Science.gov

Sample records for cosmological correlation functions

  1. Multiple soft limits of cosmological correlation functions

    SciTech Connect

    Joyce, Austin; Khoury, Justin; Simonović, Marko E-mail: jkhoury@sas.upenn.edu

    2015-01-01

    We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.

  2. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    NASA Astrophysics Data System (ADS)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N-point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  3. The double-soft limit in cosmological correlation functions and graviton exchange effects

    NASA Astrophysics Data System (ADS)

    Alinea, Allan L.; Kubota, Takahiro; Misumi, Nobuhiko

    2017-01-01

    The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and (1‑ns) ≈ 0.042, where ns is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.

  4. Regularized cosmological power spectrum and correlation function in modified gravity models

    NASA Astrophysics Data System (ADS)

    Taruya, Atsushi; Nishimichi, Takahiro; Bernardeau, Francis; Hiramatsu, Takashi; Koyama, Kazuya

    2014-12-01

    Based on the multipoint propagator expansion, we present resummed perturbative calculations for cosmological power spectra and correlation functions in the context of modified gravity. In a wide class of modified gravity models that have a screening mechanism to recover general relativity (GR) on small scales, we apply the eikonal approximation to derive the governing equation for resummed propagator that partly includes the nonperturbative effect in the high-k limit. The resultant propagator in the high-k limit contains the new corrections arising from the screening mechanism as well as the standard exponential damping. We explicitly derive the expression for new high-k contributions in specific modified gravity models, and find that in the case of f (R ) gravity for a currently constrained model parameter, the corrections are basically of the subleading order and can be neglected. Thus, in f (R ) gravity, similarly to the GR case, we can analytically construct the regularized propagator that reproduces both the resummed high-k behavior and the low-k results computed with standard perturbation theory, consistently taking account of the nonlinear modification of gravity valid at large scales. With the regularized multipoint propagators, we give predictions for power spectrum and correlation function at one-loop order, and compare those with N -body simulations in f (R ) gravity model. As an important application, we also discuss the redshift-space distortions and compute the anisotropic power spectra and correlation functions.

  5. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 function, but whose fitted parameter values are different from the values found in the literature for the GSMF. Conclusions: This GCMF behavior follows the theoretical predictions from the cold dark matter models in which the less massive objects form first, followed later by more massive ones. In the range 0.5

  6. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  7. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  8. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  9. Reconstructing the distortion function for nonlocal cosmology

    SciTech Connect

    Deffayet, C.; Woodard, R.P. E-mail: woodard@phys.ufl.edu

    2009-08-01

    We consider the cosmology of modified gravity models in which Newton's constant is distorted by a function of the inverse d'Alembertian acting on the Ricci scalar. We derive a technique for choosing the distortion function so as to fit an arbitrary expansion history. This technique is applied numerically to the case of ΛCDM cosmology, and the result agrees well with a simple hyperbolic tangent.

  10. The Weyl tensor correlator in cosmological spacetimes

    SciTech Connect

    Fröb, Markus B.

    2014-12-01

    We give a general expression for the Weyl tensor two-point function in a general Friedmann-Lemaître-Robertson-Walker spacetime. We work in reduced phase space for the perturbations, i.e., quantize only the dynamical degrees of freedom without adding any gauge-fixing term. The general formula is illustrated by a calculation in slow-roll single-field inflation to first order in the slow-roll parameters ε and δ, and the result is shown to have the correct de Sitter limit as ε, δ → 0. Furthermore, it is seen that the Weyl tensor correlation function in slow-roll does not suffer from infrared divergences, unlike the two-point functions of the metric and scalar field perturbations. Lastly, we show how to recover the usual tensor power spectrum from the Weyl tensor correlation function.

  11. The Weyl tensor correlator in cosmological spacetimes

    SciTech Connect

    Fröb, Markus B.

    2014-12-05

    We give a general expression for the Weyl tensor two-point function in a general Friedmann-Lemaître-Robertson-Walker spacetime. We work in reduced phase space for the perturbations, i.e., quantize only the dynamical degrees of freedom without adding any gauge-fixing term. The general formula is illustrated by a calculation in slow-roll single-field inflation to first order in the slow-roll parameters ϵ and δ, and the result is shown to have the correct de Sitter limit as ϵ,δ→0. Furthermore, it is seen that the Weyl tensor correlation function in slow-roll does not suffer from infrared divergences, unlike the two-point functions of the metric and scalar field perturbations. Lastly, we show how to recover the usual tensor power spectrum from the Weyl tensor correlation function.

  12. Cosmology from cross correlation of CMB lensing and galaxy surveys

    NASA Astrophysics Data System (ADS)

    Pearson, R.; Zahn, O.

    2014-02-01

    In recent years, cross correlation of lensing of the cosmic microwave background (CMB) with other large-scale structure (LSS) tracers has been used as a method to detect CMB lensing. Current experiments are also becoming sensitive enough to measure CMB lensing without the help of auxiliary tracers. As data quality improves rapidly, it has been suggested that the CMB lensing-LSS cross correlation may provide new insights into parameters describing cosmological structure growth. In this work, we perform forecasts that combine the lensing potential auto power spectrum from various future CMB experiments with the galaxy power spectrum from galaxy surveys, as well as the cross power spectrum between the two, marginalizing over a number of galactic and nongalactic cosmological parameters. We find that the CMB lensing-LSS cross correlation contains significant information on parameters such as the redshift distribution and bias of LSS tracers. We also find that the cross-correlation information will lead to independent probes of cosmological parameters such as neutrino mass and the reionization optical depth.

  13. GRB physics and cosmology with peak energy-intensity correlations

    NASA Astrophysics Data System (ADS)

    Sawant, Disha; Amati, Lorenzo

    2015-12-01

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 1054 erg of energy isotropically (Eiso) and they are observed within a wide range of redshift (from ˜ 0.01 up to ˜ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (Ep,i) and the "intensity" is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the Ep,i - Eiso correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density ΩM being ˜ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of Ep,i with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of ΩM. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  14. GRB physics and cosmology with peak energy-intensity correlations

    SciTech Connect

    Sawant, Disha; Amati, Lorenzo

    2015-12-17

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  15. GRB cosmology through the Ep,i-intensity correlation

    NASA Astrophysics Data System (ADS)

    Amati, L.; Sawant, D. S.; Della Valle, M.

    Despite they are not standard candles, the investigation of Gamma-Ray Bursts (GRBs) as a tool for measuring the geometry and expansion rate of the Universe is strongly motivated by their unique combination of huge luminosity, up to more than 10/53 erg/s, with a redshift distribution extending up to more than z = 9. In recent years, several attempts to exploit the correlation between the photon energy at which the vFv spec- trum peaks (peak energy) and the radiated energy (or luminosity) for standardizing GRBs and using them to estimate cosmological parameters have been made. These studies show that already with the present data-set, GRBs can provide a significant and independent confirmation of ΛM ˜ 0.3 for a flat ΛCDM. The investigation of the correlation of Ep,i with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion of and accuracy for estimating ΛM further confirms its reliability and effectiveness for both GRB physics and their standardization for cosmology. Current (e.g., Swift, Fermi/GBM, Konus-WIND) and forthcoming GRB experiments (e.g., CALET/GBM, SVOM, Lomonosov/UFFO) will allow us to constrain ΛM with an accuracy comparable to that currently exhibited by Type Ia supernovae and to study the properties of dark energy and their evolution with time.

  16. Quantum Newtonian cosmology and the biconfluent Heun functions

    SciTech Connect

    Vieira, H. S.; Bezerra, V. B.

    2015-09-15

    We obtain the exact solution of the Schrödinger equation for a particle (galaxy) moving in a Newtonian universe with a cosmological constant, which is given in terms of the biconfluent Heun functions. The first six Heun polynomials of the biconfluent function are written explicitly. The energy spectrum which resembles the one corresponding to the isotropic harmonic oscillator is also obtained. The wave functions as well as the energy levels codify the role played by the cosmological constant.

  17. The Atacama Cosmology Telescope: cross correlation with Planck maps

    SciTech Connect

    Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd; Addison, Graeme E.; Hincks, Adam D.; Hasselfield, Matthew; Hlozek, Renée; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; Dünner, Rolando; Infante, Leopoldo; Gralla, Megan; Marriage, Tobias A.; Huffenberger, Kevin; Kosowsky, Arthur; Moodley, Kavilan; Niemack, Michael D.; and others

    2014-07-01

    We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.

  18. A joint analysis for cosmology and photometric redshift calibration using cross-correlations

    NASA Astrophysics Data System (ADS)

    McLeod, Michael; Balan, Sreekumar T.; Abdalla, Filipe B.

    2017-04-01

    We present a method of calibrating the properties of photometric redshift bins as part of a larger nested sampling analysis for the inference of cosmological parameters. The redshift bins are characterized by their mean and variance, which are varied as free parameters and marginalized over when obtaining the cosmological parameters. We demonstrate that the likelihood function for cross-correlations in an angular power spectrum framework tightly constrains the properties of bins such that they may be well determined, reducing their influence on cosmological parameters and avoiding the bias from poorly estimated redshift distributions. We demonstrate that even with only three photometric and three spectroscopic bins, we can recover accurate estimates of the mean redshift of a bin to within Δμ ≈ 3-4 × 10-3 and the width of the bin to Δσ ≈ 1 × 10-3 for galaxies near z = 1. This indicates that we may be able to bring down the photometric redshift errors to a level which is in line with the requirements for the next generation of cosmological experiments.

  19. Cosmology

    NASA Astrophysics Data System (ADS)

    Harrison, Edward

    2000-03-01

    Cosmology: The Science of the Universe is a broad introduction to the science of modern cosmology, with emphasis on its historical origins. The first edition of this best-selling book received worldwide acclaim for its lucid style and wide-ranging exploration of the universe. This eagerly awaited second edition updates and greatly extends the first with seven new chapters that explore early scientific cosmology, Cartesian and Newtonian world systems, cosmology after Newton and before Einstein, special relativity, observational cosmology, inflation and creation of the universe. All chapters conclude with a section entitled Reflections containing provocative topics that will foster lively debate. The new Projects section, also at the end of each chapter, raises questions and issues to challenge the reader.

  20. Measuring Omega and the real correlation function from the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1992-01-01

    Peculiar velocities distort the correlation function of galaxies in redshift space. In the linear regime, the distortion has a characteristic quadrupole plus hexadecapole form. The amplitude of the distortion depends on the cosmological density parameter Omega. Practical formulas are derived here which can be applied to redshift galaxy catalogs to measure Omega in the linear regime. The formulas also yield the real underlying correlation function in the linear regime, corrected for peculiar velocities.

  1. Probing Cosmology with Minkowski Functionals of Weak Lensing Maps

    NASA Astrophysics Data System (ADS)

    Kratochvil, Jan Michael; Lim, E. A.; Wang, S.; Haiman, Z.; May, M.; Huffenberger, K.

    2011-01-01

    Minkowski functionals (MFs) are alternative probes of non-Gaussianity of random fields and probe the morphology and topology. We apply them to constrain cosmological parameters from weak gravitational lensing maps. We use MFs with Monte Carlo-optimized threshold bins to distinguish between different cosmological models from simulated convergence maps. We find that MFs discern better than the power spectrum from the same maps, thus providing evidence that they probe nonlinear structure formation and measure information beyond the power spectrum. The lensing maps were created with our new huge Inspector Gadget lensing simulation pipeline on the IBM Blue Gene at Brookhaven National Laboratory, allowing us to create an extensive simulation suite of ninety 5123-particle N-body simulations and sample many cosmological models and initial conditions.

  2. CROSS-CORRELATIONS AS A COSMOLOGICAL CARBON MONOXIDE DETECTOR

    SciTech Connect

    Pullen, Anthony R.; Dore, Olivier; Chang, Tzu-Ching; Lidz, Adam

    2013-05-01

    We present a new procedure to measure the large-scale carbon monoxide (CO) emissions across cosmic history. As a tracer of large-scale structure (LSS), the CO gas content as a function of redshift can be quantified by its three-dimensional fluctuation power spectra. Furthermore, cross-correlating CO emission with other LSS tracers offers a way to measure the emission as a function of scale and redshift. Here we introduce the model relevant for such a cross-correlation measurement between CO and other LSS tracers, and between different CO rotational lines. We propose a novel use of cosmic microwave background (CMB) data and attempt to extract redshifted CO emissions embedded in the Wilkinson Microwave Anisotropy Probe (WMAP) data set. We cross-correlate the all-sky WMAP7 data with LSS data sets, namely, the photometric quasar sample and the luminous red galaxy sample from the Sloan Digital Sky Survey Data Releases 6 and 7, respectively. We are unable to detect a cross-correlation signal with either CO(1-0) or CO(2-1) lines, mainly due to the instrumental noise in the WMAP data. However, we are able to rule out models more than three times greater than our more optimistic model. We discuss the cross-correlation signal from the thermal Sunyaev-Zeldovich effect and dust as potential contaminants, and quantify their impact for our CO measurements. We discuss forecasts for current CMB experiments and a hypothetical future CO-focused experiment, and propose to cross-correlate CO temperature data with the Hobby-Eberly Telescope Dark Energy Experiment Ly{alpha}-emitter sample, for which a signal-to-noise ratio of 58 is possible.

  3. Zeta functions in brane world cosmology

    NASA Astrophysics Data System (ADS)

    Flachi, Antonino; Knapman, Alan; Naylor, Wade; Sasaki, Misao

    2004-12-01

    We present a calculation of the zeta function and of the functional determinant for a Laplace-type differential operator, corresponding to a scalar field in a higher-dimensional deSitter brane background, which consists of a higher-dimensional anti deSitter bulk spacetime bounded by a deSitter section, representing a brane. Contrary to the existing examples, which all make use of conformal transformations, we evaluate the zeta function working directly with the higher-dimensional wave operator. We also consider a generic mass term and coupling to curvature, generalizing previous results. The massless, conformally coupled case is obtained as a limit of the general result and compared with known calculations. In the limit of large anti deSitter radius, the zeta determinant for the ball is recovered in perfect agreement with known expressions, providing an interesting check of our result and an alternative way of obtaining the ball determinant.

  4. Cosmology in One Dimension: Fractal Geometry, Power Spectra and Correlation

    NASA Astrophysics Data System (ADS)

    Miller, Bruce; Rouet, Jean-Louis

    2011-03-01

    Concentrations of matter, such as galaxies and galactic clusters, originated as very small density fluctuations in the early universe. The existence of galaxy clusters and super-clusters suggests that a natural scale for the matter distribution may not exist. A point of controversy is whether the distribution is fractal and, if so,over what range of scales. One-dimensional models demonstrate that the important dynamics for cluster formation occur in the position-velocity plane. Here the development of scaling behavior and multifractal geometry is investigated for a family of one-dimensional models for three different, scale-free, initial conditions. A possible physical mechanism for understanding the self-similar evolution is introduced. It is shown that hierarchical cluster formation depends both on the model and the initial power spectrum. Under special circumstances a simple relation between the power spectrum, correlation function, and correlation dimension in the highly nonlinear regime is confirmed.

  5. Cosmology in one dimension: fractal geometry, power spectra and correlation

    NASA Astrophysics Data System (ADS)

    Miller, Bruce N.; Rouet, Jean-Louis

    2010-12-01

    Concentrations of matter, such as galaxies and galactic clusters, originated as very small density fluctuations in the early universe. The existence of galaxy clusters and super-clusters suggests that a natural scale for the matter distribution may not exist. A point of controversy is whether the distribution is fractal and, if so, over what range of scales. One-dimensional models demonstrate that the important dynamics for cluster formation occur in the position-velocity plane. Here the development of scaling behavior and multifractal geometry is investigated for a family of one-dimensional models for three different, scale-free, initial conditions. The methodology employed includes: (1) the derivation of explicit solutions for the gravitational potential and field for a one-dimensional system with periodic boundary conditions (Ewald sums for one dimension); (2) the development of a procedure for obtaining scale-free initial conditions for the growing mode in phase space for an arbitrary power-law index; (3) the evaluation of power spectra, correlation functions, and generalized fractal dimensions at different stages of the system evolution. It is shown that a simple analytic representation of the power spectra captures the main features of the evolution, including the correct time dependence of the crossover from the linear to nonlinear regime and the transition from regular to fractal geometry. A possible physical mechanism for understanding the self-similar evolution is introduced. It is shown that hierarchical cluster formation depends both on the model and on the initial power spectrum. Under special circumstances a simple relation between the power spectrum, correlation function, and correlation dimension in the highly nonlinear regime is confirmed.

  6. Hexagonalization of correlation functions

    NASA Astrophysics Data System (ADS)

    Fleury, Thiago; Komatsu, Shota

    2017-01-01

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N = 4 supersymmetric Yang-Mills theory at large N . The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.

  7. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  8. Determination of cosmological parameters from gamma ray burst characteristics and afterglow correlations

    NASA Astrophysics Data System (ADS)

    Zitouni, H.; Guessoum, N.; Azzam, W. J.

    2016-12-01

    We use the correlation relation between the energy emitted by the GRBs in their prompt phases and the X-ray afterglow fluxes, in an effort to constrain cosmological parameters and aiming to construct a Hubble diagram at high redshifts, i.e. beyond those found with Type Ia supernovae.

  9. CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Raccanelli, Alvise; Piattella, Oliver F.; Pietrobon, Davide; Giannantonio, Tommaso E-mail: alvise.raccanelli@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov E-mail: sabino.matarrese@pd.infn.it

    2011-03-01

    We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for a range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.

  10. Cross Correlation between Ly-break Galaxies and Damped Lyα Systems in Cosmological SPH Simulations

    NASA Astrophysics Data System (ADS)

    Lee, Tae Song; Nagamine, K.

    2007-12-01

    We calculate the cross-correlation function (CCF) between damped Ly-α systems (DLAs) and Lyman break galaxies (LBGs) using cosmological hydrodynamic simulations at z=3. We compute the CCF in two different methods. First, we assume that there is one DLA in each dark matter halo. Second approach is the cross-section-weighted CCF using the direct simulation result of DLA cross section for each halo. We find that the cross-section-weighted CCF gives a steeper γ than the unweighted one, and agrees well with the result of Cooke et al. (2006). Finally, we compute angular CCF for direct comparison with observations.

  11. COSMOLOGY WITH THE Ep,i - Eiso CORRELATION OF GAMMA-RAY BURSTS

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo

    2012-03-01

    Gamma-Ray Bursts (GRBs) are the brightest sources in the universe, emit mostly in the hard X-ray energy band and have been detected at redshifts up to about 8.2. Thus, they are in principle very powerful probes for cosmology. I shortly review the researches aimed to use GRBs for the measurement of cosmological parameters, which are mainly based on the correlation between spectral peak photon energy and total radiated energy or luminosity. In particular, based on an enriched sample of 120 GRBs, I will provide an update of the analysis by Amati et al. (2008) aimed at extracting information on ΩM and, to a less extent, on ΩΛ, from the Ep,i - Eiso correlation.

  12. Information geometry with correlated data: Bayesian explorations of cosmological predictions for the microwave background radiation

    NASA Astrophysics Data System (ADS)

    Quinn, Katherine; de Bernardis, Francesco; Niemack, Michael; Sethna, James

    We developed a new, generalized fitting algorithm for miltiparameter models which incorporates varying and correlated errors. This was combined with geometrical methods of sampling to explore model prediction space, notably to plot geodesics and determine the size and edges of the model manifold. We illustrate this using the microwave background spectra for all possible universes, as described by the standard Λ-cold dark matter (Λ-CDM) cosmological model. In this case, the predicted data are fluctuations and highly correlated with varying errors, resulting in a manifold with a varying metric (as the natural metric to use is given by the Fisher information matrix). Furthermore, the model manifold shares the hyperribbon structure seen in other models, with the edges forming a strongly distorted image of a hypercube. Practical applications of such an analysis include optimizing experimental instrumentation designed to test more detailed cosmological theories. Funding supported in part by NSERC.

  13. Correlations Between the Cosmic X-Ray and Microwave Backgrounds: Constraints on a Cosmological Constant

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Crittenden, R. G.; Turok, N. G.

    1998-01-01

    In universes with significant curvature or cosmological constant, cosmic microwave background (CMB) anisotropies are created very recently via the Rees-Sciama or integrated Sachs-Wolfe effects. This causes the CMB anisotropies to become partially correlated with the local matter density (z less than 4). We examine the prospects of using the hard (2- 10 keV) X-ray background as a probe of the local density and the measured correlation between the HEAO1 A2 X-ray survey and the 4-year COBE-DMR map to obtain a constraint on the cosmological constant. The 95% confidence level upper limit on the cosmological constant is OMega(sub Lambda) less than or equal to 0.5, assuming that the observed fluctuations in the X-ray map result entirely from large scale structure. (This would also imply that the X-rays trace matter with a bias factor of b(sub x) approx. = 5.6 Omega(sub m, sup 0.53)). This bound is weakened considerably if a large portion of the X-ray fluctuations arise from Poisson noise from unresolved sources. For example, if one assumes that the X-ray bias is b(sub x) = 2, then the 95% confidence level upper limit is weaker, Omega(sub Lambda) less than or equal to 0.7. More stringent limits should be attainable with data from the next generation of CMB and X-ray background maps.

  14. THE ATACAMA COSMOLOGY TELESCOPE: CALIBRATION WITH THE WILKINSON MICROWAVE ANISOTROPY PROBE USING CROSS-CORRELATIONS

    SciTech Connect

    Hajian, Amir; Bond, John R.; Acquaviva, Viviana; Das, Sudeep; Dunkley, Joanna; Ade, Peter A. R.; Aguirre, Paula; Barrientos, L. Felipe; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Appel, John William; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Brown, Ben; Chervenak, Jay; Doriese, W. Bertrand

    2011-10-20

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and map-making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < l < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  15. The Atacama Cosmology Telescope: Calibration with the Wilkinson Microwave Anisotropy Probe Using Cross-Correlations

    NASA Technical Reports Server (NTRS)

    Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Bertrand Doriese, W.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Halpern, Mark; Hasselfield, Matthew; Moseley, Harvey; Wollack, Ed

    2011-01-01

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < I < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  16. Scaled density functional theory correlation functionals.

    PubMed

    Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B

    2007-10-18

    We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.

  17. Cosmological tests with the FSRQ gamma-ray luminosity function

    NASA Astrophysics Data System (ADS)

    Zeng, Houdun; Melia, Fulvio; Zhang, Li

    2016-11-01

    The extensive catalogue of gamma-ray selected flat-spectrum radio quasars (FSRQs) produced by Fermi during a four-year survey has generated considerable interest in determining their gamma-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance Λ cold dark matter (ΛCDM) and Rh = ct cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both ΛCDM and Rh = ct. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour Rh = ct over ΛCDM. We suggest that such population studies, though featuring a strong evolution in redshift, may none the less be used as a valuable independent check of other model comparisons based solely on geometric considerations.

  18. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z~5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z≈0 and 0.9 using the limited data that is currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z≈0.9 quasars may be commonly hosted by haloes with Mh ~ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGNs of different luminosities in cosmological simulations.

  19. Nonvacuum AdS cosmology and comments on gauge theory correlator

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumyabrata; Chowdhury, Sudipto Paul; Mukherji, Sudipta; Srivastava, Yogesh K.

    2017-02-01

    Several time dependent backgrounds, with perfect fluid matter, can be used to construct solutions of Einstein equations in the presence of a negative cosmological constant along with some matter sources. In this work we focus on the non-vacuum Kasner-AdS geometry and its solitonic generalization. To characterize these space-times, we provide ways to embed them in higher dimensional flat space-times. General space-like geodesics are then studied and used to compute the two point boundary correlators within the geodesic approximation.

  20. Correlation dynamics of Green functions

    NASA Astrophysics Data System (ADS)

    Shun-Jin, Wang; Wei, Zuo; Wolfgang, Cassing

    1994-06-01

    We generalize the methods used in the theory of correlation dynamics and establish a set of equations of motion for many-body correlation Green functions in the nonrelativistic case. These nonlinear and coupled equations of motion describe the dynamical evolution of correlation Green functions of different order and transparently show how many-body correlations are generated by the different interaction terms in a genuine nonperturbative framework. The nonperturbative results of the conventional Green function theory are included in the present formalism as two limiting cases (the so-called ladder-diagram summation and ring-diagram summation) as well as the familiar correlation dynamics of density matrices in the equal-time limit. We present explicit expressions for three- and four-body correlation functions that can be used to dynamically restore the trace relations for spin-symmetric Fermi systems and study numerically the relative importance of two-, three- and four-body correlations for nuclear configurations close to the ground state.

  1. COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. I. MASS FUNCTION AT 0 < z {approx}< 2

    SciTech Connect

    Li Yanrong; Wang Jianmin; Ho, Luis C. E-mail: wangjm@mail.ihep.ac.cn

    2011-11-20

    We present the mass function of supermassive black holes (SMBHs) over the redshift range z = 0-2, using the latest deep luminosity and mass functions of field galaxies to constrain the masses of their spheroids, which we relate to SMBH mass through the empirical correlation between SMBH and spheroid mass (the M{sub .}-M{sub sph} relation). In addition to luminosity fading of the stellar content of the spheroids, we carefully consider the variation of the bulge-to-total luminosity ratio of the galaxy populations and the M{sub .}/M{sub sph} ratio, which, according to numerous recent studies, evolves rapidly with redshift. The SMBH mass functions derived from the galaxy luminosity and mass functions show very good agreement, both in shape and in normalization. The resultant SMBH mass function and integrated mass density for the local epoch (z Almost-Equal-To 0) match well those derived independently by other studies. Consistent with other evidence for cosmic downsizing, the upper end of the mass function remains roughly constant since z Almost-Equal-To 2, while the space density of lower mass black holes undergoes strong evolution. We carefully assess the impact of various sources of uncertainties on our calculations. A companion paper uses the mass function derived in this work to determine the radiative efficiency of black hole accretion and constraints that can be imposed on the cosmological evolution of black hole spin.

  2. Modeling the three-point correlation function

    SciTech Connect

    Marin, Felipe; Wechsler, Risa; Frieman, Joshua A.; Nichol, Robert; /Portsmouth U., ICG

    2007-04-01

    We present new theoretical predictions for the galaxy three-point correlation function (3PCF) using high-resolution dissipationless cosmological simulations of a flat {Lambda}CDM Universe which resolve galaxy-size halos and subhalos. We create realistic mock galaxy catalogs by assigning luminosities and colors to dark matter halos and subhalos, and we measure the reduced 3PCF as a function of luminosity and color in both real and redshift space. As galaxy luminosity and color are varied, we find small differences in the amplitude and shape dependence of the reduced 3PCF, at a level qualitatively consistent with recent measurements from the SDSS and 2dFGRS. We confirm that discrepancies between previous 3PCF measurements can be explained in part by differences in binning choices. We explore the degree to which a simple local bias model can fit the simulated 3PCF. The agreement between the model predictions and galaxy 3PCF measurements lends further credence to the straightforward association of galaxies with CDM halos and subhalos.

  3. SKA weak lensing - I. Cosmological forecasts and the power of radio-optical cross-correlations

    NASA Astrophysics Data System (ADS)

    Harrison, Ian; Camera, Stefano; Zuntz, Joe; Brown, Michael L.

    2016-12-01

    We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST, WFIRST-AFTA or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of ˜10 in matter, ˜10 in dark energy and ˜5 in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within ˜5 per cent) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which can also eliminate a number of potential sources of systematic errors which can otherwise limit the utility of weak lensing cosmology.

  4. BMS in cosmology

    NASA Astrophysics Data System (ADS)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  5. BMS in cosmology

    SciTech Connect

    Kehagias, A.; Riotto, A.

    2016-05-25

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  6. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2016-04-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of AGN evolution stretching back to z˜5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function - all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is demonstrated at z ≈0 and 0.9, and clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z. The results support the idea that there are at least two different modes of AGN triggering: one, at high luminosity, that only occurs in high mass, highly biased haloes, and one that can occur over a wide range of halo masses and leads to luminosities that are correlated with halo mass. This latter mode dominates at z<0.9. The CLFs for Type 2 and Type 1 AGNs are also constrained at z ≈0, and we find evidence that unobscured quasars are more likely to be found in higher mass halos than obscured quasars. Thus, the AGN unification model seems to fail at quasar luminosities.

  7. Cross-correlation between damped Lyα systems and Lyman break galaxies in cosmological SPH simulations

    NASA Astrophysics Data System (ADS)

    Lee, T. S.; Nagamine, K.; Hernquist, L.; Springel, V.

    2011-02-01

    We calculate the cross-correlation function (CCF) between damped Lyα systems (DLAs) and Lyman break galaxies (LBGs) using cosmological hydrodynamic simulations at z= 3. We compute the CCF with two different methods. First, we assume that there is one DLA in each dark matter halo if its DLA cross-section is non-zero. In our second approach we weight the pair count by the DLA cross-section of each halo, yielding a cross-section-weighted CCF. We also compute the angular CCF for direct comparison with observations. Finally, we calculate the autocorrelation functions of LBGs and DLAs, and their bias against the dark matter distribution. For these different approaches, we consistently find that there is good agreement between our simulations and observational measurements by Cooke et al. and Adelberger et al.. Our results thus confirm that the spatial distribution of LBGs and DLAs can be well described within the framework of the concordance Λ cold dark matter model. We find that the correlation strengths of LBGs and DLAs are consistent with the actual observations, and in the case of LBGs it is higher than would be predicted by low-mass galaxy merger models.

  8. COSMOLOGICAL DEPENDENCE OF THE MEASUREMENTS OF LUMINOSITY FUNCTION, PROJECTED CLUSTERING AND GALAXY-GALAXY LENSING SIGNAL

    SciTech Connect

    More, Surhud

    2013-11-10

    Observables such as the galaxy luminosity function, Φ(M), projected galaxy clustering, w {sub p}(r {sub p}), and the galaxy-galaxy lensing signal, ΔΣ(r {sub p}), are often measured from galaxy redshift surveys assuming a fiducial cosmological model for calculating distances to, and between galaxies. There are a growing number of studies that perform joint analyses of these measurements and constrain cosmological parameters. We quantify the amount by which such measurements systematically vary as the fiducial cosmology used for the measurements is changed, and show that these effects can be significant at high redshifts (z ∼ 0.5). Cosmological analyses (or halo occupation distribution analyses) that use the luminosity function, clustering and the galaxy-galaxy lensing signal but ignore such systematic effects may bias the inference of the parameters. We present a simple way to account for the differences in the cosmological model used for the measurements and those used for the prediction of observables, thus allowing a fair comparison between models and data.

  9. Hierarchy of N-point functions in the {Lambda}CDM and ReBEL cosmologies

    SciTech Connect

    Hellwing, Wojciech A.; Juszkiewicz, Roman; Weygaert, Rien van de

    2010-11-15

    In this work we investigate higher-order statistics for the {Lambda}CDM and ReBEL scalar-interacting dark matter models by analyzing 180h{sup -1} Mpc dark matter N-body simulation ensembles. The N-point correlation functions and the related hierarchical amplitudes, such as skewness and kurtosis, are computed using the counts-in-cells method. Our studies demonstrate that the hierarchical amplitudes S{sub n} of the scalar-interacting dark matter model significantly deviate from the values in the {Lambda}CDM cosmology on scales comparable and smaller than the screening length r{sub s} of a given scalar-interacting model. The corresponding additional forces that enhance the total attractive force exerted on dark matter particles at galaxy scales lower the values of the hierarchical amplitudes S{sub n}. We conclude that hypothetical additional exotic interactions in the dark matter sector should leave detectable markers in the higher-order correlation statistics of the density field. We focused in detail on the redshift evolution of the dark matter field's skewness and kurtosis. From this investigation we find that the deviations from the canonical {Lambda}CDM model introduced by the presence of the 'fifth' force attain a maximum value at redshifts 0.5

  10. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; Hill, J. Colin; Hincks, Adam D.; Hughes, John P.; Huffenberger, Kevin; Hlozek, Renee; Kosowsky, Arthur; Louis, Thibaut; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D.; Page, Lyman A.; Reese. Erik D.; Sehgal, Neelima; Sievers, Jon; Sifon, Cristobal; Spergel, David N.; Staggs, Suzanne T.; Switzer, Eric R.; Wollack, Ed.

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  11. Functional Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  12. Omega from the anisotropy of the redshift correlation function in the IRAS 2 Jansky survey

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies in redshift space. In the linear regime, the distortion has a characteristic quadrupole plus hexadecapole form, with amplitude depending on the cosmological density parameter Omega. I report here measurements of the anisotropy of the correlation function in the IRAS 2 Jy redshift survey. The inferred value of Omega is Omega = 0.5 + 0.5 or - 0.25.

  13. Redshifted HI 21-cm Signal from the Post-Reionization Epoch: Cross-Correlations with Other Cosmological Probes

    NASA Astrophysics Data System (ADS)

    Sarkar, T. Guha; Datta, K. K.; Pal, A. K.; Choudhury, T. Roy; Bharadwaj, S.

    2016-12-01

    Tomographic intensity mapping of the HI using the redshifted 21-cm observations opens up a new window towards our understanding of cosmological background evolution and structure formation. This is a key science goal of several upcoming radio telescopes including the Square Kilometer Array (SKA). In this article, we focus on the post-reionization signal and investigate the cross correlating of the 21-cm signal with other tracers of the large scale structure. We consider the cross-correlation of the post-reionization 21-cm signal with the Lyman- α forest, Lyman-break galaxies and late time anisotropies in the CMBR maps like weak lensing and the integrated Sachs Wolfe effect. We study the feasibility of detecting the signal and explore the possibility of obtaining constraints on cosmological models using it.

  14. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    SciTech Connect

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

  15. The Cosmological Constant in Quantum Cosmology

    SciTech Connect

    Wu Zhongchao

    2008-10-10

    Hawking proposed that the cosmological constant is probably zero in quantum cosmology in 1984. By using the right configuration for the wave function of the universe, a complete proof is found very recently.

  16. Loops in inflationary correlation functions

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Urakawa, Yuko

    2013-12-01

    We review the recent progress regarding the loop corrections to the correlation functions in the inflationary universe. A naive perturbation theory predicts that the loop corrections generated during inflation suffer from various infrared (IR) pathologies. Introducing an IR cutoff by hand is neither satisfactory nor enough to fix the problem of a secular growth, which may ruin the predictive power of inflation models if the inflation lasts sufficiently long. We discuss the origin of the IR divergences and explore the regularity conditions of the loop corrections for the adiabatic perturbation, the iso-curvature perturbation, and the tensor perturbation, in turn. These three kinds of perturbations have qualitative differences, but in discussing the IR regularity there is a feature common to all cases, which is the importance of the proper identification of observable quantities. Genuinely, observable quantities should respect the gauge invariance from the view point of a local observer. Interestingly, we find that the requirement of the IR regularity restricts the allowed quantum states.

  17. Early black holes in cosmological simulations: luminosity functions and clustering behaviour

    NASA Astrophysics Data System (ADS)

    DeGraf, Colin; Di Matteo, Tiziana; Khandai, Nishikanta; Croft, Rupert; Lopez, Julio; Springel, Volker

    2012-08-01

    We examine predictions for the quasar luminosity functions (QLFs) and quasar clustering at high redshift (z ≥ 4.75) using MassiveBlack, our new hydrodynamic cosmological simulation which includes a self-consistent model for black hole (BH) growth and feedback. We show that the model reproduces the Sloan QLF within observational constraints at z ≥ 5. We find that the high-z QLF is consistent with a redshift-independent occupation distribution of BHs among dark matter haloes (which we provide) such that the evolution of the QLF follows that of the halo mass function. The sole exception is the bright end at z = 6 and 7, where BHs in high-mass haloes tend to be unusually bright due to extended periods of Eddington growth caused by high-density cold flows into the halo centre. We further use these luminosity functions to make predictions for the number density of quasars in upcoming surveys, predicting that there should be ˜119 ± 28 (˜87 ± 28) quasars detectable in the F125W band of the WIDE (DEEP) fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) from z = 5 to 6, ˜19 ± 7 (˜18 ± 9) from z = 6 to 7 and ˜1.7 ± 1.5 (˜1.5 ± 1.5) from z = 7 to 8. We also investigate quasar clustering, finding that the correlation length is fully consistent with current constraints for Sloan quasars (r0 ˜ 17 h-1 Mpc at z = 4 for quasars above mi = 20.2) and grows slowly with redshift up to z = 6 (r0 ˜ 22 h-1 Mpc). Finally, we note that the quasar clustering strength depends weakly on luminosity for low LBH, but gets stronger at higher LBH as the BHs are found in higher mass haloes.

  18. Cosmology with gamma-ray bursts. I. The Hubble diagram through the calibrated Ep,i-Eiso correlation

    NASA Astrophysics Data System (ADS)

    Demianski, Marek; Piedipalumbo, Ester; Sawant, Disha; Amati, Lorenzo

    2017-02-01

    Context. Gamma-ray bursts (GRBs) are the most energetics explosions in the Universe. They are detectable up to very high redshifts. They may therefore be used to study the expansion rate of the Universe and to investigate the observational properties of dark energy, provided that empirical correlations between spectral and intensity properties are appropriately calibrated. Aims: We used the type Ia supernova (SN) luminosity distances to calibrate the correlation between the peak photon energy, Ep,i, and the isotropic equivalent radiated energy, Eiso in GRBs. With this correlation, we tested the reliability of applying these phenomena to measure cosmological parameters and to obtain indications on the basic properties and evolution of dark energy. Methods: Using 162 GRBs with measured redshifts and spectra as of the end of 2013, we applied a local regression technique to calibrate the Ep,i-Eiso correlation against the type Ia SN data to build a calibrated GRB Hubble diagram. We tested the possible redshift dependence of the correlation and its effect on the Hubble diagram. Finally, we used the GRB Hubble diagram to investigate the dark energy equation of state (EOS). To accomplish this, we focused on the so-called Chevalier-Polarski-Linder (CPL) parametrization of the dark energy EOS and implemented the Markov chain Monte Carlo (MCMC) method to efficiently sample the space of cosmological parameters. Results: Our analysis shows once more that the Ep,i-Eiso correlation has no significant redshift dependence. Therefore the high-redshift GRBs can be used as a cosmological tool to determine the basic cosmological parameters and to test different models of dark energy in the redshift region (), which is unexplored by the SNIa and baryonic acoustic oscillations data. Our updated calibrated Hubble diagram of GRBs provides some marginal indication (at 1σ level) of an evolving dark energy EOS. A significant enlargement of the GRB sample and improvements in the accuracy of

  19. The Velocity Distribution Function of Galaxy Clusters as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Cisewski, J.; Price, L. C.

    2017-01-01

    We present a new approach for quantifying the abundance of galaxy clusters and constraining cosmological parameters using dynamical measurements. In the standard method, galaxy line-of-sight velocities, v, or velocity dispersions are used to infer cluster masses, M, to quantify the halo mass function (HMF), {dn}(M)/d{log}(M), which is strongly affected by mass measurement errors. In our new method, the probability distributions of velocities for each cluster in the sample are summed to create a new statistic called the velocity distribution function (VDF), {dn}(v)/{dv}. The VDF can be measured more directly and precisely than the HMF and can be robustly predicted with cosmological simulations that capture the dynamics of subhalos or galaxies. We apply these two methods to realistic (ideal) mock cluster catalogs with (without) interlopers and forecast the bias and constraints on the matter density parameter Ωm and the amplitude of matter fluctuations σ8 in flat ΛCDM cosmologies. For an example observation of 200 massive clusters, the VDF with (without) interloping galaxies constrains the parameter combination {σ }8 {{{Ω }}}m0.29(0.29)=0.589+/- 0.014 (0.584+/- 0.011) and shows only minor bias. However, the HMF with interlopers is biased to low Ωm and high σ8 and the fiducial model lies well outside of the forecast constraints, prior to accounting for Eddington bias. When the VDF is combined with constraints from the cosmic microwave background, the degeneracy between cosmological parameters can be significantly reduced. Upcoming spectroscopic surveys that probe larger volumes and fainter magnitudes will provide clusters for applying the VDF as a cosmological probe.

  20. Microwave background anisotropies implied by large-scale galaxy correlations - The minimum of C(0) and cosmological parameters

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1991-01-01

    Data from a recent APM survey are used to show that large-scale galaxy correlations found there imply the existence of measurable microwave background radiation (MBR) anisotropies on scales greater than several degrees. It is shown that sq rt C(0) is not less than 3.5 x 10 exp -5 if the APM data are used at Theta-0 = 20 deg, or sq rt C(0) is not less than 2.8 x 10 exp -5 if Theta-0 = 10 deg is used. These numbers are almost independent of the cosmological parameters Omega, Lambda, and the redshift of the last scattering surface. For finite-beamwidth experiments the minimal fluctuations depend on the cosmological parameters. The minimal anisotropies are smaller in a low-Omega universe.

  1. Clustering, cosmology and a new era of black hole demographics- I. The conditional luminosity function of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z ˜ 5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGN inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGN and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, this paper presents a method to observationally constrain the conditional luminosity function (CLF) of AGN at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z ≈ 0 and 0.9 using the limited data that are currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z ≈ 0.9 quasars may be commonly hosted by haloes with Mh ˜ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGN of different luminosities in cosmological simulations.

  2. Closed-time-path functional formalism in curved spacetime: Application to cosmological back-reaction problems

    NASA Astrophysics Data System (ADS)

    Calzetta, E.; Hu, B. L.

    1987-01-01

    We discuss the generalization to curved spacetime of a path-integral formalism of quantum field theory based on the sum over paths first going forward in time in the presence of one external source from an in vacuum to a state defined on a hypersurface of constant time in the future, and then backwards in time in the presence of a different source to the same in vacuum. This closed-time-path formalism which generalizes the conventional method based on in-out vacuum persistence amplitudes yields real and causal effective actions, field equations, and expectation values. We apply this method to two problems in semiclassical cosmology. First we study the back reaction of particle production in a radiation-filled Bianchi type-I universe with a conformal scalar field. Unlike the in-out formalism which yields complex geometries the real and causal effective action here yields equations for real effective geometries, with more readily interpretable results. It also provides a clear identification of particle production as a dissipative process in semiclassical theories. In the second problem we calculate the vacuum expectation value of the stress-energy tensor for a nonconformal massive λφ4 theory in a Robertson-Walker universe. This study serves to illustrate the use of Feynman diagrams and higher-loop calculations in this formalism. It also demonstrates the economy of this method in the calculation of expectation values over the mode-sum Bogolubov transformation methods ordinarily applied to matrix elements calculated in the conventional in-out approach. The capability of the closed-time-path formalism of dealing with Feynman, causal, and correlation functions on the same footing makes it a potentially powerful and versatile technique for treating nonequilibrium statistical properties of dynamical systems as in early-Universe quantum processes.

  3. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 < z < 3.0, for both CLASXS and CDFN fields for a standard cosmology with Omega(sub Lambda) = 0.73,Omega(sub M) = 0.27, and h = 0.71 (H(sub 0) = 100h km/s Mpc(exp -1). The correlation function for the CLASXS field over scales of 3 Mpc< s < 200 Mpc can be modeled as a power-law of the form xi(s) = (S/SO)(exp - gamma), with gamma = 1.6(sup +0.4 sub -0.3) and S(sub o) = 8.0(sup +.14 sub -1.5) Mpc. The redshift-space correlation function for CDFN on scales of 1 Mpc< s < 100 Mpc is found to have a similar correlation length so = 8.55(sup +0.74 sub -0.74) Mpc, but a shallower slope (gamma = 1.3 +/- 0.1). The real-space correlation functions derived from the projected correlation functions, are found to be tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the

  4. Cosmological calculations on the GPU

    NASA Astrophysics Data System (ADS)

    Bard, D.; Bellis, M.; Allen, M. T.; Yepremyan, H.; Kratochvil, J. M.

    2013-02-01

    Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next generation of survey telescopes will yield measurements of billions of galaxies. The scale of these datasets, and the nature of the calculations involved, make cosmological calculations ideal models for implementation on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and compare the calculation speeds to comparable code run on the CPU. We obtain a code speed-up of between 10 and 180× faster, compared to performing the same calculation on the CPU. The code has been made publicly available. GPUs are a useful tool for cosmological calculations, even for datasets the size of current surveys, allowing calculations to be made one or two orders of magnitude faster.

  5. Functional CAR models for large spatially correlated functional datasets.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S

    2016-01-01

    We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

  6. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters

    SciTech Connect

    Costanzi, Matteo; Borgani, Stefano; Villaescusa-Navarro, Francisco; Viel, Matteo; Xia, Jun-Qing; Castorina, Emanuele; Sefusatti, Emiliano E-mail: villaescusa@oats.inaf.it E-mail: xiajq@ihep.ac.cn E-mail: castori@sissa.it

    2013-12-01

    We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes selected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using P{sub cdm}(k) instead of P{sub m}(k), are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when P{sub cdm}(k) is considered rather than P{sub m}(k). As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as 30% for ∑m{sub ν} = 0.4 eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the σ{sub 8}(Ω{sub m}/0.27){sup γ} relation which can be quantified as Δγ ∼ 0.05 and Δγ ∼ 0.14 assuming one (N{sub ν} = 1) or three (N{sub ν} = 3) degenerate massive neutrino, respectively. The shift results in a lower mean value of σ{sub 8} with Δσ{sub 8} = 0.01 for N{sub ν} = 1 and Δσ{sub 8} = 0.02 for N{sub ν} = 3, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements.

  7. Pfaffian Correlation Functions of Planar Dimer Covers

    NASA Astrophysics Data System (ADS)

    Aizenman, Michael; Valcázar, Manuel Laínz; Warzel, Simone

    2017-01-01

    The Pfaffian structure of the boundary monomer correlation functions in the dimer-covering planar graph models is rederived through a combinatorial/topological argument. These functions are then extended into a larger family of order-disorder correlation functions which are shown to exhibit Pfaffian structure throughout the bulk. Key tools involve combinatorial switching symmetries which are identified through the loop-gas representation of the double dimer model, and topological implications of planarity.

  8. Computation of the halo mass function using physical collapse parameters: application to non-standard cosmologies

    SciTech Connect

    Achitouv, I.; Weller, J.; Wagner, C.; Rasera, Y. E-mail: cwagner@MPA-Garching.MPG.DE E-mail: yann.rasera@obspm.fr

    2014-10-01

    In this article we compare the halo mass function predicted by the excursion set theory with a drifting diffusive barrier against the results of N-body simulations for several cosmological models. This includes the standard ΛCDM case for a large range of halo masses, models with different types of primordial non-Gaussianity, and the Ratra-Peebles quintessence model of Dark Energy. We show that in all those cosmological scenarios, the abundance of dark matter halos can be described by a drifting diffusive barrier, where the two parameters describing the barrier have physical content. In the case of the Gaussian ΛCDM, the statistics are precise enough to actually predict those parameters at different redshifts from the initial conditions. Furthermore, we found that the stochasticity in the barrier is non-negligible making the simple deterministic spherical collapse model a bad approximation even at very high halo masses. We also show that using the standard excursion set approach with a barrier inspired by peak patches leads to inconsistent predictions of the halo mass function.

  9. On the measurability of quantum correlation functions

    NASA Astrophysics Data System (ADS)

    de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre

    2015-05-01

    The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.

  10. On the measurability of quantum correlation functions

    SciTech Connect

    Lima Bernardo, Bertúlio de Azevedo, Sérgio; Rosas, Alexandre

    2015-05-15

    The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.

  11. Omega from the anisotropy of the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.

  12. Generalized hydrodynamic correlations and fractional memory functions

    NASA Astrophysics Data System (ADS)

    Rodríguez, Rosalio F.; Fujioka, Jorge

    2015-12-01

    A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.

  13. Multitime correlation functions in nonclassical stochastic processes

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Sperling, J.; Vogel, W.

    2016-06-01

    A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.

  14. From correlation functions to event shapes

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.; Hohenegger, S.; Korchemsky, G. P.; Sokatchev, E.; Zhiboedov, A.

    2014-07-01

    We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a nontrivial analytic continuation which, in the framework of CFT, can be performed elegantly in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N=4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N=4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N=4 SYM that should be valid at any coupling and away from the planar limit. presence of intrinsic infrared (IR) divergences; integration over the phase space of the final state and subsequent intricate IR cancellations; necessity for summation over all final states. Let us comment on each of these points. They are very well understood in the context of perturbation theory no IR divergences are present in the correlation

  15. Pair correlation function integrals: Computation and use

    NASA Astrophysics Data System (ADS)

    Wedberg, Rasmus; O'Connell, John P.; Peters, Günther H.; Abildskov, Jens

    2011-08-01

    We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O'Connell, G. H. Peters, and J. Abildskov, Mol. Simul. 36, 1243 (2010);, 10.1080/08927020903536366 Fluid Phase Equilib. 302, 32 (2011)], 10.1016/j.fluid.2010.10.004, but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report numerical tests complementing previous results. Pure molecular fluids are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from the total correlation function integrals and compared with values derived from volume fluctuations. For systems where the radial distribution function has structure beyond the sampling limit imposed by the system size, the integration is more reliable, and usually more accurate, than simple integral truncation.

  16. Triplet correlation functions in liquid water

    NASA Astrophysics Data System (ADS)

    Dhabal, Debdas; Singh, Murari; Wikfeldt, Kjartan Thor; Chakravarty, Charusita

    2014-11-01

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O-O-O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O-O-O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.

  17. Triplet correlation functions in liquid water

    SciTech Connect

    Dhabal, Debdas; Chakravarty, Charusita; Singh, Murari; Wikfeldt, Kjartan Thor

    2014-11-07

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.

  18. Correlation functions of Coulomb branch operators

    NASA Astrophysics Data System (ADS)

    Gerchkovitz, Efrat; Gomis, Jaume; Ishtiaque, Nafiz; Karasik, Avner; Komargodski, Zohar; Pufu, Silviu S.

    2017-01-01

    We consider the correlation functions of Coulomb branch operators in four-dimensional N = 2 Superconformal Field Theories (SCFTs) involving exactly one antichiral operator. These extremal correlators are the "minimal" non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt ∗ equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N = 2 SQCD.

  19. Semiclassical approximations to quantum time correlation functions

    NASA Astrophysics Data System (ADS)

    Egorov, S. A.; Skinner, J. L.

    1998-09-01

    Over the last 40 years several ad hoc semiclassical approaches have been developed in order to obtain approximate quantum time correlation functions, using as input only the corresponding classical time correlation functions. The accuracy of these approaches has been tested for several exactly solvable gas-phase models. In this paper we test the accuracy of these approaches by comparing to an exactly solvable many-body condensed-phase model. We show that in the frequency domain the Egelstaff approach is the most accurate, especially at high frequencies, while in the time domain one of the other approaches is more accurate.

  20. SMJ's analysis of Ising model correlation functions

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.; Kohmoto, Mahito

    1980-05-01

    In a series of recent publications Sato, Miwa, and Jimbo (SMJ) have shown how to derive multispin correlation functions of the two-dimensional Ising model in the continuum, or scaling, limit by analyzing the behavior of the solutions to the two-dimensional version of the Dirac equation. The major purpose of the present work is to describe SMJ's analysis more discursively and in terms closer to that used in previous studies of the Ising model. In addition, new and more compact expressions for their basic equations are derived. A single new answer is obtained: the form of the three-spin correlation function at criticality.

  1. Modeling the Galaxy Three-Point Correlation Function

    SciTech Connect

    Marin, Felipe; Wechsler, Risa; Frieman, Joshua A.; Nichol, Robert; /Portsmouth U., ICG

    2007-06-05

    We present new theoretical predictions for the galaxy three-point correlation function (3PCF) using high-resolution dissipationless cosmological simulations of a flat Lambda CDM Universe which resolve galaxy-size halos and subhalos. We create realistic mock galaxy catalogs by assigning luminosities and colors to dark matter halos and subhalos, and we measure the reduced 3PCF as a function of luminosity and color in both real and redshift space. As galaxy luminosity and color are varied, we find small differences in the amplitude and shape dependence of the reduced 3PCF, at a level qualitatively consistent with recent measurements from the SDSS and 2dFGRS. We confirm that discrepancies between previous 3PCF measurements can be explained in part by differences in binning choices. We explore the degree to which a simple local bias model can fit the simulated 3PCF. The agreement between the model predictions and galaxy 3PCF measurements lends further credence to the straightforward association of galaxies with CDM halos and subhalos.

  2. Cosmology in the Bucharest Observatory

    NASA Astrophysics Data System (ADS)

    Suran, Marian Doru

    2008-09-01

    At the Bucharest Observatory cosmology started in the early'80s as a theoretical branch directly related to the computational facilities available in our Observatory. With the help of our instruments, from a small Z8080 computer (early'80s) to a superscalar supercomputer of 44 processors (now), our cosmology team has developed models, methods and techniques related to: the investigation of 2D and 3D catalogues of galaxies, clusters and superclusters; investigation of the log tails of the 2-points correlation functions; cosmological simulations (N-body+SPH) of the Large Scale Structure of the Universe (LSS) investigation of environmental effects in clusters of galaxies; application of neural methods in cosmology. The use of such models and techniques has permitted us to study problems concerning: correlated signals in the long tail of the correlation functions for galaxies, clusters and superclusters (due to baryon oscillations) HD simulations of the LSS and of the evolution of the first and secondary Web structures; studies of the epochs of the formation of DM halos in a LCDM scenario (earlier than z 15) studies of the evolution of halos and galaxies due to the parental merging phenomena; detection of the Butcher-Oemler and Oemler-Butcher effects in far or close clusters; studies of E+A galaxies; study of the synthetic spectra of galaxies and of the chemo-spectro-photometrical evolution of galaxies (for z<30) photometric redshift determination (for z<10).

  3. Group entropies, correlation laws, and zeta functions

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2011-08-01

    The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

  4. Correlation Functions Aid Analyses Of Spectra

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H., Jr.

    1989-01-01

    New uses found for correlation functions in analyses of spectra. In approach combining elements of both pattern-recognition and traditional spectral-analysis techniques, spectral lines identified in data appear useless at first glance because they are dominated by noise. New approach particularly useful in measurement of concentrations of rare species of molecules in atmosphere.

  5. Nonclassicality criteria: Quasiprobability distributions and correlation functions

    NASA Astrophysics Data System (ADS)

    Alexanian, Moorad

    2016-10-01

    We use the exact calculation of the quantum mechanical, temporal characteristic function χ (η ) and the degree of second-order coherence g(2 )(τ ) for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state, to study the different criteria for nonclassicality. In particular, we contrast criteria that involve only one-time functions of the dynamical system, for instance, the quasiprobability distribution P (β ) of the Glauber-Sudarshan coherent or P representation of the density of state and the Mandel QM(τ ) parameter, versus the criteria associated with the two-time correlation function g(2 )(τ ) .

  6. Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates

    SciTech Connect

    Prain, Angus; Liberati, Stefano; Fagnocchi, Serena

    2010-11-15

    We investigate the structure of quantum correlations in an expanding Bose-Einstein condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.

  7. Correlates of functional capacity among centenarians.

    PubMed

    Martin, Peter; MacDonald, Maurice; Margrett, Jennifer; Siegler, Ilene; Poon, Leonard W; Jazwinski, S M; Green, R C; Gearing, M; Markesbery, W R; Woodard, J L; Johnson, M A; Tenover, J S; Rodgers, W L; Hausman, D B; Rott, C; Davey, A; Arnold, J

    2013-04-01

    This study investigated correlates of functional capacity among participants of the Georgia Centenarian Study. Six domains (demographics and health, positive and negative affect, personality, social and economic support, life events and coping, distal influences) were related to functional capacity for 234 centenarians and near centenarians (i.e., 98 years and older). Data were provided by proxy informants. Domain-specific multiple regression analyses suggested that younger centenarians, those living in the community and rated to be in better health were more likely to have higher functional capacity scores. Higher scores in positive affect, conscientiousness, social provisions, religious coping, and engaged lifestyle were also associated with higher levels of functional capacity. The results suggest that functional capacity levels continue to be associated with age after 100 years of life and that positive affect levels and past lifestyle activities as reported by proxies are salient factors of adaptation in very late life.

  8. A marked correlation function for constraining modified gravity models

    NASA Astrophysics Data System (ADS)

    White, Martin

    2016-11-01

    Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.

  9. Redshift distortions of galaxy correlation functions

    NASA Astrophysics Data System (ADS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-04-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r0 and power index gamma of the two-point correlations, bar-xi0 = (r0/r)gamma, and as the hierarchical amplitudes of the three- and four-point functions, S3 = bar-xi3/bar-xi22 and S4 = bar-xi4/bar-xi32. We find a characteristic distortion for bar-xi2, the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega4/7/b approximately equal to 1. We estimate Omega4/7/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi3 and bar-xi4 suffer similar redshift distortions but in such a way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S3 approximately equal to 2 and S4 approximately equal to 6, despite the fact that bar-xi2, bar-xi3, and bar-xi4 differ from one sample to another by large factors (up to a factor of 4 in bar-xi2, 8 for bar-xi3, and 12 for bar-xi4). The agreement between the independent estimations of S3 and S4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.

  10. Redshift distortions of galaxy correlation functions

    NASA Astrophysics Data System (ADS)

    Fry, J. N.; Gaztanaga, E.

    1993-05-01

    To examine how peculiar velocities can affect the 2-, 3-, and 4-point correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r0 and power index gamma of the 2-point correlation, bar-xi2 = (r0/r)gamma), and as the hierarchical amplitudes of the 3- and 4-point functions, S3 = bar-xi3/bar-xi22 and S4 = bar-xi/bar-xi)23. We find a characteristic distortion for bar-xi2: The slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales, extra power in the redshift distribution is compatible with Omega4/7/b approx. 1; we find 0.53 plus/minus 0.15, 1.10 plus/minus 0.16 and 0.84 plus/minus 0.45 for the CfA, SSRS and IRAS catalogs. Higher order correlations bar-xi3 and bar-xi4 suffer similar redshift distortions, but in such a way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function of scale between 1-12 h-1 Mpc and have similar values in all samples and catalogues, S3 approx. 2 and S4 approx. 6, despite the fact that bar-xi2, bar-xi3, and bar-xi4 differ from one sample to another by large factors. The agreement between the independent estimations of S3 and S4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities and locations between samples.

  11. Unified Green's Function Retrieval by Cross Correlation

    SciTech Connect

    Wapenaar, Kees; Slob, Evert; Snieder, Roel

    2006-12-08

    It has been shown by many authors that the cross correlation of two recordings of a diffuse wave field at different receivers yields the Green's function between these receivers. Recently the theory has been extended for situations where time-reversal invariance does not hold (e.g., in attenuating media) and where source-receiver reciprocity breaks down (in moving fluids). Here we present a unified theory for Green's function retrieval that captures all these situations and, because of the unified form, readily extends to more complex situations, such as electrokinetic Green's function retrieval in poroelastic or piezoelectric media. The unified theory has a wide range of applications in ''remote sensing without a source.''.

  12. New angles on energy correlation functions

    NASA Astrophysics Data System (ADS)

    Moult, Ian; Necib, Lina; Thaler, Jesse

    2016-12-01

    Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.

  13. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    SciTech Connect

    Hrycyna, Orest; Szydłowski, Marek E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  14. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias

    SciTech Connect

    Castorina, Emanuele; Sefusatti, Emiliano; Sheth, Ravi K.; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: emiliano.sefusatti@brera.inaf.it E-mail: villaescusa@oats.inaf.it

    2014-02-01

    We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the scaling variable σ{sup 2}(M,z), the variance of the initial matter fluctuation field, rather than on halo mass M and redshift z themselves. We show that using the variance of the cold dark matter rather than the total mass field, i.e., σ{sup 2}{sub cdm}(M,z) rather than σ{sup 2}{sub m}(M,z), yields more universal results. Analysis of halo bias yields similar conclusions: when large-scale halo bias is defined with respect to the cold dark matter power spectrum, the result is both more universal, and less scale- or k-dependent. These results are used extensively in Papers I and III of this series.

  15. Evolution of the real-space correlation function from next generation cluster surveys. Recovering the real-space correlation function from photometric redshifts

    NASA Astrophysics Data System (ADS)

    Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico

    2017-03-01

    Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in

  16. Effective theory of squeezed correlation functions

    SciTech Connect

    Mirbabayi, Mehrdad; Simonović, Marko E-mail: markos@ias.edu

    2016-03-01

    Various inflationary scenarios can often be distinguished from one another by looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have a framework designed to study this limit in a more systematic and efficient way. We propose using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is argued to generically exist in a near de Sitter space-time. The modes have a simple factorized form which leads to factorization of the squeezed-limit correlation functions with power-law behavior in k{sub long}/k{sub short}. This approach reproduces the known results in single-, quasi-single-, and multi-field inflationary models. However, it is applicable even if, unlike the above examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales. Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary models. We discuss the observability of the non-Gaussian 3-point function in the large-scale structure surveys, and argue that the squeezed limit behavior has a higher detectability chance than equilateral behavior when it scales as (k{sub long}/k{sub short}){sup Δ} with Δ < 1—where local non-Gaussianity corresponds to Δ = 0.

  17. Van Hove correlation functions for identical fermions

    NASA Astrophysics Data System (ADS)

    Macke, Wilhelm; Miesenböck, Helga M.; Hingerl, Kurt; Bachlechner, Martina E.

    1989-02-01

    For a quantum system of identical fermions a partition of the density-density correlation function in its ``self'' and ``distinct'' part is presented. These quantities show different properties than their classical counterparts, e.g., they violate the ``detailed balance'' and are not necessarily real. Nevertheless it can be expected that they will provide a good tool for a better description of the self-motion in many-particle systems and are therefore investigated in second-order perturbation theory of the interparticle potential.

  18. Nuclear correlation functions in lattice QCD

    SciTech Connect

    Detmold, William; Orginos, Konstantinos

    2013-06-01

    We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, $^4$He, $^8$Be, $^{12}$C, $^{16}$O and $^{28}$Si.

  19. On soft limits of inflationary correlation functions

    NASA Astrophysics Data System (ADS)

    Assassi, Valentin; Baumann, Daniel; Green, Daniel

    2012-11-01

    Soft limits of inflationary correlation functions are both observationally relevant and theoretically robust. Various theorems can be proven about them that are insensitive to detailed model-building assumptions. In this paper, we re-derive several of these theorems in a universal way. Our method makes manifest why soft limits are such an interesting probe of the spectrum of additional light fields during inflation. We illustrate these abstract results with a detailed case study of the soft limits of quasi-single-field inflation.

  20. Pair correlation function for spin glasses

    NASA Astrophysics Data System (ADS)

    Fernández, Julio F.; Alonso, Juan J.

    2012-10-01

    We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.

  1. MESON CORRELATION FUNCTIONS AT HIGH TEMPERATURES.

    SciTech Connect

    WISSEL, S.; DATTA, S.; KARSCH, F.; LAERMANN, E.; SHCHEREDIN, S.

    2005-07-25

    We present preliminary results for the correlation- and spectral functions of different meson channels on the lattice. The main focus lies on gaining control over cut-off as well as on the finite-volume effects. Extrapolations of screening masses above the deconfining temperature are guided by the result of the free (T = {infinity}) case on the lattice and in the continuum. We study the quenched non-perturbatively improved Wilson-clover fermion as well as the hypercube fermion action which might show less cut-off effects.

  2. Precision cosmology, Accuracy cosmology and Statistical cosmology

    NASA Astrophysics Data System (ADS)

    Verde, Licia

    2014-05-01

    The avalanche of data over the past 10-20 years has propelled cosmology into the ``precision era''. The next challenge cosmology has to meet is to enter the era of accuracy. Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available now and coming soon, the only way to meet this challenge is by developing suitable and specific statistical techniques. The road from precision Cosmology to accurate Cosmology goes through statistical Cosmology. I will outline some open challenges and discuss some specific examples.

  3. Matrix elements from moments of correlation functions

    SciTech Connect

    Chang, Chia Cheng; Bouchard, Chris; Orginos, Konstantinos; Richards, David G.

    2016-10-01

    Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.

  4. The galaxy correlation function as a constraint on galaxy formation physics

    NASA Astrophysics Data System (ADS)

    van Daalen, Marcel P.; Henriques, Bruno M. B.; Angulo, Raul E.; White, Simon D. M.

    2016-05-01

    We introduce methods which allow observed galaxy clustering to be used together with observed luminosity or stellar mass functions to constrain the physics of galaxy formation. We show how the projected two-point correlation function of galaxies in a large semi-analytic simulation can be estimated to better than ˜10 per cent using only a very small subsample of the subhalo merger trees. This allows measured correlations to be used as constraints in a Monte Carlo Markov Chain exploration of the astrophysical and cosmological parameter space. An important part of our scheme is an analytic profile which captures the simulated satellite distribution extremely well out to several halo virial radii. This is essential to reproduce the correlation properties of the full simulation at intermediate separations. As a first application, we use low-redshift clustering and abundance measurements to constrain a recent version of the Munich semi-analytic model. The preferred values of most parameters are consistent with those found previously, with significantly improved constraints and somewhat shifted `best' values for parameters that primarily affect spatial distributions. Our methods allow multi-epoch data on galaxy clustering and abundance to be used as joint constraints on galaxy formation. This may lead to significant constraints on cosmological parameters even after marginalizing over galaxy formation physics.

  5. Dynamic functional network connectivity using distance correlation

    NASA Astrophysics Data System (ADS)

    Rudas, Jorge; Guaje, Javier; Demertzi, Athena; Heine, Lizette; Tshibanda, Luaba; Soddu, Andrea; Laureys, Steven; Gómez, Francisco

    2015-01-01

    Investigations about the intrinsic brain organization in resting-state are critical for the understanding of healthy, pathological and pharmacological cerebral states. Recent studies on fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, in the so called, Resting State Networks (RSNs). The assessment of the interactions among these functional networks plays an important role for the understanding of different brain pathologies. Current methods to quantify these interactions commonly assume that the underlying coordination mechanisms are stationary and linear through the whole recording of the resting state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do not consider possible non-linear relationships maybe linked to feed-back communication mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a windowed distance correlations computed on resting state time-courses extracted at single subject level. We showed that this strategy is complementary to the current approaches for dynamic functional connectivity and will help to enhance the discrimination capacity of patients with disorder of consciousness.

  6. Two-point correlation function for Dirichlet L-functions

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  7. Toward correlating functional MRI and EEG sources

    NASA Astrophysics Data System (ADS)

    Singh, Manbir; Khosla, Deepak

    1996-04-01

    Though excellent spatial resolution (on the order of 1 mm) is obtainable in functional MRI (fMRI), its temporal resolution is limited to about 1 second by hemodynamics. On the other hand, magnetoencephalography (MEG) and electroencephalography (EEG) provide millisecond temporal resolution but a relatively crude (on the order of 1 cm) spatial resolution to localized sources. Thus, techniques that could combine the high temporal resolution of MEG or EEG with the high spatial resolution of fMRI would be of great significance in imaging the spatiotemporal distribution of neuronal activation. With the ultimate objective of combining fMRI and EEG activation studies, we have conducted experiments to determine how pixels activated in fMRI correlate with underlying EEG sources in a given subject during visual stimulation. Results of a three-subject study suggest good correlation between the center-of-gravity of activated pixels seen in fMRI and the center-of-gravity of regions localized through EEG measurements.

  8. Alcock-paczynski cosmological test

    SciTech Connect

    López-Corredoira, M.

    2014-02-01

    In order to test the expansion of the universe and its geometry, we carry out an Alcock-Paczyński cosmological test, that is, an evaluation of the ratio of observed angular size to radial/redshift size. The main advantage of this test is that it does not depend on the evolution of the galaxies but only on the geometry of the universe. However, the redshift distortions produced by the peculiar velocities of the gravitational infall also have an influence, which should be separated from the cosmological effect. We derive the anisotropic correlation function of sources in three surveys within the Sloan Digital Sky Survey (SDSS): galaxies from SDSS-III/Baryon Oscillation Spectroscopic Survey Data Release 10 (BOSS-DR10) and QSOs from SDSS-II and SDSS-III/BOSS-DR10. From these, we are able to disentangle the dynamic and geometric distortions and thus derive the ratio of observed angular size to radial/redshift size at different redshifts. We also add some other values available in the literature. Then we use the data to evaluate which cosmological model fits them. We used six different models: concordance ΛCDM, Einstein-de Sitter, open-Friedman cosmology without dark energy, flat quasi-steady state cosmology, a static universe with a linear Hubble law, and a static universe with tired-light redshift. Only two of the six models above fit the data of the Alcock-Paczyński test: concordance ΛCDM and static universe with tired-light redshift, whereas the rest of them are excluded at a >95% confidence level. If we assume that ΛCDM is the correct one, the best fit with a free Ω {sub m} is produced for Ω{sub m}=0.24{sub −0.07}{sup +0.10}.

  9. Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic γ -ray background and cosmic shear

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Macias, Oscar; Horiuchi, Shunsaku; Shirai, Satoshi; Yoshida, Naoki

    2016-09-01

    We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of ˜660 squared degrees in total. We improve upon our previous analyses by using an updated extragalactic γ -ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing Survey (CFHTLenS) and Red-Cluster-Sequence Lensing Survey (RCSLenS). We generate a large set of full-sky mock catalogs from cosmological N -body simulations and use them to estimate statistical errors accurately. The measured cross-correlation is consistent with null detection, which is then used to place strong cosmological constraints on annihilating and decaying DM. For leptophilic DM, the constraints are improved by a factor of ˜100 in the mass range of O (1 ) TeV when including contributions from secondary γ rays due to the inverse-Compton upscattering of background photons. Annihilation cross sections of ⟨σ v ⟩˜10-23 cm3/s are excluded for TeV-scale DM depending on channel. Lifetimes of ˜1 025 sec are also excluded for the decaying TeV-scale DM. Finally, we apply this analysis to wino DM and exclude the wino mass around 200 GeV. These constraints will be further tightened, and all the interesting wino DM parameter region can be tested, by using data from future wide-field cosmology surveys.

  10. CMB lensing beyond the power spectrum: Cosmological constraints from the one-point probability distribution function and peak counts

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Hill, J. Colin; Sherwin, Blake D.; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán

    2016-11-01

    Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N -body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function and provide specific forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9 σ (PDF) and 6 σ (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Ωm-σ8 plane by ≈30 %, compared to using the power spectrum alone.

  11. Cosmological Zitterbewegung

    NASA Astrophysics Data System (ADS)

    Girdhar, Parth; Kobakhidze, Archil

    2013-10-01

    We describe a new phenomenon of zitterbewegung of a free Dirac particle in cosmological spacetimes. Unlike the similar effect theorized by Schrödinger in 1930, the cosmological zitterbewegung is a real, physically attainable effect, which originates from the mixing of positive and negative frequency modes of a field operator in cosmological spacetimes. We briefly discuss the potential for observing this effect in laboratory experiments with trapped ions.

  12. Lensing corrections to features in the angular two-point correlation function and power spectrum

    SciTech Connect

    LoVerde, Marilena; Hui, Lam; Gaztanaga, Enrique

    2008-01-15

    It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, the galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.

  13. Dynamical dimer-dimer correlation functions from exact diagonalization

    SciTech Connect

    Werner, Ralph

    2001-05-01

    A regularization method is presented to deduce dynamic correlation functions from exact diagonalization calculations. It is applied to dimer-dimer correlation functions in quantum spin chains relevant for the description of spin-Peierls systems. Exact results for the XY model are presented. The analysis draws into doubt that the dimer-dimer correlation functions show the same scale invariance as spin-spin correlation functions. The results are applied to describe the quasielastic scattering in CuGeO{sub 3} and the hardening of the Peierls-active phonons.

  14. Neurobiological correlates of social functioning in autism.

    PubMed

    Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael

    2010-08-01

    Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing.

  15. Analysis of spectra using correlation functions

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H.

    1988-01-01

    A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.

  16. Off-forward quark-quark correlation function

    SciTech Connect

    Casanova, Sabrina

    2006-09-01

    The properties of the nonforward quark-quark correlation function are examined. We derive constraints on the correlation function from the transformation properties of the fundamental fields of QCD occurring in its definition. We further develop a method to construct an Ansatz for this correlator. We present the complete leading order set of generalized parton distributions in terms of the amplitudes of the Ansatz. Finally we conclude that the number of independent generalized parton helicity changing distributions is four.

  17. Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery.

    PubMed

    Lin, Milo M

    2016-04-20

    How protein structure encodes functionality is not fully understood. For example, long-range intraprotein communication can occur without measurable conformational change and is often not captured by existing structural correlation functions. It is shown here that important functional information is encoded in the timing of protein motions, rather than motion itself. I introduce the conditional activity function to quantify such timing correlations among the degrees of freedom within proteins. For three proteins, the conditional activities between side-chain dihedral angles were computed using the output of microseconds-long atomistic simulations. The new approach demonstrates that a sparse fraction of side-chain pairs are dynamically correlated over long distances (spanning protein lengths up to 7 nm), in sharp contrast to structural correlations, which are short-ranged (<1 nm). Regions of high self- and inter-side-chain dynamical correlations are found, corresponding to experimentally determined functional modules and allosteric connections, respectively.

  18. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-10

    We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  19. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-01

    We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  20. A Representation for Fermionic Correlation Functions

    NASA Astrophysics Data System (ADS)

    Feldman, Joel; Knörrer, Horst; Trubowitz, Eugene

    Let dμS(a) be a Gaussian measure on the finitely generated Grassmann algebra A. Given an even W(a)∈A, we construct an operator R on A such that for all f(a)∈A. This representation of the Schwinger functional iteratively builds up Feynman graphs by successively appending lines farther and farther from f. It allows the Pauli exclusion principle to be implemented quantitatively by a simple application of Gram's inequality.

  1. Landau gauge Yang-Mills correlation functions

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Fister, Leonard; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2016-09-01

    We investigate Landau gauge S U (3 ) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalization group. Particular focus is put on the dynamical creation of the gluon mass gap at nonperturbative momenta and the consistent treatment of quadratic divergences. The nonperturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as the only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.

  2. Hierarchy of equations of multiple-time correlation functions

    SciTech Connect

    Alonso, Daniel; Vega, Ines de

    2007-05-15

    In this paper we derive the evolution equations for non-Markovian multiple-time correlation functions of an open quantum system without using any approximation. We find that these equations conform an open hierarchy in which N-time correlation functions are dependent on (N+1)-time correlations. This hierarchy of equations is consistently obtained with two different methods: A first one based on Heisenberg equations of system operators, and a second one based on system propagators. The dependency on higher order correlations, and therefore the open hierarchy structure, only disappears in certain particular cases and when some hypothesis or approximations are considered in the equations. In this paper we consider a perturbative approximation and derive the general evolution equation for N-time correlations. This equation turns to depend only on N-time and lower order correlation functions, conforming a closed hierarchy structure that is useful for computational purposes.

  3. Understanding volatility correlation behavior with a magnitude cross-correlation function

    NASA Astrophysics Data System (ADS)

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  4. Laser cosmology

    NASA Astrophysics Data System (ADS)

    Chen, P.

    2014-05-01

    Recent years have witnessed tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events;(2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.

  5. Cosmological antigravity.

    NASA Astrophysics Data System (ADS)

    Krauss, L. M.

    1999-01-01

    The long-derided cosmological constant - a contrivance of Albert Einstein's that represents a bizarre form of energy inherent in space itself - is one of two contenders for explaining changes in the expansion rate of the Universe.

  6. Inflationary cosmology.

    NASA Astrophysics Data System (ADS)

    Blau, S. K.; Guth, A. H.

    Contents: 1. Introduction. 2. Summary of the standard cosmological model. 3. Problems of the standard cosmological model. 4. The original inflationary universe. 5. Successes of the original inflationary model. 6. Problems of the original inflationary model. 7. The new inflationary universe. 8. Density perturbations in the new inflationary universe. 9. Quantum theory of the new inflationary universe phase transition. 10. Inflation in the minimal SU(5) grand unified theory. 11. False vacuum bubbles and child universes. 12. Conclusion.

  7. On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis

    PubMed Central

    Bikondoa, Oier

    2017-01-01

    Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations. PMID:28381968

  8. Direct measurement of correlation functions in a lattice Lorentz gas

    NASA Technical Reports Server (NTRS)

    Binder, P.-M.; Frenkel, D.

    1990-01-01

    Simulations of a two-dimensional ballistic Lorentz gas on a lattice are reported. A moment-propagation technique allows direct measurements of the velocity correlation function and its moments with low relative errors for all times. The predicted 1/t-sq algebraic tails in the velocity correlation function are observed at all studied scatterer densities, unlike what has been reported for continuous systems. In the square lattice a fast oscillation is observed, consistent with the existence of staggered density modes. For the second-rank tensor correlation function, an extremely slow approach to the expected 1/t exp 3 tail is found.

  9. Corrfunc: Blazing fast correlation functions on the CPU

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep

    2017-03-01

    Corrfunc is a suite of high-performance clustering routines. The code can compute a variety of spatial correlation functions on Cartesian geometry as well Landy-Szalay calculations for spatial and angular correlation functions on a spherical geometry and is useful for, for example, exploring the galaxy-halo connection. The code is written in C and can be used on the command-line, through the supplied python extensions, or the C API.

  10. Dynamic Correlation Functions of Adsorption Stochastic Systems with Diffusional Relaxation

    NASA Astrophysics Data System (ADS)

    Grynberg, Marcelo D.; Stinchcombe, Robin B.

    1995-02-01

    We investigate the nonequilibrium behavior of dynamic correlation functions of random sequential adsorption processes with diffusional relaxation. Depending on the relative values of the transition probability rates, in one dimension these systems reduce to a soluble problem of many fermions. In contrast to the standard diffusive relaxation of the macroscopic density, the correlation functions exhibit a faster decay. Our results are supported and compared with Monte Carlo simulations.

  11. ZeldovichRecon: Halo correlation function using the Zeldovich approximation

    NASA Astrophysics Data System (ADS)

    White, Martin

    2015-12-01

    ZeldovichRecon computes the halo correlation function using the Zeldovich approximation. It includes 3 variants:zelrecon.cpp, which computes the various contributions to the correlation function; zelrecon_ctypes.cpp, which is designed to be called from Python using the ctypes library; and a version which implements the "ZEFT" formalism of "A Lagrangian effective field theory" [arxiv:1506.05264] including the alpha term described in that paper.

  12. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.

    PubMed

    Klatt, Michael A; Torquato, Salvatore

    2014-11-01

    We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a

  13. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  14. A Kinematically Consistent Two-Point Correlation Function

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1998-01-01

    A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.

  15. Testing Group Differences in Brain Functional Connectivity: Using Correlations or Partial Correlations?

    PubMed Central

    Kim, Junghi; Wozniak, Jeffrey R.; Mueller, Bryon A.

    2015-01-01

    Abstract Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more

  16. Design of exchange-correlation functionals through the correlation factor approach

    SciTech Connect

    Pavlíková Přecechtělová, Jana E-mail: Matthias.Ernzerhof@UMontreal.ca

    2015-10-14

    The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlation factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.

  17. Midisuperspace supersymmetric quantum cosmology

    SciTech Connect

    Macias, Alfredo; Camacho, Abel; Kunz, Jutta; Laemmerzahl, Claus

    2008-03-15

    We investigate the canonical quantization in the framework of N=1 simple supergravity for the case of a very simple gravitational midisuperspace described by Gowdy T{sup 3} cosmological models. We consider supersymmetric quantum cosmology in the mentioned midisuperspace, where a matrix representation for the gravitino covector-spinor is used. The full Lorentz constraint and its implications for the wave function of the Universe are analyzed in detail. We found that there are indeed physical states in the midisuperspace sector of the theory in contrast to the case of minisuperspace where there exist no physical states.

  18. Dimensionless cosmology

    NASA Astrophysics Data System (ADS)

    Narimani, Ali; Moss, Adam; Scott, Douglas

    2012-10-01

    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant G is entirely dimensionfull. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of both Big Bang Nucleosynthesis and recombination in a dimensionless manner. Rigorously determining how to talk about the model in a way which avoids physical dimensions is a requirement for proceeding with a calculation to constrain time-varying fundamental constants. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any one of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding G to the usual cosmological parameter set.

  19. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    PubMed Central

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  20. Universal spatial correlation functions for describing and reconstructing soil microstructure.

    PubMed

    Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  1. Determination of transfer function of COPE correlation interferometer instrument

    NASA Technical Reports Server (NTRS)

    Twitty, J.; Kindle, E. C.

    1976-01-01

    The comparison of theoretical and instrument response functions and its use as a procedure for determining the transfer function of the COPE correlation interferometer are summarized. Data show qualitative agreement can be obtained when discrepancies between theory and instrument are investigated and instrument components are analyzed in detail. Data were obtained using a set of calibration data and computer algorithms.

  2. Revealing quantum correlation by negativity of the Wigner function

    NASA Astrophysics Data System (ADS)

    Taghiabadi, Razieh; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen

    2016-05-01

    We analyze two two-mode continuous variable separable states with the same marginal states. We adopt the definition of classicality in the form of well-defined positive Wigner function describing the state and find that although the states possess positive local Wigner functions, they exhibit negative Wigner functions for the global states. Using the negativity of Wigner function as an indicator of nonclassicality, we show that despite these states possess different negativities of the Wigner function, they do not reveal this difference as phase space nonclassicalities such as negativity of the Mandel Q parameter or quadrature squeezing. We then concentrate on quantum correlation of these states and show that quantum discord and local quantum uncertainty, as two well-defined measures of quantum correlation, manifest the difference between negativity of the Wigner functions. The non-Gaussianity of these states is also examined and show that the difference in behavior of their non-Gaussianity is the same as the difference between negativity of their Wigner functions. We also investigate the influence of correlation rank criterion and find that when the states can be produced locally from classical states, the Wigner functions cannot reveal their quantum correlations.

  3. Correlation Functions of the Magnetization in Thin Films

    NASA Astrophysics Data System (ADS)

    Rebei, A.; Simionato, M.; Parker, G. J.

    2003-05-01

    We calculate the correlation functions of uniform magnetization in thin ferromagnetic films for small deviations from equilibrium, by using a functional formalism. To take account of dissipation and fluctuations consistently, the magnetization is coupled to a bosonic heat bath. The correlation functions show strong dependence on the nature of the coupling between the bath and the system. Depending on what coupling we choose, we show how the recent results $(\\text{J. Appl. Phys. 90, 5768 (2001); Phys. Rev. B 65, 172417 (2002)}) $ obtained by macroscopic methods can be related to the microscopic treatment adopted here.

  4. FAR-IR/SUBMILLIMETER SPECTROSCOPIC COSMOLOGICAL SURVEYS: PREDICTIONS OF INFRARED LINE LUMINOSITY FUNCTIONS FOR z < 4 GALAXIES

    SciTech Connect

    Spinoglio, Luigi; Dasyra, Kalliopi M.; Gruppioni, Carlotta; Valiante, Elisabetta; Isaak, Kate

    2012-02-01

    Star formation and accretion onto supermassive black holes in the nuclei of galaxies are the two most energetic processes in the universe, producing the bulk of the observed emission throughout its history. We simulated the luminosity functions of star-forming and active galaxies for spectral lines that are thought to be good spectroscopic tracers of either phenomenon, as a function of redshift. We focused on the infrared (IR) and submillimeter domains, where the effects of dust obscuration are minimal. Using three different and independent theoretical models for galaxy formation and evolution, constrained by multi-wavelength luminosity functions, we computed the number of star-forming and active galaxies per IR luminosity and redshift bin. We converted the continuum luminosity counts into spectral line counts using relationships that we calibrated on mid- and far-IR spectroscopic surveys of galaxies in the local universe. Our results demonstrate that future facilities optimized for survey-mode observations, i.e., the Space Infrared telescope for Cosmology and Astrophysics and the Cerro Chajnantor Atacama Telescope, will be able to observe thousands of z > 1 galaxies in key fine-structure lines, e.g., [Si II], [O I], [O III], [C II], in a half-square-degree survey, with 1 hr integration time per field of view. Fainter lines such as [O IV], [Ne V], and H{sub 2} (0-0)S1 will be observed in several tens of bright galaxies at 1 < z < 2, while diagnostic diagrams of active nucleus versus star formation activity will be feasible even for normal z {approx} 1 galaxies. We discuss the new parameter space that these future telescopes will cover and that strongly motivates their construction.

  5. Beyond the Band Function Paradigm : a New Model for GRB Prompt Emission and Possible Impact in Cosmology

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    Gamma Ray Bursts (GRBs) are the most violent phenomenons in the Universe. They are associated with the birth of stellar mass black holes either from the collapse of hypermassive stars or the merger of compact objects. The Fireball model is the most popular scenario to explain GRBs. In this theoretical framework, GRB central engines release collimated, bipolar and highly relativistic jets mainly composed of electrons, positrons, photons, and a small amount of baryons. During the first phase of the Fireball model, charged particles are accelerated and release non-thermal radiations. The Fireball model also predicts a thermal like component coming from the jet photosphere. This first phase would be responsible for the GRB prompt emission observed by gamma ray telescopes such as Fermi/GBM in the keV-MeV energy range and which is the only phase discussed in this talk. Until now, GRB prompt emission spectra were considered as adequately fitted with the empirical Band function, which is a smoothly broken power law. However, its parameters are very often incompatible with the Fireball model predictions for both the thermal and non-thermal components. We will see that observation with the Fermi Gamma Ray Space Telescope break the paradigm of the Band function and that deviations from this function exists in many GRBs. Those deviations are adequately fitted with an additional thermal-like component -that we consider as the jet photosphere- and/or an additional power law. Importantly, with the three components together, theory and observations are much more in agreement. We will also see how this new model for prompt emission spectra may have an impact beyond the physics of GRBs. Indeed, this work may confirm a relation between the hardness of the GRB prompt emission and its luminosity which may be used to scale GRBs as standard-like candles for use in cosmology.

  6. Multiwavelength Cosmology

    NASA Astrophysics Data System (ADS)

    Plionis, M.

    2004-07-01

    The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: Multidimensional cosmology

    NASA Astrophysics Data System (ADS)

    Alvarez, Enrique

    This paper briefly reports on some recent attempts to construct a cosmology consistent with present ideas about the fundamental theories of nature, which generally involve extra dimensions. The decoupling of the extra dimensions from the usual ones is analyzed, as well as the possiblity of phase transitions in a "superstring universe".

  7. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  8. Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.

  9. The correlation function of galaxy ellipticities produced by gravitational lensing

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.

  10. Prevalence and correlates of functional dependence among maintenance dialysis patients.

    PubMed

    Kavanagh, Niall T; Schiller, Brigitte; Saxena, Anjali B; Thomas, I-Chun; Kurella Tamura, Manjula

    2015-10-01

    Functional dependence is an important determinant of longevity and quality of life. The purpose of the current study was to determine the prevalence and correlates of functional dependence among patients with end-stage renal disease (ESRD) receiving maintenance dialysis. We enrolled 148 participants with ESRD from five clinics. Functional status, as measured by basic and instrumental activities of daily living (ADL, IADL), was ascertained by validated questionnaires. Functional dependence was defined as needing assistance in at least one of seven IADLs or at least one of four ADLs. Demographic characteristics, chronic health conditions, anthropometric measurements, and laboratories were assessed by a combination of self-report and chart review. Cognitive function was assessed with a neurocognitive battery, and depressive symptoms were assessed by questionnaire. Mean age of the sample was 56.2 ± 14.6 years. Eighty-seven participants (58.8%) demonstrated dependence in ADLs or IADLs, 70 (47.2%) exhibited IADL dependence alone, and 17 (11.5%) exhibited combined IADL and ADL dependence. In a multivariable-adjusted model, stroke, cognitive impairment, and higher systolic blood pressure were independent correlates of functional dependence. We found no significant association between demographic characteristics, chronic health conditions, depressive symptoms or laboratory measurements, and functional dependence. Impairment in executive function was more strongly associated with functional dependence than memory impairment. Functional dependence is common among ESRD patients and independently associated with stroke, systolic blood pressure, and executive function impairment.

  11. Chiral and UA(1) Symmetry in Correlation Functions in Medium

    NASA Astrophysics Data System (ADS)

    Lee, Su Houng; Cho, Sungtae

    2013-03-01

    In this review, we will discuss how the chiral symmetry and UA(1) breaking effects are reflected in the correlation functions. Using the Banks-Casher formula, one can identify the density of zero eigenvalues to be the common ingredient that governs the chiral symmetry breaking in correlation functions between currents composed of light quarks with or without a heavy quark. Similarly, the presence of the UA(1) breaking effect is determined through the contribution of the topologically nontrivial configurations that depends on the number of flavors. We also discuss how the symmetry breaking effects are reflected in the gluon correlation functions. Finally, we review the Witten-Veneziano (WV) formula for the η' mass in medium.

  12. Correlation functions of higher-dimensional automatic sequences

    NASA Astrophysics Data System (ADS)

    Barbé, A.; von Haeseler, F.

    2004-11-01

    A procedure for calculating the (auto)correlation function \\gamma_f(k), k\\in {\\bb Z}^m , of an m-dimensional complex-valued automatic sequence f:{\\bb Z}^m\\rightarrow {\\bb C} , is presented. This is done by deriving a recursion for the vector correlation function Γker(f)(k) whose components are the (cross)correlation functions between all sequences in the finite set ker(f), the so-called kernel of f which contains all properly defined decimations of f. The existence of Γker(f)(k), which is defined as a limit, for all k\\in {\\bb Z}^m , is shown to depend only on the existence of Γker(f)(0). This is illustrated for the higher-dimensional Thue-Morse, paper folding and Rudin-Shapiro sequences.

  13. Efficient reconstruction of multiphase morphologies from correlation functions

    SciTech Connect

    Rozman, M. G.; Utz, Marcel

    2001-06-01

    A highly efficient algorithm for the reconstruction of microstructures of heterogeneous media from spatial correlation functions is presented. Since many experimental techniques yield two-point correlation functions, the restoration of heterogeneous structures, such as composites, porous materials, microemulsions, ceramics, or polymer blends, is an inverse problem of fundamental importance. Similar to previously proposed algorithms, the new method relies on Monte Carlo optimization, representing the microstructure on a discrete grid. An efficient way to update the correlation functions after local changes to the structure is introduced. In addition, the rate of convergence is substantially enhanced by selective Monte Carlo moves at interfaces. Speedups over prior methods of more than two orders of magnitude are thus achieved. Moreover, an improved minimization protocol leads to additional gains. The algorithm is ideally suited for implementation on parallel computers. The increase in efficiency brings new classes of problems within the realm of the tractable, notably those involving several different structural length scales and/or components.

  14. Cosmology and the Bispectrum

    SciTech Connect

    Sefusatti, Emiliano; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York

    2006-04-01

    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.

  15. The cross correlation between the 21-cm radiation and the CMB lensing field: a new cosmological signal

    SciTech Connect

    Vallinotto, Alberto

    2011-01-01

    The measurement of Baryon Acoustic Oscillations through the 21-cm intensity mapping technique at redshift z {<=} 4 has the potential to tightly constrain the evolution of dark energy. Crucial to this experimental effort is the determination of the biasing relation connecting fluctuations in the density of neutral hydrogen (HI) with the ones of the underlying dark matter field. In this work I show how the HI bias relevant to these 21-cm intensity mapping experiments can successfully be measured by cross-correlating their signal with the lensing signal obtained from CMB observations. In particular I show that combining CMB lensing maps from Planck with 21-cm field measurements carried out with an instrument similar to the Cylindrical Radio Telescope, this cross-correlation signal can be detected with a signal-to-noise (S/N) ratio of more than 5. Breaking down the signal arising from different redshift bins of thickness {Delta}z = 0.1, this signal leads to constraining the large scale neutral hydrogen bias and its evolution to 4{sigma} level.

  16. Cosmological ``Truths''

    NASA Astrophysics Data System (ADS)

    Bothun, Greg

    2011-10-01

    Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent

  17. CMB anisotropy in compact hyperbolic universes. I. Computing correlation functions

    NASA Astrophysics Data System (ADS)

    Bond, J. Richard; Pogosyan, Dmitry; Souradeep, Tarun

    2000-08-01

    Cosmic microwave background (CMB) anisotropy measurements have brought the issue of global topology of the universe from the realm of theoretical possibility to within the grasp of observations. The global topology of the universe modifies the correlation properties of cosmic fields. In particular, strong correlations are predicted in CMB anisotropy patterns on the largest observable scales if the size of the universe is comparable to the distance to the CMB last scattering surface. We describe in detail our completely general scheme using a regularized method of images for calculating such correlation functions in models with nontrivial topology, and apply it to the computationally challenging compact hyperbolic spaces. Our procedure directly sums over images within a specified radius, ideally many times the diameter of the space, effectively treats more distant images in a continuous approximation, and uses Cesaro resummation to further sharpen the results. At all levels of approximation the symmetries of the space are preserved in the correlation function. This new technique eliminates the need for the difficult task of spatial eigenmode decomposition on these spaces. Although the eigenspectrum can be obtained by this method if desired, at a given level of approximation the correlation functions are more accurately determined. We use the 3-torus example to demonstrate that the method works very well. We apply it to power spectrum as well as correlation function evaluations in a number of compact hyperbolic (CH) spaces. Application to the computation of CMB anisotropy correlations on CH spaces, and the observational constraints following from them, are given in a companion paper.

  18. Hiding neutrino mass in modified gravity cosmologies

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  19. Optimization of an exchange-correlation density functional for water

    NASA Astrophysics Data System (ADS)

    Fritz, Michelle; Fernández-Serra, Marivi; Soler, José M.

    2016-06-01

    We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.

  1. Gutzwiller density functional theory for correlated electron systems

    SciTech Connect

    Ho, K. M.; Schmalian, J.; Wang, C. Z.

    2008-02-04

    We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.

  2. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function

    PubMed Central

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  3. Correlation between thoracolumbar curvatures and respiratory function in older adults.

    PubMed

    Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond

    2017-01-01

    Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were -46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=-0.23, P<0.05; forced vital capacity: r=-0.32, P<0.05), quiet expiration intercostal thickness (r=-0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=-0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=-0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=-0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures

  4. Correlation between thoracolumbar curvatures and respiratory function in older adults

    PubMed Central

    Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond

    2017-01-01

    Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar

  5. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    ERIC Educational Resources Information Center

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  6. Finite size effect on the magnon's correlation functions

    SciTech Connect

    Lee, Bum-Hoon; Park, Chanyong

    2011-10-15

    We calculate the finite size correction on the three-point correlation function between two giant magnons and one marginal operator, which is dual to a dilaton field of the bulk gravity theory. We also check that the structure constant in the string setup is exactly the same as one of the renormalization group analyses in the gauge theory.

  7. Superstring cosmology

    NASA Astrophysics Data System (ADS)

    Alvarez, Enrique

    1985-01-01

    Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.

  8. Medieval Cosmology

    NASA Astrophysics Data System (ADS)

    Grant, E.; Murdin, P.

    2000-11-01

    During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...

  9. Cosmological wormholes

    NASA Astrophysics Data System (ADS)

    Kirillov, A. A.; Savelova, E. P.

    2016-05-01

    We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.

  10. BOOK REVIEW: The Oxford Companion to Cosmology

    NASA Astrophysics Data System (ADS)

    Coles, Peter

    2008-10-01

    Cosmology has a special status as a science, as it strives to combine the quantitative statistical rigour of observational astronomy with a theoretical framework emerging from rather speculative ideas about fundamental physics. It also has wider repercussions too, as the quest for an understanding of the origin of the Universe sometimes strays into territory traditionally associated with religious modes of enquiry. The Oxford Companion to Cosmology aims to provide a 'comprehensive but accessible overview' of this 'enduringly popular subject' suitable for students, teachers and others with a serious interest in cosmology. It consists of an introductory overview about the big bang cosmological model, followed by an encyclopedia-like section containing over 300 entries of varying length and technical level. One of the authors (Liddle) is a theorist and the other (Loveday) an observer, so between them they have sufficient authority to cover all aspects of the vigorous interplay between these two facets of the discipline. This is not the sort of volume that can easily be read from cover to cover. The best way to test its effectiveness is to dip into it randomly. In my sampling of the entries I found most to be well-written and informative. The first entry I looked at ('correlation function') had an incorrect formula in it, but I didn't find any further significant errors, which says something about the limitations of statistical inference! The only criticisms I have are very minor. Some of the figures are so small as to be virtually invisible to an oldie like me. I also think the book would have benefitted from more references, and am not sure the web links given in their place will prove very useful as these tend to be rather ephemeral. Overall, though, I would say that the book succeeds admirably in its aims. About ten years ago, I was involved in compiling a similar volume, which ended up as The Routledge Companion to the New Cosmology. I will refrain from trying to

  11. Local-hybrid functional based on the correlation length

    SciTech Connect

    Johnson, Erin R.

    2014-09-28

    Local-hybrid functionals involve position-dependent mixing of Hartree-Fock and density-functional exchange, which should allow improved performance relative to conventional hybrids by reducing the inherent delocalization error and improving the long-range behaviour. Herein, the same-spin correlation length, obtained from the Fermi-hole radius, is used as the mixing parameter. The performance of the resulting local-hybrid functional is assessed for standard thermochemical and kinetics benchmarks. The local hybrid is shown to perform significantly better than the corresponding global hybrid in almost all cases.

  12. Loop quantum cosmology: confronting the hybrid quantization approach with observations

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier; Martin de Blas, Daniel

    2017-01-01

    In loop quantum cosmology there are several approaches for the confrontation of the theory with observations. Here, we focus on the hybrid quantization approach. We provide an exhaustive analysis including scalar and tensor perturbations on effective (quantum-mechanically corrected) homogeneous and isotropic cosmologies coupled to a massive scalar field. We compute the primordial power spectrum of the perturbations at the end of inflation for a set of initial vacuum states defined at the deep quantum regime of the cosmological model. We then analyze the tensor-to-scalar ratio and the consistency relation between this quantity and the spectral index of the tensor power spectrum. Eventually, we compute the temperature-temperature, electric-electric, temperature-electric and magnetic-magnetic correlation functions predicted by this approach and compare them with present observations.

  13. Spatiotemporal velocity-velocity correlation function in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Canet, Léonie; Rossetto, Vincent; Wschebor, Nicolás; Balarac, Guillaume

    2017-02-01

    Turbulence is a ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is, from the Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the functional space and time dependence of the velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to the Navier-Stokes equation with stochastic forcing. This prediction, which goes beyond Kolmogorov theory, is the analytical fixed point solution of nonperturbative renormalization group flow equations, which are exact in the limit of large wave numbers. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.

  14. Entropy and correlation functions of a driven quantum spin chain

    SciTech Connect

    Cherng, R. W.; Levitov, L. S.

    2006-04-15

    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin-1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.

  15. Bell Violation in Primordial Cosmology

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Panda, Sudhakar; Singh, Rajeev

    2017-02-01

    In this paper, we have worked on the possibility of setting up an Bell's inequality violating experiment in the context of primordial cosmology following the fundamental principles of quantum mechanics. To set up this proposal we have introduced a model independent theoretical framework using which we have studied the creation of new massive particles for the scalar fluctuations in the presence of additional time dependent mass parameter. Next we explicitly computed the one point and two point correlation functions from this setup. Then we comment on the measurement techniques of isospin breaking interactions of newly introduced massive particles and its further prospects. After that, we give an example of string theory originated axion monodromy model in this context. Finally, we provide a bound on the heavy particle mass parameter for any arbitrary spin field.

  16. Correlation Between Vision and Cognitive Function in the Elderly

    PubMed Central

    Spierer, Oriel; Fischer, Naomi; Barak, Adiel; Belkin, Michael

    2016-01-01

    Abstract The correlation between vision and cognition is not fully understood. Visual impairment in the elderly has been associated with impaired cognitive function, dementia, and Alzheimer disease. The aim was to study the correlation between near visual acuity (VA), refraction, and cognitive state in an elderly population. Subjects ≥75 years were enrolled in this cross-sectional study. Refraction and near VA was tested. Cognitive function was evaluated with a version of the mini-mental state examination for the visually impaired (MMSE-blind). The eye with better VA and no cataract or refractive surgery was analyzed. One-hundred ninety subjects (81.6 ± 5.1 years, 69.5% female) were included. Good VA (≤J3) was associated with high MMSE-blind (>17) (OR = 3.18, 95% CI = 1.57–6.43, P = 0.001). This remained significant adjusting for sex, age, and years of education. Wearing reading glasses correlated significantly with high MMSE-blind after adjustment for sex and age (OR = 2.14, 95% CI = 1.16–3.97, P = 0.016), but reached borderline significance after adjustment for education. There was a trend toward correlation between myopia and better MMSE-blind (r = −0.123, P = 0.09, Pearson correlation). Good VA and wearing glasses seem to correlate with better cognitive function. Reading glasses can serve as a protective factor against cognitive deterioration associated with sensory (visual) deprivation in old age. The association between myopia and cognition requires further investigation. PMID:26817872

  17. Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering

    SciTech Connect

    Baldauf, Tobias; Smith, Robert E.; Seljak, Uros; Mandelbaum, Rachel

    2010-03-15

    The clustering of matter on cosmological scales is an essential probe for studying the physical origin and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-clustering and galaxy-galaxy-lensing measurements. In order to extract the required information, one must relate the observable galaxy distribution to the underlying dark matter distribution. In this study we develop in detail a method that can constrain the dark matter correlation function from galaxy clustering and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy and matter overdensity fields. Our goal is to develop an estimator that maximally correlates the two. To generate a mock galaxy catalogue for testing purposes, we use the halo occupation distribution approach applied to a large ensemble of N-body simulations to model preexisting SDSS luminous red galaxy sample observations. Using this mock catalogue, we show that a direct comparison between the excess surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal. We develop a new statistic that suppresses the small-scale contributions to these observations and show that this new statistic leads to a cross-correlation coefficient that is within a few percent of unity down to 5h{sup -1} Mpc. Furthermore, the residual incoherence between the galaxy and matter fields can be explained using a theoretical model for scale-dependent galaxy bias, giving us a final estimator that is unbiased to within 1%, so that we can reconstruct the dark matter clustering power spectrum at this accuracy up to k{approx}1h Mpc{sup -1}. We also perform a comprehensive study of other physical effects that can affect the analysis, such as redshift space distortions and differences in radial windows between galaxy clustering and weak

  18. Generalized parton correlation functions for a spin-0 hadron

    SciTech Connect

    Meissner, Stephan; Metz, Andreas; Schlegel, Marc; Goeke, Klaus

    2008-08-01

    The fully unintegrated, off-diagonal quark-quark correlator for a spin-0 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects are of relevance for the phenomenology of certain hard exclusive reactions. In particular, they can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist.

  19. Large N correlation functions in superconformal field theories

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gomez, Diego; Russo, Jorge G.

    2016-06-01

    We compute correlation functions of chiral primary operators in mathcal{N}=2 super-conformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on mathcal{N}=4 SYM as well as on supercon-formal QCD. In the case of mathcal{N}=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small N results in the literature.

  20. QSO clustering - II. The correlation function of IRAS seyfert galaxies.

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Shanks, T.

    1994-12-01

    We investigate the clustering properties of 192 Seyfert galaxies from the IRAS all-sky survey. Using the spatial correlation function, we detect evidence of Seyfert clustering at the 2σ confidence level at < 10 h^-1^ Mpc separations, and at the 3{SIGMA} level at < 20 h^-1^ Mpc separations. Comparison of the QSO correlation function amplitude at high redshifts, z = 1.4, with that of Seyferts below 10 h^-1^ comoving Mpc leads us to reject the stable model of AGN clustering evolution at the 4σ level, whereas a comoving model where QSOs randomly sample the galaxy distribution is more consistent. The main uncertainty here now lies in the statistical error on the amplitude of the clustering in the faint QSO surveys at z = 1.4. The Seyfert-QDOT cross-correlation function is measured to be approximately a factor of 2 higher than the QDOT galaxy autocorrelation function, suggesting an enhanced environment for Seyferts with respect to IRAS galaxies, but it is not clear whether this is also the case with respect to optical galaxies. We conclude that the comoving model is probably favoured overall, at least on the r < 10 h^-1^ Mpc scales investigated here, but it is not yet possible to rule out intermediate models: for example, an enhanced-environment, stable model with ξ(r)=(r/3)^-1.8^ at z = 1.4, which is statistically consistent with the faint QSO data.

  1. Image features of spectral correlation function for arrhythmia classification.

    PubMed

    Khalaf, Aya F; Owis, Mohammed I; Yassine, Inas A

    2015-01-01

    Recently, computerized arrhythmia classification tools have been intensively used to aid physicians to recognize different irregular heartbeats. In this paper, we introduce arrhythmia CAD system exploiting cyclostationary signal analysis through estimation of the spectral correlation function for 5 different beat types. Two experiments were performed. Raw spectral correlation data were used as features in the first experiment while the other experiment which dealt with the spectral correlation coefficients as image included extraction of wavelet and shape features followed by fisher score for dimensionality reduction. As for the classification task, Support Vector Machine (SVM) with linear kernel was used for both experiments. The experimental results showed that both proposed approaches are superior compared to several state of the art methods. This approach achieved sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 99.20%, 99.70%, 98.60%, 99.90% and 97.60% respectively.

  2. Bianchi Type V Cosmological Models with Varying Cosmological Term

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Singh, Rameshwar

    2015-05-01

    We have analyzed a new class of spatially homogeneous and anisotropic Bianchi type-V cosmological models with perfect fluid distribution in presence of time varying cosmological and gravitational constants in the framework of general relativity. Exact solutions of Einstein's field equations are obtained for two types of cosmologies viz. m ≠ 3 and m = 3 respectively. We propose an alternate variation law in which the anisotropy ( σ/ 𝜃) per unit expansion scalar ( 𝜃) is proportional to a function of scale factor R i.e. (where σ is a shear scalar) Tiwari (The African Review of Physics, 8, 437-447 2013). Physical properties of the models are discussed in detail. The models isotropize at late times. Some cosmological distance parameters for both the models have also been presented. We also discussed state finder parameters and observe that our solutions favor Λ C D M model.

  3. Correlation functions and correlation widths in quantum-chaotic scattering for mesoscopic systems and nuclei

    NASA Astrophysics Data System (ADS)

    Ramos, J. G. G. S.; Barbosa, A. L. R.; Carlson, B. V.; Frederico, T.; Hussein, M. S.

    2016-01-01

    We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed.

  4. On the application of correlation function matrices in OMA

    NASA Astrophysics Data System (ADS)

    Brincker, Rune

    2017-03-01

    In this paper the theoretical solution for the correlation function matrix of the random response of a structural system is re-visited. It is shown that using the classical definition of the correlation functions, the row space is defined by the mode shapes of the system, whereas the column space is defined by the modal participation vectors. This means that only the rows can be used for unbiased modal identification in operational modal analysis and if the columns are used for identification, then bias will be introduced on the mode shape estimates. It is pointed out that the mode shape bias is strongly dependent on the frequency distance between the modes, i.e. bias will significantly increase in case of closely spaced modes. The identification errors on the estimated biased and unbiased mode shapes are studied in a simulation example.

  5. CFT correlation functions from AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Matusis, Alec

    In this thesis we discuss correlation functions of N = 4, d = 4 Super-Yang-Mills theory in the strong coupling regime. Namely, the recent conjecture of the equivalence of the string theory in AdS5 x S5 background to the N = 4, d = 4 SYM theory with SU( N) gauge group allows to find correlation functions of the CFT in the limit of large t'Hooft coupling and at large N by evaluating relatively simple tree-level supergravity amplitudes. We discuss the basic ideas of the AdS supergravity computations, and establish the techniques for evaluating tree-level AdS supergravity scattering amplitudes with fixed rates of fall-offs of the fields as they approach AdS boundary. We translate these supergravity results into field theory language and learn several interesting things. First, at the level of the two-point correlation functions we learn about the necessity for the introduction of a cut-off in seemingly convergent AdS supergravity computations. Next, we find a non-renormalization property of certain 3-point functions. Finally, we find an explicit expression for certain 4-point functions, which deviate from free-field approximation in perturbation theory, thus providing some new non- perturbative information about SYM. We study various limits of these 4-point functions, with intention to give them an OPE interpretation. We find logarithmic singularities in all limits, and discuss their compatibility with existence of an OPE at strong coupling. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  6. Charmonium correlators and spectral functions at finite temperature

    SciTech Connect

    Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.

    2008-09-01

    We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.

  7. Linearized path integral approach for calculating nonadiabatic time correlation functions.

    PubMed

    Bonella, Sara; Montemayor, Daniel; Coker, David F

    2005-05-10

    We show that quantum time correlation functions including electronically nonadiabatic effects can be computed by using an approach in which their path integral expression is linearized in the difference between forward and backward nuclear paths while the electronic component of the amplitude, represented in the mapping formulation, can be computed exactly, leading to classical-like equations of motion for all degrees of freedom. The efficiency of this approach is demonstrated in some simple model applications.

  8. Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients

    NASA Technical Reports Server (NTRS)

    Frenkiel, Francois N.

    1958-01-01

    In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.

  9. Hydrodynamic Waves and Correlation Functions in Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Wang, Xiaogang

    1997-11-01

    A hydrodynamic description of strongly coupled dusty plasmas is given when physical quantities vary slowly in space and time and the system can be assumed to be in local thermodynamic equilibrium. The linear waves in such a system are analyzed. In particular, a dispersion equation is derived for low-frequency dust acoustic waves, including collisional damping effects, and compared with experimental results. The linear response of the system is calculated from the fluctuation-dissipation theorem and the hydrodynamic equations. The requirement that these two calculations coincide constrains the particle correlation function for slowly varying perturbations [L. P. Kadanoff and P. C. Martin, Ann. Phys. 24, 419 (1963)]. It is shown that in the presence of the slow dust-acoustic waves, the dust auto-correlation function is of the Debye-Hekel form and the shielding distance is the dust Debye length. In the short-wavelength regime, an integral equation is derived from kinetic theory and solved numerically to yield particle correlation functions that display ``liquid-like'' behavior and have been observed experimentally [R. A.. Quinn, C. Cui, J. Goree, J. B. Pieper, H. Thomas and G. E. Morfill, Phys. Rev. E 53, R2049 (1996)].

  10. Trait correlates and functional significance of heteranthery in flowering plants.

    PubMed

    Vallejo-Marín, Mario; Da Silva, Elizabeth M; Sargent, Risa D; Barrett, Spencer C H

    2010-10-01

    • Flowering plants display extraordinary diversity in the morphology of male sexual organs, yet the functional significance of this variation is not well understood. Here, we conducted a comparative analysis of floral correlates of heteranthery - the morphological and functional differentiation of anthers within flowers - among angiosperm families to identify traits associated with this condition. • We performed a phylogenetic analysis of correlated evolution between heteranthery and several floral traits commonly reported from heterantherous taxa. In addition, we quantified the effect of phylogenetic uncertainty in the observed patterns of correlated evolution by comparing trees in which polytomous branches were randomly resolved. • Heteranthery is reported from 12 angiosperm orders and is phylogenetically associated with the absence of floral nectaries, buzz-pollination and enantiostyly (mirror-image flowers). These associations are robust to particularities of the underlying phylogenetic hypothesis. • Heteranthery has probably evolved as a result of pollinator-mediated selection and appears to function to reduce the conflict of relying on pollen both as food to attract pollinators and as the agent of male gamete transfer. The relative scarcity of heteranthery among angiosperm families suggests that the conditions permitting its evolution are not easily met despite the abundance of pollen-collecting bees and nectarless flowers.

  11. Parameterized post-Newtonian cosmology

    NASA Astrophysics Data System (ADS)

    Sanghai, Viraj A. A.; Clifton, Timothy

    2017-03-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).

  12. Structural and functional neural correlates of music perception.

    PubMed

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  13. Brain structure and function correlates of cognitive subtypes in schizophrenia.

    PubMed

    Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan

    2015-10-30

    Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.

  14. Fast methods for spatially correlated multilevel functional data

    PubMed Central

    Staicu, Ana-Maria; Crainiceanu, Ciprian M.; Carroll, Raymond J.

    2010-01-01

    We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online. PMID:20089508

  15. Exact correlation functions in SU(2) N=2 superconformal QCD.

    PubMed

    Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos

    2014-12-19

    We report an exact solution of 2- and 3-point functions of chiral primary fields in SU(2) N=2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short version of a companion paper that contains detailed technical remarks, additional material, and aspects of an extension to the SU(N) gauge group.

  16. Velocity correlations in simulations and observations

    NASA Astrophysics Data System (ADS)

    Wang, Yuyu; Rooney, Christopher; Feldman, Hume; Watkins, Richard

    2017-01-01

    We present an analysis of the two-point cosmic velocity correlation function. We calculate the correlations of the Cosmicflows catalogues and estimate the errors using the Millennium N-body simulations. We estimate the correlation coherence length, and combine the velocity correlation function expectations from linear theory to constrain the cosmological parameters Γ and β. Using the maximum likelihood method, we find a value of Γ = 0 .195-0 . 045 + 0 . 08 (95% CL) that is consistent with the Planck results.

  17. Reduced density-matrix functional theory: Correlation and spectroscopy

    SciTech Connect

    Di Sabatino, S.; Romaniello, P.; Berger, J. A.; Reining, L.

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  18. Structure-Function Correlation of the Human Central Retina

    PubMed Central

    Charbel Issa, Peter; Troeger, Eric; Finger, Robert; Holz, Frank G.; Wilke, Robert; Scholl, Hendrik P. N.

    2010-01-01

    Background The impact of retinal pathology detected by high-resolution imaging on vision remains largely unexplored. Therefore, the aim of the study was to achieve high-resolution structure-function correlation of the human macula in vivo. Methodology/Principal Findings To obtain high-resolution tomographic and topographic images of the macula spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy (cSLO), respectively, were used. Functional mapping of the macula was obtained by using fundus-controlled microperimetry. Custom software allowed for co-registration of the fundus mapped microperimetry coordinates with both SD-OCT and cSLO datasets. The method was applied in a cross-sectional observational study of retinal diseases and in a clinical trial investigating the effectiveness of intravitreal ranibizumab in macular telangietasia type 2. There was a significant relationship between outer retinal thickness and retinal sensitivity (p<0.001) and neurodegeneration leaving less than about 50 µm of parafoveal outer retinal thickness completely abolished light sensitivity. In contrast, functional preservation was found if neurodegeneration spared the photoreceptors, but caused quite extensive disruption of the inner retina. Longitudinal data revealed that small lesions affecting the photoreceptor layer typically precede functional detection but later cause severe loss of light sensitivity. Ranibizumab was shown to be ineffective to prevent such functional loss in macular telangietasia type 2. Conclusions/Significance Since there is a general need for efficient monitoring of the effectiveness of therapy in neurodegenerative diseases of the retina and since SD-OCT imaging is becoming more widely available, surrogate endpoints derived from such structure-function correlation may become highly relevant in future clinical trials. PMID:20877651

  19. Density Functional Plus Dynamical Mean Field Theory of Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Millis, Andrew

    2015-03-01

    The density functional plus dynamical mean field method is outlined and a few recent successes including applications to spin crossover molecules, oxide superlattices and metal-insulator transitions in bulk transition metals are outlined. Insights from the method into the essential role played by lattice distortions (both rotations and bond length changes) in determining the phase diagrams of correlated materials are presented. The key theoretical issue of the double counting correction is outlined, different approaches are compared, and a connection to the energy level differences between strongly and weakly correlated orbitals is presented. Charge transfer across oxide interfaces shown to depend crucially on the double counting correction, suggesting that experiments on oxide superlattices may provide insights into this important problem. Future directions are discussed. This work is performed in collaboration with Jia Chen, Hung Dang, Hyowon Park and Chris Marianetti. This research supported by the DOE Office of Science, Grant ER 046169.

  20. Brains online: structural and functional correlates of habitual Internet use.

    PubMed

    Kühn, Simone; Gallinat, Jürgen

    2015-03-01

    In the past decades, the Internet has become one of the most important tools to gather information and communicate with other people. Excessive use is a growing concern of health practitioners. Based on the assumption that excessive Internet use bears resemblance with addictive behaviour, we hypothesized alterations of the fronto-striatal network in frequent users. On magnetic resonance imaging scans of 62 healthy male adults, we computed voxel-based morphometry to identify grey matter (GM) correlates of excessive Internet use, assessed by means of the Internet Addiction Test (IAT) and functional connectivity analysis and amplitude of low-frequency fluctuation (ALFF) measures on resting state data to explore the functional networks associated with structural alterations. We found a significant negative association between the IAT score and right frontal pole GM volume (P < 0.001, family wise error corrected). Functional connectivity of right frontal pole to left ventral striatum was positively associated with higher IAT scores. Furthermore, the IAT score was positively correlated to ALFF in bilateral ventral striatum. The alterations in the fronto-striatal circuitry associated with growing IAT scores could reflect a reduction of top-down modulation of prefrontal areas, in particular, the ability to maintain long-term goals in face of distraction. The higher activation of ventral striatum at rest may indicate a constant activation in the context of a diminished prefrontal control. The results demonstrate that excessive Internet use may be driven by neuronal circuits relevant for addictive behaviour.

  1. The derivative discontinuity of the exchange-correlation functional.

    PubMed

    Mori-Sánchez, Paula; Cohen, Aron J

    2014-07-28

    The derivative discontinuity is a key concept in electronic structure theory in general and density functional theory in particular. The electronic energy of a quantum system exhibits derivative discontinuities with respect to different degrees of freedom that are a consequence of the integer nature of electrons. The classical understanding refers to the derivative discontinuity of the total energy as a function of the total number of electrons (N), but it can also manifest at constant N. Examples are shown in models including several hydrogen systems with varying numbers of electrons or nuclear charge (Z), as well as the 1-dimensional Hubbard model (1DHM). Two sides of the problem are investigated: first, the failure of currently used approximate exchange-correlation functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate functionals, including hybrids, miss the derivative discontinuity, leading to basic errors that can be seen in many ways: from the complete failure to give the total energy of H2 and H2(+), to the missing gap in Mott insulators such as stretched H2 and the thermodynamic limit of the 1DHM, or a qualitatively incorrect density in the HZ molecule with two electrons and incorrect electron transfer processes. Description of the exact particle behaviour of electrons is emphasised, which is key to many important physical processes in real systems, especially those involving electron transfer, and offers a challenge for the development of new exchange-correlation functionals.

  2. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  3. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  4. Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in Photometric Imaging Surveys by Means of Their Correlation Function

    SciTech Connect

    Campa, Julia; Flaugher, Brenna; Estrada, Juan

    2015-12-04

    The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.

  5. The Shane-Wirtanen counts. [in galaxy correlation function

    NASA Technical Reports Server (NTRS)

    Geller, M. J.; Kurtz, M. J.; De Lapparent, V.

    1984-01-01

    It is shown that the 2.5 degree-break in the galaxy correlation function derived from the Shane-Wirtanen star counts is indistinguishable from an artifact introduced by residual systematic variations in the effective magnitude limit from plate to plate. In order to avoid the introduction of a break, the maximum error from plate to plate must be no more than about 0.05 mag. Other large scale features in the data which are also affected by the systematic variations are discussed.

  6. The Intermediate Scattering Function in Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guerra, Rodrigo; Andrews, Ballard; Sen, Pabitra

    2006-03-01

    We formulate the autocorrelation function for Fluorescence Correlation Spectroscopy (FCS) GD(τ) in reciprocal space in terms of the of the Intermediate Scattering Function ISF(k,t) and the fourier transform of the Optical Response Function ORF(k). In this way we may extend the use of FCS to processes that have been studied using NMR, DLS, and neutron scattering. This formalism is useful for the complicated propagators involved in confined systems and in the study of diffusion in cells: where diffusion is either restricted or permeation through membrane is important. Calculations in k-space produce approximate expressions for the ORF using cumulant expansions that are accurate for small wavevectors. This provides descriptions for longer timescales better suited for studying time-dependent diffusion ISF(k,t)->exp[-tD(t)k^2] and provides a natural separation of contributions from system dynamics and from optical artifacts and aberrations. We will show an explicit derivation of a semi-analytical fit function for free diffusion based on standard electromagnetic analysis of a confocal optical apparatus. This fit function is then used to analyze a representative data set and has no free fit parameters other than the diffusion constant.

  7. Analytical correlation functions for motion through diffusivity landscapes.

    PubMed

    Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis

    2016-05-28

    Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.

  8. Non-Gaussianities in New Ekpyrotic Cosmology.

    PubMed

    Buchbinder, Evgeny I; Khoury, Justin; Ovrut, Burt A

    2008-05-02

    The new ekpyrotic model is an alternative scenario of the early Universe which relies on a phase of slow contraction before the big bang. We calculate the 3-point and 4-point correlation functions of primordial density perturbations and find a generically large non-Gaussian signal, just below the current sensitivity level of cosmic microwave background experiments. This is in contrast with slow-roll inflation, which predicts negligible non-Gaussianity. The model is also distinguishable from alternative inflationary scenarios that can yield large non-Gaussianity, such as Dirac-Born-Infeld inflation and the simplest curvatonlike models, through the shape dependence of the correlation functions. Non-Gaussianity therefore provides a distinguishing and testable prediction of New Ekpyrotic Cosmology.

  9. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus

    PubMed Central

    Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu

    2016-01-01

    Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522

  10. Correlation between static balance and functional autonomy in elderly women.

    PubMed

    de Noronha Ribeiro Daniel, Fernanda; de Souza Vale, Rodrigo Gomes; Giani, Tania Santos; Bacellar, Silvia; Escobar, Tatiane; Stoutenberg, Mark; Dantas, Estélio Henrique Martin

    2011-01-01

    The purpose of the present study was to verify the correlation between static balance and functional autonomy in elderly women. The sample was a random selection of 32 sedentary elderly women (mean age=67.47 ± 7.37 years, body mass index=BMI=27.30 ± 5.07 kg/m(2)), who live in the city of Teresina in the state of Piauí, Brazil. Static balance was analyzed by stabilometric assessment using an electronic baropodometer which measured the average of the amplitude of postural oscillations in the right (RLD) and left (LLD) lateral displacements, anterior (AD) and posterior (PD) displacements, and in the elliptical area (EA) formed by the body's center of gravity. Functional autonomy was evaluated by a battery of tests from the LADEG protocol which is composed of: a 10 m walk (10 mW), getting up from a seated position (GSP), getting up from the prone position (GPP), getting up from a chair and movement around the house (GCMH), and putting on and taking off a shirt (PTS). The Spearman's correlation coefficient (r) indicated a positive and significant correlation between GPP and LLD (r=0.382; p=0.031), GPP and PD (r=0.398; p=0.024) and GPP and EA (r=0.368; p=0.038). These results show that sedentary elderly women who spent the greatest amount of time performing the GPP test achieved the largest mean amplitude of displacement leading to greater levels of instability.

  11. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates

    PubMed Central

    Huang, Cho‐Min; Chiang, Hao‐Hua; Luo, Kai‐Ren; Kan, Hung‐Wei; Yang, Naomi Chu‐Chiao; Chiang, Hao; Lin, Whei‐Min; Lai, Shu‐Mei; Lee, Ming‐Jen; Shun, Chia‐Tung; Hsieh, Sung‐Tsang

    2015-01-01

    Objective Autonomic neuropathy is a major component of familial amyloid polyneuropathy (FAP) due to mutated transthyretin, with sudomotor failure as a common manifestation. This study aimed to investigate the pathology and clinical significance of sudomotor denervation. Methods Skin biopsies were performed on the distal leg of FAP patients with a follow‐up duration of 3.8 ± 1.6 years. Sudomotor innervation was stained with 2 markers: protein gene product 9.5 (PGP 9.5), a general neuronal marker, and vasoactive intestinal peptide (VIP), a sudomotor nerve functional marker, followed by quantitation according to sweat gland innervation index (SGII) for PGP 9.5 (SGIIPGP 9.5) and VIP (SGIIVIP). Results There were 28 patients (25 men) with Ala97Ser transthyretin and late onset (59.9 ± 6.0 years) disabling neuropathy. Autonomic symptoms were present in 22 patients (78.6%) at the time of skin biopsy. The SGIIPGP 9.5 and SGIIVIP of FAP patients were significantly lower than those of age‐ and gender‐matched controls. The reduction of SGIIVIP was more severe than that of SGIIPGP 9.5 (p = 0.002). Patients with orthostatic hypotension or absent sympathetic skin response at palms were associated with lower SGIIPGP 9.5 (p = 0.019 and 0.002, respectively). SGIIPGP 9.5 was negatively correlated with the disability grade at the time of skin biopsy (p = 0.004), and was positively correlated with the interval from the time of skin biopsy to the time of wheelchair usage (p = 0.029). Interpretation This study documented the pathological evidence of sudomotor denervation in FAP. SGIIPGP 9.5 was functionally correlated with autonomic symptoms, autonomic tests, ambulation status, and progression of disability. Ann Neurol 2015;78:272℃283 PMID:25973863

  12. Functional correlates of distractor suppression during spatial working memory encoding.

    PubMed

    Toepper, M; Gebhardt, H; Beblo, T; Thomas, C; Driessen, M; Bischoff, M; Blecker, C R; Vaitl, D; Sammer, G

    2010-02-17

    Executive working memory operations are related to prefrontal regions in the healthy brain. Moreover, neuroimaging data provide evidence for a functional dissociation of ventrolateral and dorsolateral prefrontal cortex. Most authors either suggest a modality-specific or a function-specific prefrontal cortex organization. In the present study we particularly aimed at the identification of different prefrontal cerebral areas that are involved in executive inhibitory processes during spatial working memory encoding. In an fMRI study (functional magnetic resonance imaging) we examined the neural correlates of spatial working memory processing by varying the amount of executive demands of the task. Twenty healthy volunteers performed the Corsi Block-Tapping test (CBT) during fMRI. The CBT requires the storage and reproduction of spatial target sequences. In a second condition, we presented an adapted version of the Block-Suppression-Test (BST). The BST is based on the original CBT but additionally requires the active suppression of visual distraction within the target sequences. In comparison to the CBT performance, particularly the left dorsolateral prefrontal cortex (BA 9) showed more activity during the BST condition. Our results show that the left dorsolateral prefrontal cortex plays a crucial role for executive controlled inhibition of spatial distraction. Furthermore, our findings are in line with the processing model of a functional dorsolateral-ventrolateral prefrontal cortex organization.

  13. Correlation functions from a unified variational principle: Trial Lie groups

    SciTech Connect

    Balian, R.; Vénéroni, M.

    2015-11-15

    Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill

  14. Quantum cosmology with nontrivial topologies

    SciTech Connect

    Vargas, T.

    2008-10-10

    Quantum creation of a universe with a nontrivial spatial topology is considered. Using the Euclidean functional integral prescription, we calculate the wave function of such a universe with cosmological constant and without matter. The minisuperspace path integral is calculated in the semiclassical approximation, and it is shown that in order to include the nontrivial topologies in the path integral approach to quantum cosmology, it is necessary to generalize the sum over compact and smooth 4-manifolds to sum over finite-volume compact 4-orbifolds.

  15. Correlation between Diastolic Function and Endothelial Function in Patients with Type 2 Diabetes and Hypertension

    PubMed Central

    Bedirian, Ricardo; Neves, Mario Fritsch; Oigman, Wille; Gismondi, Ronaldo Altenburg Odebrecht Curi; Pozzobon, Cesar Romaro; Ladeira, Marcia Cristina Boaventura; Castier, Marcia Bueno

    2016-01-01

    Background: Endothelial dysfunction may be involved in the pathophysiology of cardiac abnormalities in patients with diabetes mellitus (DM). A correlation between endothelial dysfunction and diastolic dysfunction in patients with type 1 DM has been demonstrated, but this relationship has not been well investigated in type 2 DM. Objective: Compare groups of patients with type 2 DM and hypertension with and without diastolic dysfunction using endothelial function indexes, and to assess whether correlations exist between the diastolic function and the endothelial function indexes. Method: This was a cross-sectional study of 34 men and women with type 2 DM and hypertension who were aged between 40 and 70 years and were categorized based on assessments of their Doppler echocardiographic parameters as having normal (14 patients) and abnormal (20 patients) diastolic function. Flow-mediated dilatation (FMD) assessments of the brachial artery evaluated the patients’ endothelial function. Results: The mean maximum FMD was 7.15 ± 2.80% for the patients with diastolic dysfunction and it was 11.85 ± 4.77% for the patients with normal diastolic function (p = 0.004). Correlations existed between the maximum FMD and the E/e' ratio (p = 0.040, r = -0.354) and the early wave velocity (e') at the lateral mitral annulus (p = 0.002, r = 0.509). Conclusion: The endothelial function assessed by FMD was worse in hypertensive diabetic patients with diastolic dysfunction. There were correlations between the diastolic function indexes and the endothelial function indexes in our sample. PMID:27867429

  16. WMAP normalization of inflationary cosmologies

    SciTech Connect

    Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.

    2006-10-15

    We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.

  17. Constructing a bivariate distribution function with given marginals and correlation: application to the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsutomu T.

    2010-08-01

    We provide an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient |ρ| < 1/3), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way to construct such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose using a Gaussian copula, which connects two given marginals and is directly related to the linear correlation coefficient between two variables. Using the copulas, we construct the bivariate luminosity function (BLF) and discuss its statistical properties. We focus especially on the far-infrared-far-ulatraviolet (FUV-FIR) BLF, since these two wavelength regions are related to star-formation (SF) activity. Though both the FUV and FIR are related to SF activity, the univariate LFs have a very different functional form: the former is well described by the Schechter function whilst the latter has a much more extended power-law-like luminous end. We construct the FUV-FIR BLFs using the FGM and Gaussian copulas with different strengths of correlation, and examine their statistical properties. We then discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the star-formation rate (SFR) function, and the construction of the stellar mass of galaxies (M*)-specific SFR (SFR/M*) relation. The copulas turn out to be a very useful tool to investigate all these issues, especially for including complicated selection effects.

  18. [Correlations of consciousness and the default function of the brain].

    PubMed

    Gyulaházi, Judit; Varga, Katalin

    2014-01-30

    Neural correlation with consciousness represents a main topic of neuroscience studies. New results of consciousness researches proved that based on a coherent function in between its components the default mode network activity is the condition for awake consciousness. The subject of consciousness is self. Tasks related with the self were proving a high default mode network activity. Using connections inside the network, results which were related with self, could be considered to represent a polymodal integration system are they are participating in fine processing of the highly integrated associative information. It could be a result of the convergence of cognitive binding. There is a strong connection between the level of consciousness and praecuneal activation. It was proved that the network activity is changing during sleeping (normal condition), trauma or under drug induced altered consciousness. The default network activity can be considered as the neural correlate of consciousness. Further researches are warranted to answer the question: is the activity of the network the cause or is just accompanying the development of human consciousness?

  19. Functional cortical network in alpha band correlates with social bargaining.

    PubMed

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.

  20. Functional neural correlates of social approval in schizophrenia

    PubMed Central

    Lepage, Martin

    2016-01-01

    Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia. PMID:26516171

  1. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    PubMed Central

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  2. Functional neural correlates of social approval in schizophrenia.

    PubMed

    Makowski, Carolina S; Lepage, Martin; Harvey, Philippe-Olivier

    2016-03-01

    Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia.

  3. Newtonian cosmology revisited

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1996-09-01

    I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.

  4. A density functional for core-valence correlation energy

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-01

    A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.

  5. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

    SciTech Connect

    Zhou, Yongxi; Ernzerhof, Matthias; Bahmann, Hilke

    2015-09-28

    Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.

  6. Simulating cosmologies beyond ΛCDM with PINOCCHIO

    NASA Astrophysics Data System (ADS)

    Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi; Munari, Emiliano; Borgani, Stefano; Castorina, Emanuele; Sefusatti, Emiliano

    2017-01-01

    We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results from simulations with the same level of precision as the original code (~ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ων–σ8 degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc‑1. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.

  7. On the Angular Correlation Functions of the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Roukema, B. F.

    Roukema & Valls-Gabaud (1997, RVG) reinforce the conclusion of Colley et al. (1996, 1997) that the Hubble Deep Field (HDF) ``galaxies'' are probably star-forming regions, not ``building-blocks''. Consider a ``building-block'' hypothesis: (1) all (colour-selected high z) HDF galaxy-like objects are galaxies; (2) these objects have a spatial correlation function xi(r,z) = b2 (r0 / r)gamma (1+z)-(3+epsilon-gamma) where b >> 1 is a strong bias factor at high z; and b > = 1, db/dr < 0 for all r,z; such that the projection of xi (3-D) into w (angular correlation; 2-D) (via Limber's equation) matches Figs 1a, 1d of Colley et al. (1996). Since w(1 arcsecond) > approx 1 in Figs 1a,1d of Colley et al. (1996), at least 50% of the 1 arcsecond object pairs can be considered ``excess pairs''. Table 1 of RVG therefore shows, conservatively, that of all the 1 arcsecond object pairs, and under the above hypotheses, 25% are spatially separated by a median of only 3-7h-1 kpc (proper units), and 45% are spatially separated by a median of 12-30h-1 kpc$, taking into account projection effects. Many excess pairs have theta approx 0.25 arcseconds. Hence, for a pure ``building-block'' model, galaxy formation models would have to post-dict the existence of many Rhalo << 2 kpc, very highly biased galaxies, at 2.5 < z < 5. This result is little sensitive to epsilon, Omega0, lambda0 or zmedian.

  8. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.

    PubMed

    Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael

    2014-05-01

    The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits.

  9. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rogers, Jeremy D.

    2016-03-01

    Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

  10. Studies into the averaging problem: Macroscopic gravity and precision cosmology

    NASA Astrophysics Data System (ADS)

    Wijenayake, Tharake S.

    2016-08-01

    With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model

  11. A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation.

    PubMed

    Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S

    2016-02-08

    Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.

  12. Correlation functions in liquids and crystals: free-energy functional and liquid-to-crystal transition.

    PubMed

    Bharadwaj, Atul S; Singh, Swarn L; Singh, Yashwant

    2013-08-01

    A free-energy functional for a crystal that contains both the symmetry-conserved and symmetry-broken parts of the direct pair-correlation function has been used to investigate the crystallization of fluids in three dimensions. The symmetry-broken part of the direct pair-correlation function has been calculated using a series in ascending powers of the order parameters and which contains three- and higher-body direct correlation functions of the isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials is found by considering the first two terms of this series. The results found for freezing parameters including the structure of the frozen phase for fluids interacting via the inverse power potential u(r)=ε(σ/r)(n) for n ranging from 4 to ∞ are in very good agreement with simulation results. It is found that for n>6.5 the fluid freezes into a face-centered cubic (fcc) structure while for n≤6 the body-centered cubic (bcc) structure is preferred. The fluid-bcc-fcc triple point is found to be at 1/n=0.158, which is in good agreement with simulation result.

  13. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    methods. These techniques will help in the understanding of new physics contained in current and future data sets as well as benefit the research efforts of the cosmology community. Our idea is to shift the computationally intensive pieces of the parameter estimation framework to a parallel training step. We then provide a machine learning code that uses this training set to learn the relationship between the underlying cosmological parameters and the function we wish to compute. This code is very accurate and simple to evaluate. It can provide incredible speed- ups of parameter estimation codes. For some applications this provides the convenience of obtaining results faster, while in other cases this allows the use of codes that would be impossible to apply in the brute force setting. In this thesis we provide several examples where our method allows more accurate computation of functions important for data analysis than is currently possible. As the techniques developed in this work are very general, there are no doubt a wide array of applications both inside and outside of cosmology. We have already seen this interest as other scientists have presented ideas for using our algorithm to improve their computational work, indicating its importance as modern experiments push forward. In fact, our algorithm will play an important role in the parameter analysis of Planck, the next generation CMB space mission.

  14. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2005-01-01

    Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  15. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  16. TASI Lectures on Cosmological Observables and String Theory

    NASA Astrophysics Data System (ADS)

    Silverstein, Eva

    These lectures provide an updated pedagogical treatment of the theoretical structure and phenomenology of some basic mechanisms for inflation, along with an overview of the structure of cosmological uplifts of holographic duality. A full treatment of the problem requires `ultraviolet completion' because of the sensitivity of inflation to quantum gravity effects, including back reaction and non-adiabatic production of heavy degrees of freedom. Cosmological observations imply accelerated expansion of the late universe, and provide increasingly precise constraints and discovery potential on the amplitude and shape of primordial tensor and scalar perturbations, and some of their correlation functions. Most backgrounds of string theory have positive potential energy, with a rich but still highly constrained landscape of solutions. The theory contains novel mechanisms for inflation, some subject to significant observational tests, with highly UV-sensitive tensor mode measurements being a prime example along with certain shapes of primordial correlation functions. Although the detailed ultraviolet completion is not accessible experimentally, some of these mechanisms directly stimulate a more systematic analysis of the space of low energy theories and signatures relevant for analysis of data, which is sensitive to physics orders of magnitude above the energy scale of inflation as a result of long time evolution (dangerous irrelevance) and the substantial amount of data (allowing constraints on quantities with signal/noise. Portions of these lectures appeared previously in Les Houches 2013, "Post-Planck Cosmology".

  17. Quantum Monte Carlo study of the itinerant-localized model of strongly correlated electrons: Spin-spin correlation functions

    NASA Astrophysics Data System (ADS)

    Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii

    2016-12-01

    We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi-long-range antiferromagnetic order in the lightly doped regime.

  18. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  19. Performance of internal covariance estimators for cosmic shear correlation functions

    NASA Astrophysics Data System (ADS)

    Friedrich, O.; Seitz, S.; Eifler, T. F.; Gruen, D.

    2016-03-01

    Data re-sampling methods such as delete-one jackknife, bootstrap or the sub-sample covariance are common tools for estimating the covariance of large-scale structure probes. We investigate different implementations of these methods in the context of cosmic shear two-point statistics. Using lognormal simulations of the convergence field and the corresponding shear field we generate mock catalogues of a known and realistic covariance. For a survey of {˜ } 5000 ° ^2 we find that jackknife, if implemented by deleting sub-volumes of galaxies, provides the most reliable covariance estimates. Bootstrap, in the common implementation of drawing sub-volumes of galaxies, strongly overestimates the statistical uncertainties. In a forecast for the complete 5-yr Dark Energy Survey, we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the Ωm-σ8 plane as measured with internally estimated covariance matrices is on average ≳85 per cent of the volume derived from the true covariance matrix. The uncertainty on the parameter combination Σ _8 ˜ σ _8 Ω _m^{0.5} derived from internally estimated covariances is ˜90 per cent of the true uncertainty.

  20. Performance of internal covariance estimators for cosmic shear correlation functions

    SciTech Connect

    Friedrich, O.; Seitz, S.; Eifler, T. F.; Gruen, D.

    2015-12-31

    Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the $\\Omega_m$-$\\sigma_8$ plane as measured with internally estimated covariance matrices is on average $\\gtrsim 85\\%$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$ derived from internally estimated covariances is $\\sim 90\\%$ of the true uncertainty.

  1. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  2. Performance of internal covariance estimators for cosmic shear correlation functions

    DOE PAGES

    Friedrich, O.; Seitz, S.; Eifler, T. F.; ...

    2015-12-31

    Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in themore » $$\\Omega_m$$-$$\\sigma_8$$ plane as measured with internally estimated covariance matrices is on average $$\\gtrsim 85\\%$$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $$\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$$ derived from internally estimated covariances is $$\\sim 90\\%$$ of the true uncertainty.« less

  3. Towards a Density Functional Theory Exchange-Correlation Functional able to describe localization/delocalization

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wills, John M.

    2013-03-01

    The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Rigorous Newtonian cosmology

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1996-10-01

    It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.

  5. Conformal Window and Correlation Functions in Lattice Conformal QCD

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.

    We discuss various aspects of Conformal Field Theories on the Lattice. We mainly investigate the SU(3) gauge theory with Nf degenerate fermions in the fundamental representation, employing the one-plaquette gauge action and the Wilson fermion action. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 ≤ Nf ≤ 16. Secondly, we introduce a new concept, "conformal theories with IR cutof" and point out that any numerical simulation on a lattice is bounded by an IR cutoff ∧IR. Then we make predictions that when Nf is within the conformal window, the propagator of a meson G(t) behaves at large t, as G(t) = c exp (-mHt)/tα, that is, a modified Yukawa-type decay form, instead of the usual exponential decay form exp (-mHt), in the small quark mass region. This holds on an any lattice for any coupling constant g, as far as g is between 0 and g*, where g* is the IR fixed point. We verify that numerical results really satisfy the predictions for the Nf = 7 case and the Nf = 16 case. Thirdly, we discuss small number of flavors (Nf = 2 ˜ 6) QCD at finite temperatures. We point out theoretically and verify numerically that the correlation functions at T/Tc > 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential decay with power correction. Investigating our numerical data by a new method which we call the "local-analysis" of propagators, we observe that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are similar to each other, while the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are similar to each other. Further, we observe our data are consistent with the picture that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are close to the meson unparticle model. On the other hand, the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are close to

  6. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  7. Halo Core Tracking for Galaxy Placement in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Korytov, Danila

    2017-01-01

    Synthetic galaxy catalogs are an important product of cosmological simulations. Upcoming surveys, such as LSST, require high volume and high resolution simulations for generating large object catalogs. These catalogs have many uses including testing and improving analysis pipelines, predictions for different cosmologies and investigations of systematic errors. Dark matter (DM) only simulations are able to reach the required volume and resolution but need an accurate prescription for galaxy placement within DM halos. We present a method for galaxy placement. For halos above a characteristic mass, central DM simulation particles are taken as tracer particles for a galaxy. These halo ``cores'' are tracked through the simulation and may merge with other ``cores'' or be ripped apart by halo tidal forces. We examine how accurately we can reproduce galaxy cluster profiles, two point correlation functions and other galaxy statistics.

  8. Cosmology with Gamma-Ray Bursts .

    NASA Astrophysics Data System (ADS)

    Nava, L.; Ghirlanda, G.

    Thanks to their large luminosity, GRBs are detectable up to very high redshift (z=8.2 the present record holder). This makes GRBs very appealing for cosmological purposes as, for example, the possibility to put some independent constraints on the cosmological parameters. Similarly to Supernovae type Ia, GRBs are not characterised by a unique value of their luminosity/energetics. The use of several empirical correlations between the energy/power of GRBs and their peak energy has been proposed to overcome this problem. This solution, however, faces several problems, such as the lack of low redshift calibrators for all the proposed correlations, the large dispersion of several of these correlations, the lack of their theoretical interpretation and the still small number of objects. We review the methods proposed to use GRBs as standard candles. We discuss advantages and limitations of the correlations commonly used and the present status of constraining the cosmological parameters through GRBs.

  9. Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996

  10. Computation of correlation functions and wave function projections in the context of quantum trajectory dynamics.

    PubMed

    Garashchuk, Sophya

    2007-04-21

    The de Broglie-Bohm formulation of the Schrodinger equation implies conservation of the wave function probability density associated with each quantum trajectory in closed systems. This conservation property greatly simplifies numerical implementations of the quantum trajectory dynamics and increases its accuracy. The reconstruction of a wave function, however, becomes expensive or inaccurate as it requires fitting or interpolation procedures. In this paper we present a method of computing wave packet correlation functions and wave function projections, which typically contain all the desired information about dynamics, without the full knowledge of the wave function by making quadratic expansions of the wave function phase and amplitude near each trajectory similar to expansions used in semiclassical methods. Computation of the quantities of interest in this procedure is linear with respect to the number of trajectories. The introduced approximations are consistent with approximate quantum potential dynamics method. The projection technique is applied to model chemical systems and to the H+H(2) exchange reaction in three dimensions.

  11. A coarse grained perturbation theory for the Large Scale Structure, with cosmology and time independence in the UV

    SciTech Connect

    Manzotti, Alessandro; Peloso, Marco; Pietroni, Massimo; Viel, Matteo; Villaescusa-Navarro, Francisco E-mail: peloso@physics.umn.edu E-mail: viel@oats.inaf.it

    2014-09-01

    Standard cosmological perturbation theory (SPT) for the Large Scale Structure (LSS) of the Universe fails at small scales (UV) due to strong nonlinearities and to multistreaming effects. In ref. [1] a new framework was proposed in which the large scales (IR) are treated perturbatively while the information on the UV, mainly small scale velocity dispersion, is obtained by nonlinear methods like N-body simulations. Here we develop this approach, showing that it is possible to reproduce the fully nonlinear power spectrum (PS) by combining a simple (and fast) 1-loop computation for the IR scales and the measurement of a single, dominant, correlator from N-body simulations for the UV ones. We measure this correlator for a suite of seven different cosmologies, and we show that its inclusion in our perturbation scheme reproduces the fully non-linear PS with percent level accuracy, for wave numbers up to k∼ 0.4 h Mpc{sup -1} down to 0z=. We then show that, once this correlator has been measured in a given cosmology, there is no need to run a new simulation for a different cosmology in the suite. Indeed, by rescaling this correlator by a proper function computable in SPT, the reconstruction procedure works also for the other cosmologies and for all redshifts, with comparable accuracy. Finally, we clarify the relation of this approach to the Effective Field Theory methods recently proposed in the LSS context.

  12. An optimum approximation of n-point correlation functions of random heterogeneous material systems.

    PubMed

    Baniassadi, M; Safdari, M; Garmestani, H; Ahzi, S; Geubelle, P H; Remond, Y

    2014-02-21

    An approximate solution for n-point correlation functions is developed in this study. In the approximate solution, weight functions are used to connect subsets of (n-1)-point correlation functions to estimate the full set of n-point correlation functions. In previous related studies, simple weight functions were introduced for the approximation of three and four-point correlation functions. In this work, the general framework of the weight functions is extended and derived to achieve optimum accuracy for approximate n-point correlation functions. Such approximation can be utilized to construct global n-point correlation functions for a system when there exist limited information about these functions in a subset of space. To verify its accuracy, the new formulation is used to approximate numerically three-point correlation functions from the set of two-point functions directly evaluated from a virtually generated isotropic heterogeneous microstructure representing a particulate composite system. Similarly, three-point functions are approximated for an anisotropic glass fiber/epoxy composite system and compared to their corresponding reference values calculated from an experimental dataset acquired by computational tomography. Results from both virtual and experimental studies confirm the accuracy of the new approximation. The new formulation can be utilized to attain a more accurate approximation to global n-point correlation functions for heterogeneous material systems with a hierarchy of length scales.

  13. An optimum approximation of n-point correlation functions of random heterogeneous material systems

    SciTech Connect

    Baniassadi, M.; Garmestani, H.; Ahzi, S.; Remond, Y.

    2014-02-21

    An approximate solution for n-point correlation functions is developed in this study. In the approximate solution, weight functions are used to connect subsets of (n-1)-point correlation functions to estimate the full set of n-point correlation functions. In previous related studies, simple weight functions were introduced for the approximation of three and four-point correlation functions. In this work, the general framework of the weight functions is extended and derived to achieve optimum accuracy for approximate n-point correlation functions. Such approximation can be utilized to construct global n-point correlation functions for a system when there exist limited information about these functions in a subset of space. To verify its accuracy, the new formulation is used to approximate numerically three-point correlation functions from the set of two-point functions directly evaluated from a virtually generated isotropic heterogeneous microstructure representing a particulate composite system. Similarly, three-point functions are approximated for an anisotropic glass fiber/epoxy composite system and compared to their corresponding reference values calculated from an experimental dataset acquired by computational tomography. Results from both virtual and experimental studies confirm the accuracy of the new approximation. The new formulation can be utilized to attain a more accurate approximation to global n-point correlation functions for heterogeneous material systems with a hierarchy of length scales.

  14. New Cosmological Solutions in Massive Gravity Theory

    NASA Astrophysics Data System (ADS)

    Pinho, S. S. A.; Pereira, S. H.; Mendonça, E. L.

    2017-04-01

    In this paper we present some new cosmological solutions in massive gravity theory. Some homogeneous and isotropic solutions correctly describe accelerated evolutions for the universe. The study was realized considering a specific form to the fiducial metric and found different functions and constant parameters of the theory that guarantee the conservation of the energy momentum tensor. Several accelerating cosmologies were found, all of them reproducing a cosmological constant term proportional to the graviton mass, with a de Sitter type solution for the scale factor. We have also verified that when the fiducial metric is close to the physical metric the solutions are absent, except for some specific open cases.

  15. Will Quantum Cosmology Resurrect Chaotic Inflation Model?

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo; Kim, Won

    2016-07-01

    The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.

  16. Terra Incognita - Cosmological Theory and Space Colonization

    NASA Astrophysics Data System (ADS)

    Tolkowsky, G.

    Philosophical and scientific cosmological theory may impact human motivation to colonize space. Isotropic theories regarding cosmic structure and function offer no a-priori advantages to the habitation of any given cosmic zone, and therefore deprive colonization ideology of a cosmological motive. In contrast, certain aniso- tropic theories, which assign superior qualities to some cosmic zones over others, provide such motives. It follows that future space colonization may partially depend on the emergence of anisotropic cosmological theories, some of which are already contained in Western intellectual tradition but are not currently accepted.

  17. The Course and Correlates of Everyday Functioning in Schizophrenia

    PubMed Central

    Reichenberg, Abraham; Feo, Concetta; Prestia, Davide; Bowie, Christopher R.; Patterson, Thomas L.; Harvey, Philip D.

    2014-01-01

    Previously institutionalized older patients with schizophrenia show changes in cognitive and functional capacity over time. This study examined changes in real-world functioning in a sample of people with schizophrenia who varied in their history of long-term institutionalization and related changes in real world functioning to changes in cognition and functional capacity over the follow-up period. Older patients with schizophrenia (n=111) were examined with assessments of cognitive functioning, functional capacity, clinical symptoms, and everyday functioning. They were then followed up to 45 months and examined up to two times. Mixed-model regression was used to examine changes in real-world functioning in social, everyday living, and vocational domains over the follow-up period and identify potential predictors of change. Everyday functioning worsened over time in all three domains. Although length of longest hospitalization predicted worsening, this influence was eliminated when the course of functional capacity was used to predict the course of everyday functioning. For both vocational and everyday living domains, as well as the composite score on functional status, worsening in performance based measures of everyday functioning and social competence predicted worsening in real world functioning. Changes in negative symptoms further predicted worsening in the everyday living domain. Worsening in everyday functioning is found in people with schizophrenia and those with a history of greater chronicity and severity of illness seem more affected. These influences seem to be expressed through worsening in the ability to perform everyday functional skills. Potential causes of these changes and implications for reducing these impairments are discussed. PMID:25045625

  18. Multifragment azimuthal correlation functions: Probes for reaction dynamics in collisions of intermediate energy heavy ions

    SciTech Connect

    Lacey, R.A.; Elmaani, A.; Lauret, J.; Li, T.; Bauer, W.; Craig, D.; Cronqvist, M.; Gualtieri, E.; Hannuschke, S.; Reposeur, T.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K.; Winfield, J.S.; Yee, J.; Yennello, S.; Nadasen, A.; Tickle, R.S.; Norbeck, E. National Superconducting Cyclotron Laboratory Department of Physics, Michigan State University, East Lansing, Michigan 48824-1321 Department of Physics, University of Michigan at Dearborn, Dearborn, Michigan 48128 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 Department of Physics, University of Iowa, Iowa City, Iowa 52242 )

    1993-03-01

    Multifragment azimuthal correlation functions have been measured as a function of beam energy and impact parameter for the Ar+Sc system ([ital E]/[ital A]=35 to 115 MeV). The observed azimuthal correlation functions---which do not require corrections for dispersion of the reaction plane---exhibit strong asymmetries which are dependent on impact parameter and beam energy. Rotational collective motion and flow seem to dominate the correlation functions at low beam energies. It is proposed that multifragment azimuthal correlation functions can provide a useful probe for intermediate energy heavy ion reaction dynamics.

  19. Dark D-brane cosmology

    SciTech Connect

    Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk

    2014-06-01

    Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.

  20. Cosmological gravitomagnetism and Mach's principle

    SciTech Connect

    Schmid, Christoph

    2006-08-15

    The spin axes of gyroscopes experimentally define local nonrotating frames, i.e. the time evolution of axes of inertial frames. But what physical cause governs the time evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker (FRW) cosmologies with k=0, i.e. spatially flat. We ask the following question: Will cosmological vector perturbations (i.e. vorticity or rotational perturbations) exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan's formalism with local orthonormal bases, we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state and any form of the energy-momentum tensor for cosmological matter, are as follows: (1) the dragging of a gyroscope axis by rotational perturbations of matter beyond the H-dot radius from the gyroscope is exponentially suppressed, where H is the Hubble rate, and the dot is the derivative with respect to cosmic time. (2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius gets larger than the H-dot radius. (3) For the most general linear cosmological perturbations, the time evolution of all gyroscope spin axes and the axis directions of all local inertial frames exactly follow a weighted average of the rotational motion of cosmological matter, i.e. there is exact frame-dragging everywhere. The weight function is the density of measured angular momentum of matter times (1/r) times the Yukawa force (-d/dr)[(1/r)exp(-{mu}r)], where r is the geodesic distance from the source to the gyroscope. The exponential cutoff is given by {mu}{sup 2}=-4(dH/dt). Except for the Yukawa cutoff the weight function is the same as in the

  1. The cosmological information of shear peaks: beyond the abundance

    NASA Astrophysics Data System (ADS)

    Marian, Laura; Smith, Robert E.; Hilbert, Stefan; Schneider, Peter

    2013-06-01

    We study the cosmological information of weak lensing (WL) peaks, focusing on two other statistics besides their abundance: the stacked tangential-shear profiles and the peak-peak correlation function. We use a large ensemble of simulated WL maps with survey specifications relevant to future missions like Euclid and LSST, to measure and examine the three peak probes. We find that the auto-correlation function of peaks with high signal-to-noise ratio ({S}/{N}) measured from fields of size 144 deg2 has a maximum of ˜0.3 at an angular scale ϑ ˜ 10 arcmin. For peaks with smaller {S}/{N}, the amplitude of the correlation function decreases, and its maximum occurs on smaller angular scales. The stacked tangential-shear profiles of the peaks also increase with their {S}/{N}. We compare the peak observables measured with and without shape noise and find that for {S}/{N}˜ 3 only ˜5 per cent of the peaks are due to large-scale structures, the rest being generated by shape noise. The correlation function of these small peaks is therefore very weak compared to that of small peaks measured from noise-free maps, and also their mean tangential-shear profile is a factor of a few smaller than the noise-free one. The covariance matrix of the probes is examined: the correlation function is only weakly covariant on scales ϑ < 30 arcmin, and slightly more on larger scales; the shear profiles are very correlated for ϑ > 2 arcmin. The cross-covariance of the three probes is relatively weak. Using the Fisher-matrix formalism, we compute the cosmological constraints for {Ωm, σ8, w, ns} considering each probe separately, as well as in combination. We find that the peak-peak correlation and shear profiles yield marginalized errors which are larger by a factor of 2-4 for {Ωm, σ8} than the errors yielded by the peak abundance alone, while the errors for {w, ns} are similar. By combining the three probes, the marginalized constraints are tightened by a factor of ˜2 compared to the

  2. Cosmological signatures of anisotropic spatial curvature

    SciTech Connect

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo E-mail: mena@iem.cfmac.csic.es

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  3. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  4. Sociology of Modern Cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  5. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  6. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  7. Structure of the correlation function at the accumulation points of the logistic map

    NASA Astrophysics Data System (ADS)

    Karamanos, K.; Mistakidis, I. S.; Mistakidis, S. I.

    2017-03-01

    The correlation function of the trajectory exactly at the Feigenbaum point of the logistic map is investigated and checked by numerical experiments. Taking advantage of recent closed analytical results on the symbol-to-symbol correlation function of the generating partition, we are in position to justify the deep algorithmic structure of the correlation function apart from numerical constants. A generalization is given for arbitrary $m\\cdot 2^{\\infty}$ Feigenbaum attractors.

  8. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited].

    PubMed

    Cai, Yangjian; Chen, Yahong; Wang, Fei

    2014-09-01

    Partially coherent beams with nonconventional correlation functions have displayed many extraordinary properties, such as self-focusing and self-splitting, which are totally different from those of partially coherent beams with conventional Gaussian correlated Schell-model functions and are useful in many applications, such as optical trapping, free-space optical communications, and material thermal processing. In this paper, we present a review of recent developments on generation and propagation of partially coherent beams with nonconventional correlation functions.

  9. A nonlinear correlation function for selecting the delay time in dynamical reconstructions

    NASA Astrophysics Data System (ADS)

    Aguirre, Luis Antonio

    1995-02-01

    Numerical results discussed in this paper suggest that a function which detects nonlinear correlations in time series usually indicates shorter correlation times than the linear autocorrelation function which is often used for this purpose. The nonlinear correlation function can also detect changes in the data which cannot be distinguished by the linear counterpart. This affects a number of approaches for the selection of the delay time used in the reconstruction of nonlinear dynamics from a single time series based on time delay coordinates.

  10. Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT

    SciTech Connect

    Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori

    2015-12-31

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.

  11. Development of Colle-Salvetti type electron-nucleus correlation functional for MC_DFT

    NASA Astrophysics Data System (ADS)

    Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori

    2015-12-01

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles' interactions.

  12. Correlated wave functions for the ground and some excited states of the iron atom.

    PubMed

    Buendía, E; Gálvez, F J; Sarsa, A

    2006-04-21

    We study the states arising from the [Ar]4s(2)3d6 and [Ar]4s(1)3d7 configurations of iron atom with explicitly correlated wave functions. The variational wave function is the product of the Jastrow correlation factor times a model function obtained within the parametrized optimized effective potential framework. A systematic analysis of the dependence of both the effective potential and the correlation factor on the configuration and on the term is carried out. The ground state of both, the cation, Fe+, and anion, Fe-, are calculated with correlated wave functions and the ionization potential and the electron affinity are obtained.

  13. a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.

    NASA Astrophysics Data System (ADS)

    Cowan, Mark Timothy

    The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.

  14. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  15. Cluster expansions for the correlated basis functions theory

    NASA Astrophysics Data System (ADS)

    Guardiola, R.

    1982-08-01

    Four kinds of cluster expansions for the calculation of non-diagonal matrix elements of the hamiltonian between correlated states have been derived. The derivation is based on a linearization mechanism for the standard cluster expansions in a configuration mixed state. Particularly simple formulae result for the multiplicative Factor-Aviles-Hartog-Tolhoek expansion and for the exponential form of the Gaudin-Gillespie-Ripka cluster expansion. The resulting expansions are directly usable in finite nuclei.

  16. Particle theory and cosmology

    SciTech Connect

    Not Available

    1990-01-01

    The overall objective of the research supported by this contract is to further our understanding of the basic building blocks of matter as well as the role fundamental interactions play in cosmology and astrophysics. Astrophysical data, such as from high energy cosmic rays and large scale structure of the universe, are employed to constrain particle physics theories. Particle collisions at Tevatron and higher (SSC) energies are also under investigation. During the past year a systematic reanalysis of the correlation between solar activity and the solar neutrino flux was undertaken. The conclusion seems to be that the Homestake experimental data show a correlation at a significant level, supporting the hypothesis that the neutrino possesses a magnetic moment. A separate, but related, theoretical investigation of electromagnetic properties of elementary particles has led to the discovery of a class of models in which the neutrino is endowed with an appreciable magnetic moment while its remains small. Altogether members of the group have been co-authors of 28 papers during the grant year on topics ranging from fermion masses to the role of ultra-high energy hadronic interactions in cosmic ray physics.

  17. The discrete correlation function: A new method for analyzing unevenly sampled variability data. [IUE

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Krolik, J. H.

    1988-01-01

    A method of measuring correlation functions without interpolating in the temporal domain, the discrete correlation function, is introduced. It provides an assumption-free representation of the correlation measured in the data, and allows meaningful error estimates. This method does not produce spurious correlations at zero lag due to correlated errors. It is shown that physical interpretation of active galactic nuclei cross-correlation functions requires knowledge of the input function's fluctuation power spectrum, involves model-dependence in the form of symmetry assumptions, and must take into account intrinsic scale bias. This technique was used to find a correlation in published IUE data for NGC 4151, which indicates that the broad C IV feature emanates from a shell 15 to 75 light-days in radius, assuming spherical symmetry.

  18. Nonstationary de Sitter Cosmological Models

    NASA Astrophysics Data System (ADS)

    Ibohal, Ng

    This paper proposes a class of nonstationary de Sitter, rotating and nonrotating, solutions to Einstein's field equations with a cosmological term of variable function Λ*(u). It is found that the space-time of the rotating nonstationary de Sitter model is algebraically special in the Petrov classification of the gravitational field with a null vector, which is a geodesic, shear-free, expanding as well as nonzero twist. However, that of the nonrotating nonstationary model is conformally flat, with nonempty space.

  19. Modelling the cosmological co-evolution of supermassive black holes and galaxies - I. BH scaling relations and the AGN luminosity function

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Moscardini, Lauro; Springel, Volker

    2008-04-01

    We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a `radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.

  20. Clustering, cosmology and a new era of black hole demographics- II. The conditional luminosity functions of Type 2 and Type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2017-01-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line of sight into the central engine. If this model is correct then there should be no difference in many of the properties of AGN host galaxies (e.g. the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the conditional luminosity function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g. radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.

  1. Maximum-likelihood analysis of the COBE angular correlation function

    NASA Technical Reports Server (NTRS)

    Seljak, Uros; Bertschinger, Edmund

    1993-01-01

    We have used maximum-likelihood estimation to determine the quadrupole amplitude Q(sub rms-PS) and the spectral index n of the density fluctuation power spectrum at recombination from the COBE DMR data. We find a strong correlation between the two parameters of the form Q(sub rms-PS) = (15.7 +/- 2.6) exp (0.46(1 - n)) microK for fixed n. Our result is slightly smaller than and has a smaller statistical uncertainty than the 1992 estimate of Smoot et al.

  2. String Cosmology: A Review

    SciTech Connect

    McAllister, Liam P.; Silverstein, Eva

    2007-10-22

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  3. Wormholes and cosmology

    SciTech Connect

    Klebanov, I.; Susskind, L.

    1988-10-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs.

  4. Quantum Coherence Arguments for Cosmological Scale

    SciTech Connect

    Lindesay, James; /SLAC

    2005-05-27

    Homogeneity and correlations in the observed CMB are indicative of some form of cosmological coherence in early times. Quantum coherence in the early universe would be expected to give space-like phase coherence to any effects sourced to those times. If dark energy de-coherence is assumed to occur when the rate of expansion of the relevant cosmological scale parameter in the Friedmann-Lemaitre equations is no longer supra-luminal, a critical energy density is immediately defined. It is shown that the general class of dynamical models so defined necessarily requires a spatially flat cosmology in order to be consistent with observed structure formation. The basic assumption is that the dark energy density which is fixed during de-coherence is to be identified with the cosmological constant. It is shown for the entire class of models that the expected amplitude of fluctuations driven by the dark energy de-coherence process is of the order needed to evolve into the fluctuations observed in cosmic microwave background radiation and galactic clustering. The densities involved during de-coherence which correspond to the measured dark energy density turn out to be of the electroweak symmetry restoration scale. In an inflationary cosmology, this choice of the scale parameter in the FL equations directly relates the scale of dark energy decoherence to the De Sitter scales (associated with the positive cosmological constants) at both early and late times.

  5. Development of an exchange-correlation functional with uncertainty quantification capabilities for density functional theory

    NASA Astrophysics Data System (ADS)

    Aldegunde, Manuel; Kermode, James R.; Zabaras, Nicholas

    2016-04-01

    This paper presents the development of a new exchange-correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.

  6. Development of an exchange–correlation functional with uncertainty quantification capabilities for density functional theory

    SciTech Connect

    Aldegunde, Manuel Kermode, James R. Zabaras, Nicholas

    2016-04-15

    This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.

  7. Statistical functions and relevant correlation coefficients of clearness index

    NASA Astrophysics Data System (ADS)

    Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott

    2015-08-01

    This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.

  8. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  9. Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests.

    PubMed

    Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A

    2017-03-14

    Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.

  10. Executive Functions after Age 5: Changes and Correlates

    ERIC Educational Resources Information Center

    Best, John R.; Miller, Patricia H.; Jones, Lara L.

    2009-01-01

    Research and theorizing on executive function (EF) in childhood has been disproportionately focused on preschool age children. This review paper outlines the importance of examining EF throughout childhood, and even across the lifespan. First, examining EF in older children can address the question of whether EF is a unitary construct. The…

  11. Disorders of Microtubule Function in Neurons: Imaging Correlates

    PubMed Central

    Mutch, Christopher A.; Poduri, Annapurdi; Sahin, Mustafa; Barry, Brenda; Walsh, Christopher A.; Barkovich, A. James

    2015-01-01

    Background and Significance A number of recent studies have described malformations of cortical development with mutations of components of microtubules and microtubule-associated proteins. Despite examinations of large numbers of MRIs, good phenotype-genotype correlations have been elusive. Additionally, most of these studies focused exclusively on cerebral cortical findings. Materials and Methods MRIs from18 patients with confirmed tubulin mutations (8 TUBA1A, 5 TUBB2B, and 5 TUBB3) and 15 patients with known mutations of the genes encoding microtubule-associated proteins (5 LIS1, 4 DCX, and 6 DYNC1H1) were carefully visually analyzed and compared. Specific note was made of cortical gyral pattern, basal ganglia and white matter to assess internal capsular size, cortical thickness, ventricular and cisternal size, and size and contours of the brain stem, cerebellar hemispheres and vermis, and the corpus callosum of patients with tubulin and microtubule-associated protein gene mutations. Results were determined by unanimous consensus of the authors. Results All patients had abnormal MRI scans. Large proportions of patients with tubulin gene mutations were found to have multiple cortical and subcortical abnormalities including microcephaly, ventriculomegaly, abnormal gyral and sulcal patterns (termed dysgyria), small or absent corpus callosum and small pons. All patients with microtubule-associated proteins mutations also had abnormal cerebral cortices (predominantly pachygyria and agyria), but fewer subcortical abnormalities were noted. Conclusion Comparison of MRIs from patients with known mutations of tubulin genes and microtubule-associated proteins allows for the establishment of some early correlations of phenotype with genotype and may assist in identification and diagnosis of these rare disorders. PMID:26564436

  12. Statistical properties of cosmological billiards

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Lecian, Orchidea Maria

    2011-02-01

    Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We show how the use of a “cosmological billiard” description allows one to refine and deepen the understanding of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations between the successive billiard corners in which the oscillations take place. Starting from the general integral invariants of Hamiltonian systems, we show how to construct invariant measures for various projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-normalizable) invariant measure on the “Kasner circle” which parametrizes the exponents of successive Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX (a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in cosmological billiards.

  13. Cosmology from High Redshift Supernovae

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter

    The discovery of a correlation between the light curve shape and intrinsic b rightness has made Type Ia supernovae exceptionally accurate distance indicators out to cosmologically interesting redshifts. Ground-based searches and follow-up as well as Hubble S pace Telescope observations of Type Ia supernovae have produced a significant number of object s with redshifts between 0.3 and 1.0. The distant SNe, when combined with a local samp le analyzed in the same way, provide reliable constraints on the deceleration and age of th e Universe. Early this year, an analysis of a handful of Type Ia events indicated that the deceleration was too small for gravitating matter alone to make a flat Universe. A larger sa mple of supernovae gives the surprising result that the Universe is accelerating, implying the exi stence of a cosmological constant or some other exotic form of energy. The success of this research has depended on the development of algorithms and software to register, scale and subtract CCD images taken weeks apart and to search for var iable objects. A good fraction of the point-sources identified are asteroids, variable stars, or AGN, so spectra are needed to confirm the identification as a Type Ia supernova and obt ain a redshift. The best candidates are followed photometrically to construct light curves. The steps to transform the observed light curves into cosmologically interestin g results will also be described.

  14. Executive Functions after Age 5: Changes and Correlates

    PubMed Central

    Best, John R.; Miller, Patricia H.; Jones, Lara L.

    2009-01-01

    Research and theorizing on executive function (EF) in childhood has been disproportionately focused on preschool age children. This review paper outlines the importance of examining EF throughout childhood, and even across the lifespan. First, examining EF in older children can address the question of whether EF is a unitary construct. The relations among the EF components, particularly as they are recruited for complex tasks, appear to change over the course of development. Second, much of the development of EF, especially working memory, shifting, and planning, occurs after age 5. Third, important applications of EF research concern the role of school-age children’s EF in various aspects of school performance, as well as social functioning and emotional control. Future research needs to examine a more complete developmental span, from early childhood through late adulthood, in order to address developmental issues adequately. PMID:20161467

  15. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    NASA Astrophysics Data System (ADS)

    Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi

    2016-12-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.

  16. Assessment of density-functional approximations: Long-range correlations and self-interaction effects

    SciTech Connect

    Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.

    2004-05-01

    The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles.

  17. Effective perfect fluids in cosmology

    SciTech Connect

    Ballesteros, Guillermo; Bellazzini, Brando E-mail: brando.bellazzini@pd.infn.it

    2013-04-01

    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  18. Galaxies in the Cosmological Context

    NASA Astrophysics Data System (ADS)

    Lucia, Gabriella De

    In the last decades, a number of observational experiments have converged to establish the cold dark matter model as the "de facto" standard model for structure formation. While the cosmological paradigm appears to be firmly established, a theory of galaxy formation remains elusive, and our understanding of the physical processes that determine the observed variety of galaxy properties and their evolution as a function of cosmic time and environment is far from complete. Although much progress has been made, both on the theoretical and observational side, understanding how galaxies form and evolve remains one of the most outstanding questions of modern astrophysics. This chapter provides an introduction to ideas and concepts that underpin modern models of galaxy formation and evolution, in the currently favoured cosmological context.

  19. Alexithymia in personality disorders: correlations with symptoms and interpersonal functioning.

    PubMed

    Nicolò, Giuseppe; Semerari, Antonio; Lysaker, Paul H; Dimaggio, Giancarlo; Conti, Laura; D'Angerio, Stefania; Procacci, Michele; Popolo, Raffaele; Carcione, Antonino

    2011-11-30

    Impairment in the ability to recognize and make sense of emotions has been hypothesized to be present in a sub-sample of people suffering from personality disorder (PD). In particular it is possible that difficulty recognizing and expressing feelings, or alexithymia, is related to many of the symptoms and problems in making sense of social interactions which are hallmarks of PD. In this study we measured levels of alexithymia with the Toronto Alexithymia Scale-20 and explored its correlations with the overall presence of PD and different PD diagnoses, symptoms, and interpersonal difficulties. Results were largely consistent with the hypothesis. Higher levels of alexithymia were related to high levels of global psychopathology and with dysfunctional representation of interpersonal relations. A sub-sample of patients, mostly suffering from avoidant, dependent, passive-aggressive and depressive PD, had alexithymic features and, in particular reported difficulties describing their feelings to others. A patient with cluster B PD featured no alexithymia. Implications of this study for future research and treatment are discussed.

  20. IVBT-documented platelet function correlates with flow cytometric data.

    PubMed

    Hoffmann, J; Bonacker, G; Kretschmer, V; Schulzki, T; Heimanns, J

    1996-12-01

    Thrombocytopenic patients with identical platelet counts often show different bleeding tendencies owing to significant differences in the platelet function. This could be demonstrated by the in vitro bleeding test (IVBT). Using flow cytometry, we tried to find characteristics of platelet antigen expression in order to explain these differences in function. Thirty patients with bone marrow hypoplasia receiving 65 platelet transfusions (mainly from a cell separator) were observed for 3 to 29 days. Size, granulation and fluorescence of platelet-rich plasma (n = 522 samples) were evaluated using monoclonal antibodies against GP IIIb (collagen receptor), GP IIb/IIIa (fibrinogen receptor) and GP Ib (thrombin receptor). We defined separate gates for each antibody using the results from 50 normals and by laying an orthograde cross over the gate to divide the gate into four equal quadrants. The platelet populations were divided into four different groups according to the occlusion time (OT) of the IVBT and the Simplate time (ST). The thrombocytes with the most impaired function (OT > or = 485 s/ST > 30 min) had significantly less platelet fluorescence when marked with antibodies against GP IIIb and GP Ib than those with short OT and ST (OT < 100 s/ST < 15 min). Similar results were obtained when evaluating the data relative to the bone marrow status: patients with < 1000 WBC/microliters showed significantly less platelet fluorescence when marked with anti-GP IIIb and anti-GP Ib than thrombocytopenic patients, who had a spontaneous platelet rise beyond 30,000 platelets/microliters a few days later. One day after platelet transfusion, significantly more platelets with high GP IIIb and Ib expression could be found. We were also able to document better transfusion efficacy of platelet concentrates with high GP IIIb and Ib expression. Finally, patients with high bleeding scores showed less GP Ib expression on the platelets than patients with low bleeding scores. In summary, the

  1. Correlation functions in hard and (semi-)inclusive processes

    SciTech Connect

    Schlegel, Marc; Meissner, Stephan; Metz, Andreas

    2009-01-01

    Possible relations between two a priori different classes of parton distributions, the Generalized Parton Distributions (GPDs) and the Transverse Momentum Dependent parton distributions (TMDs), are discussed in this note. Although these relations were proven to hold exactly only in simple models they imply an appealingly simple and intuitive explanation for single-spin asymmetries in semi-inclusive deep-inelastic scattering. In this context we perform a first classification of common mother functions of GPDs and TMDs, so-called Generalized Transverse Momentum Dependent parton distributions (GTMDs), investigate their GPD- and TMD-limits, and gain new insight into the nature of these relations.

  2. Pair-correlation function of a metastable helium Bose-Einstein condensate

    SciTech Connect

    Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz

    2004-02-01

    The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.

  3. Optimal gene partition into operons correlates with gene functional order

    NASA Astrophysics Data System (ADS)

    Zaslaver, Alon; Mayo, Avi; Ronen, Michal; Alon, Uri

    2006-09-01

    Gene arrangement into operons varies between bacterial species. Genes in a given system can be on one operon in some organisms and on several operons in other organisms. Existing theories explain why genes that work together should be on the same operon, since this allows for advantageous lateral gene transfer and accurate stoichiometry. But what causes the frequent separation into multiple operons of co-regulated genes that act together in a pathway? Here we suggest that separation is due to benefits made possible by differential regulation of each operon. We present a simple mathematical model for the optimal distribution of genes into operons based on a balance of the cost of operons and the benefit of regulation that provides 'just-when-needed' temporal order. The analysis predicts that genes are arranged such that genes on the same operon do not skip functional steps in the pathway. This prediction is supported by genomic data from 137 bacterial genomes. Our work suggests that gene arrangement is not only the result of random historical drift, genome re-arrangement and gene transfer, but has elements that are solutions of an evolutionary optimization problem. Thus gene functional order may be inferred by analyzing the operon structure across different genomes.

  4. Genotype-phenotype correlation for pulmonary function in cystic fibrosis

    PubMed Central

    de Gracia, J; Mata, F; Alvarez, A; Casals, T; Gatner, S; Vendrell, M; de la Rosa, D; Guarner, L; Hermosilla, E

    2005-01-01

    Background: Since the CFTR gene was cloned, more than 1000 mutations have been identified. To date, a clear relationship has not been established between genotype and the progression of lung damage. A study was undertaken of the relationship between genotype, progression of lung disease, and survival in adult patients with cystic fibrosis (CF). Methods: A prospective cohort of adult patients with CF and two CFTR mutations followed up in an adult cystic fibrosis unit was analysed. Patients were classified according to functional effects of classes of CFTR mutations and were grouped based on the CFTR molecular position on the epithelial cell surface (I–II/I–II, I–II/III–V). Spirometric values, progression of lung disease, probability of survival, and clinical characteristics were analysed between groups. Results: Seventy four patients were included in the study. Patients with genotype I–II/I–II had significantly lower current spirometric values (p<0.001), greater loss of pulmonary function (p<0.04), a higher proportion of end-stage lung disease (p<0.001), a higher risk of suffering from moderate to severe lung disease (odds ratio 7.12 (95% CI 1.3 to 40.5)) and a lower probability of survival than patients with genotype I–II/III, I–II/IV and I–II/V (p<0.001). Conclusions: The presence of class I or II mutations on both chromosomes is associated with worse respiratory disease and a lower probability of survival. PMID:15994263

  5. Correlation between videogame mechanics and executive functions through EEG analysis.

    PubMed

    Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel

    2016-10-01

    This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies.

  6. Nuclear physics and cosmology

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.

  7. Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation

    NASA Astrophysics Data System (ADS)

    Cañate, Pedro; Pearle, Philip; Sudarsky, Daniel

    2013-05-01

    The inflationary account for the emergence of the seeds of cosmic structure falls short of actually explaining the generation of primordial anisotropies and inhomogeneities. This description starts from a symmetric background, and invokes symmetric dynamics, so it cannot explain asymmetries. To generate asymmetries, we present an application of the continuous spontaneous localization model of wave function collapse in the context of inflation. This modification of quantum dynamics introduces a stochastic nonunitary component to the evolution of the inflaton field perturbations. This leads to passage from a homogeneous and isotropic stage to another, where the quantum uncertainties in the initial state of inflation transmute into the primordial inhomogeneities and anisotropies. We show, by proper choice of the collapse-generating operator, that it is possible to achieve compatibility with the precise observations of the cosmic microwave background radiation.

  8. Newtonian and Relativistic Cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.

  9. Bouncing Cosmologies: Progress and Problems

    NASA Astrophysics Data System (ADS)

    Brandenberger, Robert; Peter, Patrick

    2017-02-01

    We review the status of bouncing cosmologies as alternatives to cosmological inflation for providing a description of the very early universe, and a source for the cosmological perturbations which are observed today. We focus on the motivation for considering bouncing cosmologies, the origin of fluctuations in these models, and the challenges which various implementations face.

  10. Cosmological perturbations of quantum-mechanical origin and anisotropy of the microwave background

    NASA Technical Reports Server (NTRS)

    Grishchuk, L. P.

    1993-01-01

    Cosmological perturbations generated quantum mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the cosmic microwave background radiation is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by observations like those by the Cosmic Background Explorer.

  11. Correlation functions of the Aharony-Bergman-Jafferis-Maldacena model

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Gwak, Bogeun; Park, Chanyong

    2013-04-01

    In the Aharony-Bergman-Jafferis-Maldacena model, we study the three-point function of two heavy operators and an (ir)relevant one. Following the AdS/CFT correspondence, the structure constant in the large ’t Hooft coupling limit can be factorized into two parts. One is the structure constant with a marginal operator, which is fully determined by the physical quantities of heavy operators and gives rise to a result that is consistent with the renormalization-group analysis. The other can be expressed as the universal form depending only on the conformal dimension of an (ir)relevant operator. We also investigate the new size effect of a circular string dual to a certain closed spin chain.

  12. Binocular function in unilateral aphakia. Correlation with aniseikonia and stereoacuity.

    PubMed

    Katsumi, O; Miyanaga, Y; Hirose, T; Okuno, H; Asaoka, I

    1988-08-01

    Aniseikonia and stereoacuity were measured in patients with unilateral aphakia, most of whom were postoperative senile cataract cases. The New Aniseikonia test was used to evaluate aniseikonia and the Titmus Stereotest to measure stereoacuity. Ninety cases were studied, 57 (63.3%) of which had intraocular lens (IOL) implants; 27 (30%) had extended-wear soft contact lenses; and six (6.7%) had spectacle lenses. In the IOL group, aniseikonia averaged 2.8%, and 39 patients (68.4%) had good stereoacuity. In the contact lens group, aniseikonia averaged 4.6%, and 11 (40.7%) had good stereoacuity. In the spectacle lens group, aniseikonia averaged 17.8%; none of the patients had good stereoacuity. The authors concluded that in cases with unilateral aphakia, correction with an IOL implant is superior to the other alternatives in achieving good binocular function.

  13. Correlated electron-nuclear dynamics with conditional wave functions.

    PubMed

    Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel

    2014-08-22

    The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.

  14. Cluster pair correlation function of simple fluids: energetic connectivity criteria.

    PubMed

    Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando

    2006-11-21

    We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.

  15. Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response.

    PubMed

    Vijaya Kumar, B K; Mahalanobis, A; Takessian, A

    2000-01-01

    Correlation methods are becoming increasingly attractive tools for image recognition and location. This renewed interest in correlation methods is spurred by the availability of high-speed image processors and the emergence of correlation filter designs that can optimize relevant figures of merit. In this paper, a new correlation filter design method is presented that allows one to optimally tradeoff among potentially conflicting correlation output performance criteria while achieving desired correlation peak value behavior in response to in-plane rotation of input images. Such controlled in-plane rotation response is useful in image analysis and pattern recognition applications where the sensor follows a pre-arranged trajectory while imaging an object. Since this new correlation filter design is based on circular harmonic function (CHF) theory, we refer to the resulting filters as optimal tradeoff circular harmonic function (OTCHF) filters. Underlying theory, OTCHF filter design method, and illustrative numerical results are presented.

  16. Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous

    SciTech Connect

    Salini, K.; Prabhu, R.; Sen, Aditi; Sen, Ujjwal

    2014-09-15

    Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.

  17. Kinetic correlation in the final-state wave function in photo-double-ionization of He

    SciTech Connect

    Otranto, S.; Garibotti, C. R.

    2003-06-01

    We evaluate the triply differential cross section (TDCS) for photo-double-ionization of helium. We use a final continuum wave function which correlates the motion of the three particles, through an expansion in products of two-body Coulomb functions. This function satisfies a set of appropriate physical conditions in the coalescence points, in addition to the correct asymptotic behavior condition. We analyze the effect of this correlation in the TDCS and compare our results with experimental data.

  18. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  19. Hamiltonian cosmology of bigravity

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    2017-03-01

    This article is written as a review of the Hamiltonian formalism for the bigravity with de Rham-Gabadadze-Tolley (dRGT) potential, and also of applications of this formalism to the derivation of the background cosmological equations. It is demonstrated that the cosmological scenarios are close to the standard ΛCDM model, but they also uncover the dynamical behavior of the cosmological term. This term arises in bigravity regardless on the choice of the dRGT potential parameters, and its scale is given by the graviton mass. Various matter couplings are considered.

  20. Bessel function output from an optical correlator with a phase-only encoded inverse filter.

    PubMed

    Davis, J A; Cottrell, D M; Campos, J; Yzuel, M J; Moreno, I

    1999-11-10

    We report on a technique for producing a Bessel function correlation output for an arbitrary input pattern. The central dark spot at the center of the Bessel function correlator output is narrower than the width of the normal correlation spot and can be extremely useful for locating the center of the correlation signal. The Bessel function is produced by convolution of the extremely sharp correlation produced by an inverse filter with the Bessel function and is encoded with a single phase-only liquid-crystal spatial light modulator. To encode amplitude information on the filter, we spatially modulate the phase encoded on the filter. Amplitude modulation is obtained by modulation of the diffraction efficiency of the phase grating. Experimental results are presented.

  1. Physical rehabilitation of paralysed facial muscles: functional and morphological correlates.

    PubMed

    Angelov, Doychin N

    2011-01-01

    Using a combined morphofunctional approach, we recently found that polyinnervation of the neuromuscular junction (NMJ) is the critical factor for recovery of function after transection and suture of the facial nerve. Since polyinnervation is activity-dependent and can be manipulated, we tried to design a clinically feasible therapy by electrical stimulation or by soft tissue massage. First, electrical stimulation was applied to the transected facial nerve or to paralyzed facial muscles. Both procedures did not improve vibrissal motor performance (video-based motion analysis of whisking), failed to diminish polyinnervation, and even reduced the number of innervated NMJ to one-fifth of normal values. In contrast, gentle stroking of the paralyzed vibrissal muscles by hand resulted in full recovery of whisking. Manual stimulation depended on the intact sensory supply of the denervated muscle targets and was also effective after hypoglossal-facial anastomosis, after interpositional nerve grafting, when applied to the orbicularis oculi muscle and after transection and suture of the hypoglossal nerve. From these results, we conclude that manual stimulation is a noninvasive procedure with immediate potential for clinical rehabilitation following facial nerve reconstruction.

  2. Functional Connectivity Homogeneity Correlates with Duration of Temporal Lobe Epilepsy

    PubMed Central

    Haneef, Zulfi; Chiang, Sharon; Yeh, Hsiang J.; Engel, Jerome; Stern, John M.

    2015-01-01

    Temporal lobe epilepsy (TLE) often is associated with progressive changes to seizures, memory, and mood during its clinical course. However, the cerebral changes related to this progression are not well understood. Because the changes may be related to changes in brain networks, we used functional connectivity MRI (fcMRI) to determine whether brain network parameters relate to the duration of TLE. Graph theory based analysis of the sites of reported regions of TLE abnormality, was performed on resting state fMRI data in 48 subjects: 24 controls, 13 patients with left TLE, and 11 patients with right TLE. Various network parameters were analyzed including betweenness centrality (BC), clustering coefficient (CC), path length (PL), small-world index (SWI), global efficiency (GE), connectivity strength (CS), and connectivity diversity (CD). These were compared for TLE as a group, compared to controls, and for left and right TLE separately. Association of changes in network parameters with epilepsy duration was also evaluated. We found that CC, CS and CD were decreased in TLE, compared to control subjects. Analyzed according to epilepsy duration, TLE showed a progressive reduction in CD. In conclusion, we found that several network parameters were decreased in TLE compared to controls, which suggested reduced connectivity in TLE. Reduction in CD associated with epilepsy duration suggests a homogenization of connections over time in TLE, indicating a reduction of the normal repertoire of stronger and weaker connections to other brain regions. PMID:25873437

  3. The intrapair electron correlation in natural orbital functional theory

    SciTech Connect

    Piris, M.; Matxain, J. M.; Lopez, X.

    2013-12-21

    A previously proposed [M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 134, 164102 (2011)] formulation of the two-particle cumulant, based on an orbital-pairing scheme, is extended here for including more than two natural orbitals. This new approximation is used to reconstruct the two-particle reduced density matrix (2-RDM) constrained to the D, Q, and G positivity necessary conditions of the N-representable 2-RDM. In this way, we have derived an extended version of the Piris natural orbital functional 5 (PNOF5e). An antisymmetrized product of strongly orthogonal geminals with the expansion coefficients explicitly expressed by the occupation numbers is also used to generate the PNOF5e. The theory is applied to the homolytic dissociation of selected diatomic molecules: H{sub 2}, LiH, and Li{sub 2}. The Bader's theory of atoms in molecules is used to analyze the electron density and the presence of non-nuclear maxima in the case of a set of light atomic clusters: Li{sub 2}, Li {sub 3}{sup +}, Li {sub 4}{sup 2+}, and H{sub 3}{sup +}. The improvement of PNOF5e over PNOF5 was observed by visualizing the electron densities.

  4. Fractional Brownian motions: memory, diffusion velocity, and correlation functions

    NASA Astrophysics Data System (ADS)

    Fuliński, A.

    2017-02-01

    Fractional Brownian motions (FBMs) have been observed recently in the measured trajectories of individual molecules or small particles in the cytoplasm of living cells and in other dense composite systems, among others. Various types of FBMs differ in a number of ways, including the strength, range and type of damping of the memory encoded in their definitions, but share several basic characteristics: distributions, non-ergodic properties, and scaling of the second moment, which makes it difficult to determine which type of Brownian motion (fractional or normal) the measured trajectory belongs to. Here, we show, by introducing FBMs with regulated range and strength of memory, that it is the structure of memory which determines their physical properties, including mean velocity of diffusion; therefore, the course and kinetics of several processes (including coagulation and some chemical reactions). We also show that autocorrelation functions possess characteristic features which enable identification of an observed FBM, and of the type of memory governing its trajectory. In memoriam Marian Smoluchowski, on the 100th anniversary of the publication of his seminal papers on Brownian motion and diffusion-limited kinetics.

  5. The Lieb-Oxfourd bound and the exchange-correlation kernel from the strictly-correlated electrons functional

    NASA Astrophysics Data System (ADS)

    Gori-Giorgi, Paola

    I will present some recent results based on the strictly-correlated electrons (SCE) functional: 1) a rigorous method to set lower bounds to the optimal particle-number dependent constant appearing in the Lieb-Oxford bound, and 2) an investigation of exact properties in the time domain, including an analytical expression for the kernel in one-dimension, with an analysis of its behavior for the case of bond-breaking excitations. ERC Consolidator Grant 648932.

  6. Lorentzian condition in holographic cosmology

    NASA Astrophysics Data System (ADS)

    Hertog, Thomas; Monten, Ruben; Vreys, Yannick

    2017-01-01

    We derive a sufficient set of conditions on the Euclidean boundary theory in dS/CFT for it to predict classical, Lorentzian bulk evolution at large spatial volumes. Our derivation makes use of a canonical transformation to express the bulk wave function at large volume in terms of the sources of the dual partition function. This enables a sharper formulation of dS/CFT. The conditions under which the boundary theory predicts classical bulk evolution are stronger than the criteria usually employed in quantum cosmology. We illustrate this in a homogeneous isotropic minisuperspace model of gravity coupled to a scalar field in which we identify the ensemble of classical histories explicitly.

  7. Cosmology in Weyl transverse gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-11-01

    We study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in the Weyl-transverse (WTDiff) gravity in a general spacetime dimension. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is believed to be equivalent to general relativity at least at the classical level (perhaps, even in the quantum regime). It is explicitly shown by solving the equations of motion that the FLRW metric is a classical solution in the WTDiff gravity only when the spatial metric is flat, that is, the Euclidean space, and the lapse function is a nontrivial function of the scale factor.

  8. Cross-correlation function of acoustic fields generated by random high-frequency sources.

    PubMed

    Godin, Oleg A

    2010-08-01

    Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.

  9. Testing fractional action cosmology

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.

    2016-08-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  10. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  11. Baryogenesis and cosmological antimatter

    SciTech Connect

    Dolgov, Alexander D.

    2009-04-20

    Possible mechanisms of baryogenesis are reviewed. Special attention is payed to those which allow for creation of astronomically significant domains or objects consisting of antimatter. Observational manifestations of cosmological antimatter are discussed.

  12. From Cosmology to Consulting

    NASA Astrophysics Data System (ADS)

    Nelson, William

    2014-03-01

    I will discuss my transition from Quantum Gravity and Cosmology to the world of consulting and describe the differences and similarities between academia and industry. I will give some dos and don'ts for industry interviews and jobs searches.

  13. Cosmology solved? Maybe

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1999-03-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!

  14. Nonlocal field correlation functions on a lattice in the HP{sub 1{sigma}} model

    SciTech Connect

    Orlovsky, V. D. Shevchenko, V. I.

    2010-11-15

    Connected two-point field-strength correlation functions are measured on a lattice in the quaternionic projective {sigma} model within pure SU(2) theory. The correlation lengths extracted from exponential fits for these correlation functions, {lambda}{sub 1}{sup -1} = 1.40(3) GeV and {lambda}{sup -1} = 1.51(3) GeV, are found to be in good agreement with the results of other known calculations. The dependence of bilocal functions on the connector shape is also studied.

  15. Dynamical initial conditions in quantum cosmology.

    PubMed

    Bojowald, M

    2001-09-17

    Loop quantum cosmology is shown to provide both the dynamical law and initial conditions for the wave function of a universe by one discrete evolution equation. Accompanied by the condition that semiclassical behavior is obtained at large volume, a unique wave function is predicted.

  16. Cosmology: A research briefing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.

  17. Cosmological phase transitions

    SciTech Connect

    Kolb, E.W. |

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  18. Foundations of modern cosmology

    NASA Astrophysics Data System (ADS)

    Hawley, John F.; Holcomb, Katherine A.

    2005-07-01

    Recent discoveries in astronomy, especially those made with data collected by satellites such as the Hubble Space Telescope and the Wilkinson Microwave Anisotropy Probe, have revolutionized the science of cosmology. These new observations offer the possibility that some long-standing mysteries in cosmology might be answered, including such fundamental questions as the ultimate fate of the universe. Foundations of modern cosmology provides an accessible, thorough and descriptive introduction to the physical basis for modern cosmological theory, from the big bang to a distant future dominated by dark energy. This second edition includes the latest observational results and provides the detailed background material necessary to understand their implications, with a focus on the specific model supported by these observations, the concordance model. Consistent with the book's title, emphasis is given to the scientific framework for cosmology, particularly the basics concepts of physics that underlie modern theories of relativity and cosmology; the importance of data and observations is stressed throughout. The book sketches the historical background of cosmology, and provides a review of the relevant basic physics and astronomy. After this introduction, both special and general relativity are treated, before proceeding to an in-depth discussion of the big bang theory and physics of the early universe. The book includes current research areas, including dark matter and structure formation, dark energy, the inflationary universe, and quantum cosmology. The authors' website (http://www.astro.virginia.edu/~jh8h/Foundations) offers a wealth of supplemental information, including questions and answers, references to other sources, and updates on the latest discoveries.

  19. Classification of cosmological milestones

    SciTech Connect

    Fernandez-Jambrina, L.; Lazkoz, Ruth

    2006-09-15

    In this paper causal geodesic completeness of Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models is analyzed in terms of generalized power expansions of the scale factor in coordinate time. The strength of the found singularities is discussed following the usual definitions due to Tipler and Krolak. It is shown that while classical cosmological models are both timelike and lightlike geodesically incomplete, certain observationally allowed models which have been proposed recently are lightlike geodesically complete.

  20. Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.

    2013-12-01

    Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].

  1. Statistics on the heterotic landscape: Gauge groups and cosmological constants of four-dimensional heterotic strings

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.

    2006-05-01

    Recent developments in string theory have reinforced the notion that the space of stable supersymmetric and nonsupersymmetric string vacua fills out a landscape whose features are largely unknown. It is then hoped that progress in extracting phenomenological predictions from string theory—such as correlations between gauge groups, matter representations, potential values of the cosmological constant, and so forth—can be achieved through statistical studies of these vacua. To date, most of the efforts in these directions have focused on type I vacua. In this note, we present the first results of a statistical study of the heterotic landscape, focusing on more than 105 explicit nonsupersymmetric tachyon-free heterotic string vacua and their associated gauge groups and one-loop cosmological constants. Although this study has several important limitations, we find a number of intriguing features which may be relevant for the heterotic landscape as a whole. These features include different probabilities and correlations for different possible gauge groups as functions of the number of orbifold twists. We also find a vast degeneracy amongst nonsupersymmetric string models, leading to a severe reduction in the number of realizable values of the cosmological constant as compared with naïve expectations. Finally, we find strong correlations between cosmological constants and gauge groups which suggest that heterotic string models with extremely small cosmological constants are overwhelmingly more likely to exhibit the standard model gauge group at the string scale than any of its grand-unified extensions. In all cases, heterotic world sheet symmetries such as modular invariance provide important constraints that do not appear in corresponding studies of type I vacua.

  2. Advances on GRB as cosmological tools

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.

    2009-05-01

    Several interesting correlations among Gamma Ray Bursts (GRB) prompt and afterglow properties have been found in the recent years. Some of these correlations have been proposed also to standardize GRB energetics to use them as standard candles in constraining the expansion history of the universe up to z>6. However, given the still unexplained nature of most of these correlations, only the less scattered correlations can be used for constraining the cosmological parameters. The updated Epeak-Eγ correlation is presented. Caveats of alternative methods of standardizing GRB energetics are discussed.

  3. Building cosmological frozen stars

    NASA Astrophysics Data System (ADS)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis–Newman–Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild–deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  4. Cosmological Models and Stability

    NASA Astrophysics Data System (ADS)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  5. Cosmology with phase statistics: parameter forecasts and detectability of BAO

    NASA Astrophysics Data System (ADS)

    Eggemeier, Alexander; Smith, Robert E.

    2017-04-01

    We consider an alternative to conventional three-point statistics such as the bispectrum, which is purely based on the Fourier phases of the density field: the line correlation function. This statistic directly probes the non-linear clustering regime and contains information highly complementary to that contained in the power spectrum. In this work, we determine, for the first time, its potential to constrain cosmological parameters and detect baryon acoustic oscillations (hereafter BAOs). We show how to compute the line correlation function for a discrete sampled set of tracers that follow a local Lagrangian biasing scheme and demonstrate how it breaks the degeneracy between the amplitude of density fluctuations and the bias parameters of the model. We then derive analytic expressions for its covariance and show that it can be written as a sum of a Gaussian piece plus non-Gaussian corrections. We compare our predictions with a large ensemble of N-body simulations and confirm that BAOs do indeed modulate the signal of the line correlation function for scales 50-100 h-1Mpc and that the characteristic S-shape feature would be detectable in upcoming Stage IV surveys at the level of ∼4σ. We then focus on the cosmological information content and compute Fisher forecasts for an idealized Stage III galaxy redshift survey of volume V ∼ 10 h-3 Gpc3 and out to z = 1. We show that combining the line correlation function with the galaxy power spectrum and a Planck-like microwave background survey yields improvements up to a factor of 2 for parameters such as σ8, b1 and b2, compared with using only the two-point information alone.

  6. Gleaning structural and functional information from correlations in protein multiple sequence alignments.

    PubMed

    Neuwald, Andrew F

    2016-06-01

    The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations.

  7. Correlated Protein Function Prediction via Maximization of Data-Knowledge Consistency.

    PubMed

    Wang, Hua; Huang, Heng; Ding, Chris

    2015-06-01

    Conventional computational approaches for protein function prediction usually predict one function at a time, fundamentally. As a result, the protein functions are treated as separate target classes. However, biological processes are highly correlated in reality, which makes multiple functions assigned to a protein not independent. Therefore, it would be beneficial to make use of function category correlations when predicting protein functions. In this article, we propose a novel Maximization of Data-Knowledge Consistency (MDKC) approach to exploit function category correlations for protein function prediction. Our approach banks on the assumption that two proteins are likely to have large overlap in their annotated functions if they are highly similar according to certain experimental data. We first establish a new pairwise protein similarity using protein annotations from knowledge perspective. Then by maximizing the consistency between the established knowledge similarity upon annotations and the data similarity upon biological experiments, putative functions are assigned to unannotated proteins. Most importantly, function category correlations are gracefully incorporated into our learning objective through the knowledge similarity. Comprehensive experimental evaluations on the Saccharomyces cerevisiae species have demonstrated promising results that validate the performance of our methods.

  8. Mapping the Real-space Distributions of Galaxies in SDSS DR7. I. Two-point Correlation Functions

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Yang, Xiaohu; Wang, Huiyuan; Zhang, Youcai; Mo, H. J.; van den Bosch, Frank C.; Li, Shijie; Liu, Chengze; Lu, Yi; Tweed, Dylan; Yang, Lei

    2016-12-01

    Using a method to correct redshift-space distortion (RSD) for individual galaxies, we mapped the real-space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We use an ensemble of mock catalogs to demonstrate the reliability of our method. Here, in the first paper in a series, we focus mainly on the two-point correlation function (2PCF) of galaxies. Overall the 2PCF measured in the reconstructed real space for galaxies brighter than {}0.1{M}r-5{log}h=-19.0 agrees with the direct measurement to an accuracy better than the measurement error due to cosmic variance, if the reconstruction uses the correct cosmology. Applying the method to the SDSS DR7, we construct a real-space version of the main galaxy catalog, which contains 396,068 galaxies in the North Galactic Cap with redshifts in the range 0.01 ≤ z ≤ 0.12. The Sloan Great Wall, the largest known structure in the nearby universe, is not as dominant an overdense structure as it appears to be in redshift space. We measure the 2PCFs in reconstructed real space for galaxies of different luminosities and colors. All of them show clear deviations from single power-law forms, and reveal clear transitions from one-halo to two-halo terms. A comparison with the corresponding 2PCFs in redshift space nicely demonstrates how RSDs boost the clustering power on large scales (by about 40%-50% at scales ˜ 10 {h}-1 {Mpc}) and suppress it on small scales (by about 70%-80% on a scale of 0.3 {h}-1 {Mpc}).

  9. Optically-Selected Cluster Catalogs As a Precision Cosmology Tool

    SciTech Connect

    Rozo, Eduardo; Wechsler, Risa H.; Koester, Benjamin P.; Evrard, August E.; McKay, Timothy A.; /Michigan U.

    2007-03-26

    We introduce a framework for describing the halo selection function of optical cluster finders. We treat the problem as being separable into a term that describes the intrinsic galaxy content of a halo (the Halo Occupation Distribution, or HOD) and a term that captures the effects of projection and selection by the particular cluster finding algorithm. Using mock galaxy catalogs tuned to reproduce the luminosity dependent correlation function and the empirical color-density relation measured in the SDSS, we characterize the maxBCG algorithm applied by Koester et al. to the SDSS galaxy catalog. We define and calibrate measures of completeness and purity for this algorithm, and demonstrate successful recovery of the underlying cosmology and HOD when applied to the mock catalogs. We identify principal components--combinations of cosmology and HOD parameters--that are recovered by survey counts as a function of richness, and demonstrate that percent-level accuracies are possible in the first two components, if the selection function can be understood to {approx} 15% accuracy.

  10. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.

  11. BOOK REVIEW: Observational Cosmology Observational Cosmology

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  12. Analytic height correlation function of rough surfaces derived from light scattering

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Shafiei, F.; Fazeli, S. M.; Downer, M. C.; Jafari, G. R.

    2016-10-01

    We derive an analytic expression for the height correlation function of a homogeneous, isotropic rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces and comparing extracted height correlation functions to those derived from atomic force microscopy (AFM). The results agree closely with AFM over a wider range of roughness parameters than previous formulations of the inverse scattering problem, while relying less on large-angle scatter data. Our expression thus provides an accurate analytical equation for the height correlation function of a wide range of surfaces based on measurements using a simple, fast experimental procedure.

  13. Mapping the current–current correlation function near a quantum critical point

    SciTech Connect

    Prodan, Emil; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.

  14. Measuring outer scale in atmospheric optical turbulence from the point view of spatial correlation function

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Mei, Hai-Ping; Qian, Xian-Mei; Rao, Rui-Zhong

    2016-10-01

    A theory about scales in atmospheric optical turbulence vortex from the point view of spatial correlation function is described. Then an experiment is carried out to prove this theory by the fiber optical turbulence sensor array near the ground. Results show that the outer scale has a mean value of 0.62m and varies from 0.34m to 0.95m by doing a nonlinear fitting on spatial correlation functions. With this method, the value of the outer scale can be given directly without any hypothesis when the optical turbulence is well-developed. A question about how the trend of the spatial correlation function show when the displacement approaches the outer scale is solved. This research can be regarded as a progress about understanding the characters of spatial correlation function in optical turbulence.

  15. Four-body correlation embedded in antisymmetrized geminal power wave function.

    PubMed

    Kawasaki, Airi; Sugino, Osamu

    2016-12-28

    We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

  16. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics.

    PubMed

    Craig, Ian R; Manolopoulos, David E

    2004-08-22

    We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.

  17. Correlation between Pediatric Balance Scale and Functional Test in Children with Cerebral Palsy

    PubMed Central

    Duarte, Natália de A. C.; Grecco, Luanda André Collange; Franco, Renata Calhes; Zanon, Nelci; Oliveira, Cláudia Santos

    2014-01-01

    [Purpose] To investigate the correlation of functional balance with the functional performance of children with cerebral palsy. [Subjects and Methods] This was a cross-sectional study of children with cerebral palsy with mild to moderate impairment. The children were divided into 3 groups based on motor impairment. The evaluation consisted of the administration of the Pediatric Balance Scale (PBS) and the Pediatric Evaluation Disability Inventory. Correlations between the instruments were determined by calculating Pearson’s correlation coefficients. [Results] In Group 1, a strong positive correlation was found between the PBS and the mobility dimension of the Pediatric Evaluation Disability Inventory (r=0.82), and a moderate correlation was found between the PBS and self-care dimension of the Pediatric Evaluation Disability Inventory (r=0.51). In Group 2, moderate correlations were found between the PBS and both the self-care dimension (r=0.57) and mobility dimension (r=0.41) of the Pediatric Evaluation Disability Inventory. In Group 3, the PBS was weakly correlated with the self-care dimension (r=0.11) and moderately correlated with the mobility dimension (r=0.55). [Conclusion] The PBS proved to be a good auxiliary tool for the evaluation of functional performance with regard to mobility, but cannot be considered a predictor of function in children with cerebral palsy. PMID:25013281

  18. Paternal Correlates of Cognitive and Behavioral Functioning in Children with Myelomeningocele

    ERIC Educational Resources Information Center

    Wohlfeiler, Melissa M.; Macias, Michelle M.; Saylor, Conway F.

    2008-01-01

    This study examined paternal correlates of the cognitive and behavioral functioning of children with myelomeningocele, when controlling for maternal and biological/child correlates as possible sources of variance. Participants were 48 parent dyads of children with myelomeningocele (21 males, 27 females) between the ages of 4 and 12 years (mean 8y,…

  19. COMPUTER ’EXPERIMENTS’ ON CLASSICAL FLUIDS. II. EQUILIBRIUM CORRELATION FUNCTIONS,

    DTIC Science & Technology

    Lennard - Jones potential. The behaviour of the correlation function at large distance, and that of its Fourier transform at large wave number are discussed in detail and shown to be related to the existence of a strong repulsion in the potential. A simple hard sphere model is shown to reproduce very well the Fourier transform of those correlations functions at high density, the only parameter of the model being the diameter a of the hard spheres.

  20. One-dimensional Euclidean matching problem: exact solutions, correlation functions, and universality.

    PubMed

    Caracciolo, Sergio; Sicuro, Gabriele

    2014-10-01

    We discuss the equivalence relation between the Euclidean bipartite matching problem on the line and on the circumference and the Brownian bridge process on the same domains. The equivalence allows us to compute the correlation function and the optimal cost of the original combinatorial problem in the thermodynamic limit; moreover, we solve also the minimax problem on the line and on the circumference. The properties of the average cost and correlation functions are discussed.

  1. Statistics of cosmological Lyman α absorption

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak; Coles, Peter; Viel, Matteo

    2012-12-01

    We study the effect of the non-Gaussianity induced by gravitational evolution upon the statistical properties of absorption in quasar (quasi-stellar object) spectra. Using the generic hierarchical ansatz and the lognormal approximation, we derive the analytical expressions for the one-point probability distribution function (PDF) as well as for the joint two-point PDF of transmitted fluxes in two neighbouring quasi-stellar objects. These flux PDFs are constructed in three dimensions as well as in projection (i.e. in two dimensions). The PDFs are constructed by relating the lower-order moments (i.e. cumulants and cumulant correlators) of the fluxes to the three-dimensional neutral hydrogen distribution, which is, in turn, expressed as a function of the underlying dark matter distribution. Next, the lower-order moments are modelled using a generating function formalism in the context of a minimal tree-model for the higher-order correlation hierarchy. These different approximations give nearly identical results for the range of redshifts probed, and we also find very good agreement between our predictions and the outputs of hydrodynamical simulations. The formalism developed here for the joint statistics of flux-decrements concerning two lines of sight can be extended to multiple lines of sight, which could be particularly important for the three-dimensional reconstruction of the cosmic web from the spectra of quasi-stellar objects (e.g. in the Baryon Oscillation Spectroscopic Survey). These statistics probe the underlying projected neutral hydrogen field and are thus linked to hotspots of absorption. The results for the PDF and the bias presented here use the same functional forms of scaling functions that have previously been employed for the modelling of other cosmological observations, such as the Sunyaev-Zel'dovich effect.

  2. Dissipative or conservative cosmology with dark energy?

    NASA Astrophysics Data System (ADS)

    Szydlowski, M.; Hrycyna, O.

    2007-12-01

    All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analyzed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property -- acceleration -- is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in a 1-dimensional potential which is parameterized by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We also confront viscous models with SNIa observations. The best fitted models are obtained by minimizing the $\\chi^{2}$ function which is illustrated by residuals and $\\chi^{2}$ levels in the space of model independent parameters. The general conclusion is that SNIa data supports the viscous model without the cosmological constant. The obtained values of $\\chi^{2}$ statistic are comparable for both the viscous model and LCDM model. The Bayesian information criteria are used to compare the models with different power law parameterization of viscous effects. Our result of this analysis shows that SNIa data supports viscous cosmology more than the LCDM model if the coefficient in viscosity parameterization is fixed. The Bayes factor is also used to obtain the posterior probability of the model.

  3. Cosmological model with decaying vacuum energy from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek

    2015-06-01

    We construct the cosmological model to explain the cosmological constant problem. We built the extension of the standard cosmological model Λ CDM by consideration of decaying vacuum energy represented by the running cosmological term. From the principles of quantum mechanics one can find that in the long-term behavior survival probability of unstable states is a decreasing function of the cosmological time and has the inverse powerlike form. This implies that cosmological constant ρvac=Λ (t )=Λbare+α/t2 where Λbare and α are constants. We investigate the dynamics of this model using dynamical system methods due to a link to the Λ (H ) cosmologies. We have found the exact solution for the scale factor as well as the indicators of its variability like the deceleration parameter and the jerk. From the calculation of the jerk we obtain a simple test of the decaying vacuum in the Friedman-Robertson-Walker universe. Using astronomical data [SNIa, H (z ), CMB, BAO] we have estimated the model parameters and compared this model with the Λ CDM model. Our statistical results indicate that the decaying vacuum model is a little worse than the Λ CDM model. But the decaying vacuum cosmological model explains the small value of the cosmological constant today.

  4. Modeling the two-point correlation of the vector stream function

    NASA Technical Reports Server (NTRS)

    Oberlack, M.; Rogers, M. M.; Reynolds, W. C.

    1994-01-01

    A new model for the two-point vector stream function correlation has been developed using tensor invariant arguments and evaluated by the comparison of model predictions with DNS data for incompressible homogeneous turbulent shear flow. This two-point vector stream function model correlation can then be used to calculate the two-point velocity correlation function and other quantities useful in turbulence modeling. The model assumes that the two-point vector stream function correlation can be written in terms of the separation vector and a new tensor function that depends only on the magnitude of the separation vector. The model has a single free model coefficient, which has been chosen by comparison with the DNS data. The relative error of the model predictions of the two-point vector stream function correlation is only a few percent for a broad range of the model coefficient. Predictions of the derivatives of this correlation, which are of interest in turbulence modeling, may not be this accurate.

  5. Measuring the Scatter of the Mass–Richness Relation in Galaxy Clusters in Photometric Imaging Surveys by Means of Their Correlation Function

    NASA Astrophysics Data System (ADS)

    Campa, Julia; Estrada, Juan; Flaugher, Brenna

    2017-02-01

    Knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. In this paper we aim to quantify the capability of the correlation function of galaxy clusters to constrain the intrinsic scatter {σ }{lnM}. We demonstrate how the linear bias measured in the correlation function of clusters can be used to determine the value of this parameter. The new method is tested in simulations of a 5000 {\\deg }2 optical survey up to z∼ 1, similar to the ongoing Dark Energy Survey (DES). Our results show that our method works better at lower scatter values. We can measure the intrinsic scatter {σ }{lnM}=0.1 with a standard deviation of σ ({σ }{lnM})∼ 0.03 using this technique. However, the expected intrinsic scatter of the DES RedMaPPer cluster catalog {σ }{lnM}∼ 0.2 cannot be recovered with this method at suitable accuracy and precision because the area coverage is insufficient. For future photometric surveys with a larger area such as LSST and Euclid, the statistical errors will be reduced. Therefore, we forecast higher precision to measure the intrinsic scatter including the value mentioned before. We conclude that this method can be used as an internal consistency check method on their simplifying assumptions and complementary to cross-calibration techniques in multiwavelength cluster observations.

  6. The geriatric hand: correlation of hand-muscle function and activity restriction in elderly.

    PubMed

    Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah

    2009-09-01

    On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle function and activity restriction in the geriatric age group, through grip and pinch measurements and a set of questionnaires. Twenty-four geriatric (aged 65-79 years) volunteers participated in the study. Bilateral grip and pinch strengths have been recorded. To document impairment of manual functions, self-estimated hand function, Duruöz and Dreiser hand indices, Geriatrics-Arthritis Impact Measurement Scale (GERI-AIMS) manual dexterity questionnaires have been completed. Activity restriction and quality of life of these patients were inquired with short form (SF)-36 and Instrumental Activities of Daily Living (IADL) scores. Grip and pinch strengths correlated best with Duruöz and Dreiser indices. Similarly, SF-36 and IADL had higher correlation coefficients for Duruöz and Dreiser indices. A very good correlation between IADL and SF-36 was calculated too. Male and female participants revealed statistically significant differences for grip and pinch strengths as well as self-estimated hand function and SF-36. Another result was that none of our parameters, including grip strength and SF-36 had differed significantly between the 65-70 and 70-79 years age subgroups. However, grip strength displayed statistically significant lower values when compared with young adult mean values of a previous study. Our data in this study support the hypothesis that hand-muscle function correlates with functional dependency in the elderly. Manual function can be determined by grip strength in addition to multiple available functional tools. In this study, Dreiser and Duruöz hand function indices were the best to correlate with ADL and

  7. On the Hojman conservation quantities in Cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Leach, P. G. L.; Capozziello, S.

    2016-04-01

    We discuss the application of the Hojman's Symmetry Approach for the determination of conservation laws in Cosmology, which has been recently applied by various authors in different cosmological models. We show that Hojman's method for regular Hamiltonian systems, where the Hamiltonian function is one of the involved equations of the system, is equivalent to the application of Noether's Theorem for generalized transformations. That means that for minimally-coupled scalar field cosmology or other modified theories which are conformally related with scalar-field cosmology, like f (R) gravity, the application of Hojman's method provide us with the same results with that of Noether's Theorem. Moreover we study the special Ansatz. ϕ (t) = ϕ (a (t)) , which has been introduced for a minimally-coupled scalar field, and we study the Lie and Noether point symmetries for the reduced equation. We show that under this Ansatz, the unknown function of the model cannot be constrained by the requirement of the existence of a conservation law and that the Hojman conservation quantity which arises for the reduced equation is nothing more than the functional form of Noetherian conservation laws for the free particle. On the other hand, for f (T) teleparallel gravity, it is not the existence of Hojman's conservation laws which provide us with the special function form of f (T) functions, but the requirement that the reduced second-order differential equation admits a Jacobi Last multiplier, while the new conservation law is nothing else that the Hamiltonian function of the reduced equation.

  8. Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Dutton, Aaron A.; van den Bosch, Frank C.

    2008-12-01

    We investigate the effects of changes in the cosmological parameters between the Wilkinson Microwave Anisotropy Probe (WMAP) 1st, 3rd and 5th year results on the structure of dark matter haloes. We use a set of simulations that cover five decades in halo mass ranging from the scales of dwarf galaxies (Vc ~ 30 km s-1) to clusters of galaxies (Vc ~ 1000 km s-1). We find that the concentration mass relation is a power law in all three cosmologies. However, the slope is shallower and the zero-point is lower moving from WMAP1 to WMAP5 to WMAP3. For haloes of mass logM200/[h-1Msolar] = 10, 12 and 14 the differences in the concentration parameter between WMAP1 and WMAP3 are a factor of 1.55, 1.41 and 1.29, respectively. As we show, this brings the central densities of dark matter haloes in good agreement with the central densities of dwarf and low surface brightness galaxies inferred from their rotation curves, for both the WMAP3 and WMAP5 cosmologies. We also show that none of the existing toy models for the concentration-mass relation can reproduce our simulation results over the entire range of masses probed. In particular, the model of Bullock et al. fails at the higher mass end (M >~ 1013h-1Msolar), while the NFW model of Navarro, Frenk and White fails dramatically at the low-mass end (M <~ 1012h-1Msolar). We present a new model, based on a simple modification of that of Bullock et al., which reproduces the concentration-mass relations in our simulations over the entire range of masses probed (1010 <~ M <~ 1015h-1Msolar). Haloes in the WMAP3 cosmology (at a fixed mass) are more flatted compared to the WMAP1 cosmology, with a medium to long axis ration reduced by ~10 per cent. Finally, we show that the distribution of halo spin parameters is the same for all three cosmologies.

  9. Nuclear physics and cosmology

    SciTech Connect

    Schramm, D.N. ):)

    1989-12-01

    Nuclear physics has provided one of the 2 critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. This paper reviews the standard Big Bang Nucleosynthesis arguments. The primordial He abundance is inferred from He--C and He--N and He--O correlations. The strengthened Li constraint as well as {sup 2}D plus {sup 3}He are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N{sub {nu}}, is delineated using the new neutron lifetime value of {tau}{sub n} = 890 {plus minus} 4s ({tau}{sub {1/2}} = 10.3 min). The formal statistical result is N{sub {nu}} = 2.6 {plus minus} 0.3 (1{sigma}) providing a reasonable fit (1.3{sigma}) to 3 families but making a fourth light (m{sub {nu}} {approx lt}10 MeV) neutrino family exceedingly unlikely ({approx gt}4.7{sigma}) (barring significant systematic errors either in D + {sup 3}He, and Li and/or {sup 4}He and/or {tau}{sub n}). It is also shown that uncertainties induced by postulating a first-order quark-hadron phase transition do not seriously affect the conclusions. 21 refs., 3 figs.

  10. On some physical aspects of isotropic cosmology in Riemann-Cartan spacetime

    SciTech Connect

    Minkevich, A.V.; Garkun, A.S.; Kudin, V.I. E-mail: awm@matman.uwm.edu.pl E-mail: kudzin_w@tut.by

    2013-03-01

    Isotropic cosmology built in the framework of the Poincaré gauge theory of gravity based on sufficiently general expression of gravitational Lagrangian is considered. The derivation of cosmological equations and equations for torsion functions in the case of the most general homogeneous isotropic models is given. Physical aspects of isotropic cosmology connected with possible solution of dark energy problem and problem of cosmological singularity are discussed.

  11. Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.

  12. Improving lognormal models for cosmological fields

    NASA Astrophysics Data System (ADS)

    Xavier, Henrique S.; Abdalla, Filipe B.; Joachimi, Benjamin

    2016-07-01

    It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimizes either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine directly from theory the skewness of the convergence distribution and, therefore, the parameters for a lognormal fit. We present the public code Full-sky Lognormal Astro-fields Simulation Kit (FLASK) which can make tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields by applying either of the two proposed solutions, and show that it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges.

  13. BOOK REVIEW: Cosmology

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most

  14. Phase synchronization in brain networks derived from correlation between probabilities of recurrences in functional MRI data.

    PubMed

    Rangaprakash, D; Hu, Xiaoping; Deshpande, Gopikrishna

    2013-04-01

    It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric "correlation between probabilities of recurrence" (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.

  15. Long-range correlation energy calculated from coupled atomic response functions

    SciTech Connect

    Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.

    2014-05-14

    An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.

  16. Thermal tachyacoustic cosmology

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhineet; Afshordi, Niayesh

    2014-08-01

    An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

  17. Cosmology and Particle Physics

    NASA Astrophysics Data System (ADS)

    Steigman, G.

    1982-01-01

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses. In the last few years we have witnessed the birth and growth to healthy adolescence of a new collaboration between astrophysicists and particle physicists. The most notable success of this cooperative effort has been to provide the framework for understanding, within the context of GUTs and the hot big-bang cosmology, the universal baryon asymmetry. The most exciting new predictions this effort has spawned are that exotic relics may exist in detectable abundances. In particular, we may live in a neutrino-dominated Universe. In the next few years, accummulating laboratory data (for example proton decay, neutrino masses and oscillations) coupled with theoritical work in particle physics and cosmology will ensure the growth to maturity of this joint effort.

  18. Physical Foundations of Cosmology

    NASA Astrophysics Data System (ADS)

    Mukhanov, Viatcheslav

    2005-11-01

    Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. Taking an original approach, this textbook explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed. Presents detailed derivations of all basic results needed in cosmology, including robust predictions of inflation Contains an analytical treatment of nucleosynthesis, recombination and CMB fluctuations Provides elementary introductions to more advanced topics

  19. Inhomogeneous anisotropic cosmology

    SciTech Connect

    Kleban, Matthew; Senatore, Leonardo

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  20. Inhomogeneous anisotropic cosmology

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  1. Cosmology Solved? Quite Possibly!

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1999-03-01

    The discovery of the cosmic microwave background (CMB) in 1964 by Penzias and Wilson led to the establishment of the hot big bang cosmological model some 10 years later. Discoveries made in 1998 may ultimately have as profound an effect on our understanding of the origin and evolution of the universe. Taken at face value, they confirm the basic tenets of inflation + cold dark matter, a bold and expansive theory that addresses all the fundamental questions left unanswered by the hot big bang model and holds that the universe is flat, slowly moving elementary particles provide the cosmic infrastructure, and quantum fluctuations seeded all the structure seen in the universe today. Just as it took a decade to establish the hot big bang model after the discovery of the CMB, it will likely take another 10 years to establish the latest addition to the standard cosmology and make the answer to ``Cosmology solved?'' ``YES!'' Whether or not 1998 proves to be a cosmic milestone, the coming avalanche of high-quality cosmological data promises to make the next 20 years an extremely exciting period for cosmology.

  2. Automatic determination of important mode-mode correlations in many-mode vibrational wave functions.

    PubMed

    König, Carolin; Christiansen, Ove

    2015-04-14

    We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.

  3. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Parsons, Maxwell F.; Mazurenko, Anton; Chiu, Christie S.; Ji, Geoffrey; Greif, Daniel; Greiner, Markus

    2016-09-01

    Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter.

  4. The flexible nature of exchange, correlation, and Hartree physics: Resolving ``delocalization'' errors in a ``correlation free'' density functional

    NASA Astrophysics Data System (ADS)

    Gould, Tim; Dobson, John F.

    2013-01-01

    By exploiting freedoms in the definitions of "correlation," "exchange," and "Hartree" physics in ensemble systems, we better generalise the notion of "exact exchange" (EXX) to systems with fractional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We introduce the linear EXX ("LEXX") theory whose pair distribution and energy are explicitly piecewise linear in the occupations f^{σ }i. We provide explicit expressions for these functions for frontier s and p shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded by the piecewise linear "ensemble EXX" (EEXX) energy and standard fractional optimised EXX energy: EEEXX ⩽ ELEXX ⩽ EEXX. Analysis of the LEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so that "ghost" Hartree interactions appear between opposite spin electrons in the usual formula. The energy ELEXX contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations on fractional ions of C and F and again we find both derivative discontinuities and good agreement with exact results.

  5. The flexible nature of exchange, correlation, and Hartree physics: resolving "delocalization" errors in a "correlation free" density functional.

    PubMed

    Gould, Tim; Dobson, John F

    2013-01-07

    By exploiting freedoms in the definitions of "correlation," "exchange," and "Hartree" physics in ensemble systems, we better generalise the notion of "exact exchange" (EXX) to systems with fractional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We introduce the linear EXX ("LEXX") theory whose pair distribution and energy are explicitly piecewise linear in the occupations f(i)(σ). We provide explicit expressions for these functions for frontier s and p shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded by the piecewise linear "ensemble EXX" (EEXX) energy and standard fractional optimised EXX energy: E(EEXX) ≤ E(LEXX) ≤ E(EXX). Analysis of the LEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so that "ghost" Hartree interactions appear between opposite spin electrons in the usual formula. The energy E(LEXX) contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations on fractional ions of C and F and again we find both derivative discontinuities and good agreement with exact results.

  6. The Geriatric Hand: Correlation of Hand-Muscle Function and Activity Restriction in Elderly

    ERIC Educational Resources Information Center

    Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah

    2009-01-01

    On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle…

  7. COX-2 gene expression is correlated with cognitive function in recurrent depressive disorder.

    PubMed

    Gałecki, Piotr; Talarowska, Monika; Bobińska, Kinga; Szemraj, Janusz

    2014-02-28

    Cyclooxygenase-2(COX-2) may be a key inflammatory enzyme involved in recurrent depressive disorder(rDD). In rDD group, COX-2 expression were higher and significant correlations occurred between COX-2 expression and cognitive functions. In controls there was no significant association between analysed variables. Thus, the COX-2 enzyme may be important for cognitive functioning in rDD.

  8. Extension of local-type inequality for the higher order correlation functions

    SciTech Connect

    Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  9. Correlation between denial of illness and executive function following stroke: a pilot study.

    PubMed

    Narushima, Kenji; Moser, David J; Robinson, Robert G

    2008-01-01

    Executive function and denial of illness were examined among 24 patients who received double-blind antidepressant treatment following stroke. Between end-of-treatment at 3 months and follow-up at 2 years, significant correlation was found between improvement in executive function and decrease in denial of illness.

  10. Description of correlated densities for few-electron atoms by simple functional forms

    SciTech Connect

    Porras, I.; Arias de Saavedra, F.

    1999-02-20

    Simple analytical functional forms for the electron density of two- and three-electron atoms which reproduce fairly the correlated (exact) values are presented. The procedure is based on the fitting of an auxiliary f(r) function which has adequate properties for this purpose and can be extended to more complex atoms.

  11. Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States

    NASA Astrophysics Data System (ADS)

    Makowski, Marcin; Hanas, Martyna

    2016-09-01

    The performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.

  12. Particle Accelerators Test Cosmological Theory.

    ERIC Educational Resources Information Center

    Schramm, David N.; Steigman, Gary

    1988-01-01

    Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)

  13. Correlation function induced by a generalized diffusion equation with the presence of a harmonic potential

    SciTech Connect

    Fa, Kwok Sau

    2015-02-15

    An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations, which includes short, intermediate and long-time memory effects described by the waiting time probability density function. Analytical expression for the correlation function is obtained and analyzed, which can be used to describe, for instance, internal motions of proteins. The result shows that the generalized diffusion equation has a broad application and it may be used to describe different kinds of systems. - Highlights: • Calculation of the correlation function. • The correlation function is connected to the survival probability. • The model can be applied to the internal dynamics of proteins.

  14. Dynamics and cosmological constraints on Brans-Dicke cosmology

    NASA Astrophysics Data System (ADS)

    Hrycyna, Orest; Szydłowski, Marek; Kamionka, Michał

    2014-12-01

    We investigate observational constraints on the Brans-Dicke cosmological model using observational data coming from distant supernovae type Ia, the Hubble function H (z ) measurements, information coming from the Alcock-Paczyński test, and baryon acoustic oscillations. Our analysis is based on the modified Friedmann function resulting form dynamical investigations of Brans-Dicke cosmology in the vicinity of a de Sitter state. The qualitative theory of dynamical systems enables us to obtain three different behaviors in the vicinity of this state. We find for a linear approach to the de Sitter state ωBD=-0.8606-0.1341+0.8281 , for an oscillatory approach to the de Sitter state ωBD=-1.1103-0.1729+0.1872 , and for the transient de Sitter state represented by a saddle-type critical point ωBD=-2.3837-4.5459+0.4588 . We obtain the mass of the Brans-Dicke scalar field at the present epoch as mϕ˜H0. The Bayesian methods of model comparison are used to discriminate between obtained models. We show that observational data point toward vales of the ωBD parameter close to the value suggested by the low-energy limit of the bosonic string theory.

  15. Elementary particles and cosmology

    NASA Astrophysics Data System (ADS)

    Dobrolyubov, M. I.; Ignatev, A. Yu.; Shaposhnikov, M. E.

    1988-12-01

    A series of lectures is devoted to actual problems which arise at the junction of elementary particle physics and cosmology. A brief review is given to the standard theory of hot universe and scenario of inflationary universe, modern state of the problem of baryon universe asymmetry and possible new mechanisms of this asymmetry formation. The possibility of construction of cosmological models on the basis of supersymmetric theories is considered: qualitative evaluation of the modern density of relic particles, cosmological restrictions for the mass of the lightest particle, astrophysical restrictions for the coupling constant of weakly interacting particles and matter are given. A perspective direction of search for light particles in light hadron decays is mentioned.

  16. The test-particle induced inhomogeneous direct correlation functions and extensions of Widom's theorem: impacts on the incremental chemical potentials and high-order correlation functions.

    PubMed

    Lee, Lloyd L

    2013-10-21

    We develop the potential distributions of several test particles to obtain a hierarchy of the nonuniform singlet direct correlation functions (s-DCFs). These correlation functions are interpreted as the segmental chemical potentials or works of insertion of successive test particles in a classical fluid. The development has several interesting consequences: (i) it extends the Widom particle insertion formula to higher-order theorems, the first member gives the chemical potential as in the original theorem, the second member gives the incremental energy for dimer formation, with higher members giving the energies for forming trimers, tetramers, etc. (ii) The second and third order s-DCFs can be related to the cavity distribution functions y((2)) and y((3)) in the liquid-state theory. Thus we can express the triplet cavity function y((3)) in terms of these s-DCFs in an exact form. This enables us to calculate, as an illustration of the above theoretical developments, the numerical values of the s-DCFs via Monte Carlo (MC) simulation data on hard spheres. We use these data to critically analyze the commonly used approximations, the Kirkwood superposition (KSA) and the linear approximation (LA) for triplet correlation functions. An improved rule over KSA and LA is proposed for triplet hard spheres in the rolling-contact configurations. (iii) The s-DCFs are naturally suited for analyzing the chain-incremental Ansatz or hypothesis in the calculation of the chemical potentials of polymeric chain molecules. The first few segments of a polymer chain have been shown from extensive Monte Carlo simulations to not obey this Ansatz. By examining the insertion energies of successive segments through the s-DCFs, we are able to quantitatively decipher the decay of the segmental chemical potentials for at least the first three segments. Comparison with MC data on 4-mer and 8-mer hard-sphere fluids shows commensurate behavior with the s-DCFs. In addition, an analytical density

  17. Analysis/forecast experiments with a flow-dependent correlation function using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Carus, H.; Nestler, M. S.

    1986-01-01

    The use of a flow-dependent correlation function to improve the accuracy of an optimum interpolation (OI) scheme is examined. The development of the correlation function for the OI analysis scheme used for numerical weather prediction is described. The scheme uses a multivariate surface analysis over the oceans to model the pressure-wind error cross-correlation and it has the ability to use an error correlation function that is flow- and geographically-dependent. A series of four-day data assimilation experiments, conducted from January 5-9, 1979, were used to investigate the effect of the different features of the OI scheme (error correlation) on forecast skill for the barotropic lows and highs. The skill of the OI was compared with that of a successive correlation method (SCM) of analysis. It is observed that the largest difference in the correlation statistics occurred in barotropic and baroclinic lows and highs. The comparison reveals that the OI forecasts were more accurate than the SCM forecasts.

  18. Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.

    PubMed

    Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W

    2017-01-01

    Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r(2)  = 0.839; p < 0.001). The mean increase in thoracic volume in this group was 373.1 cm(3) (11.7%) which correlated with a 21.2% improvement in TLC. Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017.

  19. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  20. The "Mixed" Green's Function Approach to Quantum Kinetics with Initial Correlations

    NASA Astrophysics Data System (ADS)

    Morozov, V. G.; Röpke, G.

    1999-12-01

    A method for deriving quantum kinetic equations with initial correlations is developed on the basis of the nonequilibrium Green's function formalism. The method is applicable to a wide range of correlated initial states described by nonequilibrium statistical thermodynamics. Initial correlations and the real-time evolution are treated by a unified technique employing many-component "mixed" Green's functions. The Dyson equation for the mixed Green's function leads to a set of equations for real-time Green's functions and new (cross) components linking initial correlations with dynamical processes. These equations are used to formulate a generalized Kadanoff-Baym ansatz for correlated initial states. A non-Markovian short-time kinetic equation is derived within the T-matrix approximation for the self-energies. The properties of the memory kernels in this equation are considered in detail in Born approximation for the T-matrices. The kinetic equation is demonstrated to conserve the total energy of the system. An explicit expression for the time-dependent correlation energy is obtained.

  1. Spin-correlation function of the fully frustrated Ising model and ± J Ising spin glass on a square lattice

    NASA Astrophysics Data System (ADS)

    M, Y. Ali; J, Poulter

    2013-06-01

    In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as the correlation function. We estimate the exponent of spin correlation function for the fully frustrated model and spin glass. In this paper an overview of the latest results on the spin correlation function is presented.

  2. Multidimensional integrable models of gravitation and cosmology

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.; Melnikov, V. N.

    Review of the motivation and main results in multidimentional gravitation and cosmology is presented. Special attention is devoted to results within the model with scalar fields and fields of forms in the billiard approach for obtaining cosmological solutions with branes and integrable configurations with fluxand black branes. In case of the quantum billiard with branes it is shown that the basis solutions for wave functions vanish in the limit of the formation of billiard walls (i.e., at the singularity) for the D = 11 model which mimics the D = 11 supergravitational cosmology. Another fruitful approach - to multidimensional gravity with higher derivatives is mentioned, which leads to a unified description of inflation and the present accelerated expansion of the Universe. Some of these models explain possible spatial and temporal variations of the fine structure and the gravitational constants.

  3. Forecasts on neutrino mass constraints from the redshift-space two-point correlation function

    NASA Astrophysics Data System (ADS)

    Petracca, F.; Marulli, F.; Moscardini, L.; Cimatti, A.; Carbone, C.; Angulo, R. E.

    2016-11-01

    We provide constraints on the accuracy with which the neutrino mass fraction, fν, can be estimated when exploiting measurements of redshift-space distortions, describing in particular how the error on neutrino mass depends on three fundamental parameters of a characteristic galaxy redshift survey: density, halo bias and volume. In doing this, we make use of a series of dark matter halo catalogues extracted from the BASICC simulation. The mock data are analysed via a Markov Chain Monte Carlo likelihood analysis. We find a fitting function that well describes the dependence of the error on bias, density and volume, showing a decrease in the error as the bias and volume increase, and a decrease with density down to an almost constant value for high-density values. This fitting formula allows us to produce forecasts on the precision achievable with future surveys on measurements of the neutrino mass fraction. For example, a Euclid-like spectroscopic survey should be able to measure the neutrino mass fraction with an accuracy of δfν ≈ 3.1 × 10-3 (which is equivalent to δ∑mν ≈ 0.039eV), using redshift-space clustering once all the other cosmological parameters are kept fixed to the ΛCDM case.

  4. Spectral functions of strongly correlated extended systems via an exact quantum embedding

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Chan, Garnet Kin-Lic

    2015-04-01

    Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.

  5. Correlation between Limb Muscle Endurance, Strength, and Functional Capacity in People with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Törnberg, Anna; Wadell, Karin

    2016-01-01

    Purpose: To examine the correlation between limb muscle function (endurance and strength) and functional capacity in upper limbs (ULs) and lower limbs (LLs) of people with chronic obstructive pulmonary disease (COPD). Method: This article describes a secondary analysis of data from a randomized controlled trial. A stationary dynamometer was used to measure isokinetic muscle strength and endurance; the 6-minute walk test, the 6-minute pegboard and ring test, and the unsupported UL exercise test were used to measure functional capacity. Results: Participants were 44 adults with COPD. Muscle strength and endurance in ULs and LLs demonstrated a moderate to strong correlation with functional capacity. When controlling for muscle strength, muscle endurance was moderately correlated with functional capacity in ULs and LLs, but when controlling for muscle endurance, there was no positive and significant correlation between muscle strength and functional capacity for the ULs or LLs. Conclusions: Functional capacity seems to be more closely related to limb muscle endurance than to limb muscle strength in people with COPD. PMID:27504047

  6. Planck 2015 Cosmological results

    NASA Astrophysics Data System (ADS)

    Tristram, Matthieu

    2015-08-01

    On behalf of the Planck collaboration, I will present the cosmological results from the 2015 release. The new release now include polarization data from both the LFI and the HFI.I will focus on the impact of the polarization on both the standard LCDM model and its basic extensions. I will compare these constraints with other cosmological probes such as BAO, gravitational lensing and redshift space distortions.LCDM is still a very good fit of the Planck CMB data. The scalar fluctuations are consistent with adiabatic modes.

  7. Information entropy in cosmology.

    PubMed

    Hosoya, Akio; Buchert, Thomas; Morita, Masaaki

    2004-04-09

    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the Kullback-Leibler relative information entropy, expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time evolution of "effective information" and explore some implications. We conjecture that the information content of the Universe-measured by relative information entropy of a cosmological model containing dust matter-is increasing.

  8. Cosmology with varying constants.

    PubMed

    Martins, Carlos J A P

    2002-12-15

    The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.

  9. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  10. Nonlinear backreaction in cosmology

    NASA Astrophysics Data System (ADS)

    Green, Stephen Roland

    This thesis, based on two papers by Green and Wald, investigates the problem of nonlinear backreaction in cosmology. We first analyze the problem in a general context by developing a new, mathematically precise framework for treating the effects of nonlinear phenomena occurring on small scales in general relativity. Our framework requires the metric to be close to a background metric (not necessarily a cosmological metric), but allows arbitrarily large stress-energy fluctuations on small scales. We prove that, within our framework, if the matter stress-energy tensor satisfies the weak energy condition (i.e., positivity of energy density in all frames), then the only effect that small-scale inhomogeneities can have on the background metric is to provide an effective stress-energy tensor that is traceless and satisfies the weak energy condition itself—corresponding to the presence of gravitational radiation. In particular, nonlinear effects produced by small-scale inhomogeneities cannot mimic the effects of dark energy. We also develop perturbation theory off of the background metric. We derive an equation for the long-wavelength part of the leading order deviation of the metric from the background metric, which contains the usual terms occurring in linearized perturbation theory plus additional contributions from the small-scale inhomogeneities. Next, we apply our framework to the cosmological context, specializing our background metric to be of the Friedmann-Lemaitre-Robertson-Walker form. We demonstrate that, in the case of dust matter, a cosmological constant, and vanishing spatial curvature (i.e., our universe today), Newtonian gravity alone provides a good global description of an inhomogeneous general relativistic cosmology, even when there is significant nonlinear dynamical behavior at small scales. Namely, we find a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into

  11. Interspecies activity correlations reveal functional correspondence between monkey and human brain areas.

    PubMed

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim

    2012-02-05

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

  12. Correlation functions of main-chain polymer nematics constrained by tensorial and vectorial conservation laws.

    PubMed

    Svenšek, Daniel; Podgornik, Rudolf

    2015-09-21

    We present and analyze correlation functions of a main-chain polymer nematic in a continuum worm-like chain description for two types of constraints formalized by the tensorial and vectorial conservation laws, both originating in the microscopic chain integrity, i.e., the connectivity of the polymer chains. In particular, our aim is to identify the features of the correlation functions that are most susceptible to the differences between the two constraints. Besides the density and director autocorrelations in both the tensorial and vectorial cases, we calculate also the density-director correlation functions, the latter being a direct signature of the presence of a specific constraint. Its amplitude is connected to the strength of the constraint and is zero if none of the constraints are present, i.e., for a standard non-polymeric nematic. Generally, the correlation functions with the constraints differ substantially from the correlation functions in the non-polymeric case, if the constraints are strong which in practice requires long chains. Moreover, for the tensorial conservation law to be well distinguishable from the vectorial one, the chain persistence length should be much smaller than the total length of the chain, so that hairpins (chain backfolding) are numerous and the polar order is small.

  13. CORRELATION BETWEEN VISUAL GAIT ANALYSIS AND FUNCTIONAL ASPECTS IN CEREBRAL PALSY

    PubMed Central

    FOLLE, MAIRA RECH; TEDESCO, ANA PAULA; NICOLINI-PANISSON, RENATA D´AGOSTINI

    2016-01-01

    ABSTRACT Objective: To verify the correlation between visual gait analysis (VGA) by the Edinburgh visual gait score (EVGS) and functional aspects using the Timed Up and Go Test (TUG) and Gross Motor Function Classification System (GMFCS) in individuals with cerebral palsy (CP). Methods: Retrospective cross sectional study of 35 patients with CP. The mean age 12.61 years old, 94.3% were spastic; 34.4% hemiplegic, 54.3% diplegic, 11.4% triplegic; 45.7% were level II GMFCS, 42.9% level I, 5.7% level III and 5.7% level IV. VGA was analyzed by the Edinburgh visual gait score (EVGS), functional mobility was assessed by TUG and functionality through GMFCS. The Spearman correlation was used for statistical analysis. Results: The mean EVGS score was 18.97. The mean TUG was 13.71sec. EVGS showed moderate correlation with TUG (r=0.46, p=0.03) and GMFCS (r=0.45, p=0.00). Conclusion: Worse VGA scores correlate to worse functionality and mobility performance. Due to the observed correlation, it is possible to assert that VGA is a useful tool on evaluation of CP patients. Level of Evidence III, Retrospective Comparative Study. PMID:28149192

  14. SOMBI: Bayesian identification of parameter relations in unstructured cosmological data

    NASA Astrophysics Data System (ADS)

    Frank, Philipp; Jasche, Jens; Enßlin, Torsten A.

    2016-11-01

    This work describes the implementation and application of a correlation determination method based on self organizing maps and Bayesian inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the self organizing map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian information criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide applications of our method to cosmological data. In particular, we present results of a correlation analysis between galaxy and active galactic nucleus (AGN) properties provided by the SDSS catalog with the cosmic large-scale-structure (LSS). The results indicate that the combined galaxy and LSS dataset indeed is clustered into several sub-samples of data with different average properties (for example different stellar masses or web-type classifications). The majority of data clusters appear to have a similar correlation structure between galaxy properties and the LSS. In particular we revealed a positive and linear dependency between the stellar mass, the absolute magnitude and the color of a galaxy with the corresponding cosmic density field. A remaining subset of data shows inverted correlations, which might be an artifact of non-linear redshift distortions.

  15. Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters

    NASA Astrophysics Data System (ADS)

    Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Li, Ran; Mo, H. J.; Yang, Xiaohu

    2009-04-01

    Galaxy clustering and galaxy-galaxy lensing probe the connection between galaxies and their dark matter haloes in complementary ways. Since the clustering of dark matter haloes depends on cosmology, the halo occupation statistics inferred from the observed clustering properties of galaxies are degenerate with the adopted cosmology. Consequently, different cosmologies imply different mass-to-light ratios for dark matter haloes. Galaxy-galaxy lensing, which yields direct constraints on the actual mass-to-light ratios, can therefore be used to break this degeneracy, and thus to constrain cosmological parameters. In this paper, we establish the link between galaxy luminosity and dark matter halo mass using the conditional luminosity function (CLF), Φ(L|M)dL, which gives the number of galaxies with luminosities in the range L +/- dL/2 that reside in a halo of mass M. We constrain the CLF parameters using the galaxy luminosity function and the luminosity dependence of the correlation lengths of galaxies. The resulting CLF models are used to predict the galaxy-galaxy lensing signal. For a cosmology that agrees with constraints from the cosmic microwave background, i.e. (Ωm,σ8) = (0.238,0.734), the model accurately fits the galaxy-galaxy lensing data obtained from the Sloan Digital Sky Survey. For a comparison cosmology with (Ωm,σ8) = (0.3,0.9), however, we can accurately fit the luminosity function and clustering properties of the galaxy population, but the model predicts mass-to-light ratios that are too high, resulting in a strong overprediction of the galaxy-galaxy lensing signal. We conclude that the combination of galaxy clustering and galaxy-galaxy lensing is a powerful probe of the galaxy-dark matter connection, with the potential to yield tight constraints on cosmological parameters. Since this method mainly probes the mass distribution on relatively small (non-linear) scales, it is complementary to constraints obtained from the galaxy power spectrum, which

  16. Temporal Correlation-Based Spatial Filtering of Rician Noise for Functional MRIs

    NASA Astrophysics Data System (ADS)

    Amir., A. Khaliq; M. Qureshi, I.; Jawad., A. Shah

    2012-01-01

    A novel correlation-based filter is presented for de-noising functional magnetic resonance imaging (fMRI) data. Temporal correlation-based exponential weights are defined for spatial smoothing of the data, with bias reduction using estimated noise variance. The proposed scheme is tested on simulated and real fMRI data. Finally, the results are compared with conventional filters. The method is found to be effectively suppressing the Rician noise in fMRI data, while improving the SNR.

  17. Multiple circular-harmonic-function correlation filter providing specified response to in-plane rotation.

    PubMed

    Kumar, B V; Ng, T K

    1996-04-10

    The circular-harmonic-function correlation filter originally proposed by Hsu and Arsenault [Appl. Opt. 21, 4016 (1982)] for in-plane rotation invariance uses only one harmonic, which results in poor discrimination capability of the filter. Various methods to use multiple harmonics were explored previously by different researchers. We present a new method to combine multiple circular harmonics into a single filter that can provide the desired correlation response to in-plane rotation while minimizing the correlation-plane energy. Since multiple harmonics are included, the filter can discriminate well, and since correlation-plane energy is minimized, correlation peaks tend to be sharp. Since the designer can specify the desired in-plane rotation response, a variety of filter behaviors (including complete invariance to input rotations) can be obtained. Underlying theory is discussed, and simulation results are presented.

  18. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions.

    PubMed

    Berg, Mark A; Darvin, Jason R

    2016-08-07

    Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

  19. Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.; Chuev, G. N.; Kuznetsov, Yu. A.; Timoshenko, E. G.

    2004-11-01

    Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approximation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in better agreement with those from recent renormalization group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.

  20. Probing the twist-3 multi-gluon correlation functions by p↑p → DX

    NASA Astrophysics Data System (ADS)

    Koike, Yuji; Yoshida, Shinsuke

    2011-05-01

    We study the single spin asymmetry (SSA) for the D-meson production ADN in the pp collision, p↑p → DX in the framework of the collinear factorization. Since the charm quark is mainly produced through the cbar c-pair creation from the gluon-fusion process, this is an ideal process to probe the twist-3 triple-gluon correlation functions in the polarized nucleon. We derive the corresponding cross section formula for the contribution of the triple-gluon correlation function to ADN in p↑p → DX, applying the method developed for ep↑ → eDX in our previous study. As in the case of ep↑ → eDX, our result differs from a previous study in the literature.We will also present a simple estimate of the triple-gluon correlation functions based on the preliminary data on ADN by RHIC.

  1. Quantifying local exciton, charge resonance, and multiexciton character in correlated wave functions of multichromophoric systems

    SciTech Connect

    Casanova, David; Krylov, Anna I.

    2016-01-07

    A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.

  2. Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests

    SciTech Connect

    Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.; Chiles, C.; Gamsu, G.; MacIntyre, N.R.; Coleman, R.E.; Putman, C.E.

    1989-06-01

    The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (n = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.

  3. Imaging correlated wave functions of few-electron quantum dots: Theory and scanning tunneling spectroscopy experimentsa)

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Molinari, Elisa; Maruccio, Giuseppe; Janson, Martin; Schramm, Andreas; Meyer, Christian; Matsui, Tomohiro; Heyn, Christian; Hansen, Wolfgang; Wiesendanger, Roland

    2007-04-01

    We show both theoretically and experimentally that scanning tunneling spectroscopy (STS) images of semiconductor quantum dots may display clear signatures of electron-electron correlation. We apply many-body tunneling theory to a realistic model, which fully takes into account correlation effects and dot anisotropy. Comparing measured STS images of freestanding InAs quantum dots with those calculated by the full configuration interaction method, we explain the wave-function sequence in terms of images of one- and two-electron states. The STS map corresponding to double charging is significantly distorted by electron correlation with respect to the noninteracting case.

  4. Functional network connectivity analysis based on partial correlation in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Guan, Xiaoting; Zhang, Yumei; Li, Jingjing; Chen, Hongyan; Chen, Kewei; Fleisher, Adam; Yao, Li; Wu, Xia

    2009-02-01

    Functional network connectivity (FNC) measures the temporal dependency among the time courses of functional networks. However, the marginal correlation between two networks used in the classic FNC analysis approach doesn't separate the FNC from the direct/indirect effects of other networks. In this study, we proposed an alternative approach based on partial correlation to evaluate the FNC, since partial correlation based FNC can reveal the direct interaction between a pair of networks, removing dependencies or influences from others. Previous studies have demonstrated less task-specific activation and less rest-state activity in Alzheimer's disease (AD). We applied present approach to contrast FNC differences of resting state network (RSN) between AD and normal controls (NC). The fMRI data under resting condition were collected from 15 AD and 16 NC. FNC was calculated for each pair of six RSNs identified using Group ICA, thus resulting in 15 (2 out of 6) pairs for each subject. Partial correlation based FNC analysis indicated 6 pairs significant differences between groups, while marginal correlation only revealed 2 pairs (involved in the partial correlation results). Additionally, patients showed lower correlation than controls among most of the FNC differences. Our results provide new evidences for the disconnection hypothesis in AD.

  5. Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects

    PubMed Central

    Iutaka, Natalia A.; Grochowski, Rubens A.; Kasahara, Niro

    2017-01-01

    Purpose: To evaluate the correlation between visual field index (VFI) and both structural and functional measures of the optic disc in primary open angle glaucoma patients and suspects. Methods: In this retrospective study, 162 glaucoma patients and suspects underwent standard automated perimetry (SAP), retinography, and retinal nerve fiber layer (RNFL) measurement. The optic disc was stratified according to the vertical cup/disc ratio (C/D) and sorted by the disc damage likelihood scale (DDLS). RNFL was measured with the optical coherence tomography. The VFI perimetry was correlated with the mean deviation (MD) and pattern standard deviation (PSD) obtained by SAP, and structural parameters by Pearson's correlation coefficients. Results: VFI displayed strong correlation with MD (R = 0.959) and PSD (R = −0.744). The linear correlations between VFI and structural measures including C/D (R = −0.179, P = 0.012), DDLS (R = −0.214, P = 0.006), and RNFL (R = 0.416, P < 0.001) were weak but statistically significant. Conclusion: VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma. PMID:28299007

  6. Bias and high-order galaxy correlation functions in the APM galaxy survey

    NASA Technical Reports Server (NTRS)

    Gaztanaga, Enrique; Frieman, Joshua A.

    1994-01-01

    On large scales, the higher order moments of the mass distribution, S(sub J) = bar-zeta(sub J)/bar-zeta(sup J-1)(sub 2), e.g., the skewness S(sub 3) and kurtosis S(sub 4), can be predicted using nonlinear perturbation theory. Comparison of these predictions with moments of the observed galaxy distribution probes the bias between galaxies and mass. Applying this method to models with initially Gaussian fluctuations and power spectra P(k) similar to that of galaxies in the Automatic Plate Measuring (APM) survey, we find that the predicted higher order moments S(sub J)(R) are in good agreement with those directly inferred from the APM survey in the absence of bias. We use this result to place limits on the linear and nonlinear bias parameters. Models in which the extra power observed on large scales (with respect to the standard cold dark matter (CDM) model) is produced by scale-dependent bias match the APM higher order amplitudes only if nonlinear bias (rather than nonlinear gravity) generates the observed higher order moments. When normalized to Cosmic Background Explorer Differential Microwave Radiometer (COBE DMR), these models are siginificantly ruled out by the S(sub 3) observations. The cold plus hot dark matter model normalized to COBE can reproduce the APM higher order correlations if one introduces nonlinear bias terms, while the low-density CDM model with a cosmological constant does not require any bias to fit the large-scale amplitudes.

  7. 42 CFR 476.86 - Correlation of Title XI functions with Title XVIII functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... functions. 476.86 Section 476.86 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS UTILIZATION AND QUALITY CONTROL REVIEW Review Responsibilities of Utilization and Quality Control Quality Improvement Organizations...

  8. Functional connectivity of brain structures correlates with treatment outcome in major depressive disorder.

    PubMed

    Kozel, F Andrew; Rao, Uma; Lu, Hanzhang; Nakonezny, Paul A; Grannemann, Bruce; McGregor, Tamara; Croarkin, Paul E; Mapes, Kimberly S; Tamminga, Carol A; Trivedi, Madhukar H

    2011-01-01

    Identifying biosignatures to assess the probability of response to an antidepressant for patients with major depressive disorder (MDD) is critically needed. Functional connectivity MRI (fcMRI) offers the promise to provide such a measure. Previous work with fcMRI demonstrated that the correlation in signal from one region to another is a measure of functional connectivity. In this pilot work, a baseline non-task fcMRI was acquired in 14 adults with MDD who were free of all medications. Participants were then treated for 8 weeks with an antidepressant and then clinically re-evaluated. Probabilistic anatomic regions of interest (ROI) were defined for 16 brain regions (eight for each hemisphere) previously identified as being important in mood disorders. These ROIs were used to determine mean time courses for each individual's baseline non-task fcMRI. The correlations in time courses between 16 brain regions were calculated. These calculated correlations were considered to signify measures of functional connectivity. The degree of connectivity for each participant was correlated with treatment outcome. Among 13 participants with 8 weeks follow-up data, connectivity measures in several regions, especially the subcallosal cortex, were highly correlated with treatment outcome. These connectivity measures could provide a means to evaluate how likely a patient is to respond to an antidepressant treatment. Further work using larger samples is required to confirm these findings and to assess if measures of functional connectivity can be used to predict differential outcomes between antidepressant treatments.

  9. An ancient revisits cosmology.

    PubMed Central

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  10. Nuclear physics and cosmology

    SciTech Connect

    Coc, Alain

    2014-05-09

    There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

  11. An ancient revisits cosmology.

    PubMed

    Greenstein, J L

    1993-06-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.

  12. Culture and Children's Cosmology

    ERIC Educational Resources Information Center

    Siegal, Michael; Butterworth, George; Newcombe, Peter A.

    2004-01-01

    In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…

  13. Quantifying concordance in cosmology

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre

    2016-05-01

    Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.

  14. Peaks in the CMBR Power Spectrum II: Physical Interpretation for any Cosmological Scenario

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2013-06-01

    In a previous paper (part I), the mathematical properties of the cosmic microwave background radiation (CMBR) power spectrum which presents oscillations were discussed. Here, we discuss the physical interpretation: a power spectrum with oscillations is a rather normal characteristic expected from any fluid with clouds of overdensities that emit/absorb radiation or interact gravitationally with the photons, and with a finite range of sizes and distances for those clouds. The standard cosmological interpretation of "acoustic" peaks is just a particular case; peaks in the power spectrum might be generated in scenarios within some alternative cosmological model that have nothing to do with oscillations due to gravitational compression in a fluid. We also calculate the angular correlation function of the anisotropies from the Wilkinson Microwave Anisotropy Probe (WMAP)-7 yr and ACT data, in an attempt to derive the minimum number of parameters a polynomial function should have to fit it: a set of polynomial functions with a total of ≈ 6 free parameters, apart from the amplitude, is enough to reproduce the first two peaks. However, the standard model with six tunable free parameters also reproduces higher-order peaks, giving the standard model a higher confidence. At present, while no simple function with six free parameters is found to give a fit as good as the one given by the standard cosmological model, we may consider the predictive power of the standard model beyond an instrumentalist approach (such as the Ptolemaic astronomy model of the orbits of the planets).

  15. Role of peculiar veocity of galaxy clusters in gravitational clustering of cosmological many body problem

    NASA Astrophysics Data System (ADS)

    Masood, Tabasum

    2016-07-01

    The distribution of galaxies in the universe can be well understood by correlation function analysis. The lowest order two point auto correlation function has remained a successful tool for understanding the galaxy clustering phenomena. The two point correlation function is a probability of finding two galaxies in a given volume separated by some particular distance. Given a random galaxy in a location, the correlation function describes the probability that another galaxy will be found within a given distance .The correlation function tool is important for theoretical models of physical cosmology because it provides means of testing models which assume different things about the contents of the universe Correlation function is one of the way to characterize the distribution of galaxies in the space . This can be done by observations and can be extracted from numerical N-body experiments. Correlation function is a natural quantity in theoretical dynamical description of gravitating systems. These correlations can answer many interesting questions about the evolution and the distribution of galaxies.

  16. THEORETICAL ESTIMATES OF TWO-POINT SHEAR CORRELATION FUNCTIONS USING TANGLED MAGNETIC FIELDS

    SciTech Connect

    Pandey, Kanhaiya L.; Sethi, Shiv K.

    2012-03-20

    The existence of primordial magnetic fields can induce matter perturbations with additional power at small scales as compared to the usual {Lambda}CDM model. We study its implication within the context of a two-point shear correlation function from gravitational lensing. We show that a primordial magnetic field can leave its imprints on the shear correlation function at angular scales {approx}< a few arcminutes. The results are compared with CFHTLS data, which yield some of the strongest known constraints on the parameters (strength and spectral index) of the primordial magnetic field. We also discuss the possibility of detecting sub-nano Gauss fields using future missions such as SNAP.

  17. High Interleukin 17 Expression Is Correlated With Better Cardiac Function in Human Chagas Disease

    PubMed Central

    Magalhães, Luisa M. D.; Villani, Fernanda N. A.; Nunes, Maria do Carmo P.; Gollob, Kenneth J.; Rocha, Manoel O. C.; Dutra, Walderez O.

    2013-01-01

    This study was designed to investigate whether the expression of interleukin 17 (IL-17) is associated with the indeterminate or cardiac clinical forms of Chagas disease and whether IL-17 expression can be correlated with patients' cardiac function. Our results demonstrated that cardiac Chagas patients have a lower intensity of expression of IL-17 by total lymphocytes and lower frequency of circulating T helper 17 cells. Correlative analysis showed that high IL-17 expression was associated with better cardiac function, as determined by left ventricular ejection fraction and left ventricular diastolic diameter values. Therefore, IL-17 expression can be a protective factor to prevent myocardial damage in human Chagas disease. PMID:23204182

  18. Seismic Noise Auto-Correlation Function Changes Correlate with the Crustal Deformation for off-Izu Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Ueno, T.; Saito, T.; Shiomi, K.; Enescu, B.; Hirose, H.

    2010-12-01

    Seismic swarms accompanied by crustal deformation have repeatedly occurred in the off-Izu peninsula region, central part of Japan. In the case of the recent 2006 and 2009 earthquake swarms, the NIED Hi-net stations detected clear accompanying tilt changes, which were interpreted as magma intrusions into the shallower crust, based on a dyke model (e.g., Okada et al., 2000). Recently, seismic noise Auto-Correlation Function (ACF) studies have been carried out intensively to detect possible temporal changes of crustal properties in regions of large earthquakes or at volcanoes (e.g., Wegler and Sens-Schonfelder, 2007). In this study we obtained ACFs by processing continuous seismic waveform data recorded by the Hi-net ITOH station, located closely to the Izu swarm area, and correlated the temporal changes of ACFs with the tilt records at the same station. We also investigated the possibility of continuous monitoring using ACFs and tilt records. We divided the continuous waveform data of 100 Hz sampling into segments of 5 minutes length, removed the mean and trend, and applied band-pass filtering and one-bit normalization, followed by auto-correlation. After that, we stacked the ACFs for a day to obtain stable ACF records. The temporal changes of ACFs versus time are analyzed by considering a reference ACF, which is the mean of ACFs for the time period without major seismic swarms. The tilt records were corrected for the tidal elements using the BAYTAP-G software (Tamura et al., 1991). After this processing, we determined the coherency between the temporal changes of ACF and tilt records. Usually the ACFs and the tilt records had separate, uncorrelated changes. The variety of changes suggests that the ACFs amplitudes and the tilt records were sensitive not only to crustal changes caused by seismic swarms or magma intrusion. However, just before the seismic swarm in December 2009, the coherency between the temporal changes of ACFs and tilt records started to be higher

  19. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  20. Estimating time-correlation functions by sampling and unbiasing dynamically activated events.

    PubMed

    Athènes, Manuel; Marinica, Mihai-Cosmin; Jourdan, Thomas

    2012-11-21

    Transition path sampling is a rare-event method that estimates state-to-state time-correlation functions in many-body systems from samples of short trajectories. In this framework, it is proposed to bias the importance function using the lowest Jacobian eigenvalue moduli along the dynamical trajectory. A lowest eigenvalue modulus is related to the lowest eigenvalue of the Hessian matrix and is evaluated here using the Lanczos algorithm as in activation-relaxation techniques. This results in favoring the sampling of activated trajectories and enhancing the occurrence of the rare reactive trajectories of interest, those corresponding to transitions between locally stable states. Estimating the time-correlation functions involves unbiasing the sample of simulated trajectories which is done using the multi-state Bennett acceptance ratio (MBAR) method. To assess the performance of our procedure, we compute the time-correlation function associated with the migration of a vacancy in α-iron. The derivative of the estimated time-correlation function yields a migration rate in agreement with the one given by transition state theory. Besides, we show that the information relative to rejected trajectories can be recycled within MBAR, resulting in a substantial speed-up. Unlike original transition path-sampling, our approach does not require computing the reversible work to confine the trajectory endpoints to a reactive state.

  1. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect

    Lineweaver, Charles Howe

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  2. Correlation between visual function and refractive, topographic, pachymetric and aberrometric data in eyes with keratoconus

    PubMed Central

    Bayraktar Bilen, Neslihan; Hepsen, Ibrahim F.; Arce, Carlos G.

    2016-01-01

    AIM To analyze the relationship between two visual functions and refractive, topographic, pachymetric and aberrometric indicators in eyes with keratoconus. METHODS Corrected distance visual acuity (CDVA), and letter contrast sensitivity (CS) were correlated with refraction, corneal topography, pachymetry, and total corneal wavefront data prospectively in 71 eyes with keratoconus. The topographic indices assessed were simulated keratometry for the flattest and steepest meridians (SimK1 and SimK2), posterior steeper K (Ks), elevation value in best-fit sphere (BFS) maps, squared eccentricity (Є2), aspheric asymmetric index (AAI), pachymetry, thickness progression index (TPI), the amount of pachymetric decentralization (APD), and GalileiTM-keratoconus indices. RESULTS The mean CDVA (expressed as logMAR) were 0.25±0.21. The mean CS was 1.25±0.46. The spherical refraction correlated well with CDVA (r=-0.526, P<0.001). From topographic indices, SRI correlated with CS (r=-0.695), and IAI with CS (r=-0.672) (P<0.001 for all). Root mean square (RMS) was 4.3±1.81 µm, spherical aberration (SA) was -0.4±0.67 µm, vertical and horizontal coma were -2.1±1.47 and -0.4±0.72 µm. All wavefront data (except horizontal coma), AAI, Є2 and maximum BFS correlated significantly with the visual function (P≤0.001 for all). CONCLUSION In this study, CS is more affected than CDVA as a visual function. The quantity and quality of vision is significantly correlated with well-known and new topographic indices. There is not a significant correlation between visual function and pachymetric parameters. The significantly correlated indices can be used in staging keratoconus and to follow the outcome of a treatment. PMID:27588266

  3. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  4. Density functional with full exact exchange, balanced nonlocality of correlations, and constraint satisfaction

    SciTech Connect

    Tao, Jianmin; Perdew, John P; Staroverov, Viktor N; Scuseria, Gustavo E

    2008-01-01

    We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints

  5. Applications of a time correlation function theory for the fifth-order Raman response function I: Atomic liquids

    NASA Astrophysics Data System (ADS)

    DeVane, Russell; Ridley, Christina; Space, Brian; Keyes, T.

    2005-11-01

    Multidimensional spectroscopy has the ability to provide great insight into the complex dynamics and time-resolved structure of liquids. Theoretically describing these experiments requires calculating the nonlinear-response function, which is a combination of quantum-mechanical time correlation functions (TCFs), making it extremely difficult to calculate. Recently, a new theory was presented in which the two-dimensional Raman quantum response function R(5)(t1,t2) was expressed with a two-time, computationally tractable, classical TCF. Writing the response function in terms of classical TCFs brings the full power of atomistically detailed molecular dynamics to the problem. In this paper, the new TCF theory is employed to calculate the fifth-order Raman response function for liquid xenon and investigate several of the polarization conditions for which experiments can be performed on an isotropic system. The theory is shown to reproduce line-shape characteristics predicted by earlier theoretical work.

  6. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  7. Correlation of thiamine metabolite levels with cognitive function in the non-demented elderly.

    PubMed

    Lu, Jingwen; Pan, Xiaoli; Fei, Guoqiang; Wang, Changpeng; Zhao, Lei; Sang, Shaoming; Liu, Huimin; Liu, Meng; Wang, Hui; Wang, Zhiliang; Zhong, Chunjiu

    2015-12-01

    Thiamine metabolism is critical for glucose metabolism and also vital for brain function, which is susceptible to decline in the elderly. This study aimed to investigate whether thiamine metabolites correlate with cognitive function in the non-demented elderly and their impact factors. Volunteers >60 years old were recruited and their blood thiamine metabolites and Mini-Mental State Examination (MMSE) scores were measured. The apolipoprotein E (APOE) genotype, routine blood parameters, liver and kidney function, and levels of fasting blood glucose and triglycerides were also measured. The results showed that the thiamine diphosphate (TDP) level weakly correlated with MMSE score in the non-demented elderly. Participants with high TDP levels performed better in Recall and Attention and Calculation than those with low TDP. TDP levels were associated with the APOE ε2 allele, body mass index, hemoglobin level, fasting blood glucose, and triglycerides. Our results suggest that TDP, which is easily affected by many factors, impacts cognitive function in the elderly.

  8. Fish functional traits correlated with environmental variables in a temperate biodiversity hotspot.

    PubMed

    Keck, Benjamin P; Marion, Zachary H; Martin, Derek J; Kaufman, Jason C; Harden, Carol P; Schwartz, John S; Strange, Richard J

    2014-01-01

    The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner

  9. Getting full control of canonical correlation analysis with the AutoBiplot.CCA function

    NASA Astrophysics Data System (ADS)

    Alves, M. Rui

    2016-06-01

    Function AutoBiplot.CCA was built in R language. Given two multivariate data sets, this function carries out a conventional canonical correlation analysis, followed by the automatic production of predictive biplots based on the accuracy of readings as assessed by a mean standard predictive error and a user defined tolerance value. As the user's intervention is mainly restricted to the choice of the magnitude of the t.axis value, common misinterpretations, overestimations and adjustments between outputs and personal beliefs are avoided.

  10. Fish Functional Traits Correlated with Environmental Variables in a Temperate Biodiversity Hotspot

    PubMed Central

    Keck, Benjamin P.; Marion, Zachary H.; Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.; Schwartz, John S.; Strange, Richard J.

    2014-01-01

    The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner

  11. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  12. Paternal correlates of cognitive and behavioral functioning in children with myelomeningocele.

    PubMed

    Wohlfeiler, Melissa M; Macias, Michelle M; Saylor, Conway F

    2008-11-01

    This study examined paternal correlates of the cognitive and behavioral functioning of children with myelomeningocele, when controlling for maternal and biological/child correlates as possible sources of variance. Participants were 48 parent dyads of children with myelomeningocele (21 males, 27 females) between the ages of 4 and 12 years (mean 8y, 2mo, SD 2y 3mo). Lesion levels of participants ranged from the thoracic to sacral (thoracic-L3: n=15; L4-L5: n=15; sacral or lipomeningocele: n=18), of whom 38 had been shunted for hydrocephalus. Half of the participants (n=24) were community ambulators. Potential predictors of cognitive and behavioral functioning included paternal and maternal parenting stress, as assessed by the Parenting Stress Index - Short Form paternal, and maternal perceptions of support and resources, as assessed by the Family Resource Scale and the Family Support Scale, and child medical severity. Paternal variables significantly correlated with behavioral functioning but not with cognitive functioning. Regression analyses revealed that paternal personal distress and maternal perceived adequacy of social support accounted for significant variance in overall child behavioral functioning. Only child medical severity and annual household income explained significant variance in overall child cognitive functioning. These findings add to the growing body of theory and research documenting that fathers make unique and significant contributions to child adjustment in children with myelomeningocele. Both fathers and mothers need to be considered in interventions supporting development and adjustment of children with myelomeningocele and their families.

  13. Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis

    PubMed Central

    Baladandayuthapani, Veerabhadran; Mallick, Bani K.; Hong, Mee Young; Lupton, Joanne R.; Turner, Nancy D.; Carroll, Raymond J.

    2009-01-01

    Summary In this article, we present new methods to analyze data from an experiment using rodent models to investigate the role of p27, an important cell-cycle mediator, in early colon carcinogenesis. The responses modeled here are essentially functions nested within a two-stage hierarchy. Standard functional data analysis literature focuses on a single stage of hierarchy and conditionally independent functions with near white noise. However, in our experiment, there is substantial biological motivation for the existence of spatial correlation among the functions, which arise from the locations of biological structures called colonic crypts: this possible functional correlation is a phenomenon we term crypt signaling. Thus, as a point of general methodology, we require an analysis that allows for functions to be correlated at the deepest level of the hierarchy. Our approach is fully Bayesian and uses Markov chain Monte Carlo methods for inference and estimation. Analysis of this data set gives new insights into the structure of p27 expression in early colon carcinogenesis and suggests the existence of significant crypt signaling. Our methodology uses regression splines, and because of the hierarchical nature of the data, dimension reduction of the covariance matrix of the spline coefficients is important: we suggest simple methods for overcoming this problem. PMID:17608780

  14. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

    PubMed

    Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

  15. ISOTROPY IN THE TWO-POINT ANGULAR CORRELATION FUNCTION OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Zhang, Sophie

    2012-04-01

    We study the directional dependence of the angular two-point correlation function in maps of the cosmic microwave background (CMB). We propose two new statistics: one which measures the correlation of each point in the sky with a ring of points separated an angle {theta} away, and a second one that measures the missing angular correlation above 60 deg as a function of direction. Using these statistics, we find that most of the low power in cut-sky maps measured by the Wilkinson Microwave Anisotropy Probe experiment comes from unusually low contributions from the directions of the lobes of the quadrupole and the octupole. These findings may aid a future explanation of why the CMB exhibits low power at large angular scales.

  16. Topologically massive gravity and galilean conformal algebra: a study of correlation functions

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun

    2011-02-01

    The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.

  17. Accurate and efficient calculation of discrete correlation functions and power spectra

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Liu, J. M.; Zhu, W. D.

    2015-07-01

    Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate

  18. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    ERIC Educational Resources Information Center

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  19. Recovery of correlation function of internal random rough surfaces from diffusely scattered elastic waves

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Craster, R. V.

    2017-02-01

    We propose an ultrasonic methodology to reconstruct the height correlation function of remotely inaccessible random rough surfaces in solids. The inverse method is based on the Kirchhoff approximation(KA), and it requires measuring the angular distribution of diffuse scattering intensities by sending in a narrow band incident pulse. Near field scattering effects are also included by considering the Fresnel assumption. The proposed approach is successfully verified by simulating the scattering from multiple realizations of rough surfaces whose correlation function is known, calculating the mean scattering intensities from these received signals, and then deploying the inverse method on these to reconstruct the original correlation function. Very good agreement between the reconstructed correlation function and the original is found, for a wide range of roughness parameters. In addition, the effect of reducing the number of realizations to approximate the mean intensity are investigated, providing confidence bounds for the experiment. An experiment on a corrugated rough surface is performed with a limited number of scans using a phased array, which further validates the proposed inversion algorithm.

  20. Correlation functions of the electric and magnetic fields in the vicinity of a metal surface

    NASA Astrophysics Data System (ADS)

    Langsjoen, Luke; Joynt, Robert; Vavilov, Maxim; Poudel, Amrit

    2012-02-01

    The Johnson noise-induced relaxation rate of a charge or spin qubit for a transition at a particular frequency in the vicinity of a metal boundary is proportional to the temporal Fourier component at that frequency of the electric or magnetic correlation function evaluated at the position of the qubit. These correlation functions are shown to be greatly enhanced compared to the blackbody result in the near vicinity of the metal due to the contribution of evanescent waves. As such, we expect a measurable enhancement of qubit decoherence due to the contribution of evanescent waves. We use a Green's dyadic approach to calculate the correlation functions of the fluctuating electric and magnetic fields in the vicinity of a conducting surface. In a local treatment of the dielectric properties of the metal this enhancement diverges as the inverse cube of the distance from the boundary, and for distances less than the order of the Fermi wavelength of the metal a nonlocal treatment is necessary to obtain an accurate result. We present a calculation of the correlation function for the full range of distances.

  1. On the Correlation Functions Associated with Polynomials of the Diffusion Operator

    DTIC Science & Technology

    2011-10-01

    Hristopulos (2003) and Hristopulos and Elogne (2007, 2009) for construction of the correlation models for geostatistical and other applications. Our... geostatistical applications. SI AM I. Sei. Comput. 24: 2125-2162. Hristopulos DT, Elogne SN. 2007. Analytic properties and covariance functions of a new

  2. Individual Differences in General Intelligence Correlate with Brain Function during Nonreasoning Tasks.

    ERIC Educational Resources Information Center

    Haier, Richard J.; White, Nathan S.; Alkire, Michael T.

    2003-01-01

    Administered Raven's Advanced Progressive Matrices to 22 adults and measured cerebral glucose activity as subjects viewed videos on 2 occasions. Data provide evidence that individual differences in intelligence correlate with brain function even when the brain is engaged in non-reasoning tasks. (SLD)

  3. Correlation of CT cerebral vascular territories with function. 3. Middle cerebral artery

    SciTech Connect

    Berman, S.A.; Hayman, L.A.; Hinck, V.C.

    1984-05-01

    Schematic displays are presented of the cerebral territories supplied by branches of the middle cerebral artery as they would appear on axial and coronal computed tomographic (CT) scan sections. Companion diagrams of regional cortical function and a discussion of the fiber tracts are provided to simplify correlation of clinical deficits with coronal and axial CT abnormalities.

  4. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis

    PubMed Central

    TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI

    2016-01-01

    The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413

  5. Photographic Measurements Partially Correlate to Nasal Function and Appearance among Adult Cleft Patients

    PubMed Central

    Keijser, Klara; Nowinski, Daniel

    2016-01-01

    Background: Unilateral cleft lip and palate (UCLP) affects nasal function and appearance. There is a lack of objective measurements to evaluate these features. This study analyzes whether objective measurements on photographs correlate with nasal function and/or appearance among adults treated for UCLP. Methods: All patients with UCLP born from 1960 to 1987 treated at the Uppsala University Hospital were invited (n = 109). Participation rate was 68% (n = 74); mean follow-up was 35 years. An age-matched control group (n = 61) underwent the same tests. Nostril area, nasal tip deviation angle, and width of the nostril were measured on photographs and were compared with functional tests and with appearance as assessed by self-assessment questionnaire, professional panel, or laymen panel. Results: The photographically measured nostril area correlated with nasal volume (acoustic rhinometry) among UCLP patients, both cleft side and noncleft side, and controls (0.331, P = 0.005; 0.338, P = 0.004; and 0.420, P < 0.001, respectively). For the patients’ noncleft side and controls, the area correlated inversely with airflow resistance at inspiration (noncleft side: −0.245, P = 0.043; controls: −0.226, P = 0.013). Laymen assessment of nasal appearance correlated with width ratio of the patients (0.27, P = 0.022) and with nasal tip deviation angle and area ratio of the controls (0.26, P = 0.041, and 0.31, P = 0.015, respectively). Conclusions: Photographic measurements correlate partially with both functional tests of the nose and panel ratings of appearance. No correlation was found with self-assessment of appearance. Evaluation of photographs needs to be combined with patient-reported outcome measures to be a valuable endpoint of nasal appearance. PMID:27579244

  6. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo

    SciTech Connect

    Clay, Raymond C.; Mcminis, Jeremy; McMahon, Jeffrey M.; Pierleoni, Carlo; Ceperley, David M.; Morales, Miguel A.

    2014-05-01

    The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.

  7. Correlation of Objective Audiometric and Caloric Function in Ménière's Disease.

    PubMed

    McMullen, Kyle P; Lin, Chen; Harris, Michael S; Adunka, Oliver F

    2017-02-01

    Objective Ménière's disease affects the vestibular and audiologic systems; however, little is known about the relationship between audiometric and caloric function with increasing duration of disease. We employed a novel methodology to understand the longitudinal correlation between audiometric and caloric function in Ménière's patients. Study Design Case series with chart review. Setting Neuro-otologic tertiary care practice. Subjects and Methods Charts of 19 patients with unilateral Ménière's disease, as classified by the 1995 American Academy of Otolaryngology-Head and Neck Foundation criteria, were examined. We included patients with ≥2 videonystagmograms and audiograms. We excluded those with bilateral Ménière's, prior audiovestibular destruction, or symptoms suggesting concomitant vestibular pathology. Spearman's rank correlation of audiometric status (pure tone average [PTA], low PTA, and word recognition score [WRS]) and vestibular function (bithermal calorics) was performed. The study was Institutional Review Board approved (protocol 2015H0266). Results A total of 112 audiograms and 42 videonystagmographies were performed. There was a decline in affected ear hearing PTA and WRS with duration of disease ( r = 0.602, P < .001, and r = -0.573, P < .001, respectively). Similarly, there was a decline in vestibular function with increasing duration of disease ( r = 0.709, P < .001). There were moderate correlations between vestibular weakness and PTA, low PTA, and WRS ( r = 0.464, P = .002; r = 0.498, P = .001; and r = -0.518, P = .001, respectively). Conclusions There is a correlation between decline in objective hearing and horizontal semicircular canal function with time. As expected, this correlation is not 1:1, indicating differential involvement of both systems. Understanding this relationship may assist in counseling patients with regard to prognosis, natural history, and therapeutic interventions.

  8. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal

  9. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    NASA Technical Reports Server (NTRS)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  10. Theoretical and numerical results on effects of attenuation on correlation functions of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Ben-Zion, Yehuda

    2013-09-01

    We study analytically and numerically effects of attenuation on cross-correlation functions of ambient noise in a 2-D model with different attenuation constants between and outside a pair of stations. The attenuation is accounted for by quality factor Q(ω) and complex phase velocity. The analytical results are derived for isotropic far-field source distribution assuming the Fresnel approximation and mild attenuation. More general situations including cases with non-isotropic source distributions are examined with numerical simulations. The results show that homogeneous attenuation in the interstation regions produces symmetric amplitude decay of the causal and anticausal parts of the noise cross-correlation function. The attenuation between the receivers and far-field sources generates symmetric exponential amplitude decay and may also cause asymmetric reduction of the causal/anticausal parts that increases with frequency. This frequency dependence can be used to distinguish asymmetric amplitudes due to attenuation from frequency-independent asymmetry in noise correlations generated by non-isotropic source distribution. The attenuations both between and outside station pairs also produce phase shifts that could affect measurements of group and phase velocities. In terms of noise cross-spectra, the interstation attenuation is governed by Struve functions while the attenuation between the far-field sources and receivers is associated with exponential decay and the imaginary part of complex Bessel function. These results are fundamentally different from previous studies of attenuated coherency that append the Bessel function with an exponential decay that depends on the interstation distance.

  11. Planck CMB cosmology

    NASA Astrophysics Data System (ADS)

    Bouchet, François R.

    2015-08-01

    Sketched out in 1992, selected by ESA in 1996, launched in 2009, Planck delivered a "definitive" map of the anisotropies of the Cosmic Microwave Background (CMB) as well as information on their polarisation. The CMB anisotropies, of rms ~100 microK in temperature, reveal the imprint of the primordial fluctuations which initiate the growth of the large scale structures of the Universe, as transformed by their evolution, in particular during the first 370 000 years. This evolution is governed by the Universe content at this early epoch. I will confront what temperature and polarisation anisotropies teach us, both in terms of content of the universe and of characteristics of the primordial fluctuations. I will also discuss the extent of the agreement of Planck cosmology with lower redshift cosmological probes like BAO, Weak Lensing or redshift space distortions. Submitted on behalf of the Planck Collaboration.

  12. Successful modular cosmology

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Stewart, Ewan D.

    2003-07-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  13. Cosmology and convention

    NASA Astrophysics Data System (ADS)

    Merritt, David

    2017-02-01

    I argue that some important elements of the current cosmological model are 'conventionalist' in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.

  14. Bayesian Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David

    2009-12-01

    Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.

  15. Gravitomagnetic amplification in cosmology

    SciTech Connect

    Tsagas, Christos G.

    2010-02-15

    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.

  16. Quantum cosmology: a review.

    PubMed

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  17. Bayesian Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David

    2014-02-01

    Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.

  18. Improved cosmological model

    NASA Astrophysics Data System (ADS)

    Tsamis, N. C.; Woodard, R. P.

    2016-08-01

    We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.

  19. Culture and children's cosmology.

    PubMed

    Siegal, Michael; Butterworth, George; Newcombe, Peter A

    2004-06-01

    In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England Though Australia and England have a close cultural affinity, there are differences in children's early exposure to cosmological concepts. Australian children who have early instruction in this domain were nearly always significantly in advance of their English counterparts. In general, they most often produced responses compatible with a conception of a round earth on which people can live all over without falling off. We consider coherence and fragmentation in children's knowledge in terms of the timing of culturally transmitted information, and in relation to questioning methods used in previous research that may have underestimated children's competence.

  20. Cosmological memory effect

    NASA Astrophysics Data System (ADS)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  1. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  2. One-particle-irreducible consistency relations for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Hui, Lam; Nicolis, Alberto

    2013-05-01

    We derive consistency relations for correlators of scalar cosmological perturbations that hold in the “squeezed limit” in which one or more of the external momenta become soft. Our results are formulated as relations between suitably defined one-particle-irreducible N-point and (N-1)-point functions that follow from residual spatial conformal diffeomorphisms of the unitary gauge Lagrangian. As such, some of these relations are exact to all orders in perturbation theory and do not rely on approximate de Sitter invariance or other dynamical assumptions (e.g., properties of the operator product expansion or the behavior of modes at the horizon crossing). The consistency relations apply model-independently to cosmological scenarios in which the time evolution is driven by a single scalar field. Besides reproducing the known results for single-field inflation in the slow-roll limit, we verify that our consistency relations hold more generally, for instance, in ghost condensate models in flat space. We comment on possible extensions of our results to multifield models.

  3. Brans-Dicke cosmology with time-dependent cosmological term

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    1990-12-01

    Berman and Som's solution for a Brans-Dicke cosmology with time-dependent cosmological term, Robertson-Walker metric, perfect fluid, and perfect gas law of state solves the horizon, homogeneity, and isotropy problems without requiring any unnatural fine tuning in the very early universe, thus being an alternative model to inflation. The model also does not need recourse to quantum cosmology, and solves the flatness and magnetic monopole problems.

  4. Correlations between Limbic White Matter and Cognitive Function in Temporal-Lobe Epilepsy, Preliminary Findings

    PubMed Central

    Alexander, Ryan P. D.; Concha, Luis; Snyder, Thomas J.; Beaulieu, Christian; Gross, Donald William

    2014-01-01

    The limbic system is presumed to have a central role in cognitive performance, in particular memory. The purpose of this study was to investigate the relationship between limbic white matter microstructure and neuropsychological function in temporal-lobe epilepsy (TLE) patients using diffusion tensor imaging (DTI). Twenty-one adult TLE patients, including 7 non-lesional (nlTLE) and 14 with unilateral mesial temporal sclerosis (uTLE), were studied with both DTI and hippocampal T2 relaxometry. Correlations were performed between fractional anisotropy (FA) of the bilateral fornix and cingulum, hippocampal T2, neuropsychological tests. Positive correlations were observed in the whole group for the left fornix and processing speed index. In contrast, memory tests did not show significant correlations with DTI findings. Subgroup analysis demonstrated an association between the left fornix and processing speed in nlTLE but not uTLE. No correlations were observed between hippocampal T2 and test scores in either the TLE group as a whole or after subgroup analysis. Our findings suggest that integrity of the left fornix specifically is an important anatomical correlate of cognitive function in TLE patients, in particular patients with nlTLE. PMID:25071551

  5. Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function

    PubMed Central

    Figueroa-Bonaparte, Sebastián; Segovia, Sonia; Llauger, Jaume; Belmonte, Izaskun; Pedrosa, Irene; Alejaldre, Aída; Mayos, Mercè; Suárez-Cuartín, Guillermo; Gallardo, Eduard; Illa, Isabel; Díaz-Manera, Jordi

    2016-01-01

    Objectives Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD). The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far. Methods We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale), respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure), daily live activities scales (Activlim) and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire). We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region. Results T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients. Conclusion Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment. Take home message Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic. PMID:27711114

  6. Topics in inflationary cosmologies

    SciTech Connect

    Mahajan, S.

    1986-04-01

    Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.

  7. Greek Cosmology and Cosmogony

    NASA Astrophysics Data System (ADS)

    Jones, Alexander

    The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.

  8. Cosmology, Clusters and Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2005-01-01

    I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.

  9. Statistical Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Verde, L.

    2010-03-01

    The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.

  10. Introduction to Cosmology

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara

    2016-11-01

    Preface to second edition; Preface to first edition; 1. Introduction; 2. Fundamental observations; 3. Newton versus Einstein; 4. Cosmic dynamics; 5. Model universes; 6. Measuring cosmological parameters; 7. Dark matter; 8. The cosmic microwave background; 9. Nucleosynthesis and the early Universe; 10. Inflation and the very early Universe; 11. Structure formation: gravitational instability; 12. Structure formation: baryons and photons; Epilogue; Bibliography; Table of useful constants; Index.

  11. Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data

    PubMed Central

    Zhou, Lan; Huang, Jianhua Z.; Martinez, Josue G.; Maity, Arnab; Baladandayuthapani, Veerabhadran; Carroll, Raymond J.

    2010-01-01

    SUMMARY Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online. PMID:20396628

  12. Correlation Between Vision and Cognitive Function in the Elderly: A Cross-Sectional Study.

    PubMed

    Spierer, Oriel; Fischer, Naomi; Barak, Adiel; Belkin, Michael

    2016-01-01

    The correlation between vision and cognition is not fully understood. Visual impairment in the elderly has been associated with impaired cognitive function, dementia, and Alzheimer disease. The aim was to study the correlation between near visual acuity (VA), refraction, and cognitive state in an elderly population.Subjects ≥75 years were enrolled in this cross-sectional study. Refraction and near VA was tested. Cognitive function was evaluated with a version of the mini-mental state examination for the visually impaired (MMSE-blind). The eye with better VA and no cataract or refractive surgery was analyzed.One-hundred ninety subjects (81.6 ± 5.1 years, 69.5% female) were included. Good VA (≤J3) was associated with high MMSE-blind (>17) (OR = 3.18, 95% CI = 1.57-6.43, P = 0.001). This remained significant adjusting for sex, age, and years of education. Wearing reading glasses correlated significantly with high MMSE-blind after adjustment for sex and age (OR = 2.14, 95% CI = 1.16-3.97, P = 0.016), but reached borderline significance after adjustment for education. There was a trend toward correlation between myopia and better MMSE-blind (r = -0.123, P = 0.09, Pearson correlation).Good VA and wearing glasses seem to correlate with better cognitive function. Reading glasses can serve as a protective factor against cognitive deterioration associated with sensory (visual) deprivation in old age. The association between myopia and cognition requires further investigation.

  13. The correlation of metrics in complex networks with applications in functional brain networks

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.

    2011-11-01

    An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.

  14. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  15. Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI.

    PubMed

    Franzmeier, Nicolai; Buerger, Katharina; Teipel, Stefan; Stern, Yaakov; Dichgans, Martin; Ewers, Michael

    2017-02-01

    Cognitive reserve (CR) shows protective effects on cognitive function in older adults. Here, we focused on the effects of CR at the functional network level. We assessed in patients with amnestic mild cognitive impairment (aMCI) whether higher CR moderates the association between low internetwork cross-talk on memory performance. In 2 independent aMCI samples (n = 76 and 93) and healthy controls (HC, n = 36), CR was assessed via years of education and intelligence (IQ). We focused on the anti-correlation between the dorsal attention network (DAN) and an anterior and posterior default mode network (DMN), assessed via sliding time window analysis of resting-state functional magnetic resonance imaging (fMRI). The DMN-DAN anti-correlation was numerically but not significantly lower in aMCI compared to HC. However, in aMCI, lower anterior DMN-DAN anti-correlation was associated with lower memory performance. This association was moderated by CR proxies, where the association between the internetwork anti-correlation and memory performance was alleviated at higher levels of education or IQ. In conclusion, lower DAN-DMN cross-talk is associated with lower memory in aMCI, where such effects are buffered by higher CR.

  16. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations

    PubMed Central

    Neuwald, Andrew F.

    2016-01-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes’ theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu). PMID:28002465

  17. The simplest possible bouncing quantum cosmological model

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Vitenti, Sandro D. P.

    2016-06-01

    We present and expand the simplest possible quantum cosmological bouncing model already discussed in previous works: the trajectory formulation of quantum mechanics applied to cosmology (through the Wheeler-De Witt equation) in the Friedmann-Lemaître-Robertson-Walker (FLRW) minisuperspace without spatial curvature. The initial conditions that were previously assumed were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a nonsingular bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non-symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperspace.

  18. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  19. Cosmology with a spin

    NASA Astrophysics Data System (ADS)

    Magueijo, João; Zlosnik, T. G.; Kibble, T. W. B.

    2013-03-01

    Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be reinterpreted as a four-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.

  20. Fifty Years of Cosmology

    NASA Astrophysics Data System (ADS)

    Hoyle, Fred

    The worrying situation at that time in cosmology, as it seemed, turned out to be a relatively minor matter, namely the choice of suitable coordinates. Even the best-known cosmologists - de Sitter, Eddington and Lemaitre - had chosen coordinates appropriate to localities in the universe rather than the whole. This produced a sense of mystery that was more apparent than real as to what happened at the boundary of a locality. It is one of the features of Einstein's general relativity that when you choose coordinate systems with special properties you can mistakenly come to think of the properties as physical instead of as mathematical artefacts. Early workers on gravitational waves thought they were investigating physical waves when in fact the waves were in their coordinate system, and a similar situation existed in cosmology. It was also in 1935-36 that this situation was put right, by H.P. Robertson in the United States and A.E. Walker in Britain and the resulting choice of coordinates later became known as the Robertson-Walker line element. Then in 1937 Robertson published an important article on cosmology in the Reviews of Modern Physics, which unfortunately I didn't read at that time because my research interests were in quantum mechanics and nuclear physics.