Science.gov

Sample records for cosmology triangulating bianchi

  1. Asymptotic dynamics of the exceptional Bianchi cosmologies

    NASA Astrophysics Data System (ADS)

    Hewitt, C. G.; Horwood, J. T.; Wainwright, J.

    2003-05-01

    In this paper we give, for the first time, a qualitative description of the asymptotic dynamics of a class of non-tilted spatially homogeneous (SH) cosmologies, the so-called exceptional Bianchi cosmologies, which are of Bianchi type VI$_{-1/9}$. This class is of interest for two reasons. Firstly, it is generic within the class of non-tilted SH cosmologies, being of the same generality as the models of Bianchi types VIII and IX. Secondly, it is the SH limit of a generic class of spatially inhomogeneous $G_{2}$ cosmologies. Using the orthonormal frame formalism and Hubble-normalized variables, we show that the exceptional Bianchi cosmologies differ from the non-exceptional Bianchi cosmologies of type VI$_{h}$ in two significant ways. Firstly, the models exhibit an oscillatory approach to the initial singularity and hence are not asymptotically self-similar. Secondly, at late times, although the models are asymptotically self-similar, the future attractor for the vacuum-dominated models is the so-called Robinson-Trautman SH model instead of the vacuum SH plane wave models.

  2. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle

  3. Higher-dimensional Bianchi type-VIh cosmologies

    NASA Astrophysics Data System (ADS)

    Lorenz-Petzold, D.

    1985-09-01

    The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.

  4. Bianchi-I cosmology from causal thermodynamics

    NASA Astrophysics Data System (ADS)

    Bittencourt, Eduardo; Gomes, Leandro G.; Klippert, Renato

    2017-02-01

    We investigate diagonal Bianchi-I spacetimes in the presence of viscous fluids by using the shear and the anisotropic pressure components as the basic variables, where the viscosity is driven by the (second-order) causal thermodynamics. A few exact solutions are presented, among which we mention the anisotropic versions of de Sitter/anti-de Sitter geometries as well as an asymptotically isotropic spacetime presenting an effectively constant cosmic acceleration without any cosmological constant. The qualitative analysis of the solutions for barotropic fluids with linear equations of state suggests that the behaviour is quite general.

  5. Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.

    2013-12-01

    We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.

  6. Bianchi Type V Cosmological Models with Varying Cosmological Term

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Singh, Rameshwar

    2015-05-01

    We have analyzed a new class of spatially homogeneous and anisotropic Bianchi type-V cosmological models with perfect fluid distribution in presence of time varying cosmological and gravitational constants in the framework of general relativity. Exact solutions of Einstein's field equations are obtained for two types of cosmologies viz. m ≠ 3 and m = 3 respectively. We propose an alternate variation law in which the anisotropy ( σ/ 𝜃) per unit expansion scalar ( 𝜃) is proportional to a function of scale factor R i.e. (where σ is a shear scalar) Tiwari (The African Review of Physics, 8, 437-447 2013). Physical properties of the models are discussed in detail. The models isotropize at late times. Some cosmological distance parameters for both the models have also been presented. We also discussed state finder parameters and observe that our solutions favor Λ C D M model.

  7. Anisotropic Bianchi types VIII and IX locally rotationally symmetric cosmologies

    SciTech Connect

    Assad, M.J.D.; Soares, I.D.

    1983-10-15

    We present a class of exact cosmological solutions of Einstein-Maxwell equations, which are anisotropic and spatially homogeneous of Bianchi types VIII and IX, and class IIIb in the Stewart-Ellis classification of locally rotationally symmetric models. If we take the electromagnetic field equal to zero, a class of Bianchi types VIII/IX spatially homogeneous anisotropic cosmological solutions with perfect fluid is obtained.

  8. Loop quantum cosmology of Bianchi IX: effective dynamics

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Montoya, Edison

    2017-03-01

    We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N  =  V and N  =  1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k  =  0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.

  9. Loop quantum cosmology of Bianchi type IX models

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2010-08-01

    The loop quantum cosmology “improved dynamics” of the Bianchi type IX model are studied. The action of the Hamiltonian constraint operator is obtained via techniques developed for the Bianchi type I and type II models, no new input is required. It is shown that the big bang and big crunch singularities are resolved by quantum gravity effects. We also present effective equations which provide quantum geometry corrections to the classical equations of motion.

  10. Loop quantum cosmology of Bianchi type IX models

    SciTech Connect

    Wilson-Ewing, Edward

    2010-08-15

    The loop quantum cosmology 'improved dynamics' of the Bianchi type IX model are studied. The action of the Hamiltonian constraint operator is obtained via techniques developed for the Bianchi type I and type II models, no new input is required. It is shown that the big bang and big crunch singularities are resolved by quantum gravity effects. We also present effective equations which provide quantum geometry corrections to the classical equations of motion.

  11. New Bianchi type-I cosmological models for biharmonic particles using string cosmology with exponential law

    NASA Astrophysics Data System (ADS)

    Körpinar, Talat; Ünlütürk, Yasin

    2015-11-01

    Anisotropic Bianchi type-I magnetized string cosmological models are obtained in decaying vacuum energy density proposed by Pradhan (Commun Theor Phys 55:931-941, 2011). In this study, we obtain some physical and geometrical properties of biharmonic particles of a new spacetime using Bianchi type-I (B-I) cosmological model. We use solution of the Einstein's field equations for biharmonic particles. Some important features of the model have been discussed. Established the existence of string cosmological models for biharmonic particles, unlike the earlier authors, in this theory and studied some physical and geometrical properties.

  12. Spectral action for Bianchi type-IX cosmological models

    NASA Astrophysics Data System (ADS)

    Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde

    2015-10-01

    A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors w 1( t) , w 2( t) , w 3( t) , and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients a 0 ,a 2 ,a 4 of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki's noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant proof of the rationality result.

  13. Bianchi type I cosmologies in arbitrary dimensional dilaton gravities

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Harko, T.; Mak, M. K.

    2000-12-01

    We study the low energy string effective action with an exponential type dilaton potential and vanishing torsion in a Bianchi type I space-time geometry. In the Einstein and string frames the general solution of the gravitational field equations can be expressed in an exact parametric form. Depending on the values of the dilaton coupling constant and of the coefficient in the exponential, the obtained cosmological models can be generically divided into three classes, leading to both singular and non-singular behaviors. The effect of the potential on the time evolution of the mean anisotropy parameter is also considered in detail, and it is shown that a Bianchi type I universe isotropizes only in the presence of a dilaton field potential or a central deficit charge.

  14. Generalized uncertainty principle in Bianchi type I quantum cosmology

    NASA Astrophysics Data System (ADS)

    Vakili, B.; Sepangi, H. R.

    2007-07-01

    We study a quantum Bianchi type I model in which the dynamical variables of the corresponding minisuperspace obey the generalized Heisenberg algebra. Such a generalized uncertainty principle has its origin in the existence of a minimal length suggested by quantum gravity and sting theory. We present approximate analytical solutions to the corresponding Wheeler DeWitt equation in the limit where the scale factor of the universe is small and compare the results with the standard commutative and noncommutative quantum cosmology. Similarities and differences of these solutions are also discussed.

  15. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  16. Bianchi type-I cosmological model with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Reddy, D. R. K.; Adhav, K. S.; Purandare, M. A.

    2015-05-01

    Bianchi type-I cosmological model containing perfect fluid with quadratic equation of state has been studied in general theory of relativity. The general solutions of the Einstein's field equations for Bianchi type-I space-time have been obtained under the assumption of quadratic equation of state (EoS) p= αρ 2- ρ, where α is constant and strictly α≠0. The physical and geometrical aspects of the model are discussed.

  17. Loop quantum cosmology of Bianchi IX: Inclusion of inverse triad corrections

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Karami, Asieh

    2016-06-01

    We consider the loop quantization of the (diagonal) Bianchi type IX cosmological model. We explore different quantization prescriptions that extend the work of Wilson-Ewing and Singh. In particular, we study two different ways of implementing the so-called inverse triad corrections. We construct the corresponding Hamiltonian constraint operators and show that the singularity is formally resolved. We find the effective equations associated with the different quantization prescriptions, and study the relation with the isotropic k = 1 model that, classically, is contained within the Bianchi IX model. Somewhat surprisingly, we find the most natural quantization does not reduce to the k = 1 model. We use geometrically defined scalar observables to explore the physical implications of each of these theories. This is the first part in a series of papers analyzing different aspects of the Bianchi IX model, with inverse corrections, within loop quantum cosmology (LQC).

  18. Bianchi type-I magnetized radiating cosmological model in self creation theory of gravitation

    NASA Astrophysics Data System (ADS)

    Jain, Vimal Chand; Jain, Nikhil

    2015-06-01

    We have investigated Bianchi type-I cosmological model in the presence of magnetized field with disordered radiation in Barber's second self-creation theory of gravitation. To obtain exact solution we assume that the component of shear tensor is proportional to expansion ( θ). Some geometrical and physical properties of the model have also been discussed.

  19. Anisotropic Bianchi Type I Cosmological Models with Generalized Chaplygin Gas and Dynamical Gravitational and Cosmological Constants

    NASA Astrophysics Data System (ADS)

    Kotambkar, S.; Singh, G. P.; Kelkar, R.; Bishi, Binaya K.

    2017-02-01

    This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type I space-time have been obtained. The solutions of the Einstein’s field equations are obtained by considering (i) the power law relation between Hubble parameter H and scale factor R and (ii) scale factor of the form R = ‑1/t + t 2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-I and solution type-II.

  20. Bianchi type-I transit cosmological models with time dependent gravitational and cosmological constants: reexamined

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Saha, B.; Rikhvitsky, V.

    2015-05-01

    The Einstein's field equations with variable gravitational and cosmological "constants" for a spatially homogeneous and anisotropic Bianchi type-I space-time are obtained in present study. To study the transit behaviour of Universe, we consider a law of variation of scale factor a(t) = ( tk et) ^{1/n}, which yields a time dependent deceleration parameter q = -1 + nk/(k + t)2, comprising a class of models that depicts a transition of the universe from the early decelerated phase to the recent accelerating phase. We find that the time dependent deceleration parameter is reasonable for the present day Universe and gives an appropriate description of the evolution of the universe. For n = 0.27k, we obtain q0 = -0.73, which is similar to observed value of deceleration parameter at present epoch. It is also observed that for n ≥ 2 and k = 1, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. For k = 0, the universe has non-singular origin. In these models, we arrive at the decision that, from the structure of the field equations, the behaviour of cosmological and gravitational constants and are related. Taking into consideration the observational data, we conclude that the cosmological constant behaves as a positive decreasing function of time, whereas gravitational constant is increasing and tends to a constant value at late time. H(z)/(1+z) data (32 points) and model prediction as a function of redshift for different k and n are successfully presented by using recent data. Some physical and geometric properties of the models are also discussed.

  1. Hořava–Lifshitz gravity inspired Bianchi-II cosmology and the mixmaster universe

    NASA Astrophysics Data System (ADS)

    Giani, Leonardo; Kamenshchik, Alexander Y.

    2017-04-01

    We study different aspects of the Hořava-Lifshitz inspired Bianchi-II cosmology and its relations with the mixmaster universe model. First, we present exact solutions for a toy model, where only the cubic in spatial curvature terms are present in the action; then we briefly discuss some exotic singularities, which can appear in this toy model. We study also the toy model where only the quadratic in spatial curvature terms are present in the action. We establish relations between our results and those obtained by using the Hamiltonian formalism. Finally, we apply the results obtained by studying Bianchi-II cosmology to describe the evolution of the mixmaster universe in terms of the Belinsky–Khalatnikov–Lifshitz formalism. Generally, our analysis gives some arguments in favour of the existence of the oscillatory approach to the singularity in a universe governed by the Hořava–Lifshitz type gravity.

  2. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Karpathopoulos, L.; Wojnar, A.; Capozziello, S.

    2016-04-01

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries.

  3. Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe

    NASA Astrophysics Data System (ADS)

    Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore

    2016-07-01

    We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.

  4. Chaos-order transition in Bianchi type I non-Abelian Born-Infeld cosmology

    NASA Astrophysics Data System (ADS)

    Dyadichev, Vladimir V.; Gal'Tsov, Dmitri V.; Moniz, Paulo Vargas

    2005-10-01

    We investigate the Bianchi I cosmology with the homogeneous SU(2) Yang-Mills field governed by the non-Abelian Born-Infeld action. A similar system with the standard Einstein-Yang-Mills (EYM) action is known to exhibit chaotic behavior induced by the Yang-Mills field. When the action is replaced by the Born-Infeld type non-Abelian action (NBI), the chaos-order transition is observed in the high-energy region. This is interpreted as a smothering effect due to (nonperturbative in α') string corrections to the classical EYM action. We give numerical evidence for the chaos-order transition and present an analytical proof of regularity of color oscillations in the limit of strong Born-Infeld nonlinearity. We also perform a general analysis of the Bianchi I NBI cosmology and derive an exact solution in the case of only the U(1) component excited. Our new exact solution generalizes the Rosen solution of the Bianchi I Einstein-Maxwell cosmology to the U(1) Einstein-Born-Infeld theory.

  5. Qualitative study of Bianchi type-I, III and Kantowski-Sachs cosmological models with scalar field

    NASA Astrophysics Data System (ADS)

    Chaubey, Raghavendra; Raushan, Rakesh

    2016-08-01

    A qualitative analysis of Bianchi type-I, III and Kantowski-Sachs (KS) cosmological models with a scalar field and matter fluid is performed. The analysis of the resulting equations is made by the dynamical system method. To analyze the evolution equations, we have introduced suitable transformation of variables. The evolution of the corresponding solutions is represented by curves in the phase-plane diagram. We analyze the evolution of the effective equation of state parameter for Bianchi type-I, III and KS cosmological models. The nature of critical points are analyzed and stable attractors are examined for each cosmological model.

  6. A Dynamical Systems Approach to Geodesics in Bianchi Cosmologies

    NASA Astrophysics Data System (ADS)

    Nilsson, Ulf S.; Uggla, Claes; Wainwright, John

    2000-10-01

    To understand the observational properties of cosmological models, in particular, the temperature of the cosmic microwave background radiation, it is necessary to study their null geodesics. Dynamical systems theory, in conjunction with the orthonormal frame approach, has proved to be an invaluable tool for analyzing spatially homogeneous cosmologies. It is thus natural to use such techniques to study the geodesics of these models. We therefore augment the Einstein field equations with the geodesic equations, all written in dimensionless form, obtaining an extended system of first-order ordinary differential equations that simultaneously describes the evolution of the gravitational field and the behavior of the associated geodesics. It is shown that the extended system is a powerful tool for investigating the effect of space-time anisotropies on the temperature of the cosmic microwave background radiation, and that it can also be used for studying geodesic chaos.

  7. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  8. A dynamic correspondence between Bose-Einstein condensates and Friedmann-Lemaitre-Robertson-Walker and Bianchi I cosmology with a cosmological constant

    SciTech Connect

    D'Ambroise, Jennie; Williams, Floyd L.

    2010-06-15

    In some interesting work of James Lidsey, the dynamics of Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology with positive curvature and a perfect fluid matter source is shown to be modeled in terms of a time-dependent, harmonically trapped Bose-Einstein condensate. In the present work, we extend this dynamic correspondence to both FLRW and Bianchi I cosmologies in arbitrary dimension, especially when a cosmological constant is present.

  9. Behavior of nonlinear anisotropies in bouncing Bianchi I models of loop quantum cosmology

    SciTech Connect

    Chiou, D.-W.; Vandersloot, Kevin

    2007-10-15

    In homogeneous and isotropic loop quantum cosmology, gravity can behave repulsively at Planckian energy densities leading to the replacement of the big bang singularity with a big bounce. Yet in any bouncing scenario it is important to include nonlinear effects from anisotropies which typically grow during the collapsing phase. We investigate the dynamics of a Bianchi I anisotropic model within the framework of loop quantum cosmology. Using effective semiclassical equations of motion to study the dynamics, we show that the big bounce is still predicted with only differences in detail arising from the inclusion of anisotropies. We show that the anisotropic shear term grows during the collapsing phase, but remains finite through the bounce. Immediately following the bounce, the anisotropies decay and with the inclusion of matter with equation of state w<+1, the universe isotropizes in the expanding phase.

  10. Homoclinic chaos in axisymmetric Bianchi-IX cosmological models with an ad hoc quantum potential

    SciTech Connect

    Correa, G. C.; Stuchi, T. J.; Joras, S. E.

    2010-04-15

    In this work we study the dynamics of the axisymmetric Bianchi-IX cosmological model with a term of quantum potential added. As it is well known, this class of Bianchi-IX models is homogeneous and anisotropic with two scale factors, A(t) and B(t), derived from the solution of Einstein's equation for general relativity. The model we use in this work has a cosmological constant and the matter content is dust. To this model we add a quantum-inspired potential that is intended to represent short-range effects due to the general relativistic behavior of matter in small scales and play the role of a repulsive force near the singularity. We find that this potential restricts the dynamics of the model to positive values of A(t) and B(t) and alters some qualitative and quantitative characteristics of the dynamics studied previously by several authors. We make a complete analysis of the phase space of the model finding critical points, periodic orbits, stable/unstable manifolds using numerical techniques such as Poincare section, numerical continuation of orbits, and numerical globalization of invariant manifolds. We compare the classical and the quantum models. Our main result is the existence of homoclinic crossings of the stable and unstable manifolds in the physically meaningful region of the phase space [where both A(t) and B(t) are positive], indicating chaotic escape to inflation and bouncing near the singularity.

  11. The general class of Bianchi cosmological models with dark energy and variable Λ and G in viscous cosmology

    NASA Astrophysics Data System (ADS)

    Chaubey, R.; Shukla, A. K.; Raushan, Rakesh

    2017-04-01

    The general class of Bianchi cosmological models with dark energy in the form of modified Chaplygin gas with variable Λ and G and bulk viscosity have been considered. We discuss three types of average scale factor by using a special law for deceleration parameter which is linear in time with negative slope. The exact solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity ( ξ), cosmological constant (Λ), gravitational parameter ( G) and deceleration parameter ( q) for different equations of state. The model describes an accelerating Universe for large value of time t, wherein the effective negative pressure induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.

  12. LRS Bianchi type-II string cosmological models in a modified theory of gravitation

    NASA Astrophysics Data System (ADS)

    Kanakavalli, T.; Ananda Rao, G.; Reddy, D. R. K.

    2017-03-01

    This paper is devoted to the investigation of spatially homogeneous anisotropic LRS Bianchi type-II cosmological models with string source in a modified theory of gravitation formulated by Harko et al. (Phys. Rev. D 84:024020, 2011) which is universally known as f( R, T) gravity. Here R is the Ricci scalar and T is the trace of the energy momentum tensor. By solving the field equation we have presented massive string and Takabyasi or p-string models in this theory. However it is interesting to note that geometric string in this space-time does not exist in this theory. Physical and geometrical properties of the strings obtained are also discussed.

  13. Anisotropic matter in cosmology: locally rotationally symmetric Bianchi I and VII o models

    NASA Astrophysics Data System (ADS)

    Sloan, David

    2016-05-01

    We examine the behaviour of homogeneous, anisotropic space-times, specifically the locally rotationally symmetric Bianchi types I and VII o in the presence of anisotropic matter. By finding an appropriate constant of the motion, and transforming the equations of motion we are able to provide exact solutions in the presence of perfect fluids with anisotropic pressures. The solution space covers matter consisting of a single perfect fluid which satisfies the weak energy condition and is rich enough to contain solutions which exhibit behaviour which is qualitatively distinct from the isotropic sector. Thus we find that there is more ‘matter that matters’ close to a homogeneous singularity than the usual stiff fluid. Example metrics are given for cosmologies whose matter sources are magnetic fields, relativistic particles, cosmic strings and domain walls.

  14. Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Navascués, Beatriz Elizaga; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2016-11-01

    The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, a choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invariance under the spatial Killing symmetries, unitarity of the dynamics selects a unique Fock representation for the canonical commutation relations, up to unitary equivalence. In this work, we generalize these results to anisotropic spacetimes with shear, which are therefore not conformally symmetric, by considering the case of a free scalar field in a Bianchi I cosmology.

  15. Effective dynamics, big bounces, and scaling symmetry in Bianchi type I loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Chiou, Dah-Wei

    2007-12-01

    The detailed formulation for loop quantum cosmology (LQC) in the Bianchi I model with a scalar massless field has been constructed. In this paper, its effective dynamics is studied in two improved strategies for implementing the LQC discreteness corrections. Both schemes show that the big bang is replaced by the big bounces, which take place up to 3 times, once in each diagonal direction, when the area or volume scale factor approaches the critical values in the Planck regime measured by the reference of the scalar field momentum. These two strategies give different evolutions: In one scheme, the effective dynamics is independent of the choice of the finite sized cell prescribed to make Hamiltonian finite; in the other, the effective dynamics reacts to the macroscopic scales introduced by the boundary conditions. Both schemes reveal interesting symmetries of scaling, which are reminiscent of the relational interpretation of quantum mechanics and also suggest that the fundamental spatial scale (area gap) may give rise to a temporal scale.

  16. Effective dynamics, big bounces, and scaling symmetry in Bianchi type I loop quantum cosmology

    SciTech Connect

    Chiou, D.-W.

    2007-12-15

    The detailed formulation for loop quantum cosmology (LQC) in the Bianchi I model with a scalar massless field has been constructed. In this paper, its effective dynamics is studied in two improved strategies for implementing the LQC discreteness corrections. Both schemes show that the big bang is replaced by the big bounces, which take place up to 3 times, once in each diagonal direction, when the area or volume scale factor approaches the critical values in the Planck regime measured by the reference of the scalar field momentum. These two strategies give different evolutions: In one scheme, the effective dynamics is independent of the choice of the finite sized cell prescribed to make Hamiltonian finite; in the other, the effective dynamics reacts to the macroscopic scales introduced by the boundary conditions. Both schemes reveal interesting symmetries of scaling, which are reminiscent of the relational interpretation of quantum mechanics and also suggest that the fundamental spatial scale (area gap) may give rise to a temporal scale.

  17. Bianchi IX dynamics in bouncing cosmologies: homoclinic chaos and the BKL conjecture

    NASA Astrophysics Data System (ADS)

    Maier, Rodrigo; Damião Soares, Ivano; Valentino Tonini, Eduardo

    2015-12-01

    We examine the dynamics of a Bianchi IX model with three scale factors on a 4-dim Lorentzian brane embedded in a 5-dim conformally flat empty bulk with a timelike extra dimension. The matter content is a pressureless perfect fluid restricted to the brane, with the embedding consistently satisfying the Gauss-Codazzi equations. The 4-dim Einstein equations on the brane reduce to a 6-dim Hamiltonian dynamical system with additional terms (due to the bulk-brane interaction) that avoid the singularity and implement nonsingular bounces in the model. We examine the complex Bianchi IX dynamics in its approach to the neighborhood of the bounce which replaces the cosmological singularity of general relativity. The phase space of the model presents (i) two critical points (a saddle-center-center and a center-center-center) in a finite region of phase space, (ii) two asymptotic de Sitter critical points at infinity, one acting as an attractor to late-time acceleration and (iii) a 2-dim invariant plane, which together organize the dynamics of the phase space. The saddle-center-center engenders in the phase space the topology of stable and unstable 4-dim cylinders R × S 3, where R is a saddle direction and S 3 is the center manifold of unstable periodic orbits, the latter being the nonlinear extension of the center-center sector. By a proper canonical transformation the degrees of freedom of the dynamics are separated into one degree connected with the expansion/contraction of the scales of the model, and two rotational degrees of freedom associated with the center manifold S 3. The typical dynamical flow is thus an oscillatory mode about the orbits of the invariant plane. The stable and unstable cylinders are spanned by oscillatory orbits about the separatrix towards the bounce, leading to the homoclinic transversal intersection of the cylinders, as shown numerically in two distinct simulations. The homoclinic intersection manifold has the topology of R × S 2 consisting of

  18. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  19. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    SciTech Connect

    Ayissi, Raoul Domingo Noutchegueme, Norbert

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  20. Bianchi type-V bulk viscous string cosmological model in a self-creation theory of gravitation

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, M. P. V. V.; Reddy, D. R. K.; Sobhan Babu, K.

    2015-10-01

    A spatially homogenous and anisotropic Bianchi type space-time is considered in the frame work of second self-creation theory of gravitation proposed by Barber (Gen. Relativ. Gravit. 14:117, 1982) in the presence of bulk viscous fluid containing one dimensional cosmic strings. Solving the field equations of this theory an exact cosmological model is obtained using some physically plausible conditions. It is observed that strings in this model do not survive. Some physical and kinematical properties of the model are also discussed.

  1. Bianchi Type VI1 Viscous Fluid Cosmological Model in Wesson´s Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Khadekar, G. S.; Avachar, G. R.

    2007-03-01

    Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained in the presence of viscous fluid with the aid of Bianchi type VIh space-time with the time dependent gauge function (Dirac gauge). It is found that Bianchi type VIh (h = 1) space-time with viscous fluid is feasible in this theory, whereas Bianchi type VIh (h = -1, 0) space-times are not feasible in this theory, even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical and kinematical properties of the models.

  2. Symmetry structure of a wave equation on some classes of Bianchi cosmological models

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Kara, A. H.; Narain, R.; Shabbir, G.

    2015-04-01

    Nonlinear wave equations are constructed on certain Bianchi models and a symmetry analysis of these equations are performed to construct some exact solutions. Conservation laws of the respective wave equations are also obtained by the application of Noether's theorem. We show how a knowledge of these contributes to the reduction of the wave equation on this manifold.

  3. Qualitative cosmology - Diagrammatic solutions for Bianchi type IX universes with expansion, rotation, and shear. II.

    NASA Technical Reports Server (NTRS)

    Ryan, M. P., Jr.

    1971-01-01

    The investigation of expanding, rotating, shearing Bianchi type IX universes is extended to the most general case possible. Use is made of the techniques of Arnowitt et al. (1962). It is shown that the conclusion reached by Arnowitt et al. regarding the small effect of rotation on the singularity of type IX universes is true in general. The superspace approach to the motion of the universe is discussed in an appendix.

  4. Inhomogeneous generalization of some Bianchi models

    NASA Astrophysics Data System (ADS)

    Carmeli, M.; Charach, Ch.

    1980-02-01

    Vacuum Bianchi models which can be transformed to the Einstein-Rosen metric are considered. The models are used in order to construct new inhomogeneous universes, which are generalizations of Bianchi cosmologies of types III, V and VIh. Recent generalizations of these Bianchi models, considered by Wainwright et al., are also discussed.

  5. Dynamics of Bianchi I cosmologies in f( R) gravity in the Palatini formalism

    NASA Astrophysics Data System (ADS)

    Banik, D. K.; Banik, S. K.; Bhuyan, K.

    2017-01-01

    A detailed analysis of the dynamics of homogeneous and anisotropic Bianchi I geometries has been performed in f( R) gravity theory in the Palatini formalism, using dynamical systems approach. The exact solutions have been found and the behavior and stability of these solutions have been studied for three different models based on f( R) gravity. These models can produce a sequence of radiation-dominated, matter-dominated and de-Sitter periods. The analysis shows that stable solutions exist which correspond to accelerated expansion at late times. The solutions corresponding to radiation-dominated and matter-dominated era are found to be unstable. Solutions have also been found corresponding to decelerated expansion.

  6. Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs spacetimes in scalar-coupled gravity theories

    SciTech Connect

    Camci, Ugur; Kucukakca, Yusuf

    2007-10-15

    We consider some scalar-coupled theories of gravity, including induced gravity, and study the Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs cosmological models for this theory. For various forms of coupling of the scalar field with gravity, some potentials are found in these cosmological models under the assumption that the Lagrangian admits Noether symmetry. The solutions of the field equations for the considered models are presented by using the results obtained from the Noether symmetry. We also find the explicit form of the scalar field in terms of the conformal time for Bianchi I, III, and Kantowski-Sachs models.

  7. A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho S.

    We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.

  8. Cosmology

    NASA Astrophysics Data System (ADS)

    Harrison, Edward

    2000-03-01

    Cosmology: The Science of the Universe is a broad introduction to the science of modern cosmology, with emphasis on its historical origins. The first edition of this best-selling book received worldwide acclaim for its lucid style and wide-ranging exploration of the universe. This eagerly awaited second edition updates and greatly extends the first with seven new chapters that explore early scientific cosmology, Cartesian and Newtonian world systems, cosmology after Newton and before Einstein, special relativity, observational cosmology, inflation and creation of the universe. All chapters conclude with a section entitled Reflections containing provocative topics that will foster lively debate. The new Projects section, also at the end of each chapter, raises questions and issues to challenge the reader.

  9. A dynamical systems approach to the tilted Bianchi models of solvable type

    NASA Astrophysics Data System (ADS)

    Coley, Alan; Hervik, Sigbjørn

    2005-02-01

    We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.

  10. Effective action for noncommutative Bianchi I model

    SciTech Connect

    Rosenbaum, M.; Vergara, J. D.; Minzoni, A. A.

    2013-06-12

    Quantum Mechanics, as a mini-superspace of Field Theory has been assumed to provide physically relevant information on quantum processes in Field Theory. In the case of Quantum Gravity this would imply using Cosmological models to investigate quantum processes at distances of the order of the Planck scale. However because of the Stone-von Neuman Theorem, it is well known that quantization of Cosmological models by the Wheeler-DeWitt procedure in the context of a Heisenberg-Weyl group with piecewise continuous parameters leads irremediably to a volume singularity. In order to avoid this information catastrophe it has been suggested recently the need to introduce in an effective theory of the quantization some form of reticulation in 3-space. On the other hand, since in the geometry of the General Relativistic formulation of Gravitation space can not be visualized as some underlying static manifold in which the physical system evolves, it would be interesting to investigate whether the effective reticulation which removes the singularity in such simple cosmologies as the Bianchi models has a dynamical origin manifested by a noncommutativity of the generators of the Heisenberg-Weyl algebra, as would be expected from an operational point of view at the Planck length scale.

  11. Effective action for noncommutative Bianchi I model

    NASA Astrophysics Data System (ADS)

    Rosenbaum, M.; Vergara, J. D.; Minzoni, A. A.

    2013-06-01

    Quantum Mechanics, as a mini-superspace of Field Theory has been assumed to provide physically relevant information on quantum processes in Field Theory. In the case of Quantum Gravity this would imply using Cosmological models to investigate quantum processes at distances of the order of the Planck scale. However because of the Stone-von Neuman Theorem, it is well known that quantization of Cosmological models by the Wheeler-DeWitt procedure in the context of a Heisenberg-Weyl group with piecewise continuous parameters leads irremediably to a volume singularity. In order to avoid this information catastrophe it has been suggested recently the need to introduce in an effective theory of the quantization some form of reticulation in 3-space. On the other hand, since in the geometry of the General Relativistic formulation of Gravitation space can not be visualized as some underlying static manifold in which the physical system evolves, it would be interesting to investigate whether the effective reticulation which removes the singularity in such simple cosmologies as the Bianchi models has a dynamical origin manifested by a noncommutativity of the generators of the Heisenberg-Weyl algebra, as would be expected from an operational point of view at the Planck length scale.

  12. Quantum gravitational Kasner transitions in Bianchi-I spacetime

    NASA Astrophysics Data System (ADS)

    Gupt, Brajesh; Singh, Parampreet

    2012-07-01

    Because of nonperturbative quantum gravitational effects, the classical big bang singularity is replaced by a quantum big bounce of the mean scale factor in loop quantization of Bianchi-I spacetime. An important issue is to understand the various differences in the physical properties of the spacetime across the bounce. We investigate this issue in the context of various geometrical structures, identified by the Kasner exponents of the metric, which arise on approach to the singularity in the classical theory. Using an effective spacetime description of the Bianchi-I model in loop quantum cosmology with dust, radiation and stiff matter, we find that as in the classical theory, geometrical structures such as a cigar or a pancake form, but they are finite and nonsingular. Depending on the initial conditions of the matter and anisotropies, different geometric structures are possible in the pre- and post-bounce phases in physical evolution. Thus, quantum gravitational effects can cause a Kasner transition in Bianchi-I spacetime, which is not possible at the classical level. Interestingly, we find that not all transitions are allowed at the level of effective dynamics in loop quantum cosmology. We find the selection rules and underlying conditions for all allowed and forbidden transitions. The selection rules suggest that for a given set of initial conditions on anisotropies, the occurrence of Kasner transitions follows a distinct pattern, and certain transitions are more favored than others.

  13. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  14. Vertex expansion for the Bianchi type I model

    SciTech Connect

    Campiglia, Miguel; Henderson, Adam; Nelson, William

    2010-09-15

    A perturbative expansion of loop quantum cosmological transitions amplitudes of Bianchi I models is performed. Following the procedure outlined in [1,2] for isotropic models, it is shown that the resulting expansion can be written in the form of a series of amplitudes each with a fixed number of transitions mimicking a spin foam expansion. This analogy is more complete than in the isotropic case, since there are now the additional anisotropic degrees of freedom which play the role of 'coloring' of the spin foams. Furthermore, the isotropic expansion is recovered by integrating out the anisotropies.

  15. Triangulation 2.0

    ERIC Educational Resources Information Center

    Denzin, Norman K.

    2012-01-01

    The author's thesis is simple and direct. Those in the mixed methods qualitative inquiry community need a new story line, one that does not confuse pragmatism for triangulation, and triangulation for mixed methods research (MMR). A different third way is required, one that inspires generative politics and dialogic democracy and helps shape…

  16. Inflation from supersymmetric quantum cosmology

    SciTech Connect

    Socorro, J.; D'Oleire, Marco

    2010-08-15

    We derive a special scalar field potential using the anisotropic Bianchi type I cosmological model from canonical quantum cosmology under determined conditions in the evolution to anisotropic variables {beta}{sub {+-}}. In the process, we obtain a family of potentials that has been introduced by hand in the literature to explain cosmological data. Considering supersymmetric quantum cosmology, this family is scanned, fixing the exponential potential as more viable in the inflation scenario V({phi})=V{sub 0}e{sup -{radical}(3){phi}}.

  17. Bianchi type-I universe in f(R, T) modified gravity with quark matter and Λ

    NASA Astrophysics Data System (ADS)

    Ćaǧlar, Halife; Aygün, Sezgin

    2017-02-01

    In this study, we investigate homogeneous and anisotropic Bianchi type I universe in the presence of quark matter source in f(R, T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with cosmological constant Λ (where R is the Ricci scalar and T is the trace of the energy momentum tensor). For this aim we have used the anisotropy feature of Bianchi type I universe and equation of states (EoS) of quark matter. We explore the exact solution f(R,T)=R+2f(T) model for Bianchi type I universe model. When t→∞, we get very small cosmological constant value, this result agrees with recent observations.

  18. Geodesic-light-cone coordinates and the Bianchi I spacetime

    NASA Astrophysics Data System (ADS)

    Fleury, Pierre; Nugier, Fabien; Fanizza, Giuseppe

    2016-06-01

    The geodesic-light-cone (GLC) coordinates are a useful tool to analyse light propagation and observations in cosmological models. In this article, we propose a detailed, pedagogical, and rigorous introduction to this coordinate system, explore its gauge degrees of freedom, and emphasize its interest when geometric optics is at stake. We then apply the GLC formalism to the homogeneous and anisotropic Bianchi I cosmology. More than a simple illustration, this application (i) allows us to show that the Weinberg conjecture according to which gravitational lensing does not affect the proper area of constant-redshift surfaces is significantly violated in a globally anisotropic universe; and (ii) offers a glimpse into new ways to constrain cosmic isotropy from the Hubble diagram.

  19. Cosmic anisotropic doomsday in Bianchi type I universes

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Cid, Antonella; Labraña, Pedro; Mella, Patricio

    2016-11-01

    In this paper we study finite time future singularities in anisotropic Bianchi type I models. It is shown that there exist future singularities similar to Big Rip ones (which appear in the framework of phantom Friedmann-Robertson-Walker cosmologies). Specifically, in an ellipsoidal anisotropic scenario or in a fully anisotropic scenario, the three directional and average scale factors may diverge at a finite future time, together with energy densities and anisotropic pressures. We call these singularities "Anisotropic Big Rip Singularities." We show that there also exist Bianchi type I models filled with matter, where one or two directional scale factors may diverge. Another type of future anisotropic singularities is shown to be present in vacuum cosmologies, i.e., Kasner spacetimes. These singularities are induced by the shear scalar, which also blows up at a finite time. We call such a singularity "Vacuum Rip." In this case one directional scale factor blows up, while the other two and average scale factors tend to zero.

  20. Late-time behaviour of the tilted Bianchi type VIh models

    NASA Astrophysics Data System (ADS)

    Hervik, S.; van den Hoogen, R. J.; Lim, W. C.; Coley, A. A.

    2007-08-01

    We study tilted perfect fluid cosmological models with a constant equation of state parameter in spatially homogeneous models of Bianchi type VIh using dynamical systems methods and numerical experimentation, with an emphasis on their future asymptotic evolution. We determine all of the equilibrium points of the type VIh state space (which correspond to exact self-similar solutions of the Einstein equations, some of which are new), and their stability is investigated. We find that there are vacuum plane-wave solutions that act as future attractors. In the parameter space, a 'loophole' is shown to exist in which there are no stable equilibrium points. We then show that a Hopf-bifurcation can occur resulting in a stable closed orbit (which we refer to as the Mussel attractor) corresponding to points both inside the loophole and points just outside the loophole; in the former case the closed curves act as late-time attractors while in the latter case these attracting curves will co-exist with attracting equilibrium points. In the special Bianchi type III case, centre manifold theory is required to determine the future attractors. Comprehensive numerical experiments are carried out to complement and confirm the analytical results presented. We note that the Bianchi type VIh case is of particular interest in that it contains many different subcases which exhibit many of the different possible future asymptotic behaviours of Bianchi cosmological models.

  1. Time-dependent toroidal compactification proposals and the Bianchi type II model: Classical and quantum solutions

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Toledo Sesma, L.

    2016-03-01

    In this work we construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus without the contributions of fluxes as first approximation. This approach is applied to anisotropic cosmological Bianchi type II model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Also, we present some solutions to the corresponding Wheeler-DeWitt (WDW) equation in the context of Standard Quantum Cosmology and we claim that these quantum solution are generic in the moduli scalar field for all Bianchi Class A models. Also we give the relation to these solutions for asymptotic behavior to large argument in the corresponding quantum solution in the gravitational variables and compare with Bohm's solutions, finding that this corresponds to the lowest-order WKB approximation.

  2. Magnetohydrodynamic perturbations of Robertson-Walker universes and of anisotropic Bianchi type-I universes

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Evans, C. R.

    1980-01-01

    Magnetohydrodynamic (MHD) perturbations in flat Robertson-Walker universes were analyzed, emphasizing their effects on galaxy formation. The Newtonian approximation is used. There is no increase in the growth rates beyond those of the usual perturbed Robertson-Walker models; the MHD modes extract as much energy as they contribute. Some global properties of fully MHD Bianchi I relativistic models are analyzed including vorticity, fluid accelerations, and dissipative effects. The time dependence of perturbations of a fully MHD diagonal Bianchi I cosmology is studied, with an enhanced growth rate of the density contrast of t found which is still not exponential Jeans-type growth. This indicates that a more detailed analysis is needed if a solution to the galaxy formation problem in MHD cosmologies is to be found.

  3. Graceful exit from inflation for minimally coupled Bianchi A scalar field models

    NASA Astrophysics Data System (ADS)

    Beyer, F.; Escobar, L.

    2013-10-01

    We consider the dynamics of Bianchi A scalar field models which undergo inflation. The main question is under which conditions does inflation come to an end and is succeeded by a decelerated epoch. This so-called ‘graceful exit’ from inflation is an important ingredient in the standard model of cosmology, but is, at this stage, only understood for restricted classes of solutions. We present new results obtained by a combination of analytical and numerical techniques.

  4. Anisotropic Bianchi type-III model in Palatini f (R) gravity

    NASA Astrophysics Data System (ADS)

    Banik, Debika Kangsha; Banik, Sebika Kangsha; Bhuyan, Kalyan

    2017-03-01

    We derive exact solutions for anisotropic Bianchi type-III cosmological model in the Palatini formalism of f (R) gravity using Dynamical System Approach. For the f (R) of the form f(R) =R-β /Rn and f(R) =R+α Rm , we have found the fixed points describing the radiation-dominated, matter dominated and de Sitter evolution periods. Fixed points have also been found which have non-vanishing shear playing a very significant role in describing the anisotropy present in the early universe. In addition, we have also found that the spatial curvature affect isotropisation of this cosmological model.

  5. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  6. Inhomogeneous Einstein-Rosen string cosmology

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-08-01

    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.

  7. Bianchi class A models in Sàez-Ballester's theory

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Espinoza-García, Abraham

    2012-08-01

    We apply the Sàez-Ballester (SB) theory to Bianchi class A models, with a barotropic perfect fluid in a stiff matter epoch. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.

  8. The use of triangulation in qualitative research.

    PubMed

    Carter, Nancy; Bryant-Lukosius, Denise; DiCenso, Alba; Blythe, Jennifer; Neville, Alan J

    2014-09-01

    Triangulation refers to the use of multiple methods or data sources in qualitative research to develop a comprehensive understanding of phenomena (Patton, 1999). Triangulation also has been viewed as a qualitative research strategy to test validity through the convergence of information from different sources. Denzin (1978) and Patton (1999) identified four types of triangulation: (a) method triangulation, (b) investigator triangulation, (c) theory triangulation, and (d) data source triangulation. The current article will present the four types of triangulation followed by a discussion of the use of focus groups (FGs) and in-depth individual (IDI) interviews as an example of data source triangulation in qualitative inquiry.

  9. Anisotropic spinfoam cosmology

    NASA Astrophysics Data System (ADS)

    Rennert, Julian; Sloan, David

    2014-01-01

    The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.

  10. Unstable anisotropic loop quantum cosmology

    SciTech Connect

    Nelson, William; Sakellariadou, Mairi

    2009-09-15

    We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.

  11. Evolution in bouncing quantum cosmology

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Piechocki, Włodzimierz

    2012-03-01

    We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes.

  12. Study of Bianchi type-I model in f(R,Tψ) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    2017-03-01

    We study the cosmological behavior of locally rotationally symmetric (LRS) Bianchi type-I universe model in f (R ,Tψ) gravity. For this purpose, we evaluate Hubble parameter, effective equation of state parameter (ωeff) and potential of scalar field (ψ) as a function of time using the assumption H = W (ψ). The behavior of these parameters is investigated for different models of W (ψ). It is concluded that exponential form of W (ψ) leads to time independent ωeff which corresponds to different stages of evolution while for the other two models, they correspond to stiff fluid stage.

  13. Gravitational Energy-Momentum Density in Bianchi Type II Space-Times

    NASA Astrophysics Data System (ADS)

    Aydogdu, Oktay

    In this paper, using Einstein, Landau and Lifshitz's energy-momentum complexes both in general relativity and teleparallel gravity, we calculate the total energy distribution (due to matter and fields, including gravitation) associated with locally rotationally symmetric (LRS) Bianchi type II cosmological models. We show that energy densities in these different gravitation theories are the same, so they agree with each other. We obtain the result that the total energy is zero. This result agrees with previous works of Cooperstock and Israelit, Rosen, Johri et al., Banerjee and Sen, Vargas, Aydogdu and Saltı. Moreover, our result supports the viewpoints of Albrow and Tryon.

  14. Bianchi type-I universe in Lyra manifold with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Şen, R.; Aygün, S.

    2017-02-01

    In this study, we have solved Einstein field equations for Bianchi type I universe model in Lyra manifold with quadratic equation of state (EoS) p = ap(t)2 - ρ(t). Where α ≠0 is an important constant. Cosmic pressure, density and displacement vector (β2) are related with α constant. In this study β2 is a decreasing function of time and behaves like a cosmological constant. These solutions agree with the studies of Halford, Pradhan and Singh, Aygün et al., Agarwal et al., Yadav and Haque as well as SN Ia observations.

  15. Problems with Chaos in String Cosmology

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Mariusz P.

    I review the main ideas of the pre-big-bang cosmology scenario emphasizing the role of different boundary conditions in comparison to the standard ones which appear in quantum cosmology. My main issue is duality symmetry - a very general feature of string theory - and its role in suppressing chaos in Bianchi type IX "Mixmaster" universes within the framework of the tree-level low-energy-effectiveactions for strings. Finally, I discuss the ways to possibly `generate' chaos in string cosmology by admitting dilaton potential/massive string modes, more spacetime dimensions or nonlinear Yang-Mills-Lorentz-Chern-Simons terms into the action.

  16. Inhomogeneous anisotropic cosmology

    SciTech Connect

    Kleban, Matthew; Senatore, Leonardo

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  17. Inhomogeneous anisotropic cosmology

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  18. Triangulation Made Easy

    SciTech Connect

    Lindstrom, P

    2009-12-23

    We describe a simple and efficient algorithm for two-view triangulation of 3D points from approximate 2D matches based on minimizing the L2 reprojection error. Our iterative algorithm improves on the one by Kanatani et al. by ensuring that in each iteration the epipolar constraint is satisfied. In the case where the two cameras are pointed in the same direction, the method provably converges to an optimal solution in exactly two iterations. For more general camera poses, two iterations are sufficient to achieve convergence to machine precision, which we exploit to devise a fast, non-iterative method. The resulting algorithm amounts to little more than solving a quadratic equation, and involves a fixed, small number of simple matrixvector operations and no conditional branches. We demonstrate that the method computes solutions that agree to very high precision with those of Hartley and Sturm's original polynomial method, though achieves higher numerical stability and 1-4 orders of magnitude greater speed.

  19. Loop quantum cosmology: Anisotropies and inhomogeneities

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    In this dissertation we extend the improved dynamics of loop quantum cosmology from the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker space-times to cosmological models which allow anisotropies and inhomogeneities. Specifically, we consider the cases of the homogeneous but anisotropic Bianchi type I, II and IX models with a massless scalar field as well as the vacuum, inhomogeneous, linearly polarized Gowdy T3 model. For each case, we derive the Hamiltonian constraint operator and study its properties. In particular, we show how in all of these models the classical big bang and big crunch singularities are resolved due to quantum gravity effects. Since the Bianchi models play a key role in the Belinskii, Khalatnikov and Lifshitz conjecture regarding the nature of generic space-like singularities in general relativity, the quantum dynamics of the Bianchi cosmologies are likely to provide considerable intuition about the fate of such singularities in quantum gravity. In addition, the results obtained here provide an important step toward the full loop quantization of cosmological space-times that allow generic inhomogeneities; this would provide falsifiable predictions that could be compared to observations.

  20. Effect of inflation on anisotropic cosmologies

    SciTech Connect

    Jensen, L.G.; Stein-Schabes, J.A.

    1986-03-01

    The effects of anisotropic cosmologies on inflation are studied. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi Model and of the initial anisotropy. 6 refs.

  1. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  2. Approaches to high aspect ratio triangulations

    NASA Technical Reports Server (NTRS)

    Posenau, M.-A.

    1993-01-01

    In aerospace computational fluid dynamics calculations, high aspect ratio, or stretched, triangulations are necessary to adequately resolve the features of a viscous flow around bodies. In this paper, we explore alternatives to the Delaunay triangulation which can be used to generate high aspect ratio triangulations of point sets. The method is based on a variation of the lifting map concept which derives Delaunay triangulations from convex hull calculations.

  3. Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Banerjee, Narayan

    2016-11-01

    Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either an explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.

  4. Some properties of n-dimensional triangulations

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1985-01-01

    A number of mathematical results relevant to the problem of constructing a triangulation, i.e., a simplicial tessellation, of the convex hull of an arbitrary finite set of points in n-space are described. The principal results achieved are: (1) a set of n+2 points in n-space may be triangulated in at most 2 different ways; (2) the sphere test defined in this report selects a preferred one of these two triangulations; (3) a set of parameters is defined that permits the characterization and enumeration of all sets of n+2 points in n-space that are significantly different from the point of view of their possible triangulation; (4) the local sphere test induces a global sphere test property for a triangulation; and (5) a triangulation satisfying the global sphere property is dual to the n-dimensional Dirichlet tesselation, i.e., it is a Delaunay triangulation.

  5. Mixed Methods, Triangulation, and Causal Explanation

    ERIC Educational Resources Information Center

    Howe, Kenneth R.

    2012-01-01

    This article distinguishes a disjunctive conception of mixed methods/triangulation, which brings different methods to bear on different questions, from a conjunctive conception, which brings different methods to bear on the same question. It then examines a more inclusive, holistic conception of mixed methods/triangulation that accommodates…

  6. Properties of n-dimensional triangulations

    NASA Technical Reports Server (NTRS)

    Lawson, Charles L.

    1986-01-01

    This paper establishes a number of mathematical results relevant to the problem of constructing a triangulation, i.e., a simplical tessellation of the convex hull of an arbitrary finite set of points in n-space. The principal results of the present paper are: (1) a set of n + 2 points in n-space may be triangulated in at most 2 different ways; (2) the 'sphere test' defined in this paper selects a preferred one of these two triangulations; (3) a set of parameters is defined that permits the characterization and enumeration of all sets on n + 2 points in n-space that are significantly different from the point of view of their possible triangulations; and (4) the local sphere test induces a global sphere test property for a triangulation.

  7. Inflation in a renormalizable cosmological model and the cosmic no hair conjecture

    NASA Technical Reports Server (NTRS)

    Maeda, Kei-Ichi; Stein-Schabes, Jaime A.; Futamase, Toshifumi

    1988-01-01

    The possibility of having inflation in a renormalizable cosmological model is investigated. The Cosmic No Hair Conjecture is proved to hold for all Bianchi types except Bianchi IX. By the use of a conformal transformation on the metric it is shown that these models are equivalent to the ones described by the Einstein-Hilbert action for gravity minimally coupled to a set of scalar fields with inflationary potentials. Henceforth, it is proven that inflationary solutions behave as attractors in solution space, making it a natural event in the evolution of such models.

  8. Stability of the anisotropically inflating Bianchi type VI expanding solutions

    SciTech Connect

    Kao, W. F.; Lin, Ing-Chen

    2011-03-15

    A special class of the Bianchi type VI expanding solutions was speculated to break the cosmic no-hair theorem that will not approach the late-time de Sitter solution. We will show that an unstable mode always exists when the perturbation of the field equations is applied to the system. In addition to a model-independent perturbation formula, a simplification is also achieved by the introduction of a {delta}R=0 solution good for quadratic models in all Bianchi spaces. The result shows that this special class of anisotropically expanding solutions is unstable.

  9. Precision cosmology, Accuracy cosmology and Statistical cosmology

    NASA Astrophysics Data System (ADS)

    Verde, Licia

    2014-05-01

    The avalanche of data over the past 10-20 years has propelled cosmology into the ``precision era''. The next challenge cosmology has to meet is to enter the era of accuracy. Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available now and coming soon, the only way to meet this challenge is by developing suitable and specific statistical techniques. The road from precision Cosmology to accurate Cosmology goes through statistical Cosmology. I will outline some open challenges and discuss some specific examples.

  10. Linear-size nonobtuse triangulation of polygons

    SciTech Connect

    Bern, M.; Mitchell, S.; Ruppert, J.

    1994-05-01

    We give an algorithm for triangulating n-vertex polygonal regions (with holes) so that no angle in the final triangulation measures more than {pi}/2. The number of triangles in the triangulation is only 0(n), improving a previous bound of 0(n{sup 2}), and the worst-case running time is 0(n log{sup 2} n). The basic technique used in the algorithm, recursive subdivision by disks, is new and may have wider application in mesh generation. We also report on an implementation of our algorithm.

  11. Cosmological constant Λ in f(R,T) modified gravity

    NASA Astrophysics Data System (ADS)

    Singh, Gyan Prakash; Bishi, Binaya Kumar; Sahoo, Pradyumn Kumar

    2016-04-01

    In this paper, we have studied the Bianchi type-III cosmological model in the presence of cosmological constant in the context of f(R,T) modified theory of gravity. Here, we have discussed two classes of f(R,T) gravity, i.e. f(R,T) = R + f(T) and f(R,T) = f1(R) + f2(T). In both classes, the modified field equations are solved by the relation expansion scalar θ that is proportional to shear scalar σ which gives A = Cn, where A and C are metric potentials. Also we have discussed some physical and kinematical properties of the models.

  12. Image encoding with triangulation wavelets

    NASA Astrophysics Data System (ADS)

    Hebert, D. J.; Kim, HyungJun

    1995-09-01

    We demonstrate some wavelet-based image processing applications of a class of simplicial grids arising in finite element computations and computer graphics. The cells of a triangular grid form the set of leaves of a binary tree and the nodes of a directed graph consisting of a single cycle. The leaf cycle of a uniform grid forms a pattern for pixel image scanning and for coherent computation of coefficients of splines and wavelets. A simple form of image encoding is accomplished with a 1D quadrature mirror filter whose coefficients represent an expansion of the image in terms of 2D Haar wavelets with triangular support. A combination the leaf cycle and an inherent quadtree structure allow efficient neighbor finding, grid refinement, tree pruning and storage. Pruning of the simplex tree yields a partially compressed image which requires no decoding, but rather may be rendered as a shaded triangulation. This structure and its generalization to n-dimensions form a convenient setting for wavelet analysis and computations based on simplicial grids.

  13. The anisotropic cosmological models in f( R, T) gravity with Λ(T)

    NASA Astrophysics Data System (ADS)

    Chaubey, R.; Shukla, A. K.

    2017-04-01

    The general class of anisotropic Bianchi cosmological models in f( R, T) modified theories of gravity with Λ( T) has been considered. This paper deals with f( R, T) modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T has been investigated for a specific choice of f( R, T) = f 1( R) + f 2( T). The exact solutions to the corresponding field equations are obtained in quadrature form. We have discussed three types of solutions of the average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. The solutions to the Einstein field equations are obtained for three different physical viable cosmologies. All physical parameters are calculated and discussed in each model.

  14. A Triangulation Methodology in Research on Social Cultures.

    ERIC Educational Resources Information Center

    Owens, Robert G.; And Others

    The purpose of this research was to develop, test, and demonstrate a systematic methodology of triangulation. Triangulation is a technique used to establish credibility of data gathered in qualitative ways. Triangulated conclusions are more stable than any of the individual vantage points from which they were triangulated. Using a previous study…

  15. Statistical properties of cosmological billiards

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Lecian, Orchidea Maria

    2011-02-01

    Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We show how the use of a “cosmological billiard” description allows one to refine and deepen the understanding of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations between the successive billiard corners in which the oscillations take place. Starting from the general integral invariants of Hamiltonian systems, we show how to construct invariant measures for various projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-normalizable) invariant measure on the “Kasner circle” which parametrizes the exponents of successive Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX (a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in cosmological billiards.

  16. Energy Distribution of the Bianchi Type i Solution

    NASA Astrophysics Data System (ADS)

    Radinschi, Irina

    We calculate the energy of an anisotropic model of universe based on the Bianchi type I metric in the Mo ller prescription. The total energy due to the matter and gravitational field is zero. This result supports the importance of the energy-momentum complexes in the localization of energy.

  17. Uav Photogrammetry: Block Triangulation Comparisons

    NASA Astrophysics Data System (ADS)

    Gini, R.; Pagliari, D.; Passoni, D.; Pinto, L.; Sona, G.; Dosso, P.

    2013-08-01

    UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord"), useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey), allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes) were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma), Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points.

  18. The simplest possible bouncing quantum cosmological model

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Vitenti, Sandro D. P.

    2016-06-01

    We present and expand the simplest possible quantum cosmological bouncing model already discussed in previous works: the trajectory formulation of quantum mechanics applied to cosmology (through the Wheeler-De Witt equation) in the Friedmann-Lemaître-Robertson-Walker (FLRW) minisuperspace without spatial curvature. The initial conditions that were previously assumed were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a nonsingular bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non-symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperspace.

  19. Nonvacuum taub-type cosmological model

    NASA Astrophysics Data System (ADS)

    Carmeli, M.; Manor, R.

    1990-05-01

    The Einstein universe is a simple model describing a static cosmological spacetime, having a constant radius and a constant curvature, and, as is well known, it does not describe our universe. We propose a model which is an extension of Einstein's. Our metric, having R × S 3 topology, describes a nonisotropic homogeneous closed (finite) universe of Bianchi type IX. This metric is similar to that of Taub, but is simpler. Unlike the Taub solution (which is a cosmological extension of the NUT solution), however, the universe described by our metric contains matter. Like the Taub metric, our metric has two positive constants ( τ, T). The gravitational red shift calculated from our metric is given. Similarly to the Schwarzschild metric, which has a “singularity” at r = 2m, this metric has the same kind of “singularity” at t = 2τ. The maximal extension of the coordinates in our metric is fairly analogous to that of the Schwarzschild metric.

  20. Bianchi-IX, Darboux-Halphen and Chazy-Ramanujan

    NASA Astrophysics Data System (ADS)

    Chanda, Sumanto; Guha, Partha; Roychowdhury, Raju

    2016-02-01

    Bianchi-IX four metrics are SU(2) invariant solutions of vacuum Einstein equation, for which the connection-wise self-dual case describes the Euler top, while the curvature-wise self-dual case yields the Ricci flat classical Darboux-Halphen system. It is possible to see such a solution exhibiting Ricci flow. The classical Darboux-Halphen system is a special case of the generalized one that arises from a reduction of the self-dual Yang-Mills equation and the solutions to the related homogeneous quadratic differential equations provide the desired metric. A few integrable and near-integrable dynamical systems related to the Darboux-Halphen system and occurring in the study of Bianchi-IX gravitational instanton have been listed as well. We explore in details whether self-duality implies integrability.

  1. Power-Law Type Solutions of Fourth-Order Gravity for Multidimensional Bianchi i Universes

    NASA Astrophysics Data System (ADS)

    Caprasse, H.; Demaret, J.; Gatermann, K.; Melenk, H.

    This paper is devoted to the application of computer algebra to the study of solutions of the field equations derived from a non-linear Lagrangian, as suggested by recently proposed unified theories. More precisely, we restrict ourselves to the most general quadratic Lagrangian, i.e. containing quadratic contributions in the different curvature tensors exclusively. The corresponding field equations are then fourth-order in the metric tensor components. The cosmological models studied are the simplest ones in the class of spatially homogeneous but anisotropic models, i.e. Bianchi I models. For these models, we consider only power-law type solutions of the field equations. All the solutions of the associated system of algebraic equations are found, using computer algebra, from a search of its Groebner bases. While, in space dimension d=3, the Einsteinian-Kasner metric is still the most general power-law type solution, for d>3, no solution, other than the Minkowski space-time, is common to the three systems of equations corresponding to the three contributions to the Lagrangian density. In the case of a pure Riemann-squared contribution to the Lagrangian (suggested by a recent calculation of the effective action for the heterotic string), the possibility exists to realize a splitting of the d-dimensional space into a (d-3)-dimensional internal space and a physical 3-dimensional space, the latter expanding in time as a power bigger than 2 (about 4.5 when d=9).

  2. Cosmological Zitterbewegung

    NASA Astrophysics Data System (ADS)

    Girdhar, Parth; Kobakhidze, Archil

    2013-10-01

    We describe a new phenomenon of zitterbewegung of a free Dirac particle in cosmological spacetimes. Unlike the similar effect theorized by Schrödinger in 1930, the cosmological zitterbewegung is a real, physically attainable effect, which originates from the mixing of positive and negative frequency modes of a field operator in cosmological spacetimes. We briefly discuss the potential for observing this effect in laboratory experiments with trapped ions.

  3. Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Amirhashchi, H.; Saha, Bijan

    2011-09-01

    A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.

  4. Spectral Properties of Unimodular Lattice Triangulations

    NASA Astrophysics Data System (ADS)

    Krüger, Benedikt; Schmidt, Ella M.; Mecke, Klaus

    2016-05-01

    Random unimodular lattice triangulations have been recently used as an embedded random graph model, which exhibit a crossover behavior between an ordered, large-world and a disordered, small-world behavior. Using the ergodic Pachner flips that transform such triangulations into another and an energy functional that corresponds to the degree distribution variance, Markov chain Monte Carlo simulations can be applied to study these graphs. Here, we consider the spectra of the adjacency and the Laplacian matrix as well as the algebraic connectivity and the spectral radius. Power law dependencies on the system size can clearly be identified and compared to analytical solutions for periodic ground states. For random triangulations we find a qualitative agreement of the spectral properties with well-known random graph models. In the microcanonical ensemble analytical approximations agree with numerical simulations. In the canonical ensemble a crossover behavior can be found for the algebraic connectivity and the spectral radius, thus combining large-world and small-world behavior in one model. The considered spectral properties can be applied to transport problems on triangulation graphs and the crossover behavior allows a tuning of important transport quantities.

  5. Flip to Regular Triangulation and Convex Hull.

    PubMed

    Gao, Mingcen; Cao, Thanh-Tung; Tan, Tiow-Seng

    2017-02-01

    Flip is a simple and local operation to transform one triangulation to another. It makes changes only to some neighboring simplices, without considering any attribute or configuration global in nature to the triangulation. Thanks to this characteristic, several flips can be independently applied to different small, non-overlapping regions of one triangulation. Such operation is favored when designing algorithms for data-parallel, massively multithreaded hardware, such as the GPU. However, most existing flip algorithms are designed to be executed sequentially, and usually need some restrictions on the execution order of flips, making them hard to be adapted to parallel computation. In this paper, we present an in depth study of flip algorithms in low dimensions, with the emphasis on the flexibility of their execution order. In particular, we propose a series of provably correct flip algorithms for regular triangulation and convex hull in 2D and 3D, with implementations for both CPUs and GPUs. Our experiment shows that our GPU implementation for constructing these structures from a given point set achieves up to two orders of magnitude of speedup over other popular single-threaded CPU implementation of existing algorithms.

  6. Phenomenological dynamics of loop quantum cosmology in Kantowski-Sachs spacetime

    SciTech Connect

    Chiou, D.-W.

    2008-08-15

    The fundamental theory and the semiclassical description of loop quantum cosmology (LQC) have been studied in the Friedmann-Robertson-Walker and Bianchi I models. As an extension to include both anisotropy and intrinsic curvature, this paper investigates the cosmological model of Kantowski-Sachs spacetime with a free massless scalar field at the level of phenomenological dynamics with the LQC discreteness corrections. The LQC corrections are implemented in two different improved quantization schemes. In both schemes, the big bang and big crunch singularities of the classical solution are resolved and replaced by the big bounces when the area or volume scale factor approaches the critical values in the Planck regime measured by the reference of the scalar field momentum. Symmetries of scaling are also noted and suggest that the fundamental spatial scale (area gap) may give rise to a temporal scale. The bouncing scenarios are in an analogous fashion of the Bianchi I model, naturally extending the observations obtained previously.

  7. Dynamics of anisotropic power-law f( R) cosmology

    NASA Astrophysics Data System (ADS)

    Shamir, M. F.

    2016-12-01

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f( R) theory has been investigated extensively due to important f( R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f( R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f( R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f( R) gravity supports the crucial issue of accelerated expansion of the universe.

  8. An Introduction to General Relativity and Cosmology

    NASA Astrophysics Data System (ADS)

    Plebanski, Jerzy; Krasinski, Andrzej

    2012-09-01

    1. How the theory of relativity came into being (a brief historical sketch); Part I. Elements of Differential Geometry: 2. A short sketch of two-dimensional differential geometries; 3. Tensors, tensor densities; 4. Covariant derivatives; 5. Parallel transport and geodesic lines; 6. Curvature of a manifold: flat manifolds; 7. Riemannian geometry; 8. Symmetries of Rieman spaces, invariance of tensors; 9. Methods to calculate the curvature quickly - Cartan forms and algebraic computer programs; 10. The spatially homogeneous Bianchi-type spacetimes; 11. The Petrov classification by the spinor method; Part II. The Gravitation Theory: 12. The Einstein equations and the sources of a gravitational field; 13. The Maxwell and Einstein-Maxwell equations and the Kaluza-Klein theory; 14. Spherically symmetric gravitational field of isolated objects; 15. Relativistic hydrodynamics and thermodynamics; 16. Relativistic cosmology I: general geometry; 17. Relativistic cosmology II: the Robertson-Walker geometry; 18. Relativistic cosmology III: the Lemaître-Tolman geometry; 19. Relativistic cosmology IV: generalisations of L-T and related geometries; 20. The Kerr solution; 21. Subjects omitted in this book; References.

  9. Causal Dynamical Triangulations in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Görlich, Andrzej

    2011-11-01

    Recent results obtained within a non-perturbative approach to quantum gravity based on the method of four-dimensional Causal Dynamical Triangulations are described. The phase diagram of the model consists of three phases. In the physically most interesting phase, the time-translational symmetry is spontaneously broken. Calculations of expectation values required introducing procedures taking into account the inhomogeneity of configurations. It was shown that the dynamically emerged four-dimensional background geometry corresponds to a Euclidean de Sitter space and reveals no fractality at large distances. Measurements of the covariance matrix of scale factor fluctuations allowed to reconstruct the effective action, which remained in agreement with the discrete minisuperspace action. Values of the Hausdorff dimension and spectral dimension of three-dimensional spatial slices suggest their fractal nature, which was confirmed by a direct analysis of triangulation structure. The Monte Carlo algorithm used to obtain presented results is described.

  10. Laser triangulation: fundamental uncertainty in distance measurement.

    PubMed

    Dorsch, R G; Häusler, G; Herrmann, J M

    1994-03-01

    We discuss the uncertainty limit in distance sensing by laser triangulation. The uncertainty in distance measurement of laser triangulation sensors and other coherent sensors is limited by speckle noise. Speckle arises because of the coherent illumination in combination with rough surfaces. A minimum limit on the distance uncertainty is derived through speckle statistics. This uncertainty is a function of wavelength, observation aperture, and speckle contrast in the spot image. Surprisingly, it is the same distance uncertainty that we obtained from a single-photon experiment and from Heisenberg's uncertainty principle. Experiments confirm the theory. An uncertainty principle connecting lateral resolution and distance uncertainty is introduced. Design criteria for a sensor with minimum distanc uncertainty are determined: small temporal coherence, small spatial coherence, a large observation aperture.

  11. Unitary evolution for a quantum Kantowski-Sachs cosmology

    NASA Astrophysics Data System (ADS)

    Pal, Sridip; Banerjee, Narayan

    2015-10-01

    It is shown that like the Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of anisotropy. Non-unitarity, if there is any, cannot escape notice here, as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving a time independent probability density. For α \

  12. Generalized Kasner Cosmologies with Induced Matter

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2000-04-01

    We extend Paul Wesson's five dimensional induced matter model, which has previously been applied to a variety of isotropic cases, to a generalization of Kasner's anisotropic (Bianchi-type-I) cosmology. Wesson's model is a Kaluza-Klein approach in which assumptions of compactness are relaxed for the fifth coordinate, leading to extra "induced matter" terms in the stress-energy tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi-type-I geometry. We supplement the fourth time coordinate, t, with a fifth coordinate, ψ. We assume that each of the scale factors are dependent on both t and ψ. (This extends the work of Soccorro, Villanueva, and Pimental, who solved a related problem with only time dependence.) We find a set of solutions for the five dimensional Einstein equations, and determine the pressure and density of induced matter. We show that the assumption of positive density leads to the contraction over time of the fifth scale factor. Finally, employing our model, we speculate about a possible mechanism for the isotropization of the early universe.

  13. Coefficient adaptive triangulation for strongly anisotropic problems

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  14. Bianchi's Bäcklund transformation for higher dimensional quadrics

    NASA Astrophysics Data System (ADS)

    Dincă, Ion I.

    2016-12-01

    We provide a generalization of Bianchi's Bäcklund transformation from 2-dimensional quadrics to higher dimensional quadrics (which is also a generalization of Tenenblat-Terng's Bäcklund transformation of isometric deformations of Hn(R) in R 2 n - 1 to general quadrics). Our investigation is the higher dimensional version of Bianchi's main three theorems on the theory of isometric deformations of quadrics and Bianchi's treatment of the Bäcklund transformation for diagonal paraboloids via conjugate systems. It became the driving force which led to the flourishing of the classical differential geometry in the second half of the XIX th century and its profound study by illustrious geometers led to interesting results. Today it is still an open problem in its full generality, but basic familiar results like the Gauß-Bonnet fundamental theorem of surfaces and the Codazzi-Mainardi equations (independently discovered also by Peterson) were first communicated to the French Academy of Sciences. A list (most likely incomplete) of the winners of the prize includes Bianchi, Bonnet, Guichard, Weingarten.Up to 1899 isometric deformations of the (pseudo-)sphere and isotropic quadrics without center (from a metric point of view they can be considered as metrically degenerate quadrics without center) together with their Bäcklund transformation and the complementary transformation of isometric deformations of surfaces of revolution were investigated by geometers such as Bäcklund, Bianchi, Bonnet, Darboux, Goursat, Hazzidakis, Lie, Weingarten, etc.In 1899 Guichard discovered that when quadrics with(out) center and of revolution around the focal axis roll on their isometric deformations their foci describe constant mean curvature (minimal) surfaces (and Bianchi proved the converse: all constant mean curvature (minimal) surfaces can be realized in this way).With Guichard's result the race to find the isometric

  15. Laser cosmology

    NASA Astrophysics Data System (ADS)

    Chen, P.

    2014-05-01

    Recent years have witnessed tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events;(2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.

  16. Cosmological antigravity.

    NASA Astrophysics Data System (ADS)

    Krauss, L. M.

    1999-01-01

    The long-derided cosmological constant - a contrivance of Albert Einstein's that represents a bizarre form of energy inherent in space itself - is one of two contenders for explaining changes in the expansion rate of the Universe.

  17. Inflationary cosmology.

    NASA Astrophysics Data System (ADS)

    Blau, S. K.; Guth, A. H.

    Contents: 1. Introduction. 2. Summary of the standard cosmological model. 3. Problems of the standard cosmological model. 4. The original inflationary universe. 5. Successes of the original inflationary model. 6. Problems of the original inflationary model. 7. The new inflationary universe. 8. Density perturbations in the new inflationary universe. 9. Quantum theory of the new inflationary universe phase transition. 10. Inflation in the minimal SU(5) grand unified theory. 11. False vacuum bubbles and child universes. 12. Conclusion.

  18. The Raychaudhuri equation in homogeneous cosmologies

    SciTech Connect

    Albareti, F.D.; Cembranos, J.A.R.; Cruz-Dombriz, A. de la; Dobado, A. E-mail: cembra@fis.ucm.es E-mail: dobado@fis.ucm.es

    2014-03-01

    In this work we address the issue of studying the conditions required to guarantee the Focusing Theorem for both null and timelike geodesic congruences by using the Raychaudhuri equation. In particular we study the case of Friedmann-Robertson-Walker as well as more general Bianchi Type I spacetimes. The fulfillment of the Focusing Theorem is mandatory in small scales since it accounts for the attractive character of gravity. However, the Focusing Theorem is not satisfied at cosmological scales due to the measured negative deceleration parameter. The study of the conditions needed for congruences convergence is not only relevant at the fundamental level but also to derive the viability conditions to be imposed on extended theories of gravity describing the different expansion regimes of the universe. We illustrate this idea for f(R) gravity theories.

  19. Dimensionless cosmology

    NASA Astrophysics Data System (ADS)

    Narimani, Ali; Moss, Adam; Scott, Douglas

    2012-10-01

    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant G is entirely dimensionfull. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of both Big Bang Nucleosynthesis and recombination in a dimensionless manner. Rigorously determining how to talk about the model in a way which avoids physical dimensions is a requirement for proceeding with a calculation to constrain time-varying fundamental constants. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any one of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding G to the usual cosmological parameter set.

  20. On the asserted clash between the Freud and the Bianchi identities

    NASA Astrophysics Data System (ADS)

    Antoci, S.

    1995-09-01

    Through a constructive method it is shown that the claim advanced in recent times about a clash that should occur between the Freud and the Bianchi identities in Einstein's general theory of relativity is based on a faulty argument.

  1. A global conformal extension theorem for perfect fluid Bianchi space-times

    SciTech Connect

    Luebbe, Christian Tod, Paul

    2008-12-15

    A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed.

  2. Surface roughness measurement with laser triangulation

    NASA Astrophysics Data System (ADS)

    Bai, Fuzhong; Zhang, Xiaoyan; Tian, Chaoping

    2016-09-01

    A surface roughness measurement method is introduced in the paper, which is based on laser triangulation and digital image processing technique. In the measuring system, we use the line-structured light as light source, microscope lens and high-accuracy CCD sensor as displacement sensor as well. In addition, the working angle corresponding to the optimal sensitivity is considered in the optical structure design to improve the measuring accuracy. Through necessary image processing operation for the light strip image, such as center-line extraction with the barycenter algorithm, Gaussian filtering, the value of roughness is calculated. A standard planing surface is measured experimentally with the proposed method and the stylus method (Mitutoyo SJ-410) respectively. The profilograms of surface appearance are greatly similar in the shape and the amplitude to two methods. Also, the roughness statistics values are close. The results indicate that the laser triangulation with the line-structured light can be applied to measure the surface roughness with the advantages of rapid measurement and visualized display of surface roughness profile.

  3. Towards generic resolution of strong singularities in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet

    2010-10-01

    Singularities are the boundaries of classical spacetime in General Relativity. It has been always hoped that quantum gravitational effects may resolve these singularities. In recent years, progress in loop quantum cosmology has provided insights on the resolution of big bang, big crunch and other spacelike singularities. In this talk we will give an update on the recent status of the generic resolution of strong spacelike singularities in loop quantum cosmology. We will show that for flat and curved Roberston-Walker backgrounds and also for Bianchi-I models, loop quantum gravity effects resolve all strong curvature singularities. However, weak curvature singularities, that is those beyond which geodesics can be continued, may not be resolved.

  4. Dark-energy cosmological models in f( G) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. F.

    2016-10-01

    We discuss dark-energy cosmological models in f( G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f( G) model are explored. One general solution is discussed using a power-law f( G) gravity model and physical quantities are calculated. In particular, Kasner's universe is recovered and the corresponding f( G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f( G) = G 5/6 support expansion of universe while those with f( G) = G 1/2 do not favor the current expansion.

  5. Evolution of perturbations in anisotropic loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Sreenath; Agullo, Ivan; Olmedo, Javier

    2017-01-01

    In loop quantum cosmology the big bang singularity is replaced by a quantum bounce. The evolution of primordial perturbations through such a bounce in a Friedmann-Lemaître-Robertson-Walker universe has been studied in great detail. However, it is well known that any tiny anisotropy will grow (up to an upper bound) as the universe contracts and undergoes a bounce. Anisotropies will then decrease and eventually dilute in the expanding branch, but quantum perturbations may retain memory of the anisotropic bounce. In this talk, we present our efforts in understanding the effect of anisotropies (of Bianchi-I type) on the evolution of primordial perturbations in loop quantum cosmology, and in exploring its phenomenological implications. This work is supported by the NSF Grant No. PHY-1403943.

  6. Behaviour of the cosmological model with variable deceleration parameter

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Beesham, A.; Shukla, B. K.

    2016-12-01

    We consider the Bianchi type-VI0 massive string universe with decaying cosmological constant Λ. To solve Einstein's field equations, we assume that the shear scalar is proportional to the expansion scalar and that the deceleration parameter q is a linear function of the Hubble parameter H, i.e., q=α +β H, which yields the scale factor a = e^{1/β√{2β t+k1}}. The model expands exponentially with cosmic time t. The value of the cosmological constant Λ is small and positive. Also, we discuss physical parameters as well as the jerk parameter j, which predict that the universe in this model originates as in the Λ CDM model.

  7. Dynamical deformations of three-dimensional Lie algebras in Bianchi classification over the harmonic oscillator

    SciTech Connect

    Paal, Eugen; Virkepu, Jueri

    2009-05-15

    Operadic Lax representations for the harmonic oscillator are used to construct the dynamical deformations of three-dimensional (3D) real Lie algebras in the Bianchi classification. It is shown that the energy conservation of the harmonic oscillator is related to the Jacobi identities of the dynamically deformed algebras. Based on this observation, it is proved that the dynamical deformations of 3D real Lie algebras in the Bianchi classification over the harmonic oscillator are Lie algebras.

  8. Nonlinear spinor fields in Bianchi type-VI0 spacetime

    NASA Astrophysics Data System (ADS)

    Saha, Bijan

    2015-10-01

    Within the scope of Bianchi type- V I 0 spacetime we study the role of spinor field on the evolution of the Universe. It is found that the presence of the non-trivial non-diagonal components of the energy-momentum tensor of the spinor field plays a vital role on the evolution of the Universe. As a result of their mutual influence, there occur two different scenarios. In one case the invariants constructed from the bilinear forms of the spinor field become trivial, thus giving rise to a massless and linear spinor field Lagrangian. According to the second scenario massive and nonlinear terms do not vanish and depending on the sign of the coupling constants we have either an expanding mode of expansion or the one that, after obtaining some maximum value, contracts and ends in a big crunch generating spacetime singularity. This result shows that the spinor field is highly sensitive to the gravitational one.

  9. Multiwavelength Cosmology

    NASA Astrophysics Data System (ADS)

    Plionis, M.

    2004-07-01

    The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: Multidimensional cosmology

    NASA Astrophysics Data System (ADS)

    Alvarez, Enrique

    This paper briefly reports on some recent attempts to construct a cosmology consistent with present ideas about the fundamental theories of nature, which generally involve extra dimensions. The decoupling of the extra dimensions from the usual ones is analyzed, as well as the possiblity of phase transitions in a "superstring universe".

  10. Triangulation, Respondent Validation, and Democratic Participation in Mixed Methods Research

    ERIC Educational Resources Information Center

    Torrance, Harry

    2012-01-01

    Over the past 10 years or so the "Field" of "Mixed Methods Research" (MMR) has increasingly been exerting itself as something separate, novel, and significant, with some advocates claiming paradigmatic status. Triangulation is an important component of mixed methods designs. Triangulation has its origins in attempts to validate research findings…

  11. Cosmological ``Truths''

    NASA Astrophysics Data System (ADS)

    Bothun, Greg

    2011-10-01

    Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent

  12. Superstring cosmology

    NASA Astrophysics Data System (ADS)

    Alvarez, Enrique

    1985-01-01

    Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.

  13. Medieval Cosmology

    NASA Astrophysics Data System (ADS)

    Grant, E.; Murdin, P.

    2000-11-01

    During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...

  14. Cosmological wormholes

    NASA Astrophysics Data System (ADS)

    Kirillov, A. A.; Savelova, E. P.

    2016-05-01

    We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.

  15. A new class of LRS Bianchi type-II dark energy models with variable EoS parameter

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Amirhashchi, Hassan; Jaiswal, Rekha

    2011-08-01

    A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein's field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.

  16. DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun

    2016-07-01

    We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.

  17. Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito

    2014-02-01

    A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.

  18. Triangulation algorithms for the representation of molecular surface properties

    NASA Astrophysics Data System (ADS)

    Heiden, Wolfgang; Schlenkrich, Michael; Brickmann, Jürgen

    1990-09-01

    A triangulation algorithm for a dotted surface (i.e. a surface defined by point coordinates in three dimensions) is given. The individual triangles are generated on the basis of a hierarchy of strategies according to increasing surface complexity. While for small molecules an elementary algorithm is sufficient to triangulate the surface, large molecules-like proteins-generally need all steps of the hierarchy. Although this program has been developed with the aim of triangulating molecular surfaces, it can in principle be applied to any surface defined by 3D point coordinates.

  19. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  1. Anisotropic, nonsingular early universe model leading to a realistic cosmology

    SciTech Connect

    Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.

    2009-02-15

    We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent of the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.

  2. Surface Triangulation for CSG in Mercury

    SciTech Connect

    Engel, Daniel; O'Brien, Matthew J.

    2015-08-26

    Visualization routines for rendering complicated geometries are very useful for engineers and scientists who are trying to build 3D prototypes of their designs. A common way to rapidly add interesting features to a 3D model is through the use of a concept called Constructive Solid Geometry. CSG uses compositions of the boolean set operations to manipulate basic geometric primitives to form more complicated objects. The most common boolean operations employed are union, intersection, and subtraction. Most computer-aided design software packages contain some sort of ability visualize CSG. The typical workflow for the user is as follows: The user specifies the individual primitive components, the user arbitrarily combines each of these primitives with boolean operations, the software generates a CSG tree structure which normally stores these solids implicitly with their defining equation, the tree is traversed and a general algorithm is applied to render the appropriate geometry onto the screen. Algorithms for visualizing CSG have been extensively developed for over a decade. Points sampled from the implicit solids are typically used as input by variations of algorithms like marching cubes and point-cloud surface reconstruction. Here, we explain a surface triangulation method from the graphics community that is being used for surface visualization in the framework of a Monte-Carlo neutron transport code called Mercury.

  3. Rail profile control using laser triangulation scanners

    NASA Astrophysics Data System (ADS)

    Boronahin, Ð. ńlexandr M.; Larionov, Daniil Yu.; Podgornaya, Liudmila N.; Shalymov, Roman V.; Filatov, Yuri V.; Bokhman, Evgueny D.

    2016-11-01

    Rail track geometric parameters measurement requires knowledge of left and right rail head location in each section. First of all displacement in transverse plane of rail head point located at a distance of 14 mm below the running surface, must be controlled [1]. It is carried out by detecting of each rail profile using triangulation laser scanners. Optical image recognition is carried out successfully in the laboratory, approaches used for this purpose are widely known. However, laser scanners operation has several features on railways leading to necessity of traditional approaches adaptation for solving these particular problems. The most significant problem is images noisiness due to the solar flashes and the effect of "Moon path" on the smooth rail surface. Using of optical filters gives inadequate result, because scanner laser diodes radiation frequency varies with temperature changes that forbid the use of narrow-band filters. Consideration of these features requires additional constructive and algorithmic solutions, including involvement of information from other sensors of the system. The specific usage of optical scanners for rail profiles control is the subject of the paper.

  4. The Cosmological Constant in Quantum Cosmology

    SciTech Connect

    Wu Zhongchao

    2008-10-10

    Hawking proposed that the cosmological constant is probably zero in quantum cosmology in 1984. By using the right configuration for the wave function of the universe, a complete proof is found very recently.

  5. Examining laser triangulation system performance using a software simulation

    NASA Astrophysics Data System (ADS)

    Collier, Jeffery S.; Nurre, Joseph H.

    1999-03-01

    The invention of the laser diode, the microcomputer and the CCD camera have made possible the new technology of triangulation measurement systems. Current applications range from scanning the insides of old pipes, to a vision tool for the blind. As such, it is important that techniques be developed to minimize the error in laser triangulation measurement systems. Due to the nonlinear nature of the problem and the fact that error is dependent on an ever changing and vast number of subjects, a computer simulation was written to examine the trade-off between occlusion and data quality. A computer simulation allows for a large amount of flexibility. The software gives the user the ability to calculate the error for a given triangulation configuration without having to build and test the actual hardware. This paper describes and demonstrates the use of the simulator. Limitless laser triangulation systems can be modeled and most subjects represented in CAD files can be used in the computer simulation.

  6. Yet another method for triangulation and contouring for automated cartography

    NASA Technical Reports Server (NTRS)

    De Floriani, L.; Falcidieno, B.; Nasy, G.; Pienovi, C.

    1982-01-01

    An algorithm is presented for hierarchical subdivision of a set of three-dimensional surface observations. The data structure used for obtaining the desired triangulation is also singularly appropriate for extracting contours. Some examples are presented, and the results obtained are compared with those given by Delaunay triangulation. The data points selected by the algorithm provide a better approximation to the desired surface than do randomly selected points.

  7. Teleparallel conformal Killing vector fields of LRS Bianchi type V spacetimes in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Khan, Suhail; Hussain, Tahir; Khan, Gulzar Ali

    The aim of this paper is to explore teleparallel conformal Killing vector fields (CKVFs) of locally rotationally symmetric (LRS) Bianchi type V spacetimes in the context of teleparallel gravity and compare the obtained results with those of general relativity (GR). The general solution of teleparallel conformal Killing's equations is found in terms of some unknown functions of t and x, along with a set of integrability conditions. The integrability conditions are solved in some particular cases to get the final form of teleparallel CKVFs. It is observed that the LRS Bianchi type V spacetimes admit proper teleparallel CKVF in only one case, while in remaining cases the teleparallel CKVFs reduce to teleparallel Killing vector fields (KVFs). Moreover, it is shown that the LRS Bianchi type V spacetimes do not admit any proper teleparallel homothetic vector field (HVF).

  8. Energy distributions of Bianchi type-VI h Universe in general relativity and teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Özkurt, Şeref; Aygün, Sezg&idot; n.

    2017-04-01

    In this paper, we have investigated the energy and momentum density distributions for the inhomogeneous generalizations of homogeneous Bianchi type-VI h metric with Einstein, Bergmann-Thomson, Landau-Lifshitz, Papapetrou, Tolman and Møller prescriptions in general relativity (GR) and teleparallel gravity (TG). We have found exactly the same results for Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum distributions in Bianchi type-VI h metric for different gravitation theories. The energy-momentum distributions of the Bianchi type- VI h metric are found to be zero for h = -1 in GR and TG. However, our results agree with Tripathy et al, Tryon, Rosen and Aygün et al.

  9. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    SciTech Connect

    Schwadron, N. A.; Moebius, E.; Richardson, J. D.; Burlaga, L. F.; McComas, D. J.

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  10. Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation

    SciTech Connect

    Agishtein, M.E.; Migdal, A.A. )

    1992-04-20

    In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 {times} 10{sup 4} simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths.

  11. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  12. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  13. Measurement Uncertainty of Microscopic Laser Triangulation on Technical Surfaces.

    PubMed

    Mueller, Thomas; Poesch, Andreas; Reithmeier, Eduard

    2015-12-01

    Laser triangulation is widely used to measure three-dimensional structure of surfaces. The technique is suitable for macroscopic and microscopic surface measurements. In this paper, the measurement uncertainty of laser triangulation is investigated on technical surfaces for microscopic measurement applications. Properties of technical surfaces are, for example, reflectivity, surface roughness, and the presence of scratches and pores. These properties are more influential in the microscopic laser triangulation than in the macroscopic one. In the Introduction section of this paper, the measurement uncertainty of laser triangulation is experimentally investigated for 13 different specimens. The measurements were carried out with and without a laser speckle reducer. In the Materials and Methods section of this paper, the surfaces of the 13 specimens are characterized in order to be able to find correlations between the surface properties and the measurement uncertainty. The last section of this paper describes simulations of the measurement uncertainty, which allow for the calculation of the measurement uncertainty with only one source of uncertainty present. The considerations in this paper allow for the assessment of the measurement uncertainty of laser triangulation on any technical surface when some surface properties, such as roughness, are known.

  14. Isotropic and anisotropic bouncing cosmologies in Palatini gravity

    SciTech Connect

    Barragan, Carlos; Olmo, Gonzalo J.

    2010-10-15

    We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R,R{sub {mu}{nu}R}{sup {mu}{nu}}) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R+aR{sup 2}/R{sub P}+R{sub {mu}{nu}R}{sup {mu}{nu}/}R{sub P} exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.

  15. Imparting small vorticity to a Bianchi type-VIh empty spacetime

    NASA Astrophysics Data System (ADS)

    Batakis, Nikos A.

    1981-04-01

    We present and briefly discuss a Bianchi type-VIh empty spacetime. The field equations have been solved after being linearized with respect to a parameter which imparts vorticity to the model. The limit of zero vorticity is an already known solution.

  16. Inhomogeneous generalizations of Bianchi Type VIh universes with stiff perfect fluid and radiation

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Prasad, A.

    1995-03-01

    Families of inhomogeneous models filled with a stiff perfect fluid and radiation have been derived in which there is no flow of total momentum. The models are generalizations of those of Bianchi Type VIh and are discussed for some particular forms of the arbitrary functions appearing in them.

  17. Einstein-Weyl field equations in a Bianchi type-IX space-time

    SciTech Connect

    Kolassis, C.A.; Le Denmat, G.

    1984-07-15

    It is proved that there exists no solution of the combined gravitational-neutrino field equations in general relativity if the space-time metric admits a group of isometries of Bianchi type IX and the neutrino field has geodesic and shearfree rays.

  18. Moving sound source localization based on triangulation method

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Yang, Diange; Wen, Junjie; Lian, Xiaomin

    2016-12-01

    This study develops a sound source localization method that extends traditional triangulation to moving sources. First, the possible sound source locating plane is scanned. Secondly, for each hypothetical source location in this possible plane, the Doppler effect is removed through the integration of sound pressure. Taking advantage of the de-Dopplerized signals, the moving time difference of arrival (MTDOA) is calculated, and the sound source is located based on triangulation. Thirdly, the estimated sound source location is compared to the original hypothetical location and the deviations are recorded. Because the real sound source location leads to zero deviation, the sound source can be finally located by minimizing the deviation matrix. Simulations have shown the superiority of MTDOA method over traditional triangulation in case of moving sound sources. The MTDOA method can be used to locate moving sound sources with as high resolution as DAMAS beamforming, as shown in the experiments, offering thus a new method for locating moving sound sources.

  19. Analysis of imaging for laser triangulation sensors under Scheimpflug rule.

    PubMed

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2013-07-29

    In this work a detailed analysis of the problem of imaging of objects lying in the plane tilted with respect to the optical axis of the rotationally symmetrical optical system is performed by means of geometrical optics theory. It is shown that the fulfillment of the so called Scheimpflug condition (Scheimpflug rule) does not guarantee the sharp image of the object as it is usually declared because of the fact that due to the dependence of aberrations of real optical systems on the object distance the image becomes blurred. The f-number of a given optical system also varies with the object distance. It is shown the influence of above mentioned effects on the accuracy of the laser triangulation sensors measurements. A detailed analysis of laser triangulation sensors, based on geometrical optics theory, is performed and relations for the calculation of measurement errors and construction parameters of laser triangulation sensors are derived.

  20. Development of a diffraction-type optical triangulation sensor.

    PubMed

    Liu, Chien-Hung; Jywe, Wen-Yuh; Chen, Chao-Kwai

    2004-10-20

    We propose a diffraction-type optical triangulation sensor based on the diffraction theorem and the laser triangulation method. The advantage of the proposed sensor is that it obtains not only the linear displacement of a moving object but also its three angular motion errors. The developed sensor is composed mainly of a laser source, two quadrant detectors, and a reflective diffraction grating. The reflective diffraction grating can reflect the incident laser beam into several diffractive rays, and two quadrant detectors were set up for detecting the position of 0- and + 1-order diffraction rays. According to the optical triangulation relationship between the spatial incident angles of a laser beam and the output coordinates of two quadrant detectors, the displacement and the three angular motion errors of a moving object can be obtained simultaneously.

  1. Newtonian cosmology revisited

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1996-09-01

    I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.

  2. Research on pavement roughness based on the laser triangulation

    NASA Astrophysics Data System (ADS)

    Chen, Wenxue; Ni, Zhibin; Hu, Xinhan; Lu, Xiaofeng

    2016-06-01

    Pavement roughness is one of the most important factors for appraising highway construction. In this paper, we choose the laser triangulation to measure pavement roughness. The principle and configuration of laser triangulation are introduced. Based on this technology, the pavement roughness of a road surface is measured. The measurement results are given in this paper. The measurement range of this system is 50 μm. The measurement error of this technology is analyzed. This technology has an important significance to appraise the quality of highway after completion of the workload.

  3. Laser triangulation for liquid film thickness measurements through multiple interfaces.

    PubMed

    Peterson, Jerrod P; Peterson, Richard B

    2006-07-10

    Laser triangulation is used to measure the thickness of a liquid film in a test section consisting of a quartz viewing window, a water layer, and a hydrophobic membrane. The triangulation sensor acquires measurements to the bounding surfaces of the film while peering through multiple interfaces. This allows the difference between the two measurements to constitute the local film thickness. A refraction model is developed and applied to the analysis of data collected from the experiment. For verification, an empirical method is also developed and compared to the analytical approach. The measurement technique is intended to assess the stability of liquid films for use as gas-liquid contactors.

  4. Degravitation, inflation and the cosmological constant as an afterglow

    NASA Astrophysics Data System (ADS)

    Patil, Subodh P.

    2009-01-01

    In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation — where Netwon's constant is promoted to a scale dependent filter function — as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant `afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units Λ ~ l2pl/L2. We discuss circumstances through which this scenario reasonably yields the presently observed value for Λ ~ O(10-120). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large in addition to

  5. Matter and dynamics in closed cosmologies

    NASA Astrophysics Data System (ADS)

    Heinzle, J. Mark; Röhr, Niklas; Uggla, Claes

    2005-04-01

    To systematically analyze the dynamical implications of the matter content in cosmology, we generalize earlier dynamical systems approaches so that perfect fluids with a general barotropic equation of state can be treated. We focus on locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal perfect fluid models, since such models exhibit a particularly rich dynamical structure and also illustrate typical features of more general cases. For these models, we recast Einstein’s field equations into a regular system on a compact state space, which is the basis for our analysis. We prove that models expand from a singularity and recollapse to a singularity when the perfect fluid satisfies the strong energy condition. When the matter source admits Einstein’s static model, we present a comprehensive dynamical description, which includes the qualitative asymptotic behavior, of models in the neighborhood of the Einstein model; the results refute earlier claims about “homoclinic phenomena and chaos.” We also discuss aspects of the global dynamics of models; in particular, we give criteria for the collapse to a singularity, and we describe when models expand forever to a state of infinite dilution; possible initial and final states are analyzed. Numerical investigations complement the analytical results.

  6. Torsion as a source of expansion in a Bianchi type-I universe in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density

    NASA Technical Reports Server (NTRS)

    Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.

    1987-01-01

    It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.

  7. On the viability of the truncated Israel-Stewart theory in cosmology

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per; Hervik, Sigbjørn

    2015-10-01

    We apply the causal Israel-Stewart theory of irreversible thermodynamics to model the matter content of the Universe as a dissipative fluid with bulk and shear viscosity. Along with the full transport equations we consider their widely used truncated version. By implementing a dynamical systems approach to Bianchi type IV and V cosmological models with and without cosmological constant, we determine the future asymptotic states of such Universes and show that the truncated Israel-Stewart theory leads to solutions essentially different from the full theory. The solutions of the truncated theory may also manifest unphysical properties. Finally, we find that in the full theory shear viscosity can give a substantial rise to dissipative fluxes, driving the fluid extremely far from equilibrium, where the linear Israel-Stewart theory ceases to be valid.

  8. A Triangulation Method for Identifying Hydrostratigraphic Locations of Well Screens

    SciTech Connect

    Whiteside, T. S.

    2015-01-31

    A method to identify the hydrostratigraphic location of well screens was developed using triangulation with known locations. This method was applied to all of the monitor wells being used to develop the new GSA groundwater model. Results from this method are closely aligned with those from an alternate method which uses a mesh surface.

  9. Comparison of three-dimensional retinal imaging methods: the method of scanning laser triangulation.

    PubMed

    Milbocker, M T; Reznichenko, Y M

    1991-10-01

    Three methods of three-dimensional imaging of the vitreous and the fundus of the human eye are compared. Equations are derived for the theoretical depth resolution of stereophotogrammetry, scanning laser tomography, and scanning laser triangulation. Scanning laser triangulation provides superior depth resolution without requiring axial scanning. A description of a prototype scanning laser triangulator is given.

  10. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  11. Analytic self-gravitating Skyrmions, cosmological bounces and AdS wormholes

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Canfora, Fabrizio; Zanelli, Jorge

    2016-01-01

    We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein-Skyrme system with winding number w = ± 1, in presence of a cosmological constant. The static spacetime metric is the direct product R ×S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback with unit topological charge. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX with time-dependent scale and squashing coefficients. Remarkably, the Skyrme equations are still identically satisfied for all values of these parameters. Thus, the complete set of field equations for the Einstein-Skyrme-Λ system in the topological sector reduces to a pair of coupled, autonomous, nonlinear differential equations for the scale factor and a squashing coefficient. These equations admit analytic bouncing cosmological solutions in which the universe contracts to a minimum non-vanishing size, and then expands. A non-trivial byproduct of this solution is that a minor modification of the construction gives rise to a family of stationary, regular configurations in General Relativity with negative cosmological constant supported by an SU (2) nonlinear sigma model. These solutions represent traversable AdS wormholes with NUT parameter in which the only "exotic matter" required for their construction is a negative cosmological constant.

  12. Rigorous Newtonian cosmology

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1996-10-01

    It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.

  13. A note on tilted Bianchi type VIh models: the type III bifurcation

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Hervik, S.

    2008-10-01

    In this note we complete the analysis of Hervik, van den Hoogen, Lim and Coley (2007 Class. Quantum Grav. 24 3859) of the late-time behaviour of tilted perfect fluid Bianchi type III models. We consider models with dust, and perfect fluids stiffer than dust, and eludicate the late-time behaviour by studying the centre manifold which dominates the behaviour of the model at late times. In the dust case, this centre manifold is three-dimensional and can be considered a double bifurcation as the two parameters (h and γ) of the type VIh model are varied. We therefore complete the analysis of the late-time behaviour of tilted ever-expanding Bianchi models of types I VIII.

  14. Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996

  15. Discovery and problem solving: Triangulation as a weak heuristic

    NASA Technical Reports Server (NTRS)

    Rochowiak, Daniel

    1987-01-01

    Recently the artificial intelligence community has turned its attention to the process of discovery and found that the history of science is a fertile source for what Darden has called compiled hindsight. Such hindsight generates weak heuristics for discovery that do not guarantee that discoveries will be made but do have proven worth in leading to discoveries. Triangulation is one such heuristic that is grounded in historical hindsight. This heuristic is explored within the general framework of the BACON, GLAUBER, STAHL, DALTON, and SUTTON programs. In triangulation different bases of information are compared in an effort to identify gaps between the bases. Thus, assuming that the bases of information are relevantly related, the gaps that are identified should be good locations for discovery and robust analysis.

  16. Personal authentication using hand vein triangulation and knuckle shape.

    PubMed

    Kumar, Ajay; Prathyusha, K Venkata

    2009-09-01

    This paper presents a new approach to authenticate individuals using triangulation of hand vein images and simultaneous extraction of knuckle shape information. The proposed method is fully automated and employs palm dorsal hand vein images acquired from the low-cost, near infrared, contactless imaging. The knuckle tips are used as key points for the image normalization and extraction of region of interest. The matching scores are generated in two parallel stages: (i) hierarchical matching score from the four topologies of triangulation in the binarized vein structures and (ii) from the geometrical features consisting of knuckle point perimeter distances in the acquired images. The weighted score level combination from these two matching scores are used to authenticate the individuals. The achieved experimental results from the proposed system using contactless palm dorsal-hand vein images are promising (equal error rate of 1.14%) and suggest more user friendly alternative for user identification.

  17. Critical region for an Ising model coupled to causal triangulations

    NASA Astrophysics Data System (ADS)

    Cerda-Hernández, J.

    2017-02-01

    This paper extends the results obtained by Hernández et al for the annealed Ising model coupled to two-dimensional causal dynamical triangulations. We employ the Fortuin‑Kasteleyn (FK) representation in order to determine a region in the quadrant of the parameters β,μ >0 where the critical curve for the annealed model is possibly located. This can be done by outlining a region where the model has a unique infinite-volume Gibbs measure, and a region where the finite-volume Gibbs measure does not have weak limit (in fact, does not exist if the volume is large enough). We also improve the region where the model has a one dimensional geometry with respect to the unique weak limit measure, which implies that the Ising model on causal triangulation does not have phase transition in this region. Furthermore, we provide a better approximation of the free energy for the coupled model.

  18. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  19. Evaluating habitat selection with radio-telemetry triangulation error

    USGS Publications Warehouse

    Samuel, M.D.; Kenow, K.P.

    1992-01-01

    Radio-telemetry triangulation errors result in the mislocation of animals and misclassification of habitat use. We present analytical methods that provide improved estimates of habitat use when misclassification probabilities can be determined. When misclassification probabilities cannot be determined, we use random subsamples from the error distribution of an estimated animal location to improve habitat use estimates. We conducted Monte Carlo simulations to evaluate the effects of this subsampling method, triangulation error, number of animal locations, habitat availability, and habitat complexity on bias and variation in habitat use estimates. Results for the subsampling method are illustrated using habitat selection by redhead ducks (Aythya americana ). We recommend the subsampling method with a minimum of 50 random points to reduce problems associated with habitat misclassification.

  20. Evaluating habitat selection with radio-telemetry triangulation error

    USGS Publications Warehouse

    Samuel, M.D.; Kenow, K.P.

    1992-01-01

    Radio-telemetry triangulation errors result in the mislocation of animals and misclassification of habitat use. We present analytical methods that provide improved estimates of habitat use when misclassification probabilities can be determined. When misclassification probabilities cannot be determined, we use random subsamples from the error distribution of an estimated animal location to improve habitat use estimates. We conducted Monte Carlo simulations to evaluate the effects of this subsampling method, triangulation error, number of animal locations, habitat availability, and habitat complexity on bias and variation in habitat use estimates. Results for the subsampling method are illustrated using habitat selection by redhead ducks (Aythya americana). We recommend the subsampling method with a minimum of 50 random points to reduce problems associated with habitat misclassification.

  1. Refining a triangulation of a planar straight-line graph to eliminate large angles

    SciTech Connect

    Mitchell, S.A.

    1993-05-13

    Triangulations without large angles have a number of applications in numerical analysis and computer graphics. In particular, the convergence of a finite element calculation depends on the largest angle of the triangulation. Also, the running time of a finite element calculation is dependent on the triangulation size, so having a triangulation with few Steiner points is also important. Bern, Dobkin and Eppstein pose as an open problem the existence of an algorithm to triangulate a planar straight-line graph (PSLG) without large angles using a polynomial number of Steiner points. We solve this problem by showing that any PSLG with {upsilon} vertices can be triangulated with no angle larger than 7{pi}/8 by adding O({upsilon}{sup 2}log {upsilon}) Steiner points in O({upsilon}{sup 2} log{sup 2} {upsilon}) time. We first triangulate the PSLG with an arbitrary constrained triangulation and then refine that triangulation by adding additional vertices and edges. Some PSLGs require {Omega}({upsilon}{sup 2}) Steiner points in any triangulation achieving any largest angle bound less than {pi}. Hence the number of Steiner points added by our algorithm is within a log {upsilon} factor of worst case optimal. We note that our refinement algorithm works on arbitrary triangulations: Given any triangulation, we show how to refine it so that no angle is larger than 7{pi}/8. Our construction adds O(nm+nplog m) vertices and runs in time O(nm+nplog m) log(m+ p)), where n is the number of edges, m is one plus the number of obtuse angles, and p is one plus the number of holes and interior vertices in the original triangulation. A previously considered problem is refining a constrained triangulation of a simple polygon, where p = 1. For this problem we add O({upsilon}{sup 2}) Steiner points, which is within a constant factor of worst case optimal.

  2. Grounded theory, feminist theory, critical theory: toward theoretical triangulation.

    PubMed

    Kushner, Kaysi Eastlick; Morrow, Raymond

    2003-01-01

    Nursing and social science scholars have examined the compatibility between feminist and grounded theory traditions in scientific knowledge generation, concluding that they are complementary, yet not without certain tensions. This line of inquiry is extended to propose a critical feminist grounded theory methodology. The construction of symbolic interactionist, feminist, and critical feminist variants of grounded theory methodology is examined in terms of the presuppositions of each tradition and their interplay as a process of theoretical triangulation.

  3. Triangulation: a three-dimensional model for continuing education.

    PubMed

    Shaffer, M K; Pfeiffer, I L

    1981-01-01

    A variety of cultural phenomena have recently converged to create a demand for specialized adult education programs. One approach that can provide insights in adjusting traditional educational strategies is triangulation, a procedure that can help delineate both content and teaching approaches by assembling the perceptions of administrators, adult learners, and educators. This procedure can be especially helpful to educators in health care settings who must continually provide meaningful programs for adults.

  4. Algorithm for Triangulating Visual Landmarks and Determining Their Covariance

    DTIC Science & Technology

    2012-01-01

    gyroscopes ........................................ 22 1 1. INTRODUCTION The work described in this report has to do with the problem of vision ...the image must be known. The camera calibration matrix is used when modeling the projection of a scene onto an image sensor . This projection can be...is much larger than the gyro noise from tactical- grade inertial measurement units. For example, if triangulation for a visual landmark is performed

  5. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    DTIC Science & Technology

    2015-06-01

    UNCLASSIFIED Mesh Generation via Local Bisection Refinement of Triangulated Grids Jason R. Looker Joint and Operations Analysis Division Defence...Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...relatively simple to implement, has the capacity to quickly generate a refined mesh with triangles that rapidly change size over a short distance, and does

  6. Calibration of high-speed imaging by laser triangulation.

    PubMed

    Larsson, Hans; Hertegård, Stellan

    2004-01-01

    A method was developed for absolute calibration of endoscopic vocal fold images using laser triangulation. The laser is attached to a rigid endoscope with 8-degrees angle in relation to the optical axis of the endoscope. A special software is used for calibration and measurements from high-speed images. The equipment can provide measurements both in horizontal and vertical planes, and can be used for calibrated measurements of vocal fold length, amplitude of vocal fold vibrations and vertical movements.

  7. Optical Triangulation-Based Microtopographic Inspection of Surfaces

    PubMed Central

    Costa, Manuel F. M.

    2012-01-01

    The non-invasive inspection of surfaces is a major issue in a wide variety of industries and research laboratories. The vast and increasing range of surface types, tolerance requirements and measurement constraints demanded during the last decades represents a major research effort in the development of new methods, systems and metrological strategies. The discreet dimensional evaluation the rugometric characterization and the profilometric inspection seem to be insufficient in many instances. The full microtopographic inspection has became a common requirement. Among the different systems developed, optical methods have the most important role and among those triangulation-based ones have gained a major status thanks to their flexibility, reliability and robustness. In this communication we will provide a brief historical review on the development of optical triangulation application to the dimensional inspection of objects and surfaces and on the work done at the Microtopography Laboratory of the Physics Department of the University of Minho, Portugal, in the development of methods and systems of optical triangulation-based microtopographic inspection of surfaces. PMID:22666036

  8. Optical triangulation-based microtopographic inspection of surfaces.

    PubMed

    Costa, Manuel F M

    2012-01-01

    The non-invasive inspection of surfaces is a major issue in a wide variety of industries and research laboratories. The vast and increasing range of surface types, tolerance requirements and measurement constraints demanded during the last decades represents a major research effort in the development of new methods, systems and metrological strategies. The discreet dimensional evaluation the rugometric characterization and the profilometric inspection seem to be insufficient in many instances. The full microtopographic inspection has became a common requirement. Among the different systems developed, optical methods have the most important role and among those triangulation-based ones have gained a major status thanks to their flexibility, reliability and robustness. In this communication we will provide a brief historical review on the development of optical triangulation application to the dimensional inspection of objects and surfaces and on the work done at the Microtopography Laboratory of the Physics Department of the University of Minho, Portugal, in the development of methods and systems of optical triangulation-based microtopographic inspection of surfaces.

  9. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    NASA Astrophysics Data System (ADS)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N-point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  10. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  11. Sociology of Modern Cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  12. Cosmological anisotropy from non-comoving dark matter and dark energy

    SciTech Connect

    Harko, Tiberiu; Lobo, Francisco S. N. E-mail: flobo@cii.fc.ul.pt

    2013-07-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  13. String Cosmology: A Review

    SciTech Connect

    McAllister, Liam P.; Silverstein, Eva

    2007-10-22

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  14. Wormholes and cosmology

    SciTech Connect

    Klebanov, I.; Susskind, L.

    1988-10-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs.

  15. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  16. Revisiting the two formulations of Bianchi identities and their implications on moduli stabilization

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2016-08-01

    In the context of non-geometric type II orientifold compactifications, there have been two formulations for representing the various NS-NS Bianchi-identities. In the first formulation, the standard three-form flux ( H 3), the geometric flux ( ω) and the non-geometric fluxes ( Q and R) are expressed by using the real six-dimensional indices (e.g. {H}_{ijk}, {ω_{ij}}^k, {Q_i}{_{jk}} and R ijk ), and this formulation has been heavily utilized for simplifying the scalar potentials in toroidal-orientifolds. On the other hand, relevant for the studies beyond toroidal backgrounds, a second formulation is utilized in which all flux components are written in terms of various involutively even/odd (2 , 1)- and (1 , 1)-cohomologies of the complex threefold. In the lights of recent model building interests and some observations made in [1, 2], in this article, we revisit two most commonly studied toroidal examples in detail to illustrate that the present forms of these two formulations are not completely equivalent. To demonstrate the same, we translate all the identities of the first formulation into cohomology ingredients, and after a tedious reshuffling of the subsequent constraints, interestingly we find that all the identities of the second formulation are embedded into the first formulation which has some additional constraints. In addition, we look for the possible solutions of these Bianchi identities in a detailed analysis, and we find that some solutions can reduce the size of scalar potential very significantly, and in some cases are too strong to break the no-scale structure completely. Finally, we also comment on the influence of imposing some of the solutions of Bianchi identities in studying moduli stabilization.

  17. A Detailed Evaluation of a Laser Triangulation Ranging System for Mobile Robots

    DTIC Science & Technology

    1983-08-01

    A RPI TECHNICAL REPORT MP-82 A DETAILED EVALUATION OF A LASER - TRIANGULATION RANGING SYSTEM FOR MOBILE ROBOTS by Thomas J. Clement Contract MDA-903...ML/MD VISION SYSTEM THEORY............................... 7 2.1 Laser Triangulation......................................... 7 2.1.1 ML/MD Vision...System Accuracy Factors..................10 2.1.2 Detector "Cone of Vision" Problem ..................... 10 2. 1.3 Laser Triangulation Justification

  18. Symmetries and generalized higher order conserved vectors of the wave equation on Bianchi I spacetime

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim; Jhangeer, Adil

    Conservation laws of various systems have been studied for decades due to their unparalleled importance in unraveling systems’ intricacies without having to go into microscopic details of the physical process involved. Their association with symmetries has not only had a stupendous impact in the formulation of the fundamental laws of physics, but also open doors to further explorations and unifications of others. In this study, we present the Lie symmetries and nonlinearly self-adjoint classifications of the wave equation on Bianchi I spacetime. For different forms of the metric potentials, generalized higher order non-trivial conserved vectors are constructed. Some exact invariant solutions are also exhibited.

  19. The Momentum 4-Vector Imparted by Gravitational Waves in Bianchi-Type Metrics

    NASA Astrophysics Data System (ADS)

    Havare, Ali; Korunur, Murat; Salti, Mustafa

    2006-01-01

    Considering the Møller, Weinberg and Qadir-Sharif's definitions in general relativity, we find the momentum 4-vector of the closed universe based on the Bianchi-type metrics. The momentum 4-vector (due to matter plus fields) is found to be zero. This result supports the viewpoints of Albrow and Tryon and extends the previous works by Cooperstock Israelit, Rosen, Johri et al., Banerjee Sen and Vargas who investigated the problem of the energy in Friedmann Robertson Walker universe and Saltı-Havare who studied the problem of the energy-momentum of the viscous Kasner-type space-times.

  20. Quantum entanglement of fermions-antifermions pair creation modes in noncommutative Bianchi I space-time

    NASA Astrophysics Data System (ADS)

    Ghiti, M. F.; Mebarki, N.; Aissaoui, H.

    2015-08-01

    The noncommutative Bianchi I curved space-time vierbeins and spin connections are derived. Moreover, the corresponding noncommutative Dirac equation as well as its solutions are presented. As an application within the quantum field theory approach using Bogoliubov transformations, the von Neumann fermion-antifermion pair creation quantum entanglement entropy is studied. It is shown that its behavior is strongly dependent on the value of the noncommutativity θ parameter, k⊥-modes frequencies and the structure of the curved space-time. Various discussions of the obtained features are presented.

  1. A hand-held triangulation sensor for small features measurement

    NASA Astrophysics Data System (ADS)

    Abramovich, Gil; Harding, Kevin

    2010-11-01

    This paper describes progressive generations of hand held triangulation sensors for measuring small features, from edge breaks to corrosion pits. We describe the design considerations, ergonomics, packaging and interface between the device and part, such as the sensor tip and optional fixtures. We then present a customized design to address different types of surface features and defects. Next, we present the calibration concept, and its execution. The paper closes by summarizing system performance evaluation experiments and their results. It was shown that the system is capable of measuring edges down to a radius of 250 microns at a repeatability of 50 microns.

  2. Hex-dominant mesh generation using 3D constrained triangulation

    SciTech Connect

    OWEN,STEVEN J.

    2000-05-30

    A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.

  3. Spacetime stereo: a unifying framework for depth from triangulation.

    PubMed

    Davis, James; Nehab, Diego; Ramamoorthi, Ravi; Rusinkiewicz, Szymon

    2005-02-01

    Depth from triangulation has traditionally been investigated in a number of independent threads of research, with methods such as stereo, laser scanning, and coded structured light considered separately. In this paper, we propose a common framework called spacetime stereo that unifies and generalizes many of these previous methods. To show the practical utility of the framework, we develop two new algorithms for depth estimation: depth from unstructured illumination change and depth estimation in dynamic scenes. Based on our analysis, we show that methods derived from the spacetime stereo framework can be used to recover depth in situations in which existing methods perform poorly.

  4. On-line metrology with conoscopic holography: beyond triangulation.

    PubMed

    Alvarez, Ignacio; Enguita, Jose M; Frade, María; Marina, Jorge; Ojea, Guillermo

    2009-01-01

    On-line non-contact surface inspection with high precision is still an open problem. Laser triangulation techniques are the most common solution for this kind of systems, but there exist fundamental limitations to their applicability when high precisions, long standoffs or large apertures are needed, and when there are difficult operating conditions. Other methods are, in general, not applicable in hostile environments or inadequate for on-line measurement. In this paper we review the latest research in Conoscopic Holography, an interferometric technique that has been applied successfully in this kind of applications, ranging from submicrometric roughness measurements, to long standoff sensors for surface defect detection in steel at high temperatures.

  5. Trees of Nuclei and Bounds on the Number of Triangulations of the 3-Ball

    NASA Astrophysics Data System (ADS)

    Collet, P.; Eckmann, J.-P.; Younan, M.

    2014-01-01

    Based on the work of Durhuus-Jónsson and Benedetti-Ziegler, we revisit the question of the number of triangulations of the 3-ball. We introduce a notion of nucleus (a triangulation of the 3-ball without internal nodes, and with each internal face having at most 1 external edge). We show that every triangulation can be built from trees of nuclei. This leads to a new reformulation of this question: We show that if the number of rooted nuclei with t tetrahedra has a bound of the form C t , then the number of rooted triangulations with t tetrahedra is bounded by.

  6. BMS in cosmology

    NASA Astrophysics Data System (ADS)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  7. Newtonian and Relativistic Cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.

  8. BMS in cosmology

    SciTech Connect

    Kehagias, A.; Riotto, A.

    2016-05-25

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  9. Bouncing Cosmologies: Progress and Problems

    NASA Astrophysics Data System (ADS)

    Brandenberger, Robert; Peter, Patrick

    2017-02-01

    We review the status of bouncing cosmologies as alternatives to cosmological inflation for providing a description of the very early universe, and a source for the cosmological perturbations which are observed today. We focus on the motivation for considering bouncing cosmologies, the origin of fluctuations in these models, and the challenges which various implementations face.

  10. Hamiltonian cosmology of bigravity

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    2017-03-01

    This article is written as a review of the Hamiltonian formalism for the bigravity with de Rham-Gabadadze-Tolley (dRGT) potential, and also of applications of this formalism to the derivation of the background cosmological equations. It is demonstrated that the cosmological scenarios are close to the standard ΛCDM model, but they also uncover the dynamical behavior of the cosmological term. This term arises in bigravity regardless on the choice of the dRGT potential parameters, and its scale is given by the graviton mass. Various matter couplings are considered.

  11. a Modified Method for Image Triangulation Using Inclined Angles

    NASA Astrophysics Data System (ADS)

    Alsadik, Bashar

    2016-06-01

    The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state - of -the -art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  12. Identification of Novel Autoantigens by a Triangulation Approach

    PubMed Central

    Cottrell, Tricia R.; Hall, John C.; Rosen, Antony; Casciola-Rosen, Livia

    2012-01-01

    High titer autoantibodies, which are often associated with specific clinical phenotypes, are useful diagnostically and prognostically in systemic autoimmune diseases. In several autoimmune rheumatic diseases (e.g. myositis and Sjogren’s syndrome), 20–40% of patients are autoantibody negative as assessed by conventional assays. The recent discovery of new specificities (e.g., anti-MDA5) in a subset of these autoantibody-negative subjects demonstrates that additional specificities await identification. In this manuscript, we describe a rapid multidimensional method to identify new autoantigens. A central foundation of this rapid approach is the use of an antigen source in which a pathogenic pathway active in the disease is recapitulated. Additionally, the method involves a modified serological proteome analysis strategy which allows confirmation that the correct gel plug has been removed prior to sending for sequencing. Lastly, the approach uses multiple sources of information to enable rapid triangulation and identification of protein candidates. Possible permutations and underlying principles of this triangulation strategy are elaborated to demonstrate the broad utility of this approach for antigen discovery. PMID:22910000

  13. Computing 2D constrained delaunay triangulation using the GPU.

    PubMed

    Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng

    2013-05-01

    We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.

  14. Three-Dimensional Reconstruction Optical System Using Shadows Triangulation

    NASA Astrophysics Data System (ADS)

    Barba, J. Leiner; Vargas, Q. Lorena; Torres, M. Cesar; Mattos, V. Lorenzo

    2008-04-01

    In this work is developed a three-dimensional reconstruction system using the Shades3D tool of the Matlab® Programming Language and materials of low cost, such as webcam camera, a stick, a weak structured lighting system composed by a desk lamp, and observation plane in which the object is located. The reconstruction is obtained through a triangulation process that is executed after acquiring a sequence of images of the scene with a shadow projected on the object; additionally an image filtering process is done for obtaining only the part of the scene that will be reconstructed. Previously, it is necessary to develop a calibration process for determining the internal camera geometric and optical characteristics (intrinsic parameters), and the 3D position and orientation of the camera frame relative to a certain world coordinate system (extrinsic parameters). The lamp and the stick are used to produce a shadow which scans the object; in this technique, it is not necessary to know the position of the light source, instead the triangulation is obtained using shadow plane produced by intersection between the stick and the illumination pattern. The webcam camera captures all images with the shadow scanning the object, and Shades3D tool processes all information taking into account captured images and calibration parameters. Likewise, this technique is evaluated in the reconstruction of parts of the human body and its application in the detection of external abnormalities and elaboration of prosthesis or implant.

  15. Dynamic ray tracing and its application in triangulated media

    SciTech Connect

    Rueger, A.

    1993-07-01

    Hale and Cohen (1991) developed software to generate two-dimensional computer models of complex geology. Their method uses a triangulation technique designed to support efficient and accurate computation of seismic wavefields for models of the earth`s interior. Subsequently, Hale (1991) used this triangulation approach to perform dynamic ray tracing and create synthetic seismograms based on the method of Gaussian beams. Here, I extend this methodology to allow an increased variety of ray-theoretical experiments. Specifically, the developed program GBmod (Gaussian Beam MODeling) can produce arbitrary multiple sequences and incorporate attenuation and density variations. In addition, I have added an option to perform Fresnel-volume ray tracing (Cerveny and Soares, 1992). Corrections for reflection and transmission losses at interfaces, and for two-and-one-half-dimensional (2.5-D) spreading are included. However, despite these enhancements, difficulties remain in attempts to compute accurate synthetic seismograms if strong lateral velocity inhomogeneities are present. Here, these problems are discussed and, to a certain extent, reduced. I provide example computations of high-frequency seismograms based on the method of Gaussian beams to exhibit the advantages and disadvantages of the proposed modeling method and illustrate new features for both surface and vertical seismic profiling (VSP) acquisition geometries.

  16. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios; Antón Castro, Francesc; Mioc, Darka

    2016-06-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detected are invariant to image rotations, translations, scaling and also to changes in illumination, brightness and 3-dimensional viewpoint. Afterwards, each feature of the reference image is matched with one in the sensed image if, and only if, the distance between them multiplied by a threshold is shorter than the distances between the point and all the other points in the sensed image. Then, the matched features are used to compute the parameters of the homography that transforms the coordinate system of the sensed image to the coordinate system of the reference image. The Delaunay triangulations of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches.

  17. Solving the horizontal conflation problem with a constrained Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Ledoux, Hugo; Ohori, Ken Arroyo

    2017-01-01

    Datasets produced by different countries or organisations are seldom properly aligned and contain several discrepancies (e.g., gaps and overlaps). This problem has been so far almost exclusively tackled by snapping vertices based on a user-defined threshold. However, as we argue in this paper, this leads to invalid geometries, is error-prone, and leaves several discrepancies along the boundaries. We propose a novel algorithm to align the boundaries of adjacent datasets. It is based on a constrained Delaunay triangulation to identify and eliminate the discrepancies, and the alignment is performed without moving vertices with a snapping operator. This allows us to guarantee that the datasets have been properly conflated and that the polygons are geometrically valid. We present our algorithm, our implementation (based on the stable and fast triangulator in CGAL), and we show how it can be used it practice with different experiments with real-world datasets. Our experiments demonstrate that our approach is highly efficient and that it yields better results than snapping-based methods.

  18. Energy Density Associated with the Bianchi Type-II Space-Time

    NASA Astrophysics Data System (ADS)

    Aydogdu, O.; Salti, M.

    2006-01-01

    To calculate the total energy distribution (due to both matter and fields including gravitation) associated with locally rotationally symmetric (LRS) Bianchi type-II space-times. We use the Bergmann-Thomson energy-momentum complex in both general relativity and teleparallel gravity. We find that the energy density in these different gravitation theories is vanishing at all times. This result is the same as that obtained by one of the present authors who solved the problem of finding the energy-momentum in LRS Bianchi type-II by using the energy-momentum complexes of Einstein and Landau and Lifshitz. The results of this paper also are consistent with those given in the previous works of Cooperstock and Israelit, Rosen, Johri et al., Banerjee-Sen, Vargas, and Salti et al. In this paper, we perform the calculations for a non-diagonal expanding space-time to determine whether the Bergmann-Thomson energy momentum prescription is consistent with the other formulations. (We previously considered diagonal and expanding space-time models.) Our result supports the viewpoints of Albrow and Tryon.

  19. Testing fractional action cosmology

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.

    2016-08-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  20. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  1. Baryogenesis and cosmological antimatter

    SciTech Connect

    Dolgov, Alexander D.

    2009-04-20

    Possible mechanisms of baryogenesis are reviewed. Special attention is payed to those which allow for creation of astronomically significant domains or objects consisting of antimatter. Observational manifestations of cosmological antimatter are discussed.

  2. From Cosmology to Consulting

    NASA Astrophysics Data System (ADS)

    Nelson, William

    2014-03-01

    I will discuss my transition from Quantum Gravity and Cosmology to the world of consulting and describe the differences and similarities between academia and industry. I will give some dos and don'ts for industry interviews and jobs searches.

  3. Cosmology solved? Maybe

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1999-03-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!

  4. Cosmology: A research briefing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.

  5. Cosmological phase transitions

    SciTech Connect

    Kolb, E.W. |

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  6. Foundations of modern cosmology

    NASA Astrophysics Data System (ADS)

    Hawley, John F.; Holcomb, Katherine A.

    2005-07-01

    Recent discoveries in astronomy, especially those made with data collected by satellites such as the Hubble Space Telescope and the Wilkinson Microwave Anisotropy Probe, have revolutionized the science of cosmology. These new observations offer the possibility that some long-standing mysteries in cosmology might be answered, including such fundamental questions as the ultimate fate of the universe. Foundations of modern cosmology provides an accessible, thorough and descriptive introduction to the physical basis for modern cosmological theory, from the big bang to a distant future dominated by dark energy. This second edition includes the latest observational results and provides the detailed background material necessary to understand their implications, with a focus on the specific model supported by these observations, the concordance model. Consistent with the book's title, emphasis is given to the scientific framework for cosmology, particularly the basics concepts of physics that underlie modern theories of relativity and cosmology; the importance of data and observations is stressed throughout. The book sketches the historical background of cosmology, and provides a review of the relevant basic physics and astronomy. After this introduction, both special and general relativity are treated, before proceeding to an in-depth discussion of the big bang theory and physics of the early universe. The book includes current research areas, including dark matter and structure formation, dark energy, the inflationary universe, and quantum cosmology. The authors' website (http://www.astro.virginia.edu/~jh8h/Foundations) offers a wealth of supplemental information, including questions and answers, references to other sources, and updates on the latest discoveries.

  7. Classification of cosmological milestones

    SciTech Connect

    Fernandez-Jambrina, L.; Lazkoz, Ruth

    2006-09-15

    In this paper causal geodesic completeness of Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models is analyzed in terms of generalized power expansions of the scale factor in coordinate time. The strength of the found singularities is discussed following the usual definitions due to Tipler and Krolak. It is shown that while classical cosmological models are both timelike and lightlike geodesically incomplete, certain observationally allowed models which have been proposed recently are lightlike geodesically complete.

  8. Building cosmological frozen stars

    NASA Astrophysics Data System (ADS)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis–Newman–Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild–deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  9. Cosmological Models and Stability

    NASA Astrophysics Data System (ADS)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  10. Tapping Teacher Thinking through Triangulation of Data Sets. R&D Rep. No. 8014.

    ERIC Educational Resources Information Center

    Morine-Dershimer, Greta

    Validity is a central issue in use of self-report data for the investigation of teacher thinking. "Triangulation," or use of several data sets to test, corroborate and elaborate each other, is one method for increasing validity of findings. This paper illustrates a process of triangulation of data obtained by three different data…

  11. BOOK REVIEW: Observational Cosmology Observational Cosmology

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  12. Anisotropic cosmologies with ghost dark energy models in f (R, T) gravity

    NASA Astrophysics Data System (ADS)

    Fayaz, V.; Hossienkhani, H.; Zarei, Z.; Azimi, N.

    2016-02-01

    In this work, the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity is investigated. For this purpose, we use the squared sound speed vs2 whose sign determines the stability of the model. At first, the non-interacting ghost dark energy in a Bianchi type-I (BI) background is discussed. Then the equation-of-state parameter, ω_D=pD/ρD, the deceleration parameter, and the evolution equation of the generalized ghost dark energy are obtained. It is shown that the equation-of-state parameter of the ghost dark energy can cross the phantom line ( ω=-1 in some range of the parameter spaces. Then, this investigation was extended to the general scheme for modified f(R,T) gravity reconstruction from a realistic case in an anisotropic Bianchi type-I cosmology, using the dark matter and ghost dark energy. Special attention is taken into account for the case in which the function f is given by f(R,T)=f1(R) +f2(T). We consider a specific model which permits the standard continuity equation in this modified theory. Besides Ω_{Λ} and Ω in standard Einstein cosmology, another density parameter, Ω_{σ}, is expected by the anisotropy. This theory implies that if Ω_{σ} is zero then it yields the FRW universe model. Interestingly enough, we find that the corresponding f ( R, T) gravity of the ghost DE model can behave like phantom or quintessence of the selected models which describe the accelerated expansion of the universe.

  13. Calibration procedure for a laser triangulation scanner with uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio

    2016-11-01

    Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.

  14. On-Line Metrology with Conoscopic Holography: Beyond Triangulation

    PubMed Central

    Álvarez, Ignacio; Enguita, Jose M.; Frade, María; Marina, Jorge; Ojea, Guillermo

    2009-01-01

    On-line non-contact surface inspection with high precision is still an open problem. Laser triangulation techniques are the most common solution for this kind of systems, but there exist fundamental limitations to their applicability when high precisions, long standoffs or large apertures are needed, and when there are difficult operating conditions. Other methods are, in general, not applicable in hostile environments or inadequate for on-line measurement. In this paper we review the latest research in Conoscopic Holography, an interferometric technique that has been applied successfully in this kind of applications, ranging from submicrometric roughness measurements, to long standoff sensors for surface defect detection in steel at high temperatures. PMID:22399984

  15. Spatial analysis of the Chania prefecture: Crete triangulation network quality

    NASA Astrophysics Data System (ADS)

    Achilleos, Georgios

    2016-08-01

    The network of trigonometric points of a region is the basis upon which any form of cartographic work is attached to the national geodetic coordinate system (data collection, processing, output presentations) and not only. The products of the cartographic work (cartographic representations), provide the background which is used in cases of spatial planning and development strategy. This trigonometric network, except that, provides to a single cartographic work, the ability to exist within a unified official state geodetic reference system, simultaneously determines the quality of the result, since the trigonometric network data that are used, have their own quality. In this paper, we present the research of spatial quality of the trigonometric network of Chania Prefecture in Crete. This analysis examines the triangulation network points, both with respect to their spatial position (distribution in space), and in their accuracy (horizontally and vertically).

  16. A novel spatial clustering algorithm based on Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Yang, Xiankun; Cui, Weihong

    2008-12-01

    Exploratory data analysis is increasingly more necessary as larger spatial data is managed in electro-magnetic media. Spatial clustering is one of the very important spatial data mining techniques. So far, a lot of spatial clustering algorithms have been proposed. In this paper we propose a robust spatial clustering algorithm named SCABDT (Spatial Clustering Algorithm Based on Delaunay Triangulation). SCABDT demonstrates important advantages over the previous works. First, it discovers even arbitrary shape of cluster distribution. Second, in order to execute SCABDT, we do not need to know any priori nature of distribution. Third, like DBSCAN, Experiments show that SCABDT does not require so much CPU processing time. Finally it handles efficiently outliers.

  17. BOOK REVIEW: Cosmology

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most

  18. Thermal tachyacoustic cosmology

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhineet; Afshordi, Niayesh

    2014-08-01

    An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

  19. Cosmology and Particle Physics

    NASA Astrophysics Data System (ADS)

    Steigman, G.

    1982-01-01

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses. In the last few years we have witnessed the birth and growth to healthy adolescence of a new collaboration between astrophysicists and particle physicists. The most notable success of this cooperative effort has been to provide the framework for understanding, within the context of GUTs and the hot big-bang cosmology, the universal baryon asymmetry. The most exciting new predictions this effort has spawned are that exotic relics may exist in detectable abundances. In particular, we may live in a neutrino-dominated Universe. In the next few years, accummulating laboratory data (for example proton decay, neutrino masses and oscillations) coupled with theoritical work in particle physics and cosmology will ensure the growth to maturity of this joint effort.

  20. Physical Foundations of Cosmology

    NASA Astrophysics Data System (ADS)

    Mukhanov, Viatcheslav

    2005-11-01

    Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. Taking an original approach, this textbook explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed. Presents detailed derivations of all basic results needed in cosmology, including robust predictions of inflation Contains an analytical treatment of nucleosynthesis, recombination and CMB fluctuations Provides elementary introductions to more advanced topics

  1. Cosmology Solved? Quite Possibly!

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1999-03-01

    The discovery of the cosmic microwave background (CMB) in 1964 by Penzias and Wilson led to the establishment of the hot big bang cosmological model some 10 years later. Discoveries made in 1998 may ultimately have as profound an effect on our understanding of the origin and evolution of the universe. Taken at face value, they confirm the basic tenets of inflation + cold dark matter, a bold and expansive theory that addresses all the fundamental questions left unanswered by the hot big bang model and holds that the universe is flat, slowly moving elementary particles provide the cosmic infrastructure, and quantum fluctuations seeded all the structure seen in the universe today. Just as it took a decade to establish the hot big bang model after the discovery of the CMB, it will likely take another 10 years to establish the latest addition to the standard cosmology and make the answer to ``Cosmology solved?'' ``YES!'' Whether or not 1998 proves to be a cosmic milestone, the coming avalanche of high-quality cosmological data promises to make the next 20 years an extremely exciting period for cosmology.

  2. Particle Accelerators Test Cosmological Theory.

    ERIC Educational Resources Information Center

    Schramm, David N.; Steigman, Gary

    1988-01-01

    Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)

  3. Similarity dark energy models in Bianchi type-I space-time

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad T.; Kumar Yadav, Anil; Alzahrani, Abdulah K.

    2016-11-01

    We investigate some new similarity inhomogeneous solutions of anisotropic dark energy and perfect fluid in Bianchi type-I space-time. Three different equation-of-state (EoS) parameters along the spatial directions are introduced to quantify the deviation of pressure from isotropy. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as the direct interaction with it. The Lie symmetry generators that leave the equation invariant are identified and we generate an optimal system of one-dimensional sub-algebras. Each element of the optimal system is used to reduce the partial differential equation to an ordinary differential equation which is further analyzed. We solve the Einstein field equations, described by a system of non-linear partial differential equations (NLPDEs), by using the Lie point symmetry analysis method. The geometrical and kinematic features of the models and the behavior of the anisotropy of dark energy are examined in detail.

  4. On the origins of organology: Franz Joseph Gall and a girl named Bianchi.

    PubMed

    Eling, Paul; Finger, Stanley; Whitaker, Harry

    2017-01-01

    Franz Joseph Gall (1758-1828) introduced a new theory of mind and brain at the end of the eighteenth century, which he referred to as organology, dealing with mental functions and their cortical localizations. Gall wrote that observations regarding the verbal learning capacities of his schoolmates brought about his new way of thinking. This widely accepted view, however, requires qualification. Although Gall's experiences and observations as a schoolboy were relevant, especially for his craniology, these childhood memories might have been recalled and reinterpreted after he had started to think about the faculties of mind-specifically after he had met Bianchi, a 5-year-old girl with a special talent for music.

  5. Elementary particles and cosmology

    NASA Astrophysics Data System (ADS)

    Dobrolyubov, M. I.; Ignatev, A. Yu.; Shaposhnikov, M. E.

    1988-12-01

    A series of lectures is devoted to actual problems which arise at the junction of elementary particle physics and cosmology. A brief review is given to the standard theory of hot universe and scenario of inflationary universe, modern state of the problem of baryon universe asymmetry and possible new mechanisms of this asymmetry formation. The possibility of construction of cosmological models on the basis of supersymmetric theories is considered: qualitative evaluation of the modern density of relic particles, cosmological restrictions for the mass of the lightest particle, astrophysical restrictions for the coupling constant of weakly interacting particles and matter are given. A perspective direction of search for light particles in light hadron decays is mentioned.

  6. Genus dependence of the number of (non-)orientable surface triangulations

    NASA Astrophysics Data System (ADS)

    Krüger, Benedikt; Mecke, Klaus

    2016-04-01

    Topological triangulations of orientable and nonorientable surfaces with arbitrary genus have important applications in quantum geometry, graph theory and statistical physics. However, until now, only the asymptotics for 2-spheres have been known analytically, and exact counts of triangulations are only available for both small genera and triangulations. We apply the Wang-Landau algorithm to calculate the number N (m ,h ) of triangulations for several orders of magnitude in system size m and type h (equals genus in orientable triangulations). We verify that the limit of the entropy density of triangulations is independent of genus and orientability and are able to determine the next-to-leading-order and the next-to-next-to-leading-order terms. We conjecture for the number of surface triangulations the asymptotic behavior N (m ,h )→(170.4 ±15.1 )hm-2 (h -1 )/5(256/27) m /2, which might guide a mathematician's proof for the exact asymptotics.

  7. Midisuperspace supersymmetric quantum cosmology

    SciTech Connect

    Macias, Alfredo; Camacho, Abel; Kunz, Jutta; Laemmerzahl, Claus

    2008-03-15

    We investigate the canonical quantization in the framework of N=1 simple supergravity for the case of a very simple gravitational midisuperspace described by Gowdy T{sup 3} cosmological models. We consider supersymmetric quantum cosmology in the mentioned midisuperspace, where a matrix representation for the gravitino covector-spinor is used. The full Lorentz constraint and its implications for the wave function of the Universe are analyzed in detail. We found that there are indeed physical states in the midisuperspace sector of the theory in contrast to the case of minisuperspace where there exist no physical states.

  8. Planck 2015 Cosmological results

    NASA Astrophysics Data System (ADS)

    Tristram, Matthieu

    2015-08-01

    On behalf of the Planck collaboration, I will present the cosmological results from the 2015 release. The new release now include polarization data from both the LFI and the HFI.I will focus on the impact of the polarization on both the standard LCDM model and its basic extensions. I will compare these constraints with other cosmological probes such as BAO, gravitational lensing and redshift space distortions.LCDM is still a very good fit of the Planck CMB data. The scalar fluctuations are consistent with adiabatic modes.

  9. Information entropy in cosmology.

    PubMed

    Hosoya, Akio; Buchert, Thomas; Morita, Masaaki

    2004-04-09

    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the Kullback-Leibler relative information entropy, expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time evolution of "effective information" and explore some implications. We conjecture that the information content of the Universe-measured by relative information entropy of a cosmological model containing dust matter-is increasing.

  10. Cosmology with varying constants.

    PubMed

    Martins, Carlos J A P

    2002-12-15

    The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.

  11. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  12. Nonlinear backreaction in cosmology

    NASA Astrophysics Data System (ADS)

    Green, Stephen Roland

    This thesis, based on two papers by Green and Wald, investigates the problem of nonlinear backreaction in cosmology. We first analyze the problem in a general context by developing a new, mathematically precise framework for treating the effects of nonlinear phenomena occurring on small scales in general relativity. Our framework requires the metric to be close to a background metric (not necessarily a cosmological metric), but allows arbitrarily large stress-energy fluctuations on small scales. We prove that, within our framework, if the matter stress-energy tensor satisfies the weak energy condition (i.e., positivity of energy density in all frames), then the only effect that small-scale inhomogeneities can have on the background metric is to provide an effective stress-energy tensor that is traceless and satisfies the weak energy condition itself—corresponding to the presence of gravitational radiation. In particular, nonlinear effects produced by small-scale inhomogeneities cannot mimic the effects of dark energy. We also develop perturbation theory off of the background metric. We derive an equation for the long-wavelength part of the leading order deviation of the metric from the background metric, which contains the usual terms occurring in linearized perturbation theory plus additional contributions from the small-scale inhomogeneities. Next, we apply our framework to the cosmological context, specializing our background metric to be of the Friedmann-Lemaitre-Robertson-Walker form. We demonstrate that, in the case of dust matter, a cosmological constant, and vanishing spatial curvature (i.e., our universe today), Newtonian gravity alone provides a good global description of an inhomogeneous general relativistic cosmology, even when there is significant nonlinear dynamical behavior at small scales. Namely, we find a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into

  13. Two studies in relativistic cosmology: Smoothing spacetimes via Ricci flow and the Bel-Robinson energy in Gowdy T(sup 3) times R spacetimes

    SciTech Connect

    Jackson, M.A.

    1990-01-01

    Two separate studies are contained. The first study is concerned with approximations to cosmological spacetimes. The standard model of cosmology is based on the Friedman-Robertson-Walker spacetimes; these spacetimes are the spatially homogeneous and isotropic solutions of Einstein's equation. The idea of smoothing provides a framework for the use of Friedman-Robertson-Walker spacetimes as approximations to more realistic inhomogeneous spacetimes. An explicit smoothing procedure is examined which is based on smoothing initial data via the Ricci flow equation. The existence and convergence results are proved for the Ricci flows with initial data taken as the spatial three-metrics of certain Bianchi spacetimes and certain Gowdy spacetimes. The results allow consideration of the Bianchi and Gowdy spacetimes as testing grounds for this specific smoothing scheme. The second study pertains to the global existence problem in general relativity. Energy methods are known to be useful in global existence problem; the Bel-Robinson (BR) energy may play the role of an energy norm for general relativity. The evolution of the BR energy was studied in Gowdy T(sup 3) x R spacetimes. A quantity closely related to the BR energy decay monotonically as the spacetime evolves toward the final singularity, except in the special case of Kasner data, for which this quantity is constant.

  14. An ancient revisits cosmology.

    PubMed Central

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  15. Nuclear physics and cosmology

    SciTech Connect

    Coc, Alain

    2014-05-09

    There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

  16. An ancient revisits cosmology.

    PubMed

    Greenstein, J L

    1993-06-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.

  17. Culture and Children's Cosmology

    ERIC Educational Resources Information Center

    Siegal, Michael; Butterworth, George; Newcombe, Peter A.

    2004-01-01

    In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…

  18. Quantifying concordance in cosmology

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre

    2016-05-01

    Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.

  19. Cosmology and the Bispectrum

    SciTech Connect

    Sefusatti, Emiliano; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York

    2006-04-01

    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.

  20. Future non-linear stability for solutions of the Einstein-Vlasov system of Bianchi types II and VI0

    NASA Astrophysics Data System (ADS)

    Nungesser, Ernesto

    2012-10-01

    In a recent paper [E. Nungesser, "Future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0," Annales Henri Poincare (2012), 10.1007/s00023-012-0201-0], we have treated the future nonlinear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0. We have been able now to remove the reflection symmetry assumption, thus treating the non-diagonal case. Apart from the increasing complexity, the methods have been essentially the same as in the diagonal case, showing that they are thus quite powerful. Here, the challenge was to put the equations in a form that permits the use of the previous results. We are able to conclude that after a possible basis change, the future of the non-diagonal spacetimes in consideration is asymptotically diagonal.

  1. Dynamics of Bianchi type-VI0 holographic dark energy models in general relativity and Lyra's geometry

    NASA Astrophysics Data System (ADS)

    Katore, S. D.; Kapse, D. V.

    2017-02-01

    In this paper, we have studied the anisotropic and homogeneous Bianchi type-VI 0 Universe filled with dark matter and holographic dark energy components in the framework of general relativity and Lyra's geometry. The Einstein's field equations have been solved exactly by taking the expansion scalar ( 𝜃) in the model is proportional to the shear scalar ( σ). Some physical and kinematical properties of the models are also discussed.

  2. Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation

    NASA Technical Reports Server (NTRS)

    Driscoll, Tobin A.; Vavasis, Stephen A.

    1996-01-01

    We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.

  3. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments

    PubMed Central

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution. PMID:26066990

  4. Aerial multi-camera systems: Accuracy and block triangulation issues

    NASA Astrophysics Data System (ADS)

    Rupnik, Ewelina; Nex, Francesco; Toschi, Isabella; Remondino, Fabio

    2015-03-01

    Oblique photography has reached its maturity and has now been adopted for several applications. The number and variety of multi-camera oblique platforms available on the market is continuously growing. So far, few attempts have been made to study the influence of the additional cameras on the behaviour of the image block and comprehensive revisions to existing flight patterns are yet to be formulated. This paper looks into the precision and accuracy of 3D points triangulated from diverse multi-camera oblique platforms. Its coverage is divided into simulated and real case studies. Within the simulations, different imaging platform parameters and flight patterns are varied, reflecting both current market offerings and common flight practices. Attention is paid to the aspect of completeness in terms of dense matching algorithms and 3D city modelling - the most promising application of such systems. The experimental part demonstrates the behaviour of two oblique imaging platforms in real-world conditions. A number of Ground Control Point (GCP) configurations are adopted in order to point out the sensitivity of tested imaging networks and arising block deformations. To stress the contribution of slanted views, all scenarios are compared against a scenario in which exclusively nadir images are used for evaluation.

  5. Biofilm thickness variability investigated with a laser triangulation sensor.

    PubMed

    Okkerse, W J; Ottengraf, S P; Osinga-Kuipers, B

    2000-12-20

    Measurement of the surface roughness and thickness of biological films is laborious and usually destructive, thus hampering research in this area. We developed a laser triangulation sensor (LTS) set-up for the fast and nondestructive measurement of these biofilm parameters during growth. Using LTS measurements, the morphological development of a dichloromethane-(DCM) degrading biofilm cultured on a wetted-wall column was studied. The measurements show that the biofilm develops faster at the entrance of the reactor. The biofilm consisted of a base film in which microbial colonies were embedded. The biofilm-surface area gradually increased by 23% compared to the bare surface due to the formation of a large number of these colonies. The number and shape of these colonies were followed in time. Using LTS measurements, biofilms distinctly different in surface roughness could be distinguished in a laboratory trickling filter removing DCM from a waste gas. The consequences of the observed surface characteristics for the reaction-diffusion process in the biofilm and for the falling film hydrodynamics are discussed.

  6. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.

    PubMed

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-06-09

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution.

  7. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    PubMed

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  8. Triangulating the provenance of African elephants using mitochondrial DNA

    PubMed Central

    Ishida, Yasuko; Georgiadis, Nicholas J; Hondo, Tomoko; Roca, Alfred L

    2013-01-01

    African elephant mitochondrial (mt) DNA follows a distinctive evolutionary trajectory. As females do not migrate between elephant herds, mtDNA exhibits low geographic dispersal. We therefore examined the effectiveness of mtDNA for assigning the provenance of African elephants (or their ivory). For 653 savanna and forest elephants from 22 localities in 13 countries, 4258 bp of mtDNA was sequenced. We detected eight mtDNA subclades, of which seven had regionally restricted distributions. Among 108 unique haplotypes identified, 72% were found at only one locality and 84% were country specific, while 44% of individuals carried a haplotype detected only at their sampling locality. We combined 316 bp of our control region sequences with those generated by previous trans-national surveys of African elephants. Among 101 unique control region haplotypes detected in African elephants across 81 locations in 22 countries, 62% were present in only a single country. Applying our mtDNA results to a previous microsatellite-based assignment study would improve estimates of the provenance of elephants in 115 of 122 mis-assigned cases. Nuclear partitioning followed species boundaries and not mtDNA subclade boundaries. For taxa such as elephants in which nuclear and mtDNA markers differ in phylogeography, combining the two markers can triangulate the origins of confiscated wildlife products. PMID:23798975

  9. A DELAUNAY TRIANGULATION APPROACH FOR SEGMENTING CLUMPS OF NUCLEI

    SciTech Connect

    Wen, Quan; Chang, Hang; Parvin, Bahram

    2009-05-07

    Cell-based fluorescence imaging assays have the potential to generate massive amount of data, which requires detailed quantitative analysis. Often, as a result of fixation, labeled nuclei overlap and create a clump of cells. However, it is important to quantify phenotypic read out on a cell-by-cell basis. In this paper, we propose a novel method for decomposing clumps of nuclei using high-level geometric constraints that are derived from low-level features of maximum curvature computed along the contour of each clump. Points of maximum curvature are used as vertices for Delaunay triangulation (DT), which provides a setof edge hypotheses for decomposing a clump of nuclei. Each hypothesis is subsequently tested against a constraint satisfaction network for a near optimum decomposition. The proposed method is compared with other traditional techniques such as the watershed method with/without markers. The experimental results show that our approach can overcome the deficiencies of the traditional methods and is very effective in separating severely touching nuclei.

  10. A Process Model of Adolescents' Triangulation into Parents' Marital Conflict: The Role of Emotional Reactivity

    PubMed Central

    Buehler, Cheryl; Welsh, Deborah P.

    2009-01-01

    This study examined adolescents' emotional reactivity to parents' marital conflict as a mediator of the association between triangulation and adolescents' internalizing problems in a sample of 416 two-parent families. Four waves of annual, multiple-informant data were analyzed (youth aged 11 – 15). Using structural equation modeling, triangulation was associated with increases in adolescents' internalizing problems, controlling for marital hostility and adolescent externalizing problems. There also was an indirect pathway from triangulation to internalizing problems across time through youths' emotional reactivity. Moderating analyses indicated that the second half of the pathway, the association between emotional reactivity and increased internalizing problems, characterized youth with lower levels of hopefulness and attachment to parents. The findings help detail why triangulation is a risk factor for adolescents' development and which youth will profit most from interventions focused on emotional regulation. PMID:19364211

  11. Design of a triangulation based fiber optical distance sensor for application in large rotating machines

    NASA Astrophysics Data System (ADS)

    Willsch, Michael; Villnow, Michael; Bosselmann, Thomas

    2015-09-01

    Commercial distance sensors basing on the triangulation principle are highly accurate and reliable. However due to their contained electronics and optoelectronics they cannot be used in harsh environments such as high temperatures and strong electromagnetic fields. An all fiber optical triangulation sensor principle is presented here which can be used for tip clearance measurements of rotors of large engines such as power generators and turbines.

  12. Planck CMB cosmology

    NASA Astrophysics Data System (ADS)

    Bouchet, François R.

    2015-08-01

    Sketched out in 1992, selected by ESA in 1996, launched in 2009, Planck delivered a "definitive" map of the anisotropies of the Cosmic Microwave Background (CMB) as well as information on their polarisation. The CMB anisotropies, of rms ~100 microK in temperature, reveal the imprint of the primordial fluctuations which initiate the growth of the large scale structures of the Universe, as transformed by their evolution, in particular during the first 370 000 years. This evolution is governed by the Universe content at this early epoch. I will confront what temperature and polarisation anisotropies teach us, both in terms of content of the universe and of characteristics of the primordial fluctuations. I will also discuss the extent of the agreement of Planck cosmology with lower redshift cosmological probes like BAO, Weak Lensing or redshift space distortions. Submitted on behalf of the Planck Collaboration.

  13. Successful modular cosmology

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Stewart, Ewan D.

    2003-07-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  14. Cosmology and convention

    NASA Astrophysics Data System (ADS)

    Merritt, David

    2017-02-01

    I argue that some important elements of the current cosmological model are 'conventionalist' in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.

  15. Bayesian Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David

    2009-12-01

    Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.

  16. Gravitomagnetic amplification in cosmology

    SciTech Connect

    Tsagas, Christos G.

    2010-02-15

    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.

  17. Quantum cosmology: a review.

    PubMed

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  18. Bayesian Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David

    2014-02-01

    Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.

  19. Improved cosmological model

    NASA Astrophysics Data System (ADS)

    Tsamis, N. C.; Woodard, R. P.

    2016-08-01

    We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.

  20. Culture and children's cosmology.

    PubMed

    Siegal, Michael; Butterworth, George; Newcombe, Peter A

    2004-06-01

    In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England Though Australia and England have a close cultural affinity, there are differences in children's early exposure to cosmological concepts. Australian children who have early instruction in this domain were nearly always significantly in advance of their English counterparts. In general, they most often produced responses compatible with a conception of a round earth on which people can live all over without falling off. We consider coherence and fragmentation in children's knowledge in terms of the timing of culturally transmitted information, and in relation to questioning methods used in previous research that may have underestimated children's competence.

  1. Cosmological memory effect

    NASA Astrophysics Data System (ADS)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  2. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  3. Brans-Dicke cosmology with time-dependent cosmological term

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    1990-12-01

    Berman and Som's solution for a Brans-Dicke cosmology with time-dependent cosmological term, Robertson-Walker metric, perfect fluid, and perfect gas law of state solves the horizon, homogeneity, and isotropy problems without requiring any unnatural fine tuning in the very early universe, thus being an alternative model to inflation. The model also does not need recourse to quantum cosmology, and solves the flatness and magnetic monopole problems.

  4. Topics in inflationary cosmologies

    SciTech Connect

    Mahajan, S.

    1986-04-01

    Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.

  5. Greek Cosmology and Cosmogony

    NASA Astrophysics Data System (ADS)

    Jones, Alexander

    The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.

  6. Cosmology, Clusters and Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2005-01-01

    I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.

  7. Statistical Methods in Cosmology

    NASA Astrophysics Data System (ADS)

    Verde, L.

    2010-03-01

    The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.

  8. Introduction to Cosmology

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara

    2016-11-01

    Preface to second edition; Preface to first edition; 1. Introduction; 2. Fundamental observations; 3. Newton versus Einstein; 4. Cosmic dynamics; 5. Model universes; 6. Measuring cosmological parameters; 7. Dark matter; 8. The cosmic microwave background; 9. Nucleosynthesis and the early Universe; 10. Inflation and the very early Universe; 11. Structure formation: gravitational instability; 12. Structure formation: baryons and photons; Epilogue; Bibliography; Table of useful constants; Index.

  9. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  10. Cosmology with a spin

    NASA Astrophysics Data System (ADS)

    Magueijo, João; Zlosnik, T. G.; Kibble, T. W. B.

    2013-03-01

    Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be reinterpreted as a four-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.

  11. Fifty Years of Cosmology

    NASA Astrophysics Data System (ADS)

    Hoyle, Fred

    The worrying situation at that time in cosmology, as it seemed, turned out to be a relatively minor matter, namely the choice of suitable coordinates. Even the best-known cosmologists - de Sitter, Eddington and Lemaitre - had chosen coordinates appropriate to localities in the universe rather than the whole. This produced a sense of mystery that was more apparent than real as to what happened at the boundary of a locality. It is one of the features of Einstein's general relativity that when you choose coordinate systems with special properties you can mistakenly come to think of the properties as physical instead of as mathematical artefacts. Early workers on gravitational waves thought they were investigating physical waves when in fact the waves were in their coordinate system, and a similar situation existed in cosmology. It was also in 1935-36 that this situation was put right, by H.P. Robertson in the United States and A.E. Walker in Britain and the resulting choice of coordinates later became known as the Robertson-Walker line element. Then in 1937 Robertson published an important article on cosmology in the Reviews of Modern Physics, which unfortunately I didn't read at that time because my research interests were in quantum mechanics and nuclear physics.

  12. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  13. The Dirac-Milne cosmology

    NASA Astrophysics Data System (ADS)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  14. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  15. Cosmology for high energy physicists

    SciTech Connect

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.

  16. Cosmological relativity: A special relativity for cosmology

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1995-07-01

    Under the assumption that Hubble's constant H0 is constant in cosmic time, there is an analogy between the equation of propagation of light and that of expansion of the universe. Using this analogy, and assuming that the laws of physics are the same at all cosmic times, a new special relativity, a cosmological relativity, is developed. As a result, a transformation is obtained that relates physical quantities at different cosmic times. In a one-dimensional motion, the new transformation is given by 10701_2005_Article_BF02059524_TeX2GIFE1.gif x' = {x - Tv}/{(1 - T^2 /T_0^2 )^{{1 / 2}}v' = {v - xT/T_0^2 }/{(1 - T^2 /T_0^2 )^{{1 /2 }} where x and v are the coordinate and velocity, T is the cosmic time measured backward with respect to our present time T=0, tand T0 is Hubble's time. Some consequences of this transformation are given, and its applicability limitation is pointed out.

  17. Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Delanaye, M.; Haimes, R.; Nixon, David (Technical Monitor)

    1998-01-01

    This paper presents an approach for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, without translation, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique which was developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space, The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. Sites are inserted using a variety of priority queues to ensure that new insertions will address the worst triangles first, As a result of this strategy, the algorithm will return its 'best' mesh for a given (prespecified) number of sites. Alternatively, the algorithm may be allowed to terminate naturally after achieving a prespecified measure of mesh quality. The resulting triangulations are 'CFD-ready' in that: (1) Edges match the underlying part model to within a specified tolerance. (2) Triangles on disjoint surfaces in close proximity have matching length-scales. (3) The algorithm produces a triangulation such that no angle is less than a given angle bound, alpha, or greater than Pi - 2alpha This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to tile output triangulations for a variety of CAD parts, tile discussion presents related theoretical results which assert the existence of such all angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.

  18. Philosophical aspects of modern cosmology

    NASA Astrophysics Data System (ADS)

    Zinkernagel, Henrik

    2014-05-01

    Cosmology is the attempt to understand in scientific terms the structure and evolution of the universe as a whole. This ambition has been with us since the ancient Greeks, even if the developments in modern cosmology have provided a picture of the universe dramatically different from that of Pythagoras, Plato and Aristotle. The cosmological thinking of these figures, e.g. the belief in uniform circular motion of the heavens, was closely related to their philosophical ideas, and it shaped the field of cosmology at least up to the times of Copernicus and Kepler.

  19. The Riemann tensor and the Bianchi identity in 5D space-time

    NASA Astrophysics Data System (ADS)

    Taki, Mehran; Mirjalili, Abolfazl

    2017-01-01

    The initial assumption of theories with extra dimension is based on the efforts to yield a geometrical interpretation of the gravitation field. In this paper, using an infinitesimal parallel transportation of a vector, we generalize the obtained results in four dimensions to five-dimensional space-time. For this purpose, we first consider the effect of the geometrical structure of 4D space-time on a vector in a round trip of a closed path, which is basically quoted from chapter three of Ref. [5]. If the vector field is a gravitational field, then the required round trip will lead us to an equation which is dynamically governed by the Riemann tensor. We extend this idea to five-dimensional space-time and derive an improved version of Bianchi's identity. By doing tensor contraction on this identity, we obtain field equations in 5D space-time that are compatible with Einstein's field equations in 4D space-time. As an interesting result, we find that when one generalizes the results to 5D space-time, the new field equations imply a constraint on Ricci scalar equations, which might be containing a new physical insight.

  20. VizieR Online Data Catalog: GALEX-GR6/7 data release (Bianchi+ 2014)

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Conti, A.; Shiao, B

    2014-10-01

    The Galaxy Evolution Explorer (GALEX) was a NASA Small Explorer mission which imaged the sky in 2 ultraviolet bands, FUV (far-UV) and NUV (near-UV) and provided the first UV sky surveys. Its characteristics are: -------------------------------------------------------------------- FUV NUV -------------------------------------------------------------------- Bandwidth 1344-1786 1771-2831 (Å) Effective wavelength 1538.6 2315.7 (Å) Astrometry (R<0.6deg) 0.59 0.49 (arcsec) Photometry (1 sigma) 0.05 0.03 (ABmag) Zero point 18.82 20.08 (ABmag) Image resolution 4.2 5.3 (arcsec/pix) Spectral resolution 200 118 (δλ/λ) -------------------------------------------------------------------- GALEX data products include a series of sky imaging surveys with different depth and coverage, UV photometry of over 200 million sources, and about 100,000 slitless grism spectra. The Bianchi et al.2014 catalog includes all the FUV, NUV data at the end of the mission, for the surveys with the widest sky-coverage (AIS and MIS); it gives a unique source list (duplicate measurements are removed) and excludes the artifact-plagued data along the field rim. Details, subcatalogs, and science tools for using this catalog can be found at http://dolomiti.pha.jhu.edu/uvsky (1 data file).

  1. Measurement of spinal sagittal curvatures using the laser triangulation method.

    PubMed

    Celan, Dusan; Palfy, Miroslav; Bracun, Drago; Turk, Zmago; Mozina, Janez; Komadina, Radko

    2012-03-01

    The purpose of the first part of the study was to establish the variability of repeated measurements in different measuring conditions. In the second part, we performed in a large number of patients, a measurement of thoracic kyphosis and lumbar lordosis and compared them to age, gender, and level of nourishment. In the first part, measurements were performed on a plastic model of the back of a patient with a rigid and a normal spine. In the second part, 250 patients participated in the study (126 men and 124 women). For measuring spinal curvatures we used an apparatus for laser triangulation constructed at the Faculty of Mechanical Engineering, University of Ljubljana. A comparison of 30 repeated measurements was shown as the average value +/- 2 SD which included 95% of the results. Thirty repeated readings of one 3D measurement: thoracic kyphosis 41.2 degrees +/- 0.6 degrees, lumbar lordosis 4.4 degrees +/- 1.2 degrees; 30 measurements on a plastic model: thoracic kyphosis 36.8 degrees +/- 1.2 degrees, lumbar lordosis 30.9 degrees +/- 2.0 degrees; 30 measurements on a patient with a rigid spine: thoracic kyphosis 41.5 degrees +/- 2.4 degrees, lumbar lordosis 4.0 degrees +/- 1.8 degrees; 30 measurements on a patient with a normal spine: thoracic kyphosis 48.8 degrees +/- 7.4 degrees, lumbar lordosis 21.1 degrees +/- 4.4 degrees. The average size of thoracic kyphosis in 250 patients was 46.8 degrees (SD 10.1 degrees) and lumbar lordosis 31.7 degrees (SD 12.5 degrees). The angle size was statistically significantly correlated to gender (increased thoracic kyphosis and lumbar lordosis in women) and body mass index (increased thoracic kyphosis and lumbar lordosis in more nourished patients). Age was not significantly correlated to the observed angles. During measurements of the spinal angles it was important to pay attention to relaxation and the patient's position as well as to perform more measurements providing the average value. The age and the level of

  2. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  3. Core requirements for successful data linkage: an example of a triangulation method

    PubMed Central

    Hopf, Y M; Francis, J; Helms, P J; Haughney, J; Bond, C

    2016-01-01

    Objectives The aim was to explore the views of professional stakeholders and healthcare professionals (HCPs) on the linkage of UK National Health Service (NHS) data for paediatric pharmacovigilance purposes and to make recommendations for such a system. Methods A mixed methods approach including a literature review, interviews, focus groups and a three-round Delphi survey with HCPs in Scotland was followed by a triangulation process using a systematic protocol. The survey was structured using the Theoretical Domains Framework of behaviour change. Items retained after applying the matrix-based triangulation process were thematically coded. Ethical approval was granted by the North of Scotland Research Ethics Service. Results Results from 18 papers, 23 interviewees, 23 participants of focus groups and 61 completed questionnaires in the Delphi survey contributed to the triangulation process. A total of 25 key findings from all four studies were identified during triangulation. There was good convergence; 21 key findings were agreed and remained to inform recommendations. The items were coded as practical/technical (eg, decision about the unique patient identifier to use), mandatory (eg, governed by statute), essential (consistently mentioned in all studies and therefore needed to ensure professional support) or preferable. Conclusions The development of a paediatric linked database has support from professional stakeholders and HCPs in Scotland. The triangulation identified three sets of core requirements for a new system of data linkage. An additional fourth set of ‘preferable’ requirements might increase engagement of HCPs and their support for the new system. PMID:27797999

  4. Gravitation and modern cosmology - The cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Zichichi, Antonino; de Sabbata, Venzo; Sanchez, Norma

    An updated version of different approaches to the cosmological constant problem discussed at a symposium in honor of Peter Gabriel Bergmann's 75th birthday, that took place in Erice on 17-20 September 1990, is presented. Topics addressed include an effective action model for the cosmological constant revisited; torsion, quantum effects, and the problem of cosmological constant; variations of constants and exact solutions in multidimensional gravity; null surface canonical formalism; qualitative cosmology; and the gravitational field of an arbitrary axisymmetric mass with a magnetic dipole moment. Attention is also given to a simple model of the universe without singularities; string theory and quantization of gravity; and velocity of propagation of gravitational radiation, mass of the gravitation, range of the gravitational force, and the cosmological constant.

  5. The screening Horndeski cosmologies

    SciTech Connect

    Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.

    2016-06-06

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.

  6. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2005-01-01

    Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  7. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  8. Inflationary Axion Cosmology

    DOE R&D Accomplishments Database

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  9. Supersymmetric quantum cosmology

    SciTech Connect

    Macias, Alfredo; Camacho, Abel

    2009-05-01

    We address the canonical quantization in the framework of N = 1 simple supergravity for the case of Gowdy T{sup 3} cosmological models. It will be proved that there exist physical states in the minisuperspace sector of the theory. Our result will be confronted against the so-called no-physical states conjecture and in this way it will be proved that this conjecture is based upon an assumption involving the constraint equations and initial-value hypersurface which, in general, is not valid.

  10. Cosmology on a Mesh

    NASA Astrophysics Data System (ADS)

    Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.

    2003-04-01

    An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.

  11. Cosmological special relativity

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1996-03-01

    Recently we presented a new special relativity theory for cosmology in which it was assumed that gravitation can be neglected and thus the bubble constant can be taken as a constant. The theory was presented in a six-dimensional hvperspace. three for the ordinary space and three for the velocities. In this paper we reduce our hyperspace to four dimensions by assuming that the three-dimensional space expands only radially, thus one is left with the three dimensions of ordinary space and one dimension of the radial velocity.

  12. Cosmology of bifundamental fields

    SciTech Connect

    Vachaspati, Tanmay

    2009-01-15

    If a field theory contains gauged, non-Abelian, bifundamental fields, i.e. fields that are charged under two separate non-Abelian gauge groups, the transition from a deconfined phase to a hadronic phase may be frustrated. Similar frustration may occur in non-Abelian gauge models containing matter only in higher dimensional representations, e.g. models with pure glue, or if ordinary quarks are confined by two flux tubes, as implied in the triangular configuration of baryons within QCD. In a cosmological setting, such models can lead to the formation of a web of confining electric flux tubes that can potentially have observational signatures.

  13. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  14. Galileons on cosmological backgrounds

    SciTech Connect

    Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark E-mail: kurthi@physics.upenn.edu

    2011-12-01

    We construct four-dimensional effective field theories of a generalized DBI galileon field, the dynamics of which naturally take place on a Friedmann-Robertson-Walker spacetime. The theories are invariant under non-linear symmetry transformations, which can be thought of as being inherited from five-dimensional bulk Killing symmetries via the probe brane technique through which they are constructed. The resulting model provides a framework in which to explore the cosmological role that galileons may play as the universe evolves.

  15. Stochastic processes in cosmology

    NASA Astrophysics Data System (ADS)

    Cáceres, Manuel O.; Diaz, Mario C.; Pullin, Jorge A.

    1987-08-01

    The behavior of a radiation filled de Sitter universe in which the equation of state is perturbed by a stochastic term is studied. The corresponding two-dimensional Fokker-Planck equation is solved. The finiteness of the cosmological constant appears to be a necessary condition for the stability of the model which undergoes an exponentially expanding state. Present address: Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Laprida 854, 5000 Códoba, Argentina.

  16. Topics in brane cosmology

    NASA Astrophysics Data System (ADS)

    Rasanen, Syksy

    The thesis consists of three research papers and an introduction which provides background and also contains some new observations not included in the papers. In the thesis I consider certain questions in the new field of brane cosmology. The basic idea of brane cosmology is that the visible universe is a four- dimensional slice in higher-dimensional spacetime. I give a self-contained introduction to the field, starting from the Randall-Sundrum model and proceeding to the general case of brane gravity and cosmology in the case of one extra dimension. I emphasise the main result of studies of brane gravity: it is possible to obtain approximately four-dimensional gravity independent of the size of the extra dimension, in contrast to set-ups where the observers are not localised in the extra dimension. I proceed to examine a new and promising brave cosmology set-up, the ekpyrotic scenario, in detail. The ekpyrotic scenario aims to be a comprehensive model of the primordial universe and has been presented as an alternative to the prominent scenarios, inflation and pre-big bang. I give an overview of these three scenarios of the primordial universe. I then present the starting point of the ekpyrotic scenario and the construction of the four-dimensional effective theory. After briefly discussing the internal problems of the four-dimensional effective theory, I proceed to the far more serious problems of the four- dimensional construction itself. I conclude that the four-dimensional effective theory does not give a correct description even at a qualitative level. I then discuss some problems faced by the five-dimensional approach, and comment on the spin-off known as the “cyclic model of the universe”. I conclude that the ekpyrotic scenario is a welcome new idea but that most work done thus far is not solid. Careful analysis in the five-dimensional setting is needed to promote the scenario from an interesting concept to a working model with testable predictions.

  17. Rolling Tachyon in Nonlocal Cosmology

    SciTech Connect

    Joukovskaya, L.

    2007-11-20

    Nonlocal cosmological models derived from String Field Theory are considered. A new method for constructing rolling tachyon solutions in the FRW metric in two field configuration is proposed and solutions of the Friedman equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed.

  18. More problems for Newtonian cosmology

    NASA Astrophysics Data System (ADS)

    Wallace, David

    2017-02-01

    I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity (as is necessary, and indeed celebrated, in cosmological applications). This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (Philosophy of Science 80 (2013) pp. 22-48) provides a conceptually satisfactory cosmology but fails to reproduce the Newtonian limit of general relativity in homogenous but anisotropic universes. I conclude that Newtonian gravity lacks a fully satisfactory cosmological formulation.

  19. Higher dimensional loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  20. Development of an edge sensor based on polyview optics and laser triangulation principle

    NASA Astrophysics Data System (ADS)

    Li, Yinan; Bossmeyer, Hagen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Common 2D laser line triangulation sensors allow a 2D profile measurement in a single line. To scan samples with great curved surfaces like edges, a single laser line triangulation sensor is insufficient. To measure the entire form of such an edge, it normally requires either multiple measurements of one single sensor or a multi sensor system. For this reason, we developed an edge measurement sensor based on an in-house designed polyview optics and the well-known laser triangulation principle. The new developed edge measurement sensor is capable of measuring the object over a 180 field of view (FOV). The configuration, the calibration process and the measurement results of this edge sensor will be discussed in this paper.

  1. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  2. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Sethian, James A.

    1997-01-01

    Borrowing from techniques developed for conservation law equations, numerical schemes which discretize the Hamilton-Jacobi (H-J), level set, and Eikonal equations on triangulated domains are presented. The first scheme is a provably monotone discretization for certain forms of the H-J equations. Unfortunately, the basic scheme lacks proper Lipschitz continuity of the numerical Hamiltonian. By employing a virtual edge flipping technique, Lipschitz continuity of the numerical flux is restored on acute triangulations. Next, schemes are introduced and developed based on the weaker concept of positive coefficient approximations for homogeneous Hamiltonians. These schemes possess a discrete maximum principle on arbitrary triangulations and naturally exhibit proper Lipschitz continuity of the numerical Hamiltonian. Finally, a class of Petrov-Galerkin approximations are considered. These schemes are stabilized via a least-squares bilinear form. The Petrov-Galerkin schemes do not possess a discrete maximum principle but generalize to high order accuracy.

  3. The standard cosmological model

    NASA Astrophysics Data System (ADS)

    Scott, D.

    2006-06-01

    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high-energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire three-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realization of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas that might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a nondeterministic aspect.

  4. Aspects of cosmological relativity.

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1999-07-01

    The author reviews cosmological relativity, a new special theory of relativity that was recently developed for cosmology, and discusses in detail some of its aspects. He recalls that in this theory it is assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the universe at the very early stage when gravity was negligible and thus the transformation is applicable. New applications of the theory are presented. The author shows that there is no need to assume the existence of galaxy dark matter; the Tully-Fisher law is derived from the theory. A completely new picture of the expanding universe is thus obtained and compared to the FRW one.

  5. Cosmology with matter diffusion

    SciTech Connect

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  6. Peculiar cosmological velocities

    SciTech Connect

    Lewis, C.M.

    1990-01-01

    In the first section a gauge-invariant, variations formalism for investigating vector perturbations is set up, suitable for showing that there is no natural way that the usual scalar inflation field could give rise to vorticities. In the last two sections, a vector field A{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker (FRW) metric, constructed to generate first order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux, T{sub 0i}, is tracked to the epoch where a radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation (CMBR) gives rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}c. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.

  7. Investigations in theoretical cosmology

    NASA Astrophysics Data System (ADS)

    Barnard, Michael James

    This report is a compilation of research I have done in the field of cosmology while at the University of California, Davis. The topics are all closely linked to the physics of scalar fields in General Relativity. This thesis contains the text of two papers, both of which deal with the goals and motivations of future projects in observational cosmology. The first is an evaluation of the effect of future observations on constraints on the parameter space of the Albrecht- Skordis model of dark energy. These future data sets were found to be able of constraining the scalar field model parameters in ways consistent with the constraints on the phenomenological equation of state parameters used by the Dark Energy Task Force. The second paper used principle component analysis of the equation of state parameter on simulated future data sets to construct parameter spaces. Distributions of dark energy quintessence models were then projected into these parameter spaces; it was found that there is structure in the separation of these models that is marginally detectable by so called "Stage 4" experiments. Also included are a review of the derivation of the scale invariant primordial power spectrum and an evaluation of a model of open inflation as the cause of the low CMB quadrupole.

  8. Particle physics and cosmology

    SciTech Connect

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  9. Cosmology Without Finality

    NASA Astrophysics Data System (ADS)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  10. An aspect ration bound for triangulating a d-grid cut by a hyperplane

    NASA Technical Reports Server (NTRS)

    Mitchell, Scott A.; Vavasis, Stephen A.

    1995-01-01

    We consider the problem of triangulating a d-dimensional uniform grid of d-cubes that is cut by a k-dimensional affine subspace. The goal is to obtain a triangulation with bounded aspect ratio. To achieve this goal, we allow some of the box faces near the affine subspace to be displaced. This problem has applications to finite element mesh generation. For general d and k, the bound on aspect ratio that we attain is double-exponential in d. For the important special case of d = 3, the aspect ratio bound is small enough that the technique is useful in practice.

  11. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Sethian, James A.

    2006-01-01

    Borrowing from techniques developed for conservation law equations, we have developed both monotone and higher order accurate numerical schemes which discretize the Hamilton-Jacobi and level set equations on triangulated domains. The use of unstructured meshes containing triangles (2D) and tetrahedra (3D) easily accommodates mesh adaptation to resolve disparate level set feature scales with a minimal number of solution unknowns. The minisymposium talk will discuss these algorithmic developments and present sample calculations using our adaptive triangulation algorithm applied to various moving interface problems such as etching, deposition, and curvature flow.

  12. Drug repurposing by integrated literature mining and drug-gene-disease triangulation.

    PubMed

    Sun, Peng; Guo, Jiong; Winnenburg, Rainer; Baumbach, Jan

    2016-10-22

    Drug design is expensive, time-consuming and becoming increasingly complicated. Computational approaches for inferring potentially new purposes of existing drugs, referred to as drug repositioning, play an increasingly important part in current pharmaceutical studies. Here, we first summarize recent developments in computational drug repositioning and introduce the utilized data sources. Afterwards, we introduce a new data fusion model based on n-cluster editing as a novel multi-source triangulation strategy, which was further combined with semantic literature mining. Our evaluation suggests that utilizing drug-gene-disease triangulation coupled to sophisticated text analysis is a robust approach for identifying new drug candidates for repurposing.

  13. Vector fields in cosmology

    NASA Astrophysics Data System (ADS)

    Davydov, E. A.

    2012-06-01

    Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.

  14. Cosmological structure formation

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    A summary of the current forefront problem of physical cosmology, the formation of structures (galaxies, clusters, great walls, etc.) in the universe is presented. Solutions require two key ingredients: (1) matter; and (2) seeds. Regarding the matter, it now seems clear that both baryonic and non-baryonic matter are required. Whether the non-baryonic matter is hot or cold depends on the choice of seeds. Regarding the seeds, both density fluctuations and topological defects are discussed. The combination of isotropy of the microwave background and the recent observations indicating more power on large scales have severly constrained, if not eliminated, Gaussian fluctuations with equal power on all scales, regardless of the eventual resolution of both the matter and seed questions. It is important to note that all current structure formation ideas require new physics beyond SU(3) x SU(2) x U(1).

  15. Cosmological magnetic fields

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  16. Cosmological disformal invariance

    SciTech Connect

    Domènech, Guillem; Sasaki, Misao; Naruko, Atsushi E-mail: naruko@th.phys.titech.ac.jp

    2015-10-01

    The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.

  17. Supersymmetric classical cosmology

    SciTech Connect

    Escamilla-Rivera, Celia; Obregón, Octavio; Ureña-López, L. Arturo E-mail: octavio@fisica.ugto.mx

    2010-12-01

    In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpartners associated with both the scale factor and the scalar field, and classical equations of motion are obtained from the super-Wheeler-DeWitt equation through the usual WKB method. The resulting supersymmetric Einstein-Klein-Gordon equations contain extra radiation and stiff matter terms, and we study their solutions in flat space for different scalar field potentials. The solutions are compared to the standard case, in particular those corresponding to the exponential potential, and their implications for the dynamics of the early Universe are discussed in turn.

  18. A presocratic cosmological proposal

    NASA Astrophysics Data System (ADS)

    Danezis, E.; Theodossiou, E.; Stathopoulou, M.; Grammenos, Th.

    1999-12-01

    Alcman is known as one of the greatest lyric poets of the ancient world. However, the publication of the Oxyrhynchus papyrus No. 2390 in 1957 caused a great deal of excitement. This papyrus, from the second century AD, contains parts of a comment written in prose, which implies that in one of his poems Alcman deals with a kind of a god-created cosmogony. That cosmogonical view, formulated by Alcman in the middle of the seventh century BC, describes much older considerations that resemble certain modern cosmological conjectures. In terms of the latter, the observable universe emerged out of a point singularity interior to a white hole which, due to the time symmetry of Einstein's field equations, can be considered as a time-reversed black hole.

  19. Route to nonlocal cosmology

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Montobbio, Michele; Nardelli, Giuseppe

    2007-12-01

    An analytic approach to phenomenological models inspired by cubic string field theory is introduced and applied to some examples. We study a class of actions for a minimally coupled, homogeneous scalar field whose energy density contains infinitely many time derivatives. These nonlocal systems are systematically localized and an algorithm to find cosmological solutions of the dynamical equations is provided. Our formalism is able to define the nonlocal field in regions of the parameter space which are inaccessible by standard methods. Also, problems related to nonlocality are reinterpreted under a novel perspective and naturally overcome. We consider phenomenological models living on a Friedmann-Robertson-Walker background with power-law scale factor, both in four dimensions and on a high-energy braneworld. The quest for solutions unravels general features of nonlocal dynamics indicating several future directions of investigation.

  20. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  1. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  2. Initial conditions and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1987-01-01

    A theory of initial conditions is necessary for a complete explanation of the presently observed large scale structural features of the universe, and a quantum theory of cosmology is probably needed for its formulation. The kinematics of quantum cosmology are reviewed, and some candidates for a law of initial conditions are discussed. The proposal that the quantum state of a closed universe is the natural analog of the ground state for closed cosmologies and is specified by a Euclidean sum over histories is sketched. When implemented in simple models, this proposal is consistent with the most important large-scale observations.

  3. Ψ-epistemic quantum cosmology?

    NASA Astrophysics Data System (ADS)

    Evans, Peter W.; Gryb, Sean; Thébault, Karim P. Y.

    2016-11-01

    This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmetric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach and points towards paths for future development.

  4. Cosmology and the weak interaction

    SciTech Connect

    Schramm, D.N. ):)

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  5. Cosmology from start to finish.

    PubMed

    Bennett, Charles L

    2006-04-27

    Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?

  6. An Array of Qualitative Data Analysis Tools: A Call for Data Analysis Triangulation

    ERIC Educational Resources Information Center

    Leech, Nancy L.; Onwuegbuzie, Anthony J.

    2007-01-01

    One of the most important steps in the qualitative research process is analysis of data. The purpose of this article is to provide elements for understanding multiple types of qualitative data analysis techniques available and the importance of utilizing more than one type of analysis, thus utilizing data analysis triangulation, in order to…

  7. Evaluating Team Project-Work Using Triangulation: Lessons from Communities in Northern Ghana

    ERIC Educational Resources Information Center

    Clark, Gordon; Jasaw, Godfred Seidu

    2014-01-01

    This paper uses triangulation to assess key aspects of a team-based, participatory action research programme for undergraduates in rural communities across northern Ghana. The perceptions of the programme and its effects on the students, staff and host communities are compared, showing areas of agreement and disagreement. The successes of the…

  8. Triangulation and Mixed Methods Designs: Data Integration with New Research Technologies

    ERIC Educational Resources Information Center

    Fielding, Nigel G.

    2012-01-01

    Data integration is a crucial element in mixed methods analysis and conceptualization. It has three principal purposes: illustration, convergent validation (triangulation), and the development of analytic density or "richness." This article discusses such applications in relation to new technologies for social research, looking at three…

  9. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.

    PubMed

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui

    2014-07-10

    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  10. The Marginalized "Model" Minority: An Empirical Examination of the Racial Triangulation of Asian Americans

    ERIC Educational Resources Information Center

    Xu, Jun; Lee, Jennifer C.

    2013-01-01

    In this article, we propose a shift in race research from a one-dimensional hierarchical approach to a multidimensional system of racial stratification. Building upon Claire Kim's (1999) racial triangulation theory, we examine how the American public rates Asians relative to blacks and whites along two dimensions of racial stratification: racial…

  11. Feminist Approaches to Triangulation: Uncovering Subjugated Knowledge and Fostering Social Change in Mixed Methods Research

    ERIC Educational Resources Information Center

    Hesse-Biber, Sharlene

    2012-01-01

    This article explores the deployment of triangulation in the service of uncovering subjugated knowledge and promoting social change for women and other oppressed groups. Feminist approaches to mixed methods praxis create a tight link between the research problem and the research design. An analysis of selected case studies of feminist praxis…

  12. Precision cosmology and the landscape

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael

    2006-10-01

    After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.

  13. Cosmological Inflation: A Personal Perspective

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2008-01-01

    We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.

  14. Introduction. Cosmology meets condensed matter.

    PubMed

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  15. Semiclassical cosmology with polymer matter

    NASA Astrophysics Data System (ADS)

    Moeez Hassan, Syed; Husain, Viqar

    2017-04-01

    In loop quantum cosmology, polymer quantization is applied to gravity and Schrödinger quantization to matter. This approach misses interesting cosmological dynamics coming from the polymer quantization of matter. We demonstrate this in semiclassical cosmology with a scalar field and pressureless dust: gravity is kept classical, dust is used to fix the time gauge, and polymer quantization effects are isolated in the scalar field. The resulting dynamics shows a period of inflation, both with and without a scalar potential, and the emergence of a classical universe at late times. Since gravity is not quantized, the cosmological singularity is not resolved, but our results suggest that polymer quantization of both gravity and matter are important for a complete picture.

  16. Newtonian cosmology Newton would understand

    SciTech Connect

    Lemons, D.S.

    1988-06-01

    Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology.

  17. Cosmological calculations on the GPU

    NASA Astrophysics Data System (ADS)

    Bard, D.; Bellis, M.; Allen, M. T.; Yepremyan, H.; Kratochvil, J. M.

    2013-02-01

    Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next generation of survey telescopes will yield measurements of billions of galaxies. The scale of these datasets, and the nature of the calculations involved, make cosmological calculations ideal models for implementation on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and compare the calculation speeds to comparable code run on the CPU. We obtain a code speed-up of between 10 and 180× faster, compared to performing the same calculation on the CPU. The code has been made publicly available. GPUs are a useful tool for cosmological calculations, even for datasets the size of current surveys, allowing calculations to be made one or two orders of magnitude faster.

  18. Heavy ion collisions and cosmology

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan

    2016-12-01

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  19. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  20. Noncommutativity and scalar field cosmology

    SciTech Connect

    Guzman, W.; Sabido, M.; Socorro, J.

    2007-10-15

    In this work we extend and apply a previous proposal to study noncommutative cosmology to the Friedmann-Robertson-Walker cosmological background coupled to a scalar field. This is done in classical and quantum scenarios. In both cases noncommutativity is introduced in the gravitational field as well as in the scalar field through a deformation of minisuperspace, and we are able to find exact solutions. Finally, the effects of noncommutativity on the classical evolution are analyzed.

  1. Parameterized post-Newtonian cosmology

    NASA Astrophysics Data System (ADS)

    Sanghai, Viraj A. A.; Clifton, Timothy

    2017-03-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).

  2. Loop quantum cosmology gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-11-01

    Loop quantum cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer a remedy for or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of loop quantum cosmology. As we demonstrate, when loop quantum cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation-dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of loop quantum cosmology and we investigate under which circumstances the baryon-to-entropy ratio can be compatible with the observational constraints.

  3. Was Newtonian cosmology really inconsistent?

    NASA Astrophysics Data System (ADS)

    Vickers, Peter

    This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.

  4. Higgs Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Roberts, Alex

    2016-08-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad

  5. Particle Theory & Cosmology

    SciTech Connect

    Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor

    2015-03-31

    1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his

  6. Supersymmetric Quantum Cosmology Shaken, not Stirred

    NASA Astrophysics Data System (ADS)

    Moniz, P. V.

    The canonical quantization of N=1 and N=2 supergravity theories is reviewed in this report. Special emphasis is given to the topic of supersymmetric Bianchi class A and FRW minisuperspaces, namely in the presence of supermatter fields. The quantization of the general theory (including supermatter) is also contemplated. The issue of quantum physical states is subsequently analyzed. A discussion on further research problems still waiting to be addressed is included. An extensive and updated bibliography concludes this review.

  7. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  8. Multiverses and physical cosmology

    NASA Astrophysics Data System (ADS)

    Ellis, G. F. R.; Kirchner, U.; Stoeger, W. R.

    2004-01-01

    The idea of a multiverse - an ensemble of universes - has received increasing attention in cosmology, both as the outcome of the originating process that generated our own Universe, and as an explanation for why our Universe appears to be fine-tuned for life and consciousness. Here we carefully consider how multiverses should be defined, stressing the distinction between the collection of all possible universes, and ensembles of really existing universes that are essential for an anthropic argument. We show that such realized multiverses are by no means unique. A proper measure on the space of all really existing universes or universe domains is needed, so that probabilities can be calculated, and major problems arise in terms of realized infinities. As an illustration we examine these issues in the case of the set of Friedmann-Lemaître-Robertson-Walker universes. Then we briefly summarize scenarios such as chaotic inflation, which suggest how ensembles of universe domains may be generated, and we point out that the regularities which must underlie any systematic description of truly disjoint multiverses must imply some kind of common generating mechanism. Finally, we discuss the issue of testability, which underlies the question of whether multiverse proposals are really scientific propositions.

  9. Plasma Redshift Cosmology

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  10. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  11. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  12. Particle theory and cosmology

    SciTech Connect

    Not Available

    1990-01-01

    The overall objective of the research supported by this contract is to further our understanding of the basic building blocks of matter as well as the role fundamental interactions play in cosmology and astrophysics. Astrophysical data, such as from high energy cosmic rays and large scale structure of the universe, are employed to constrain particle physics theories. Particle collisions at Tevatron and higher (SSC) energies are also under investigation. During the past year a systematic reanalysis of the correlation between solar activity and the solar neutrino flux was undertaken. The conclusion seems to be that the Homestake experimental data show a correlation at a significant level, supporting the hypothesis that the neutrino possesses a magnetic moment. A separate, but related, theoretical investigation of electromagnetic properties of elementary particles has led to the discovery of a class of models in which the neutrino is endowed with an appreciable magnetic moment while its remains small. Altogether members of the group have been co-authors of 28 papers during the grant year on topics ranging from fermion masses to the role of ultra-high energy hadronic interactions in cosmic ray physics.

  13. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  14. Cosmology and supergravity

    NASA Astrophysics Data System (ADS)

    Ferrara, S.; Kehagias, A.; Sagnotti, A.

    2016-09-01

    Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S. Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word “Supersymmetry” (replacing the earlier “Supergauges” drawn from String Theory). He also introduced the basic concept of “Superspace” and the notion of “Goldstone Fermion” (Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the role of nilpotent superfields to describe a de Sitter phase of our Universe.

  15. Nuclear physics and cosmology

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.

  16. Cosmological perturbations without inflation

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2017-01-01

    A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e. with an equation of state ρ +3p=0 , where ρ and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands–Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the {{1}\\circ}{ {--}}{{10}\\circ} fluctuations in the CMB correspond almost exactly to the Planck length at the Planck time, firmly supporting the view that CMB observations may already be probing trans-Planckian physics.

  17. Cosmology from wmap

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.

    A prodigious burst of high-energy radiation was generated during the Big Bang. Today, this radiation is seen as a nearly uniform faint glow across the sky, now as low-energy microwaves due to the expansion of the universe over billions of years. Tiny temperature variations of the radiation across the sky were first discovered by NASA's Cosmic Background Explorer (COBE) space mission in 1992. The Wilkinson Microwave Anisotropy Probe (WMAP) space mission, launched in 2001, has now mapped the temperature variations (anisotropy) of the cosmic microwave background radiation over the full sky with unprecedented accuracy and precision. The WMAP observations provide definitive answers to cosmological questions and open the door to new investigations. For example, the WMAP has determined that the content of the universe, dominated by dark matter and dark energy. The large-scale geometry of the universe is flat, in that the sum of the interior angles of a triangle adds up to 180 degrees even over vast distances. New limits are set on the mass of neutrinos and the nature (equation of state) of the dark energy. The WMAP results also place new limits on the physics of the very early universe, usually described in terms of Inflation theory: a rapid exponential expansion of the universe within a fraction of a second. Observations are on-going and will improve our understanding of the physics of the universe.

  18. New trends in cosmology

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1978-01-01

    A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.

  19. New ekpyrotic cosmology

    SciTech Connect

    Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A.

    2007-12-15

    In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure.

  20. Cosmological study in loop quantum cosmology through dark energy model

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Salako, Ines G.; Gulshan, Faiza

    The interacting generalized ghost version of pilgrim dark energy (GGPDE) is discussed in the framework of loop quantum cosmology (LQC). We analyze the behavior of cosmological parameters (Hubble, equation of state (EoS), deceleration) and cosmological planes (ωD ‑ ωD‧ and r-s) in the present scenario (ωD represents the EoS parameter and ωD‧ indicates the evolution of the EoS parameter, r,s are statefinder parameters). It is observed that the deceleration parameter corresponds to the accelerated expansion of the universe. The EoS parameter lies in vacuum and phantom regions for all cases of u (pilgrim dark energy (PDE) parameter). The ωD ‑ ωD‧ plane lies in thawing region for all cases of u. The r ‑ s plane corresponds to Λ cold dark matter (CDM) and Chaplygin gas model. We have also mentioned the constraints on calculated cosmological parameters and found that all the trajectories of cosmological parameters and planes show the consistence behavior with the observational schemes.

  1. Cosmological tests of modified gravity

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  2. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  3. The Development of Euclidean and Non-Euclidean Cosmologies

    ERIC Educational Resources Information Center

    Norman, P. D.

    1975-01-01

    Discusses early Euclidean cosmologies, inadequacies in classical Euclidean cosmology, and the development of non-Euclidean cosmologies. Explains the present state of the theory of cosmology including the work of Dirac, Sandage, and Gott. (CP)

  4. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  5. Aspects of braneworld cosmology

    NASA Astrophysics Data System (ADS)

    Vinet, Jeremie

    What is essential is invisible to the eye. Antoine de Saint-Exupery Of course, Saint-Exupery didn't have extra dimensions in mind when he wrote this famous line. Nevertheless, the recent realisation that standard model degrees of freedom can naturally be restricted to a submanifold embedded in a higher dimensional Universe means that an ingredient essential to our description of nature might quite literally be "invisible to the eye". Exploring the consequences of such braneworld scenarios has occupied a large part of the theoretical physics community over the last seven years, and this thesis is a collection of contributions to this endeavour. After reviewing the motivations for and early successes of braneworld scenarios, we examine rho2 corrections to the Hubble rate in the stabilized Randall-Sundrum I model, where the hierarchy problem is solved in a natural way, in order to ascertain whether such corrections might be of help in addressing some issues with inflation and baryogenesis. The three following chapters are concerned with six-dimensional models that have been advertised as possibly leading to a self-tuning solution to the cosmological constant problem. We examine this claim thoroughly, through the study of thick codimension-two braneworlds. This allows us to provide a generalization of the relationship between the deficit angle and the brane matter content. We also present the first derivation of the Friedmann equations on a codimension-two brane containing matter with an arbitrary equation of state, first in the context of Einstein-Hilbert gravity and then in six dimensional supergravity.

  6. Nuclear physics and cosmology

    SciTech Connect

    Schramm, D.N. ):)

    1989-12-01

    Nuclear physics has provided one of the 2 critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. This paper reviews the standard Big Bang Nucleosynthesis arguments. The primordial He abundance is inferred from He--C and He--N and He--O correlations. The strengthened Li constraint as well as {sup 2}D plus {sup 3}He are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N{sub {nu}}, is delineated using the new neutron lifetime value of {tau}{sub n} = 890 {plus minus} 4s ({tau}{sub {1/2}} = 10.3 min). The formal statistical result is N{sub {nu}} = 2.6 {plus minus} 0.3 (1{sigma}) providing a reasonable fit (1.3{sigma}) to 3 families but making a fourth light (m{sub {nu}} {approx lt}10 MeV) neutrino family exceedingly unlikely ({approx gt}4.7{sigma}) (barring significant systematic errors either in D + {sup 3}He, and Li and/or {sup 4}He and/or {tau}{sub n}). It is also shown that uncertainties induced by postulating a first-order quark-hadron phase transition do not seriously affect the conclusions. 21 refs., 3 figs.

  7. Cosmology with Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano

    I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.

  8. Cosmology in Mr. Tompkins' Lifetime

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi Paul

    2016-01-01

    Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.

  9. Cosmological tests of coupled Galileons

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Gubitosi, Giulia E-mail: Clare.Burrage@nottingham.ac.uk E-mail: g.gubitosi@imperial.ac.uk

    2015-03-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM.

  10. Bianchi type-I and -III modified holographic Ricci Dark energy models in Saez-Ballester theory

    NASA Astrophysics Data System (ADS)

    Rao, V. U. M.; Divya Prasanthi, U. Y.

    2017-02-01

    In this work, we study the spatially homogeneous and anisotropic Bianchi type-III (B-III) and locally rotationally symmetric (LRS) Binachi type-I (B-I) models filled with matter and dark energy in the framework of the Saez-Ballester (1986) scalar-tensor theory of gravitation. Here, we consider the modified holographic Ricci dark energy as the viable candidate to dark energy. To obtain a deterministic solution we consider the time-varying deceleration parameter, which leads to the average scale factor a(t)=[sinh(α t)]^{1/k}. This average scale factor describes a model which generates a smooth transition of the universe from the early decelerating phase to the recent accelerating phase. The physical and kinematical aspects of the models are discussed through figures and also found to be in good agreement with recent astrophysical observations under suitable conditions.

  11. Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.; Melnikov, V. N.

    2000-09-01

    Multidimensional model describing the cosmological evolution of n Einstein spaces in the theory with l scalar fields and forms is considered. When electromagnetic composite p-brane ansatz is adopted, and certain restrictions on the parameters of the model are imposed, the dynamics of the model near the singularity is reduced to a billiard on the (N-1)-dimensional Lobachevsky space HN-1, N=n+l. The geometrical criterion for the finiteness of the billiard volume and its compactness is used. This criterion reduces the problem to the problem of illumination of (N-2)-dimensional sphere SN-2 by pointlike sources. Some examples with billiards of finite volume and hence oscillating behavior near the singularity are considered. Among them examples with square and triangle two-dimensional billiards (e.g., that of the Bianchi-IX model) and a four-dimensional billiard in ``truncated'' D=11 supergravity model (without the Chern-Simons term) are considered. It is shown that the inclusion of the Chern-Simons term destroys the confining of a billiard.

  12. Depth measurements of drilled holes in bone by laser triangulation for the field of oral implantology

    NASA Astrophysics Data System (ADS)

    Quest, D.; Gayer, C.; Hering, P.

    2012-01-01

    Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.

  13. Detection method of inclination angle in image measurement based on improved triangulation.

    PubMed

    Zhang, Jinfeng; Zhang, Jiye

    2015-02-01

    Image distortion seriously affects the accuracy in microscope image measurement. One source of such distortion is related to the tilting of the microscope stage during laser scanning, thereby resulting in various degrees of inclination angles. This paper describes a novel technique that improves the traditional laser triangulation method by using multiple parallel laser beams that can solve the inclination problem. Moreover, a multi-light-spot measurement device, based on the improved laser triangulation technique, is proposed that can accurately detect the degree and directions of the inclination angles in real time. Furthermore, experimental results generated from a prototype of this device show that the new measurement system can effectively detect small inclination angles at a precision up to ±0.5  μrad.

  14. A philosophy for big-bang cosmology.

    PubMed

    McCrea, W H

    1970-10-03

    According to recent developments in cosmology we seem bound to find a model universe like the observed universe, almost independently of how we suppose it started. Such ideas, if valid, provide fresh justification for the procedures of current cosmological theory.

  15. Cosmology on a cosmic ring

    SciTech Connect

    Niedermann, Florian; Schneider, Robert E-mail: robert.bob.schneider@physik.uni-muenchen.de

    2015-03-01

    We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4D Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.

  16. Classically Stable Nonsingular Cosmological Bounces

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-09-01

    One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.

  17. Classically Stable Nonsingular Cosmological Bounces.

    PubMed

    Ijjas, Anna; Steinhardt, Paul J

    2016-09-16

    One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.

  18. WMAP normalization of inflationary cosmologies

    SciTech Connect

    Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.

    2006-10-15

    We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.

  19. Cosmological AMR MHD with Enzo

    SciTech Connect

    Xu, Hao; Li, Hui; Li, Shengtai

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  20. Cosmological implications of unimodular gravity

    SciTech Connect

    Jain, Pankaj; Jaiswal, Atul; Karmakar, Purnendu; Kashyap, Gopal; Singh, Naveen K. E-mail: atijazz@iitk.ac.in E-mail: gopal@iitk.ac.in

    2012-11-01

    We consider a model of gravity and matter fields which is invariant only under unimodular general coordinate transformations (GCT). The determinant of the metric is treated as a separate field which transforms as a scalar under unimodular GCT. Furthermore we also demand that the theory is invariant under a new global symmetry which we call generalized conformal invariance. We study the cosmological implications of the resulting theory. We show that this theory gives a fit to the high-z supernova data which is identical to the standard Big Bang model. Hence we require some other cosmological observations to test the validity of this model. We also consider some models which do not obey the generalized conformal invariance. In these models we can fit the supernova data without introducing the standard cosmological constant term. Furthermore these models introduce only one dark component and hence solve the coincidence problem of dark matter and dark energy.

  1. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  2. Triangulation Scale Error as a Possible Cause for Overlooking Seismic Potential Along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Sagiya, T.; Matta, N.; Meneses, A.; Nomura, S.; Suzuki, S.; Ohta, Y.

    2012-12-01

    The 2011 M9.0 Tohoku earthquake was not anticipated before its occurrence. One of the reasons of this overlook was that crustal strain during the 20th century did not show significant strain accumulation associated with the subduction of the Pacific plate. On the other hand, GPS data after 1990's clearly showed E-W shortening of the Tohoku area with an average strain rate over 0.1 ppm/year. However, since no strain accumulation was observed for a longer term, it was expected that the short-term strain be released through aseismic processes like a slow slip or afterslip. The length scale of the triangulation network was determined by baseline surveys. 15 baselines with a length from 3 to 10 km were distributed over the national triangulation network and measured with a steel baseline rod. We found that one baseline, the Shionohara baseline (5172m) located in Yamagata prefecture of the Tohoku district, was measured in 1894, and the M7.0 Shonai earthquake occurred just after this survey. The Shonai earthquake was considered as a thrust type earthquake under E-W compression, and its hypocenter was located about 30 km west of the Shionohara baseline. Fault model calculation shows that the baseline could be coseismically elongated by as much as 10 ppm, causing a scale error for the triangulation network. The Shionohara baseline was the only baseline in the middle Tohoku area. So the triangulation network in the surrounding area might be isotropically downscaled. In addition to the absence of E-W contraction in the strain distribution for 100 years, significant N-S extension in the same area supports the existence of the scale bias.

  3. Geopositioning Precision Analysis of Multiple Image Triangulation Using Lro Nac Lunar Images

    NASA Astrophysics Data System (ADS)

    Di, K.; Xu, B.; Liu, B.; Jia, M.; Liu, Z.

    2016-06-01

    This paper presents an empirical analysis of the geopositioning precision of multiple image triangulation using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images at the Chang'e-3(CE-3) landing site. Nine LROC NAC images are selected for comparative analysis of geopositioning precision. Rigorous sensor models of the images are established based on collinearity equations with interior and exterior orientation elements retrieved from the corresponding SPICE kernels. Rational polynomial coefficients (RPCs) of each image are derived by least squares fitting using vast number of virtual control points generated according to rigorous sensor models. Experiments of different combinations of images are performed for comparisons. The results demonstrate that the plane coordinates can achieve a precision of 0.54 m to 2.54 m, with a height precision of 0.71 m to 8.16 m when only two images are used for three-dimensional triangulation. There is a general trend that the geopositioning precision, especially the height precision, is improved with the convergent angle of the two images increasing from several degrees to about 50°. However, the image matching precision should also be taken into consideration when choosing image pairs for triangulation. The precisions of using all the 9 images are 0.60 m, 0.50 m, 1.23 m in along-track, cross-track, and height directions, which are better than most combinations of two or more images. However, triangulation with selected fewer images could produce better precision than that using all the images.

  4. Measuring teamwork in primary care: Triangulation of qualitative and quantitative data.

    PubMed

    Brown, Judith Belle; Ryan, Bridget L; Thorpe, Cathy; Markle, Emma K R; Hutchison, Brian; Glazier, Richard H

    2015-09-01

    This article describes the triangulation of qualitative dimensions, reflecting high functioning teams, with the results of standardized teamwork measures. The study used a mixed methods design using qualitative and quantitative approaches to assess teamwork in 19 Family Health Teams in Ontario, Canada. This article describes dimensions from the qualitative phase using grounded theory to explore the issues and challenges to teamwork. Two quantitative measures were used in the study, the Team Climate Inventory (TCI) and the Providing Effective Resources and Knowledge (PERK) scale. For the triangulation analysis, the mean scores of these measures were compared with the qualitatively derived ratings for the dimensions. The final sample for the qualitative component was 107 participants. The qualitative analysis identified 9 dimensions related to high team functioning such as common philosophy, scope of practice, conflict resolution, change management, leadership, and team evolution. From these dimensions, teams were categorized numerically as high, moderate, or low functioning. Three hundred seventeen team members completed the survey measures. Mean site scores for the TCI and PERK were 3.87 and 3.88, respectively (of 5). The TCI was associated will all dimensions except for team location, space allocation, and executive director leadership. The PERK was associated with all dimensions except team location. Data triangulation provided qualitative and quantitative evidence of what constitutes teamwork. Leadership was pivotal in forging a common philosophy and encouraging team collaboration. Teams used conflict resolution strategies and adapted to the changes they encountered. These dimensions advanced the team's evolution toward a high functioning team.

  5. Using GPS/INS data to enhance image matching for real-time aerial triangulation

    NASA Astrophysics Data System (ADS)

    Tanathong, Supannee; Lee, Impyeong

    2014-11-01

    Direct georeferencing is a promising technique for determining the exterior orientation parameters (EO) of a camera in real-time through the integration of GPS/INS sensors. Instead of using expensive devices, we improve the accuracy of the directly measured EOs through aerial triangulation (AT) and rely on tie-points. In this work, using GPS/INS data, we enhance the KLT tracker to achieve accuracy and speed that is compatible with real-time aerial triangulation. Given GPS/INS data from medium-grade sensors, the proposed system is 48% faster than the original work and tie-points extracted by our system are 6.33% more accurate and more evenly distributed than tie-points extracted by the original work. The AT processing results show that tie-points from the proposed work can reduce the RMSE of the directly measured EOs by 17.87% for position and 23.37% for attitude. Thus, we conclude that our proposed system can be integrated with real-time aerial triangulation.

  6. A Program to Improve the Triangulated Surface Mesh Quality Along Aircraft Component Intersections

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.

    2005-01-01

    A computer program has been developed for improving the quality of unstructured triangulated surface meshes in the vicinity of component intersections. The method relies solely on point removal and edge swapping for improving the triangulations. It can be applied to any lifting surface component such as a wing, canard or horizontal tail component intersected with a fuselage, or it can be applied to a pylon that is intersected with a wing, fuselage or nacelle. The lifting surfaces or pylon are assumed to be aligned in the axial direction with closed trailing edges. The method currently maintains salient edges only at leading and trailing edges of the wing or pylon component. This method should work well for any shape of fuselage that is free of salient edges at the intersection. The method has been successfully demonstrated on a total of 125 different test cases that include both blunt and sharp wing leading edges. The code is targeted for use in the automated environment of numerical optimization where geometric perturbations to individual components can be critical to the aerodynamic performance of a vehicle. Histograms of triangle aspect ratios are reported to assess the quality of the triangles attached to the intersection curves before and after application of the program. Large improvements to the quality of the triangulations were obtained for the 125 test cases; the quality was sufficient for use with an automated tetrahedral mesh generation program that is used as part of an aerodynamic shape optimization method.

  7. Shared decision-making in medical encounters regarding breast cancer treatment: the contribution of methodological triangulation.

    PubMed

    Durif-Bruckert, C; Roux, P; Morelle, M; Mignotte, H; Faure, C; Moumjid-Ferdjaoui, N

    2015-07-01

    The aim of this study on shared decision-making in the doctor-patient encounter about surgical treatment for early-stage breast cancer, conducted in a regional cancer centre in France, was to further the understanding of patient perceptions on shared decision-making. The study used methodological triangulation to collect data (both quantitative and qualitative) about patient preferences in the context of a clinical consultation in which surgeons followed a shared decision-making protocol. Data were analysed from a multi-disciplinary research perspective (social psychology and health economics). The triangulated data collection methods were questionnaires (n = 132), longitudinal interviews (n = 47) and observations of consultations (n = 26). Methodological triangulation revealed levels of divergence and complementarity between qualitative and quantitative results that suggest new perspectives on the three inter-related notions of decision-making, participation and information. Patients' responses revealed important differences between shared decision-making and participation per se. The authors note that subjecting patients to a normative behavioural model of shared decision-making in an era when paradigms of medical authority are shifting may undermine the patient's quest for what he or she believes is a more important right: a guarantee of the best care available.

  8. The Higgs Portal and Cosmology

    SciTech Connect

    Assamagan, Ketevi; Chien-Yi Chen; Chou, John Paul; Curtin, David; Fedderke, Michael A.; Gershtein, Yuri; He, Xiao-Gang; Klute, Markus; Kozaczuk, Jonathon; Kotwal, Ashutosh; Lowette, Steven; No, Jose Miguel; Plehn, Tilman; Qian, Jianming; Ramsey-Musolf, Michael; Safonov, Alexei; Shelton, Jessie; Spannowsky, Michael; Su, Shufang; Walker, Devin G. E.; Willocq, Stephane; Winslow, Peter

    2016-04-18

    Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.

  9. Quantum cosmology with nontrivial topologies

    SciTech Connect

    Vargas, T.

    2008-10-10

    Quantum creation of a universe with a nontrivial spatial topology is considered. Using the Euclidean functional integral prescription, we calculate the wave function of such a universe with cosmological constant and without matter. The minisuperspace path integral is calculated in the semiclassical approximation, and it is shown that in order to include the nontrivial topologies in the path integral approach to quantum cosmology, it is necessary to generalize the sum over compact and smooth 4-manifolds to sum over finite-volume compact 4-orbifolds.

  10. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  11. Cosmological constant from quantum spacetime

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Tao, Wen-Qing

    2015-06-01

    We show that a hypothesis that spacetime is quantum with coordinate algebra [xi,t ]=λPxi , and spherical symmetry under rotations of the xi, essentially requires in the classical limit that the spacetime metric is the Bertotti-Robinson metric, i.e., a solution of Einstein's equations with a cosmological constant and a non-null electromagnetic field. Our arguments do not give the value of the cosmological constant or the Maxwell field strength, but they cannot both be zero. We also describe the quantum geometry and the full moduli space of metrics that can emerge as classical limits from this algebra.

  12. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  13. Cosmological dynamics of extended chameleons

    NASA Astrophysics Data System (ADS)

    Tamanini, Nicola; Wright, Matthew

    2016-04-01

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.

  14. Cosmologies with variable gravitational constant

    SciTech Connect

    Narkikar, J.V.

    1983-03-01

    In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.

  15. The Ising Model on the Random Planar Causal Triangulation: Bounds on the Critical Line and Magnetization Properties

    NASA Astrophysics Data System (ADS)

    Napolitano, George M.; Turova, Tatyana S.

    2016-02-01

    We investigate a Gibbs (annealed) probability measure defined on Ising spin configurations on causal triangulations of the plane. We study the region where such measure can be defined and provide bounds on the boundary of this region (critical line). We prove that for any finite random triangulation the magnetization of the central spin is sensitive to the boundary conditions. Furthermore, we show that in the infinite volume limit, the magnetization of the central spin vanishes for values of the temperature high enough.

  16. Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin

    2016-07-01

    We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes. While this work is written in the context of random tensors, it is almost exclusively of combinatorial nature and we hope it is accessible to interested readers who are not familiar with random matrices, tensors and quantum

  17. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5

  18. Regularizing cosmological singularities by varying physical constants

    SciTech Connect

    Dąbrowski, Mariusz P.; Marosek, Konrad E-mail: k.marosek@wmf.univ.szczecin.pl

    2013-02-01

    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.

  19. Stringy Model of Cosmological Dark Energy

    SciTech Connect

    Aref'eva, Irina Ya.

    2007-11-20

    A string field theory (SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.

  20. The Case for a Hierarchical Cosmology

    ERIC Educational Resources Information Center

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  1. Cosmological perturbations and classical change of signature

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme

    1995-12-01

    Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaître-Robertson-Walker universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exists satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.

  2. Constraints on cosmological parameters in power-law cosmology

    NASA Astrophysics Data System (ADS)

    Rani, Sarita; Altaibayeva, A.; Shahalam, M.; Singh, J. K.; Myrzakulov, R.

    2015-03-01

    In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on and i.e. H0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → -1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details.

  3. Cosmological constant, violation of cosmological isotropy and CMB

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R. E-mail: arz@physics.ubc.ca

    2009-09-01

    We suggest that the solution to the cosmological vacuum energy puzzle does not require any new field beyond the standard model, but rather can be explained as a result of the interaction of the infrared sector of the effective theory of gravity with standard model fields. The cosmological constant in this framework can be presented in terms of QCD parameters and the Hubble constant H as follows, ε{sub vac} ≅ H⋅m{sub q}( q-bar q)/m{sub η'} ≅ (4.3⋅10{sup −3}eV){sup 4}, which is amazingly close to the observed value today. In this work we explain how this proposal can be tested by analyzing CMB data. In particular, knowing the value of the observed cosmological constant fixes univocally the smallest size of the spatially flat, constant time 3d hypersurface which, for instance in the case of an effective 1-torus, is predicted to be around 74 Gpc. We also comment on another important prediction of this framework which is a violation of cosmological isotropy. Such anisotropy is indeed apparently observed by WMAP, and will be confirmed (or ruled out) by future PLANCK data.

  4. Constraints on cosmological parameters in power-law cosmology

    SciTech Connect

    Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M. E-mail: aziza.bibol@mail.ru E-mail: jainendrrakumar@rediffmail.com

    2015-03-01

    In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H{sub 0} (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on and i.e. H{sub 0} average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details.

  5. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  6. How Cosmology Became a Science.

    ERIC Educational Resources Information Center

    Brush, Stephen G.

    1992-01-01

    Describes the origin of the science of cosmology and the competing theories to explain the beginning of the universe. The big bang theory for the creation of the universe is contrasted with the steady state theory. The author details discoveries that led to the demise of the steady state theory. (PR)

  7. The Higgs boson and cosmology

    PubMed Central

    Shaposhnikov, Mikhail

    2015-01-01

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  8. Random potentials and cosmological attractors

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2017-02-01

    I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinetic term of the type used in the theory of cosmological α-attractors.

  9. Cosmology in the Bucharest Observatory

    NASA Astrophysics Data System (ADS)

    Suran, Marian Doru

    2008-09-01

    At the Bucharest Observatory cosmology started in the early'80s as a theoretical branch directly related to the computational facilities available in our Observatory. With the help of our instruments, from a small Z8080 computer (early'80s) to a superscalar supercomputer of 44 processors (now), our cosmology team has developed models, methods and techniques related to: the investigation of 2D and 3D catalogues of galaxies, clusters and superclusters; investigation of the log tails of the 2-points correlation functions; cosmological simulations (N-body+SPH) of the Large Scale Structure of the Universe (LSS) investigation of environmental effects in clusters of galaxies; application of neural methods in cosmology. The use of such models and techniques has permitted us to study problems concerning: correlated signals in the long tail of the correlation functions for galaxies, clusters and superclusters (due to baryon oscillations) HD simulations of the LSS and of the evolution of the first and secondary Web structures; studies of the epochs of the formation of DM halos in a LCDM scenario (earlier than z 15) studies of the evolution of halos and galaxies due to the parental merging phenomena; detection of the Butcher-Oemler and Oemler-Butcher effects in far or close clusters; studies of E+A galaxies; study of the synthetic spectra of galaxies and of the chemo-spectro-photometrical evolution of galaxies (for z<30) photometric redshift determination (for z<10).

  10. Braneworld cosmology and noncommutative inflation

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca

    2005-03-01

    In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 propto rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their features analyzed in a number of ways and energy regimes. Finally, we establish dual relations between inflationary, cyclic/ekpyrotic and phantom cosmologies, as well as between scalar-driven and tachyon-driven cosmologies. The exact dualities relating the four-dimensional spectra are broken in favour of their braneworld counterparts. The dual solutions display new interesting features because of the modification of the effective Friedmann equation on the brane.

  11. The Higgs boson and cosmology.

    PubMed

    Shaposhnikov, Mikhail

    2015-01-13

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  12. Dark D-brane cosmology

    SciTech Connect

    Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk

    2014-06-01

    Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.

  13. Towards Noncommutative Supersymmetric Quantum Cosmology

    SciTech Connect

    Sabido, M.; Socorro, J.; Guzman, W.

    2010-12-07

    In this work a construction of supersymmetric noncommutative cosmology is presented. We start with a ''noncommutative'' deformation of the minisuperspace variables, and by using the time reparametrization invariance of the noncommutative bosonic model we proceed to construct a super field description of the model.

  14. Particle cosmology comes of age

    SciTech Connect

    Turner, M.S.

    1987-12-01

    The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs.

  15. Noncommutative Quantum Scalar Field Cosmology

    SciTech Connect

    Diaz Barron, L. R.; Lopez-Dominguez, J. C.; Sabido, M.; Yee, C.

    2010-07-12

    In this work we study noncommutative Friedmann-Robertson-Walker (FRW) cosmology coupled to a scalar field endowed with an exponential potential. The quantum scenario is analyzed in the Bohmian formalism of quantum trajectories to investigate the effects of noncommutativity in the evolution of the universe.

  16. Asymmetric cyclic evolution in polymerised cosmology

    SciTech Connect

    Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl

    2009-12-01

    The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.

  17. Superheavy magnetic monopoles and the standard cosmology

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    1984-10-01

    The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.

  18. Cosmological model favored by the holographic principle

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina; Dobosz, Anna; Sołtysek, Bożena

    2016-03-01

    We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.

  19. The cosmological constant and cold dark matter

    NASA Astrophysics Data System (ADS)

    Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1990-12-01

    It is argued here that the success of the cosmological cold dark matter (CDM) model can be retained and the new observations of very large scale cosmological structures can be accommodated in a spatially flat cosmology in which as much as 80 percent of the critical density is provided by a positive cosmological constant. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. This constant can also account for the lack of fluctuations in the microwave background and the large number of certain kinds of objects found at high redshift.

  20. Thermodynamics of cosmological matter creation

    PubMed Central

    Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.

    1988-01-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  1. Cosmological gravitomagnetism and Mach's principle

    SciTech Connect

    Schmid, Christoph

    2006-08-15

    The spin axes of gyroscopes experimentally define local nonrotating frames, i.e. the time evolution of axes of inertial frames. But what physical cause governs the time evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker (FRW) cosmologies with k=0, i.e. spatially flat. We ask the following question: Will cosmological vector perturbations (i.e. vorticity or rotational perturbations) exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan's formalism with local orthonormal bases, we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state and any form of the energy-momentum tensor for cosmological matter, are as follows: (1) the dragging of a gyroscope axis by rotational perturbations of matter beyond the H-dot radius from the gyroscope is exponentially suppressed, where H is the Hubble rate, and the dot is the derivative with respect to cosmic time. (2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius gets larger than the H-dot radius. (3) For the most general linear cosmological perturbations, the time evolution of all gyroscope spin axes and the axis directions of all local inertial frames exactly follow a weighted average of the rotational motion of cosmological matter, i.e. there is exact frame-dragging everywhere. The weight function is the density of measured angular momentum of matter times (1/r) times the Yukawa force (-d/dr)[(1/r)exp(-{mu}r)], where r is the geodesic distance from the source to the gyroscope. The exponential cutoff is given by {mu}{sup 2}=-4(dH/dt). Except for the Yukawa cutoff the weight function is the same as in the

  2. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  3. Alcock-paczynski cosmological test

    SciTech Connect

    López-Corredoira, M.

    2014-02-01

    In order to test the expansion of the universe and its geometry, we carry out an Alcock-Paczyński cosmological test, that is, an evaluation of the ratio of observed angular size to radial/redshift size. The main advantage of this test is that it does not depend on the evolution of the galaxies but only on the geometry of the universe. However, the redshift distortions produced by the peculiar velocities of the gravitational infall also have an influence, which should be separated from the cosmological effect. We derive the anisotropic correlation function of sources in three surveys within the Sloan Digital Sky Survey (SDSS): galaxies from SDSS-III/Baryon Oscillation Spectroscopic Survey Data Release 10 (BOSS-DR10) and QSOs from SDSS-II and SDSS-III/BOSS-DR10. From these, we are able to disentangle the dynamic and geometric distortions and thus derive the ratio of observed angular size to radial/redshift size at different redshifts. We also add some other values available in the literature. Then we use the data to evaluate which cosmological model fits them. We used six different models: concordance ΛCDM, Einstein-de Sitter, open-Friedman cosmology without dark energy, flat quasi-steady state cosmology, a static universe with a linear Hubble law, and a static universe with tired-light redshift. Only two of the six models above fit the data of the Alcock-Paczyński test: concordance ΛCDM and static universe with tired-light redshift, whereas the rest of them are excluded at a >95% confidence level. If we assume that ΛCDM is the correct one, the best fit with a free Ω {sub m} is produced for Ω{sub m}=0.24{sub −0.07}{sup +0.10}.

  4. iCosmo: an interactive cosmology package

    NASA Astrophysics Data System (ADS)

    Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.

    2011-04-01

    Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.

  5. Cosmology with the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Souradeep, Tarun

    The standard model of cosmology must not only explain the dynamics of the homogeneous background universe, but also satisfactorily describe the perturbed universe - the generation, evolution and finally, the formation of large-scale structures in the universe. Cosmic microwave background (CMB) has been by far the most influential cosmological observation driving advances in current cosmology. Exquisite measurements from CMB experiments have seen the emergence of a concordant cosmological model. Besides precise determination of various parameters of the standard cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe. The article reviews this aspect of recent progress in cosmology for a general science reader.

  6. TOPICAL REVIEW: String cosmology versus standard and inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Gasperini, M.

    2000-06-01

    This paper presents a review of the basic, model-independent differences between the pre-big-bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude either in favour of one or other of the scenarios, but to raise questions that are left to the reader's meditation. Warning: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.

  7. Equilibrium points of the tilted perfect fluid Bianchi VIh state space

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Pantelis S.

    2005-05-01

    We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h < -{frac 19} the state parameter belongs to the interval γ ∈(1,{2(3+sqrt{-h})/5+3sqrt{-h}}). This family of new exact self-similar solutions belongs to the subclass nαα = 0 having non-zero vorticity. In both cases the equilibrium points have a six-dimensional stable manifold and may act as future attractors at least for the models satisfying nαα = 0. Also we give the exact form of the self-similar metrics in terms of the state and group parameter. As an illustrative example we provide the explicit form of the corresponding self-similar radiation model (γ = {frac 43}), parametrised by the group parameter h. Finally we show that there are no tilted self-similar models of type III and irrotational models of type VIh.

  8. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    SciTech Connect

    Narimani, Ali; Scott, Douglas; Afshordi, Niayesh E-mail: nafshordi@pitp.ca

    2014-08-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ{sub 4} = 0.105 ± 0.049 (+highL CMB), or ζ{sub 4} = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ{sub 4}=), and also among different data sets.

  9. Calculation of mean central dose in interstitial brachytherapy using Delaunay triangulation.

    PubMed

    Astrahan, M A; Streeter, O E; Jozsef, G

    2001-06-01

    In 1997 the ICRU published Report 58 "Dose and Volume Specification for Reporting Interstitial Therapy" with the objective of addressing the problem of absorbed dose specification for reporting contemporary interstitial therapy. One of the concepts proposed in that report is "mean central dose." The fundamental goal of the mean central dose (MCD) calculation is to obtain a single, readily reportable and intercomparable value which is representative of dose in regions of the implant "where the dose gradient approximates a plateau." Delaunay triangulation (DT) is a method used in computational geometry to partition the space enclosed by the convex hull of a set of distinct points P into a set of nonoverlapping cells. In the three-dimensional case, each point of P becomes a vertex of a tetrahedron and the result of the DT is a set of tetrahedra. All treatment planning for interstitial brachytherapy inherently requires that the location of the radioactive sources, or dwell positions in the case of HDR, be known or digitized. These source locations may be regarded as a set of points representing the implanted volume. Delaunay triangulation of the source locations creates a set of tetrahedra without manual intervention. The geometric centers of these tetrahedra define a new set of points which lie "in between" the radioactive sources and which are distributed uniformly over the volume of the implant. The arithmetic mean of the dose at these centers is a three dimensional analog of the two-dimensional triangulation and inspection methods proposed for calculating MCD in ICRU 58. We demonstrate that DT can be successfully incorporated into a computerized treatment planning system and used to calculate the MCD.

  10. Lymphoscintigraphy and triangulated body marking for morbidity reduction during sentinel node biopsy in breast cancer

    PubMed Central

    Krynyckyi, Borys R; Shafir, Michail K; Kim, Suk Chul; Kim, Dong Wook; Travis, Arlene; Moadel, Renee M; Kim, Chun K

    2005-01-01

    Current trends in patient care include the desire for minimizing invasiveness of procedures and interventions. This aim is reflected in the increasing utilization of sentinel lymph node biopsy, which results in a lower level of morbidity in breast cancer staging, in comparison to extensive conventional axillary dissection. Optimized lymphoscintigraphy with triangulated body marking is a clinical option that can further reduce morbidity, more than when a hand held gamma probe alone is utilized. Unfortunately it is often either overlooked or not fully understood, and thus not utilized. This results in the unnecessary loss of an opportunity to further reduce morbidity. Optimized lymphoscintigraphy and triangulated body marking provides a detailed 3 dimensional map of the number and location of the sentinel nodes, available before the first incision is made. The number, location, relevance based on time/sequence of appearance of the nodes, all can influence 1) where the incision is made, 2) how extensive the dissection is, and 3) how many nodes are removed. In addition, complex patterns can arise from injections. These include prominent lymphatic channels, pseudo-sentinel nodes, echelon and reverse echelon nodes and even contamination, which are much more difficult to access with the probe only. With the detailed information provided by optimized lymphoscintigraphy and triangulated body marking, the surgeon can approach the axilla in a more enlightened fashion, in contrast to when the less informed probe only method is used. This allows for better planning, resulting in the best cosmetic effect and less trauma to the tissues, further reducing morbidity while maintaining adequate sampling of the sentinel node(s). PMID:16277655

  11. Triangulation of multistation camera data to locate a curved line in space

    NASA Technical Reports Server (NTRS)

    Fricke, C. L.

    1974-01-01

    A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the earth's magnetic field line at very high altitudes.

  12. Satellite triangulation in Europe from WEST and ISAGEX data. [computer programs

    NASA Technical Reports Server (NTRS)

    Leick, A.; Arur, M.

    1975-01-01

    Observational data that was acquired during the West European Satellite Triangulation (WEST) program and the International Satellite Geodesy Experiment (ISAGEX) campaign was obtained for the purpose of performing a geometric solution to improve the present values of coordinates of the European stations in the OSU WN14 solutions, adding some new stations and assessing the quality of the WN14 solution with the help of the additional data available. The status of the data as received, the preprocessing required and the preliminary tests carried out for the initial screening of the data are described. The adjustment computations carried out and the results of the adjustments are discussed.

  13. Optimized data processing for an optical 3D sensor based on flying triangulation

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja; Arold, Oliver; Häusler, Gerd; Gurov, Igor; Volkov, Mikhail

    2013-05-01

    We present data processing methods for an optical 3D sensor based on the measurement principle "Flying Triangulation". The principle enables a motion-robust acquisition of the 3D shape of even complex objects: A hand-held sensor is freely guided around the object while real-time feedback of the measurement progress is delivered during the captioning. Although of high precision, the resulting 3D data usually may exhibit some weaknesses: e.g. outliers might be present and the data size might be too large. We describe the measurement principle and the data processing and conclude with measurement results.

  14. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The

  15. Monolithically integrated optical displacement sensor based on triangulation and optical beam deflection.

    PubMed

    Higurashi, E; Sawada, R; Ito, T

    1999-03-20

    A monolithically integrated optical displacement sensor based on triangulation and optical beam deflection is reported. This sensor is simple and consists of only a laser diode, a polyimide waveguide, and a split detector (a pair of photodiodes) upon a GaAs substrate. The resultant prototype device is extremely small (750 microm x 800 microm). Experiments have shown that this sensor can measure the displacement of a mirror with resolution of better than 4 nm. Additionally, we have experimentally demonstrated both axial and lateral displacement measurements when we used a cylindrical micromirror (diameter, 125 microm) as a movable external object.

  16. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    NASA Astrophysics Data System (ADS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-03-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping.

  17. Inhomogeneous cosmology with numerical relativity

    NASA Astrophysics Data System (ADS)

    Macpherson, Hayley J.; Lasky, Paul D.; Price, Daniel J.

    2017-03-01

    We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomogeneities. We demonstrate fourth-order convergence with errors less than one part in 1 06 in evolving a flat, dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus framework. We also demonstrate agreement to within one part in 1 03 between the numerical relativity solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a factor of ˜350 change in scale factor (redshift). We simulate the growth of linear perturbations into the nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology.

  18. Effective perfect fluids in cosmology

    SciTech Connect

    Ballesteros, Guillermo; Bellazzini, Brando E-mail: brando.bellazzini@pd.infn.it

    2013-04-01

    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  19. Thermodynamic volume of cosmological solitons

    NASA Astrophysics Data System (ADS)

    Mbarek, Saoussen; Mann, Robert B.

    2017-02-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  20. Inflationary nonsingular quantum cosmological model

    SciTech Connect

    Falciano, Felipe T.; Pinto-Neto, Nelson; Santini, E. Sergio

    2007-10-15

    A stiff matter-dominated universe modeled by a free massless scalar field minimally coupled to gravity in a Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry is quantized. Generalized complex-width Gaussian superpositions of the solutions of the Wheeler-DeWitt equation are constructed and the Bohm-de Broglie interpretation of quantum cosmology is applied. A planar dynamical system is found in which a diversity of quantum Bohmian trajectories are obtained and discussed. One class of solutions represents nonsingular inflationary models starting at infinity past from flat space-time with Planckian size spacelike hypersurfaces, which inflates without inflaton but due to a quantum cosmological effect, until it makes an analytical graceful exit from this inflationary epoch to a decelerated classical stiff matter expansion phase.

  1. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  2. Fluctuation energies in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    2014-06-01

    Quantum fluctuations or other moments of a state contribute to energy expectation values and can imply interesting physical effects. In quantum cosmology, they turn out to be important for a discussion of density bounds and instabilities of initial-value problems in the presence of signature change in loop-quantized models. This paper provides an effective description of these issues, accompanied by a comparison with existing numerical results and an extension to squeezed states. The comparison confirms that canonical effective methods are well suited for computations of properties of physical states. As a side product, an example is found for a simple state in which quantum fluctuations can cancel holonomy modifications of loop quantum cosmology.

  3. Galaxies in the Cosmological Context

    NASA Astrophysics Data System (ADS)

    Lucia, Gabriella De

    In the last decades, a number of observational experiments have converged to establish the cold dark matter model as the "de facto" standard model for structure formation. While the cosmological paradigm appears to be firmly established, a theory of galaxy formation remains elusive, and our understanding of the physical processes that determine the observed variety of galaxy properties and their evolution as a function of cosmic time and environment is far from complete. Although much progress has been made, both on the theoretical and observational side, understanding how galaxies form and evolve remains one of the most outstanding questions of modern astrophysics. This chapter provides an introduction to ideas and concepts that underpin modern models of galaxy formation and evolution, in the currently favoured cosmological context.

  4. Attractor behaviour in ELKO cosmology

    SciTech Connect

    Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha E-mail: jeet@prl.res.in E-mail: varma@iisertvm.ac.in

    2013-04-01

    We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant.

  5. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  6. A cosmological interpretation of duality

    NASA Astrophysics Data System (ADS)

    Osorio, M. A. R.; Vázquez-Mozo, M. A.

    1994-01-01

    We study the cosmological meaning of duality symmetry by considering a two dimensional model of string cosmology. We find that as seen by an internal observer in this universe, the scale factor rebounds at the self-dual length. This rebound is a consequence of the adiabatic expansion. Furthermore, in this situation there are four mathematically different scenarios which describe physically equivalent universes which are in fact undistinguishable. We also stress that R-duality suffices to prove that all the possible evolutions present a maximum temperature. On leave of absence from Dept. Física Teórica C-XI, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

  7. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  8. Cosmological solution moduli of bigravity

    SciTech Connect

    Yılmaz, Nejat Tevfik

    2015-09-01

    We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.

  9. Cosmological solution moduli of bigravity

    SciTech Connect

    Yılmaz, Nejat Tevfik

    2015-09-29

    We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.

  10. Cosmological models of galaxy formation

    NASA Astrophysics Data System (ADS)

    Menci, N.

    I review the present status of galaxy formation models within a cosmological framework. I focus on semi-analytic models based on the Cold Dark Matter scenario, discussing the role of the different physical process involving dark matter and baryons in determining the observed statistical properties of galaxies and their dependence on cosmic time and on environment evolution. I will highlight some present problems and briefly present the main effects of assuming a Warm Dark Matter scenario.

  11. Nonstationary de Sitter Cosmological Models

    NASA Astrophysics Data System (ADS)

    Ibohal, Ng

    This paper proposes a class of nonstationary de Sitter, rotating and nonrotating, solutions to Einstein's field equations with a cosmological term of variable function Λ*(u). It is found that the space-time of the rotating nonstationary de Sitter model is algebraically special in the Petrov classification of the gravitational field with a null vector, which is a geodesic, shear-free, expanding as well as nonzero twist. However, that of the nonrotating nonstationary model is conformally flat, with nonempty space.

  12. Observational constraints on undulant cosmologies

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2005-10-01

    In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.

  13. Information gains from cosmological probes

    NASA Astrophysics Data System (ADS)

    Grandis, S.; Seehars, S.; Refregier, A.; Amara, A.; Nicola, A.

    2016-05-01

    In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the `surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release. We consider the parameters of the flat ΛCDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter w. We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 bits). The other cosmological probes, including weak lensing (1.7 bits) and {H0} measures (1.7 bits), have contributed information but at a lower level. Furthermore, we do not find any significant surprise when updating the constraints of WMAP9 with any of the other experiments, meaning that they are consistent with WMAP9. However, when we choose Planck15 as the prior, we find that, accounting for the full multi-dimensionality of the parameter space, the weak lensing measurements of CFHTLenS produce a large surprise of 4.4 bits which is statistically significant at the 8 σ level. We discuss how the relative entropy provides a versatile and robust framework to compare cosmological probes in the context of current and future surveys.

  14. Nontrivial Pfaffian forms in cosmology.

    NASA Astrophysics Data System (ADS)

    Lukács, B.; Paál, G.

    The compatibility of possible continuous cosmological particle creation with thermodynamics is studied. It is found that with the usual K = 2 Pfaffian (dQ = TdS) is compatible only in very special cases. K ≤ 3 Pfaffians can easily be reconciled with continuous creation. Since then the full thermodynamic state space is accessible by quasistatic adiabatic processes, such systems show local rather than global irreversibility. This property may prevent heat death even with indefinitely old model universes.

  15. Cosmological Effects in Planetary Science

    NASA Technical Reports Server (NTRS)

    Blume, H. J.; Wilson, T. L.

    2010-01-01

    In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.

  16. The Age of Precision Cosmology

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  17. Confusion in Cosmology and Gravitation

    NASA Astrophysics Data System (ADS)

    Corda, C.; Katebi, R.; Schmidt, N. O.

    2016-10-01

    In a series of papers, Santilli and collaborators released various strong statements against the general theory of relativity (GTR) and the standard ΛCDM model of cosmology. In this paper we show that such claims are due to misunderstandings of basic concepts of gravitation and cosmology. In particular, we show that Santilli and collaborators demonstrated neither that the GTR is wrong, nor that the Universe is not expanding. We also show that the so-called iso-gravitation theory (IGT) of Santilli is in macroscopic contrast with geodesic motion and, in turn, with the Equivalence Principle (EP) and must therefore be ultimately rejected. Finally, we show that, although the so called iso-redshift could represent an interesting alternative (similar to the tired light theory historically proposed by Zwicky) to the Universe expansion from a qualitative point of view, it must be rejected from a quantitative point of view because the effect of iso-redshift is 10-6 smaller than the effect requested to achieve the cosmological redshift.

  18. Cosmological aspects of spontaneous baryogenesis

    SciTech Connect

    Simone, Andrea De; Kobayashi, Takeshi

    2016-08-24

    We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.

  19. Cosmology from High Redshift Supernovae

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter

    The discovery of a correlation between the light curve shape and intrinsic b rightness has made Type Ia supernovae exceptionally accurate distance indicators out to cosmologically interesting redshifts. Ground-based searches and follow-up as well as Hubble S pace Telescope observations of Type Ia supernovae have produced a significant number of object s with redshifts between 0.3 and 1.0. The distant SNe, when combined with a local samp le analyzed in the same way, provide reliable constraints on the deceleration and age of th e Universe. Early this year, an analysis of a handful of Type Ia events indicated that the deceleration was too small for gravitating matter alone to make a flat Universe. A larger sa mple of supernovae gives the surprising result that the Universe is accelerating, implying the exi stence of a cosmological constant or some other exotic form of energy. The success of this research has depended on the development of algorithms and software to register, scale and subtract CCD images taken weeks apart and to search for var iable objects. A good fraction of the point-sources identified are asteroids, variable stars, or AGN, so spectra are needed to confirm the identification as a Type Ia supernova and obt ain a redshift. The best candidates are followed photometrically to construct light curves. The steps to transform the observed light curves into cosmologically interestin g results will also be described.

  20. Voids in massive neutrino cosmologies

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it

    2015-11-01

    Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

  1. Multiverse understanding of cosmological coincidences

    SciTech Connect

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-09-15

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.

  2. Quantum inflationary minisuperspace cosmological models

    SciTech Connect

    Kim Sangpyo.

    1991-01-01

    The Wheeler-DeWitt equations for the Friedmann-Robertson-Walker cosmology conformally and minimally coupled to scalar fields with power-lay potential are expanded in the eigenstates of the scalar field parts. The gravitational parts become a diagonal matrix-valued differential equation for a conformal scalar field, and a coupled matrix-valued differential equation for a minimally coupled scalar field. The Cauchy initial value problem is defined with respect to the intrinsic timelike coordinate, and the wavefunctions incorporating initial data are constructed using the product integral formulation. The packetlike wavefunctions around classical turning points are shown possible in the product integral formulation, and the returning wavepackets near the returning point of the classical Friedmann-Robertson-Walker cosmology are constructed. The wavefunctions to the Wheeler-DeWitt equation minimally coupled to the scaler field are constructed by two differential methods, the master equation and the enlarged matrix equation. The spectrum for the wavefunctions regular at the infinite size of universe is found, and these are interpreted as the Hawking-Page spectrum of wormholes connecting two asymptotically Euclidean regions. The quantum Friedmann-Robertson-Walker cosmology is extended to the minimal scalar field with the inflationary potential having a first order phase transition. The Wheeler-DeWitt equation is expanded in the eigenstates of the scalar field, and the gravitational part becomes a coupled matrix-valued differential equation.

  3. Cosmology of a charged universe

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the deceleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3-K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe.

  4. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar

    2012-03-01

    book are also covered in detail, and with more worked examples, in the former book, and the entire focus of the latter is Bianchi models. After a brief introduction outlining the aim of the book, the second chapter provides the canonical theory of homogeneous isotropic cosmology with scalar matter; this covers the basics and linear perturbation theory, and is meant as a first taste of what is to come. The next chapter is a thorough introduction of the canonical formulation of general relativity in both the ADM and Ashtekar-Barbero variables. This chapter contains details useful for graduate students which are either scattered or missing in the literature. Applications of the canonical formalism are in the following chapter. These cover standard material and techniques for obtaining mini(midi)-superspace models, including the Bianchi and Gowdy cosmologies, and spherically symmetric reductions. There is also a brief discussion of the two-dimensional dilaton gravity. The spherically symmetric reduction is presented in detail also in the connection-triad variables. The chapter on global and asymptotic properties gives introductions to geodesic and null congruences, trapped surfaces, a survey of singularity theorems, horizons and asymptotic properties. The chapter ends with a discussion of junction conditions and the Vaidya solution. As already mentioned, this material is covered in detail in Poisson's book. The final chapter on quantization describes and contrasts the Dirac and reduced phase space methods. It also gives an introduction to background independent quantization using the holonomy-flux operators, which forms the basis of the LQG program. The application of this method to cosmology and its affect on the Friedmann equation is covered next, followed by a brief introduction to the effective constraint method, which is another area developed by the author. I think this book is a useful addition to the literature for graduate students, and potentially also for

  5. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  6. Holographic dark energy with linearly varying deceleration parameter and escaping big rip singularity of the Bianchi type-V universe

    NASA Astrophysics Data System (ADS)

    Sarkar, Sanjay

    2014-08-01

    The present work deals with the accretion of two minimally interacting fluids: dark matter and a hypothetical isotropic fluid as the holographic dark energy components onto black hole and wormhole in a spatially homogeneous and anisotropic Bianchi type-V universe. To obtain an exact solution of the Einstein's field equations, we use the assumption of linearly varying deceleration parameter. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. We have studied the evolution of the mass of black hole and the wormhole embedded in this anisotropic universe in order to reproduce a stable universe protected against future-time singularity. It is observed that the accretion of these dark components leads to a gradual decrease and increase of black hole and wormhole mass respectively. Finally, we have found that contrary to our previous case (Sarkar in Astrophys. Space. Sci. 341:651, 2014a), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip.

  7. Self-protection of massive cosmological gravitons

    SciTech Connect

    Berkhahn, Felix; Dietrich, Dennis D.; Hofmann, Stefan E-mail: dietrich@cp3.sdu.dk

    2010-11-01

    Relevant deformations of gravity present an exciting window of opportunity to probe the rigidity of gravity on cosmological scales. For a single-graviton theory, the leading relevant deformation constitutes a graviton mass term. In this paper, we investigate the classical and quantum stability of massive cosmological gravitons on generic Friedman backgrounds. For a Universe expanding towards a de Sitter epoch, we find that massive cosmological gravitons are self-protected against unitarity violations by a strong coupling phenomenon.

  8. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2003-11-01

    Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.

  9. Supersymmetric cosmological FRW model and dark energy

    SciTech Connect

    Rosales, J. J.; Tkach, V. I.

    2010-11-15

    In this work we consider a flat cosmological model with a set of fluids in the framework of supersymmetric cosmology. The obtained supersymmetric algebra allowed us to take quantum solutions. It is shown that only in the case of a cosmological constant do we have a condition between the density of dark energy {rho}{sub {Lambda}} and density energy of matter {rho}{sub M}, {rho}{sub {Lambda}>}2{rho}{sub M}.

  10. Beyond lensing by the cosmological constant

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio; Lapierre-Léonard, Marianne

    2017-01-01

    The long-standing problem of whether the cosmological constant affects directly the deflection of light caused by a gravitational lens is reconsidered. We use a new approach based on the Hawking quasilocal mass of a sphere grazed by light rays and on its splitting into local and cosmological parts. Previous literature restricted to the cosmological constant is extended to any form of dark energy accelerating the universe in which the gravitational lens is embedded.

  11. Gravitational particle production in bouncing cosmologies

    SciTech Connect

    Haro, Jaume; Elizalde, Emilio E-mail: elizalde@ieec.uab.es

    2015-10-01

    It is argued that the Universe reheating in bouncing cosmologies could be explained via gravitational particle production, as due to a sudden phase transition in the contracting regime. To this end, it is shown that, in the context of Loop Quantum Cosmology, gravitational production of massive particles conformally coupled with gravity in a matter-ekpyrotic bouncing Universe, where the sudden phase transition occurs in the contracting regime, yields a reheating temperature which is in good agreement with cosmological observations.

  12. Gravitational particle production in braneworld cosmology.

    PubMed

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  13. Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Delepouve, Thibault; Rivasseau, Vincent

    2015-06-01

    Ordinary tensor models of rank D ≥ 3 are dominated at large N by tree-like graphs, known as melonic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to different types of large N limits. We first study the most generic quartic model at D = 4, with maximally enhanced non-melonic interactions. The existence of the 1 / N expansion is proved and we further characterize the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic class of models for which the large N free energy and the relevant expectations can be calculated explicitly. They are matched with random matrix models which contain multi-trace invariants in their potentials: they possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, which proves analyticity in the coupling constants in cardioid domains.

  14. Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations

    NASA Astrophysics Data System (ADS)

    Guitter, Emmanuel

    2016-11-01

    The hull perimeter at distance d in a planar map with two marked vertices at distance k from each other is the length of the closed curve separating these two vertices and lying at distance d from the first one (d\\lt k). We study the statistics of hull perimeters in large random planar triangulations and quadrangulations as a function of both k and d. Explicit expressions for the probability density of the hull perimeter at distance d, as well as for the joint probability density of hull perimeters at distances d 1 and d 2, are obtained in the limit of infinitely large k. We also consider the situation where the distance d at which the hull perimeter is measured corresponds to a finite fraction of k. The various laws that we obtain are identical for triangulations and for quadrangulations, up to a global rescaling. Our approach is based on recursion relations recently introduced by the author which determine the generating functions of so-called slices, i.e. pieces of maps with appropriate distance constraints. It is indeed shown that the map decompositions underlying these recursion relations are intimately linked to the notion of hull perimeters and provide a simple way to fully control them.

  15. One Century of Tectonic Deformation Along the Sumatran Fault from Triangulation and GPS Surveys

    NASA Technical Reports Server (NTRS)

    Prawirodirdjo, L.; Bock, Y.; Genrich, J. F.; Puntodewo, S. S. O.; Rais, J.; Subarya, C.; Sutisna, S.

    2000-01-01

    An analysis combining historical triangulation and recent Global Positioning System (GPS) survey measurements in West and North Sumatra, Indonesia, reveals a detailed slip history along the central part of the Sumatran Fault. The arc-parallel components of the combined velocity field are consistent with slip rates inferred from GPS data, ranging from 23 to 24 mm/yr. Between 1.0 S and 1.3 N the Sumatran Fault appears to be characterized by deep locking depths, on the order of 20 km, and the occurrence of large (M (sub w) approximately 7) earthquakes. The long-term (1883-1993) strains show simple right-lateral shear, with rates similar to GPS-measured, 1989-1993 strain rates. Coseismic deformation due to the 1892 Tapanuli and 1926 Padang Panjang earthquakes, estimated from triangulation measurements taken before and after the events, indicate that the main shocks were significantly larger than previously reported. The 1892 earthquake had a likely magnitude of M (sub w) approximately equal to 7.6, while the 1926 events appear to be comparable in size to the subsequent (M approximately 7) 1943 events, and an order of magnitude higher than previously reported.

  16. 3D measurement with active triangulation for spectacle lens optimization and individualization

    NASA Astrophysics Data System (ADS)

    Gehrmann, Julia; Tiemann, Markus; Seitz, Peter C.

    2015-05-01

    We present for the first time an active triangulation technique for video centration. This technique requires less manual selection than current methods and thus enables faster measurements while providing the same resolution. The suitability to measure physiological parameters is demonstrated in a measurement series. The active triangulation technique uses a laser line for illumination which is positioned such that it intersects with the pupils of the subject to be measured. For the illumination of human eyes, the wavelength and output power were carefully investigated to ensure photobiological safety at all times and reduce irritation of the subject being measured. A camera with a known orientation to the laser line images the subject. Physiological features on the subject and the frame are then selected in the acquired image yielding directly a 3D position if lying on the illuminated laser line. Distances to points off the laser line can be estimated from a scaling at the same depth. Focus is on two parameters: interpupillary distance (PD) and corneal face form angle (FFA). In our study we examined the repeatability of the measurements. We found an excellent repeatability with small deviations to the reference value. Furthermore a physiological study was carried out with the setup showing the applicability of this method for video centration measurements. A comparison to a reference measurement system shows only small differences.

  17. Indirect measurement of molten steel level in tundish based on laser triangulation.

    PubMed

    Su, Zhiqi; He, Qing; Xie, Zhi

    2016-03-01

    For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such as installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.

  18. Indirect measurement of molten steel level in tundish based on laser triangulation

    NASA Astrophysics Data System (ADS)

    Su, Zhiqi; He, Qing; Xie, Zhi

    2016-03-01

    For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such as installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.

  19. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  20. Triangulation Error Analysis for the Barium Ion Cloud Experiment. M.S. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1973-01-01

    The triangulation method developed specifically for the Barium Ion Cloud Project is discussed. Expression for the four displacement errors, the three slope errors, and the curvature error in the triangulation solution due to a probable error in the lines-of-sight from the observation stations to points on the cloud are derived. The triangulation method is then used to determine the effect of the following on these different errors in the solution: the number and location of the stations, the observation duration, east-west cloud drift, the number of input data points, and the addition of extra cameras to one of the stations. The pointing displacement errors, and the pointing slope errors are compared. The displacement errors in the solution due to a probable error in the position of a moving station plus the weighting factors for the data from the moving station are also determined.