & M University.
Automatically generated code for relativistic inhomogeneous cosmologies
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa
2017-02-01
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated code generation capabilities provided by its component Kranc.
Celestial ephemerides in an expanding universe
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.
2012-09-01
The post-Newtonian theory of motion of celestial bodies and propagation of light was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the Solar System with unparalleled precision. The cornerstone of the theory is the postulate that the Solar System is gravitationally isolated from the rest of the Universe and the background spacetime is asymptotically flat. The present article extends this theoretical concept and formulates the principles of celestial dynamics of particles and light moving in the gravitational field of a localized astronomical system embedded to the expanding Friedmann-Lemaître-Robertson-Walker universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein’s field equations in the conformally flat Friedmann-Lemaître-Robertson-Walker spacetime and analyze the geodesic motion of massive particles and light in this limit. We prove that by doing conformal spacetime transformations, one can reduce the equations of motion of particles and light to the classical form of the Newtonian theory. However, the time arguments in the equations of motion of particles and light differ from each other in terms being proportional to the Hubble constant H. This leads to the important conclusion that the equations of light propagation used currently by space navigation centers for fitting range and Doppler-tracking observations of celestial bodies are missing some terms of the cosmological origin that are proportional to the Hubble constant H. We also analyze the effect of the cosmological expansion on motion of electrons in atoms. We prove that the Hubble expansion does not affect the atomic frequencies and hence does not affect the atomic time scale used in the creation of astronomical ephemerides. We derive the cosmological correction to the light travel time equation and argue that its measurement opens an exciting opportunity to determine the local value of the Hubble constant H in the Solar System independently of cosmological observations.
Measuring the dark matter equation of state and its cosmological consequences
NASA Astrophysics Data System (ADS)
Domínguez Romero, Mariano Javier de León; Ruiz, Andrés Nicolás
2012-10-01
We explore the consequences of the measurements of the equation of state of dark matter7, on the homogenous FRW universe dynamics and build an alternative cosmological scenario to the concordance ΛCDM universe. The new paradigm is based on the introduction of an effective scalar field replacing the undetected components of the dark sector: dark matter and dark energy in the form of a cosmological constant. The scalar field obeys a barotropic equation of state p = ωρ with ω = -1/3 and dominates the cosmological dynamics in the last 14.27 Gyr, in a universe with an age of 14.83 Gyr . Before that epoch, baryons and photons drove the general behaviour of the universe as in the standard ΛCDM scenario. We compute a minimal set of cosmological parameters which allow us to reproduce several observational results such us baryon abundance, constrains on the age of the universe, the astronomical scale of distance and the high redshift supernova data with a high degree of precision. However, it should be emphasized that the new model is not accelerating, instead expands asymptotically towards an Einstein Static Universe. We briefly mention the possible mechanisms behind the origin of such dominant component and analyze the prospective of reproducing the success of the standard cosmological model explaining the process of structure formation.
Constraints on cosmological parameters in power-law cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Sarita; Singh, J.K.; Altaibayeva, A.
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H{sub 0} (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not withmore » H(z) data. However, the constraints obtained on and i.e. H{sub 0} average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details.« less
A New Measurement of the Expansion Rate of the Universe, Evidence of New Physics?
NASA Astrophysics Data System (ADS)
Riess, Adam
2018-01-01
The Hubble constant remains one of the most important parameters in the cosmological model, setting the size and age scales of the Universe. Present uncertainties in the cosmological model including the nature of dark energy, the properties of neutrinos and the scale of departures from flat geometry can be constrained by measurements of the Hubble constant made to higher precision than was possible with the first generations of Hubble Telescope instruments. A streamlined distance ladder constructed from infrared observations of Cepheids and type Ia supernovae with ruthless attention paid to systematics now provide 2.4% precision and offer the means to do even better. By steadily improving the precision and accuracy of the Hubble constant, we now see evidence for significant deviations from the standard model, referred to as LambdaCDM, and thus the exciting chance, if true, of discovering new fundamental physics such as exotic dark energy, a new relativistic particle, or a small curvature to name a few possibilities. I will review recent and expected progress in the near term.
NASA Astrophysics Data System (ADS)
Popławski, Nikodem
2014-01-01
We propose a theory of gravitation, in which the affine connection is the only dynamical variable describing the gravitational field. We construct a simple dynamical Lagrangian density that is entirely composed from the connection, via its curvature and torsion, and is a polynomial function of its derivatives. It is given by the contraction of the Ricci tensor with a tensor which is inverse to the symmetric, contracted square of the torsion tensor, . We vary the total action for the gravitational field and matter with respect to the affine connection, assuming that the matter fields couple to the connection only through . We derive the resulting field equations and show that they are identical with the Einstein equations of general relativity with a nonzero cosmological constant if the tensor is regarded as proportional to the metric tensor. The cosmological constant is simply a constant of proportionality between the two tensors, which together with and provides a natural system of units in gravitational physics. This theory therefore provides a physical construction of the metric as a polynomial function of the connection, and explains dark energy as an intrinsic property of spacetime.
Precision Parameter Estimation and Machine Learning
NASA Astrophysics Data System (ADS)
Wandelt, Benjamin D.
2008-12-01
I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.
Neutrino masses, neutrino oscillations, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.
NASA Astrophysics Data System (ADS)
Leibundgut, B.; Sullivan, M.
2018-03-01
The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.
Unifying inflation with ΛCDM epoch in modified f(R) gravity consistent with Solar System tests
NASA Astrophysics Data System (ADS)
Nojiri, Shin'ichi; Odintsov, Sergei D.
2007-12-01
We suggest two realistic f(R) and one F(G) modified gravities which are consistent with local tests and cosmological bounds. The typical property of such theories is the presence of the effective cosmological constant epochs in such a way that early-time inflation and late-time cosmic acceleration are naturally unified within single model. It is shown that classical instability does not appear here and Newton law is respected. Some discussion of possible anti-gravity regime appearance and related modification of the theory is done.
NASA Astrophysics Data System (ADS)
Singh, T.; Agrawal, Anil K.
1993-06-01
The Einstein field equations with perfect fluid source and variable Λ and G for Bianchi-type universes are studied under the assumption of a power-law time variation of the expansion factor, achieved via a suitable power-law assumption for the Hubble parameter suggested by M. S. Berman. All the models have a power-law variation of pressure and density and are singular at the epoch t=0. The variation of G( t) as 1 /t and Λ( t) as 1 /t 2 is consistent with these models.
Decoherence can relax cosmic acceleration: an example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markkanen, Tommi, E-mail: tommi.markkanen@kcl.ac.uk
We investigate back reaction in de Sitter space in an approach where only states that are observationally accessible are included in the density matrix. Using the Bunch-Davies vacuum as the initial condition we find for a conformal scalar field and a cosmological constant that tracing over the unobservable states beyond the cosmological horizon leads to a thermal spectrum of particles and that such a configuration is unstable under semi-classical back reaction. It is concluded that this prescription results in an instability of de Sitter space with a gradually increasing horizon size.
Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Ling, Eric
2018-06-01
We consider globally hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with the presence of a positive cosmological constant. More specifically, for 3 + 1 dimensional spacetimes which satisfy the null energy condition and contain a future expanding compact Cauchy surface, we establish a precise connection between the topology of the Cauchy surfaces and the occurrence of past singularities. In addition to the Penrose singularity theorem, the proof makes use of some recent advances in the topology of 3-manifolds and of certain fundamental existence results for minimal surfaces.
Dark Energy from Violation of Energy Conservation.
Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel
2017-01-13
In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation-nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale-and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.
Dynamics of voids and their shapes in redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Kei-ichi; Sakai, Nobuyuki; Triay, Roland, E-mail: maeda@waseda.jp, E-mail: nsakai@e.yamagata-u.ac.jp, E-mail: triay@cpt.univ-mrs.fr
2011-08-01
We investigate the dynamics of a single spherical void embedded in a Friedmann-Lemaitre universe, and analyze the void shape in the redshift space. We find that the void in the redshift space appears as an ellipse shape elongated along the line of sight (i.e., an opposite deformation to the Kaiser effect). Applying this result to observed void candidates at the redshift z ∼ 1-2, it may provide us with a new method to evaluate the cosmological parameters, in particular the value of a cosmological constant.
False vacuum decay in Jordan-Brans-Dicke cosmologies
NASA Technical Reports Server (NTRS)
Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun; Weinberg, Erick J.
1989-01-01
The bubble nucleation rate in a first-order phase transition taking place in a background Jordan-Brans-Dicke cosmology is examined. The leading order terms in the nucleation rate when the Jordan-Brans-Dicke field is large (i.e., late times) are computed by means of a Weyl rescaling of the fields in the theory. It is found that despite the fact that the Jordan-Brans-Dicke field (hence the effective gravitational constant) has a time dependence in the false vacuum at late times the nucleation rate is time independent.
Fractal universe and quantum gravity.
Calcagni, Gianluca
2010-06-25
We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.
Dark Energy from Violation of Energy Conservation
NASA Astrophysics Data System (ADS)
Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel
2017-01-01
In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation—nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale—and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.
Dark energy and the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Dodelson, S.; Knox, L.
2000-01-01
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.
Dark energy and the cosmic microwave background radiation.
Dodelson, S; Knox, L
2000-04-17
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.
Cosmological Implications of the Effects of X-Ray Clusters on the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Forman, William R.
1996-01-01
We have been carrying forward a program to confront X-ray observations of clusters and their evolution as derived from X-ray observatories with observations of the cosmic microwave background radiation (CMBR). In addition to the material covered in our previous reports (including three published papers), most recently we have explored the effects of a cosmological constant on the predicted Sunyaev-Zel'dovich effect from the ensemble of clusters. In this report we summarize that work from which a paper will be prepared.
Generalized teleparallel cosmology and initial singularity crossing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg
We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less
Castles in the Air: The Einstein-De Sitter Debate, 1916-1918
NASA Astrophysics Data System (ADS)
Midwinter, Charles; Janssen, Michel
2011-03-01
The Einstein De Sitter debate marked the birth of modern cosmology and the infamous cosmological constant. For Einstein, the controversy was essentially a philosophical one. Einstein's insistence on a static Universe and Mach's Principle guided him in the construction of his own cosmological model, and compelled him to criticize De Sitter's. For De Sitter, the debate began as idle conjecture. Before long, however, he began to wonder if the "spacious castles" he and Einstein had constructed might actually represent physical reality. We plan to write a volume that reproduces the documents relevant to the debate. Our commentary will retrace and explain the arguments of the historical players, complete with calculations. For the first time readers will be able to follow the arguments of Einstein and De Sitter in a detailed exploration of the first two relativistic cosmological models. Readers will see how Einstein's flawed criticisms of De Sitter were supported by Herman Weyl, and finally how Felix Klein settled the whole matter with a coordinate transformation.
NASA Astrophysics Data System (ADS)
Rama, S. Kalyana
2017-08-01
The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to (d + 1) dimensions and to any function f( x). Depending on f( x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor a(t) ∝ t^{ 2 q/(2 q - 1) (1 + w) d} for f(x) = x^q, and find explicit Kasner-type solutions if w = 2 q - 1 also. A result which we find particularly fascinating is that, for f(x) = √{x}, the evolution is non singular and the scale factor a( t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1989-01-01
A Friedmann-Robertson-Walker cosmology with energy density decreasing in expansion as 1/R-squared, where R is the Robertson-Walker scale factor, is studied. In such a model the universe expands with constant velocity; hence the term coasting cosmology. Observational consequences of such a model include the age of the universe, the luminosity distance-redshift relation (the Hubble diagram), the angular diameter distance-redshift relation, and the galaxy number count as a function of redshift. These observations are used to limit the parameters of the model. Among the interesting consequences of the model are the possibility of an ever-expanding closed universe, a model universe with multiple images at different redshifts of the same object, a universe with Omega - 1 not equal to 0 stable in expansion, and a closed universe with radius smaller than 1/H(0).