Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Mikhail
2005-11-15
In this paper we review a model based on loop quantum cosmology that arises from a symmetry reduction of the self-dual Plebanski action. In this formulation the symmetry reduction leads to a very simple Hamiltonian constraint that can be quantized explicitly in the framework of loop quantum cosmology. We investigate the phenomenological implications of this model in the semiclassical regime and compare those with the known results of the standard Loop Quantum Cosmology.
The Case for a Hierarchical Cosmology
ERIC Educational Resources Information Center
Vaucouleurs, G. de
1970-01-01
The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)
On the physical Hilbert space of loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noui, Karim; Perez, Alejandro; Vandersloot, Kevin
2005-02-15
In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.
NASA Technical Reports Server (NTRS)
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Cosmological implications of Higgs near-criticality
NASA Astrophysics Data System (ADS)
Espinosa, J. R.
2018-01-01
The Standard Model electroweak (EW) vacuum, in the absence of new physics below the Planck scale, lies very close to the boundary between stability and metastability, with the last option being the most probable. Several cosmological implications of this so-called `near-criticality' are discussed. In the metastable vacuum case, the main challenges that the survival of the EW vacuum faces during the evolution of the Universe are analysed. In the stable vacuum case, the possibility of implementing Higgs inflation is critically examined. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Cosmological implications of Higgs near-criticality.
Espinosa, J R
2018-03-06
The Standard Model electroweak (EW) vacuum, in the absence of new physics below the Planck scale, lies very close to the boundary between stability and metastability, with the last option being the most probable. Several cosmological implications of this so-called 'near-criticality' are discussed. In the metastable vacuum case, the main challenges that the survival of the EW vacuum faces during the evolution of the Universe are analysed. In the stable vacuum case, the possibility of implementing Higgs inflation is critically examined.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Primordial alchemy: from the Big Bang to the present universe
NASA Astrophysics Data System (ADS)
Steigman, Gary
Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.
NASA Astrophysics Data System (ADS)
Najafi, A.; Hossienkhani, H.
2017-10-01
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.
Cosmology in Mirror Twin Higgs and neutrino masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.
We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In thesemore » $$\
Cosmology in Mirror Twin Higgs and neutrino masses
Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; ...
2017-07-06
We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In thesemore » $$\
The New Era of Precision Cosmology: Testing Gravity at Large Scales
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
Fully covariant cosmology and its astrophysical implications
NASA Technical Reports Server (NTRS)
Wesson, Paul S.; Liu, Hongya
1995-01-01
We present a cosmological model with good physical properties which is invariant not only under changes of the space and time coordinates but also under changes of an extra (Kaluza-Klein) coordinate related to rest mass. In frames where the latter is chosen to be constant we recover standard cosmology. In frames where it is chosen to be variable we obtain new astrophysical effects and gain insight into the nature of the big bang.
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Cosmological implications of primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luis Bernal, José; Bellomo, Nicola; Raccanelli, Alvise
The possibility that a relevant fraction of the dark matter might be comprised of Primordial Black Holes (PBHs) has been seriously reconsidered after LIGO's detection of a ∼ 30 M {sub ⊙} binary black holes merger. Despite the strong interest in the model, there is a lack of studies on possible cosmological implications and effects on cosmological parameters inference. We investigate correlations with the other standard cosmological parameters using cosmic microwave background observations, finding significant degeneracies, especially with the tilt of the primordial power spectrum and the sound horizon at radiation drag. However, these degeneracies can be greatly reduced withmore » the inclusion of small scale polarization data. We also explore if PBHs as dark matter in simple extensions of the standard ΛCDM cosmological model induces extra degeneracies, especially between the additional parameters and the PBH's ones. Finally, we present cosmic microwave background constraints on the fraction of dark matter in PBHs, not only for monochromatic PBH mass distributions but also for popular extended mass distributions. Our results show that extended mass distribution's constraints are tighter, but also that a considerable amount of constraining power comes from the high-ℓ polarization data. Moreover, we constrain the shape of such mass distributions in terms of the correspondent constraints on the PBH mass fraction.« less
Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.
Cosmological implications of quantum mechanics parametrization of dark energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof
2017-08-01
We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.
Tachyon cosmology with non-vanishing minimum potential: a unified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huiquan, E-mail: hqli@ustc.edu.cn
2012-07-01
We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behavesmore » quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.« less
Stop co-annihilation in the minimal supersymmetric standard model revisited
NASA Astrophysics Data System (ADS)
Pierce, Aaron; Shah, Nausheen R.; Vogl, Stefan
2018-01-01
We reexamine the stop co-annihilation scenario of the minimal supersymmetric standard model, wherein a binolike lightest supersymmetric particle has a thermal relic density set by co-annihilations with a scalar partner of the top quark in the early universe. We concentrate on the case where only the top partner sector is relevant for the cosmology, and other particles are heavy. We discuss the cosmology with focus on low energy parameters and an emphasis on the implications of the measured Higgs boson mass and its properties. We find that the irreducible direct detection signal correlated with this cosmology is generically well below projected experimental sensitivity, and in most cases lies below the neutrino background. A larger, detectable, direct detection rate is possible, but is unrelated to the co-annihilation cosmology. LHC searches for compressed spectra are crucial for probing this scenario.
Magnetic monopoles in field theory and cosmology.
Rajantie, Arttu
2012-12-28
The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.
Cosmological implications of scalar field dark energy models in f(T,𝒯 ) gravity
NASA Astrophysics Data System (ADS)
Salako, Ines G.; Jawad, Abdul; Moradpour, Hooman
After reviewing the f(T,𝒯 ) gravity, in which T is the torsion scalar and 𝒯 is the trace of the energy-momentum tensor, we refer to two cosmological models of this theory in agreement with observational data. Thereinafter, we consider a flat Friedmann-Robertson-Walker (FRW) universe filled by a pressureless source and look at the terms other than the Einstein terms in the corresponding Friedmann equations, as the dark energy (DE) candidate. In addition, some cosmological features of models, including equation of states and deceleration parameters, are addressed helping us in getting the accelerated expansion of the universe in quintessence era. Finally, we extract the scalar field as well as potential of quintessence, tachyon, K-essence and dilatonic fields for both f(T,𝒯 ) models. It is observed that the dynamics of scalar field as well as the scalar potential of these models indicate an accelerated expanding universe in these models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, D.
1987-03-15
In this work the metric is coupled with a scalar field phi in a simple way. Although this coupling becomes problematic because the energy density of phi appears to be unbounded from below, it is displayed as a very simple coupling leading to a nonsingular cosmological model with an early antigravity regime. A basic study of the inflationary period and various suggestions are presented.
How to model AGN feedback in cosmological simulations?
NASA Astrophysics Data System (ADS)
Sijacki, Debora
2015-08-01
Hydrodynamical cosmological simulations are one of the most powerful tools to study the formation and evolution of galaxies in the fully non-linear regime. Despite several recent successes in simulating Milky Way look-alikes, self-consistent, ab-initio models are still a long way off. In this talk I will review numerical and physical uncertainties plaguing current state-of-the-art cosmological simulations of galaxy formation. I will then discuss which feedback mechanisms are needed to reproduce realistic stellar masses and galaxy morphologies in the present day Universe and argue that the black hole feedback is necessary for the quenching of massive galaxies. I will then demonstrate how black hole - host galaxy scaling relations depend on galaxy morphology and colour, highlighting the implications for the co-evolutionary picture between galaxies and their central black holes. In the second part of the talk I will present a novel method that permits to resolve gas flows around black holes all the way from large cosmological scales to the Bondi radii of black holes themselves. I will demonstrate that with this new numerical technique it is possible to estimate much more accurately gas properties in the vicinity of black holes than has been feasible before in galaxy and cosmological simulations, allowing to track reliably gas angular momentum transport from Mpc to pc scales. Finally, I will also discuss if AGN-driven outflows are more likely to be energy- or momentum-driven and what implications this has for the redshift evolution of black hole - host galaxy scaling relations.
NASA Astrophysics Data System (ADS)
Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Dalla Vecchia, Claudio; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J.; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J.; Eisenstein, Daniel J.; Percival, Will J.; Vargas-Magaña, Mariana; Tinker, Jeremy L.; Tojeiro, Rita; Brownstein, Joel R.; Maraston, Claudia; Nichol, Robert C.; Olmstead, Matthew D.; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo
2017-05-01
We extract cosmological information from the anisotropic power-spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Λ cold dark matter (ΛCDM) cosmology, we constrain the matter density to Ω M= 0.311_{-0.010}^{+0.009} and the Hubble parameter to H_0 = 67.6_{-0.6}^{+0.7} km s^{-1 Mpc^{-1}}, at a confidence level of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019_{-0.039}^{+0.048}. This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Cosmological implications of a large complete quasar sample.
Segal, I E; Nicoll, J F
1998-04-28
Objective and reproducible determinations of the probabilistic significance levels of the deviations between theoretical cosmological prediction and direct model-independent observation are made for the Large Bright Quasar Sample [Foltz, C., Chaffee, F. H., Hewett, P. C., MacAlpine, G. M., Turnshek, D. A., et al. (1987) Astron. J. 94, 1423-1460]. The Expanding Universe model as represented by the Friedman-Lemaitre cosmology with parameters qo = 0, Lambda = 0 denoted as C1 and chronometric cosmology (no relevant adjustable parameters) denoted as C2 are the cosmologies considered. The mean and the dispersion of the apparent magnitudes and the slope of the apparent magnitude-redshift relation are the directly observed statistics predicted. The C1 predictions of these cosmology-independent quantities are deviant by as much as 11sigma from direct observation; none of the C2 predictions deviate by >2sigma. The C1 deviations may be reconciled with theory by the hypothesis of quasar "evolution," which, however, appears incapable of being substantiated through direct observation. The excellent quantitative agreement of the C1 deviations with those predicted by C2 without adjustable parameters for the results of analysis predicated on C1 indicates that the evolution hypothesis may well be a theoretical artifact.
Helium synthesis, neutrino flavors, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1979-01-01
The problem of the production of helium in big bang cosmology is re-examined in the light of several recent astrophysical observations. These data, and theoretical particle physics considerations, lead to some important inconsistencies in the standard big bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid.
NASA Astrophysics Data System (ADS)
Dainotti, Maria G.; Petrosian, Vahe'; Ostrowski, Michal
2015-01-01
Gamma-ray bursts (GRBs), which have been observed up to redshifts z ≈ 9.5 can be good probes of the early universe and have the potential of testing cosmological models. The analysis by Dainotti of GRB Swift afterglow lightcurves with known redshifts and definite X-ray plateau shows an anti-correlation between the
Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ureña-López, L. Arturo; Gonzalez-Morales, Alma X., E-mail: lurena@ugto.mx, E-mail: alma.gonzalez@fisica.ugto.mx
2016-07-01
As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eases their analytic and numerical analysis at the background and at the linear order of perturbations. The new method makes use of appropriate angular variables that simplify the writing of the equations of motion, and which also show that the usual field variables play a secondary role in the cosmological dynamics. We apply the method to a scalar fieldmore » endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is confirmed that there exists a Jeans wavenumber k {sub J} , directly related to the suppression of linear perturbations at wavenumbers k > k {sub J} , and which is verified to be k {sub J} = a √ mH . We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in the prediction of cosmological observables from scalar field dark matter models.« less
Artymowski, Michal; Lewicki, Marek; Wells, James D.
2017-03-13
Here, we consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wavemore » searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.« less
Cosmological implications of a large complete quasar sample
Segal, I. E.; Nicoll, J. F.
1998-01-01
Objective and reproducible determinations of the probabilistic significance levels of the deviations between theoretical cosmological prediction and direct model-independent observation are made for the Large Bright Quasar Sample [Foltz, C., Chaffee, F. H., Hewett, P. C., MacAlpine, G. M., Turnshek, D. A., et al. (1987) Astron. J. 94, 1423–1460]. The Expanding Universe model as represented by the Friedman–Lemaitre cosmology with parameters qo = 0, Λ = 0 denoted as C1 and chronometric cosmology (no relevant adjustable parameters) denoted as C2 are the cosmologies considered. The mean and the dispersion of the apparent magnitudes and the slope of the apparent magnitude–redshift relation are the directly observed statistics predicted. The C1 predictions of these cosmology-independent quantities are deviant by as much as 11σ from direct observation; none of the C2 predictions deviate by >2σ. The C1 deviations may be reconciled with theory by the hypothesis of quasar “evolution,” which, however, appears incapable of being substantiated through direct observation. The excellent quantitative agreement of the C1 deviations with those predicted by C2 without adjustable parameters for the results of analysis predicated on C1 indicates that the evolution hypothesis may well be a theoretical artifact. PMID:9560182
Einstein's Biggest Blunder: A Cosmic Mystery Story
Krauss, Lawrence
2018-01-11
The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
NASA Astrophysics Data System (ADS)
Sánchez, Ariel G.; Scoccimarro, Román; Crocce, Martín; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R.; Chuang, Chia-Hsun; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Zhao, Gong-Bo
2017-01-01
We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales s ≳ 20 h-1 Mpc. We combined the information from Baryon Oscillation Spectroscopic Survey (BOSS) with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the Λ cold dark matter (ΛCDM) cosmological model. In particular, these data sets can constrain the dark energy equation-of-state parameter to wDE = -0.996 ± 0.042 when to be assumed time independent, the curvature of the Universe to Ωk = -0.0007 ± 0.0030 and the sum of the neutrino masses to ∑mν < 0.25 eV at 95 per cent confidence levels. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.609 ± 0.079, in good agreement with the predictions of general relativity of γ = 0.55. We compress the information of our clustering measurements into constraints on the parameter combinations DV(z)/rd, FAP(z) and fσ8(z) at zeff = 0.38, 0.51 and 0.61 with their respective covariance matrices and find good agreement with the predictions for these parameters obtained from the best-fitting ΛCDM model to the CMB data from the Planck satellite. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others by Alam et al. to produce the final cosmological constraints from BOSS.
Aspects of string phenomenology in particle physics and cosmology
NASA Astrophysics Data System (ADS)
Antoniadis, I.
2017-12-01
I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.
The cosmic microwave background
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.
NASA Astrophysics Data System (ADS)
Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan
2017-09-01
Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.
Axion predictions in SO(10) × U(1)PQ models
NASA Astrophysics Data System (ADS)
Ernst, Anne; Ringwald, Andreas; Tamarit, Carlos
2018-02-01
Non-supersymmetric Grand Unified SO(10) × U(1)PQ models have all the ingredients to solve several fundamental problems of particle physics and cosmology — neutrino masses and mixing, baryogenesis, the non-observation of strong CP violation, dark matter, inflation — in one stroke. The axion — the pseudo Nambu-Goldstone boson arising from the spontaneous breaking of the U(1)PQ Peccei-Quinn symmetry — is the prime dark matter candidate in this setup. We determine the axion mass and the low energy couplings of the axion to the Standard Model particles, in terms of the relevant gauge symmetry breaking scales. We work out the constraints imposed on the latter by gauge coupling unification. We discuss the cosmological and phenomenological implications.
Disformal theories of gravity: from the solar system to cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use localmore » tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.« less
QCD nature of dark energy at finite temperature: Cosmological implications
NASA Astrophysics Data System (ADS)
Azizi, K.; Katırcı, N.
2016-05-01
The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.
TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhengxiang; Yu Hongwei; Wu Puxun, E-mail: hwyu@hunnu.edu.cn
2012-01-10
We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we alsomore » study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.« less
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies
NASA Astrophysics Data System (ADS)
Ijjas, Anna; Steinhardt, Paul J.
2016-02-01
The results from Planck2015, when combined with earlier observations from the Wilkinson Microwave Anisotropy Probe, Atacama Cosmology Telescope, South Pole Telescope and other experiments, were the first observations to disfavor the ‘classic’ inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new ‘unlikeliness problem’. Some propose turning instead to a ‘postmodern’ inflationary paradigm in which the cosmological properties in our observable Universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the Universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.
Cosmological implications of different baryon acoustic oscillation data
NASA Astrophysics Data System (ADS)
Wang, Shuang; Hu, YaZhou; Li, Miao
2017-04-01
In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.
NASA Astrophysics Data System (ADS)
Hao, Xin; Zhao, Liu
2017-12-01
We study a novel class of higher-curvature gravity models in n spacetime dimensions which we call Ricci polynomial gravity. The action consists purely of a polynomial in Ricci curvature of order N . In the absence of the second-order terms in the action, the models are ghost free around the Minkowski vacuum. By appropriately choosing the coupling coefficients in front of each term in the action, it is shown that the models can have multiple vacua with different effective cosmological constants, and can be made free of ghost and scalar degrees of freedom around at least one of the maximally symmetric vacua for any n >2 and any N ≥4 . We also discuss some of the physical implications of the existence of multiple vacua in the contexts of black hole physics and cosmology.
Palatini formulation of f( R, T) gravity theory, and its cosmological implications
NASA Astrophysics Data System (ADS)
Wu, Jimin; Li, Guangjie; Harko, Tiberiu; Liang, Shi-Dong
2018-05-01
We consider the Palatini formulation of f( R, T) gravity theory, in which a non-minimal coupling between the Ricci scalar and the trace of the energy-momentum tensor is introduced, by considering the metric and the affine connection as independent field variables. The field equations and the equations of motion for massive test particles are derived, and we show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy-momentum trace dependent metric, related to the physical metric by a conformal transformation. Similar to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We obtain the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra force, which is identical to the one obtained in the metric case. The thermodynamic interpretation of the theory is also briefly discussed. We investigate in detail the cosmological implications of the theory, and we obtain the generalized Friedmann equations of the f( R, T) gravity in the Palatini formulation. Cosmological models with Lagrangians of the type f=R-α ^2/R+g(T) and f=R+α ^2R^2+g(T) are investigated. These models lead to evolution equations whose solutions describe accelerating Universes at late times.
Gravitational particle production in braneworld cosmology.
Bambi, C; Urban, F R
2007-11-09
Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.
Cosmological implications of the transition from the false vacuum to the true vacuum state
NASA Astrophysics Data System (ADS)
Stachowski, Aleksander; Szydłowski, Marek; Urbanowski, Krzysztof
2017-06-01
We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ _ {de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α , distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0<α <0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the Λ CDM model.
Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; Tröster, Tilman; Harnois-Déraps, Joachim; McCarthy, Ian G.; van Waerbeke, Ludovic; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hinshaw, Gary; Ma, Yin-Zhe; Miller, Lance; Viola, Massimo; Tanimura, Hideki
2017-10-01
We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Cluster Sequence Lensing Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, ξy-κ and ξ ^ {y-γ t}, and a Fourier-space estimator, C_{ℓ}^{y-κ}, in our analysis. We detect a significant correlation out to 3° of angular separation on the sky. Based on statistical noise only, we can report 13σ and 17σ detections of the cross-correlation using the configuration-space y-κ and y-γt estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 7σ and 8σ, respectively. A similar level of detection is obtained from the Fourier-space estimator, C_{ℓ}^{y-κ}. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OverWhelmingly Large Simulations suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable active galactic nuclei (AGN) feedback that removes large quantities of hot gas from galaxy groups and Wilkinson Microwave Anisotropy Probe 7-yr best-fitting cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology overpredict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed 'universal' pressure profile.
Laws of nature and the universe: Philosophical implications of modern cosmology
NASA Astrophysics Data System (ADS)
Balashov, Yuri V.
1998-11-01
Are the laws of nature real? Do they belong to the world or merely reflect the way we speak about it? If they are real, what sort of entity are they? This study contributes to the ongoing discussion of these questions by emphasizing the importance of a cosmological perspective on them. I argue that the evidence coming from modern evolutionary cosmology presents difficulties for certain currently fashionable philosophical accounts of laws, in particular, for the Dretske-Tooley-Armstrong theory. I defend, in light of this evidence, the idea of laws as grounded in irreducible nomic properties of basic objects and examine its cosmological implications and consequences for the philosophy of modality. If the laws of nature are real, they must represent an integral aspect of the universe as a whole. From a cosmological point of view, these two totalities, the laws of nature and the universe, may be related. I begin by showing that a concern about the consequences of such possible relationship was an important factor in the historical rivalry between the steady-state and big bang cosmologies (1948-1965). The cosmological perspective on laws has still more striking implications in the context of the contemporary interplay between big-bang cosmology and high energy physics in the effort to understand the processes at work during the first moments of cosmic evolution. In a sense, the evolution of the physical state of the universe as a whole may have 'carried' with it the evolution of certain nomic properties of matter. I contend that this poses problems for some nomic ontologies, such as the relations-between-universals theory, and favors the view of laws as grounded in causal powers of particulars. I show how the universe of causally powerful basic substances provides a natural framework for an interesting sense of modality characteristic of laws and how this illuminates the notoriously difficult problems of essential properties and natural kinds.
Attractor scenarios and superluminal signals in k-essence cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jin U; Arnold Sommerfeld Center, Department of Physics, Ludwig-Maximilians University, Theresienstrasse 37, 80333 Munich; Vanchurin, Vitaly
Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the Universe. These scenarios avoid the need for fine-tuned initial conditions (the 'coincidence problem') because of the attractorlike dynamics of the k-essence field {phi}. It was recently shown that all k-essence scenarios with Lagrangians p=L(X){phi}{sup -2}, where X{identical_to}(1/2){phi}{sub ,{mu}}{phi}{sup ,{mu}}, necessarily involve an epoch where perturbations of {phi} propagate faster than light (the 'no-go theorem'). We carry out a comprehensive study of attractorlike cosmological solutions ('trackers') involving a k-essence scalar field {phi} and another matter component. The result of this study is a complete classificationmore » of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K({phi})L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. An analogous 'no-go theorem' still holds for this class of models, indicating the existence of a superluminal epoch. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories.« less
Aquinas and Contemporary Cosmology: Creation and Beginnings
NASA Astrophysics Data System (ADS)
Carroll, William E.
Discussions in the Middle Ages about creation and the temporal beginning of the world involved sophisticated analyses in theology, metaphysics, and natural philosophy. Mediaeval insights on this subject, especially Thomas Aquinas' defense of the intelligibility of an eternal, created universe, can help to clarify reflections about the philosophical and theological implications of contemporary cosmological theories: from the "singularity" of the Big Bang, to "quantum tunneling from nothing," to multiverse scenarios. Thomas' insights help us to see the value of Georges Lemaître's insistence that his cosmological reflections must be kept separate from an analysis of creation. This essay will look at different senses of "beginning" and examine the claim that creation, in its fundamental meaning, tells us nothing about whether there is a temporal beginning to the universe. Multiverse models, like that recently proposed by Stephen Hawking and Leonard Mlodinow, may challenge certain views of a Grand Designer, but not of a Creator.
Propulsion Physics Under the Changing Density Field Model
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model
NASA Astrophysics Data System (ADS)
Li, Zhengxiang; Gonzalez, J. E.; Yu, Hongwei; Zhu, Zong-Hong; Alcaniz, J. S.
2016-02-01
We apply two methods, i.e., the Gaussian processes and the nonparametric smoothing procedure, to reconstruct the Hubble parameter H (z ) as a function of redshift from 15 measurements of the expansion rate obtained from age estimates of passively evolving galaxies. These reconstructions enable us to derive the luminosity distance to a certain redshift z , calibrate the light-curve fitting parameters accounting for the (unknown) intrinsic magnitude of type Ia supernova (SNe Ia), and construct cosmological model-independent Hubble diagrams of SNe Ia. In order to test the compatibility between the reconstructed functions of H (z ), we perform a statistical analysis considering the latest SNe Ia sample, the so-called joint light-curve compilation. We find that, for the Gaussian processes, the reconstructed functions of Hubble parameter versus redshift, and thus the following analysis on SNe Ia calibrations and cosmological implications, are sensitive to prior mean functions. However, for the nonparametric smoothing method, the reconstructed functions are not dependent on initial guess models, and consistently require high values of H0, which are in excellent agreement with recent measurements of this quantity from Cepheids and other local distance indicators.
Magnetohydrodynamics and Plasma Cosmology
NASA Astrophysics Data System (ADS)
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
2007-09-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
A compendium of chameleon constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, Clare; Sakstein, Jeremy, E-mail: clare.burrage@nottingham.ac.uk, E-mail: jeremy.sakstein@port.ac.uk
2016-11-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical andmore » laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.« less
Anisotropic, nonsingular early universe model leading to a realistic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.
2009-02-15
We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent ofmore » the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.« less
Astrophysical and Cosmological Consequences of the Dynamical Localization of Gravity
NASA Astrophysics Data System (ADS)
Germani, Cristiano
2003-11-01
In this thesis I review cosmological and astrophysical exact models for Randall-Sundrum-type braneworlds and their physical implications. I present new insights and show their analogies with quantum theories via the holographic idea. In astrophysics I study the two fundamental models of a spherically symmetric static star and spherically symmetric collapsing objects. I show how matching for the pressure of a static star encodes braneworld effects. In addition I study the problem of the vacuum exterior conjecturing a uniqueness theorem. Furthermore I show that a collapsing dust cloud in the braneworld has a non-static exterior, in contrast to the General Relativistic case. This non-static behaviour is linked to the presence of a "surplus potential energy" that must be released, producing a non-zero flux of energy. Via holography this can be connected with the Hawking process, giving an indirect measure of the brane tension. In cosmology I investigate the generalization of the Randall-Sundrum-type model obtained by introducing the Gauss-Bonnet combination into the action. I elucidate the junction conditions necessary to study the brane model and obtain the cosmological dynamics, showing that, even in the thin shell limit for the brane, the Gauss-Bonnet term implies a non-trivial internal structure for the matter and geometry distributions. Independently of the gravitational theory used, I show how to derive the modified Friedman equation and how it is related to the black hole solution of the theory. Via holography I also show how to interpret quantum mechanically the mass of this black hole from a four-dimensional perspective in the simplest Randall-Sundrum-type scenario.
Cosmology and particle physics
NASA Astrophysics Data System (ADS)
Barrow, J. D.
A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters.
The covariant entropy conjecture and concordance cosmological models
NASA Astrophysics Data System (ADS)
He, Song; Zhang, Hongbao
2008-10-01
Recently a covariant entropy conjecture has been proposed for dynamical horizons. We apply this conjecture to concordance cosmological models, namely, those cosmological models filled with perfect fluids, in the presence of a positive cosmological constant. As a result, we find that this conjecture has a severe constraint power. Not only does this conjecture rule out those cosmological models disfavored by the anthropic principle, but also it imposes an upper bound 10-60 on the cosmological constant for our own universe, which thus provides an alternative macroscopic perspective for understanding the long-standing cosmological constant problem.
Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman
2015-01-01
The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.
Deuterium Abundance in Consciousness and Current Cosmology
NASA Astrophysics Data System (ADS)
Rauscher, Elizabeth A.
We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.
NASA Astrophysics Data System (ADS)
Watts, Duncan; CLASS Collaboration
2018-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) will use large-scale measurements of the polarized cosmic microwave background (CMB) to constrain the physics of inflation, reionization, and massive neutrinos. The experiment is designed to characterize the largest scales, which are inaccessible to most ground-based experiments, and remove Galactic foregrounds from the CMB maps. In this dissertation talk, I present simulations of CLASS data and demonstrate their ability to constrain the simplest single-field models of inflation and to reduce the uncertainty of the optical depth to reionization, τ, to near the cosmic variance limit, significantly improving on current constraints. These constraints will bring a qualitative shift in our understanding of standard ΛCDM cosmology. In particular, CLASS's measurement of τ breaks cosmological parameter degeneracies. Probes of large scale structure (LSS) test the effect of neutrino free-streaming at small scales, which depends on the mass of the neutrinos. CLASS's τ measurement, when combined with next-generation LSS and BAO measurements, will enable a 4σ detection of neutrino mass, compared with 2σ without CLASS data.. I will also briefly discuss the CLASS experiment's measurements of circular polarization of the CMB and the implications of the first-such near-all-sky map.
Determinism versus Creativity: Which Way for Social Work?
ERIC Educational Resources Information Center
Peile, Colin
1993-01-01
Contends that dominant cosmology within social work is determinism. Argues for creative cosmology that can synthesize deterministic and random processes. Sees this development made possible by reconceptualization of relative nature of time. Discussion is grounded in relation to small example of social work practice, and implications of creative…
Gravitational wave signature of a mini creation event (MCE)
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.; Narlikar, J. V.
2018-07-01
In light of the recent discoveries of binary black hole events and one neutron star event by the advanced LIGO (aLIGO) and advanced Virgo (aVirgo) detectors, we propose a new astrophysical source, namely, the mini creation event (MCE) as a possible source of gravitational waves (GW) to be detected by advanced detectors. The MCE is at the heart of the quasi steady state cosmology (QSSC) and is not expected to occur in standard cosmology. Generically, the MCE is anisotropic and we assume a Bianchi Tpye I model for its description. We compute its signature waveform and assume masses, distances analogous to the events detected. The striking feature of the waveform associated with this model of the MCE is that it depends only on one amplitude parameter and thus allows for simpler data analysis. By matched filtering the signal we find that, for a broad range of model parameters, the signal to noise ratio of the randomly oriented MCE is sufficiently high for a confident detection by aLIGO and aVirgo. We therefore propose the MCE as a viable astrophysical source of GW. The detection or non-detection of such a source also hold implications for QSSC, namely, whether it is a viable cosmology or not.
Loop quantum cosmology of Bianchi IX: effective dynamics
NASA Astrophysics Data System (ADS)
Corichi, Alejandro; Montoya, Edison
2017-03-01
We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N = V and N = 1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k = 0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r01222031@ntu.edu.tw, E-mail: yuezhenniu@gmail.com
We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitativemore » agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.« less
The Singular Universe and the Reality of Time
NASA Astrophysics Data System (ADS)
Mangabeira Unger, Roberto; Smolin, Lee
2015-01-01
Introduction; Part I. Roberto Mangabeira Unger: 1. The science of the one universe in time; 2. The context and consequences of the argument; 3. The singular existence of the universe; 4. The inclusive reality of time; 5. The mutability of the laws of nature; 6. The selective realism of mathematics; Part II. Lee Smolin: 1. Cosmology in crisis; 2. Principles for a cosmological theory; 3. The setting: the puzzles of contemporary cosmology; 4. Hypotheses for a new cosmology; 5. Mathematics; 6. Approaches to solving the metalaw dilemma; 7. Implications of temporal naturalism for philosophy of mind; 8. An agenda for science; 9. Concluding remarks; A note concerning disagreements between our views.
Neutrino masses, neutrino oscillations, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Kale, Ruta; Majumdar, Subhabrata; Nath, Biman B.; Pandge, Mahadev; Sharma, Prateek; Malik, Manzoor A.; Raychaudhury, Somak
2017-12-01
Active Galactic Nuclei (AGN) feedback is regarded as an important non-gravitational process in galaxy clusters, providing useful constraints on large-scale structure formation. It modifies the structure and energetics of the intra-cluster medium (ICM) and hence its understanding is crucially needed in order to use clusters as high precision cosmological probes. In this context, particularly keeping in mind the upcoming high quality radio data expected from radio surveys like Square Kilometre Array (SKA) with its higher sensitivity, high spatial and spectral resolutions, we review our current understanding of AGN feedback, its cosmological implications and the impact that SKA can have in revolutionizing our understanding of AGN feedback in large-scale structures. Recent developments regarding the AGN outbursts and its possible contribution to excess entropy in the hot atmospheres of groups and clusters, its correlation with the feedback energy in ICM, quenching of cooling flows and the possible connection between cool core clusters and radio mini-halos, are discussed. We describe current major issues regarding modeling of AGN feedback and its impact on the surrounding medium. With regard to the future of AGN feedback studies, we examine the possible breakthroughs that can be expected from SKA observations. In the context of cluster cosmology, for example, we point out the importance of SKA observations for cluster mass calibration by noting that most of z>1 clusters discovered by eROSITA X-ray mission can be expected to be followed up through a 1000 hour SKA1-mid programme. Moreover, approximately 1000 radio mini halos and ˜ 2500 radio halos at z<0.6 can be potentially detected by SKA1 and SKA2 and used as tracers of galaxy clusters and determination of cluster selection function.
Psychological Aspects of European Cosmology in American Society: African and European Cultures.
ERIC Educational Resources Information Center
Baldwin, Joseph A.
1985-01-01
Discusses the Eurocentric nature of the United States social reality, and investigates psychological and mental health implications for the African-American community. Outlines the basic themes, emphases and criteria of Euro-American cosmology and describes how it can come to dominate the Afro-American's self-consciousness. Suggests ways to…
Cosmological Implications of the Electron-Positron Aether
NASA Astrophysics Data System (ADS)
Rothwarf, Allen
1997-04-01
An aether is not prohibited on theoretical nor experimental grounds; only a credible physical model for it is lacking.By assuming that the particles and anti-particles created during the "big-bang" origin of the universe have not annihilated one another, but instead, form a bound state plasma, we have a model for a real aether.This aether is dominated by electron-positron pairs at very high density(10**30/cm3),in close analogy with electron-hole droplets formed in laser irradiated semiconductors. The Fermi velocity of this plasma is the speed of light, and the plasma expands at this speed. This gives results for the expanding universe in agreement with the Einstein-deSitter result for a universe dominated by radiation.The speed of light varies with time as do the other fundamental constants.This leads to an alternate explanation for cosmological redshifts. Independent,mini big bangs can occur and account for observed anomalous redshifts. The model can be tested using LIGO apparatus.
A Possible Solution to the Smallness Problem of Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; /SLAC; Gu, Je-An
2005-07-08
The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.
Dark-matter particles without weak-scale masses or weak interactions.
Feng, Jonathan L; Kumar, Jason
2008-12-05
We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders.
Compressing the Inert Doublet Model
Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; ...
2016-02-16
The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.
Particle physics meets cosmology - The search for decaying neutrinos
NASA Technical Reports Server (NTRS)
Henry, R. C.
1982-01-01
The fundamental physical implications of the possible detection of massive neutrinos are discussed, with an emphasis on the Grand Unified Theories (GUTs) of matter. The Newtonian and general-relativistic pictures of the fundamental forces are compared, and the reduction of electromagnetic and weak forces to one force in the GUTs is explained. The cosmological consequences of the curved-spacetime gravitation concept are considered. Quarks, leptons, and neutrinos are characterized in a general treatment of elementary quantum mechanics. The universe is described in terms of quantized fields, the noninteractive 'particle' fields and the force fields, and cosmology becomes the study of the interaction of gravitation with the other fields, of the 'freezing out' of successive fields with the expansion and cooling of the universe. While the visible universe is the result of the clustering of the quark and electron fields, the distribution of the large number of quanta in neutrino field, like the mass of the neutrino, are unknown. Cosmological models which attribute anomalies in the observed motions of galaxies and stars to clusters or shells of massive neutrinos are shown to be consistent with a small but nonzero neutrino mass and a universe near the open/closed transition point, but direct detection of the presence of massive neutrinos by the UV emission of their decay is required to verify these hypotheses.
Addressing Beyond Standard Model physics using cosmology
NASA Astrophysics Data System (ADS)
Ghalsasi, Akshay
We have consensus models for both particle physics (i.e. standard model) and cosmology (i.e. LambdaCDM). Given certain assumptions about the initial conditions of the universe, the marriage of the standard model (SM) of particle physics and LambdaCDM cosmology has been phenomenally successful in describing the universe we live in. However it is quite clear that all is not well. The three biggest problems that the SM faces today are baryogenesis, dark matter and dark energy. These problems, along with the problem of neutrino masses, indicate the existence of physics beyond SM. Evidence of baryogenesis, dark matter and dark energy all comes from astrophysical and cosmological observations. Cosmology also provides the best (model dependent) constraints on neutrino masses. In this thesis I will try address the following problems 1) Addressing the origin of dark energy (DE) using non-standard neutrino cosmology and exploring the effects of the non-standard neutrino cosmology on terrestrial and cosmological experiments. 2) Addressing the matter anti-matter asymmetry of the universe.
Yup'ik Cosmology to School Mathematics: The Power of Symmetry and Proportional Measuring
ERIC Educational Resources Information Center
Lipka, Jerry; Andrew-Ihrke, Dora; Yanez, Eva Evelyn
2011-01-01
This article shows how Yup'ik cosmology, epistemology, and everyday practice have implications for the teaching of school mathematics. Math in a Cultural Context (MCC) has a long-term collaborative relationship with Yup'ik elders and experienced Yup'ik teachers. Because of this long-term ethnographically-oriented relationship, the authors--both…
NASA Astrophysics Data System (ADS)
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Why Density Dependent Propulsion?
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.
Quantum Gravity and Cosmology: an intimate interplay
NASA Astrophysics Data System (ADS)
Sakellariadou, Mairi
2017-08-01
I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.
Relaxation of the composite Higgs little hierarchy
NASA Astrophysics Data System (ADS)
Batell, Brian; Fedderke, Michael A.; Wang, Lian-Tao
2017-12-01
We describe a composite Higgs scenario in which a cosmological relaxation mechanism naturally gives rise to a hierarchy between the weak scale and the scale of spontaneous global symmetry breaking. This is achieved through the scanning of sources of explicit global symmetry breaking by a relaxion field during an exponentially long period of inflation in the early universe. We explore this mechanism in detail in a specific composite Higgs scenario with QCD-like dynamics, based on an ultraviolet SU( N )TC `technicolor' confining gauge theory with three Dirac technifermion flavors. We find that we can successfully generate a hierarchy of scales ξ≡〈 h〉2/ F π 2 ≳ 1.2 × 10- 4 (i.e., compositeness scales F π ˜ 20 TeV) without tuning. This evades all current electroweak precision bounds on our (custodial violating) model. While directly observing the heavy composite states in this model will be challenging, a future electroweak precision measurement program can probe most of the natural parameter space for the model. We also highlight signatures of more general composite Higgs models in the cosmological relaxation framework, including some implications for flavor and dark matter.
Cosmological implications of light element abundances: theory.
Schramm, D N
1993-01-01
Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics. Images Fig. 2 PMID:11607387
Cosmological implications of light element abundances: theory.
Schramm, D N
1993-06-01
Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics.
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, Luis
2016-11-01
A year ago, we wrote [1] that the field of Cosmology was undergoing a positive and constructive crisis. The possible development of more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental and observational results was particularly emphasized. Controversies on inflation are not really new, but in any case inflation is not required in pre-Big Bang models and the validity of the standard Big Bang + inflation + ΛCDM pattern has not by now been demonstrated by data. Planck has even explicitly reported the existence of "anomalies". Remembering the far-reaching work of Yoichiro Nambu published in 1959-61, it seems legitimate to underline the need for a cross-disciplinary approach in the presence of deep, unsolved theoretical problems concerning new domains of matter properties and of the physical world. The physics of a possible preonic vacuum and the associated cosmology constitute one of these domains. If the vacuum is made of superluminal preons (superbradyons), and if standard particles are vacuum excitations, how to build a suitable theory to describe the internal structure of such a vacuum at both local and cosmic level? Experimental programs (South Pole, Atacama, AUGER, Telescope Array…) and observational ones (Planck, JEM-EUSO…) devoted to the study of cosmic microwave background radiation (CMB) and of ultra-high energy cosmic rays (UHECR) are crucial to elucidate such theoretical interrogations and guide new phenomenological developments. Together with a brief review of the observational and experimental situation, we also examine the main present theoretical and phenomenological problems and point out the role new physics and alternative cosmologies can potentially play. The need for data analyses less focused a priori on the standard models of Particle Physics and Cosmology is emphasized in this discussion. An example of a new approach to both fields is provided by the pre-Big Bang pattern based on a physical vacuum made of superbradyons with the spinorial space-time (SST) geometry we introduced in 1996-97. In particular, the SST automatically generates a local privileged space direction (PSD) for earch comoving observer and such a signature may have been confirmed by Planck data. Both superluminal preons and the existence of the PSD would have strong cosmological implications. Planck 2016 results will be particularly relevant as a step in the study of present open questions. This paper is dedicated to the memory of Yoichiro Nambu
FIRST-ORDER COSMOLOGICAL PERTURBATIONS ENGENDERED BY POINT-LIKE MASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eingorn, Maxim, E-mail: maxim.eingorn@gmail.com
2016-07-10
In the framework of the concordance cosmological model, the first-order scalar and vector perturbations of the homogeneous background are derived in the weak gravitational field limit without any supplementary approximations. The sources of these perturbations (inhomogeneities) are presented in the discrete form of a system of separate point-like gravitating masses. The expressions found for the metric corrections are valid at all (sub-horizon and super-horizon) scales and converge at all points except at the locations of the sources. The average values of these metric corrections are zero (thus, first-order backreaction effects are absent). Both the Minkowski background limit and the Newtonianmore » cosmological approximation are reached under certain well-defined conditions. An important feature of the velocity-independent part of the scalar perturbation is revealed: up to an additive constant, this part represents a sum of Yukawa potentials produced by inhomogeneities with the same finite time-dependent Yukawa interaction range. The suggested connection between this range and the homogeneity scale is briefly discussed along with other possible physical implications.« less
Georges Lemaître and Fred Hoyle: Contrasting Characters in Science and Religion
NASA Astrophysics Data System (ADS)
Holder, Rodney D.
Georges Lemaître was a jocular Roman Catholic priest and Fred Hoyle a bluff Yorkshireman who despised organized religion. Both were giants of twentieth century cosmology but espoused diametrically opposed cosmological models. This paper explores the extent to which ideology, and particularly religion, played a part in the controversies over the big bang and steady-state theories. A particular problem for many cosmologists, including Hoyle, was posed by the idea that the universe had a temporal beginning: an eternal, unchanging universe seemed metaphysically preferable. And Hoyle was highly polemical about religion in his popular writings. In contrast, Lemaître saw no theological import from the big bang, and never entered a debate about its theological implications until, perhaps unexpectedly, he took issue with an address given by the Pope. Hoyle's seminal work on stellar nucleosynthesis led him to speak of a `superintellect monkeying with physics' though this was never identified with the God of classical theism. The work of both Lemaître and Hoyle resonates with more recent debates concerning cosmology.
Constraint on energy-momentum squared gravity from neutron stars and its cosmological implications
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Barrow, John D.; ćıkıntoǧlu, Sercan; Ekşi, K. Yavuz; Katırcı, Nihan
2018-06-01
Deviations from the predictions of general relativity due to energy-momentum squared gravity (EMSG) are expected to become pronounced in the high density cores of neutron stars. We derive the hydrostatic equilibrium equations in EMSG and solve them numerically to obtain the neutron star mass-radius relations for four different realistic equations of state. We use the existing observational measurements of the masses and radii of neutron stars to constrain the free parameter, α , that characterizes the coupling between matter and spacetime in EMSG. We show that -10-38 cm3/erg <α <+10-37 cm3/erg . Under this constraint, we discuss what contributions EMSG can provide to the physics of neutron stars, in particular, their relevance to the so called hyperon puzzle in neutron stars. We also discuss how EMSG alters the dynamics of the early universe from the predictions of the standard cosmological model. We show that EMSG leaves the standard cosmology safely unaltered back to t ˜10-4 seconds at which the energy density of the universe is ˜1034 erg cm-3 .
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
Asymptotic dynamics of the exceptional Bianchi cosmologies
NASA Astrophysics Data System (ADS)
Hewitt, C. G.; Horwood, J. T.; Wainwright, J.
2003-05-01
In this paper we give, for the first time, a qualitative description of the asymptotic dynamics of a class of non-tilted spatially homogeneous (SH) cosmologies, the so-called exceptional Bianchi cosmologies, which are of Bianchi type VI$_{-1/9}$. This class is of interest for two reasons. Firstly, it is generic within the class of non-tilted SH cosmologies, being of the same generality as the models of Bianchi types VIII and IX. Secondly, it is the SH limit of a generic class of spatially inhomogeneous $G_{2}$ cosmologies. Using the orthonormal frame formalism and Hubble-normalized variables, we show that the exceptional Bianchi cosmologies differ from the non-exceptional Bianchi cosmologies of type VI$_{h}$ in two significant ways. Firstly, the models exhibit an oscillatory approach to the initial singularity and hence are not asymptotically self-similar. Secondly, at late times, although the models are asymptotically self-similar, the future attractor for the vacuum-dominated models is the so-called Robinson-Trautman SH model instead of the vacuum SH plane wave models.
Cosmological Models and Stability
NASA Astrophysics Data System (ADS)
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered With Pan-Starrs 1 and Galex
2010-07-01
The 7 deg2 camera and 1.8 m aperture could allow IIP SNe to be used as cosmological probes at z ∼ 0.2 and the brightest events to be found out to z...ultraviolet (NUV). We discuss the implication of this rare SN for understanding the explosions and the use of Type IIP events for probing cosmology and...SFR at high redshifts. We adopt the cosmological parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3, ΩΛ = 0.7. 2. DISCOVERY AND OBSERVATIONAL DATA SN 2009kf
Cosmological implications of quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Kanno, Sugumi
2015-12-01
We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.
COBE DMR results and implications. [Differential Microwave Radiometer
NASA Technical Reports Server (NTRS)
Smoot, George F.
1992-01-01
This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.
NASA Technical Reports Server (NTRS)
Efstathiou, G.; Silk, J.
1983-01-01
Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.
Darkness without dark matter and energy - generalized unimodular gravity
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.; Kamenshchik, A. Yu.
2017-11-01
We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, Martin
2014-11-20
The chemical composition of stars contain vital clues not only about the stars themselves but also about the conditions prevailing before their births. As such, stellar spectroscopy plays a key role in contemporary astrophysics and cosmology by probing cosmic, galactic, stellar and planetary evolution. In this review I will describe the theoretical foundations of quantitative stellar spectroscopy: stellar atmosphere models and spectral line formation. I will focus mainly on more recent advances in the field, in particular the advent of realistic time-dependent, 3D, (magneto-)hydrodynamical simulations of stellar surface convection and atmospheres and non-LTE radiative transfer relevant for stars like themore » Sun. I will also discuss some particular applications of this type of modelling which have resulted in some exciting break-throughs in our understanding and with wider implications: the solar chemical composition, the chemical signatures of planet formation imprinted in stellar abundances, the cosmological Li problem(s) and where the first stars may be residing today.« less
Dark matter self-interactions and small scale structure
NASA Astrophysics Data System (ADS)
Tulin, Sean; Yu, Hai-Bo
2018-02-01
We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.
NASA Astrophysics Data System (ADS)
Sugiyama, Naoshi; Gouda, Naoteru; Sasaki, Misao
1990-12-01
Thorough numerical calculations of the fluctuations in the cosmic microwave background radiation using the gage-invariant formalism are carried out for various cosmological models with the cosmological constant. It is shown that a spatially flat cold dark matter-dominated universe of Omega(0) = 0.1 to about 0.4 and H(0) = 50 to about 100 km/s per Mpc with adiabatic perturbations has the possibility of giving the final answer to cosmological puzzles. It is also found that the introduction of the cosmological constant may revive pure baryonic universe models.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
NASA Astrophysics Data System (ADS)
Wojtak, Radosław; Prada, Francisco
2017-10-01
The standard relation between the cosmological redshift and cosmic scalefactor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the Λ cold-dark-matter (ΛCDM) cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryon acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model predicts a significant difference between the actual Hubble constant, h = 0.48 ± 0.02, and its local determination, hobs = 0.73 ± 0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ωm = 0.87 ± 0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck ΛCDM cosmology. The model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the PlanckΛCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
Wojtak, Radosław; Prada, Francisco
2017-06-21
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less
The Undiscovered World Cosmology from WMAP
NASA Technical Reports Server (NTRS)
Bennett, Charles
2004-01-01
The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
The Undiscovered World: Cosmology from WMAP
NASA Technical Reports Server (NTRS)
Bennett, Charles
2004-01-01
The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
Cosmology in Mirror Twin Higgs and neutrino masses
NASA Astrophysics Data System (ADS)
Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; Harnik, Roni
2017-07-01
We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.
Cosmological evolution as squeezing: a toy model for group field cosmology
NASA Astrophysics Data System (ADS)
Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang
2018-05-01
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.
Non-standard models and the sociology of cosmology
NASA Astrophysics Data System (ADS)
López-Corredoira, Martín
2014-05-01
I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.
Cosmology with decaying cosmological constant—exact solutions and model testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szydłowski, Marek; Stachowski, Aleksander, E-mail: marek.szydlowski@uj.edu.pl, E-mail: aleksander.stachowski@uj.edu.pl
We study dynamics of Λ(t) cosmological models which are a natural generalization of the standard cosmological model (the ΛCDM model). We consider a class of models: the ones with a prescribed form of Λ(t)=Λ{sub bare}+α{sup 2}/t{sup 2}. This type of a Λ(t) parametrization is motivated by different cosmological approaches. We interpret the model with running Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term −dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in themore » form of Bessel functions. Our model shows that fractional density of dark energy Ω{sub e} is constant and close to zero during the early evolution of the universe. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-Paczyński test. In this context we formulate a simple criterion of variability of Λ with respect to t in terms of variability of the jerk or sign of estimator (1−Ω{sub m},0−Ω{sub Λ,0}). The case study of our model enable us to find an upper limit α{sup 2} < 0.012 (2σ C.L.) describing the variation from the cosmological constant while the LCDM model seems to be consistent with various data.« less
Koonin, Eugene V
2007-01-01
Background Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Hypothesis Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial) solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe (multiverse). Conclusion The plausibility of different models for the origin of life on earth directly depends on the adopted cosmological scenario. In an infinite universe (multiverse), emergence of highly complex systems by chance is inevitable. Therefore, under this cosmology, an entity as complex as a coupled translation-replication system should be considered a viable breakthrough stage for the onset of biological evolution. Reviewers This article was reviewed by Eric Bapteste, David Krakauer, Sergei Maslov, and Itai Yanai. PMID:17540027
Koonin, Eugene V
2007-05-31
Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial) solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe (multiverse). The plausibility of different models for the origin of life on earth directly depends on the adopted cosmological scenario. In an infinite universe (multiverse), emergence of highly complex systems by chance is inevitable. Therefore, under this cosmology, an entity as complex as a coupled translation-replication system should be considered a viable breakthrough stage for the onset of biological evolution. This article was reviewed by Eric Bapteste, David Krakauer, Sergei Maslov, and Itai Yanai.
Deformation of the quintom cosmological model and its consequences
NASA Astrophysics Data System (ADS)
Sadeghi, J.; Pourhassan, B.; Nekouee, Z.; Shokri, M.
In this paper, we investigate the effects of noncommutative phase-space on the quintom cosmological model. In that case, we discuss about some cosmological parameters and show that they depend on the deformation parameters. We find that the noncommutative parameter plays important role which helps to re-arrange the divergency of cosmological constant. We draw time-dependent scale factor and investigate the effect of noncommutative parameters. Finally, we take advantage from noncommutative phase-space and obtain the deformed Lagrangian for the quintom model. In order to discuss some cosmological phenomena as dark energy and inflation, we employ Noether symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bag, Satadru; Sahni, Varun; Shtanov, Yuri
We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result inmore » a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.« less
Simple inflationary models in Gauss-Bonnet brane-world cosmology
NASA Astrophysics Data System (ADS)
Okada, Nobuchika; Okada, Satomi
2016-06-01
In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.
Magnetic Bianchi type II string cosmological model in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai
2014-07-01
The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.
Atypical k-essence cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Lazkoz, Ruth
We analyze the implications of having a divergent speed of sound in k-essence cosmological models. We first study a known theory of that kind, for which the Lagrangian density depends linearly on the time derivative of the k-field. We show that when k-essence is the only source consistency requires that the potential of the k-field be of the inverse square form. Then, we review the known result that the corresponding power-law solutions can be mapped to power-law solutions of theories with no divergence in the speed of sound. After that, we argue that the requirement of a divergent sound speedmore » at some point fixes uniquely the form of the Lagrangian to be exactly the one considered earlier and prove the asymptotic stability of the most interesting solutions belonging to the divergent theory. Then, we discuss the implications of having not just k-essence but also matter. This is interesting because introducing another component breaks the rigidity of the theory, and the form of the potential ceases to be unique as happened in the pure k-essence case. Finally, we show the finiteness of the effective sound speed under an appropiate definition.« less
Cosmological reconstruction and Om diagnostic analysis of Einstein-Aether theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqua, Antonio; Chattopadhyay, Surajit; Momeni, Davood
In this paper, we analyze the cosmological models in Einstein-Aether gravity, which is a modified theory of gravity in which a time-like vector field breaks the Lorentz symmetry. We use this formalism to analyse different cosmological models with different behavior of the scale factor. In this analysis, we use a certain functional dependence of the Dark Energy (DE) on the Hubble parameter H . It will be demonstrated that the Aether vector field has a non-trivial effect on these cosmological models. We also perform the Om diagnostic in Einstein-Aether gravity and we fit the parameters of the cosmological models usingmore » recent observational data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio
We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.
Stability of infinite derivative Abelian Higgs models
NASA Astrophysics Data System (ADS)
Ghoshal, Anish; Mazumdar, Anupam; Okada, Nobuchika; Villalba, Desmond
2018-04-01
Motivated by the stringy effects by modifying the local kinetic term of an Abelian Higgs field by the Gaussian kinetic term, we show that the Higgs field does not possess any instability; the Yukawa coupling between the scalar and the fermion, the gauge coupling, and the self interaction of the Higgs yields exponentially suppressed running at high energies, showing that such class of theory never suffers from vacuum instability. We briefly discuss its implications for the early Universe cosmology.
Asymptotically Vanishing Cosmological Constant in the Multiverse
NASA Astrophysics Data System (ADS)
Kawai, Hikaru; Okada, Takashi
We study the problem of the cosmological constant in the context of the multiverse in Lorentzian space-time, and show that the cosmological constant will vanish in the future. This sort of argument was started by Sidney Coleman in 1989, and he argued that the Euclidean wormholes make the multiverse partition function a superposition of various values of the cosmological constant Λ, which has a sharp peak at Λ = 0. However, the implication of the Euclidean analysis to our Lorentzian space-time is unclear. With this motivation, we analyze the quantum state of the multiverse in Lorentzian space-time by the WKB method, and calculate the density matrix of our universe by tracing out the other universes. Our result predicts vanishing cosmological constant. While Coleman obtained the enhancement at Λ = 0 through the action itself, in our Lorentzian analysis the similar enhancement arises from the front factor of eiS in the universe wave function, which is in the next leading order in the WKB approximation.
Vacuum dynamics in the Universe versus a rigid Λ=const.
NASA Astrophysics Data System (ADS)
Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier
2017-07-01
In this year, in which we celebrate 100 years of the cosmological term, Λ, in Einstein’s gravitational field equations, we are still facing the crucial question whether Λ is truly a fundamental constant or a mildly evolving dynamical variable. After many theoretical attempts to understand the meaning of Λ, and in view of the enhanced accuracy of the cosmological observations, it seems now mandatory that this issue should be first settled empirically before further theoretical speculations on its ultimate nature. In this review, we summarize the situation of some of these studies. Devoted analyses made recently show that the Λ = const. hypothesis, despite being the simplest, may well not be the most favored one. The overall fit to the cosmological observables SNIa+BAO+H(z)+LSS+BBN+CMB single out the class of “running” vacuum models (RVMs), in which Λ = Λ(H) is an affine power-law function of the Hubble rate. It turns out that the performance of the RVM as compared to the “concordance” ΛCDM model (with Λ = const.) is much better. The evidence in support of the RVM may reach ˜ 4σ c.l., and is bolstered with Akaike and Bayesian criteria providing strong evidence in favor of the RVM option. We also address the implications of this framework on the tension between the CMB and local measurements of the current Hubble parameter.
Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation
NASA Astrophysics Data System (ADS)
Chisari, N. E.; Koukoufilippas, N.; Jindal, A.; Peirani, S.; Beckmann, R. S.; Codis, S.; Devriendt, J.; Miller, L.; Dubois, Y.; Laigle, C.; Slyz, A.; Pichon, C.
2017-11-01
Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter haloes and to the large-scale structure. In this paper, we characterize galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range of 0 < z < 3 to those of their embedding dark matter haloes, and to the matching haloes of a twin dark-matter only run with identical initial conditions. We find that galaxy ellipticities, in general, cannot be predicted directly from halo ellipticities. The mean misalignment angle between the minor axis of a galaxy and its embedding halo is a function of halo mass, with residuals arising from the dependence of alignment on galaxy type, but not on environment. Haloes are much more strongly aligned among themselves than galaxies, and they decrease their alignment towards low redshift. Galaxy alignments compete with this effect, as galaxies tend to increase their alignment with haloes towards low redshift. We discuss the implications of these results for current halo models of intrinsic alignments and suggest several avenues for improvement.
Cosmological parameter estimation using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Prasad, J.; Souradeep, T.
2014-03-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.
Measures, Probability and Holography in Cosmology
NASA Astrophysics Data System (ADS)
Phillips, Daniel
This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We comment on the general implications of this view, and specifically question the application of classical probability theory to cosmology in cases where key questions are known to have no quantum answer. We argue that the ideas developed here may offer a way out of the notorious measure problems of eternal inflation. The fourth project looks at finite universes as alternatives to multiverse theories of cosmology. We compare two holographic arguments that impose especially strong bounds on the amount of inflation. One comes from the de Sitter Equilibrium cosmology and the other from the work of Banks and Fischler. We find that simple versions of these two approaches yield the same bound on the number of e-foldings. A careful examination reveals that while these pictures are similar in spirit, they are not necessarily identical prescriptions. We apply the two pictures to specific cosmologies which expose potentially important differences and which also demonstrate ways these seemingly simple proposals can be tricky to implement in practice.
NASA Astrophysics Data System (ADS)
Demianski, Marek; Piedipalumbo, Ester; Sawant, Disha; Amati, Lorenzo
2017-02-01
Context. Explaining the accelerated expansion of the Universe is one of the fundamental challenges in physics today. Cosmography provides information about the evolution of the universe derived from measured distances, assuming only that the space time geometry is described by the Friedman-Lemaitre-Robertson-Walker metric, and adopting an approach that effectively uses only Taylor expansions of basic observables. Aims: We perform a high-redshift analysis to constrain the cosmographic expansion up to the fifth order. It is based on the Union2 type Ia supernovae data set, the gamma-ray burst Hubble diagram, a data set of 28 independent measurements of the Hubble parameter, baryon acoustic oscillations measurements from galaxy clustering and the Lyman-α forest in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and some Gaussian priors on h and ΩM. Methods: We performed a statistical analysis and explored the probability distributions of the cosmographic parameters. By building up their regions of confidence, we maximized our likelihood function using the Markov chain Monte Carlo method. Results: Our high-redshift analysis confirms that the expansion of the Universe currently accelerates; the estimation of the jerk parameter indicates a possible deviation from the standard ΛCDM cosmological model. Moreover, we investigate implications of our results for the reconstruction of the dark energy equation of state (EOS) by comparing the standard technique of cosmography with an alternative approach based on generalized Padé approximations of the same observables. Because these expansions converge better, is possible to improve the constraints on the cosmographic parameters and also on the dark matter EOS. Conclusions: The estimation of the jerk and the DE parameters indicates at 1σ a possible deviation from the ΛCDM cosmological model.
Cosmological moduli and the post-inflationary universe: A critical review
NASA Astrophysics Data System (ADS)
Kane, Gordon; Sinha, Kuver; Watson, Scott
2015-06-01
We critically review the role of cosmological moduli in determining the post-inflationary history of the universe. Moduli are ubiquitous in string and M-theory constructions of beyond the Standard Model physics, where they parametrize the geometry of the compactification manifold. For those with masses determined by supersymmetry (SUSY) breaking this leads to their eventual decay slightly before Big Bang nucleosynthesis (BBN) (without spoiling its predictions). This results in a matter dominated phase shortly after inflation ends, which can influence baryon and dark matter genesis, as well as observations of the cosmic microwave background (CMB) and the growth of large-scale structure. Given progress within fundamental theory, and guidance from dark matter and collider experiments, nonthermal histories have emerged as a robust and theoretically well-motivated alternative to a strictly thermal one. We review this approach to the early universe and discuss both the theoretical challenges and the observational implications.
Cosmological constant in scale-invariant theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.
2011-10-01
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
Searching for Physics Beyond the Standard Model and Beyond
NASA Astrophysics Data System (ADS)
Abdullah, Mohammad
The hierarchy problem, convolved with the various known puzzles in particle physics, grants us a great outlook of new physics soon to be discovered. We present multiple approaches to searching for physics beyond the standard model. First, two models with a minimal amount of theoretical guidance are analyzed using existing or simulated LHC data. Then, an extension of the Minimal Supersymmetric Standard Model (MSSM) is studied with an emphasis on the cosmological implications as well as the current and future sensitivity of colliders, direct detection and indirect detection experiments. Finally, a more complete model of the MSSM is presented through which we attempt to resolve tension with observations within the context of gauge mediated supersymmetry breaking.
Composite dark energy: Cosmon models with running cosmological term and gravitational coupling
NASA Astrophysics Data System (ADS)
Grande, Javier; Solà, Joan; Štefančić, Hrvoje
2007-02-01
In the recent literature on dark energy (DE) model building we have learnt that cosmologies with variable cosmological parameters can mimic more traditional DE pictures exclusively based on scalar fields (e.g. quintessence and phantom). In a previous work we have illustrated this situation within the context of a renormalization group running cosmological term, Λ. Here we analyze the possibility that both the cosmological term and the gravitational coupling, G, are running parameters within a more general framework (a variant of the so-called “ΛXCDM models”) in which the DE fluid can be a mixture of a running Λ and another dynamical entity X (the “cosmon”) which may behave quintessence-like or phantom-like. We compute the effective EOS parameter, ω, of this composite fluid and show that the ΛXCDM can mimic to a large extent the standard ΛCDM model while retaining features hinting at its potential composite nature (such as the smooth crossing of the cosmological constant boundary ω=-1). We further argue that the ΛXCDM models can cure the cosmological coincidence problem. All in all we suggest that future experimental studies on precision cosmology should take seriously the possibility that the DE fluid can be a composite medium whose dynamical features are partially caused and renormalized by the quantum running of the cosmological parameters.
Inner space/outer space - The interface between cosmology and particle physics
NASA Astrophysics Data System (ADS)
Kolb, Edward W.; Turner, Michael S.; Lindley, David; Olive, Keith; Seckel, David
A collection of papers covering the synthesis between particle physics and cosmology is presented. The general topics addressed include: standard models of particle physics and cosmology; microwave background radiation; origin and evolution of large-scale structure; inflation; massive magnetic monopoles; supersymmetry, supergravity, and quantum gravity; cosmological constraints on particle physics; Kaluza-Klein cosmology; and future directions and connections in particle physics and cosmology.
Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk
2010-02-01
We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.
Applications of Cosmological Perturbation Theory
NASA Astrophysics Data System (ADS)
Christopherson, Adam J.
2011-06-01
Cosmological perturbation theory is crucial for our understanding of the universe. The linear theory has been well understood for some time, however developing and applying the theory beyond linear order is currently at the forefront of research in theoretical cosmology. This thesis studies the applications of perturbation theory to cosmology and, specifically, to the early universe. Starting with some background material introducing the well-tested 'standard model' of cosmology, we move on to develop the formalism for perturbation theory up to second order giving evolution equations for all types of scalar, vector and tensor perturbations, both in gauge dependent and gauge invariant form. We then move on to the main result of the thesis, showing that, at second order in perturbation theory, vorticity is sourced by a coupling term quadratic in energy density and entropy perturbations. This source term implies a qualitative difference to linear order. Thus, while at linear order vorticity decays with the expansion of the universe, the same is not true at higher orders. This will have important implications on future measurements of the polarisation of the Cosmic Microwave Background, and could give rise to the generation of a primordial seed magnetic field. Having derived this qualitative result, we then estimate the scale dependence and magnitude of the vorticity power spectrum, finding, for simple power law inputs a small, blue spectrum. The final part of this thesis concerns higher order perturbation theory, deriving, for the first time, the metric tensor, gauge transformation rules and governing equations for fully general third order perturbations. We close with a discussion of natural extensions to this work and other possible ideas for off-shooting projects in this continually growing field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtak, Radosław; Prada, Francisco
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less
Effect of different cosmologies on the galaxy stellar mass function
NASA Astrophysics Data System (ADS)
Lopes, Amanda R.; Gruppioni, C.; Ribeiro, M. B.; Pozzetti, L.; February, S.; Ilbert, O.; Pozzi, F.
2017-11-01
The goal of this paper is to understand how the underlying cosmological models may affect the analysis of the stellar masses in galaxies. We computed the galaxy stellar mass function (GSMF) assuming the observationally constrained Lemaître-Tolman-Bondi (LTB) `giant-void' models and compared them with the results from the standard cosmological model. Based on a sample of 220 000 KS-band selected galaxies from the UltraVISTA data, we computed the GSMF up to z ≈ 4 assuming different cosmologies, since, from a cosmological perspective, the two quantities that affect the stellar mass estimation are the luminosity distance and time. The results show that the stellar mass decreased on average by ˜1.1-27.1 per cent depending on the redshift value. For the GSMF, we fitted a double-Schechter function to the data and verified that a change is only seen in two parameters, M^{*} and φ ^{*}1, but always with less than a 3σ significance. We also carried out an additional analysis for the blue and red populations in order to verify a possible change on the galaxy evolution scenario. The results showed that the GSMF derived with the red population sample is more affected by the change of cosmology than the blue one. We also found out that the LTB models overestimated the number density of galaxies with M < 10^{11} M_{⊙}, and underestimate it for M> 10^{11} M_{⊙}, as compared to the standard model over the whole studied redshift range. This feature is noted in the complete, red plus blue, sample. Once we compared the general behaviour of the GSMF derived from the alternative cosmological models with the one based on the standard cosmology we found out that the variation was not large enough to change the shape of the function. Hence, the GSMF was found to be robust under this change of cosmology. This means that all physical interpretations of the GSMF based in the standard cosmological model are valid on the LTB cosmology.
The Mystery of Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2004-01-01
Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.
Cosmological bounds on neutrino statistics
NASA Astrophysics Data System (ADS)
de Salas, P. F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N.
2018-03-01
We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2σ.
NASA Astrophysics Data System (ADS)
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent observations showed that a significant population of baryons was contained in both a) a population of not easily detected galaxies (i.e. they had been missed for decades) and b) in intergalactic space. In 1999, the balloon borne Boomerang experiment gave good evidence that space was flat (total energy density = 1). Around this same time, various lines of evidence suggested that the ``cosmological constant'' (Lambda) maybe non-zero meaning we now live in a three component universe of baryons, dark matter and dark energy. The WMAP mission a few years later then produced our current cosmological truth that 5% of the Universe is baryons, 20% is Dark Matter, and 75% is Dark energy. What happened to Dark Matter dominance? Where did it go? Is this a fine tuned Universe? Our current cosmological truth, as defined by the WMAP results, rests on two important assumptions: a) that we fully understand gravity as a long range force and that alternative models, such as Modified Newtonian Dynamics (MOND) can therefore be dismissed and b) observationally we are fully confident that we understand supernova explosion physics to the point that they can be used as reliable cosmological indicators. This talk will attempt to summarize this evolution of cosmological truths, cast doubt on the certainty of the previously stated assumptions, and to culturally suggest that we should not continue with arrogance of Aristotle is assuring ourselves that we do in fact, know the ``truth''.
On the no-boundary proposal for ekpyrotic and cyclic cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battarra, Lorenzo; Lehners, Jean-Luc, E-mail: lorenzo.battarra@aei.mpg.de, E-mail: jlehners@aei.mpg.de
2014-12-01
The no-boundary proposal provides a compelling theory for the initial conditions of our universe. We study the implications of such initial conditions for ekpyrotic and cyclic cosmologies. These cosmologies allow for the existence of a new type of ''ekpyrotic instanton'', which describes the creation of a universe in the ekpyrotic contraction phase. Remarkably, we find that the ekpyrotic attractor can explain how the universe became classical. In a cyclic context, in addition to the ekpyrotic instantons there exist de Sitter-like instantons describing the emergence of the universe in the dark energy phase. Our results show that typically the ekpyrotic instantonsmore » yield a higher probability. In fact, in a potential energy landscape allowing both inflationary and cyclic cosmologies, the no-boundary proposal implies that the probability for ekpyrotic and cyclic initial conditions is vastly higher than that for inflationary ones.« less
Trispectrum from co-dimension 2(n) Galileons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasiello, Matteo, E-mail: mrf65@case.edu
2013-12-01
A generalized theory of multi-field Galileons has been recently put forward. This model stems from the ongoing effort to embed generic Galileon theories within brane constructions. Such an approach has proved very useful in connecting interesting and essential features of these theories with geometric properties of the branes embedding. We investigate the cosmological implications of a very restrictive multi-field Galileon theory whose leading interaction is solely quartic in the scalar field π and lends itself nicely to an interesting cosmology. The bispectrum is characterized by a naturally small amplitude (f{sub NL}∼<1) and an equilateral shape-function. The trispectrum of curvature fluctuationsmore » has features which are quite distinctive with respect to their P(X,φ) counterpart. We also show that, despite an absent cubic Lagrangian in the full theory, non-Gaussianities in this model cannot produce the combination of a small bispectrum alongside with a large trispectrum. We further expand on this point to draw a lesson on what having a symmetry in the full background independent theory entails at the level of fluctuations and vice-versa.« less
The vacuole model: new terms in the second order deflection of light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Amrita; Nandi, Kamal K.; Garipova, Guzel M.
2011-02-01
The present paper is an extension of a recent work (Bhattacharya et al. 2010) to the Einstein-Strauss vacuole model with a cosmological constant, where we work out the light deflection by considering perturbations up to order M{sup 3} and confirm the light bending obtained previously in their vacuole model by Ishak et al. (2008). We also obtain another local coupling term −5πM{sup 2}Λ/8 related to Λ, in addition to the one obtained by Sereno (2008, 2009). We argue that the vacuole method for light deflection is exclusively suited to cases where the cosmological constant Λ disappears from the path equation.more » However, the original Rindler-Ishak method (2007) still applies even if a certain parameter γ of Weyl gravity does not disappear. Here, using an alternative prescription, we obtain the known term −γR/2, as well as another new local term 3πγM/2 between M and γ. Physical implications are compared, where we argue that the repulsive term −γR/2 can be masked by the Schwarzschild term 2M/R in the halo regime supporting attractive property of the dark matter.« less
Einstein's 1917 static model of the universe: a centennial review
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2017-08-01
We present a historical review of Einstein's 1917 paper ` Cosmological Considerations in the General Theory of Relativity' to mark the centenary of a key work that set the foundations of modern cosmology. We find that the paper followed as a natural next step after Einstein's development of the general theory of relativity and that the work offers many insights into his thoughts on relativity, astronomy and cosmology. Our review includes a description of the observational and theoretical background to the paper; a paragraph-by-paragraph guided tour of the work; a discussion of Einstein's views of issues such as the relativity of inertia, the curvature of space and the cosmological constant. Particular attention is paid to little-known aspects of the paper such as Einstein's failure to test his model against observation, his failure to consider the stability of the model and a mathematical oversight concerning his interpretation of the role of the cosmological constant. We recall the response of theorists and astronomers to Einstein's cosmology in the context of the alternate models of the universe proposed by Willem de Sitter, Alexander Friedman and Georges Lemaître. Finally, we consider the relevance of the Einstein World in today's `emergent' cosmologies.
Testing averaged cosmology with type Ia supernovae and BAO data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, B.; Alcaniz, J.S.; Coley, A.A.
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO datamore » is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.« less
Searching for sterile neutrinos in dynamical dark energy cosmologies
NASA Astrophysics Data System (ADS)
Feng, Lu; Zhang, Jing-Fei; Zhang, Xin
2018-05-01
We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff < 0.2675 eV and Ne f f < 3.5718 for ACDM cosmology, m v,terile ff < 0.5313 eV and Ne f f < 3.5008 for wCDM cosmology, and raffterile < 0.1989 eV and Ne f f < 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m v,terile ff and Ne f f can be derived, indicating that no evidence of the existence of a sterile neutrino species with eV-scale mass is found in this analysis. Moreover, compared to the ACDM model, in the wCDM model the limit on m v,terile ff becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.
Physical and Relativistic Numerical Cosmology.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Stability of the Einstein static universe in open cosmological models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canonico, Rosangela; Parisi, Luca; INFN, Sezione di Napoli, GC di Salerno, Via Ponte Don Melillo, I-84081 Baronissi
2010-09-15
The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravitymore » under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.« less
Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.
2013-12-01
We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.
Cosmological evolution of the Higgs boson's vacuum expectation value
NASA Astrophysics Data System (ADS)
Calmet, Xavier
2017-11-01
We point out that the expansion of the universe leads to a cosmological time evolution of the vacuum expectation of the Higgs boson. Within the standard model of particle physics, the cosmological time evolution of the vacuum expectation of the Higgs leads to a cosmological time evolution of the masses of the fermions and of the electroweak gauge bosons, while the scale of Quantum Chromodynamics (QCD) remains constant. Precise measurements of the cosmological time evolution of μ =m_e/m_p, where m_e and m_p are, respectively, the electron and proton mass (which is essentially determined by the QCD scale), therefore provide a test of the standard models of particle physics and of cosmology. This ratio can be measured using modern atomic clocks.
On under-determination in cosmology
NASA Astrophysics Data System (ADS)
Butterfield, Jeremy
2014-05-01
I discuss how modern cosmology illustrates under-determination of theoretical hypotheses by data, in ways that are different from most philosophical discussions. I emphasise cosmology's concern with what data could in principle be collected by a single observer (Section 2); and I give a broadly sceptical discussion of cosmology's appeal to the cosmological principle as a way of breaking the under-determination (Section 3). I confine most of the discussion to the history of the observable universe from about one second after the Big Bang, as described by the mainstream cosmological model: in effect, what cosmologists in the early 1970s dubbed the 'standard model', as elaborated since then. But in the closing Section 4, I broach some questions about times earlier than one second.
Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.
Anisotropic k-essence cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Forte, Monica
We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies.more » The linear case is compatible with an asymptotic potential interpolating between V{sub l}{proportional_to}{phi}{sup -{gamma}{sub l}}, in the shear dominated regime, and V{sub l}{proportional_to}{phi}{sup -2} at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential.« less
A no hair theorem and the problem of initial conditions. [in cosmological model
NASA Technical Reports Server (NTRS)
Jensen, Lars Gerhard; Stein-Schabes, Jaime A.
1987-01-01
It is shown that under very general conditions, any inhomogeneous cosmological model with a positive cosmological constant that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This renders the problem of initial conditions less severe.
The Hubble IR cutoff in holographic ellipsoidal cosmologies
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Cruz, Norman
2018-01-01
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω =p/ρ , whose range belongs to quintessence or even phantom matter.
NASA Astrophysics Data System (ADS)
Kroupa, P.
2014-05-01
The existence of dark matter particles is a key hypothesis in present-day cosmology and galactic dynamics. The validity of this hypothesis is challenged significantly by two independent arguments. 1) The dual dwarf galaxy theorem must be true in any realistic cosmological model. But it is found to be falsified when the dark-matter-based model is applied to the observational data. A consistency check of this conclusion comes from the observed significantly disk-like distributions of satellite populations which orbit in the same direction around their hosting galaxy and which cannot be derived from dark-matter models. 2) The action of dynamical friction due to expansive and massive dark matter halos must be evident in the galaxy population. The evidence however for dynamical friction is void or meagre at best. The M81 group fo galaxies already appears to rule out the existence of dynamical friction through dark matter halos, and the Milky Way satellite galaxies have been shown to challenge dark-matter-induced dynamical friction. The implication of this deduction for fundamental physics would be that exotic dark matter particles do not exist and that consequently gravitational physics on the scales of galaxies and beyond ought to be non-Newtonian/Einsteinian. An analysis of the kinematical data in galaxies shows them to be described excellently by scale-invariant dynamics, as discovered by Milgrom. This leads to a natural emergence of laws that galaxies are observed to obey. Such success has not been forthcoming in the dark-matter-based models. A consequence of this novel understanding of galactic astrophysics is that most dwarf satellite galaxies are formed as tidal dwarf galaxies in galaxy-galaxy encounters and that galactic mergers are rare.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, Suhail; Goobar, Ariel; Mörtsell, Edvard
Recent re-calibration of the Type Ia supernova (SNe Ia) magnitude-redshift relation combined with cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) data have provided excellent constraints on the standard cosmological model. Here, we examine particular classes of alternative cosmologies, motivated by various physical mechanisms, e.g. scalar fields, modified gravity and phase transitions to test their consistency with observations of SNe Ia and the ratio of the angular diameter distances from the CMB and BAO. Using a model selection criterion for a relative comparison of the models (the Bayes Factor), we find moderate to strong evidence that the data prefermore » flat ΛCDM over models invoking a thawing behaviour of the quintessence scalar field. However, some exotic models like the growing neutrino mass cosmology and vacuum metamorphosis still present acceptable evidence values. The bimetric gravity model with only the linear interaction term as well as a simplified Galileon model can be ruled out by the combination of SNe Ia and CMB/BAO datasets whereas the model with linear and quadratic interaction terms has a comparable evidence value to standard ΛCDM. Thawing models are found to have significantly poorer evidence compared to flat ΛCDM cosmology under the assumption that the CMB compressed likelihood provides an adequate description for these non-standard cosmologies. We also present estimates for constraints from future data and find that geometric probes from oncoming surveys can put severe limits on non-standard cosmological models.« less
Planck 2013 results. XV. CMB power spectra and likelihood
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for this power deficit, we do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent data set.
(2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model
NASA Astrophysics Data System (ADS)
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2018-06-01
We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.
Asymptotics with a positive cosmological constant II
NASA Astrophysics Data System (ADS)
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
Computational Cosmology: From the Early Universe to the Large Scale Structure.
Anninos, Peter
2001-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Computational Cosmology: from the Early Universe to the Large Scale Structure.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2003-08-01
We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.
Cosmological perturbations in the DGP braneworld: Numeric solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.
2008-04-15
We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.
The Evolution of Pristine Gas: Implications for Milky Way Halo Stars
NASA Astrophysics Data System (ADS)
Sarmento, Richard J.; Scannapieco, Evan; Pan, Liubin
2016-06-01
We implement a new subgrid model for turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). This allows us to account for the fraction of Z < Zcrit stars formed throughout the simulation volume, even in regions in which the average metallicity is well above Zcrit. Further, as a result of modeling the pristine fraction of gas, we also improve our modeling of the metallicity of the polluted fraction, fpol, of both the gas and stars.Additionally, we track the evolution of the “primordial metals” generated by Pop III supernovae. These metals are taken up by second-generation stars and are likely to lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller at al (2014) to explain the source of metals in the star SMSS J031300.36- 670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H] and [Mg/Ca] ratios in CEMP Milky Way (MW) halo stars.
Model independent inference of the expansion history and implications for the growth of structure
NASA Astrophysics Data System (ADS)
Joudaki, Shahab; Kaplinghat, Manoj; Keeley, Ryan; Kirkby, David
2018-06-01
We model the expansion history of the Universe as a Gaussian process and find constraints on the dark energy density and its low-redshift evolution using distances inferred from the Luminous Red Galaxy and Lyman-alpha data sets of the Baryon Oscillation Spectroscopic Survey, supernova data from the Joint Light-Curve Analysis sample, cosmic microwave background data from the Planck satellite, and local measurement of the Hubble parameter from the Hubble Space Telescope (H 0 ). Our analysis shows that the cosmic microwave background, Luminous Red Galaxy, Lyman-alpha, and Joint Light-Curve Analysis data are consistent with each other and with a Λ CDM cosmology, but the H 0 data are inconsistent at moderate significance. Including the presence of dark radiation does not alleviate the H 0 tension in our analysis. While some of these results have been noted previously, the strength here lies in that we do not assume a particular cosmological model. We calculate the growth of the gravitational potential in General Relativity corresponding to these general expansion histories and show that they are well approximated by Ωm0.55 given the current precision. We assess the prospects for upcoming surveys to measure deviations from Λ CDM using this model-independent approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.
2016-12-01
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
Mass generation, the cosmological constant problem, conformal symmetry, and the Higgs boson
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-05-01
In 2013 the Nobel Prize in Physics was awarded to Francois Englert and Peter Higgs for their work in 1964 along with the late Robert Brout on the mass generation mechanism (the Higgs mechanism) in local gauge theories. This mechanism requires the existence of a massive scalar particle, the Higgs boson, and in 2012 the Higgs boson was finally discovered at the Large Hadron Collider after being sought for almost half a century. In this article we review the work that led to the discovery of the Higgs boson and discuss its implications. We approach the topic from the perspective of a dynamically generated Higgs boson that is a fermion-antifermion bound state rather than an elementary field that appears in an input Lagrangian. In particular, we emphasize the connection with the Bardeen-Cooper-Schrieffer theory of superconductivity. We identify the double-well Higgs potential not as a fundamental potential but as a mean-field effective Lagrangian with a dynamical Higgs boson being generated through a residual interaction that accompanies the mean-field Lagrangian. We discuss what we believe to be the key challenge raised by the discovery of the Higgs boson, namely determining whether it is elementary or composite, and through study of a conformal invariant field theory model as realized with critical scaling and anomalous dimensions, suggest that the width of the Higgs boson might serve as a suitable diagnostic for discriminating between an elementary Higgs boson and a composite one. We discuss the implications of Higgs boson mass generation for the cosmological constant problem, as the cosmological constant receives contributions from the very mechanism that generates the Higgs boson mass in the first place. We show that the contribution to the cosmological constant due to a composite Higgs boson is more tractable and under control than the contribution due to an elementary Higgs boson, and is potentially completely under control if there is an underlying conformal symmetry not just in a critical scaling matter sector (which there would have to be if all mass scales are to be dynamical), but equally in the gravity sector to which the matter sector couples.
Tilted Bianchi type-I wet dark fluid model in Saez and Ballester theory
NASA Astrophysics Data System (ADS)
Sahu, S. K.; Tole, T. T.; Balcha, M.
2018-06-01
Tilted Bianchi-I wet dark fluid cosmological model is investigated in Saez and Ballester scalar theory of gravitation. Background cosmologies are obtained for a constant deceleration parameter. We consider a linear relationship between the shear scalar and the expansion scalar. We have discussed some physical and geometrical properties of the models. In our models, equation of state of the dark energy is observed to behave like a cosmological constant at late times.
NASA Astrophysics Data System (ADS)
Khurshudyan, M.; Mazhari, N. S.; Momeni, D.; Myrzakulov, R.; Raza, M.
2015-02-01
The subject of this paper is to investigate the weak regime covariant scalar-tensor-vector gravity (STVG) theory, known as the MOdified gravity (MOG) theory of gravity. First, we show that the MOG in the absence of scalar fields is converted into Λ( t), G( t) models. Time evolution of the cosmological parameters for a family of viable models have been investigated. Numerical results with the cosmological data have been adjusted. We've introduced a model for dark energy (DE) density and cosmological constant which involves first order derivatives of Hubble parameter. To extend this model, correction terms including the gravitational constant are added. In our scenario, the cosmological constant is a function of time. To complete the model, interaction terms between dark energy and dark matter (DM) manually entered in phenomenological form. Instead of using the dust model for DM, we have proposed DM equivalent to a barotropic fluid. Time evolution of DM is a function of other cosmological parameters. Using sophisticated algorithms, the behavior of various quantities including the densities, Hubble parameter, etc. have been investigated graphically. The statefinder parameters have been used for the classification of DE models. Consistency of the numerical results with experimental data of S n e I a + B A O + C M B are studied by numerical analysis with high accuracy.
Standard Model Background of the Cosmological Collider.
Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi
2017-06-30
The inflationary universe can be viewed as a "cosmological collider" with an energy of the Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics standard model. In this Letter we describe the standard model background of the cosmological collider.
Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozari, Kourosh; Azizi, Tahereh; Setare, M.R., E-mail: knozari@umz.ac.ir, E-mail: t.azizi@umz.ac.ir, E-mail: rezakord@ipm.ir
2009-10-01
We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.
LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity
NASA Astrophysics Data System (ADS)
Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.
A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.
NASA Astrophysics Data System (ADS)
Adler, Stephen L.
In earlier work we showed that a frame dependent effective action motivated by the postulates of three-space general coordinate invariance and Weyl scaling invariance exactly mimics a cosmological constant in Robertson-Walker (RW) spacetimes. Here we study the implications of this effective action for small fluctuations around a spatially flat RW background geometry. The equations for the conserving extension of the modified stress-energy tensor can be integrated in closed form, and involve only the metric perturbation h00. Hence the equations for tensor and vector perturbations are unmodified, but there are Hubble scale additions to the scalar perturbation equations, which nonetheless admit no propagating wave solutions. Consequently, there are no modifications to standard gravitational wave propagation theory, but there may be observable implications for cosmology. We give a self-contained discussion, including an analysis of the restricted class of gauge transformations that act when a frame dependent effective action is present.
The effect of the pressure on the deceleration parameter in inhomogeneous cosmological models
NASA Astrophysics Data System (ADS)
Vrba, David
2012-07-01
The cosmological parameters have been recently widely studied within inhomogeneous cosmological models. The investigation is usually done in the Lemaitre-Tolman-Bondi (LTB) metric, the spherically symmetric dust solution of Einstein equations. However only little attention has been paid to models with nonzero pressure. Recently it has been pointed out, that pressure gradients can have significant impact on the angular diameter distance redshift relation and it seems to be important to investigate how it effects other cosmological parameters. Here we investigate the influence of the pressure on the backreaction and consequently on the deceleration parameter using the inhomogeneous Lemaitre metric.
A critique of supernova data analysis in cosmology
NASA Astrophysics Data System (ADS)
Gopal Vishwakarma, Ram; Narlikar, Jayant V.
2010-12-01
Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high-quality supernovae data-sets are being produced, their statistical analysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
Sherwin, Blake D; Dunkley, Joanna; Das, Sudeep; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Menanteau, Felipe; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.
NASA Technical Reports Server (NTRS)
Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.;
2011-01-01
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.
Origin of probabilities and their application to the multiverse
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Phillips, Daniel
2014-12-01
We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We comment on the general implications of this view, and specifically question the application of purely classical probabilities to cosmology in cases where key questions are known to have no quantum answer. We argue that the ideas developed here may offer a way out of the notorious measure problems of eternal inflation.
The cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, Joseph
1992-01-01
A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.
Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant
NASA Astrophysics Data System (ADS)
Meyer, Sven; Bartelmann, Matthias
2017-12-01
We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.
Confronting Alternative Cosmological Models with the Highest-Redshift Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Shafer, Daniel; Scolnic, Daniel; Riess, Adam
2018-01-01
High-redshift Type Ia supernovae (SNe Ia) from the HST CANDELS and CLASH programs significantly extend the Hubble diagram with 7 SNe at z > 1.5 suitable for cosmology, including one at z = 2.3. This unique leverage helps us distinguish "alternative" cosmological models from the standard Lambda-CDM model. Analyzing the Pantheon SN compilation, which includes these high-z SNe, we employ model comparison statistics to quantify the extent to which several proposed alternative expansion histories (e.g., empty universe, power law expansion, timescape cosmology) are disfavored even with SN Ia data alone. Using mock data, we demonstrate that some likelihood analyses used in the literature to support these models are sensitive to unrealistic assumptions and are therefore unsuitable for analysis of realistic SN Ia data.
Luminosity function and cosmological evolution of X-ray selected quasars
NASA Technical Reports Server (NTRS)
Maccacaro, T.; Gioia, I. M.
1983-01-01
The preliminary analysis of a complete sample of 55 X-ray sources is presented as part of the Medium Sensitivity Survey of the Einstein Observatory. A pure luminosity evolutionary law is derived in order to determine the uniform distribution of the sources and the rates of evolution for Active Galactic Nuclei (AGNs) observed by X-ray and optical techniques are compared. A nonparametric representation of the luminosity function is fitted to the observational data. On the basis of the reduced data, it is determined that: (1) AGNs evolve cosmologically; (2) less evolution is required to explain the X-ray data than the optical data; (3) the high-luminosity portion of the X-ray luminosity can be described by a power-law with a slope of gamma = 3.6; and (4) the X-ray luminosity function flattens at low luminosities. Some of the implications of the results for conventional theoretical models of the evolution of quasars and Seyfert galaxies are discussed.
Cosmology with the Square Kilometre Array by SKA-Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA wouldmore » have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. Furthermore, the cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.« less
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; ...
2016-10-17
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA wouldmore » have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. Furthermore, the cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.« less
The Cosmological Dependence of Galaxy Cluster Morphologies
NASA Astrophysics Data System (ADS)
Crone, Mary Margaret
1995-01-01
Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should be available within the next few years. At that time the predictions described here can be used to set useful cosmological constraints.
NASA Astrophysics Data System (ADS)
Beckwith, A. W.
2008-01-01
Sean Carroll's pre-inflation state of low temperature-low entropy provides a bridge between two models with different predictions. The Wheeler-de Witt equation provides thermal input into today's universe for graviton production. Also, brane world models by Sundrum allow low entropy conditions, as given by Carroll & Chen (2005). Moreover, this paper answers the question of how to go from a brane world model to the 10 to the 32 power Kelvin conditions stated by Weinberg in 1972 as necessary for the initiation of quantum gravity processes. This is a way of getting around the fact CMBR is cut off at a red shift of z = 1100. This paper discusses the difference in values of the upper bound of the cosmological constant between a large upper bound predicated for a temperature dependent vacuum energy predicted by Park (2002), and the much lower bound predicted by Barvinsky (2006). with the difference in values in vacuum energy contributing to relic graviton production. This paper claims that this large thermal influx, with a high initial cosmological constant and a large region of space for relic gravitons interacting with space-time up to the z = 1100 CMBR observational limit are interlinked processes delineated in the Lloyd (2002) analogy of the universe as a quantum computing system. Finally, the paper claims that linking a shrinking prior universe via a worm hole solution for a pseudo time dependent Wheeler-De Witt equation permits graviton generation as thermal input from the prior universe, transferred instantaneously to relic inflationary conditions today. The existence of a wormhole is presented as a necessary condition for relic gravitons. Proving the sufficiency of the existence of a worm hole for relic gravitons is a future project.
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Vacaru, Sergiu I.
2018-05-01
We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
NASA Astrophysics Data System (ADS)
Wainwright, John
2007-04-01
The present volume is an introduction to general relativity and cosmology, at a level suitable for beginning graduate students or advanced undergraduates. The book consists of two main parts, the first entitled `Elements of differential geometry', and the second `The theory of gravitation'. Chapters 2-7, part I, introduce the basic ideas of differential geometry in a general setting, and are based on previously unpublished notes by one of the authors. On the one hand, the treatment is modern in that it uses a `top-down' approach, i.e. starting with general differentiable manifolds, and deferring the introduction of a metric tensor until after the notions of affine connection and curvature have been introduced. On the other hand, the treatment is classical in that it relies heavily, though not exclusively, on index notation. The general material, chapters 1-7, is then followed by four more specialized chapters dealing with matters of specific interest for general relativity. Topics include symmetry groups acting on Riemannian manifolds, with spherically symmetric spacetimes and spatially homogeneous spacetimes as examples, the efficient calculation of curvature, and the Petrov classification of the Weyl curvature tensor using spinors. Part II deals with general relativity and cosmology. The basic assumptions of the theory and its application to spherically symmetric gravitational fields are discussed in two chapters, and there is some historical material and motivation for the basic assumptions at the beginning of the book. The final chapter contains a detailed discussion of the Kerr solution. But the main emphasis in part II is on relativistic cosmology, in particular the analysis of cosmological models more general than the familiar Friedmann-Lemaitre (FL) models. The material on cosmology begins with a discussion of relativistic hydrodynamics and thermodynamics. The kinematical quantities (rate of expansion, shear, etc, of a timelike congruence) are introduced and their evolution equations are derived. There follows a description of the fluid model of the Universe and optical observations in such a model, within the framework of a general spacetime geometry. The discussion is subsequently specialized to the Robertson-Walker geometry and the FL models. The rest of part II, two lengthy chapters, deals with two classes of solutions of Einstein's field equations that represent spatially inhomogeneous cosmological models, and that contain the FL models as a special case. The first is the family of Lemaitre-Tolman solutions, whose discovery dates back to the 1930s. They are spherically symmetric solutions of Einstein's field equations with pressure-free matter and a cosmological constant as the matter-energy content. The second class is the family of Szekeres solutions, which can be thought of as generalizations of the Lemaitre-Tolman solutions without any symmetries. Parts of these two chapters are based on Krasinski's book on inhomogeneous cosmologies [4], with the difference that the present work does not attempt to be comprehensive, but instead provides clear derivations of the most important results. A potential reader may ask how this book differs from other texts on general relativity. It is unique in a number of respects. First is the authors' emphasis on spatially inhomogeneous cosmological models, i.e. models that do not satisfy the cosmological principle. The authors appear to have reservations about the almost universal preference in the cosmological community for working within the framework of the FL models, combined with the inflationary scenario in the very early universe (see in particular, pages 235-6, and sections 17.8-17.10), and these reservations motivate the above emphasis. They remind the reader that the FL models are based on the cosmological principle, which has a philosophical rather than a physical status, since it cannot be directly tested by observation. In other words, observations alone do not uniquely select the FL models (see also [3], section 5.5, in this regard). Moreover the interpretation of cosmological observations depends on the choice of the underlying spacetime geometry. For example, there is ambiguity in inferring the spatial distribution of matter from redshift measurements. The authors discuss in some detail the work of Kurki-Suonio and Liang [5] to illustrate this point. They also refer to Celerier [1] who shows that the high redshift type Ia supernovae observations are compatible with a Lemaitre-Tolman model with zero cosmological constant, i.e. these observations do not imply that the universe is accelerating if one considers models more general than the FL models, in contrast to the usual interpretation. The authors also give a critique of the cosmological inflation scenario, arguing that the problems that it aims to solve (the so-called horizon problem and the flatness problem) are a consequence of the very special geometry of the FL models. In particular, the flatness problem loses its urgency when one broadens the class of cosmological models, since the condition for flatness depends on spatial position. They also discuss in detail an analysis due to Celerier and Schneider [2] showing how the horizon problem can be resolved using a delayed big-bang singularity in a Lemaitre-Tolman cosmology (section 18.17). We comment on two notable omissions as regards cosmology. First, the authors only refer in passing to the notion of the density parameter, which plays an important role in the analysis of the FL models, and which can also be introduced in more general models. Second, there is no discussion of perturbations of the FL models, although two related concepts, the density contrast and the curvature contrast, are analysed in the Lemaitre-Tolman models (section 18.19). A second unusual feature is that there is a considerable emphasis on exact solutions, their derivation and physical interpretation. Derivations that are given in detail are for the spatially homogeneous solution of Bianchi type I with pressure-free matter, the Lemaitre-Tolman solutions, the Szekeres solutions and the Kerr solution (the original derivation using the Kerr-Schild metric, and Carter's derivation using separability of the Klein-Gordon equation). Readers may wish to compare the above-mentioned derivation of the Bianchi type I solutions, which uses metric components and coordinates, with the derivation given in [3] (see section 5.3), using the orthonormal frame formalism. In summary, this book is an interesting and informative introduction to general relativity and cosmology. The unconventional choice of topics and emphasis may, however, lead some readers to conclude that it may be more suitable as a reference work than as the text for a course. References [1] Celerier M N 2000 Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353 63 [2] Celerier M N and Schneider J 1998 A solution to the horizon problem: a delayed big bang singularity Phys. Lett. A 249 37 [3] Ellis G F R and van Elst H 1999 Cosmological models Theoretical and Observational Cosmology ed M Lachieze-Rey (Dordrecht: Kluwer) [4] Krasinski A 1997 Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press) [5] Kurki-Suonio H and Liang E 1992 Relation of redshift surveys to matter distribution in spherically symmetric dust Universes Astrophys. J. 390 5
Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity
NASA Astrophysics Data System (ADS)
Sharma, N. K.; Singh, J. K.
2014-09-01
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.
On the contributions of astroparticle physics to cosmology
NASA Astrophysics Data System (ADS)
Falkenburg, Brigitte
2014-05-01
Studying astroparticle physics sheds new light on scientific explanation and on the ways in which cosmology is empirically underdetermined or not. Astroparticle physics extends the empirical domain of cosmology from purely astronomical data to "multi-messenger astrophysics", i.e., measurements of all kinds of cosmic rays including very high energetic gamma rays, neutrinos, and charged particles. My paper investigates the ways in which these measurements contribute to cosmology and compares them with philosophical views about scientific explanation, the relation between theory and data, and scientific realism. The "standard models" of cosmology and particle physics lack of unified foundations. Both are "piecemeal physics" in Cartwright's sense, but contrary to her metaphysics of a "dappled world" the work in both fields of research aims at unification. Cosmology proceeds "top-down", from models to data and from large scale to small-scale structures of the universe. Astroparticle physics proceeds "bottom-up", from data taking to models and from subatomic particles to large-scale structures of the universe. In order to reconstruct the causal stories of cosmic rays and the nature of their sources, several pragmatic unifying strategies are employed. Standard views about scientific explanation and scientific realism do not cope with these "bottom-up" strategies and the way in which they contribute to cosmology. In addition it has to be noted that the shift to "multi-messenger astrophysics" transforms the relation between cosmological theory and astrophysical data in a mutually holistic way.
Observational constraints on cosmological future singularities
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo
2016-11-01
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.
NASA Astrophysics Data System (ADS)
Jung, Tobias
In 1922, Franz Selety, university-bred philosopher and self-educated physicist and cosmologist, developed a molecular hierarchical, spatially infinite, Newtonian cosmological model. His considerations were based on his earlier philosophical work published in 1914 as well as on the early correspondence with Einstein in 1917. Historically, the roots of hierarchical models can be seen in 18th century investigations by Thomas Wright of Durham, Immanuel Kant and Johann Heinrich Lambert. Those investigations were taken up by Edmund Fournier d'Albe and Carl Charlier at the beginning of the 20th century. Selety's cosmological model was criticized by Einstein mainly due to its spatial infiniteness which in Einstein's opinion seemed to contradict Mach's principle. This criticism sheds light on Einstein's conviction that with his first cosmological model, namely the static, spatially infinite, though unbounded Einstein Universe of 1917, the appropriate cosmological theory already had been established.
Pairwise velocities in the "Running FLRW" cosmological model
NASA Astrophysics Data System (ADS)
Bibiano, Antonio; Croton, Darren J.
2017-05-01
We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the 'Running Friedmann-Lemaître-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Λ cold dark matter (CDM) with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter, a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various coupled dark energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM that could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.
Cosmological signals of a mirror twin Higgs
Craig, Nathaniel; Koren, Seth; Trott, Timothy
2017-05-08
We investigate the cosmology of the minimal model of neutral naturalness, the mirror Twin Higgs. The softly-broken mirror symmetry relating the Standard Model to its twin counterpart leads to significant dark radiation in tension with BBN and CMB observations. We quantify this tension and illustrate how it can be mitigated in several simple scenarios that alter the relative energy densities of the two sectors while respecting the softly-broken mirror symmetry. In particular, we consider both the out-of-equilibrium decay of a new scalar as well as reheating in a toy model of twinned inflation, Twinflation. In both cases the dilution ofmore » energy density in the twin sector does not merely reconcile the existence of a mirror Twin Higgs with cosmological constraints, but predicts contributions to cosmological observables that may be probed in current and future CMB experiments. This raises the prospect of discovering evidence of neutral naturalness through cosmology rather than colliders.« less
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
Holographic dark energy from fluid/gravity duality constraint by cosmological observations
NASA Astrophysics Data System (ADS)
Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.
2018-06-01
In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.
Scalar field and time varying cosmological constant in f(R,T) gravity for Bianchi type-I universe
NASA Astrophysics Data System (ADS)
Singh, G. P.; Bishi, Binaya K.; Sahoo, P. K.
2016-04-01
In this article, we have analysed the behaviour of scalar field and cosmological constant in $f(R,T)$ theory of gravity. Here, we have considered the simplest form of $f(R,T)$ i.e. $f(R,T)=R+2f(T)$, where $R$ is the Ricci scalar and $T$ is the trace of the energy momentum tensor and explored the spatially homogeneous and anisotropic Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model. It is assumed that the Universe is filled with two non-interacting matter sources namely scalar field (normal or phantom) with scalar potential and matter contribution due to $f(R,T)$ action. We have discussed two cosmological models according to power law and exponential law of the volume expansion along with constant and exponential scalar potential as sub models. Power law models are compatible with normal (quintessence) and phantom scalar field whereas exponential volume expansion models are compatible with only normal (quintessence) scalar field. The values of cosmological constant in our models are in agreement with the observational results. Finally, we have discussed some physical and kinematical properties of both the models.
NASA Astrophysics Data System (ADS)
Wang, Deng
2018-06-01
To explore whether there is new physics going beyond the standard cosmological model or not, we constrain seven cosmological models by combining the latest and largest Pantheon Type Ia supernovae sample with the data combination of baryonic acoustic oscillations, cosmic microwave background radiation, Planck lensing and cosmic chronometers. We find that a spatially flat universe is preferred in the framework of Λ CDM cosmology, that the constrained equation of state of dark energy is very consistent with the cosmological constant hypothesis in the ω CDM model, that there is no evidence of dynamical dark energy in the dark energy density-parametrization model, that there is no hint of interaction between dark matter and dark energy in the dark sector of the universe in the decaying vacuum model, and that there does not exist the sterile neutrino in the neutrino sector of the universe in the Λ CDM model. We also give the 95% upper limit of the total mass of three active neutrinos Σ mν<0.178 eV under the assumption of Λ CDM scenario. It is clear that there is no any departure from the standard cosmological model based on current observational datasets.
Cosmological simulations of multicomponent cold dark matter.
Medvedev, Mikhail V
2014-08-15
The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.
NASA Astrophysics Data System (ADS)
Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.
2016-03-01
The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.
The Relation between Cosmological Redshift and Scale Factor for Photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn; Department of Physics, Wuhan University, Wuhan 430072
The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems;more » and the Sandage–Loeb effect. All of this method is feasible now or in the near future.« less
Superheavy magnetic monopoles and the standard cosmology
NASA Astrophysics Data System (ADS)
Turner, M. S.
1984-10-01
The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.
Non-linear structure formation in the `Running FLRW' cosmological model
NASA Astrophysics Data System (ADS)
Bibiano, Antonio; Croton, Darren J.
2016-07-01
We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.
Fractal universe and quantum gravity.
Calcagni, Gianluca
2010-06-25
We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.
NASA Technical Reports Server (NTRS)
Gregory, Ruth
1988-01-01
The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.
Cosmological Implications of the Effects of X-Ray Clusters on the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Forman, William R.
1996-01-01
We have been carrying forward a program to confront X-ray observations of clusters and their evolution as derived from X-ray observatories with observations of the cosmic microwave background radiation (CMBR). In addition to the material covered in our previous reports (including three published papers), most recently we have explored the effects of a cosmological constant on the predicted Sunyaev-Zel'dovich effect from the ensemble of clusters. In this report we summarize that work from which a paper will be prepared.
On the Determination of the 7Be(n, α)4He Reaction Cross Section at BBN Energies
NASA Astrophysics Data System (ADS)
Lamia, L.; Spitaleri, C.; Bertulani, C. A.; Hou, S. Q.; La Cognata, M.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Tumino, A.
2017-12-01
7Be destruction channels are currently a matter of study because of their influence on the 7Li cosmological abundances. Here, we determine the cross section of the (n, α) reaction by using Trojan Horse experimental data for the 7Li(p, α)4He reaction and correcting for Coulomb effects. The deduced 7Be(n, α)4He data overlap with the Big Bang nucleosynthesis energies and the deduced reaction rate allows us to evaluate the corresponding cosmological implications.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
G{sub 2}-MSSM: An M theory motivated model of particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.
2008-09-15
We continue our study of the low energy implications of M theory vacua on G{sub 2}-manifolds, undertaken in B. S. Acharya, K. Bobkov, G. L. Kane, P. Kumar, and J. Shao, Phys. Rev. D 76, 126010 (2007); B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006), where it was shown that the moduli can be stabilized and a TeV scale generated, with the Planck scale as the only dimensionful input. A well-motivated phenomenological model, the G{sub 2}-MSSM, can be naturally defined within the above framework. In this paper, we study some ofmore » the important phenomenological features of the G{sub 2}-MSSM. In particular, the soft supersymmetry breaking parameters and the superpartner spectrum are computed. The G{sub 2}-MSSM generically gives rise to light gauginos and heavy scalars with wino lightest supersymmetric particles when one tunes the cosmological constant. Electroweak symmetry breaking is present but fine-tuned. The G{sub 2}-MSSM is also naturally consistent with precision gauge coupling unification. The phenomenological consequences for cosmology and collider physics of the G{sub 2}-MSSM will be reported in more detail soon.« less
NASA Astrophysics Data System (ADS)
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
NASA Astrophysics Data System (ADS)
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-07-01
Models of the very early Universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
Cosmological Implications of Electroweak Monopole
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2018-01-01
In this talk we review the basic features of the electroweak monopole, and estimate the remnant electroweak monopole density of the standard model in the present universe. We show that, although the electroweak phase transition is of the first order, the monopole production comes from the thermal fluctuations of the Higgs field after the phase transition, not the vacuum bubble collisions during the phase transition. Moreover, most of the monopoles produced initially are annihilated as soon as created, and this annihilation continues very long time, longer than the muon pair annihilation time. As the result the remnant monopole density at present universe becomes very small, of 10-11 of the critical density, too small to be the dark matter. We discuss the physical implications of our results on the ongoing monopole detection experiments.
Non-minimally coupled condensate cosmologies: a phase space analysis
NASA Astrophysics Data System (ADS)
Carloni, Sante; Vignolo, Stefano; Cianci, Roberto
2014-09-01
We present an analysis of the phase space of cosmological models based on a non-minimal coupling between the geometry and a fermionic condensate. We observe that the strong constraint coming from the Dirac equations allows a detailed design of the cosmology of these models, and at the same time guarantees an evolution towards a state indistinguishable from general relativistic cosmological models. In this light, we show in detail how the use of some specific potentials can naturally reproduce a phase of accelerated expansion. In particular, we find for the first time that an exponential potential is able to induce two de Sitter phases separated by a power law expansion, which could be an interesting model for the unification of an inflationary phase and a dark energy era.
Running of the spectrum of cosmological perturbations in string gas cosmology
NASA Astrophysics Data System (ADS)
Brandenberger, Robert; Franzmann, Guilherme; Liang, Qiuyue
2017-12-01
We compute the running of the spectrum of cosmological perturbations in string gas cosmology, making use of a smooth parametrization of the transition between the early Hagedorn phase and the later radiation phase. We find that the running has the same sign as in simple models of single scalar field inflation. Its magnitude is proportional to (1 -ns) (ns being the slope index of the spectrum), and it is thus parametrically larger than for inflationary cosmology, where it is proportional to (1 -ns)2 .
A philosophy for big-bang cosmology.
McCrea, W H
1970-10-03
According to recent developments in cosmology we seem bound to find a model universe like the observed universe, almost independently of how we suppose it started. Such ideas, if valid, provide fresh justification for the procedures of current cosmological theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Nan; Wu Puxun; Zhang Shuangnan
2010-04-15
Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia datamore » points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the {Lambda}CDM model is consistent with the joint data in the 1-{sigma} confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the {Lambda}CDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the {Lambda}CDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.« less
ERIC Educational Resources Information Center
Marshak, Marvin L.
1984-01-01
Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)
Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe
NASA Astrophysics Data System (ADS)
Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore
2016-07-01
We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.
Apparent cosmic acceleration from Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dam, Lawrence H.; Heinesen, Asta; Wiltshire, David L.
2017-11-01
Parameters that quantify the acceleration of cosmic expansion are conventionally determined within the standard Friedmann-Lemaître-Robertson-Walker (FLRW) model, which fixes spatial curvature to be homogeneous. Generic averages of Einstein's equations in inhomogeneous cosmology lead to models with non-rigidly evolving average spatial curvature, and different parametrizations of apparent cosmic acceleration. The timescape cosmology is a viable example of such a model without dark energy. Using the largest available supernova data set, the JLA catalogue, we find that the timescape model fits the luminosity distance-redshift data with a likelihood that is statistically indistinguishable from the standard spatially flat Λ cold dark matter cosmology by Bayesian comparison. In the timescape case cosmic acceleration is non-zero but has a marginal amplitude, with best-fitting apparent deceleration parameter, q_{0}=-0.043^{+0.004}_{-0.000}. Systematic issues regarding standardization of supernova light curves are analysed. Cuts of data at the statistical homogeneity scale affect light-curve parameter fits independent of cosmology. A cosmological model dependence of empirical changes to the mean colour parameter is also found. Irrespective of which model ultimately fits better, we argue that as a competitive model with a non-FLRW expansion history, the timescape model may prove a useful diagnostic tool for disentangling selection effects and astrophysical systematics from the underlying expansion history.
Investigating inhomogeneous Szekeres models and their applications to precision cosmology
NASA Astrophysics Data System (ADS)
Peel, Austin Chandler
Exact solutions of Einstein's field equations that can describe the evolution of complex structures in the universe provide complementary frameworks to standard perturbation theory in which to analyze cosmological and astrophysical phenomena. The flexibility and generality of the inhomogeneous and anisotropic Szekeres metric make it the best known exact solution to explore nonlinearities in the universe. We study applications of Szekeres models to precision cosmology, focusing on the influence of inhomogeneities in two primary contexts---the growth rate of cosmic structures and biases in distance determinations to remote sources. We first define and derive evolution equations for a Szekeres density contrast, which quantifies exact deviations from a smooth background cosmology. Solving these equations and comparing to the usual perturbative approach, we find that for models with the same matter content, the Szekeres growth rate is larger through the matter-dominated cosmic era. Including a cosmological constant, we consider exact global perturbations, as well as the evolution of a single extended structure surrounded by an almost homogeneous background. For the former, we use growth data to obtain a best fit Szekeres model and find that it can fit the data as well as the standard Lambda-Cold Dark Matter (LCDM) cosmological model but with different cosmological parameters. Next, to study effects of inhomogeneities on distance measures, we build an exact relativistic Swiss-cheese model of the universe, where a large number of non-symmetric and randomly placed Szekeres structures are embedded within a LCDM background. Solving the full relativistic propagation equations, light beams are traced through the model, where they traverse the inhomogeneous structures in a way that mimics the paths of real light beams in the universe. For beams crossing a single structure, their magnification or demagnification reflects primarily the net density encountered along the path. Despite nontrivial evolution and density distributions of the structures, the effect of tidal shearing on the beams remains small. Finally, we study source magnification probability distributions for various redshifts, finding a limitation of the models in that the distributions do not consistently resemble those of gravitational lensing analyses in cosmological simulations.
The cosmological principle is not in the sky
NASA Astrophysics Data System (ADS)
Park, Chan-Gyung; Hyun, Hwasu; Noh, Hyerim; Hwang, Jai-chan
2017-08-01
The homogeneity of matter distribution at large scales, known as the cosmological principle, is a central assumption in the standard cosmological model. The case is testable though, thus no longer needs to be a principle. Here we perform a test for spatial homogeneity using the Sloan Digital Sky Survey Luminous Red Galaxies (LRG) sample by counting galaxies within a specified volume with the radius scale varying up to 300 h-1 Mpc. We directly confront the large-scale structure data with the definition of spatial homogeneity by comparing the averages and dispersions of galaxy number counts with allowed ranges of the random distribution with homogeneity. The LRG sample shows significantly larger dispersions of number counts than the random catalogues up to 300 h-1 Mpc scale, and even the average is located far outside the range allowed in the random distribution; the deviations are statistically impossible to be realized in the random distribution. This implies that the cosmological principle does not hold even at such large scales. The same analysis of mock galaxies derived from the N-body simulation, however, suggests that the LRG sample is consistent with the current paradigm of cosmology, thus the simulation is also not homogeneous in that scale. We conclude that the cosmological principle is neither in the observed sky nor demanded to be there by the standard cosmological world model. This reveals the nature of the cosmological principle adopted in the modern cosmology paradigm, and opens a new field of research in theoretical cosmology.
Observational exclusion of a consistent loop quantum cosmology scenario
NASA Astrophysics Data System (ADS)
Bolliet, Boris; Barrau, Aurélien; Grain, Julien; Schander, Susanne
2016-06-01
It is often argued that inflation erases all the information about what took place before it started. Quantum gravity, relevant in the Planck era, seems therefore mostly impossible to probe with cosmological observations. In general, only very ad hoc scenarios or hyper fine-tuned initial conditions can lead to observationally testable theories. Here we consider a well-defined and well-motivated candidate quantum cosmology model that predicts inflation. Using the most recent observational constraints on the cosmic microwave background B-modes, we show that the model is excluded for all its parameter space, without any tuning. Some important consequences are drawn for the deformed algebra approach to loop quantum cosmology. We emphasize that neither loop quantum cosmology in general nor loop quantum gravity are disfavored by this study but their falsifiability is established.
NASA Technical Reports Server (NTRS)
Horack, John M.; Koshut, Thomas M.; Mallozzi, Robert S.; Emslie, A. Gordon; Meegan, Charles A.
1996-01-01
The distance scale to cosmic gamma-ray bursts (GRB's) is still uncertain by many orders of magnitude; however, one viable scenario places GRB's at cosmological distances, thereby permitting them to be used as tracers of the cosmological expansion over a significant range of redshifts zeta. Also, several recent measurements of the Hubble constant H(sub 0) appearing in the referred literature report values of 70-80 km/s /Mpc. Although there is significant debate regarding these measurements, we proceed here under the assumption that they are evidence of a large value for H(sub 0). This is done in order to investigate the additional constraints on cosmological models that can be obtained under this hypothesis when combined with the age of the universe and the brightness distribution of cosmological gamma-ray bursts. We show that the range of cosmological models that can be consistent with the GRB brightness distribution, a Hubble constant of 70-80 km/s/Mpc, and a minimum age of the universe of 13-15 Gyr is constrained significantly, largely independent of a wide range of assumptions regarding the evolutionary nature of the burst population. Low-density, Lambda greater than 0 cosmological models with deceleration parameter in the range -1 less than q(sub 0) less than 0 and density parameter sigma(sub 0) in the range approximately equals 0.10-0.25(Omega(sub 0) approximately equals 0.2-0.5) are strongly favored.
A quasi-static approach to structure formation in black hole universes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durk, Jessie; Clifton, Timothy, E-mail: j.durk@qmul.ac.uk, E-mail: t.clifton@qmul.ac.uk
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distancemore » scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan
We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less
Latest astronomical constraints on some non-linear parametric dark energy models
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos
2018-04-01
We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm
2015-12-14
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia, E-mail: blanchet@iap.fr, E-mail: laviniah@kth.se
2015-12-01
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Cosmological immortality: how to eliminate aging on a universal scale.
Vidal, Clement
2014-01-01
The death of our universe is as certain as our individual death. Some cosmologists have elaborated models which would make the cosmos immortal. In this paper, I examine them as cosmological extrapolations of immortality narratives that civilizations have developed to face death anxiety. I first show why cosmological death should be a worry, then I briefly examine scenarios involving the notion of soul or resurrection on a cosmological scale. I discuss in how far an intelligent civilization could stay alive by engaging in stellar, galactic and universal rejuvenation. Finally, I argue that leaving a cosmological legacy via universe making is an inspiring and promising narrative to achieve cosmological immortality.
Neutron star merger GW170817 strongly constrains doubly coupled bigravity
NASA Astrophysics Data System (ADS)
Akrami, Yashar; Brax, Philippe; Davis, Anne-Christine; Vardanyan, Valeri
2018-06-01
We study the implications of the recent detection of gravitational waves emitted by a pair of merging neutron stars and their electromagnetic counterpart, events GW170817 and GRB170817A, on the viability of the doubly coupled bimetric models of cosmic evolution, where the two metrics couple directly to matter through a composite, effective metric. We demonstrate that the bounds on the speed of gravitational waves place strong constraints on the doubly coupled models, forcing either the two metrics to be proportional at the background level or the models to become singly coupled. Proportional backgrounds are particularly interesting as they provide stable cosmological solutions with phenomenologies equivalent to that of Λ CDM at the background level as well as for linear perturbations, while nonlinearities are expected to show deviations from the standard model.
NASA Technical Reports Server (NTRS)
Deliyannis, Constantine P.; Ryan, Sean G.; Beers, Timothy C.; Thorburn, Julie A.
1994-01-01
Lithium abundances in halo stars, when interpreted correctly, hold the key to uncovering the primordial Li abundance Li(sub p). However, whereas standard stellar evolutionary models imply consistency in standard big bang nucleosynthesis (BBN), models with rotationally induced mixing imply a higher Li(sub p), possibly implying an inconsistency in standard BBN. We report here Li detections in two cool halo dwarfs, Gmb 1830 and HD 134439. These are the coolest and lowest Li detections in halo dwarfs to date, and are consistent with the metallicity dependence of Li depletion in published models. If the recent report of a beryllium deficiency in Gmb 1830 represents a real Be depletion, then the rotational models would be favored. We propose tests to reduce critical uncertainties.
Vacuum thin shells in Einstein–Gauss–Bonnet brane-world cosmology
NASA Astrophysics Data System (ADS)
Ramirez, Marcos A.
2018-04-01
In this paper we construct new solutions of the Einstein–Gauss–Bonnet field equations in an isotropic Shiromizu–Maeda–Sasaki brane-world setting which represent a couple of Z 2-symmetric vacuum thin shells splitting from the central brane, and explore the main properties of the dynamics of the system. The matching of the separating vacuum shells with the brane-world is as smooth as possible and all matter fields are restricted to the brane. We prove the existence of these solutions, derive the criteria for their existence, analyse some fundamental aspects or their evolution and demonstrate the possibility of constructing cosmological examples that exhibit this feature at early times. We also comment on the possible implications for cosmology and the relation of this system with the thermodynamic instability of highly symmetric vacuum solutions of Lovelock theory.
Cosmology based on f(R) gravity with O(1) eV sterile neutrino
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudaykin, Anton S.; Gorbunov, Dmitry S.; Starobinsky, Alexei A.
2015-05-01
We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (themore » case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino oscillation experiments would favor cosmology based on f(R) gravity rather than the ΛCDM model.« less
Cosmological constraints and comparison of viable f (R ) models
NASA Astrophysics Data System (ADS)
Pérez-Romero, Judit; Nesseris, Savvas
2018-01-01
In this paper we present cosmological constraints on several well-known f (R ) models, but also on a new class of models that are variants of the Hu-Sawicki one of the form f (R )=R -2/Λ 1 +b y (R ,Λ ) , that interpolate between the cosmological constant model and a matter dominated universe for different values of the parameter b , which is usually expected to be small for viable models and which in practice measures the deviation from general relativity. We use the latest growth rate, cosmic microwave background, baryon acoustic oscillations, supernovae type Ia and Hubble parameter data to place stringent constraints on the models and to compare them to the cosmological constant model but also other viable f (R ) models such as the Starobinsky or the degenerate hypergeometric models. We find that these kinds of Hu-Sawicki variant parametrizations are in general compatible with the currently available data and can provide useful toy models to explore the available functional space of f (R ) models, something very useful with the current and upcoming surveys that will test deviations from general relativity.
American Cosmology and the Rhetoric of Inaugural Prayer
ERIC Educational Resources Information Center
Medhurst, Martin J.
1977-01-01
Examines the invocation delivered by Bishop William P. Cannon at the Carter inauguration and contends that the invocation departs from previous inaugural prayer rhetorical forms and may indicate serious implications for both religious and political persuaders. (MH)
Scalar field quantum cosmology: A Schrödinger picture
NASA Astrophysics Data System (ADS)
Vakili, Babak
2012-11-01
We study the classical and quantum models of a scalar field Friedmann-Robertson-Walker (FRW) cosmology with an eye to the issue of time problem in quantum cosmology. We introduce a canonical transformation on the scalar field sector of the action such that the momentum conjugate to the new canonical variable appears linearly in the transformed Hamiltonian. Using this canonical transformation, we show that, it may lead to the identification of a time parameter for the corresponding dynamical system. In the cases of flat, closed and open FRW universes the classical cosmological solutions are obtained in terms of the introduced time parameter. Moreover, this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave functions in order to investigate the possible corrections to the classical cosmologies due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.
ERIC Educational Resources Information Center
Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.
2012-01-01
This is the third of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we use item response theory to analyze students' responses to three out of the four conceptual cosmology surveys we developed. The specific item response theory model we use is…
The cosmological model with a wormhole and Hawking temperature near apparent horizon
NASA Astrophysics Data System (ADS)
Kim, Sung-Won
2018-05-01
In this paper, a cosmological model with an isotropic form of the Morris-Thorne type wormhole was derived in a similar way to the McVittie solution to the black hole in the expanding universe. By solving Einstein's field equation with plausible matter distribution, we found the exact solution of the wormhole embedded in Friedmann-Lemaître-Robertson-Walker universe. We also found the apparent cosmological horizons from the redefined metric and analyzed the geometric natures, including causal and dynamic structures. The Hawking temperature for thermal radiation was obtained by the WKB approximation using the Hamilton-Jacobi equation and Hamilton's equation, near the apparent cosmological horizon.
Holographic dark energy with cosmological constant
NASA Astrophysics Data System (ADS)
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Do current cosmological observations rule out all covariant Galileons?
NASA Astrophysics Data System (ADS)
Peirone, Simone; Frusciante, Noemi; Hu, Bin; Raveri, Marco; Silvestri, Alessandra
2018-03-01
We revisit the cosmology of covariant Galileon gravity in view of the most recent cosmological data sets, including weak lensing. As a higher derivative theory, covariant Galileon models do not have a Λ CDM limit and predict a very different structure formation pattern compared with the standard Λ CDM scenario. Previous cosmological analyses suggest that this model is marginally disfavored, yet cannot be completely ruled out. In this work we use a more recent and extended combination of data, and we allow for more freedom in the cosmology, by including a massive neutrino sector with three different mass hierarchies. We use the Planck measurements of cosmic microwave background temperature and polarization; baryonic acoustic oscillations measurements by BOSS DR12; local measurements of H0; the joint light-curve analysis supernovae sample; and, for the first time, weak gravitational lensing from the KiDS Collaboration. We find, that in order to provide a reasonable fit, a nonzero neutrino mass is indeed necessary, but we do not report any sizable difference among the three neutrino hierarchies. Finally, the comparison of the Bayesian evidence to the Λ CDM one shows that in all the cases considered, covariant Galileon models are statistically ruled out by cosmological data.
NASA Astrophysics Data System (ADS)
Wang, F. Y.
2011-07-01
Gamma-ray bursts (GRBs) are brief flashes of gamma-rays occurring at cosmological distances. GRB was discovered by Vela satellite in 1967. The discovery of afterglows in 1997 made it possible to measure the GRBs' redshifts and confirmed the cosmological origin. GRB cosmology includes utilizing long GRBs as standard candles to constrain the dark energy and cosmological parameters, measuring the high-redshift star formation rate (SFR), probing the metal enrichment history of the universe, dust, quantum gravity, etc. The correlations between GRB observables in the prompt emission and afterglow phases were discovered, so we can use these correlations as standard candles to constrain the cosmological parameters and dark energy, especially at high redshifts. Observations show that long GRBs may be associated with supernovae. So long GRBs are promising tools to measure the high-redshift SFR. GRB afterglows have a smooth continuum, so the extraction of IGM absorption features from the spectrum is very easy. The information of metal enrichment history and reionization can be obtained from the absorption lines. In this thesis, we investigate the high-redshift cosmology using GRBs, called GRB cosmology. This is a new and fast developing field. The structure of this thesis is as follows. In the first chapter, we introduce the progress of GRB studies. First we introduce the progress of GRB studies in various satellite eras, mainly in the Swift and Fermi eras. The fireball model and standard afterglow model are also presented. In chapter 2, we introduce the standard cosmology model, astronomical observations and dark energy models. Then progress on the GRB cosmology studies is introduced. Some of my works including what to be submitted are also introduced in this chapter. In chapter 3, we present our studies on constraining the cosmological parameters and dark energy using latest observations. We use SNe Ia, GRBs, CMB, BAO, the X-ray gas mass fraction in clusters and the linear growth rate of perturbations, and find that the ΛCDM is the best fitted model. The transition redshift z_{T} is from 0.40_{-0.08}^{+0.14} to 0.65_{-0.05}^{+0.10}. This is the first time to combine GRBs with other observations to constrain the cosmological parameters, dark energy and transition redshift. In chapter 4, we investigate the early dark energy model using GRBs, SNe Ia, CMB and BAO. The negligible dark energy at high redshift will influence the growth of cosmic structures and leave observable signatures that are different from the standard cosmology. We propose that GRBs are promising tools to study the early dark energy. We find that the fractional dark energy density is less than 0.03 and the linear growth index of perturbations is 0.66. In chapter 5, we use a model-independent method to constrain the dark energy equation of state (EOS) w(z). Among the parameters describing the properties of dark energy, EOS is the most important. Whether and how it evolves with time are crucial in distinguishing different cosmological models. In our analysis, we include high-redshift GRBs. We find that w(z)<0 at z>1.7, and EOS deviates from the cosmological constant at z>0.5 at 95.4% confidence level. In chapter 6, we probe the cosmographic parameters to distinguish between the dark energy and modified gravity models. These two families of models can drive the universe to acclerate. We first derive the expressions of deceleration, jerk and snap parameters in the dark energy and modified gravity models. The snap parameters in these models are different, so they can be used to distinguish between the models. In chapter 7, we measure the high-redshift SFR using long GRBs. Swift observations reveal that the number of high-redshift GRBs is larger than the predication from SFR. We find that the evolving initial mass function can interpret this discrepancy. We study the high-redshift SFR up to z˜ 8.2 considering the Swift GRBs tracing the star formation history and the cosmic metallicity evolution in different background cosmological models. In chapter 8, we present the observational signatures of Pop III GRBs and study the pre-galactic metal enrichment with the metal absorption lines in the GRB spectrum from first galaxy. We focus on the unusual circumburst environment inside the systems that hosted Pop III stars. The metals in the first galaxies produced by the first supernova explosion are likely to reside in the low-ionization states (C II, O I, Si II and Fe II). When GRB afterglow goes through the metal polluted region, the metal absorption lines may appear. The topology of metal enrichment could be highly inhomogeneous, so along different lines of sight, the metal absorption lines may show distinct signatures. A summary of the open questions in GRB cosmology filed is presented in chapter 9.
On Rosen's theory of gravity and cosmology
NASA Technical Reports Server (NTRS)
Barnes, R. C.
1980-01-01
Formal similarities between general relativity and Rosen's bimetric theory of gravity were used to analyze various bimetric cosmologies. The following results were found: (1) physically plausible model universes which have a flat static background metric, have a Robertson-Walker fundamental metric, and which allow co-moving coordinates do not exist in bimetric cosmology. (2) it is difficult to use the Robertson-Walker metric for both the background metric (gamma mu nu) and the fundamental metric tensor of Riemannian geometry( g mu nu) and require that g mu nu and gamma mu nu have different time dependences. (3) A consistency relation for using co-moving coordinates in bimetric cosmology was derived. (4) Certain spatially flat bimetric cosmologies of Babala were tested for the presence of particle horizons. (5) An analytic solution for Rosen's k = +1 model was found. (6) Rosen's singularity free k = +1 model arises from what appears to be an arbitary choice for the time dependent part of gamma mu nu.
Non-minimal derivative coupling gravity in cosmology
NASA Astrophysics Data System (ADS)
Gumjudpai, Burin; Rangdee, Phongsaphat
2015-11-01
We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafi, Qaisar; Barr, Stephen M; Gaisser, Thomas K
2009-07-30
Research conducted under this grant over the past year has been driven by the impending operation of the Large Hadron Collider (LHC), and by the ongoing developments in neutrino physics and cosmology. The recent launch of the Planck satellite should have far reaching implications for cosmology in the coming years. Research topics include particle astrophysics, neutrino physics, grand unified theories, Higgs and sparticle spectroscopy, dark energy and dark matter, inflationary cosmology, and baryo/lepto-genesis. Faculty members on the grant are Stephen Barr, Thomas Gaisser, Qaisar Shafi and Todor Stanev. Ilia Gogoladze and Hasan Yuksel are the two postdoctoral scientists supported bymore » the DOE grant. There are currently several excellent students in our research program. One of them, Mansoor Rehman, has been awarded a competitive university fellowship on which he will be supported from September 1, 2009 – June 30, 2010. Another student, Joshua Wickman, has been awarded a fellowship by the Delaware Space Grant Consortium (in affiliation with NASA), and will be supported by this fellowship from September 1, 2009 – August 31, 2010. Both of these students also attended the TASI Summer School in June 2009, at which they each presented a student talk on topics in inflationary cosmology.« less
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological parameters in a generalized multi-function gravitation model f(T,θ )
NASA Astrophysics Data System (ADS)
Sadatian, S. Davood; Tahajjodi, A.
2017-11-01
The aim of the present article was to study the cosmological model f(T,θ ). By introducing and examining this model as well as a number of other proposed f(T,θ ) models, certain cosmological parameters were analyzed in this framework, and their behaviors were investigated. Ultimately, the results were qualitatively compared with the observational data. It was found that by employing proper coefficients, phantom crossing division occured for the equation of state, thus pointing to the existence of a bouncing universe scenario. Furthermore, it was revealed that by creating a potential in the model, inflation could be produced, and the early cosmos could be studied.
Null tests of the standard model using the linear model formalism
NASA Astrophysics Data System (ADS)
Marra, Valerio; Sapone, Domenico
2018-04-01
We test both the Friedmann-Lemaître-Robertson-Walker geometry and Λ CDM cosmology in a model-independent way by reconstructing the Hubble function H (z ), the comoving distance D (z ), and the growth of structure f σ8(z ) using the most recent data available. We use the linear model formalism in order to optimally reconstruct the above cosmological functions, together with their derivatives and integrals. We then evaluate four of the null tests available in the literature that probe both background and perturbation assumptions. For all the four tests, we find agreement, within the errors, with the standard cosmological model.
Parameterized post-Newtonian cosmology
NASA Astrophysics Data System (ADS)
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
The Rh = ct universe in alternative theories of gravity
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Kazanas, Demosthenes
2017-12-01
The Λ cold dark matter (ΛCDM) model (one comprising of a cosmological constant Λ and cold dark matter) is generally considered the standard model in cosmology. One of the alternatives that has received attention in the last few years is the Rh = ct universe, which provides an age for the Universe similar to that of ΛCDM and whose (vanishing) deceleration parameter is apparently not inconsistent with observations. Like the ΛCDM, the Rh = ct universe is based on a Friedmann-Robertson-Walker cosmology with the total energy density ρ and pressure p of the cosmic fluid satisfying the simple equation of state ρ + 3p = 0, i.e. a vanishing total active gravitational mass. In an earlier paper, we examined the possible sources for the Rh = ct universe within general relativity, and we have shown that it still contains a dark energy component, albeit not in the form of a cosmological constant. The growing interest in gravitational theories, alternative to Einstein's general relativity, in cosmology, is mainly driven by the need for cosmological models that attain a late-time accelerated expansion without the presence of a cosmological constant as in the ΛCDM, and thereby avoiding the problems associated with it. In this paper, we discuss some of these common alternative theories and show that the Rh = ct is also a solution to some of them.
NASA Astrophysics Data System (ADS)
Walker, Theodore, Jr.
2011-10-01
Anthropic reasoning about observation selection effects upon the appearance of cosmic providential fine-tuning (fine-tuning that provides for life) is often motivated by a desire to avoid theological implications (implications favoring the idea of a divine cosmic provider) without appealing to sheer lucky-for-us-cosmic-jackpot happenstance and coincidence. Cosmic coincidence can be rendered less incredible by appealing to a multiverse context. Cosmic providence can be rendered non-theological by appealing to an agent-less providential purpose, or by appealing to less-than-omnipresent/local providers, such as alien intelligences creating life- providing baby universes. Instead of choosing either cosmic coincidence or cosmic providence, as though they were mutually exclusive; it is better to accept both. Neoclassical thought accepts coincidence and providence, plus many local providers and one omnipresent provider. Moreover, fundamental observation selection theory should distinguish the many local observers of some events from the one omnipresent observer of all events. Accepting both coincidence and providence avoids classical theology (providence without coincidence) and classical atheism (coincidence without providence), but not neoclassical theology (providence with coincidence). Cosmology cannot avoid the idea of an all-inclusive omnipresent providential dice-throwing living-creative whole of reality, an idea essential to neoclassical theology, and to neoclassical cosmology.
Constraining Cosmological Models with Different Observations
NASA Astrophysics Data System (ADS)
Wei, J. J.
2016-07-01
With the observations of Type Ia supernovae (SNe Ia), scientists discovered that the Universe is experiencing an accelerated expansion, and then revealed the existence of dark energy in 1998. Since the amazing discovery, cosmology has became a hot topic in the physical research field. Cosmology is a subject that strongly depends on the astronomical observations. Therefore, constraining different cosmological models with all kinds of observations is one of the most important research works in the modern cosmology. The goal of this thesis is to investigate cosmology using the latest observations. The observations include SNe Ia, Type Ic Super Luminous supernovae (SLSN Ic), Gamma-ray bursts (GRBs), angular diameter distance of galaxy cluster, strong gravitational lensing, and age measurements of old passive galaxies, etc. In Chapter 1, we briefly review the research background of cosmology, and introduce some cosmological models. Then we summarize the progress on cosmology from all kinds of observations in more details. In Chapter 2, we present the results of our studies on the supernova cosmology. The main difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing SN luminosities simultaneously with the parameters of an expansion model of the Universe. We have confirmed that one should optimize all of the parameters by carrying out the method of maximum likelihood estimation in any situation where the parameters include an unknown intrinsic dispersion. The commonly used method, which estimates the dispersion by requiring the reduced χ^{2} to equal unity, does not take into account all possible variances among the parameters. We carry out such a comparison of the standard ΛCDM cosmology and the R_{h}=ct Universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. Moreover, it is quite evident that SLSNe Ic may be useful cosmological probes, perhaps even out to redshifts much greater (z≫2) than those accessible using SNe Ia. However, the currently available sample of SNe Ia is still quite small. Our simulations have shown that if SLSNe Ic can be commonly detected in the future, they have the potential of greatly refining the measurement of cosmological parameters, particularly the parameter w_{de} of the dark energy equation of state. In Chapter 3, we focus on GRB cosmology. We firstly use GRBs as standard candles in constructing the Hubble diagram at redshifts beyond the current reach of SNe Ia observations. Then we measure high-z star formation rate (SFR) using GRBs. We confirm that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to SFR at high redshifts. The observed discrepancy between the GRB rate and the SFR may be eliminated by assuming a cosmic evolution in metallicity. Assuming that the SFR and GRB rate are related via an evolving metallicity, we find that the GRB data constrain the slope of the high-z SFR to be -2.41_{-2.09}^{+1.87}. In addition, first stars can only form in structures that are suitably dense, which can be parameterized by the minimum dark matter halo mass M_{min}. M_{min} must play an important role in star formation. We can constrain M_{min}<10^{12.5} M_{⊙} at 68% confidence level from the GRB data. In Chapter 4, we assemble a catalog of 69 strong gravitational lensing systems, and carefully introduce how to constrain cosmological parameters using these important data. We find that both ΛCDM and the R_{h}=ct Universe account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. In Chapters 5 and 6, we use measurements of the galaxy-cluster angular diameter distances and 32 age measurements of passively evolving galaxies to test and compare the standard model (ΛCDM) and the R_{h}=ct Universe, respectively. We show that both models appear to account for these two data very well. However, because of the different number of free parameters in these models, we have to judge the goodness-of-fit of cosmological models with selection tools, such as the Akaike, Kullback, and Bayes Information Criteria, favoring R_{h}=ct over ΛCDM with a likelihood of about 70%, 75%, and 80%, respectively. Finally, some open questions and an outlook in the cosmology field are summarized in Chapter 7.
Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models
NASA Astrophysics Data System (ADS)
Pandey, Sachin; Pal, Sridip; Banerjee, Narayan
2018-06-01
The present work shows that the mathematical equivalence of the Jordan frame and its conformally transformed version, the Einstein frame, so as far as Brans-Dicke theory is concerned, survives a quantization of cosmological models, arising as solutions to the Brans-Dicke theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples. We effectively show that the transformation from the Jordan to the Einstein frame is a canonical one and hence two frames furnish equivalent description of same physical scenario.
On inflation, cosmological constant, and SUSY breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linde, Andrei
2016-11-02
We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer S and the inflaton Φ, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields S and Φ a small term depending on a nilpotent chiral superfield P one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.
The case for the relativistic hot big bang cosmology
NASA Technical Reports Server (NTRS)
Peebles, P. J. E.; Schramm, D. N.; Kron, R. G.; Turner, E. L.
1991-01-01
What has become the standard model in cosmology is described, and some highlights are presented of the now substantial range of evidence that most cosmologists believe convincingly establishes this model, the relativistic hot big bang cosmology. It is shown that this model has yielded a set of interpretations and successful predictions that substantially outnumber the elements used in devising the theory, with no well-established empirical contradictions. Brief speculations are made on how the open puzzles and work in progress might affect future developments in this field.
Nonparametric Determination of Redshift Evolution Index of Dark Energy
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
We propose a nonparametric method to determine the sign of γ — the redshift evolution index of dark energy. This is important for distinguishing between positive energy models, a cosmological constant, and what is generally called ghost models. Our method is based on geometrical properties and is more tolerant to uncertainties of other cosmological parameters than fitting methods in what concerns the sign of γ. The same parametrization can also be used for determining γ and its redshift dependence by fitting. We apply this method to SNLS supernovae and to gold sample of re-analyzed supernovae data from Riess et al. Both datasets show strong indication of a negative γ. If this result is confirmed by more extended and precise data, many of the dark energy models, including simple cosmological constant, standard quintessence models without interaction between quintessence scalar field(s) and matter, and scaling models are ruled out. We have also applied this method to Gurzadyan-Xue models with varying fundamental constants to demonstrate the possibility of using it to test other cosmologies.
Theoretical Astrophysics - Volume 3, Galaxies and Cosmology
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2002-12-01
1. Overview: galaxies and cosmology; 2. Galactic structure and dynamics; 3. Friedmann model of the universe; 4. Thermal history of the universe; 5. Structure formation; 6. Cosmic microwave background radiation; 7. Formation of baryonic structures; 8. Active galactic nuclei; 9. Intergalactic medium and absorption systems; 10. Cosmological observations.
Perturbation theory for cosmologies with nonlinear structure
NASA Astrophysics Data System (ADS)
Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy
2017-11-01
The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.
NASA Astrophysics Data System (ADS)
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Lectures on General Relativity, Cosmology and Quantum Black Holes
NASA Astrophysics Data System (ADS)
Ydri, Badis
2017-07-01
This book is a rigorous text for students in physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme. This ebook contains interactive Q&A technology, allowing the reader to interact with the text and reveal answers to selected exercises posed by the author within the book. This feature may not function in all formats and on reading devices.
Implications of a positive cosmological constant for general relativity.
Ashtekar, Abhay
2017-10-01
Most of the literature on general relativity over the last century assumes that the cosmological constant [Formula: see text] is zero. However, by now independent observations have led to a consensus that the dynamics of the universe is best described by Einstein's equations with a small but positive [Formula: see text]. Interestingly, this requires a drastic revision of conceptual frameworks commonly used in general relativity, no matter how small [Formula: see text] is. We first explain why, and then summarize the current status of generalizations of these frameworks to include a positive [Formula: see text], focusing on gravitational waves.
Studies into the averaging problem: Macroscopic gravity and precision cosmology
NASA Astrophysics Data System (ADS)
Wijenayake, Tharake S.
2016-08-01
With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model is stronger than that of the standard model. Finally, we constrain the MG model using Cosmic Microwave Background temperature anisotropy data, the distance to supernovae data, the galaxy power spectrum, the weak lensing tomography shear-shear cross-correlations and the baryonic acoustic oscillations. We find that for this model the averaging density parameter is very small and does not cause any significant shift in the other cosmological parameters. However, it can lead to increased errors on some cosmological parameters such as the Hubble constant and the amplitude of the linear matter spectrum at the scale of 8h. {-1}Mpc. Further studiesare needed to explore other solutions and models of MG as well as their effects on precision cosmology.
Λ(t) CDM and the present accelerating expansion of the universe from 5D scalar vacuum
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Zamarripa, J.; Peraza, A.; Licea, J. A.
2017-12-01
In this letter we investigate some consequences of considering our 4D observable universe as locally and isometrically embedded in a 5D spacetime, where gravity is described by a Brans-Dicke theory in vacuum. Once we impose the embedding conditions we obtain that gravity on the 4D spacetime is governed by the Einstein field equations modified by an extra term that can play the role of a dynamical cosmological constant. Two examples were studied. In the first we derive a cosmological model of a universe filled only with a cosmological constant. In the second we obtain a cosmological solution describing a universe filled with matter, radiation and a dynamical cosmological constant. We constrain the model by using the current observational data combination Planck + WP + BAO + SN. The present acceleration in the expansion of the universe is explained by the geometrically induced dynamical cosmological constant avoiding the introduction of a dark energy component and without addressing the underlying cosmological constant problem. Moreover, all 4D matter sources are geometrically induced in the same manner as it is usually done in the Wesson's induced matter theory.
Cosmology, life, and the anthropic principle.
Barrow, J D
2001-12-01
We discuss some ways in which the age, size, and structure of the Universe, together with the values of its defining constants, satisfy the necessary conditions for life. The implications for teleology and the existence of other universes are also discussed.
Big bounce with finite-time singularity: The F(R) gravity description
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.
Final Scientific/Technical Report-Quantum Field Theories for Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolis, Alberto
The research funded by this award spanned a wide range of subjects in theoretical cosmology and in field theory. In the first part, the PI and his collaborators applied effective field theory techniques to the study of macroscopic media and of cosmological perturbations. Such an approach—now standard in particle physics—is quite unconventional for theoretical cosmology. They addressed several concrete questions where this formalism proved valuable, both within and outside the cosmological context, concerning for instance macroscopic physical phenomena for fluids, superfluids, and solids, and their relationship to the dynamics of cosmological perturbations. A particularly successful outcome of this line ofmore » research has been the development of “solid inflation”: a cosmological model for primordial inflation where the expansion of the universe is driven by an exotic solid substance. In the second part, the PI and his collaborators investigated more fundamental questions and ideas, for the present universe as well as for the very early one, using quantum field theory as a guide. The questions addressed include: Is the present cosmic acceleration due to a new, ‘dark’ form of energy, or are we instead observing a breakdown of Einstein’s general relativity at cosmological distances? Is the cosmic acceleration accelerating? Is the Big Bang unavoidable? Related to this, is early inflation the only sensible cure for the shortcomings of the standard Big Bang model, and the only possible source for the observed scale-invariant cosmological perturbations?« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Jambrina, L.
2010-12-15
In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.
Higher dimensional strange quark matter solutions in self creation cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
HAWKING'S Theory of Quantum Cosmology
NASA Astrophysics Data System (ADS)
Zhi, Fang Li; Chao, Wu Zhong
The most important problem in cosmology is the birth of the universe. Recently Hartle and Hawking put forward a ground state proposal for the quantum state of the universe which incorporates the idea that the universe must come from nothing. Many models have been discussed in quantum cosmology with this boundary condition. It has been shown that every model is a step towards to a realistic universe, i.e. a 4-dimensional isotropic universe with a long inflationary stage.
Masked areas in shear peak statistics. A forward modeling approach
Bard, D.; Kratochvil, J. M.; Dawson, W.
2016-03-09
The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impactmore » of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.« less
MASKED AREAS IN SHEAR PEAK STATISTICS: A FORWARD MODELING APPROACH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bard, D.; Kratochvil, J. M.; Dawson, W., E-mail: djbard@slac.stanford.edu
2016-03-10
The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impactmore » of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.« less
Russell, R J
2001-12-01
The sciences and the humanities, including theology, form an epistemic hierarchy that ensures both constraint and irreducibility. At the same time, theological methodology is analogous to scientific methodology, though with several important differences. This model of interaction between science and theology can be seen illustrated in a consideration of the relation between contemporary cosmology (Big Bang cosmology, cosmic inflation, and quantum cosmology) and Christian systematic and natural theology. In light of developments in cosmology, the question of origins has become theologically less interesting than that of the cosmic evolution of a contingent universe.
NASA Astrophysics Data System (ADS)
López-Corredoira, M.
2009-08-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
NASA Astrophysics Data System (ADS)
Bozek, Brandon
This dissertation describes three research projects on the topic of dark energy. The first project is an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their "w 0--wa" parameterization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which can not be distinguished from a cosmological constant at DETF Stage 2, and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The second project details this analysis on a Inverse Power Law (IPL) or "Ratra-Peebles" (RP) model. This model is a member of a popular subset of scalar field quintessence models that exhibit "tracking" behavior that make this model particularly theoretically interesting. We find that the relative increase in constraining power on the parameter space of this model is consistent to what was found in the first project and the DETF report. We also show, using a background cosmology based on an IPL scalar field model that is consistent with a cosmological constant with Stage 2 data, that good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The third project extends the Causal Entropic Principle to predict the preferred curvature within the "multiverse". The Causal Entropic Principle (Bousso, et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have found that values larger than rhok = 40rho m are disfavored by more than 99.99% and a peak value at rho Λ = 7.9 x 10-123 and rho k = 4.3rhom for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Dark-energy cosmological models in f(G) gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2}more » do not favor the current expansion.« less
Power law cosmology model comparison with CMB scale information
NASA Astrophysics Data System (ADS)
Tutusaus, Isaac; Lamine, Brahim; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Le Fèvre, Olivier; Ilić, Stéphane; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc
2016-11-01
Despite the ability of the cosmological concordance model (Λ CDM ) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius, R (t )∝tn, has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO can be well reproduced by both Λ CDM and power law expansion models with n ˜1.5 , while the constant expansion rate model (n =1 ) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data are well known to provide the most stringent constraints on standard cosmological models, in particular, through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with n ≥1 lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, and CMB) are combined, the Λ CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.
Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter
NASA Technical Reports Server (NTRS)
Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.
1993-01-01
The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.
Radiation bounce from the Lee-Wick construction?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karouby, Johanna; Brandenberger, Robert
2010-09-15
It was recently realized that matter modeled by the scalar field sector of the Lee-Wick standard model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases ofmore » the radiation field and its Lee-Wick partner.« less
Cosmological models in energy-momentum-squared gravity
NASA Astrophysics Data System (ADS)
Board, Charles V. R.; Barrow, John D.
2017-12-01
We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.
Modelling baryonic effects on galaxy cluster mass profiles
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-06-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
C-field cosmological models: revisited
NASA Astrophysics Data System (ADS)
Yadav, Anil Kumar; Tawfiq Ali, Ahmad; Ray, Saibal; Rahaman, Farook; Hossain Sardar, Iftikar
2016-12-01
We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing C-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially showing that some of our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters. We note that the model in a unique way represents both the features of the accelerating as well as decelerating universe depending on the parameters and thus seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other agent or theory in allowing cyclicity.
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, G.W.; Gentile, G.; Diaferio, A.
2014-10-01
In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less
Introduction to big bang nucleosynthesis and modern cosmology
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Kusakabe, Motohiko; Kajino, Toshitaka
Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the testing ground upon which many cosmological models must ultimately rest. It is our only probe of the universe during the important radiation-dominated epoch in the first few minutes of cosmic expansion. This paper reviews the basic equations of space-time, cosmology, and big bang nucleosynthesis. We also summarize the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measurements are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we analyze the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.
The tethered galaxy problem: a possible window to explore cosmological models
NASA Astrophysics Data System (ADS)
Tangmatitham, Matipon; Nemiroff, Robert J.
2017-01-01
In the tethered galaxy problem, a hypothetical galaxy is being held at a fixed proper distance. Contrary to Newtonian intuition, it has been shown that this tethered galaxy can have a nonzero redshift. However, constant proper distance has been suggested as unphysical in a cosmological setting and therefore other definitions have been suggested. The tethered galaxy problem is therefore reviewed in Friedmann cosmology. In this work, different tethers are considered as possible local cosmological discriminators.
Towards realistic singularity-free cosmological models
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
1996-02-01
We present an explicit general family of inhomogeneous cosmological models. The family contains an arbitrary function of comoving time (interpretable as the cosmological scale factor) and four arbitrary parameters. In general, it is a solution of Einstein's field equations for a fluid with anisotropic pressures, but it also includes a big subfamily of perfect-fluid metrics. The most interesting feature of this family is that it contains both all the diagonal separable singularity-free cosmological models recently found and all the Friedmann-Lemaître-Robertson-Walker standard models. This property allows one to speculate on the construction of some interesting models in which the Universe has been FLRW-like from some time on (for instance, since the nucleeosynthesis time), but it also went through primordial singularity-free inhomogeneous epochs (in fact, there are quite natural possibilities in which these primordial epochs are inflationary) without ever violating energy conditions or other physical properties. Nevertheless, the physical processes leading to the isotropization and homogenization of the Universe are not fixed nor indicated by the models themselves. The interesting properties of the general model are studied in some detail. ¢ 1996 The American Physical Society.
Are cosmological data sets consistent with each other within the Λ cold dark matter model?
NASA Astrophysics Data System (ADS)
Raveri, Marco
2016-02-01
We use a complete and rigorous statistical indicator to measure the level of concordance between cosmological data sets, without relying on the inspection of the marginal posterior distribution of some selected parameters. We apply this test to state of the art cosmological data sets, to assess their agreement within the Λ cold dark matter model. We find that there is a good level of concordance between all the experiments with one noticeable exception. There is substantial evidence of tension between the cosmic microwave background temperature and polarization measurements of the Planck satellite and the data from the CFHTLenS weak lensing survey even when applying ultraconservative cuts. These results robustly point toward the possibility of having unaccounted systematic effects in the data, an incomplete modeling of the cosmological predictions or hints toward new physical phenomena.
An analytic cosmology solution of Poincaré gauge gravity
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Chee, Guoying
2016-06-01
A cosmology of Poincaré gauge theory is developed. An analytic solution is obtained. The calculation results agree with observation data and can be compared with the ΛCDM model. The cosmological constant puzzle is the coincidence and fine tuning problem are solved naturally at the same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the vacuum universe, and is derived from the theory naturally rather than added artificially. The dark energy originates from geometry, includes the cosmological constant but differs from it. The analytic expression of the state equations of the dark energy and the density parameters of the matter and the geometric dark energy are derived. The full equations of linear cosmological perturbations and the solutions are obtained.
Maartens, Roy; Koyama, Kazuya
2010-01-01
The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.
One dark matter mystery: halos in the cosmic web
NASA Astrophysics Data System (ADS)
Gaite, Jose
2015-01-01
The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.
The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust
NASA Astrophysics Data System (ADS)
Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel
2018-04-01
Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat ΛCDM cosmological model based on BAO and CMB results, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03± 0.01 {(stat)} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is due entirely to dimming by dust, the measurements can be modeled with a cosmic dust density Ω _IGM^dust = 8 \\cdot 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 . 10-5 mag Mpc-1 in V-band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.
The impact of dark energy on galaxy formation. What does the future of our Universe hold?
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.
Cosmological implications of quantum corrections and higher-derivative extension
NASA Astrophysics Data System (ADS)
Chialva, Diego; Mazumdar, Anupam
2015-02-01
We discuss the challenges for the early universe cosmology from quantum corrections, and in particular higher-derivative terms, in the gravitational and inflaton sectors of the models. The work is divided in two parts. In the first one we review the already well-known issues due to quantum corrections to the inflaton potential, in particular focusing on chaotic/slow-roll single-field models. We will point out some issues concerning the proposed mechanisms to cope with the corrections, and also argue how the presence of higher-derivative corrections could be problematic for those mechanisms. In the second part we will more directly focus on higher-derivative corrections. We will show how, in order to discuss a number of high-energy phenomena relevant to inflation (such as its actual onset) one has to deal with energy scales where the derivative expansion breaks down, presenting problems such as quantum vacuum instability and ghosts. To discuss such phenomena in the convenient framework of the effective theory, one must then abandon the derivative expansion and resort to the full nonlocal formulation of the theory, which is in fact equivalent to re-integrating back the relevant physics, but with the benefit of using a more compact single-field formalism. Finally, we will briefly discuss possible advantages offered by the presence of higher derivatives and a nonlocal theory to build better controlled UV models of inflation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.
We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in amore » manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.« less
NASA Astrophysics Data System (ADS)
Liang, Shi-Dong; Harko, Tiberiu
2015-04-01
Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.
The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust
NASA Astrophysics Data System (ADS)
Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel
2018-06-01
Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.
Higgs field and cosmological parameters in the fractal quantum system
NASA Astrophysics Data System (ADS)
Abramov, Valeriy
2017-10-01
For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift); temperature and anisotropy of the cosmic microwave background radiation were performed.
atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination
NASA Astrophysics Data System (ADS)
Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.
2011-10-01
atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.
Warm inflationary model in loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Ramon
A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.
NASA Astrophysics Data System (ADS)
Knobles, David; Stotts, Steven; Sagers, Jason
2012-03-01
Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.
QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.
Iso, Satoshi; Serpico, Pasquale D; Shimada, Kengo
2017-10-06
If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that-contrarily to the standard model case-a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B-L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.
QCD-Electroweak First-Order Phase Transition in a Supercooled Universe
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Serpico, Pasquale D.; Shimada, Kengo
2017-10-01
If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that—contrarily to the standard model case—a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B -L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.
Gravitational waves from SU( N) glueball dark matter
Soni, Amarjit; Zhang, Yue
2017-05-30
Here, a hidden sector with pure non-abelian gauge symmetry is an elegant and just about the simplest model of dark matter. In this model the dark matter candidate is the lightest bound state made of the confined gauge fields, the dark glueball. In spite of its simplicity, the model has been shown to have several interesting non-standard implications in cosmology. In this work, we explore the gravitational waves from binary boson stars made of self-gravitating dark glueball fields as a natural and important consequence. We derive the dark SU(N) star mass and radius as functions of the only two fundamentalmore » parameters in the model, the glueball mass m and the number of colors N, and identify the regions that could be probed by the LIGO and future gravitational wave observatories.« less
BOOK REVIEW Dark Energy: Theory and Observations Dark Energy: Theory and Observations
NASA Astrophysics Data System (ADS)
Faraoni, Valerio
2011-02-01
The 1998 discovery of what seems an acceleration of the cosmic expansion was made using type Ia supernovae and was later confirmed by other cosmological observations. It has made a huge impact on cosmology, prompting theoreticians to explain the observations and introducing the concept of dark energy into modern physics. A vast literature on dark energy and its alternatives has appeared since then, and this is the first comprehensive book devoted to the subject. This book is addressed to an advanced audience comprising graduate students and researchers in cosmology. Although it contains forty four fully solved problems and the first three chapters are rather introductory, they do not constitute a self-consistent course in cosmology and this book assumes graduate level knowledge of cosmology and general relativity. The fourth chapter focuses on observations, while the rest of this book addresses various classes of models proposed, including the cosmological constant, quintessence, k-essence, phantom energy, coupled dark energy, etc. The title of this book should not induce the reader into believing that only dark energy models are addressed—the authors devote two chapters to discussing conceptually very different approaches alternative to dark energy, including ƒ(R) and Gauss-Bonnet gravity, braneworld and void models, and the backreaction of inhomogeneities on the cosmic dynamics. Two chapters contain a general discussion of non-linear cosmological perturbations and statistical methods widely applicable in cosmology. The final chapter outlines future perspectives and the most likely lines of observational research on dark energy in the future. Overall, this book is carefully drafted, well presented, and does a good job of organizing the information available in the vast literature. The reader is pointed to the essential references and guided in a balanced way through the various proposals aimied at explaining the cosmological observations. Not all classes of models are treated in great detail, as expected from a volume covering an estimated four thousand papers. This much needed volume fills a gap in the literature and is a must-have in the library of young and seasoned researchers alike.
A curious explanation of some cosmological phenomena
NASA Astrophysics Data System (ADS)
Gopal Vishwakarma, Ram
2013-05-01
Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy-stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy-stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy-stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory.
NASA Technical Reports Server (NTRS)
Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard;
2010-01-01
We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.
Differentiating G-inflation from string gas cosmology using the effective field theory approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Minxi; Liu, Junyu; Lu, Shiyun
A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two modelsmore » produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.« less
The consistency of standard cosmology and the BATSE number versus brightness relation
NASA Technical Reports Server (NTRS)
Wickramasinghe, W. A. D. T.; Nemiroff, R. J.; Norris, J. P.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.
1993-01-01
The integrated number-peak-flux relation measured by the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory is compared with several standard cosmological distributions for gamma-ray bursts (GRBs). Friedmann-Robertson-Walker models were used along with the assumption that the bursts are standard candles and have no number or luminosity evolution. For a given Omega spectral shape, we used a free parameter, essentially the comoving number density of bursts, to generate a best fit between the cosmology and the measured relation. Our results are shown for a subsample of the first 260 GRBs recorded by BATSE. We find acceptable fits between simple cosmological models and the brightness distribution data, as determined by the Kolmogorov-Smirnov one-distribution statistical test. One cannot distinguish a single best cosmological model from the goodness of the fits. The best fit implies that BATSE GRBs are complete out to a redshift of about unity. However, significantly higher and lower redshifts, by as much as a factor of 2, are possible for other marginally acceptable fits.
Supersymmetric leptogenesis with a light hidden sector
NASA Astrophysics Data System (ADS)
De Simone, Andrea; Garny, Mathias; Ibarra, Alejandro; Weniger, Christoph
2010-07-01
Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we propose a simple way to circumvent this tension and accommodate naturally thermal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed.
Imprints of spherical nontrivial topologies on the cosmic microwave background.
Niarchou, Anastasia; Jaffe, Andrew
2007-08-24
The apparent low power in the cosmic microwave background (CMB) temperature anisotropy power spectrum derived from the Wilkinson Microwave Anisotropy Probe motivated us to consider the possibility of a nontrivial topology. We focus on simple spherical multiconnected manifolds and discuss their implications for the CMB in terms of the power spectrum, maps, and the correlation matrix. We perform a Bayesian model comparison against the fiducial best-fit cold dark matter model with a cosmological constant based both on the power spectrum and the correlation matrix to assess their statistical significance. We find that the first-year power spectrum shows a slight preference for the truncated cube space, but the three-year data show no evidence for any of these spaces.
SCoPE: an efficient method of Cosmological Parameter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Santanu; Souradeep, Tarun, E-mail: santanud@iucaa.ernet.in, E-mail: tarun@iucaa.ernet.in
Markov Chain Monte Carlo (MCMC) sampler is widely used for cosmological parameter estimation from CMB and other data. However, due to the intrinsic serial nature of the MCMC sampler, convergence is often very slow. Here we present a fast and independently written Monte Carlo method for cosmological parameter estimation named as Slick Cosmological Parameter Estimator (SCoPE), that employs delayed rejection to increase the acceptance rate of a chain, and pre-fetching that helps an individual chain to run on parallel CPUs. An inter-chain covariance update is also incorporated to prevent clustering of the chains allowing faster and better mixing of themore » chains. We use an adaptive method for covariance calculation to calculate and update the covariance automatically as the chains progress. Our analysis shows that the acceptance probability of each step in SCoPE is more than 95% and the convergence of the chains are faster. Using SCoPE, we carry out some cosmological parameter estimations with different cosmological models using WMAP-9 and Planck results. One of the current research interests in cosmology is quantifying the nature of dark energy. We analyze the cosmological parameters from two illustrative commonly used parameterisations of dark energy models. We also asses primordial helium fraction in the universe can be constrained by the present CMB data from WMAP-9 and Planck. The results from our MCMC analysis on the one hand helps us to understand the workability of the SCoPE better, on the other hand it provides a completely independent estimation of cosmological parameters from WMAP-9 and Planck data.« less
Inhomogeneous cosmology and backreaction: Current status and future prospects
NASA Astrophysics Data System (ADS)
Bolejko, Krzysztof; Korzyński, Mikołaj
Astronomical observations reveal hierarchical structures in the universe, from galaxies, groups of galaxies, clusters and superclusters, to filaments and voids. On the largest scales, it seems that some kind of statistical homogeneity can be observed. As a result, modern cosmological models are based on spatially homogeneous and isotropic solutions of the Einstein equations, and the evolution of the universe is approximated by the Friedmann equations. In parallel to standard homogeneous cosmology, the field of inhomogeneous cosmology and backreaction is being developed. This field investigates whether small scale inhomogeneities via nonlinear effects can backreact and alter the properties of the universe on its largest scales, leading to a non-Friedmannian evolution. This paper presents the current status of inhomogeneous cosmology and backreaction. It also discusses future prospects of the field of inhomogeneous cosmology, which is based on a survey of 50 academics working in the field of inhomogeneous cosmology.
Galaxies and Their Host Dark Matter Structures
NASA Astrophysics Data System (ADS)
Hahn, ChangHoon
Through their connection with dark matter structures, galaxies act as tracers of the underlying matter distribution in the Universe. Their observed spatial distribution allows us to precisely measure large scale structure and effectively test cosmological models that explain the content, geometry, and history of the Universe. Current observations from galaxy surveys such as the Baryon Oscillation Spectroscopic Survey have already probed vast cosmic volumes with millions of galaxies and ushered in an era of precision cosmology. The next surveys will probe over an order of magnitude more. With this unprecedented statistical power, the bottleneck of scientific discovery is in the methodology. In this dissertation, I address major methodological challenges in constraining cosmology with the large-scale distribution of galaxies. I develop a robust framework for treating systematic effects, which significantly bias galaxy clustering measurements. I apply new innovative approaches to probabilistic parameter inference that challenge and test the in- correct assumptions of the standard approach. Furthermore, I use precise predictions of structure formation from cosmology and observations of galaxies during the last eight billion years to develop detailed models of how galaxies are impacted by their host dark matter structures. These models provide key insight into the galaxy-halo connection, which bridges the gap between cosmology theory and observations. They also answer crucial questions of how galaxies form and evolve. The developments in this dissertation will help unlock the full potential of future observations and allow us to precisely test cosmological models, General Relativity and modified gravity scenarios, and even particle physics theory beyond the Standard Model.
A quasi-steady state cosmological model with creation of matter
NASA Technical Reports Server (NTRS)
Hoyle, F.; Burbidge, G.; Narlikar, J. V.
1993-01-01
A universe is envisioned in which there was a major creation episode when the mean universal density was about 10 to the -27 g/cu cm. Explicit equations are given for the creation of matter; in a cosmological approximation, these equations lead to expressions for the time-dependence of the cosmological scale factor S(t), but do not entail, as big bang cosmology does, that S(t) tend to zero at some finite time t. The equations therefore possess a universality that is absent from big bang cosmology. Creation occurs when certain conservation equations involving the gradient of a scalar field C(i) are satisfied.
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan; Panda, Sudhakar; Singh, Rajeev
2017-02-01
In this work, we have studied the possibility of setting up Bell's inequality violating experiment in the context of cosmology, based on the basic principles of quantum mechanics. First we start with the physical motivation of implementing the Bell inequality violation in the context of cosmology. Then to set up the cosmological Bell violating test experiment we introduce a model independent theoretical framework using which we have studied the creation of new massive particles by implementing the WKB approximation method for the scalar fluctuations in the presence of additional time-dependent mass contribution in the cosmological perturbation theory. Here for completeness we compute the total number density and the energy density of the newly created particles in terms of the Bogoliubov coefficients using the WKB approximation method. Next using the background scalar fluctuation in the presence of a new time-dependent mass contribution, we explicitly compute the expression for the one point and two point correlation functions. Furthermore, using the results for a one point function we introduce a new theoretical cosmological parameter which can be expressed in terms of the other known inflationary observables and can also be treated as a future theoretical probe to break the degeneracy amongst various models of inflation. Additionally, we also fix the scale of inflation in a model-independent way without any prior knowledge of primordial gravitational waves. Also using the input from a newly introduced cosmological parameter, we finally give a theoretical estimate for the tensor-to-scalar ratio in a model-independent way. Next, we also comment on the technicalities of measurements from isospin breaking interactions and the future prospects of newly introduced massive particles in a cosmological Bell violating test experiment. Further, we cite a precise example of this setup applicable in the context of string theory motivated axion monodromy model. Then we comment on the explicit role of the decoherence effect and high spin on cosmological Bell violating test experiment. Finally, we provide a theoretical bound on the heavy particle mass parameter for scalar fields, gravitons and other high spin fields from our proposed setup.
Mass Function of Galaxy Clusters in Relativistic Inhomogeneous Cosmology
NASA Astrophysics Data System (ADS)
Ostrowski, Jan J.; Buchert, Thomas; Roukema, Boudewijn F.
The current cosmological model (ΛCDM) with the underlying FLRW metric relies on the assumption of local isotropy, hence homogeneity of the Universe. Difficulties arise when one attempts to justify this model as an average description of the Universe from first principles of general relativity, since in general, the Einstein tensor built from the averaged metric is not equal to the averaged stress-energy tensor. In this context, the discrepancy between these quantities is called "cosmological backreaction" and has been the subject of scientific debate among cosmologists and relativists for more than 20 years. Here we present one of the methods to tackle this problem, i.e. averaging the scalar parts of the Einstein equations, together with its application, the cosmological mass function of galaxy clusters.
Weighing the galactic disc using the Jeans equation: lessons from simulations
NASA Astrophysics Data System (ADS)
Candlish, G. N.; Smith, R.; Moni Bidin, C.; Gibson, B. K.
2016-03-01
Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the `Solar' radius. Our simulation data set includes galaxies formed in a cosmological context using state-of-the-art high-resolution cosmological zoom simulations, and other idealized models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scalelengths of the assumed double exponential density distribution, and the scalelength of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally, we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scalelengths may help reconcile conflicting estimates of the local dark matter density in the literature.
THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.
2012-11-01
Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat {Lambda}CDM model). Here we show that the existence of the SGW is perfectly consistent with the {Lambda}CDM model, a result that onlymore » our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the {Lambda}CDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.« less
Quantum descriptions of singularities leading to pair creation. [of gravitons
NASA Technical Reports Server (NTRS)
Misner, C. W.
1974-01-01
A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.
Cosmological signatures of a UV-conformal standard model.
Dorsch, Glauber C; Huber, Stephan J; No, Jose Miguel
2014-09-19
Quantum scale invariance in the UV has been recently advocated as an attractive way of solving the gauge hierarchy problem arising in the standard model. We explore the cosmological signatures at the electroweak scale when the breaking of scale invariance originates from a hidden sector and is mediated to the standard model by gauge interactions (gauge mediation). These scenarios, while being hard to distinguish from the standard model at LHC, can give rise to a strong electroweak phase transition leading to the generation of a large stochastic gravitational wave signal in possible reach of future space-based detectors such as eLISA and BBO. This relic would be the cosmological imprint of the breaking of scale invariance in nature.
Bianchi-III cosmological model with BVDP in modified f(R,T) theory
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Dua, Heena; Chand, Avtar
2018-06-01
In present paper, we have investigated Bianchi type-III cosmological model in modified f(R,T) theory of gravity as proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). To find the solution of field equations, we have used i) bilinear varying deceleration parameter (BVDP) (Mishra et al. in Astrophys. Space Sci. 361:259, 2016b) ii) the fact that expansion scalar of the space-time is proportional to the one of the components of the shear scalar. Physical and geometrical properties of the model have also been discussed along with the pictorial representation of various parameters. We have observed that presented model is compatible with the recent cosmological observations.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamenshchik, A. Yu.; Manti, S.
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less
Modeling the Citation Network by Network Cosmology
Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing
2015-01-01
Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well. PMID:25807397
Modeling the citation network by network cosmology.
Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing
2015-01-01
Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
NASA Astrophysics Data System (ADS)
Piccirilli, M. P.; Landau, S. J.; León, G.
2016-08-01
The cosmic microwave background radiation is one of the most powerful tools to study the early Universe and its evolution, providing also a method to test different cosmological scenarios. We consider alternative inflationary models where the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe can be explained by the self-induced collapse of the inflaton wave function. Some of these alternative models may result indistinguishable from the standard model, while others require to be compared with observational data through statistical analysis. In this article we show results concerning the first Planck release, the Atacama Cosmology Telescope, the South Pole Telescope, the WMAP and Sloan Digital Sky Survey datasets, reaching good agreement between data and theoretical predictions. For future works, we aim to achieve better limits in the cosmological parameters using the last Planck release.
Perturbative stability of SFT-based cosmological models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Federico; Koshelev, Alexey S., E-mail: fgalli@tena4.vub.ac.be, E-mail: alexey.koshelev@vub.ac.be
2011-05-01
We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numericallymore » that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedermann, Florian; Schneider, Robert, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de
We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4Dmore » Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Nathaniel; Koren, Seth; Trott, Timothy
We investigate the cosmology of the minimal model of neutral naturalness, the mirror Twin Higgs. The softly-broken mirror symmetry relating the Standard Model to its twin counterpart leads to significant dark radiation in tension with BBN and CMB observations. We quantify this tension and illustrate how it can be mitigated in several simple scenarios that alter the relative energy densities of the two sectors while respecting the softly-broken mirror symmetry. In particular, we consider both the out-of-equilibrium decay of a new scalar as well as reheating in a toy model of twinned inflation, Twinflation. In both cases the dilution ofmore » energy density in the twin sector does not merely reconcile the existence of a mirror Twin Higgs with cosmological constraints, but predicts contributions to cosmological observables that may be probed in current and future CMB experiments. This raises the prospect of discovering evidence of neutral naturalness through cosmology rather than colliders.« less
Musings on cosmological relaxation and the hierarchy problem
NASA Astrophysics Data System (ADS)
Jaeckel, Joerg; Mehta, Viraf M.; Witkowski, Lukas T.
2016-03-01
Recently Graham, Kaplan and Rajendran proposed cosmological relaxation as a mechanism for generating a hierarchically small Higgs vacuum expectation value. Inspired by this we collect some thoughts on steps towards a solution to the electroweak hierarchy problem and apply them to the original model of cosmological relaxation [Phys. Rev. Lett. 115, 221801 (2015)]. To do so, we study the dynamics of the model and determine the relation between the fundamental input parameters and the electroweak vacuum expectation value. Depending on the input parameters the model exhibits three qualitatively different regimes, two of which allow for hierarchically small Higgs vacuum expectation values. One leads to standard electroweak symmetry breaking whereas in the other regime electroweak symmetry is mainly broken by a Higgs source term. While the latter is not acceptable in a model based on the QCD axion, in non-QCD models this may lead to new and interesting signatures in Higgs observables. Overall, we confirm that cosmological relaxation can successfully give rise to a hierarchically small Higgs vacuum expectation value if (at least) one model parameter is chosen sufficiently small. However, we find that the required level of tuning for achieving this hierarchy in relaxation models can be much more severe than in the Standard Model.
Non-minimal Higgs inflation and frame dependence in cosmology
NASA Astrophysics Data System (ADS)
Steinwachs, Christian F.; Kamenshchik, Alexander Yu.
2013-02-01
We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: "Jordan frame vs. Einstein frame" become more transparent and in principle can be resolved in a natural way.
The best-fit universe. [cosmological models
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1991-01-01
Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.
A two-fluid approximation for calculating the cosmic microwave background anisotropies
NASA Technical Reports Server (NTRS)
Seljak, Uros
1994-01-01
We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.
Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions
NASA Astrophysics Data System (ADS)
Ijjas, Anna
2018-02-01
In this paper, we show how the proper choice of gauge is critical in analyzing the stability of non-singular cosmological bounce solutions based on Horndeski theories. We show that it is possible to construct non-singular cosmological bounce solutions with classically stable behavior for all modes with wavelengths above the Planck scale where: (a) the solution involves a stage of null-energy condition violation during which gravity is described by a modification of Einstein's general relativity; and (b) the solution reduces to Einstein gravity both before and after the null-energy condition violating stage. Similar considerations apply to galilean genesis scenarios.
Dark energy, α-attractors, and large-scale structure surveys
NASA Astrophysics Data System (ADS)
Akrami, Yashar; Kallosh, Renata; Linde, Andrei; Vardanyan, Valeri
2018-06-01
Over the last few years, a large family of cosmological attractor models has been discovered, which can successfully match the latest inflation-related observational data. Many of these models can also describe a small cosmological constant Λ, which provides the most natural description of the present stage of the cosmological acceleration. In this paper, we study α-attractor models with dynamical dark energy, including the cosmological constant Λ as a free parameter. Predominantly, the models with 0Λ > converge to the asymptotic regime with the equation of state w=‑1. However, there are some models with w≠ ‑1, which are compatible with the current observations. In the simplest models with Λ = 0, one has the tensor to scalar ratio r=12α/N2 and the asymptotic equation of state w=‑1+2/9α (which in general differs from its present value). For example, in the seven disk M-theory related model with α = 7/3 one finds r ~ 10‑2 and the asymptotic equation of state is w ~ ‑0.9. Future observations, including large-scale structure surveys as well as B-mode detectors will test these, as well as more general models presented here. We also discuss gravitational reheating in models of quintessential inflation and argue that its investigation may be interesting from the point of view of inflationary cosmology. Such models require a much greater number of e-folds, and therefore predict a spectral index ns that can exceed the value in more conventional models by about 0.006. This suggests a way to distinguish the conventional inflationary models from the models of quintessential inflation, even if they predict w = ‑1.
Baryogenesis and dark matter through a Higgs asymmetry.
Servant, Géraldine; Tulin, Sean
2013-10-11
In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir
We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less
NASA Astrophysics Data System (ADS)
Sharma, N. K.; Singh, J. K.
2014-12-01
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of scale-covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39, 429, 1977). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento 74, 182, 1983) string cosmological model is obtained in this theory. We use the power law relation between scalar field ϕ and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.
A Brane Model, Its Ads-DS States and Their Agitated Extra Dimensions
NASA Astrophysics Data System (ADS)
Günther, Uwe; Vargas Moniz, Paulo; Zhuk, Alexander
2006-02-01
We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields. It is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density.
Deflation of the cosmological constant associated with inflation and dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: geng@phys.nthu.edu.tw, E-mail: chungchi@mx.nthu.edu.tw
2016-06-01
In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.
NASA Astrophysics Data System (ADS)
Ernazarov, K. K.
2017-12-01
We consider a (m + 2)-dimensional Einstein-Gauss-Bonnet (EGB) model with the cosmological Λ-term. We restrict the metrics to be diagonal ones and find for certain Λ = Λ(m) class of cosmological solutions with non-exponential time dependence of two scale factors of dimensions m > 2 and 1. Any solution from this class describes an accelerated expansion of m-dimensional subspace and tends asymptotically to isotropic solution with exponential dependence of scale factors.
Quintessential inflation from a variable cosmological constant in a 5D vacuum
NASA Astrophysics Data System (ADS)
Membiela, Agustin; Bellini, Mauricio
2006-10-01
We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
The cosmological dependence of cluster density profiles
NASA Technical Reports Server (NTRS)
Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.
1994-01-01
We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.
Cosmological implications of baryon acoustic oscillation measurements
Aubourg, Eric
2015-12-01
Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H 0=67.3±1.1 km s -1 Mpc -1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ω m=0.301±0.008 and curvature Ω k=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ 2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H 0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σm ν<0.56 eV (95% confidence), improving to Σm ν<0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat ΛCDM model that allows extra relativistic species, our data combination yields N eff=3.43±0.26; while the LyaF BAO data prefer higher Neff when excluding galaxy BAO, the galaxy BAO alone favor N eff≈3. Finally, when structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.« less
Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10
NASA Astrophysics Data System (ADS)
Demaret, Jacques; de Rop, Yves; Henneaux, Marc
1988-08-01
It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile
Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations
NASA Astrophysics Data System (ADS)
Renneby, Malin; Hilbert, Stefan; Angulo, Raúl E.
2018-05-01
We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a cosmology-rescaling algorithm for N-body simulations. We extend the rescaling method of Angulo & White (2010) and Angulo & Hilbert (2015) to improve its performance on intra-halo scales by using models for the concentration-mass-redshift relation based on excursion set theory. The accuracy of the method is tested with numerical simulations carried out with different cosmological parameters. We find that predictions for median density profiles are more accurate than ˜5 % for haloes with masses of 1012.0 - 1014.5h-1 M⊙ for radii 0.05 < r/r200m < 0.5, and for cosmologies with Ωm ∈ [0.15, 0.40] and σ8 ∈ [0.6, 1.0]. For larger radii, 0.5 < r/r200m < 5, the accuracy degrades to ˜20 %, due to inaccurate modelling of the cosmological and redshift dependence of the splashback radius. For changes in cosmology allowed by current data, the residuals decrease to ≲ 2 % up to scales twice the virial radius. We illustrate the usefulness of the method by estimating the mean halo mass of a mock galaxy group sample. We find that the algorithm's accuracy is sufficient for current data. Improvements in the algorithm, particularly in the modelling of baryons, are likely required for interpreting future (dark energy task force stage IV) experiments.
A cosmology-independent calibration of type Ia supernovae data
NASA Astrophysics Data System (ADS)
Hauret, C.; Magain, P.; Biernaux, J.
2018-06-01
Recently, the common methodology used to transform type Ia supernovae (SNe Ia) into genuine standard candles has been suffering criticism. Indeed, it assumes a particular cosmological model (namely the flat ΛCDM) to calibrate the standardisation corrections parameters, i.e. the dependency of the supernova peak absolute magnitude on its colour, post-maximum decline rate and host galaxy mass. As a result, this assumption could make the data compliant to the assumed cosmology and thus nullify all works previously conducted on model comparison. In this work, we verify the viability of these hypotheses by developing a cosmology-independent approach to standardise SNe Ia data from the recent JLA compilation. Our resulting corrections turn out to be very close to the ΛCDM-based corrections. Therefore, even if a ΛCDM-based calibration is questionable from a theoretical point of view, the potential compliance of SNe Ia data does not happen in practice for the JLA compilation. Previous works of model comparison based on these data do not have to be called into question. However, as this cosmology-independent standardisation method has the same degree of complexity than the model-dependent one, it is worth using it in future works, especially if smaller samples are considered, such as the superluminous type Ic supernovae.
Accelerating universe with time variation of G and Λ
NASA Astrophysics Data System (ADS)
Darabi, F.
2012-03-01
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach's cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach's cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρ˜ a -4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.
Vacuum phase transition solves the H0 tension
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Linder, Eric V.; Melchiorri, Alessandro
2018-02-01
Taking the Planck cosmic microwave background data and the more direct Hubble constant measurement data as unaffected by systematic offsets, the values of the Hubble constant H0 interpreted within the Λ CDM cosmological constant and cold dark matter cosmological model are in ˜3.3 σ tension. We show that the Parker vacuum metamorphosis (VM) model, physically motivated by quantum gravitational effects and with the same number of parameters as Λ CDM , can remove the H0 tension and can give an improved fit to data (up to a mean Δ χ2=-7.5 ). It also ameliorates tensions with weak lensing data and the high redshift Lyman alpha forest data. Considering Bayesian evidence, we found in the case of the Planck data set alone positive evidence for a VM model against a cosmological constant both in the six- and nine-parameter framework. When the R16 data set is also considered, we found a strong evidence for the VM model against a cosmological constant in nine-parameter space. We separately consider a scale-dependent scaling of the gravitational lensing amplitude, such as provided by modified gravity, neutrino mass, or cold dark energy, motivated by the somewhat different cosmological parameter estimates for low and high CMB multipoles. We find that no such scale dependence is preferred.
Integrated cosmological probes: concordance quantified
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicola, Andrina; Amara, Adam; Refregier, Alexandre, E-mail: andrina.nicola@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch
2017-10-01
Assessing the consistency of parameter constraints derived from different cosmological probes is an important way to test the validity of the underlying cosmological model. In an earlier work [1], we computed constraints on cosmological parameters for ΛCDM from an integrated analysis of CMB temperature anisotropies and CMB lensing from Planck, galaxy clustering and weak lensing from SDSS, weak lensing from DES SV as well as Type Ia supernovae and Hubble parameter measurements. In this work, we extend this analysis and quantify the concordance between the derived constraints and those derived by the Planck Collaboration as well as WMAP9, SPT andmore » ACT. As a measure for consistency, we use the Surprise statistic [2], which is based on the relative entropy. In the framework of a flat ΛCDM cosmological model, we find all data sets to be consistent with one another at a level of less than 1σ. We highlight that the relative entropy is sensitive to inconsistencies in the models that are used in different parts of the analysis. In particular, inconsistent assumptions for the neutrino mass break its invariance on the parameter choice. When consistent model assumptions are used, the data sets considered in this work all agree with each other and ΛCDM, without evidence for tensions.« less
A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity
NASA Astrophysics Data System (ADS)
Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan
2018-02-01
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology
NASA Astrophysics Data System (ADS)
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-01
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (Λ CDM ) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in Λ CDM , they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that Λ CDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l ≲30 ), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
Redshift drift constraints on holographic dark energy
NASA Astrophysics Data System (ADS)
He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-03-01
The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-27
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
Can compactifications solve the cosmological constant problem?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertzberg, Mark P.; Center for Theoretical Physics, Department of Physics,Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139; Masoumi, Ali
2016-06-30
Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain whymore » Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.« less
From Luminous Hot Stars to Starburst Galaxies
NASA Astrophysics Data System (ADS)
Conti, Peter S.; Crowther, Paul A.; Leitherer, Claus
2012-10-01
1. Introduction; 2. Observed properties; 3. Stellar atmospheres; 4. Stellar winds; 5. Evolution of single stars; 6. Binaries; 7. Birth of massive stars and star clusters; 8. The interstellar environment; 9. From giant HII regions to HII galaxies; 10. Starburst phenomena; 11. Cosmological implications; References; Index.
Asteroid surface materials - Mineralogical characterizations and cosmological implications
NASA Technical Reports Server (NTRS)
Gaffey, M. J.; Mccord, T. B.
1977-01-01
The theoretical basis for the interpretation of diagnostic spectral features is examined and previous characterizations of asteroid surface materials are considered. A summary is provided of results reported by Gaffey and McCord (1977) who have utilized the most sophisticated interpretive techniques available to interpret the spectral reflectance data of about 65 asteroids for mineralogic and petrologic information. Cosmological implications related to the study of asteroid surface materials are also considered, taking into account source bodies for the meteorites, postaccretionary thermal history, significant factors of asteroid thermal history, and the Apollo and Amor asteroids. It is found that the asteroids exhibit surface materials made up of assemblages of meteoritic minerals. The relative abundance of meteorite types reaching the earth's surface is very different from the population of mineralogic types on asteroid surfaces. The earth-crossing or -approaching asteroids apparently derive from a restricted source region or population which is very strongly depleted in the C2-like assemblages that dominate the belt as a whole.
Isotropy of low redshift type Ia supernovae: A Bayesian analysis
NASA Astrophysics Data System (ADS)
Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.
2018-04-01
The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.
Einstein Universe Revisited and End of Dark ERA
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus S.
2015-01-01
Historically the earliest general relativistic cosmological solution was received by Einstein himself as homogenous, isotropic one. In accordance with European cosmology it was expected static. The Eternal Universe as scientific model is conflicting with the existed theological model of the Universe created by God, therefore, of the limited age. Christianity, younger Islam, older Judaism are based on creationism. Much older oriental traditions such us Hinduism and Buddhism are based on conceptions of eternal and cyclic Universe which are closer to scientific worldview. To have static universe Einstein needed a factor to counteract gravity and postulated cosmological term and considered it as a disadvantage of the theory. This aesthetic dissatisfaction was amplified by interpretation distance-redshift relationship as a cosmological expansion effect. Emerged scientific cosmological community (excluding Hubble himself - almost always) endorsed the concept of expanding Universe. At the same time, as it is shown in this report, a natural well known factors do exist to counteract gravity. They are inertial centrifugal and Coriolis forces finding their geometrical presentation in the relativity theory.
Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology
NASA Astrophysics Data System (ADS)
Singh, Parampreet; Wilson-Ewing, Edward
2014-02-01
We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.
Planck Cosmology, Planck Clusters, and What is to Come
NASA Astrophysics Data System (ADS)
Rozo, Eduardo
2015-08-01
Planck's view of the Cosmic Microwave Background (CMB) has ushered in a new era of precision cosmology. In the process, hints of tension with local universe cosmological probes have appeared, including not only tension between the CMB and local Hubble constant measurements, but between the CMB and Planck's own analysis of the SZ galaxy clusters discovered by Planck. We will discuss the state of cluster cosmology in light of these results, and comment on what is to come. Should these tensions continue to exist with ever future measurements of ever increasing precision, the current Planck results will stand as some of the first lines of evidence towards finally breaking the standard LCDM cosmological model!
Cosmological applications of F (T ,TG) gravity
NASA Astrophysics Data System (ADS)
Kofinas, Georgios; Saridakis, Emmanuel N.
2014-10-01
We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.
Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL
linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino
Carroll, Sean
2018-01-09
General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.
NASA Astrophysics Data System (ADS)
Roy, S. R.; Banerjee, S. K.
1992-11-01
A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.
Holographic dark energy with cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by usingmore » the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jazayeri, Sadra; Mukohyama, Shinji; Kavli Institute for the Physics and Mathematics of the Universe
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et al. is satisfied if ghostmore » inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.« less
Is Space Really Expanding? A Counterexample
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2007-03-01
In all Friedman models, the cosmological redshift is widely interpreted as a consequence of the general-relativistic phenomenon of expansion of space. Other commonly believed consequences of this phenomenon are superluminal recession velocities of distant galaxies, and the distance to the particle horizon greater than ct (where t is the age of the Universe), in apparent conflict with special relativity. Here, we study a particular Friedman model: empty universe. This model exhibits both cosmological redshift, superluminal velocities and infinite distance to the horizon. However, we show that the cosmological redshift is there simply a relativistic Doppler shift. Moreover, apparently superluminal velocities and ‘acausal’ distance to the horizon are in fact a direct consequence of special-relativistic phenomenon of time dilation, as well as of the adopted definition of distance in cosmology. There is no conflict with special relativity, whatsoever. In particular, inertial recession velocities are subluminal. Since in the real Universe, sufficiently distant galaxies recede with relativistic velocities, these special-relativistic effects must be at least partly responsible for the cosmological redshift and the aforementioned ‘superluminalities’, commonly attributed to the expansion of space. Let us finish with a question resembling a Buddhism-Zen ‘koan’: in an empty universe, what is expanding?
The Q continuum simulation: Harnessing the power of GPU accelerated supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitmann, Katrin; Frontiere, Nicholas; Sewell, Chris
2015-08-01
Modeling large-scale sky survey observations is a key driver for the continuing development of high-resolution, large-volume, cosmological simulations. We report the first results from the "Q Continuum" cosmological N-body simulation run carried out on the GPU-accelerated supercomputer Titan. The simulation encompasses a volume of (1300 Mpc)(3) and evolves more than half a trillion particles, leading to a particle mass resolution of m(p) similar or equal to 1.5 . 10(8) M-circle dot. At thismass resolution, the Q Continuum run is currently the largest cosmology simulation available. It enables the construction of detailed synthetic sky catalogs, encompassing different modeling methodologies, including semi-analyticmore » modeling and sub-halo abundance matching in a large, cosmological volume. Here we describe the simulation and outputs in detail and present first results for a range of cosmological statistics, such as mass power spectra, halo mass functions, and halo mass-concentration relations for different epochs. We also provide details on challenges connected to running a simulation on almost 90% of Titan, one of the fastest supercomputers in the world, including our usage of Titan's GPU accelerators.« less
NASA Astrophysics Data System (ADS)
Chiang, Cheng-Wei; Ramsey-Musolf, Michael J.; Senaha, Eibun
2018-01-01
We analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative treatment of the phase transition dynamics.
Constraints on Janus Cosmological model from recent observations of supernovae type Ia
NASA Astrophysics Data System (ADS)
D'Agostini, G.; Petit, J. P.
2018-07-01
From our exact solution of the Janus Cosmological equation we derive the relation of the predicted magnitude of distant sources versus their red shift. The comparison, through this one free parameter model, to the available data from 740 distant supernovae shows an excellent fit.
Large scale structures in the kinetic gravity braiding model that can be unbraided
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rampei; Yamamoto, Kazuhiro, E-mail: rampei@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp
2011-04-01
We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation inmore » the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey.« less
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1989-01-01
A Friedmann-Robertson-Walker cosmology with energy density decreasing in expansion as 1/R-squared, where R is the Robertson-Walker scale factor, is studied. In such a model the universe expands with constant velocity; hence the term coasting cosmology. Observational consequences of such a model include the age of the universe, the luminosity distance-redshift relation (the Hubble diagram), the angular diameter distance-redshift relation, and the galaxy number count as a function of redshift. These observations are used to limit the parameters of the model. Among the interesting consequences of the model are the possibility of an ever-expanding closed universe, a model universe with multiple images at different redshifts of the same object, a universe with Omega - 1 not equal to 0 stable in expansion, and a closed universe with radius smaller than 1/H(0).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, Yves; Foffa, Stefano; Kunz, Martin
We study the cosmological predictions of two recently proposed non-local modifications of General Relativity. Both models have the same number of parameters as ΛCDM, with a mass parameter m replacing the cosmological constant. We implement the cosmological perturbations of the non-local models into a modification of the CLASS Boltzmann code, and we make a full comparison to CMB, BAO and supernova data. We find that the non-local models fit these datasets very well, at the same level as ΛCDM. Among the vast literature on modified gravity models, this is, to our knowledge, the only example which fits data as wellmore » as ΛCDM without requiring any additional parameter. For both non-local models parameter estimation using Planck +JLA+BAO data gives a value of H{sub 0} slightly higher than in ΛCDM.« less
Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2015-09-01
We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.
Cosmological reconstruction and stability in F(T,TG) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
This study investigates the reconstruction scheme and stability of some well-known cosmological models in F(T,TG) gravity, where T and TG represent the torsion scalar and Gauss-Bonnet invariant torsion term, respectively. For this purpose, we consider isotropic homogeneous universe model and develop the corresponding field equations. It is found that we can reproduce cosmological evolution for power-law, de Sitter solutions, phantom/nonphantom era and Λ cold dark matter by applying reconstruction scheme in this gravity. Finally, we discuss stability of the reconstructed power-law and de Sitter solutions as well as two well-known F(T,TG) models. It is concluded that all these models provide stable solutions for suitable choices of the constants except power-law solutions.
Principle of Spacetime and Black Hole Equivalence
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2016-06-01
Modelling the universe without relying on a set of hypothetical entities (HEs) to explain observations and overcome problems and difficulties is essential to developing a physical cosmology. The well-known big bang cosmology, widely accepted as the standard model, stands on two fundamentals, which are Einstein’s general relativity (GR) that describes the effect of matter on spacetime and the cosmological principle (CP) of spacetime isotropy and homogeneity. The field equation of GR along with the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of spacetime derived from CP generates the Friedmann equation (FE) that governs the development and dynamics of the universe. The big bang theory has made impressive successes in explaining the universe, but still has problems and solutions of them rely on an increasing number of HEs such as inflation, dark matter, dark energy, and so on. Recently, the author has developed a new cosmological model called black hole universe, which, instead of making many those hypotheses, only includes a new single postulate (or a new principle) to the cosmology - Principle of Spacetime and Black Hole Equivalence (SBHEP) - to explain all the existing observations of the universe and overcome all the existing problems in conventional cosmologies. This study thoroughly demonstrates how this newly developed black hole universe model, which therefore stands on the three fundamentals (GR, CP, and SBHEP), can fully explain the universe as well as easily conquer the difficulties according to the well-developed physics, thus, neither needing any other hypotheses nor existing any unsolved difficulties. This work was supported by NSF/REU (Grant #: PHY-1263253) at Alabama A & M University.
NASA Astrophysics Data System (ADS)
Thompson, Rodger I.
2018-04-01
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.
NASA Astrophysics Data System (ADS)
Thompson, Rodger I.
2018-07-01
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar φ with respect to the natural log of the scale factor a, β (φ)=d φ/d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar φ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated `beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that Λ cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.
Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions
NASA Astrophysics Data System (ADS)
Cicoli, M.; Burgess, C. P.; Quevedo, F.
2011-10-01
We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: ( i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); ( ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; ( iii) a rich spectrum of string and KK states at TeV scales; and ( iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3 or T 4-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are likely to be present on K3 or T 4-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and briefly discuss some of their astrophysical, cosmological and phenomenological implications.
Diffuse neutrino supernova background as a cosmological test
NASA Astrophysics Data System (ADS)
Barranco, J.; Bernal, A.; Delepine, D.
2018-05-01
The future detection and measurement of the diffuse neutrino supernova background will provide us with information about supernova neutrino emission and the cosmic core-collapse supernova rate. Little has been said about the information that this measurement could give us about the expansion history of the Universe. The purpose of this article is to study the change of the predicted diffuse supernova neutrino background as a function of the cosmological model. In particular, we study three different models: the Λ–Cold Dark Matter model, the Logotropic universe and a bulk viscous matter-dominated universe. By fitting the free parameters of each model with the supernova Ia probe, we calculate the predicted number of events in these three models. We found that the spectra and number of events for the Λ–Cold dark matter model and the Logotropic model are almost indistinguishable, while a bulk viscous matter-dominated cosmological model predicts more events.
Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity
NASA Astrophysics Data System (ADS)
Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.
2018-04-01
The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.
Goldstone models of modified gravity
NASA Astrophysics Data System (ADS)
Brax, Philippe; Valageas, Patrick
2017-02-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic halos, the coexistence of small and large substructures in their outer regions could lead to observational signatures of these models.
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
NASA Astrophysics Data System (ADS)
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
Cosmology from galaxy clusters as observed by Planck
NASA Astrophysics Data System (ADS)
Pierpaoli, Elena
We propose to use current all-sky data on galaxy clusters in the radio/infrared bands in order to constrain cosmology. This will be achieved performing parameter estimation with number counts and power spectra for galaxy clusters detected by Planck through their Sunyaev—Zeldovich signature. The ultimate goal of this proposal is to use clusters as tracers of matter density in order to provide information about fundamental properties of our Universe, such as the law of gravity on large scale, early Universe phenomena, structure formation and the nature of dark matter and dark energy. We will leverage on the availability of a larger and deeper cluster catalog from the latest Planck data release in order to include, for the first time, the cluster power spectrum in the cosmological parameter determination analysis. Furthermore, we will extend clusters' analysis to cosmological models not yet investigated by the Planck collaboration. These aims require a diverse set of activities, ranging from the characterization of the clusters' selection function, the choice of the cosmological cluster sample to be used for parameter estimation, the construction of mock samples in the various cosmological models with correct correlation properties in order to produce reliable selection functions and noise covariance matrices, and finally the construction of the appropriate likelihood for number counts and power spectra. We plan to make the final code available to the community and compatible with the most widely used cosmological parameter estimation code. This research makes use of data from the NASA satellites Planck and, less directly, Chandra, in order to constrain cosmology; and therefore perfectly fits the NASA objectives and the specifications of this solicitation.
Constraints on Omega_0 and cluster evolution using the ROSAT log N-log S relation
NASA Astrophysics Data System (ADS)
Mathiesen, B.; Evrard, A. E.
1998-04-01
We examine the likelihoods of different cosmological models and cluster evolutionary histories by comparing semi-analytical predictions of X-ray cluster number counts with observational data from the ROSAT satellite. We model cluster abundance as a function of mass and redshift using a Press-Schechter distribution, and assume that the temperature T(M,z) and bolometric luminosity L_X(M,z) scale as power laws in mass and epoch, in order to construct expected counts as a function of X-ray flux. The L_X-M scaling is fixed using the local luminosity function, while the degree of evolution in the X-ray luminosity with redshift L_X~(1+z)^s is left open, with s an interesting free parameter which we investigate. We examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices n=0, -1 and -2. An independent constraint arising from the slope of the luminosity-temperature relation strongly favours the n=-2 spectrum. The expected counts demonstrate a strong dependence on Omega_0 and s, with lesser dependence on lambda_0 and n. Comparison with the observed counts reveals a `ridge' of acceptable models in the Omega_0-s plane, roughly following the relation s~6Omega_0 and spanning low-density models with a small degree of evolution to Omega=1 models with strong evolution. Models with moderate evolution are revealed to have a strong lower limit of Omega_0>~0.3, and low-evolution models imply that Omega_0<1 at a very high confidence level. We suggest observational tests for breaking the degeneracy along this ridge, and discuss implications for evolutionary histories of the intracluster medium.
Conformally flat tilted Bianchi Type-V cosmological models in general relativity
NASA Astrophysics Data System (ADS)
Bali, Raj; Meena, B. L.
2004-05-01
We have investigated two conformally flat tilted Bianchi Type-V cosmological models in general relativity. To get a determinate solution, we have assumed a supplementary condition A = B^n between metric potentials where n is a constant. The behaviour of the model for n=2 is discussed in detail. Various physical and geometrical aspects of the models are also discussed.
Value of the Cosmological Constant in Emergent Quantum Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig
It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence lengthmore » $$\\approx 100$$km and bandwidth $$\\approx 3000$$ Hz.« less
NASA Astrophysics Data System (ADS)
Cruz, Cláudio Nassif
2016-06-01
This research aims to develop a new approach towards a consistent coupling of electromagnetic and gravitational fields, by using an electron that couples with a weak gravitational potential by means of its electromagnetic field. To accomplish this, we must first build a new model which provides the electromagnetic nature of both the mass and the energy of the electron, and which is implemented with the idea of γ-photon decay into an electron-positron pair. After this, we place the electron (or positron) in the presence of a weak gravitational potential given in the intergalactic medium, so that its electromagnetic field undergoes a very small perturbation, thus leading to a slight increase in the field’s electromagnetic energy density. This perturbation takes place by means of a tiny coupling constant ξ because gravity is a very weak interaction compared with the electromagnetic one. Thus, we realize that ξ is a new dimensionless universal constant, which reminds us of the fine structure constant α; however, ξ is much smaller than α because ξ takes into account gravity, i.e. ξ ∝G. We find ξ = V/c≅1.5302 × 10-22, where c is the speed of light and V ∝G(≅4.5876 × 10-14m/s) is a universal minimum speed that represents the lowest limit of speed for any particle. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks the Lorentz symmetry. The metric of the flat spacetime shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological scales (cosmological anti-gravity). The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained in agreement with the observational data.
On classical and quantum dynamics of tachyon-like fields and their cosmological implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijević, Dragoljub D., E-mail: ddrag@pmf.ni.ac.rs; Djordjević, Goran S., E-mail: ddrag@pmf.ni.ac.rs; Milošević, Milan, E-mail: ddrag@pmf.ni.ac.rs
2014-11-24
We consider a class of tachyon-like potentials, motivated by string theory, D-brane dynamics and inflation theory in the context of classical and quantum mechanics. A formalism for describing dynamics of tachyon fields in spatially homogenous and one-dimensional - classical and quantum mechanical limit is proposed. A few models with concrete potentials are considered. Additionally, possibilities for p-adic and adelic generalization of these models are discussed. Classical actions and corresponding quantum propagators, in the Feynman path integral approach, are calculated in a form invariant on a change of the background number fields, i.e. on both archimedean and nonarchimedean spaces. Looking formore » a quantum origin of inflation, relevance of p-adic and adelic generalizations are briefly discussed.« less
Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, George F.R.; Platts, Emma; Weltman, Amanda
2016-04-01
We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof ofmore » principle, with no definite claim on the physical mechanism required for the present dark energy to decay.« less
Dynamical analysis on f(R, G) cosmology
NASA Astrophysics Data System (ADS)
Santos da Costa, S.; Roig, F. V.; Alcaniz, J. S.; Capozziello, S.; De Laurentis, M.; Benetti, M.
2018-04-01
We use a dynamical system approach to study the cosmological viability of f(R, G) gravity theories. The method consists of formulating the evolution equations as an autonomous system of ordinary differential equations, using suitable variables. The formalism is applied to a class of models in which f(R, G)\\propto RnG1-n and its solutions and corresponding stability are analysed in detail. New accelerating solutions that can be attractors in the phase space are found. We also find that this class of models does not exhibit a matter-dominated epoch, a solution which is inconsistent with current cosmological observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moresco, Michele; Cimatti, Andrea; Citro, Annalisa
2016-05-01
Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedentedmore » statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z {sub t} = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.« less
A new f(R) model in the light of local gravity test and late-time cosmology
NASA Astrophysics Data System (ADS)
Nautiyal, Akhilesh; Panda, Sukanta; Patel, Avani
We propose a new model of f(R) gravity containing Arctan function in the Lagrangian. We show here that this model satisfies fifth force constraint unlike a similar model in 2013 by Kruglov. In addition to this, we carry out the fixed point analysis as well as comment on the existence of curvature singularity in this model. The cosmological evolution for this f(R) gravity model is also analyzed in the Friedmann-Robertson-Walker (FRW) background. To understand observational significance of the model, cosmological parameters are obtained numerically and compared with those of Lambda cold dark matter (ΛCDM) model. We also scrutinize the model with supernova data. We apply Om diagnostic given by Sahni et al. in 2008 to the model. Using this diagnostic, we detect the distinction between cosmic evolution caused by the f(R) model and ΛCDM. We find best-fit parameter values of the model using baryon acoustic oscillations data.
Tilted Kantowski-Sachs cosmological model in Brans-Dicke theory of gravitation
NASA Astrophysics Data System (ADS)
Pawar, D. D.; Shahare, S. P.; Dagwal, V. J.
2018-02-01
Tilted Kantowski-Sachs cosmological model in Brans-Dicke theory for perfect fluid has been investigated. The general solution of field equations in Brans-Dicke theory for the combined scalar and tensor field are obtained by using power law relation. Also, some physical and geometrical parameters are obtained and discussed.
Star formation in the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Leichenauer, Stefan
2009-03-15
We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.
Robust model comparison disfavors power law cosmology
NASA Astrophysics Data System (ADS)
Shafer, Daniel L.
2015-05-01
Late-time power law expansion has been proposed as an alternative to the standard cosmological model and shown to be consistent with some low-redshift data. We test power law expansion against the standard flat Λ CDM cosmology using goodness-of-fit and model comparison criteria. We consider type Ia supernova (SN Ia) data from two current compilations (JLA and Union2.1) along with a current set of baryon acoustic oscillation (BAO) measurements that includes the high-redshift Lyman-α forest measurements from BOSS quasars. We find that neither power law expansion nor Λ CDM is strongly preferred over the other when the SN Ia and BAO data are analyzed separately but that power law expansion is strongly disfavored by the combination. We treat the Rh=c t cosmology (a constant rate of expansion) separately and find that it is conclusively disfavored by all combinations of data that include SN Ia observations and a poor overall fit when systematic errors in the SN Ia measurements are ignored, despite a recent claim to the contrary. We discuss this claim and some concerns regarding hidden model dependence in the SN Ia data.
On anthropic solutions of the cosmological constant problem
NASA Astrophysics Data System (ADS)
Banks, Tom; Dine, Michael; Motl, Lubos
2001-01-01
Motivated by recent work of Bousso and Polchinski (BP), we study theories which explain the small value of the cosmological constant using the anthropic principle. We argue that simultaneous solution of the gauge hierarchy problem is a strong constraint on any such theory. We exhibit three classes of models which satisfy these constraints. The first is a version of the BP model with precisely two large dimensions. The second involves 6-branes and antibranes wrapped on supersymmetric 3-cycles of Calabi-Yau manifolds, and the third is a version of the irrational axion model. All of them have possible problems in explaining the size of microwave background fluctuations. We also find that most models of this type predict that all constants in the low energy lagrangian, as well as the gauge groups and representation content, are chosen from an ensemble and cannot be uniquely determined from the fundamental theory. In our opinion, this significantly reduces the appeal of this kind of solution of the cosmological constant problem. On the other hand, we argue that the vacuum selection problem of string theory might plausibly have an anthropic, cosmological solution.
Dynamical approach to the cosmological constant.
Mukohyama, Shinji; Randall, Lisa
2004-05-28
We consider a dynamical approach to the cosmological constant. There is a scalar field with a potential whose minimum occurs at a generic, but negative, value for the vacuum energy, and it has a nonstandard kinetic term whose coefficient diverges at zero curvature as well as the standard kinetic term. Because of the divergent coefficient of the kinetic term, the lowest energy state is never achieved. Instead, the cosmological constant automatically stalls at or near zero. The merit of this model is that it is stable under radiative corrections and leads to stable dynamics, despite the singular kinetic term. The model is not complete, however, in that some reheating is required. Nonetheless, our approach can at the very least reduce fine-tuning by 60 orders of magnitude or provide a new mechanism for sampling possible cosmological constants and implementing the anthropic principle.
Light sterile neutrinos and inflationary freedom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gariazzo, S.; Giunti, C.; Laveder, M., E-mail: gariazzo@to.infn.it, E-mail: giunti@to.infn.it, E-mail: laveder@pd.infn.it
2015-04-01
We perform a cosmological analysis in which we allow the primordial power spectrum of scalar perturbations to assume a shape that is different from the usual power-law predicted by the simplest models of cosmological inflation. We parameterize the free primordial power spectrum with a ''piecewise cubic Hermite interpolating polynomial'' (PCHIP). We consider a 3+1 neutrino mixing model with a sterile neutrino having a mass at the eV scale, which can explain the anomalies observed in short-baseline neutrino oscillation experiments. We find that the freedom of the primordial power spectrum allows to reconcile the cosmological data with a fully thermalized sterilemore » neutrino in the early Universe. Moreover, the cosmological analysis gives us some information on the shape of the primordial power spectrum, which presents a feature around the wavenumber k=0.002 Mpc{sup −1}.« less
Through the looking glass: why the `cosmic horizon' is not a horizon
NASA Astrophysics Data System (ADS)
van Oirschot, Pim; Kwan, Juliana; Lewis, Geraint F.
2010-06-01
The present standard model of cosmology, Λ cold dark matter (ΛCDM), contains some intriguing coincidences. Not only are the dominant contributions to the energy density approximately of the same order at the present epoch, but we also note that contrary to the emergence of cosmic acceleration as a recent phenomenon, the time-averaged value of the deceleration parameter over the age of the Universe is nearly zero. Curious features like these in ΛCDM give rise to a number of alternate cosmologies being proposed to remove them, including models with an equation of state w = -1/3. In this paper, we examine the validity of some of these alternate models and we also address some persistent misconceptions about the Hubble sphere and the event horizon that lead to erroneous conclusions about cosmology. Research undertaken as part of the Commonwealth Cosmology Initiative (CCI: http://www.thecci.org), an international collaboration supported by the Australian Research Council. E-mail: pimvanoirschot@gmail.com
Curvature perturbation and domain wall formation with pseudo scaling scalar dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ema, Yohei; Nakayama, Kazunori; Takimoto, Masahiro, E-mail: ema@hep-th.phys.s.u-tokyo.ac.jp, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp, E-mail: takimoto@hep-th.phys.s.u-tokyo.ac.jp
2016-02-01
Cosmological dynamics of scalar field with a monomial potential φ{sup n} with a general background equation of state is revisited. It is known that if n is smaller than a critical value, the scalar field exhibits a coherent oscillation and if n is larger it obeys a scaling solution without oscillation. We study in detail the case where n is equal to the critical value, and find a peculiar scalar dynamics which is neither oscillating nor scaling solution, and we call it a pseudo scaling solution. We also discuss cosmological implications of a pseudo scaling scalar dynamics, such as themore » curvature perturbation and the domain wall problem.« less
Cosmological implications of Dark Matter bound states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitridate, Andrea; Redi, Michele; Smirnov, Juri
2017-05-01
We present generic formulæ for computing how Sommerfeld corrections together with bound-state formation affects the thermal abundance of Dark Matter with non-abelian gauge interactions. We consider DM as a fermion 3plet (wino) or 5plet under SU(2) {sub L} . In the latter case bound states raise to 11.5 TeV the DM mass required to reproduce the cosmological DM abundance and give indirect detection signals such as (for this mass) a dominant γ-line around 70 GeV. Furthermore, we consider DM co-annihilating with a colored particle, such as a squark or a gluino, finding that bound state effects are especially relevant inmore » the latter case.« less
Gauge Fields in Homogeneous and Inhomogeneous Cosmologies
NASA Astrophysics Data System (ADS)
Darian, Bahman K.
Despite its formidable appearance, the study of classical Yang-Mills (YM) fields on homogeneous cosmologies is amenable to a formal treatment. This dissertation is a report on a systematic approach to the general construction of invariant YM fields on homogeneous cosmologies undertaken for the first time in this context. This construction is subsequently followed by the investigation of the behavior of YM field variables for the most simple of self-gravitating YM fields. Particularly interesting was a dynamical system analysis and the discovery of chaotic signature in the axially symmetric Bianchi I-YM cosmology. Homogeneous YM fields are well studied and are known to have chaotic properties. The chaotic behavior of YM field variables in homogeneous cosmologies might eventually lead to an invariant definition of chaos in (general) relativistic cosmological models. By choosing the gauge fields to be Abelian, the construction and the field equations presented so far reduce to that of electromagnetic field in homogeneous cosmologies. A perturbative analysis of gravitationally interacting electromagnetic and scalar fields in inhomogeneous cosmologies is performed via the Hamilton-Jacobi formulation of general relativity. An essential feature of this analysis is the spatial gradient expansion of the generating functional (Hamilton principal function) to solve the Hamiltonian constraint. Perturbations of a spatially flat Friedman-Robertson-Walker cosmology with an exponential potential for the scalar field are presented.
The impact of dark energy on galaxy formation. What does the future of our Universe hold?
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-07-01
We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilize hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM (cold dark matter) Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total comoving density of stars ever formed by ≈ 15 per cent. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011 M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.
Dark Energy from structure: a status report
NASA Astrophysics Data System (ADS)
Buchert, Thomas
2008-02-01
The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein’s theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (“morphon field”) modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.
Temperature and Density Conditions for Nucleogenesis by Fusion Processes in Stars
DOE R&D Accomplishments Database
Fowler, W. A.
1958-06-01
An attempt is made to correlate nuclear findings with what is known about stellar evolution. Some discussion is given to present research in nuclear physics and astrophysics which may lead to further elucidation of the problem of nucleogenesis and of its cosmological implications. (M.H.R.)
Lagrangian derivation of the two coupled field equations in the Janus cosmological model
NASA Astrophysics Data System (ADS)
Petit, Jean-Pierre; D'Agostini, G.
2015-05-01
After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity can successfully realize each of the four cosmological epochs.
A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity
NASA Astrophysics Data System (ADS)
Kuiroukidis, A.
We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc
Constraining f(R) gravity in solar system, cosmology and binary pulsar systems
NASA Astrophysics Data System (ADS)
Liu, Tan; Zhang, Xing; Zhao, Wen
2018-02-01
The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.
Growth rate in the dynamical dark energy models.
Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina
Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.
Robust constraint on cosmic textures from the cosmic microwave background.
Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V
2012-06-15
Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.
Dynamics of supersymmetric chameleons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk
2013-10-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, wemore » go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.« less
Cosmologies with varying speed of light: kinematic tests
NASA Astrophysics Data System (ADS)
Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.
2003-08-01
In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.
The Cosmology of Edgar Allan Poe
NASA Astrophysics Data System (ADS)
Cappi, Alberto
2011-06-01
Eureka is a ``prose poem'' published in 1848, where Edgar Allan Poe presents his original cosmology. While starting from metaphysical assumptions, Poe develops an evolving Newtonian model of the Universe which has many and non casual analogies with modern cosmology. Poe was well informed about astronomical and physical discoveries, and he was influenced by both contemporary science and ancient ideas. For these reasons, Eureka is a unique synthesis of metaphysics, art and science.
Constraints on massive gravity theory from big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, G., E-mail: lambiase@sa.infn.it
The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.
Measuring the dark matter equation of state and its cosmological consequences
NASA Astrophysics Data System (ADS)
Domínguez Romero, Mariano Javier de León; Ruiz, Andrés Nicolás
2012-10-01
We explore the consequences of the measurements of the equation of state of dark matter7, on the homogenous FRW universe dynamics and build an alternative cosmological scenario to the concordance ΛCDM universe. The new paradigm is based on the introduction of an effective scalar field replacing the undetected components of the dark sector: dark matter and dark energy in the form of a cosmological constant. The scalar field obeys a barotropic equation of state p = ωρ with ω = -1/3 and dominates the cosmological dynamics in the last 14.27 Gyr, in a universe with an age of 14.83 Gyr . Before that epoch, baryons and photons drove the general behaviour of the universe as in the standard ΛCDM scenario. We compute a minimal set of cosmological parameters which allow us to reproduce several observational results such us baryon abundance, constrains on the age of the universe, the astronomical scale of distance and the high redshift supernova data with a high degree of precision. However, it should be emphasized that the new model is not accelerating, instead expands asymptotically towards an Einstein Static Universe. We briefly mention the possible mechanisms behind the origin of such dominant component and analyze the prospective of reproducing the success of the standard cosmological model explaining the process of structure formation.
Constraints on cosmological parameters in power-law cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Sarita; Singh, J.K.; Altaibayeva, A.
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H{sub 0} (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not withmore » H(z) data. However, the constraints obtained on and i.e. H{sub 0} average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details.« less
A tilted cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.
1992-01-01
A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.
Anthropic versus cosmological solutions to the coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreira, A.; Avelino, P. P.; Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto
2011-05-15
In this paper, we investigate possible solutions to the coincidence problem in flat phantom dark-energy models with a constant dark-energy equation of state and quintessence models with a linear scalar field potential. These models are representative of a broader class of cosmological scenarios in which the universe has a finite lifetime. We show that, in the absence of anthropic constraints, including a prior probability for the models inversely proportional to the total lifetime of the universe excludes models very close to the {Lambda} cold dark matter model. This relates a cosmological solution to the coincidence problem with a dynamical dark-energymore » component having an equation-of-state parameter not too close to -1 at the present time. We further show that anthropic constraints, if they are sufficiently stringent, may solve the coincidence problem without the need for dynamical dark energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values ofmore » cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.« less
Constraining viscous dark energy models with the latest cosmological data
NASA Astrophysics Data System (ADS)
Wang, Deng; Yan, Yang-Jie; Meng, Xin-He
2017-10-01
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.
Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects?
NASA Astrophysics Data System (ADS)
Kitching, Thomas D.; Verde, Licia; Heavens, Alan F.; Jimenez, Raul
2016-06-01
There is currently a discrepancy in the measured value of the amplitude of matter clustering, parametrized using σ8, inferred from galaxy weak lensing, and cosmic microwave background (CMB) data, which could be an indication of new physics, such as massive neutrinos or a modification to the gravity law, or baryon feedback. In this paper we make the assumption that the cosmological parameters are well determined by Planck, and use weak lensing data to investigate the implications for baryon feedback and massive neutrinos, as well as possible contributions from intrinsic alignments and biases in photometric redshifts. We apply a non-parametric approach to model the baryonic feedback on the dark matter clustering, which is flexible enough to reproduce the OWLS (OverWhelmingly Large Simulations) and Illustris simulation results. The statistic we use, 3D cosmic shear, is a method that extracts cosmological information from weak lensing data using a spherical-Bessel function power spectrum approach. We analyse the CFHTLenS weak lensing data and, assuming best-fitting cosmological parameters from the Planck CMB experiment, find that there is no evidence for baryonic feedback on the dark matter power spectrum, but there is evidence for a bias in the photometric redshifts in the CFHTLenS data, consistent with a completely independent analysis by Choi et al., based on spectroscopic redshifts, and that these conclusions are robust to assumptions about the intrinsic alignment systematic. We also find an upper limit, of <0.28 eV (1σ), to the sum of neutrino masses conditional on other Λ-cold-dark-matter parameters being fixed.
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.
2006-08-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction ofmore » the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.« less
Production of primordial gravitational waves in a simple class of running vacuum cosmologies
NASA Astrophysics Data System (ADS)
Tamayo, D. A.; Lima, J. A. S.; Bessada, D. F. A.
The problem of cosmological production of gravitational waves (GWs) is discussed in the framework of an expanding, spatially homogeneous and isotropic FRW type universe with time-evolving vacuum energy density. The GW equation is established and its modified time-dependent part is analytically resolved for different epochs in the case of a flat geometry. Unlike the standard ΛCDM cosmology (no interacting vacuum), we show that GWs are produced in the radiation era even in the context of general relativity. We also show that for all values of the free parameter, the high frequency modes are damped out even faster than in the standard cosmology both in the radiation and matter-vacuum dominated epoch. The formation of the stochastic background of gravitons and the remnant power spectrum generated at different cosmological eras are also explicitly evaluated. It is argued that measurements of the CMB polarization (B-modes) and its comparison with the rigid ΛCDM model plus the inflationary paradigm may become a crucial test for dynamical dark energy models in the near future.
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
NASA Astrophysics Data System (ADS)
Barenboim, Gabriela; Lykken, Joseph D.
2006-12-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.
Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)
NASA Astrophysics Data System (ADS)
Peters, Christina; Malz, Alex; Hlozek, Renée
2018-01-01
The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.
REVIEWS OF TOPICAL PROBLEMS: Cosmological branes and macroscopic extra dimensions
NASA Astrophysics Data System (ADS)
Barvinsky, Andrei O.
2005-06-01
The idea of adding extra dimensions to the physical world — thus making the observable universe a timelike surface (or brane) embedded in a higher-dimensional space-time — is briefly reviewed, which is believed to hold serious promise for solving fundamental problems concerning the hierarchy of physical interactions and the cosmological constant. Brane localization of massless gravitons is discussed as a mechanism leading to the effective four-dimensional Einstein gravity theory on the brane in the low-energy limit. It is shown that this mechanism is a corollary of the AdS/CFT correspondence principle well-known from string theory. Inflation and other cosmological evolution scenarios induced by the local and nonlocal structures of the effective action of the gravitational brane are considered, as are the effects that enable the developing gravitational-wave astronomy to be used in the search for extra dimensions. Finally, a new approach to the cosmological constant and cosmological acceleration problems is discussed, which involves variable local and nonlocal gravitational 'constants' arising in the infrared modifications of the Einstein theory that incorporate brane-induced gravity models and models of massive gravitons.
NASA Astrophysics Data System (ADS)
Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel
2017-09-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.
Growth of matter perturbation in quintessence cosmology
NASA Astrophysics Data System (ADS)
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
Implications from the Upper Limit of Radio Afterglow Emission of FRB 131104/Swift J0644.5-5111
NASA Astrophysics Data System (ADS)
Gao, He; Zhang, Bing
2017-02-01
A γ-ray transient, Swift J0644.5-5111, has been claimed to be associated with FRB 131104. However, a long-term radio imaging follow-up observation only placed an upper limit on the radio afterglow flux of Swift J0644.5-5111. Applying the external shock model, we perform a detailed constraint on the afterglow parameters for the FRB 131104/Swift J0644.5-5111 system. We find that for the commonly used microphysics shock parameters (e.g., {ɛ }e=0.1, {ɛ }B=0.01, and p = 2.3), if the fast radio burst (FRB) is indeed cosmological as inferred from its measured dispersion measure (DM), the ambient medium number density should be ≤slant {10}-3 {{cm}}-3, which is the typical value for a compact binary merger environment but disfavors a massive star origin. Assuming a typical ISM density, one would require that the redshift of the FRB be much smaller than the value inferred from DM (z\\ll 0.1), implying a non-cosmological origin of DM. The constraints are much looser if one adopts smaller {ɛ }B and {ɛ }e values, as observed in some gamma-ray burst afterglows. The FRB 131104/Swift J0644.5-5111 association remains plausible. We critically discuss possible progenitor models for the system.
Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies
NASA Astrophysics Data System (ADS)
Blancato, Kirsten; Genel, Shy; Bryan, Greg
2017-08-01
Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.
Concordance cosmology without dark energy
NASA Astrophysics Data System (ADS)
Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István
2017-07-01
According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.
Emergence of running dark energy from polynomial f( R) theory in Palatini formalism
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej
2017-09-01
We consider FRW cosmology in f(R)= R+ γ R^2+δ R^3 modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.
An analytic formula for the supercluster mass function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seunghwan; Lee, Jounghun, E-mail: slim@astro.umass.edu, E-mail: jounghun@astro.snu.ac.kr
2014-03-01
We present an analytic formula for the supercluster mass function, which is constructed by modifying the extended Zel'dovich model for the halo mass function. The formula has two characteristic parameters whose best-fit values are determined by fitting to the numerical results from N-body simulations for the standard ΛCDM cosmology. The parameters are found to be independent of redshifts and robust against variation of the key cosmological parameters. Under the assumption that the same formula for the supercluster mass function is valid for non-standard cosmological models, we show that the relative abundance of the rich superclusters should be a powerful indicatormore » of any deviation of the real universe from the prediction of the standard ΛCDM model.« less
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Dereli, Tekin; Katırcı, Nihan; Sheftel, Mikhail B.
2015-05-01
In a recent study Akarsu and Dereli (Gen. Relativ. Gravit. 45:1211, 2013) discussed the dynamical reduction of a higher dimensional cosmological model which is augmented by a kinematical constraint characterized by a single real parameter, correlating and controlling the expansion of both the external (physical) and internal spaces. In that paper explicit solutions were found only for the case of three dimensional internal space (). Here we derive a general solution of the system using Lie group symmetry properties, in parametric form for arbitrary number of internal dimensions. We also investigate the dynamical reduction of the model as a function of cosmic time for various values of and generate parametric plots to discuss cosmologically relevant results.
Nonlocal gravity. Conceptual aspects and cosmological predictions
NASA Astrophysics Data System (ADS)
Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele
2018-03-01
Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free parameter within these limits, one hits the lower bound). (6) Gravitational waves propagate at the speed of light, complying with the limit from GW170817/GRB 170817A.
NASA Astrophysics Data System (ADS)
Lachieze-Rey, Marc
This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.
Cosmological Constant: A Lesson from Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo
2012-02-01
The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.
Cosmological constant: a lesson from Bose-Einstein condensates.
Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo
2012-02-17
The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.
Dark matter, long-range forces, and large-scale structure
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami; Frieman, Joshua A.
1992-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.
Monopoles, cosmology, and astrophysics - Update 1985
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1986-01-01
The characteristics of the superheavy magnetic monopoles (MMs) predicted by GUTs are reviewed, and recent developments in astrophysical MM search techniques are surveyed. Theoretical models of the birth, current distribution, and motion of MMs are examined; the observational implications of MM mass, magnetic charge, and ability to catalyze nucleon decay are considered; estimates of the average and local flux limits for MMs of 10 to the 25th eV are given (less than about 3 x 10 to the -15th and less than about 3 x 10 to the -11th/sq cm sr sec, respectively); and the possibility of detecting MMs in the sun (if they can escape annihilation there) is discussed.
Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold
NASA Astrophysics Data System (ADS)
Shchigolev, V. K.; Bezbatko, D. N.
2018-04-01
The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.
Interpretation of the Hubble diagram in a nonhomogeneous universe
NASA Astrophysics Data System (ADS)
Fleury, Pierre; Dupuy, Hélène; Uzan, Jean-Philippe
2013-06-01
In the standard cosmological framework, the Hubble diagram is interpreted by assuming that the light emitted by standard candles propagates in a spatially homogeneous and isotropic spacetime. However, the light from “point sources”—such as supernovae—probes the Universe on scales where the homogeneity principle is no longer valid. Inhomogeneities are expected to induce a bias and a dispersion of the Hubble diagram. This is investigated by considering a Swiss-cheese cosmological model, which (1) is an exact solution of the Einstein field equations, (2) is strongly inhomogeneous on small scales, but (3) has the same expansion history as a strictly homogeneous and isotropic universe. By simulating Hubble diagrams in such models, we quantify the influence of inhomogeneities on the measurement of the cosmological parameters. Though significant in general, the effects reduce drastically for a universe dominated by the cosmological constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gergely, Laszlo A.
We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can existmore » on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.« less
Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term
NASA Astrophysics Data System (ADS)
Debnath, P. S.; Beesham, A.; Paul, B. C.
2018-06-01
Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.
EVLA Constraints on the Progenitors of Supernovae Type Ia
NASA Astrophysics Data System (ADS)
Chomiuk, Laura; Soderberg, A. M.; Chevalier, R.; Badenes, C.; Fransson, C.
2011-01-01
While Type Ia supernovae are used increasingly as cosmological probes to trace the expansion history of the Universe, the nature of their progenitors remains enshrouded in mystery. In the favored model for these explosions, a white dwarf accretes material from a hydrogen-rich donor star (e.g. red giant). A necessary implication of this model is the production of weak radio emission as the SN blastwave plows through the wind of the donor star. Previous radio searches for this signal have been unsuccessful, largely attributed to the fact that the expected emission lay just beyond the VLA sensitivity. Here we present recent results from our EVLA program, which utilizes the increased sensitivity to search for the expected signal from SNe Ia. The non-detection of radio emission with the EVLA would indicate double-degenerate progenitor systems (binary white dwarf) or require serious modifications to the single-degenerate model.
The Future of Theoretical Physics and Cosmology
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.
Inhomogeneous Einstein-Rosen string cosmology
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-08-01
Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
Giblin, John T; Mertens, James B; Starkman, Glenn D
2016-06-24
While the use of numerical general relativity for modeling astrophysical phenomena and compact objects is commonplace, the application to cosmological scenarios is only just beginning. Here, we examine the expansion of a spacetime using the Baumgarte-Shapiro-Shibata-Nakamura formalism of numerical relativity in synchronous gauge. This work represents the first numerical cosmological study that is fully relativistic, nonlinear, and without symmetry. The universe that emerges exhibits an average Friedmann-Lemaître-Robertson-Walker (FLRW) behavior; however, this universe also exhibits locally inhomogeneous expansion beyond that expected in linear perturbation theory around a FLRW background.
Cosmological Constant as a Manifestation of the Hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Gu, Je-An
2007-12-21
There has been the suggestion that the cosmological constant as implied by the dark energy is related to the well-known hierarchy between the Planck scale, M{sub PI}, and the Standard Model scale, M{sub SM}. Here we further propose that the same framework that addresses this hierarchy problem must also address the smallness problem of the cosmological constant. Specifically, we investigate the minimal supersymmetric (SUSY) extension of the Randall-Sundrum model where SUSY-breaking is induced on the TeV brane and transmitted into the bulk. We show that the Casimir energy density of the system indeed conforms with the observed dark energy scale.
Precision cosmology from X-ray AGN clustering
NASA Astrophysics Data System (ADS)
Basilakos, Spyros; Plionis, Manolis
2009-11-01
We place tight constraints on the main cosmological parameters of spatially flat cosmological models by using the recent angular clustering results of XMM-Newton soft (0.5-2keV) X-ray sources, which have a redshift distribution with a median of z ~ 1. Performing a standard likelihood procedure, assuming a constant in comoving coordinates active galactic nuclei (AGN) clustering evolution, the AGN bias evolution model of Basilakos, Plionis & Ragone-Figueroa and the Wilkinson Microwave Anisotropy Probe5 value of σ8, we find stringent simultaneous constraints in the (Ωm, w) plane, with Ωm = 0.26 +/- 0.05, w = -0.93+0.11-0.19.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villani, Mattia, E-mail: villani@fi.infn.it
2014-06-01
We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.
Constructing exact perturbations of the standard cosmological models
NASA Astrophysics Data System (ADS)
Sopuerta, Carlos F.
1999-11-01
In this paper we show a procedure to construct cosmological models which, according to a covariant criterion, can be seen as exact (nonlinear) perturbations of the standard Friedmann-Lemaı⁁tre-Robertson-Walker (FLRW) cosmological models. The special properties of this procedure will allow us to select some of the characteristics of the models and also to study in depth their main geometrical and physical features. In particular, the models are conformally stationary, which means that they are compatible with the existence of isotropic radiation, and the observers that would measure this isotropy are rotating. Moreover, these models have two arbitrary functions (one of them is a complex function) which control their main properties, and in general they do not have any isometry. We study two examples, focusing on the case when the underlying FLRW models are flat dust models. In these examples we compare our results with those of the linearized theory of perturbations about a FLRW background.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Cosmological viability conditions for f(T) dark energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir
2012-11-01
Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch,more » then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.« less
Dynamo Effects in Magnetized Ideal Plasma Cosmologies
NASA Astrophysics Data System (ADS)
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic field has been studied, using the ideal magnetohydrodynamic (MHD) equations. In this case, the system of partial differential equations which governs the evolution of the magnetized cosmological perturbations can be solved analytically. Our results verify that fast-magnetosonic modes propagating normal to the magnetic field, are excited. But, what is most important, is that, at late times, the magnetic-induction contrast (δB/B) grows, resulting in the enhancement of the ambient magnetic field. This process can be particularly favored by condensations, formed within the plasma fluid due to gravitational instabilities.
Tachyon warm inflation with the effects of loop quantum cosmology in the light of Planck 2015
NASA Astrophysics Data System (ADS)
Kamali, Vahid; Basilakos, Spyros; Mehrabi, Ahmad; Motaharfar, Meysam; Massaeli, Erfan
We investigate the observational signatures of quantum cosmology in the Cosmic Microwave Background data provided by Planck collaboration. We apply the warm inflationary paradigm with a tachyon scalar field to the loop quantum cosmology. In this context, we first provide the basic cosmological functions in terms of the tachyon field. We then obtain the slow-roll parameters and the power spectrum of scalar and tensor fluctuations, respectively. Finally, we study the performance of various warm inflationary scenarios against the latest Planck data and we find a family of models which are in agreement with the observations.
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.
2018-04-01
Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.
Simulating cosmologies beyond ΛCDM with PINOCCHIO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi
2017-01-01
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results frommore » simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.« less
The cosmological analysis of X-ray cluster surveys. III. 4D X-ray observable diagrams
NASA Astrophysics Data System (ADS)
Pierre, M.; Valotti, A.; Faccioli, L.; Clerc, N.; Gastaud, R.; Koulouridis, E.; Pacaud, F.
2017-11-01
Context. Despite compelling theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties surrounding cluster-mass estimates. Aims: Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. Methods: We model the population of detected clusters in the count-rate - hardness-ratio - angular size - redshift space and compare the corresponding four-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are estimated by averaging the results from ten independent survey realisations. The method allows a simultaneous fit of the cosmological parameters of the cluster evolutionary physics and of the selection effects. Results: When using information from the X-ray survey alone plus redshifts, this approach is shown to be as accurate as the modelling of the mass function for the cosmological parameters and to perform better for the cluster physics, for a similar level of assumptions on the scaling relations. It enables the identification of degenerate combinations of parameter values. Conclusions: Given the considerably shorter computer times involved for running the minimisation procedure in the observed parameter space, this method appears to clearly outperform traditional mass-based approaches when X-ray survey data alone are available.
NASA Astrophysics Data System (ADS)
Angulo, Raul E.; Hilbert, Stefan
2015-03-01
We explore the cosmological constraints from cosmic shear using a new way of modelling the non-linear matter correlation functions. The new formalism extends the method of Angulo & White, which manipulates outputs of N-body simulations to represent the 3D non-linear mass distribution in different cosmological scenarios. We show that predictions from our approach for shear two-point correlations at 1-300 arcmin separations are accurate at the ˜10 per cent level, even for extreme changes in cosmology. For moderate changes, with target cosmologies similar to that preferred by analyses of recent Planck data, the accuracy is close to ˜5 per cent. We combine this approach with a Monte Carlo Markov chain sampler to explore constraints on a Λ cold dark matter model from the shear correlation functions measured in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We obtain constraints on the parameter combination σ8(Ωm/0.27)0.6 = 0.801 ± 0.028. Combined with results from cosmic microwave background data, we obtain marginalized constraints on σ8 = 0.81 ± 0.01 and Ωm = 0.29 ± 0.01. These results are statistically compatible with previous analyses, which supports the validity of our approach. We discuss the advantages of our method and the potential it offers, including a path to model in detail (i) the effects of baryons, (ii) high-order shear correlation functions, and (iii) galaxy-galaxy lensing, among others, in future high-precision cosmological analyses.
Model selection using cosmic chronometers with Gaussian Processes
NASA Astrophysics Data System (ADS)
Melia, Fulvio; Yennapureddy, Manoj K.
2018-02-01
The use of Gaussian Processes with a measurement of the cosmic expansion rate based solely on the observation of cosmic chronometers provides a completely cosmology-independent reconstruction of the Hubble constant H(z) suitable for testing different models. The corresponding dispersion σH is smaller than ~ 9% over the entire redshift range (lesssim zlesssim 20) of the observations, rivaling many kinds of cosmological measurements available today. We use the reconstructed H(z) function to test six different cosmologies, and show that it favours the Rh=ct universe, which has only one free parameter (i.e., H0) over other models, including Planck ΛCDM . The parameters of the standard model may be re-optimized to improve the fits to the reconstructed H(z) function, but the results have smaller p-values than one finds with Rh=ct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brihaye, Yves; Delsate, Terence; Kodama, Yuta
We consider a six-dimensional brane world model, where the brane is described by a localized solution to the baby-Skyrme model extending in the extra dimensions. The branes have a cosmological constant modeled by inflating four-dimensional slices, and we further consider a bulk cosmological constant. We construct solutions numerically and present evidence that the solutions cease to exist for large values of the brane cosmological constant in some particular case. Then we study the stability of the model by considering perturbation of the gravitational part (resp. baby Skyrmion) with fixed matter fields (resp. gravitational background). Our results indicate that the perturbationmore » equations do not admit localized solutions for certain type of perturbation. The stability analysis can be alternatively seen as leading to a particle spectrum; we give mass estimations for the baby-Skyrme perturbation and for the graviton.« less
Generalized holographic dark energy and bouncing cosmology in Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Makarenko, Andrey N.; Myagky, Alexander N.
We found out that F(𝒢) gravity theory can be rewritten in the holographic language at the level of background equivalence. The examples of the bouncing cosmological models in F(𝒢) gravity are considered in details.
Kevane, C J
1961-02-24
A cosmological model based on a gravitational plasma of matter and antimatter is discussed. The antigravitational interaction of matter and antimatter leads to segregation and an expansion of the plasma universe. The expansion time scale is controlled by the aggregation time scale.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen
2018-07-01
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.
Cosmic equilibration: A holographic no-hair theorem from the generalized second law
NASA Astrophysics Data System (ADS)
Carroll, Sean M.; Chatwin-Davies, Aidan
2018-02-01
In a wide class of cosmological models, a positive cosmological constant drives cosmological evolution toward an asymptotically de Sitter phase. Here we connect this behavior to the increase of entropy over time, based on the idea that de Sitter spacetime is a maximum-entropy state. We prove a cosmic no-hair theorem for Robertson-Walker and Bianchi I spacetimes that admit a Q-screen ("quantum" holographic screen) with certain entropic properties: If generalized entropy, in the sense of the cosmological version of the generalized second law conjectured by Bousso and Engelhardt, increases up to a finite maximum value along the screen, then the spacetime is asymptotically de Sitter in the future. Moreover, the limiting value of generalized entropy coincides with the de Sitter horizon entropy. We do not use the Einstein field equations in our proof, nor do we assume the existence of a positive cosmological constant. As such, asymptotic relaxation to a de Sitter phase can, in a precise sense, be thought of as cosmological equilibration.
NASA Astrophysics Data System (ADS)
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
NASA Astrophysics Data System (ADS)
Poisson, Alexandre
2011-12-01
In the early 1970s, mathematician and economist Nicolas Georgescu-Roegen developed an alternative framework to macro-economics (his hourglass model) based on two principles of classical thermodynamics applied to the earth-system as a whole. The new model led him to the radical conclusion that "not only growth, but also a zero-growth state, nay, even a declining state which does not converge toward annihilation, cannot exist forever in a finite environment" (Georgescu-Roegen 1976, p.23). Georgescu-Roegen's novel approach long served as a devastating critique of standard neoclassical growth theories. It also helped establish the foundations for the new trans-disciplinary field of ecological economics. In recent decades however, it has remained unclear whether revolutionary developments in "modern non-equilibrium thermodynamics" (Kondepudi and Prigogine 1998) refute some of Georgescu-Roegen's initial conclusions and provide fundamentally new lessons for very long-term macro-economic analysis. Based on a broad historical review of literature from many fields (thermodynamics, cosmology, ecosystems ecology and economics), I argue that Georgescu-Roegen's hourglass model is largely based on old misconceptions and assumptions from 19th century thermodynamics (including an out-dated cosmology) which make it very misleading. Ironically, these assumptions (path independence and linearity of the entropy function in particular) replicate the non-evolutionary thinking he seemed to despise in his colleagues. In light of modern NET, I propose a different model. Contrary to Georgescu-Roegen's hourglass, I do not assume the path independence of the entropy function. In the new model, achieving critical free energy rate density thresholds can abruptly increase the level of complexity and maximum remaining lifespan of stock-based civilizations.
Causality in time-neutral cosmologies
NASA Astrophysics Data System (ADS)
Kent, Adrian
1999-02-01
Gell-Mann and Hartle (GMH) have recently considered time-neutral cosmological models in which the initial and final conditions are independently specified, and several authors have investigated experimental tests of such models. We point out here that GMH time-neutral models can allow superluminal signaling, in the sense that it can be possible for observers in those cosmologies, by detecting and exploiting regularities in the final state, to construct devices which send and receive signals between space-like separated points. In suitable cosmologies, any single superluminal message can be transmitted with probability arbitrarily close to one by the use of redundant signals. However, the outcome probabilities of quantum measurements generally depend on precisely which past and future measurements take place. As the transmission of any signal relies on quantum measurements, its transmission probability is similarly context dependent. As a result, the standard superluminal signaling paradoxes do not apply. Despite their unusual features, the models are internally consistent. These results illustrate an interesting conceptual point. The standard view of Minkowski causality is not an absolutely indispensable part of the mathematical formalism of relativistic quantum theory. It is contingent on the empirical observation that naturally occurring ensembles can be naturally pre-selected but not post-selected.
Classical and quantum cosmology of minimal massive bigravity
NASA Astrophysics Data System (ADS)
Darabi, F.; Mousavi, M.
2016-10-01
In a Friedmann-Robertson-Walker (FRW) space-time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger-Wheeler-DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle-Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.
Cosmology in bimetric theory with an effective composite coupling to matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gümrükçüoğlu, A. Emir; Heisenberg, Lavinia; Mukohyama, Shinji
We study the cosmology of bimetric theory with a composite matter coupling. We find two possible branches of background evolution. We investigate the question of stability of cosmological perturbations. For the tensor and vector perturbations, we derive conditions on the absence of ghost and gradient instabilities. For the scalar modes, we obtain conditions for avoiding ghost degrees. In the first branch, we find that one of the scalar modes becomes a ghost at the late stages of the evolution. Conversely, this problem can be avoided in the second branch. However, we also find that the constraint for the second branchmore » prevents the doubly coupled matter fields from being the standard ingredients of cosmology. We thus conclude that a realistic and stable cosmological model requires additional minimally coupled matter fields.« less
Dark Energy and Dark Matter Hidden in the Geometry of Space?
NASA Astrophysics Data System (ADS)
Buchert, Thomas
A spatially flat and infinite Universe in the form of a "concordant" standard model of cosmology rules present-day thinking of cosmologists. The price to pay is an unknown physical origin of Dark Energy and Dark Matter that are supposed to exist and even appear to rule the dynamics of our Universe. A growing number of cosmologists question the existence of dark constituents: the standard model of cosmology may be just too simple, since it neglects the influence of structure in the Universe on its global expansion history. The key-issue appears to be the curvature of space: the formation of structure interacts with the geometry of space, changing our global picture of the Universe. This chapter explains the underlying mechanism that works in the right direction to uncover the dark faces of the standard model of cosmology. If successful, this novel approach furnishes a new paradigm of modern cosmology. Hundreds of researchers have recently embarked into studies of this new subject. We understand much at present, but there are many open questions.
Magnetogenesis in matter—Ekpyrotic bouncing cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koley, Ratna; Samtani, Sidhartha, E-mail: ratna.physics@presiuniv.ac.in, E-mail: samtanisidhartha@gmail.com
In the recent past there have been many attempts to associate the generation of primordial magnetic seed fields with the inflationary era, but with limited success. We thus take a different approach by using a model for nonsingular bouncing cosmology. A coupling of the electromagnetic Lagrangian F {sub μν} F {sup μν} with a non background scalar field has been considered for the breaking of conformal invariance. We have shown that non singular bouncing cosmology supports magnetogenesis evading the long standing back reaction and strong coupling problems which have plagued inflationary magnetogenesis. In this model, we have achieved a scalemore » invariant power spectrum for the parameter range compatible with observed CMB anisotropies. The desired strength of the magnetic field has also been obtained that goes in accordance with present observations. It is also important to note that no BKL instability arises within this parameter range. The energy scales for different stages of evolution of the bouncing model are so chosen that they solve certain problems of standard Big Bang cosmology as well.« less
The effective theory of shift-symmetric cosmologies
NASA Astrophysics Data System (ADS)
Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca
2018-05-01
A shift symmetry is a ubiquitous ingredient in inflationary models, both in effective constructions and in UV-finite embeddings such as string theory. It has also been proposed to play a key role in certain Dark Energy and Dark Matter models. Despite the crucial role it plays in cosmology, the observable, model independent consequences of a shift symmetry are yet unknown. Here, assuming an exact shift symmetry, we derive these consequences for single-clock cosmologies within the framework of the Effective Field Theory of Inflation. We find an infinite set of relations among the otherwise arbitrary effective coefficients, which relate non-Gaussianity to their time dependence. For example, to leading order in derivatives, these relations reduce the infinitely many free functions in the theory to just a single one. Our Effective Theory of shift-symmetric cosmologies describes, among other systems, perfect and imperfect superfluids coupled to gravity and driven superfluids in the decoupling limit. Our results are the first step to determine observationally whether a shift symmetry is at play in the laws of nature and whether it is broken by quantum gravity effects.
Mapping the Heavens: Probing Cosmology with Large Surveys
Frieman, Joshua [Fermilab
2017-12-09
This talk will provide an overview of recent and on-going sky surveys, focusing on their implications for cosmology. I will place particular emphasis on the Sloan Digital Sky Survey, the most ambitious mapping of the Universe yet undertaken, showing a virtual fly-through of the survey that reveals the large-scale structure of the galaxy distribution. Recent measurements of this large-scale structure, in combination with observations of the cosmic microwave background, have provided independent evidence for a Universe dominated by dark matter and dark energy as well as insights into how galaxies and larger-scale structures formed. Future planned surveys will build on these foundations to probe the history of the cosmic expansion--and thereby the dark energy--with greater precision.
NASA Astrophysics Data System (ADS)
Jungman, Gerard
1992-11-01
Yukawa-coupling-constant unification together with the known fermion masses is used to constrain SO(10) models. We consider the case of one (heavy) generation, with the tree-level relation mb=mτ, calculating the limits on the intermediate scales due to the known limits on fermion masses. This analysis extends previous analyses which addressed only the simplest symmetry-breaking schemes. In the case where the low-energy model is the standard model with one Higgs doublet, there are very strong constraints due to the known limits on the top-quark mass and the τ-neutrino mass. The two-Higgs-doublet case is less constrained, though we can make progress in constraining this model also. We identify those parameters to which the viability of the model is most sensitive. We also discuss the ``triviality'' bounds on mt obtained from the analysis of the Yukawa renormalization-group equations. Finally we address the role of a speculative constraint on the τ-neutrino mass, arising from the cosmological implications of anomalous B+L violation in the early Universe.
Loop quantum cosmology scalar field models
NASA Astrophysics Data System (ADS)
Kleidis, K.; Oikonomou, V. K.
In this work, we use the Loop Quantum Cosmology (LQC) modified scalar-tensor reconstruction techniques in order to investigate how bouncing and inflationary cosmologies can be realized. With regard to the inflationary cosmologies, we shall be interested in realizing the intermediate inflation and the Type IV singular inflation, while with regard to bouncing cosmologies, we shall realize the superbounce and the symmetric bounce. In all the cases, we shall find the kinetic term of the LQC holonomy corrected scalar-tensor theory and the corresponding scalar potential. In addition, we shall include a study of the effective Equation of State (EoS), emphasizing at the early- and late-time eras. As we demonstrate, in some cases it is possible to have a nearly de Sitter EoS at the late-time era, a result that could be interpreted as the description of a late-time acceleration era. Also, in all cases we shall examine the dynamical stability of the LQC holonomy corrected scalar-tensor theory, and we shall confront the results with those coming from the corresponding classical dynamical stability theory. The most appealing cosmological scenario is that of a Type IV singular inflationary scenario, in which the singularity may occur at the late-time era. As we demonstrate, for this model, during the dark energy era, a transition from non-phantom to a phantom dark energy era occurs.
Stellar Wakes from Dark Matter Subhalos
NASA Astrophysics Data System (ADS)
Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang
2018-05-01
We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.
Hamiltonian BFV-BRST theory of closed quantum cosmological models
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Lyakhovich, S. L.
1997-02-01
We introduce and study a new discrete basis of gravity constraints by making use of harmonic expansion for closed cosmological models. The full set of constraints is split into area-preserving spatial diffeomorphisms, forming closed subalgebra, and Virasoro-like generators. Operational Hamiltonian BFV-BRST quantization is performed in the framework of perturbative expansion in the dimensionless parameter, which is a positive power of the ratio of Planckian volume to the volume of the Universe. For the (N + 1)-dimensional generalization of stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out that a certain relationship between the dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.
Hamiltonian BFV-BRST theory of closed quantum cosmological models
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Lyakhovich, S. L.
1997-08-01
We introduce and study a new discrete basis of gravity constraints by making use of the harmonic expansion for closed cosmological models. The full set of constraints is split into area-preserving spatial diffeomorphisms, forming a closed subalgebra, and Virasoro-like generators. The operatorial Hamiltonian BFV-BRST quantization is performed in the framework of a perturbative expansion in the dimensionless parameter which is a positive power of the ratio of the Planck volume to the volume of the Universe. For the (N + 1) - dimensional generalization of a stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out that a relationship between the dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.
Probing the standard model and beyond with CP violation and particle cosmology
NASA Astrophysics Data System (ADS)
Savastio, Michael Paul
We discuss topics related to CP violation and particle cosmology. First, we present some developments in improving the extraction of the CP violating parameter gamma from the decay B+/- → DK+/- followed by the subsequent decay D → KS pi +pi--. The mixing of the final state kaon is an additional CP violating effect which should be taken into account in the extraction of gamma, and we discuss how this should be done. We also discuss the optimization of phase space binning needed to extract gamma from these decays in a model independent way. Next, we discuss some cosmological constraints on R-parity violating, Minimally Flavor Violating (MFV) Supersymmetry (SUSY). Finally, we show that oribtally excited dark matter cannot persist over cosmic timescales for various model independent reasons.
Future evolution in a backreaction model and the analogous scalar field cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Amna; Majumdar, A.S., E-mail: amnaalig@gmail.com, E-mail: archan@bose.res.in
We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae,more » Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.« less
A SIRTF interdiciplinary scientist proposal
NASA Technical Reports Server (NTRS)
Wright, E. L.
1986-01-01
Segal's chronometric cosmology provides an adequate fit to the radio source counts only for an unrealistic choice of spectral index. Since the typical observed spectral index of 0.75 gives a completely unacceptable X squared = 136 with 24 (or fewer) degrees of freedom, it is concluded that the actual Universe does not fit the chronometric model. Counts of ultraviolet excess quasistellar objects also show a steep N(S) curve that the chronometric cosmology cannot explain. Claims to the contrary by Segal, Loncaric, and Segal (1980) and Segal and Nicoll (1986) depend on a seemingly innocuous assumption that in fact destroys the power of the N(S) test. Even though the chronometric model gives a better fit that other non-evolving models it must be ruled out along with all non-evolving cosmologies.
Observational constraints on extended Chaplygin gas cosmologies
NASA Astrophysics Data System (ADS)
Paul, B. C.; Thakur, P.; Saha, A.
2017-08-01
We investigate cosmological models with extended Chaplygin gas (ECG) as a candidate for dark energy and determine the equation of state parameters using observed data namely, observed Hubble data, baryon acoustic oscillation data and cosmic microwave background shift data. Cosmological models are investigated considering cosmic fluid which is an extension of Chaplygin gas, however, it reduces to modified Chaplygin gas (MCG) and also to generalized Chaplygin gas (GCG) in special cases. It is found that in the case of MCG and GCG, the best-fit values of all the parameters are positive. The distance modulus agrees quite well with the experimental Union2 data. The speed of sound obtained in the model is small, necessary for structure formation. We also determine the observational constraints on the constants of the ECG equation.
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
NASA Astrophysics Data System (ADS)
Troisi, Antonio
2017-03-01
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-12-15
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less
NASA Astrophysics Data System (ADS)
Baldi, Marco; Simpson, Fergus
2017-02-01
Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarization anisotropies of the cosmic microwave background (CMB) - although not yet providing compelling evidence against the Λcold dark matter model - seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behaviour is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In this work, we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross-section between the dark matter and the dark energy fields, for two different parametrizations of the dark energy equation of state. Our results indicate that these dark scattering models have very mild effects on many observables related to large-scale structures formation and evolution, while providing a significant suppression of the amplitude of linear density perturbations and the abundance of massive clusters. Our simulations therefore confirm that these models offer a promising route to alleviate existing tensions between low-redshift measurements and those of the CMB.
Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2016-08-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.
Precision cosmology with weak gravitational lensing
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.
In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my outlook on the future of weak lensing studies of cosmology.
Testing and selection of cosmological models with (1+z){sup 6} corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szydlowski, Marek; Marc Kac Complex Systems Research Centre, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow; Godlowski, Wlodzimierz
2008-02-15
In the paper we check whether the contribution of (-)(1+z){sup 6} type in the Friedmann equation can be tested. We consider some astronomical tests to constrain the density parameters in such models. We describe different interpretations of such an additional term: geometric effects of loop quantum cosmology, effects of braneworld cosmological models, nonstandard cosmological models in metric-affine gravity, and models with spinning fluid. Kinematical (or geometrical) tests based on null geodesics are insufficient to separate individual matter components when they behave like perfect fluid and scale in the same way. Still, it is possible to measure their overall effect. Wemore » use recent measurements of the coordinate distances from the Fanaroff-Riley type IIb radio galaxy data, supernovae type Ia data, baryon oscillation peak and cosmic microwave background radiation observations to obtain stronger bounds for the contribution of the type considered. We demonstrate that, while {rho}{sup 2} corrections are very small, they can be tested by astronomical observations--at least in principle. Bayesian criteria of model selection (the Bayesian factor, AIC, and BIC) are used to check if additional parameters are detectable in the present epoch. As it turns out, the {lambda}CDM model is favored over the bouncing model driven by loop quantum effects. Or, in other words, the bounds obtained from cosmography are very weak, and from the point of view of the present data this model is indistinguishable from the {lambda}CDM one.« less
A critical review of classical bouncing cosmologies
NASA Astrophysics Data System (ADS)
Battefeld, Diana; Peter, Patrick
2015-04-01
Given the proliferation of bouncing models in recent years, we gather and critically assess these proposals in a comprehensive review. The PLANCK data shows an unmistakably red, quasi scale-invariant, purely adiabatic primordial power spectrum and no primary non-Gaussianities. While these observations are consistent with inflationary predictions, bouncing cosmologies aspire to provide an alternative framework to explain them. Such models face many problems, both of the purely theoretical kind, such as the necessity of violating the NEC and instabilities, and at the cosmological application level, as exemplified by the possible presence of shear. We provide a pedagogical introduction to these problems and also assess the fitness of different proposals with respect to the data. For example, many models predict a slightly blue spectrum and must be fine-tuned to generate a red spectral index; as a side effect, large non-Gaussianities often result. We highlight several promising attempts to violate the NEC without introducing dangerous instabilities at the classical and/or quantum level. If primordial gravitational waves are observed, certain bouncing cosmologies, such as the cyclic scenario, are in trouble, while others remain valid. We conclude that, while most bouncing cosmologies are far from providing an alternative to the inflationary paradigm, a handful of interesting proposals have surfaced, which warrant further research. The constraints and lessons learned as laid out in this review might guide future research.
Constraining the phantom braneworld model from cosmic structure sizes
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav; Kousvos, Stefanos R.
2017-11-01
We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.
The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology
NASA Astrophysics Data System (ADS)
Kroupa, P.
2012-06-01
The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics must be Milgromian. Major problems with inflationary big bang cosmologies remain unresolved.
Quasar populations in a cosmological constant-dominated flat universe
NASA Technical Reports Server (NTRS)
Malhotra, Sangeeta; Turner, Edwin L.
1995-01-01
Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Deformation of the Engle-Livine-Pereira-Rovelli spin foam model by a cosmological constant
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Rabuffo, Giovanni
2018-04-01
In this article, we consider an ad hoc deformation of the Engle-Livine-Pereira-Rovelli model for quantum gravity by a cosmological constant term. This sort of deformation was first introduced by Han for the case of the 4-simplex. In this article, we generalize the deformation to the case of arbitrary vertices, and compute its large-j asymptotics. We show that, if the boundary data correspond to a four-dimensional polyhedron P , then the asymptotic formula gives the usual Regge action plus a cosmological constant term. We pay particular attention to the determinant of the Hessian matrix, and show that it can be related to that of the undeformed vertex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Xue, Wei, E-mail: yw366@cam.ac.uk, E-mail: wei.xue@sissa.it
We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experimentsmore » do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.« less
NASA Astrophysics Data System (ADS)
Merritt, David
2017-02-01
I argue that some important elements of the current cosmological model are 'conventionalist' in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Ernazarov, K. K.
2017-01-01
A (n + 1)-dimensional gravitational model with cosmological constant and Gauss-Bonnet term is studied. The ansatz with diagonal cosmological metrics is adopted and solutions with exponential dependence of scale factors: ai ˜ exp (vit), i = 1, …, n, are considered. The stability analysis of the solutions with non-static volume factor is presented. We show that the solutions with v 1 = v 2 = v 3 = H > 0 and small enough variation of the effective gravitational constant G are stable if certain restriction on (vi ) is obeyed. New examples of stable exponential solutions with zero variation of G in dimensions D = 1 + m + 2 with m > 2 are presented.
Stability issues of nonlocal gravity during primordial inflation
NASA Astrophysics Data System (ADS)
Belgacem, Enis; Cusin, Giulia; Foffa, Stefano; Maggiore, Michele; Mancarella, Michele
2018-01-01
We study the cosmological evolution of some nonlocal gravity models, when the initial conditions are set during a phase of primordial inflation. We examine in particular three models, the so-called RT, RR and Δ4 models, previously introduced by our group. We find that, during inflation, the RT model has a viable background evolution, but at the level of cosmological perturbations develops instabilities that make it nonviable. In contrast, the RR and Δ4 models have a viable evolution even when their initial conditions are set during a phase of primordial inflation.
Quantum matter bounce with a dark energy expanding phase
NASA Astrophysics Data System (ADS)
Colin, Samuel; Pinto-Neto, Nelson
2017-09-01
Analyzing quantum cosmological scenarios containing one scalar field with exponential potential, we have obtained a universe model which realizes a classical dust contraction from very large scales, the initial repeller of the model, and moves to a stiff matter contraction near the singularity, which is avoided due to a quantum bounce. The universe is then launched in a stiff matter expanding phase, which then moves to a dark energy era, finally returning to the dust expanding phase, the final attractor of the model. Hence, one has obtained a nonsingular cosmological model where a single scalar field can describe both the matter contracting phase of a bouncing model, necessary to give an almost scale invariant spectrum of scalar cosmological perturbations, and a transient expanding dark energy phase. As the universe is necessarily dust dominated in the far past, usual adiabatic vacuum initial conditions can be easily imposed in this era, avoiding the usual issues appearing when dark energy is considered in bouncing models.
Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration
Kipreos, Edward T.
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116